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CHAPTER 1 

 

INTRODUCTION 

 

Functional magnetic resonance imaging (fMRI) is a non-invasive imaging 

technique that has emerged as a powerful tool to identify the brain regions involved in 

cognitive processes. FMRI has made a significant contribution to neuroimaging research 

over the past 20 years to better understand the intricacies of brain function. The analysis 

of FMRI data aims to correctly identify the regions in brain that are activated during the 

course of a cognitive task. FMRI offers spatial and temporal resolutions adequate to 

measure the location, amplitude and timing of brain activity.  This dissertation is about 

analyzing fine spatiotemporal patterns of brain activity from fMRI data using an 

unsupervised data-driven approach. The objective of this work is to a) accurately detect 

regions in brain that are activated during cognitive processes and b) classify these regions 

based on timings to measure relative timings of brain activities. This would provide 

further insights into the nature of brain function by helping to decode the sequential 

patterns of brain activity (mental chronometry) (Menon et al. 1998; Menon, 2012).  

FMRI is an indirect measure of neuronal activity. It does not measure neural, 

electrical or chemical changes but instead detects hemodynamic effects (increased blood 

flow and oxygen consumption) using blood oxygenation level-dependent (BOLD) 

responses that are delayed and dispersed in time. The spatiotemporal patterns of neuronal 

activities are only approximately represented by BOLD responses due to slowly evolving 

hemodynamics, low spatial and temporal resolutions of fMRI signals, and the presence of 
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undersampled structured noise from cardiac and respiratory sources. These present 

challenges for accurately mapping task-related brain regions.  

Several methods for analyzing fMRI data have been reported in the literature. 

These methods can be broadly classified into two categories: hypothesis-driven and data-

driven methods. Statistical parametric mapping (SPM) based on the general linear model 

(GLM) is a commonly used hypothesis-driven method that assumes a simple parametric 

linear model for signals with a specific noise structure and uses voxel-based linear 

regression analysis (Friston et al., 1994). The success of SPM for fMRI analysis is due 

mainly to the simplicity of the approach in principle and application. It works the best for 

fMRI experiments comprising simple task paradigms. More complex parametric models 

based on Markov random field models (Svensén et al., 2000, Descombes et al., 1998) and 

hidden Markov models (Faisan et al, 2005) have also been used in fMRI analysis. These 

methods however require prior knowledge about shape and timings of the BOLD 

response, and are more suitable to analyze data from simple task paradigms. A typical 

SPM analysis performs linear convolution of an assumed hemodynamic response 

function (HRF) with the known stimulus timing function to construct reference functions. 

These modeling assumptions and the deterministic character assigned to the stimulus 

timing function may be too restrictive to capture the broad range of possible brain activity 

patterns in space and time and across subjects. SPM performs voxel-by-voxel analysis 

which is massively univariate. Due to spatial coherence and temporal autocorrelation 

between brain voxels (Zarahn et. al, 1997), multivariate approach may be more 

appropriate than the voxel-by-voxel approach for fMRI analysis.  
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Data-driven methods follow multivariate approach for exploratory fMRI analysis. 

The most commonly used data-driven techniques for fMRI analysis include principal 

component analysis (PCA), independent component analysis (ICA), and data clustering 

(K-means clustering, fuzzy clustering, hierarchical clustering and self-organizing map). 

The data-driven methods make few or no assumptions about HRF shape and require no 

prior knowledge about timings of the stimulus onsets. However, each of these methods 

has its own shortcomings. PCA assumes that each component is mutually orthogonal and 

considers only second-order statistics. However, second-order statistics are not sufficient 

to characterize noisy fMRI datasets and mutual orthogonality between components may 

not be applicable to fMRI data (Le et al., 1995). ICA works with higher-order statistics to 

separate maximally independent sources from fMRI data. However, it makes strong 

assumption about independence between spatial (or temporal) components (in terms of 

mutual information (entropy) or non-Gaussianity) that may result in biased 

decomposition (Daubechies et al., 2009; McKeown et al., 1998). Additionally, the 

components are unranked and sometimes difficult to interpret. The K-means algorithm is 

limited by the assumption that the clusters are spherically symmetric and separable in the 

feature space which is not always applicable in the context of fMRI. The K-means 

clustering results depend largely on the initial cluster assignment and number of clusters, 

which must be defined a priori (Goutte et al., 1999).  The results from fuzzy clustering 

also depend on the initial cluster assignment and fuzzy factor (Chuang et al., 1999). 

Hierarchical clustering overcomes the limitations of K-means and fuzzy clustering but 

suffers from computational complexity and inability to adjust once a merge or split 

decision has been made (Liao, 2005).  
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Self-organizing maps (SOM) overcome these limitations by topology-preserving 

unsupervised mapping of the high-dimensional data into a low-dimensional space. It uses 

adaptive vector quantization to transform data ensuring orderly arrangement of the node 

prototypes (feature vectors) in the output space. The data points that are similar or nearby 

in the input space end up in the same or nearby nodes in the output space. This helps in 

visualization of natural clusters in the data. However, a postprocessing scheme is 

necessary to capture clusters and delineate their boundaries on the map. In this work, we 

use self-organizing map in conjunction with novel graph-based visualizations to identify 

and classify task-related regions in brain from fMRI data. We propose graph-based 

visualizations of self-organizing maps that incorporate a) local density distribution across 

SOM prototypes (density-based connectivity) and b) local similarities (correlations) 

between the prototypes (correlation-based connectivity). The combined visualization 

helps to capture cluster boundaries in fMRI data enabling the separation of regions with 

small differences in the timings of their brain responses (Katwal et al., 2011). We use this 

approach to measure relative timings of brain activities in visual cortex (Katwal et al., 

2013) in a controlled setup and also study the relationship between fMRI signal timing 

and reaction time during a visuo-motor task in a more flexible setup (Katwal et al., 2012).  

Correct measurements of the timings of brain activities are critical for more fully 

understanding the neural dynamics of brain processes. FMRI has previously been shown 

to be able to measure hundreds of milliseconds differences in timings of activities in 

different brain regions, even though the underlying BOLD response is delayed and 

dispersed on the order of seconds. (Menon et al., 1998; Raj, 2001; Hernandez et al., 2002; 

Henson et al., 2002; Formisano and Goebel, 2003; Sigman et al., 2007; Lin et al., 2011; 
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Katwal et al., 2009). The practical limit of fMRI for detecting the relative timings of 

brain activities is not known. In this dissertation, we aim to detect fine differences in the 

timings of brain activities beyond those previously measured from fMRI data in human 

subjects. We introduce known timing differences between left and right visual hemifield 

stimuli presentations, acquire high resolution brain images with ultrahigh field (7 T) MR 

scanner and identify voxels responding to the task using our approach of self-organizing 

map in conjunction with graph-based visualizations. We use Granger causality and 

inverse logit model of hemodynamic response function to measure timing differences in 

the average BOLD signals from right and left hemispheres of the primary visual cortex 

(Katwal et al., 2013).  

Reaction time (RT) has been a useful measure for correlation in mental 

chronometry to understand the temporal dynamics of brain functions (Menon, 2012). 

This dissertation also studies the relationship between fMRI signal timing and reaction 

time during a visuo-motor task. We apply our approach to identify task-related brain 

areas in an fMRI reaction time experiment and correlate the time-to-peak of the fMRI 

responses in these areas with reaction time (Katwal et al., 2012). 

Thesis Overview 

The rest of thesis is organized as follows: Chapter 2 gives a general background 

of functional magnetic resonance imaging (fMRI) with a brief overview of preprocessing 

steps and typical analysis using the general linear model. In chapter 3, we present data-

driven approach for fMRI analysis with brief introductions to various data-driven 

methods used for the analysis of fMRI data. This includes self-organizing map and the 

SOM algorithm. Chapter 4 introduces graph-based visualizations of self-organizing map 
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and demonstrates, through simulation and empirical fMRI analysis, how it helps in 

advanced visualization of cluster boundaries enabling the separation of brain regions with 

small differences in the timings of their signals. Chapters 5 and 6 introduce two 

approaches for the measurement of timing differences in BOLD signals: chapter 5 

discusses Granger causality and how it can be formalized in terms of multivariate 

autoregressive model to measure temporal precedence in the signals, while chapter 6 

presents an alternative approach using inverse logit functions to model the hemodynamic 

response. In chapter 7, we show how the combination of these approaches improves 

detection of task-related BOLD signals allowing measurements of small differences in 

the timings of brain activities in visual cortex. In chapter 8, we use these approaches to 

study the relationship between fMRI signal timing and reaction time during a visuo-

motor task. 
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CHAPTER 2 

 

FUNCTIONAL MAGNETIC RESONANCE IMAGING (FMRI) 

 

2.1 Brief Overview 

Functional magnetic resonance imaging (fMRI) is a powerful imaging tool for 

measuring brain activity non-invasively. It helps to identify the regions in brain involved 

in cognitive processes by observing localized hemodynamic changes indicated by 

increased blood flow over time. FMRI has contributed significantly over the past two 

decades to better understand the complexity of brain processes. It has a wide range of 

application in the fields of neuroscience, psychology, medicine and a host of other fields 

where the nature of brain functions are analyzed. 

FMRI does not measure brain activity at the neuronal level but instead measures 

hemodynamic changes by observing blood flow or oxygen consumption level using 

blood oxygenation level-dependent (BOLD) responses. FMRI is therefore an indirect 

measure of neuronal activity (DeYoe et al., 1994). In a typical fMRI experiment, the 

subject performs a certain task under the scanner that engages specific regions in brain 

depending upon the nature of the given task. This causes neurons to fire increasing the 

demand of oxygen which is delivered by oxygenated hemoglobin or oxyhemoglobin in 

blood. When oxyhemoglobin gives up its oxygen, it becomes deoxyhemoglobin which is 

paramagnetic in nature. The presence of paramagnetic molecules in blood produces a 

difference in magnetic susceptibility between the blood vessels and the surrounding 

tissues causing significant signal changes in a series of images acquired over time.  The 
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susceptibility effects can be accentuated with gradient-echo techniques to create BOLD 

contrast (Ogawa et al., 1990). The BOLD contrast causes increased image brightness in 

the regions that are involved during the task. This BOLD contrast is used to measure 

hemodynamic changes and is the basis to identify the functional regions in brain in most 

fMRI studies.  

2.2 Preprocessing 

The need for preprocessing arises from the fact that the raw fMRI data is 

contaminated with artifacts primarily due to body movement (head motion), 

physiological noise (cardiac and respiratory sources) and scanner artifacts during the 

course of data acquisition. Preprocessing attempts to increase BOLD contrast and signal-

to-noise (SNR) in general by removing the amount of noise as much as possible. The 

conventional fMRI preprocessing pipeline includes motion correction, slice-timing 

correction and filtering. 

2.2.1 Motion Correction  

In fMRI, a series of images is acquired over a period of time on the order of tens 

to hundreds of seconds. During the course of this acquisition, the subject may undergo 

motion, especially of the head, thereby contaminating the data with motion-related 

artifacts (Friston et al. 1996). As a result, the first image volume and the subsequent 

volumes may end up having different alignments. This poses an image registration 

problem. The motion correction ensures the motion-related artifacts in the data is 

removed by choosing the reference image volume and realigning all the remaining image 

volumes to the reference to minimize the variance caused by motion. 
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2.2.2 Slice-timing Correction 

A new volume is acquired every repetition time (TR) in fMRI. During this time 

period, individual slices in the volume are acquired either sequentially or in an 

interleaved manner (where all odd slices are acquired before even slices). The slices 

within the same volume are therefore acquired at different times. With sequential slice 

acquisition, the time difference between first and last slice acquisition is one full TR and 

with interleaved slice acquisition, the adjacent slices are acquired TR/2 apart. Slice-

timing correction attempts to account for this difference in slice acquisition times usually 

by interpolation to estimate the signal that would have been obtained had all slices been 

acquired at the same time (Huettel et al., 2004). 

A general consensus in the literature is that the slice-timing correction may not be 

necessary for block-designs. For event-related fMRI experiments, a commonsense rule 

has been proposed by Huettel et al. (2004) which states that with sequential slice 

acquisition or short TRs, motion correction should precede slice-timing correction and 

with interleaved slice acquisition or long TRs, slice-timing correction should be 

performed before motion correction (Strother et al., 2006). 

2.2.3 Filtering  

The general purpose of filtering is to increase signal-to-noise by reducing 

variance in the data. Spatial filtering or smoothing averages image intensity of one voxel 

with its neighbors and helps in reducing high spatial frequency effects. However, spatial 

smoothing may also risk reducing the spatial resolution although different kernel size of 

the filter can be chosen to compensate as per requirements. Temporal filtering can be 
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employed by the use of a high-pass or a low-pass filter. While the high-pass filter reduces 

the effect of low-frequency drifts and linear trends in the data, the low-pass filter 

minimizes physiological noise and high-frequency oscillations arising from cardiac or 

respiratory sources.  

2.3 FMRI Analysis – General Linear Model (GLM) 

FMRI analysis aims for accurate mapping of the regions (voxels) in brain that are 

activated during the course of a cognitive task. The success of fMRI data analysis relies 

on correct identification of voxels that respond to the task by generating signals that are 

indirectly sensitive to neuronal activities. Although the methods used for fMRI analysis 

may vary, the underlying goal of the analysis is common, which is to find the activation 

map in the brain. FMRI analysis is commonly performed by the general linear model 

(GLM) that assumes a simple parametric linear model for the observed signals with a 

specific noise structure. The success of general linear model is due largely to the 

simplicity of the concept. It uses voxel-by-voxel linear regression analysis (Friston et al., 

1994; Friston et al., 1995) and involves hypothesis testing to determine whether a given 

voxel has responded according to the model of the response.  

If x = [x
1
, x

2
, ... , x

n
]
T is BOLD observation (fMRI time-series) with n samples 

from a voxel, the general linear model can be written in the following form: 

x = g! +"               (1.1) 

Here, g denotes the regressor constructed by convolving the stimulus time-series with a 

canonical hemodynamic response function. The most commonly used model of the 

hemodynamic response is based on gamma-variate functions. The model parameter! , 



 11 

called beta weight, gives the estimate of how well the regressor predicts the data and is 

commonly estimated through an ordinary least squares solution. The term !  represents 

the residual error that accounts for the variance in x. It should be noted that the general 

linear model is applied on a voxel-by-voxel basis and is therefore massively univariate. If 

there is more than one regressor, the model can be written in the matrix form as: 

x =G!+!                    (1.2) 

where G is a matrix of regressors called the design matrix. Each row of the design matrix 

has one scan and each column has one regressor. ! is a column vector of beta weights. In 

this way, each regressor has its own beta weight and multiple regressors can be 

simultaneously evaluated using the model. To test the significance of a regressor, its beta 

weight is compared against the total amount of variability in the model. Statistical 

inference is obtained with the t statistic (or F-statistic) calculated from the estimated beta 

weights and hypothesis testing which determines statistically significant voxels.  

 

Fig. 2.1. Schematic diagram of a typical general linear model (GLM) analysis. 
 
 

Fig 2.1 shows schematic diagram of a typical general linear model analysis. A 

series of brain images is acquired over a period of time while the brain is performing a 

carefully designed cognitive task. The voxel time-series from the acquired images are 
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extracted to create the observation matrix X  whose rows represent scans and columns 

represent voxels. The design matrix G is composed of regressors created by convolving 

the stimulus time-series with the canonical hemodynamic response model based on 

gamma-variate functions. The beta weights, ! , are estimated through an ordinary least 

squares fit and hypothesis testing is carried on t statistics from the beta weights to create 

the activation map. In this way, the goodness of the fit of the model is used as a measure 

of the effect of task on the observed signal changes. It should be noted that the test is only 

as good and robust as the regressors used in the model.  

Statistical parametric mapping refers to the voxel-based process of identifying and 

making inference about regionally specific effects in the brain. It makes use of the 

general linear model and Gaussian random field theory to analyze and make inferences 

about spatially extended data. The Gaussian random field theory provides a method for 

correcting p values for the search volume and resolves the multiple comparison problem 

that arises when making inferences over a volume of the brain (Friston et al., 1994). 

These ideas have been incorporated in a widely used software package called SPM1 

(http://www.fil.ion.ucl.ac.uk/spm/). 

 
 
 
 
 
 
 
 
 
 
 
 
 
                                                

1 The term SPM has been used to refer to the software in this manuscript. 
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CHAPTER 3 

 

DATA-DRIVEN APPROACH FOR FMRI ANALYSIS 

 

3.1 Overview 

In this chapter, we discuss the data-driven approach for studying the 

spatiotemporal features of fMRI data. As previously explained, the hypothesis-driven 

approach for fMRI analysis using statistical parametric mapping (SPM) makes 

assumptions about shape and timings of the BOLD response which may be restrictive to 

capture the broad range of possible brain activity patterns across time, space and subjects. 

SPM performs voxel-by-voxel regression analysis that is massively univariate and does 

not make use of the neighborhood voxel relationship in the data. 

Data-driven methods follow multivariate approach and make few or no 

assumptions about HRF shape or stimulus timing. The most commonly used data-driven 

techniques for fMRI analysis include principal component analysis (PCA) (Hansen et al., 

1999; Le et al., 1995), independent component analysis (ICA) (Calhoun et al., 2001; 

McKeown et al., 1998) and data clustering. Several data clustering algorithms have been 

used including K-means clustering (Goutte et al., 1999), fuzzy clustering (Scarth et al., 

1995; He et al., 2008; Ding et al., 1995), hierarchical clustering (Cordes et al., 2002; 

Chen et al., 2006) and self-organizing map (Wismüller et al., 2004; Fischer and Hennig, 

1999; Ngan and Xu, 1999; Chuang et al., 1999, Peltier et al., 2003; Liao et al., 2008; 

Ngan et al., 2002).  
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We discuss these data-driven techniques in this chapter. Let an n-dimensional data 

vector x = [x
1
, x

2
, ... , x

n
]
T   represents fMRI observations where x

i
 denotes 

observation at the time point i (1! i ! n ). 

3.2 Principal Component Analysis (PCA) 

Principal component analysis (PCA) attempts to provide a simplified 

representation of a data vector by projecting along the eigendirections corresponding to 

the largest eigenvalues of the covariance matrix (Jackson et al., 1991). PCA determines 

orthogonal directions that capture the most variance in a given dataset and is a suitable 

data-driven technique for analyzing high-dimensional and highly correlated data (Hansen 

et al., 1999).  

Principal component analysis has been applied in several fMRI studies (Hansen et 

al., 1999; Viviani et al., 2005; Zhong et al., 2009). However, it suffers from the 

assumption of orthogonality and considers only second-order statistics (variance). The 

assumption that the components are orthogonal to each other is not always true in case of 

fMRI and second-order statistics is not sufficient to characterize a noisy dataset like 

fMRI where the amount of detectable signal could be very low (Le et al., 1995). 

3.3 Independent Component Analysis (ICA) 

Independent component analysis (ICA) is a generative model that assumes linear 

relationship between observations and sources. It is used to extract hidden sources from a 

set of observations such that the sources are maximally independent. Unlike PCA, which 

only uses second-order statistics (variance) to uncorrelate the data, ICA works with 

higher-order statistics (mutual information or non-Gaussianity) to achieve independence. 
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If x = [x
1
, x

2
, ... , x

n
]
T is an observed n-dimensional random vector (fMRI 

observations) and s = [s
1
, s

2
, ... , s

m
]
T  is an m-dimensional vector whose elements are the 

random variables representing independent sources, then  

x =As                (3.1) 

where A is an unknown n x m mixing matrix. Typically, n !m so that A is usually of full 

rank. The goal of ICA is to find an m x n unmixing matrix W such that 

y =Wx                (3.2)  

gives the approximation to the unknown sources s. 

 

Fig. 3.1. Comparison of GLM and spatial ICA for fMRI analysis. The GLM estimates  
activation map using reference functions (regressors) in the design matrix, whereas ICA 
estimates the timecourses from the data by maximizing independences between the 
component images (Calhoun et al., 2009). 
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Independent component analysis needs higher-order statistical information to 

achieve independence. It employs algorithms that use non-linear functions to generate 

these higher-orders statistics. These algorithms are based on maximum likelihood 

estimation, minimizing mutual information (or maximizing entropy) and maximizing 

non-Gaussianity.  Infomax (Bell and Sejnowski, 1995) and FastICA (Hyvärinen and 

Ojha, 1997) are two popular algorithms derived within these formulations (Calhoun et al., 

2009). FastICA is based on maximizing non-Gaussianity and Infomax is an algorithm 

based on minimizing mutual information. 

Independent component analysis has been successfully used in many fMRI 

applications (Calhoun and Adali, 2006; Calhoun et al. 2009) since McKeown et al. 

(1998) first applied it for fMRI study. ICA has been used to discover either the spatially 

independent components using spatial ICA or sICA (McKeown et al., 1998) or 

temporally independent component via temporal ICA or tICA (Calhoun et al., 2001) or 

the combination of two (Seifritz et al., 2002). Many applications of ICA in fMRI have 

used spatial ICA which estimates timecourses from the data by maximizing independence 

between the components images (Fig. 3.1). The number of components is evaluated by 

using information theoretic approaches (Li et al., 2007). 

Although effective for most fMRI studies, the results from independent 

component analysis are sometimes difficult to interpret. The components are unranked 

and difficult to differentiate between task-driven physiological driven noise components 

(Calhoun et al., 2001). 
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3.4 Data Clustering 

Clustering assumes the activation pattern in fMRI data has a structure and can be 

divided into different homogenous groups based on their similarities such that the within-

group-object similarity and between-group-object dissimilarity are maximized. Each 

group is called cluster that has its own cluster center with the prototype time-series. Each 

prototype is a representative of all voxel time-series belonging to the cluster (Goutte et 

al., 1999). The prototypes have their own parameter measures of activation strength and 

delay. 

3.4.1 K-means  

K-means clustering iteratively minimizes the distance between data vector and the 

center of the cluster it belongs by assigning the data to the nearest cluster center and 

recalculating each center as the average of its members (Hartigan and Wong, 1979; 

MacQueen, 1967). 

K-means Algorithm 

Let x
j
= [x

j1
, x

j2
, ... , x

jn
]
T   represents jth vector from a set of N

v
 number of 

n-dimensional vectors (1! j ! N
v
). Let c

k

(t )  represents cluster centers for K  clusters 

(1! k ! K ) at iteration t . In case of fMRI, the set of vectors, x j , represent voxel time-

series from N
v
voxels and the cluster center, c

k

(t ) , represent the prototype time-series for 

the cluster C
k
 at iteration t. 

1) Initialize K  clusters with cluster centers c
k

(0) , where k =1, 2, ..., K , at iteration 
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t = 0. 

2) Find the distance from the data vector x j  to the cluster centers c
k

(t ) , d(x j, ck
(t )
) , 

and assign the data vector to the cluster C
k
with the nearest cluster center, c

k

(t ) . 

3) Recalculate new cluster center, c
k

(t+1) , as the center to the average of its 

members, ck
(t+1)

= (1 / Ck ) x j
j! Ck

!  

C
k

 is the number of elements in the cluster C
k
. 

4) Increase the iteration number t and repeat from step 2 until the partition is 

stable. 

K-means generally has fast convergence and works well with spherical-shaped 

clusters and small to medium datasets (Liao, 2005). It needs to store K !N
v
distances 

between N
v
data vectors and K cluster centers. K-means is a non-deterministic algorithm 

and the result (partition of the data pattern) will depend largely on the initial cluster 

assignment and the number of clusters, which must be defined a priori (Goutte et al., 

1999).   

3.4.2 Hierarchical Clustering  

Hierarchical clustering is based on the idea of taxonomy where biological species 

are grouped based on similarities in their characteristics. Each group is given a rank and 

groups of a given rank are combined to form a supergroup of higher rank thus creating a 

hierarchy. In the similar manner, hierarchical clustering joins the most similar clusters at 

each step creating a bigger structure as the algorithm advances. It forms a tree-like 

structure called the dendrogram, which shows which clusters have been merged at which 
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level of similarity. The dendrogram can be cut at appropriate level to form partitions.  

Hierarchical clustering addresses the shortcomings of K-means clustering. It does 

not need to define the number of clusters in advance. In the group-average agglomerative 

method proposed by Ward (1963), each data vector is assigned a cluster at the beginning 

so there will be N
v
 clusters for N

v
 data vectors. The two most similar data are merged in 

the next step to form N
v
!1 clusters, N

v
! 2  of which will have one data vector and the 

remaining one cluster will have 2 vectors. This process continues until there is only one 

cluster or until certain terminal conditions are satisfied. The single (complete) linkage 

algorithm measures the similarity between two clusters as the similarity between the most 

similar (most dissimilar) pair of data in the clusters. 

The quality of the partition can be assessed by the within-class inertia measure 

given by: 

Iw =
1

N
d
2
(x j, ck

j!Ck

!
k=1

K

! )            (3.3) 

The within-class inertia, Iw, is calculated for different cluster numbers and plotted against 

the cluster numbers. The curvature of the plot using the central difference approximation 

is then computed to assess the quality of clustering. High curvature implies that merging 

two clusters at the corresponding level results in sharp change in inertia or homogeneity 

of data within the clusters. The cluster number for which the curvature peaks gives an 

estimate of the optimal partition (Goutte et al., 1999). 

  Hierarchical algorithm suffers from its inability to adjust once the merge (or split) 

decision has been made. The algorithm needs to compute and store N
v
!N

v
distances (or 

dissimilarities) in the beginning. This is computationally more expensive than K-means 
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for small number of clusters, K. It may be impractical to use pure hierarchical clustering 

for a high-dimensional data like fMRI. However, it has been successfully used in 

conjunction with a preliminary processing using neighborhood correlation (Chen et al., 

2006) or self-organizing map (Liao et al., 2008). 

3.4.3 Fuzzy Clustering 

Unlike conventional clustering, fuzzy clustering does not make a clear-cut 

classification of the data. Instead, it evaluates the probability of the input belonging to a 

particular cluster. In this sense, it is more suitable to classify ambiguous data. A fuzzy 

membership function between the input and the cluster center determines their similarity 

measure. The fuzzy membership matrix determines the probability that the input vector 

x
j (fMRI observation from the jth voxel) belongs to the ith cluster center, c

i
. 

µ
ij
=

1 x
j
! c

i

2

( )
1/ f !1

1 x j ! ck
2

( )
1/ f !1

k=1

K

"
             (3.4)  

where f is the fuzzy factor that determines the degree of fuzziness of the membership 

function. If the input vector matches the nth cluster feature perfectly, the probability 

belonging to that cluster is 1 (µnj
=1) and the probability belonging to the other clusters 

is zero (µij = 0 for i ! n ). If there is no perfect matching, the more the input resembles he 

cluster center, the higher its membership to that cluster. After finding the membership 

matrix, the cluster centers are updated based on all input vectors and their memberships. 

This process continues until the membership function converges. The input vectors are 
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then assigned to the cluster center with highest (or above a certain threshold) probability.  

The results of fuzzy-clustering depend on the initial cluster assignment and fuzzy 

factor. This becomes more critical when the dataset is noisy like fMRI and the features of 

interest to be classified are small (Chuang et al., 1999). 

3.4.4 Self-organizing Map (SOM)  

Kohonen’s self-organizing map (SOM) is a two-layer feed forward artificial 

neural network model that transforms high-dimensional data to a low-dimension (often a 

2-D) lattice of nodes (neurons) and reveals their natural clusters based on some similarity 

measure (Kohonen 1990; Kohonen 1996; Kohonen, 2001). It uses unsupervised machine 

learning to identify clusters in the data. SOM has been successfully used as a data-driven 

technique in fMRI for detecting brain activity and functional connectivity in an 

unsupervised way (Peltier et al., 2003; Liao et al., 2008). 

A weight vector of the same dimension as the input vector is associated with each 

SOM node. The SOM algorithm constitutes a series of training steps that tune the weight 

vectors of the nodes to the input vectors (Fig. 3.2). At the end of training, this process 

generates a learned SOM with each node having an associated weight vector or 

prototype. Each prototype is associated with a different set of voxels from the image 

slice. This transformation helps in effective visualization and abstraction of high-

dimensional data for exploratory data analysis. 
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Fig. 3.2. Self-organizing Map (SOM) with input layer (fMRI voxel time-series) and 
output layer (10x10 matrix of output nodes). Blue node denotes the best matching unit 
(BMU) to the input time-series (indicated in blue in the input layer) and green region 
indicates Gaussian kernel surrounding the neighboring nodes to be updated. 
 

The SOM Algorithm 

The self-organizing map algorithm constitutes two major steps: 1) determining the 

winner node and 2) updating the weight vectors associated with the winner node and 

some of its neighboring nodes. Prior to training, the weight vectors associated with each 

node of the map are suitably initialized. Random initialization will often suffice. For a 

profitable initialization, the vectors can be sampled evenly from the subspace spanned by 

the two largest principal component eigenvectors (Kohonen, 2001). The training expands 

over several iterations and is based on competitive learning. In each iteration, a vector 

x = [x
1
, x

2
, ... , x

n
]
T   from the input space is compared with the weight vectors of the 

nodes m
i
= [m

i1
,m

i2
, ... ,m

in
]
T  (where i =1, 2, ... , N ; N being the total number of 
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nodes) to determine the winner node, often referred to as the best matching unit (BMU). 

The BMU refers to the node whose weight vector is the closest match to the input vector 

based upon a similarity metric. The most commonly used metric is the Euclidean metric: 

x !m
c
=min

i

x !m
i{ }, i =1, ... ,N          (3.5) 

where  represents the Euclidean norm, x is the vector under consideration, m
i
denotes 

the weight of the ith node on the map and m
c
represents the weight of the best matching 

unit. Once the best matching unit is determined, the weight vectors associated with the 

best matching unit and some of its neighbors in the map are updated to make them more 

similar to the input vector: 

m
i
(t +1) =m

i
(t)+ h

ci
(t) x(t)!m

i
(t)[ ]          (3.6) 

where t is the current iteration number; hci(t) is defined as the neighborhood kernel which 

controls the number of neighboring nodes to be updated and the rate of update in each 

iteration. The magnitude of this update decreases with time (iteration) and for nodes away 

from the BMU using a suitable kernel. In general, the neighborhood kernel takes the form 

of a Gaussian function: 

 h
ci
(t) =!(t)exp ! r

i
! r

c

2
2! 2

(t)( )

! 

        (3.7) 

where  ri  and  rc are spatial co-ordinates of the ith node and the winner node, respectively, 

in the output space; σ is the full width at half maximum (FWHM) of the Gaussian kernel 

that determines the neighboring nodes to be updated. α denotes the learning rate which 

controls how fast the weights get updated. Both σ and α decrease monotonically with the 

increase in the learning iteration, t . 
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CHAPTER 4 

 

GRAPH-BASED VISUALIZATIONS OF SELF-ORGANIZING MAPS 

 

4.1 Overview: Self-organizing Map Visualization Techniques 

The self-organizing map transforms data through an adaptive vector quantization 

that ensures an orderly arrangement (map) of the prototypes (feature vectors) in the 

output space based on their similarities (Taşdemir, 2010). Data points that are similar or 

nearby in the input space are mapped on the same or neighborhood nodes in the output 

space thereby preserving the data topology. However, a postprocessing scheme is 

required to capture cluster boundaries in the map. The learned map has several 

components that may represent neighborhood relations and connectivity between 

prototypes in the data space. These include: sizes of the receptive fields, local density 

distribution or distance (or similarity) across node prototypes. These components have 

been exploited for visualization of data connectivity structures via several visualization 

schemes such as U-matrix (Ultsch, 1993) or its variants (Ultsch, 2003; Kraaijveld et al., 

1995), visualization-induced SOM (ViSOM) (Yin, 2002) or double SOM (Su and Chang, 

2001). A more comprehensive review on various visualization schemes of SOM can be 

found in Taşdemir and Erzsébet (2009), Taşdemir et al. (2010) and Vesanto et al. (1999).  

FMRI data typically comprise a large noisy dataset where the magnitude of 

detectable signals could be very low and signals of interest may be confined to a few 

voxels in the high-dimensional image space. This makes the task of delineating important 

features and capturing cluster boundaries in fMRI data more difficult. In some previous 
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fMRI studies, a two-stage clustering approach has been employed where SOM is 

accompanied by a second-stage of clustering for effective delineation of low contrast 

regions and cluster structures in fMRI data (Chuang et al., 1999; Liao et al., 2008; Peltier 

et al., 2003; Ngan et al., 2002). The first stage constitutes SOM with sufficient number of 

output nodes to ensure flexibility and good quality of mapping of the data. However, this 

will lead to redundant nodes. In the second-stage, similar and redundant SOM output 

nodes are merged. To this end, fuzzy c-means (Chuang et al., 1999), hierarchical 

clustering (Liao et al., 2008) or special node merging criteria employing least square 

distance (Peltier et al., 2003) or reproducibility of the fMRI data across epochs (Ngan et 

al., 2002) have been used to merge similar SOM nodes in fMRI analysis.  

The two-stage clustering techniques have made use of temporal and spatial 

relationships between node prototypes in SOM for cluster delineation. However, a critical 

measure of data topology provided by the distribution of data across the SOM nodes has 

been overlooked. The local density distribution shows how the data is distributed within 

the receptive fields of node prototypes with respect to their neighbors. The inclusion of 

data topology in the visualization of SOM provides important clues for delineation of fine 

cluster structures especially in high-dimensional, large and noisy datasets (Taşdemir, 

2010). The data topology can be visualized by rendering a topology-representing graph 

over SOM lattice.  

In this study, we use a combination of two graph-based visualization techniques 

that incorporate i) local density distribution across SOM prototypes and ii) local 

similarities (correlations) between the prototypes. The combined visualization effectively 

captures cluster boundaries and delineates detailed connectivity structures in the data 
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(Katwal et al., 2011). This helps in advanced visualization of cluster boundaries in fMRI 

data enabling the separation of regions with small differences in the timings of their brain 

responses. We use this approach on a simulated dataset to identify and classify activated 

regions based on the timings of the signals they constitute. We also use this approach on 

a real fMRI dataset consisting of visual task with known delay between the left and right 

hemifield stimulus presentations. 

4.2 Density-based Connectivity Visualization, CONNDDvis 

CONNDDDvis refers to the visualization of connectivity based on local density 

distribution across the prototypes on the SOM lattice. The density distribution refers to 

the number of input vectors (BOLD signals in fMRI) included in the receptive fields of 

the SOM prototypes. The local density distribution within the receptive fields represents 

the distribution of data with respect to neighboring prototypes and can be visualized with 

a topology-representing weighted Delaunay graph. It is realized by rendering of the 

connectivity matrix, CONNDD, over the SOM lattice  (Taşdemir, 2010). The existence of 

an edge between two nodes i and j with prototypes m
i
 and m j , respectively, on the graph 

(Fig. 4.1) indicates that they are neighbors in the input data space and the weight of the 

connection between them gives its connectivity strength: 

CONNDD(i, j) = RF
ij
+ RF

ji
i, j =1, 2, ... ,N          (4.1) 
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Fig. 4.1. Illustration of connectivity between SOM output nodes with associated 
prototypes m

i
 and m j  connected by an edge. 

 
 
RF

ij denotes the number of input vectors in the receptive field of prototype 

! 

m
i
 for 

whichm j is the second BMU (

! 

m
i
 being the first BMU). CONNDD provides finer density 

distribution by showing the connection between adjacent prototypes in terms of the 

number of data points for which these prototypes are the top two best matching units. The 

connectivity strengths can be normalized to one by dividing each value with the mean of 

the strongest connection of each prototype (Taşdemir, 2010). Any stronger connections 

will be assigned a value of one. Outliers can be excluded by discarding connectivity 

strength smaller than a threshold. One heuristic for the threshold is the mean connectivity 

strength of the fourth strongest connection (rank 4) of each prototype when the mean 

strength falls sharply (Taşdemir, 2010). The normalized connectivity strengths can be 

effectively visualized in gray scale and binned widths where darker and thicker edges 

represent stronger connections. The binarized CONNDD is equivalent to the induced 

Delaunay graph and when rendered over the SOM lattice, it intersects Delaunay 

triangulation with the data manifold. This captures cluster boundaries and makes the 

discontinuities with the dataset visible (Taşdemir, 2010). We refer to the visualization of 

CONNDD on the SOM lattice by CONNDDvis, analogous to CONNvis in (Taşdemir, 

2010). Previous works have demonstrated that CONNDDvis helps in the extraction of 

m
i

mi 
m

i

mj 

Node i Node j 
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details in the data structure when the data vectors outnumber the SOM prototypes 

(Taşdemir, 2010). 

 For illustration, we consider 2-D Wingnut dataset (Taşdemir, 2010) which has 

two classes with inhomogeneous distribution as shown in Fig. 4.2 (a). The density-based 

connectivity visualization on the 10x10 SOM lattice (Fig. 4.2 (b)) shows the two classes 

separated due to unconnected prototypes since they do not have local data distribution. 

 

Fig. 4.2. (a) Wingnut dataset (b) Density-based connectivity visualization 
(CONNDDvis): CONNDD rendered over 10x10 SOM. Connectivity has been shown in 
gray scale where darker and wider lines mean strong connections. (c) Distance-based 
connectivity visualization. (d) Combined density-based and distance-based connectivity 
visualization (Taşdemir, 2010). 
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4.3 Correlation-based Connectivity Visualization, CONNCCvis 

CONNCCvis refers to the visualization of connectivity based on correlation 

between local prototypes on the SOM lattice. The correlation coefficient matrix, 

CONNCC, which includes temporal similarities (correlation coefficients) of neighboring 

prototypes, can be rendered over the SOM lattice to display local similarities in the 

prototypes. The weight on the edges between two prototypes gives the measure of their 

similarity. CONNCCvis is similar to DISTvis in (Taşdemir, 2010) where local Euclidean 

distances or dissimilarities are visualized. We used correlation coefficients between 

prototypes as measures of their local similarities. CONNCCvis highlights prototypes 

from the output map that have high temporal similarity in their neighborhood. This helps 

to suppress noise from signals in fMRI. 

Fig. 4.2 (c) shows the visualization of local distances (DISTvis) between the 

prototypes on the 10x10 SOM obtained from the Wingnut dataset. The DISTvis is not 

able to show the two classes since the prototypes are very close to each other. 

4.4 Combined Connectivity Visualization, CONNDDCCvis 

The visualization obtained from CONNDDvis and CONNCCvis can be merged to 

obtain a combined visualization that emphasizes delineation of connectivity structures of 

prototypes representing important features in the data. We refer to this visualization as 

CONNDDCCvis, which combines CONNDDvis and CONNCCvis by multiplying 

(element-by-element) the normalized connectivity matrix, CONNDD, with the 

normalized correlation coefficient matrix, CONNCC. 

CONNDDCC(i, j) =CONNDD(i, j)!CONNCC(i, j)         (4.2) 
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CONNDDCC denotes overall connectivity strength between 

! 

m
i
 and m j  and includes 

both density-based connectivity and correlation-based connectivity between prototypes. 

The resulting visualization suppresses the visualization of noise and delineates detailed 

connectivity structures of correlated signals in fMRI (Katwal et al., 2011). In the Wingnut 

dataset, the combined visualization obtained by merging CONNDDvis and DISTvis 

delineated the boundary between the two classes (Fig. 4. 2 (d)). 

4.5 Data Generation 

4.5.1 Simulated Data  

 We created synthetic fMRI dataset with timing variability. Synthetic BOLD signals 

simulating an event-related acquisition were created with a stimulus time-series 

comprising a 2-s box car-shaped stimulus followed by a 16 s rest repeated over 17 trials 

with a total run time of 306 s. The stimulus time-series was convolved with a canonical 

hemodynamic response based on gamma-variate functions with a 100 Hz sampling 

frequency. It was downsampled to create the synthetic BOLD signal with a 250 ms 

repetition time (TR). Gaussian noise was added to the resulting signal such that the 

signal-to-noise ratio (SNR) was 6. The SNR was calculated as the ratio of the amplitude 

of the signal to the standard deviation of the noise.  
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Fig. 4.3. (a) Synthetic brain slice (128x128) comprising five activated clusters (A-E). The 
clusters were divided into three groups (indicated in different colors) based on delay 
between the signals (SNR=6, TR=250 ms) they constituted. The signals from red clusters 
led the signals from green clusters by 100 ms and from blue by 200 ms. F represents gray 
or white matter constituting noise. (b) Average simulated BOLD responses from red (A 
& D), green (B & C) and blue (E) clusters in the respective colors after averaging across 
trials.  
 

 Three sets of simulated stimuli were used, shifted in time to introduce known 

delays between the simulated BOLD signals. The first set led the second by 100 ms and 

the third by 200 ms. A synthetic brain slice (128x128) was created to simulate the spatial 

distribution of activated regions on brain (Fig. 4.3 (a)). The first set of simulated BOLD 

signals was assigned to the red regions (A and D). Regions B and C (green) consisted of 

signals from the second set and blue pixels were assigned the signals from the third set. 

Region F represented the gray or white matter in brain and consisted of noise only. 

BOLD responses from these regions are shown in Fig. 4.3 (b) after averaging across 

trials.  

4.5.2 FMRI Data  

 Visual stimuli were created using two radial checkerboards separated by a fixation 
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cross. The checks flashed for 2 s with a contrast reversal rate of 8 Hz followed by a 16 s 

rest. The left check started to flash 112 ms (one eighth of the refresh rate of the projector) 

prior to the right to introduce delay (stimulus onset asynchrony, SOA) between the 

hemifield onsets. Seventeen trials were created for a total run time of 306 s. Single-shot 

gradient-echo EPI (TR=250 ms, TE=25 ms, flip angle=30°, FOV=128 mm x 128 mm, 

voxel size=1mm x 1mm x 2mm) were used to acquire two coronal slices around the 

calcarine fissure with no slice gap on a Philips Achieva 7T MR scanner with a 16-

channel receive coil and quadrature transmit coil. 

4.6 Data Processing 

The self-organizing map algorithm parameters: total number of nodes, N, initial 

learning rate, α, and number of iterations were chosen from the test for convergence 

procedure used in Peltier et al. (2003). An initial learning rate of 0.1 and total number of 

nodes of 100 (arranged in a 10x10, 2-D lattice grid format) were able to produce the least 

total squared error (TSE) between the input data vectors and the representative node 

prototype vectors with 100 iterations. We initialized the weight vectors associated with 

the nodes with the first two principal components of the input data. The winner node 

(best matching unit) was selected using the lagged correlation coefficient metric: 

corr(x, mc ) =max
i

lagcorr(x, mi ){ }, i =1, ... , N                     (4.3) 

where lagcorr(x, mi )  denotes the lagged (lag-1) correlation coefficient between the input 

! 

x  and the weight vector of the ith node, m
i
. We used the lagged correlation measure so 

that it would improve the sensitivity to timing differences between signals.  

 The initial value of the full width at half maximum (FWHM) of the Gaussian kernel 

(σ) in the neighborhood function was set to be equal to the radius of the lattice, equal to 
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seven nodes (Peltier et al., 2003). Both α and σ decreased exponentially with the increase 

in the learning iteration.  

4.7 Data Analysis 

4.7.1 Simulated Data Analysis 

Signals from synthetic brain regions, denoted by the inner gray area comprising 

five activated regions (A - E) in Fig. 4.3 (a), were fed as inputs to the SOM algorithm. 

There were 5498 total brain pixels with 341 (~ 6%) that constituted synthetic BOLD 

signals and rest noise. Fig. 4.4 shows the 10x10 SOM output map showing traces of 

prototypes of the nodes. The prototypes corresponding to task are on the right-hand side 

of the map. We then applied the graphical visualization scheme to delineate clusters on 

the output map. 
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Fig. 4.4. 10x10 matrix of prototypes (average across trials) from SOM output map from 
the simulated dataset. The arrows show label for each block of the matrix. The prototypes 
corresponding to task are on the right-hand side of the map.  
 

Fig. 4.5 (a) shows CONNDDvis obtained by rendering of the local density 

distribution matrix CONNDD over the SOM lattice. The strength of the connection 

between prototypes is indicated in gray scale and binned width of the lines where darker 

and wider lines represent stronger connections. Outliers and connections involving noise 

were removed by discarding connectivity strength smaller than the mean connectivity 

strength of the fifth strongest connection of each prototype when the mean strength fell 

sharply (Fig. 4.6). A number of connections appeared between the nodes including three 

distinct clusters at the top right-hand corner of the map. Fig. 4.5 (b) shows CONNCCvis 

obtained by draping the CONNCC matrix over the SOM lattice.   
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Fig. 4.5. (a) Density-based connectivity visualization (CONNDDvis): Visualization of 
node connectivity based on local density distribution on the 10x10 SOM lattice. 
Connectivity is interpreted in gray scale where darker and wider lines mean strong 
connections. (b) Correlation-based connectivity visualization (CONNCCvis): 
Visualization of connectivity based on local correlation (correlation coefficient between 
the neighboring prototypes) on the SOM lattice. (c) Combined connectivity visualization 
(CONNDDCCvis): Visualization of connectivity based on local density distribution and 
local correlation on the SOM lattice. Three clusters of nodes were identified as indicated 
in red, green and blue.  (d) The output map showing traces of prototypes in different 
colors for three different clusters.  
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Fig. 4.6. Mean connectivity strengths for each rank of the connections. The red curve 
shows the curvature or the second derivative of the average connections calculated by the 
central difference approach. The curvature peaks for fifth rank of the connections 
indicating the mean connectivity strength falla sharply from fifth rank. 

 

The prototypes at the top right-hand corner showed high correlations. These prototypes 

possibly included task-related signals. Fig. 4.5 (c) shows CONNDDCCvis obtained by 

draping the density and correlation combined matrix CONNDDCC over the lattice. The 

three distinct clusters at the top right-hand corner of the map became dominant while 

other connections including noise were suppressed. The same clusters are shown with the 

node prototypes in Fig. 4.5 (d) and are mapped to the image space in Fig. 4.7 (a). 
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Fig. 4.7. (a) The graph-based visualizations of SOM successfully detected three clusters 
based on the delay groups. The blue cluster in Fig. 4.5 (d) included voxels shown in left 
(Cluster 1), red cluster included voxels shown in middle (Cluster 2) and green cluster to 
the voxels shown in right (Cluster 3). (b) Independent component analysis detected two 
components that could not distinguish the delay groups separately, and (c) GLM analysis 
with uncorrected and FWE corrected p values (p<0.001 and p<0.05) could not distinguish 
the delay groups either. 
 

The pixels included in the prototypes indicated in blue in Fig. 4.5 (d) are shown in 

Fig. 4.7 (a), left. These represented blue pixels in the image space. Similarly, the 

prototypes shown in red in Fig. 4.5 (d) included red pixels as shown in Fig. 4.7 (a), 

middle and green prototypes included green pixels as shown in Fig. 4.7 (a), right. This 

shows the ability of the graph-based visualization schemes of SOM in i) detecting voxels 
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responding to the task and ii) distinguishing voxels on the basis of timings of the signals 

they constitute.  

We compared the performance of SOM with ICA and GLM on the same dataset. 

We ran the independent component analysis using the FastICA algorithm incorporated in 

GIFT (Medical Image Analysis Lab, MIALAB). We performed GLM-based multiple 

regression analysis using statistical parametric mapping (SPM8). The ICA produced two 

independent task-related components that could not distinguish the three timing groups 

(Fig. 4.7 (b)). We manually changed the number of components to higher numbers, 

however the results remained same with only two components corresponding to the 

activated regions. GLM with uncorrected or FWE corrected p-values also detected the 

activated voxels but could not distinguish the delays in them (Fig. 4.7 (c)). In summary, 

SOM with graph-based visualizations provided highest sensitivity in detecting voxels 

responding to tasks and distinguishing based on timing of the corresponding signals in 

the simulated data.  

We compared the performance of the visualization technique with the two-stage 

clustering approach where SOM prototypes from the first stage were clustered using 

hierarchical clustering in the second stage using a spatiotemporal metric (Liao et al., 

2008) given by: 

dST = 1! corr(mi, mj ){ } exp !
ri ! rj

2

2! 2

"
#
$

%$

&
'
$

($
         (4.4) 

where ri and rj are the spatial co-ordinates of the nodes with prototypes m
i
 and m j , 

respectively, in the SOM lattice space and 

! 

"  denotes the FWHM of the Gaussian 
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function. The quality of the partition was assessed by the within-class inertia measure 

calculated as described in section 3.4.2 and using the correlation coefficient metric: 

I
w
=
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N
(1! corr(m

i
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2           (4.5) 
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Fig. 4.8. Within-class inertia (in blue bars) for clusters 1 to 20, generated using 
hierarchical clustering. The red curve shows the curvature (magnified 3 times) or the 
second derivative of the inertia calculated by the central difference approach. The 
curvature peaks (indicated by the arrows) for clusters: 2, 9, 13 and 16.  

 

Fig. 4.8 shows the within-class inertia for different partitions. The curvature (red curve) 

indicated four peaks (indicated by the arrows) and hence four “optimal” partitions with 2, 

9, 13 or 16 clusters. We clustered the SOM prototypes in Fig. 4.4 with the hierarchical 

clustering approach with different optimal partitions (Fig. 4.9). None of the partitions 

were unable to distinguish the delay groups in the signals.  
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Fig. 4.9. Clustering of SOM prototypes using hierarchical clustering with different 
“optimal” partitions. The colors represent clusters. The prototypes corresponding to 
signals at the top right-hand corner belonged to one cluster irrespective of number of 
partitions. This indicates the inability of the two-stage approach using hierarchical 
clustering of SOM prototypes to distinguish delays in the signals.  
 

4.7.2 FMRI Data Analysis 

 Brain regions were selected on a single slice and BOLD signals were extracted. The 

signals were motion corrected and temporally filtered with a 120 s (0.0083 Hz) high-pass 

filter including detrending to remove low-frequency drifts and linear trends. The signals 

were used as inputs in the SOM algorithm. At the end of training, a 10x10 map of output 

nodes was obtained.  
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 Fig. 4.10 shows the illustration of the graph-based visualizations of SOM on the 

fMRI data. Fig. 4.10 (a) shows CONNDDvis on the 10x10 SOM lattice. The connections 

were strong around the corners of the map as well as towards the center as indicated by 

thick, dark edges. Fig. 4.10 (b) shows CONNCCvis. Strong correlations were observed 

around the center of the lattice which meant that prototypes at the center had higher 

similarity (correlations) than those along the sides. These prototypes at the center of the 

map constituted task-induced signals. Fig. 4.10 (c) shows CONNDDCCvis. Three 

clusters at the center were visible as indicated in different colors. 

 

Fig. 4.10. Illustration of graph-based visualizations of SOM on the fMRI dataset. (a) 
CONNDDvis, CONNDD rendered over 10x10 SOM lattice. (b) CONNCCvis, CONNCC 
rendered over the lattice. (c) CONNDDCCvis, CONNDDCC rendered over the lattice. 
Three distinct clusters were identified (d) 10x10 matrix of prototypes (averaged across 
trials) with three clusters indicated in different colors. 
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Fig. 4.11 shows the voxels included in the cluster identified by CONNCCvis. All voxels 

mapped to these prototypes are shown on the functional image in Fig. 4.11 (a), top. The 

voxels were located on the calcarine fissure in V1 as expected with the presented visual 

stimuli. The colormap indicates the trial-to-trial reproducibility of the BOLD response 

(yellow indicates the strongest). Each voxel response was divided into individual trials 

and the average correlation between each pair of trials was calculated and normalized to 

form the colormap. Next, the voxels mapped to the red and blue clusters in Fig. 4.10 (d) 

are shown in Fig. 4.11 (a), middle. These same voxels are shown in the respective colors, 

red and blue, in Fig. 4.11 (b), bottom. Most of the red voxels belonged to the right 

hemisphere (R) and majority of blue voxels to the left hemisphere of V1. The average 

signals from red voxels and blue voxels were averaged across trials in Fig. 4.11 (b). The 

temporal shift between the signals from right and left V1 is evident. The third (green) 

cluster included voxels that belonged about equally to both hemispheres. 
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Fig. 4.11. Illustration of spatial arrangement of voxels in V1 and their respective signals. 
(a) Top: All voxels included in the prototypes that were delineated by CONNDDCCvis in 
Fig. 4.5 (c). The colormap indicates normalized trial-to-trial reproducibility of the voxel 
time-series. Middle: Voxels included in red and blue clusters (Fig. 4.10 (c)) shown with 
the colormap, and Bottom: The same voxels shown in the respective colors along with 
voxel counts. (b) Average BOLD responses from right (red voxels) and left (blue voxels) 
V1 (averaged over trials). Inset: checkerboard images for the visual task.   
 

4.8 Conclusions 

 The graph-based visualizations of self-organizing maps are useful in delineating 

natural clusters in fMRI data. In this work, we used visualizations based upon the local 

density distribution and local correlations in the SOM prototypes. The density-based 

connectivity visualization distinguished small timing differences in the data, and the 

correlation-based connectivity visualization distinguished signals from noise. The 

combination of the two provided a fine delineation of the prototypes that contained 

meaningful fMRI signals. We were able to segregate regions in V1 with delay, as small 

as 112 ms, in the BOLD responses. This ability can help evaluate relative timings of 

brain responses and may decode temporal sequence of brain processes. 
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CHAPTER 5 

 

GRANGER CAUSALITY AND MULTIVARIATE AUTOREGRESSIVE MODELS 

 

In this chapter, we discuss an approach to measure timing differences in BOLD 

signals using Granger causality. We will show how Granger causality can be formalized 

in terms of multivariate autoregressive model to measure temporal precedence in signals. 

Granger causality provides the measure of how one signal helps to predict another signal. 

It is based on the idea of temporal precedence and can be adapted to measure timing 

differences in BOLD signals (Deshpande et al., 2010). A univariate time-series can be 

represented by autoregressive (AR) process. The AR process models the current value or 

observation of the time-series variable as a weighted linear sum of its past values or 

observations. Multivariate autoregressive (MAR) models extend this concept for multiple 

time-series where the vector of current values is represented in terms of the weighted 

linear sum of the previous values. The number of preceding observations used in the 

model representation is determined by the order of the model. 

5.1 Overview: Multivariate Autoregressive Model 

A univariate time-series can be represented by autoregressive (AR) process. The 

AR process models the current value or observation of the time-series variable as a 

weighted linear sum of its past values or observations. Multivariate autoregressive 

(MAR) models extend this concept for multiple time-series where the vector of current 

values is represented in terms of the weighted linear sum of the previous values. The 
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number of preceding observations used in the model representation is determined by the 

order of the model. 

The autoregressive process is a simple yet effective tool to characterize dynamic 

properties of a stationary linear system. MAR models quantify the linear dependence of 

one region (or signal) over multiple regions (or signals) in the network. The model 

parameters give the measure of relationships between regions in time or frequency 

domain. Granger causality is one such measure that quantifies influence one signal or 

region influences exerts over another in the network. In the context of brain network, the 

Granger causality measures could be informative about effective connectivity (causal 

influences) between regions. It indicates temporal precedence of hemodynamic responses 

between voxels or regions. 

5.2 Granger Causality: Basic Model 

Granger causality gives the measure of directed influence one signal or a region 

exerts over another. Originally introduced by Granger for causality analysis in 

econometric models (Granger, 1969) and later mathematically formalized in terms of 

vector autoregressive (VAR) models by Geweke (1982), Granger causality is based on 

the idea of temporal precedence. If the past values of signal in region A help in predicting 

the future values of signal in region B, then A is said to Granger-cause B. Granger 

causality was introduced for brain connectivity studies by Goebel et al. (2003) and since 

has been used in many fMRI related brain connectivity studies. A more detailed review 

of Granger causality in fMRI could be found in Deshpande et al. (2010) and Schippers et 

al. (2011). Granger causality analyzes temporal precedence to reveal the direction of 

influence across brain areas. By showing whether the signal change in one area precedes 
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or follows the signal change in another area, Granger causality may indicate temporal 

differences between signals.  

A vector time-series x[n] (where n represents time) can be modeled by a vector 

autoregressive (VAR) process (Goebel et al., 2003) as: 

x[n]= Ax[k]x[n! k]+u[n]
k=1

p

"            (5.1) 

where Ax[k] are the autoregressive (AR) coefficients which regress x[n] onto its own past; 

p is the model order and u[n] is white noise whose cross-covariance matrix is given by: 

var(u[n]) = !1           (5.2) 

In the same manner, a second vector time-series y[n] can be modeled as: 

y[n]= Ay[k]y[n! k]+v[n]
k=1

p

"             (5.3) 

where var(v[n]) = T
1
             (5.4) 

The bivariate model for z[n]=
x[n]

y[n]

!

"
#

$

%
&  is given by: 

z[n]= Az[k]z[n! k]+w[n]
k=1

p

"          (5.5) 

wherevar(w[n]) =Y =
!
2
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&
'          (5.6) 

The residual covariance matrices !1 , T
1
 and T

2
 are useful in quantifying the ability to 

predict the current values of x and y based upon their past values. In terms of VAR 

model, the measure of degree to which the time-series x predicts (Granger causes) y is 

given by: 

F
x!y

= ln T
1
T
2( )              (5.7) 
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where  T
1
 and T

2
 are residual variances of y in the univariate model and the bivariate 

model, respectively.  

Similarly, the ability of y to predict x is given by: 

F
y!x

= ln "1 "
2( )           (5.8) 

!1  and !
2
being residual variances of x in the univariate and the bivariate models, 

respectively. Fx!y  and Fy!x  take the values in the interval [0, Inf) and are non-negative. 

The overall ability of x to predict y can be assessed by Granger causality difference 

(GCD) Fx!y
"F

y!x  (Roebroeck et al., 2005). In the absence of any overall influence, the 

GCD should be zero. A positive value of the GCD implies an ability of x to predict y and 

a negative value means the opposite. 

5.3 Granger Causality For Measuring Relative Timing Differences in FMRI 

MAR model can capture the temporal dynamics of BOLD response. This may 

help to decode the sequence of activation of brain processes during a cognitive task. A 

simple example would be a visuo-motor reaction time task, where a visual stimulus is 

followed by motor response when a subject reacts to the visual stimulus by responding 

with the movement of fingers. The delay between neuronal activities in primary visual 

cortex (V1) and primary motor cortex (M1) can be measured from the corresponding 

hemodynamic responses using an MAR model (Abler et al., 2006). If the measured 

reaction time differences correlate with reaction times, the differences observed can be 

attributed to task effects. In that case, the Granger causality difference (GCD) measures 

likely reflect the neuronal processing delays, avoiding confounds introduced by the 

nonlinearity and spatial variability of the BOLD response.  
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 Synthetic BOLD signals simulating an event-related acquisition were created with a 

stimulus time-series comprising a 2-s box car-shaped stimulus followed by a 16 s rest 

repeated over 17 trials with a total run time of 306 s. The stimulus time-series was 

convolved with the canonical hemodynamic response based on gamma-variate functions 

with a 100 Hz sampling frequency. It was downsampled to create the synthetic BOLD 

signal with 2 s long repetition time (TR). Gaussian noise was added to the resulting signal 

such that the ratio of the signal standard deviation to the noise standard deviation was 6.  

Fig. 5.1 shows the Granger causality difference (GCD) measure, Fx!y
"F

y!x , 

calculated from a first order bivariate AR model for different temporal precedence of x 

over y. As expected, when x and y were simultaneous, GCD was zero. As the onset 

difference increased with x leading y, GCD increased as well (Fig. 5.1 (a)). This rising 

trend continued up to an onset difference around 2 s. Beyond that, GCD decreased, 

indicating a nonlinear relationship and a decreasing sensitivity of the Granger causality to 

temporal differences that were too large (Fig. 5.1 (b)). Furthermore, a faster sampling rate 

gave better sensitivity to small onset differences as indicated by the curves at 250 ms and 

one sec TR. Interestingly, even typical whole-brain fMRI sampling rates of 1-2 s allowed 

measurement of sub-TR temporal differences. 
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Fig. 5.1. (a) For small onset differences, Granger causality difference (GCD), Fx!y

"F
y!x , 

increases with the increase in the onset difference. The error bars indicate 95% 
confidence intervals from 1000 realizations. At 250 ms TR, onset difference down to 50 
ms was detected. The sensitivity decreased with the slower sampling. (b) As onset 
difference increased (beyond sampling time), GCD started to decrease indicating non-
linear relationship and loss in sensitivity of GCD to resolve long temporal differences.  
 

5.4 Frequency Domain Representation 

Multivariate autoregressive (MAR) modeling can be extended to frequency 

domain to decompose signal relationship into their frequency components. BOLD signal 

variance comprises confounds such as cardiac or respiratory signals or scanner-related 

artifacts which may be distinguished by their frequency content. The frequency domain 

analysis helps to reveal signal interactions at specific frequency bands. The MAR model 

may be expressed in the general form as: 

X(t) = AkX(t ! k)+E(t)
k=1

p

"              (5.9) 

 
where X(t) = (X1(t), X2(t), …, XN(t))T is a multivariate time-series containing signals from 

all N channels (or regions), Ak  contains the model coefficients at lag k, E is the random 
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innovation (prediction error) and p is the model order. In the frequency domain, the 

model equation transforms to:  

X( f ) = H ( f )E( f )            (5.10) 
 
where H is the transfer matrix of the model. 

H ( f ) = A
!1
( f )          (5.11) 

 

A( f ) = I ! Ak
k=1

p

" e
!i2! fk          (5.12) 

 

where I is the identity matrix. 

5.4.1 Directed Transfer Function  

The traditional pairwise analysis cannot keep proper account of the relationships 

when more than two channels (or regions) are present, unless all variables are 

incorporated (Kuś et al., 2004). This can be accomplished in a full multivariate paradigm 

using directed transfer function (DTF). DTF is an effective measure to model inherent 

multivariate nature of neuronal networks (Kamiński et al., 1991). The non-normalized 

DTF between channel i and j is: 

!ij
2
( f ) = Hij ( f )

2

          (5.13) 
 
which is equivalent to the spectral Granger causality (Kamiński et al., 2001). 

The normalized DTF is given by: 

! ij
2
( f ) =

Hij ( f )
2

Him ( f )
2

m=1

M

!
          (5.14) 
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which describes fraction of the inflow to channel i that is accounted for by the input 

channel j out of all M input channels. A DTF of 0 signifies the absence of direct 

influence, and the value of 1 indicates that channel j is the only direct influence on 

channel i (Kuś et al., 2004). 

5.4.2 Partial Directed Coherence (PDC) 

The directed causal relations between signals have also been described by another 

descriptor called partial directed coherence, PDC (Baccalá et al. 2001), which has been 

recently discussed in the context of fMRI (Sato et al., 2009). The generalized PDC, a 

normalized version independent of the time-series scaling, is defined in terms of the 

model coefficients and signal variance !
i

2  of the innovation of channel i: 

! ij ( f ) =

Aij ( f )
1

" i

1

" m

2
Amj ( f )

2

m=1

M

!
          (5.15) 

 
The generalized PDC measures the fraction of the total influence from channel j to all 

input channels M that applies on the input channel i. A PDC of 0 implies absence of 

direct influence and the value of 1 indicates that the only direct output of channel j is to 

channel i (Sato et al., 2009).  

Although both DTF and PDC appear to perform similarly in fMRI connectivity 

analysis, PDC, in principle, is capable of separating direct from indirect influences (Sato 

et al., 2009). A deeper analysis of the AR parameters is needed to accomplish this in case 

of DTF (Kamiński et al., 2001). The directed transfer function and partial directed 

coherence may be adapted for the fMRI timing study where more than just two time-

series or regions are involved. 
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5.5 Conditional and Partial Granger Causality 

The conditional or partial Granger causality analysis may be used to model 

indirect influences. Conventional Granger causality describes relationship between two 

signals (x and y) or two brain regions in fMRI. However, most neural systems may have 

more than two regions interacting simultaneously with each other. Conditional Granger 

causality measures the overall impact of indirect influences by taking into account the 

influences from additional brain regions when two brain regions are interacting with each 

other (Chen, Y., et al., 2006, Geweke et al., 1984). The partial Granger causality is based 

on the concept of partial covariance and attempts to account more completely for 

exogenous inputs (Guo et al., 2008a, 2008b). 

5.6 Granger Causality Difference For fMRI Time-series Clustering 

In conventional data clustering, Euclidean distance is used as the similarity metric 

to compare data instances. However, Euclidean distance may not accurately quantify 

differences in fMRI signals when the scale or baseline levels of the signals are different. 

In (Liao et al., 2008), a correlation-based spatiotemporal metric has been introduced that 

outperforms the regular Euclidean distance metric in detecting brain activity from fMRI 

data using self-organizing map.  

The ability to decode the sequence of activation in brain depends on the ability of 

clustering algorithms to distinguish corresponding signals based on their timings. Both 

Euclidean distance and correlation metrics can distinguish data obtained from similar task 

paradigms (block-design or event-related) with large and discernible timing variability, of 

the order of a few seconds (Liao et al., 2008). However, if the timing difference is small, 

of the order of a few tens of milliseconds, neither metric is very useful. Granger causality 
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can reveal small temporal precedence in signals as described in the previous section. It 

can be therefore used to cluster fMRI dataset with small timing variability. We used the 

Granger causality difference (GCD) as a similarity metric in an agglomerative 

hierarchical clustering to cluster fMRI data into different timing groups. 

5.6.1 Simulation 

  Synthetic fMRI data simulating event-related acquisitions were generated as 

follows: 2-s wide boxcar-shaped stimuli were created at a regular interval of 16 s (rest 

period) with 17 trials for a total duration of 306 s (Fig. 5.2 (a)). The stimuli were 

convolved with a hemodynamic response function based on gamma-variate functions 

with a 100 Hz sampling frequency. It was downsampled to create the synthetic BOLD 

signal with 250 ms repetition time (TR). Appropriate levels of Gaussian random noise 

were added to the results with the SNR calculated as the ratio of the standard deviation of 

the signal to the standard deviation of noise. The stimuli were shifted in time to introduce 

known delays in the signals (Fig. 5.2 (b)). We created 40 time-series in total for the four 

delay groups: 0 ms, 100 ms, 200 ms and 300 ms with a set of 10 time-series for each 

group. A bi-variate autoregressive (AR) model of first order was fit to each pair of time-

series data and the Granger causality difference (GCD) measure, Fx!y
"F

y!x , was used as 

a similarity metric in hierarchical clustering to group these signals.  
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Fig. 5.2. (a) Stimuli signal. (b) Shifted stimuli to introduce known delays. (c) Average 
synthetic BOLD response for four delay groups. (d) Classification accuracies of three 
metrics in hierarchical clustering at varying SNR. The Granger causality metric clearly 
outperforms Euclidean distance as well as correlation metrics with classification accuracy 
of 93.33% at SNR 10. 
 

Fig. 5.2 (d) shows the comparison of classification performance of hierarchical clustering 

on the simulated dataset at various levels of SNR (0.5 – 10) using three metrics: 

Euclidean distance, correlation coefficient and Granger causality difference (GCD). The 

classification accuracy was average from six sets of simulations. All three metrics 

performed better with the increase in SNR of the signals. The GCD metric performed 

much better than the other two metrics, especially at high SNRs. At SNR of 10, the GCD 

metric achieved a classification accuracy of 91.67% where correlation coefficient and 
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Euclidean distance metrics could achieve only 41.67% and 40.83% accuracies, 

respectively. 

5.6.2 FMRI Analysis 

 We used the same dataset that we used for section 4.5. Gradient-echo EPI technique 

was used to acquire images around the calcarine fissure region while visual stimuli were 

presented to the left and right visual hemifields with a 112 ms presentation delay in-

between. Regions-of-interest (ROIs) were defined on a single slice around the calcarine 

fissure region of the right and left primary visual cortex (V1). The time-series from the 

selected voxels were used as input to the hierarchical clustering. 

Fig. 5.3 shows voxels classified (into right and left V1 categories) by hierarchical 

clustering using Euclidean distance and Granger causality distance metrics. The GCD 

metric achieved a classification accuracy of 93.33% where the Euclidean distance metric 

achieved only 46.67% accuracy. In summary, the Granger causality difference metric 

outperformed Euclidean distance and correlation coefficient metrics in clustering fMRI 

time-series based on their timings. The metric can be a useful measure to decode 

sequence of brain activations using fMRI. Alternatively, lagged-correlation measure can 

be used to detect signal differences based on their timings.  
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Fig. 5.3. Classification of right (red) and left (blue) V1 voxels when the stimulus onset 
difference between left and right hemifields was 112 ms. (a) Theoretical classification 
(Inset: visual stimuli) (b) Classification using hierarchical clustering with Euclidean 
distance metric (classification accuracy: 46.67%), and (c) Classification using 
hierarchical clustering with the Granger causality difference (GCD) metric (classification 
accuracy: 93.33%).  
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CHAPTER 6 

 

HEMODYNAMIC RESPONSE MODELING: ESTIMATING FMRI TIMING 

PARAMETERS 

 

6.1 Overview 

In this chapter, we discuss how models of hemodynamic response can be used to 

estimate timings of BOLD signals. One of the objectives of fMRI analysis is to 

accurately model the hemodynamic response to the neural activity evoking it. The model 

determines the shape of the response and its summary measures in terms of amplitude, 

delay, and duration. This helps to make inferences on the intensity, onset delay, and 

duration of the underlying neuronal activity (Lindquist et al., 2009). An accurate 

modeling of the hemodynamic response function (HRF) helps to reduce false positives 

and negatives as even minor amount of mis-modeling can lead to great loss in power and 

validity of the measurements (Lindquist and Wager, 2007).  

The relationship between neural activity, true BOLD response and estimated 

parameters has constraints. This makes it difficult to interpret true neural changes in 

terms of estimated BOLD response parameters. As discussed in previous chapters, fMRI 

is an indirect measure of neuronal activity. It does not measure brain activity directly at 

the neural level but instead detects hemodynamic effects using BOLD responses that are 

delayed and dispersed in time. This imposes theoretical constraints on the relationship 

between neural activity and true BOLD response that fMRI records (Fig. 6.1). A change 

in timing of the neural activity could result in change in height (H) as well as change in 
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width (W) of the evoked BOLD response. The HRF model could also be limited in terms 

of its statistical accuracy. This may impose model-dependent constraint in the 

interpretation of the relationship. Hence a change in the estimate of width (W) may not 

necessarily be equivalent to the change in duration of the true BOLD response.  

 

Fig. 6.1. Relationship between neural activity, true BOLD response, and estimated 
parameters. Solid lines indicate expected relationship and dashed lines represent 
relationships that muddle interpretation of the estimated parameters. The estimate of 
time-to-peak parameter should depend only on onset latency of the neural activity. 
However, the interpretation may be muddled by firing rate and duration of the neural 
activity due to constraints imposed on the parameter estimate: theoretical constraint 
imposed by the relationship between neural activity and true BOLD response and model-
dependent constraint imposed by the relationship between true BOLD response and 
estimated parameters. (Figure adapted from Lindquist et al., 2009). 
 
 

Despite the underlying complexity in interpretability, fMRI has been able to 

demonstrate relationship between task-evoked changes in brain activity and measured 

BOLD responses.  Designing experiments with well-separated events, crucial task-related 

signals are recovered and parameters estimated directly from them. This way, inferences 

are made on neuronal activity indirectly from BOLD signals.   
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6.2 Hemodynamic Response Function (HRF) Modeling 

BOLD signal, x(t) , at time t can be modeled as a linear time invariant system 

(LTI) using the convolution between the stimulus function s(t) and the hemodynamic 

response functionh(t) . 

x(t) = (s*h)(t)              (6.1) 

In matrix form: 
 

X =G!+"               (6.2) 

where G is a design matrix, ! is a column vector of regression coefficients, X is a matrix 

of observed fMRI data and! is a vector of errors. 

A number of HRF models have been reported in the literature. These vary greatly 

in their flexibility to model the shape of the response. In the most rigid model, like the 

one used by Worsley and Friston (1995), the shape of the HRF is fixed and only height is 

allowed to vary. Then on the other extreme, there is finite impulse response (FIR) model, 

which contains one parameter for each time point within a given window of time (Goutte, 

et al. 2000, Glover, 1999). Other models fall in between these two extreme categories of 

flexibility (or rigidity). The combination of the canonical HRF and its derivatives with 

respect to time and dispersion (Friston et al., 1998), basis sets composed of cosine 

functions (Zarahn, 2002) or radial basis functions (Riera et al., 2004) or Gaussian model 

(Rajapakse et al., 1998) or spectral basis functions (Liao et al., 2002) are some examples. 

The flexibility of the model in BOLD parameter estimation depends upon the 

number of basis functions used in a linear model or free parameters used in the non-linear 
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ones. The more basis functions or free parameters used, the more flexible the model 

would be. However, more parameters imply more potential for error in estimating them, 

fewer degrees of freedom and decreased power and validity (Lindquist et al., 2009). 

A comparative study of the hemodynamic response models conducted by 

Lindquist et al. (2009) suggested that the inverse logit model of hemodynamic response 

results in the least amount of bias and confusion between the response parameters than 

other models including canonical gamma and finite impulse response. It is also immune 

to a large degree of model misspecification. In this chapter, we explain inverse logit 

model in more detail since it will be used for the timing measurements in the following 

chapters. For a more comprehensive review and performance comparison of various 

models, Lindquist et al. 2009 or Lindquist and Wager, 2007 can be referred. 

6.3 Inverse Logit (IL) Model 

The inverse logit function, L(x) = (1+ e
!x

)
!1 , is a sigmoid function which is an 

increasing function of x. To model the hemodynamic response function (HRF), a 

superposition of three inverse logit functions is used. The first function models the rise 

after activation, the second models the subsequent fall and undershoot, and the third 

function models the stabilization or return to baseline (Lindquist et al., 2009). The model 

of the HRF is given by: 

 h(t ! ) ="
1
L((t !T

1
) D

1
)+ "

2
L((t !T

2
) D

2
)+ "

3
L((t !T

3
) D

3
)                  (6.3) 

Each function has three variable parameters representing the amplitude, position and 

slope of the response. The !
i
 parameter controls the amplitude and direction of the 

curve, T
i
 controls the position and D

i
 controls the angle of the slope of the curve. A four 



 61 

parameter model, where the position of each function and the total amplitude are allowed 

to vary, can be used by constraining the values of !
2
 and !

3
 (so that the fit response 

begins and ends at magnitude 0). Following constraints can be used for the amplitude: 
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))         (6.4) 

and 

!
3
= !

2
! !

1
                 (6.5) 

The model can be fit either using a gradient descent or a stochastic solution (e.g. 

simulated annealing) (Lindquist and Wager, 2007).  

6.4 Estimating Parameters 

We calculate the height (H), time-to-peak (T), and full width at half maximum 

(W) from fit HRF estimates.  

The time-to-peak (T) can be estimated by using: 

T =min t h'(t) = 0& h''(t)< 0}{  

where h '(t) and h ''(t) are first and second derivatives of the HRF h(t) .  

H can be estimated from H = h(T ) . 

To estimate the width (W), we take the following steps: 

1) Find the earliest time point t
u
 such that t

u
> T and h(t

u
)< H 2 . 

2) Find the latest time point t
l
 such that t

l
< T and h(t

l
)< H 2 . 

3) The distance d = t
u
! t

l
overestimates the width and the distance 

d = t
u!1 ! tl+1underestimates the width. Linear interpolation can be employed to get 
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a better approximation of the time points between (t
l
, t

l+1) and (t
u
, t

u!1)where 

h(t) = 0.5H . 

So, W = (t
u!1 +"u

)! (t
l+1 !"l

)                        (6.6) 

where, 

!
l
=
h(t

l+1)" 0.5H

h(t
l+1)" h(tl )

                         (6.7) 

!
u
=
h(t

u"1)" 0.5H

h(t
u"1)" h(tu )

                         (6.8) 
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CHAPTER 7 

 

TEMPORAL SENSITIVITY: MEASURING SMALL TIMING DIFFERENCES IN 

BRAIN RESPONSES USING FMRI 

 

7.1 Overview 

In this chapter, we aim to detect fine differences in the timings of brain activities 

beyond those previously measured from fMRI data in human subjects. To maximize 

sensitivity, we use high spatial and temporal resolution fMRI at ultrahigh field (7 T), in 

conjunction with our approach of graph-based visualizations of self-organizing map for 

voxel selection and Granger causality to measure relative timing. We show how this 

approach improves signal detection allowing measurements of small differences in the 

timings of brain activities in visual cortex.  

The hemodynamic response to brief neuronal activity typically takes 5-8 s to peak 

and 15-30 s to return to baseline, depending on the neurovascular coupling that may vary 

across brain regions. This precludes accurate measurement of the absolute timing of 

neuronal activity. However, hemodynamics can generally be assumed to be consistent 

and deterministic in time at a given location which may allow robust measurement of 

relative timings of brain activities for a given location using a simple sparse event-related 

design (Miezin et al. 2000; Liao et al. 2002; Menon et al. 1998; Menon and Kim, 1999, 

Formisano and Goebel, 2003).  

The practical limit of fMRI for detecting small differences in the timings of brain 

activities is not known. Previous assessments of the temporal sensitivity of fMRI suggest 
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that detection of differences of the order of few hundred milliseconds is feasible. A 

BOLD response timing difference down to 125 ms was detected for visual stimuli by 

fitting a linear function to the early rise of the BOLD response (Menon et al., 1998). Raj 

(2001) estimated time to half peak and detected differences down to 300 ms in the visual 

cortex at 1.5 T and argued the accuracy was limited by the resolution and signal-to-noise 

(SNR) available. Hernandez et al. (2002) resolved delays of the order of hundreds of 

milliseconds by examining the time shift of the correlation between the data and the 

model while Henson et al. (2002) used the temporal derivative of a canonical HRF to 

estimate the temporal differences in BOLD responses with tasks involving lexical 

decisions and fame-judgment. Formisano and Goebel (2003), in studies related to fMRI-

based mental chronometry, concluded that a sequence of cortical activations with the 

temporal resolution of the order of a few hundred milliseconds was resolvable. Sigman et 

al. (2007) parsed a sequence of brain activations at a resolution of a few hundred 

milliseconds for a reading task using a Fourier-based method. Recently, Lin et al. (2011) 

measured a relative timing of 100 ms in human visual cortex at a 10 Hz sampling rate 

using a novel magnetic resonance inverse imaging (InI) technique that attains faster 

sampling by minimizing the time required to traverse k-space. They used a canonical 

model to quantify time-to-half of the hemodynamic responses to measure the relative 

timing. Our own preliminary work showed that a timing difference of 112 ms could be 

detected in the visual cortex using fMRI and a Granger causality analysis (Katwal et al., 

2009; Rogers et al., 2010).  

Several factors need to be taken into account when assessing the timing 

differences with fMRI. The signals evoked by neuronal events are blurred by the 
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hemodynamics, sampled at relatively low temporal resolution, and include undersampled 

structured noise from cardiac and respiratory sources. This may pose difficulties in 

detecting small differences in the timings of brain activities from fMRI data. In addition, 

the low contrast to noise ratio and low spatial resolution, typical of fMRI, make it 

difficult to identify task-related voxels critical for detecting small temporal differences. 

Sometimes the actual timings may be muddled by late signals through draining veins. In 

this context, a simple anatomic ROI may not always work. A more involved voxel 

selection strategy may be advantageous to extract signals containing critical timing 

information.  

Recent advances in fMRI with ultrahigh field (7 T and beyond) image acquisition 

have increased the available SNR, which in turn allows the use of higher spatial and 

temporal resolutions. The use of an array of receiver coils for parallel signal acquisition 

also improves SNR and spatial sensitivity. These together provide reduced intravascular 

signals and may improve our ability to detect small differences in the timings of brain 

activities (Menon, 2012).  

Here, we attempt to detect small differences in the timings of BOLD responses in 

visual cortex using Granger causality. Granger causality measures the ability of one time-

series to predict another and therefore can in principle be adapted to detect timing 

differences (Granger, 1969; Deshpande et al., 2010). We introduce known timing 

differences between left and right visual hemifield stimuli presentations and investigate if 

the temporal shifts in the corresponding average BOLD signals are detected by Granger 

causality. In this work, we use Granger causality analysis to measure temporal 

precedence in BOLD responses in visual cortex; there are no causal interactions per se 
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between the signals that we analyze. In conjunction, we use an unsupervised data-driven 

approach for voxel selection to make inferences on the minimum resolvable timing 

difference. We use a sparse event-related visual task design using flashing checkerboards 

with known differences between left and right hemifield stimulus onsets. We acquire 

brain images at ultrahigh field (7 T) and select voxels from primary visual cortex using 

self-organizing map (SOM) combined with graph-based data visualization techniques. 

We also evaluate other methods for selecting voxels including i) independent component 

analysis (ICA), ii) general linear model (GLM) based multiple regression, and iii) a 

localizer scan in conjunction with GLM-based multiple regression. After extracting fMRI 

time-series from left and right visual cortex, we fit a bi-variate autoregressive model on 

the average signals and compute Granger causality measures to detect the temporal 

differences. Additionally, we fit curves to the average signals by modeling the 

hemodynamic response using inverse logit (IL) functions and estimate the differences in 

time-to-peak to compare the temporal differences. We fit a linear mixed-effects model on 

the measures and compare the slopes and intercepts of the fits to quantify the 

performance of Granger causality and time-to-peak on signals from voxels obtained via 

SOM, ICA, GLM and localizer scans.   

7.2 Materials and Methods 

7.2.1 Experimental Setup 

Visual stimuli comprising flashing checkerboards were created using E-prime 

programs (E-prime® 2.0, Psychology Software Tools, Inc.) on an iMac running 

Windows XP and projected on a screen with an Avotec SV-6011 projection system. 
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Delays between right and left hemifield onsets (stimulus onset asynchrony, SOA) were 

specified in fractions of the screen refresh rate to permit accurate reproduction. Using 

photodiodes and a digital storage oscilloscope, we verified that the system produced the 

requested delays.  

The visual stimuli comprised a 2-s flashing of checkerboard images at a contrast 

reversal rate of 8Hz followed by a 16-s long fixation cross for a total trial duration of 18 

s. Seventeen trials were included in each run for a total run time of 306 s. The task 

paradigm was based on a sparse event-related design to allow maximum recovery of 

actual timing information and robust statistical testing of the temporal shifts across trials. 

Fig. 7.1 shows the stimulus paradigm and images of the checkerboards used to generate 

the visual stimuli. It comprised two radial checkerboards separated by a fixation cross. 

We experimented with several iterations of stimulus patterns, including variations of the 

half-field checkerboard pattern with a center fixation point used by Menon et al. (1998). 

The full field pattern that we eventually adopted provided better localization of specific 

regions of the primary visual cortex. The delay between the left and right hemifield 

stimuli (SOA) ranged from 0 to 112 ms in steps of 28 ms (twice the time between screen 

refreshes of the projector). Five experimental runs were created with 0, 28, 56, 84, and 

112 ms delays. For 0 ms or no stimulus onset difference, both hemifield stimuli appeared 

simultaneously.  
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Fig. 7.1. Event-related task paradigm for left (top row) and right (bottom row) hemifields 
and the corresponding checkerboard stimuli. The stimuli comprised two radial 
checkerboards separated by a fixation cross. To introduce delay in the onsets or the 
stimulus onset asynchrony (SOA), the left hemifield stimulus was presented d ms before 
the right. The SOA, d ranged from 0 to 112 ms (including 0, 28, 56, 84 and 112 ms) in 
steps of 28 ms, which was twice the time between screen refreshes of the projector. 
 

7.2.2 Data Acquisition 

After approval from the institutional review board (IRB) at Vanderbilt University, 

five healthy volunteers with normal vision were recruited to participate in the study. The 

subjects did not report any neurological or psychiatric conditions. 

An initial whole-brain low-resolution PRESTO localizer (TR=2 s) was used to 

identify areas of visual cortex that responded to the block design stimuli comprising 20 s 

of left hemifield checkerboard flashing, 20 s of right, and 20 s of fixation cross (baseline) 

for five cycles. For the event-related experiments with stimulus onset differences, single-

shot gradient-echo EPI (TR=250 ms, TE=25 ms, flip angle=30°, FOV=128 mm x 128 

mm and voxel size=1mm x 1mm x 2mm) was used to acquire two coronal slices (with no 
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slice gap) around the calcarine fissure region. The effective bandwidth in the phase 

encoding direction was 17 Hz and in the EPI frequency direction was 1458 Hz. Minimum 

time to acquire one slice was 125 ms due to constraints imposed by the combination of 

pulse sequence parameters. The images were acquired on a Philips Achieva 7T MR 

scanner using sensitivity encoding (SENSE factor=2) parallel imaging with a 16-channel 

receive coil and quadrature transmit coil and halfscan (HS=0.8). Stimulus presentation 

and fMRI volume acquisition were started at the same time. However, they were not 

synchronized trial-by-trial. Five functional runs with 0, 28, 56, 84 and 112 ms differences 

between the left and right hemifield onsets were acquired. The order of the runs presented 

to the subjects was randomized. 

7.2.3 Data Preprocessing 

We ran the data through a standard preprocessing pipeline, which included motion 

correction, linear trend removal and high-pass filtering. Although pure in-plane motion 

was unlikely to happen with coronal slices, it was necessary to ensure that any amount of 

motion did not blur small timing measurements. We observed less than 1 mm (spatial 

resolution) translational motion in the majority of runs. In some runs, the motion was 

above 1 mm. Motion correction was performed using the automated functional 

neuroimaging (AFNI- Robert Cox, Medical College of Wisconsin) software where the 

images in each run were registered in-plane to the first image in the run. The extracted 

signals from the concatenated runs were temporally filtered with a 120 s (0.0083 Hz) 

high-pass filter including detrending to remove low-frequency drifts and linear trends in 

the data. Low pass filtering may reduce the effects of cardiac and respiratory signals, but 

it may also remove important stimulus-related BOLD transitions relevant to Granger 
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causality analysis. Hence no low pass filtering was performed. To preserve high spatial 

resolution, no spatial smoothing was performed. 

7.2.4 Voxel Selection 

Voxels were selected from a single coronal slice to avoid slice-timing effects. For 

SOM, ICA and GLM methods, the functional runs were concatenated and voxels were 

selected from the concatenated time-series. We manually selected a region around the 

calcarine fissure to exclude non-V1 voxels and assigned the selected voxels into right and 

left hemisphere categories. We made sure approximately equal numbers of voxels were 

picked from the left and the right hemispheres. For the localizer method, voxels 

responding to the on/off block stimulus from the block-design localizer scan were applied 

across all runs. Then we computed an average signal for each hemisphere. These average 

time course signals were used to assess their relative timings. 

Voxel selection Using Self-organizing Map (SOM) 

The preprocessed signals were used as inputs to the SOM algorithm to detect 

voxels responding to the task. The total number of nodes, N, initial learning rate, α, and 

number of iterations for the SOM algorithm were chosen using the test for convergence 

procedure described by Peltier et al. (2003). A total number of 100 nodes (arranged in a 

10x10, 2-D lattice grid), an initial learning rate of 0.2 and total 100 iterations were chosen 

for the analysis. We initialized the weight vectors associated with the nodes with first two 

principal components of the input data from the brain region. The winner node (best 

matching unit) was selected using the correlation coefficient metric: 

corr(x, m
c
) =max

i

corr(x, m
i
){ }, i =1, ... ,N                     (6.1) 
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where corr(x, m
i
)  denotes the correlation coefficient between the input x  (fMRI time-

series) and the weight vector of the ith node,  and corr(x, m
c
)  represents the correlation 

coefficient between the input x and m
c
, weight vector of the best matching unit. The 

initial value of the full width at half maximum (FWHM) of the Gaussian kernel (σ) in the 

neighborhood function was set to be seven nodes, equal to the radius of the lattice (Peltier 

et al. 2003). Both learning rate (α) and neighborhood size (σ) were decreased 

exponentially with the increase in the learning iteration. 

The training resulted in a 10x10 map of output nodes with a prototype and a voxel 

map for each node. Using our visualization scheme, we delineated clusters on the map 

and picked the one whose voxel map included the calcarine fissure region.  

Voxel selection Using Independent Component Analysis (ICA) 

We used GIFT (Medical Image Analysis Lab, MIALAB), which implements 

spatial ICA, to extract task-related signals from the fMRI dataset. We concatenated 

sessions for each subject and ran the independent component analysis on the 

concatenated image using the FastICA algorithm incorporated in GIFT. At the end of the 

analysis, GIFT produced a number of independent components and their corresponding 

voxel map. The number of components was determined by the minimum description 

length (MDL) principle. To pick the task-related component, we examined the spatial 

map for each component and selected the one whose voxel map included the calcarine 

fissure region. Brain signals from the corresponding spatial map were extracted using a 

suitable threshold so that the total number of voxels from the region around the calcarine 

fissure matched the number obtained with SOM.  
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Voxel Selection Using Univariate General linear Model (GLM) 

In this method, voxels were chosen from the concatenated time-series for each 

subject using the GLM analysis of the event-related experiment. We constructed the 

regressor by convolving the event-related stimulus time-series of the concatenated trials 

with a canonical hemodynamic response based on gamma-variate functions. The model 

was fit to the response using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/) 

and the regression parameter was estimated. A suitable threshold for the t statistic was 

chosen so the total number of voxels from the activated region around the calcarine 

fissure was about the same as with other methods.  

Voxel Selection with Localizer   

A block stimuli comprising five cycles of right hemifield checkerboard (20 s), left 

hemifield checkerboard (20 s) and rest (fixation cross for 20 s) were presented to the 

subjects. The block stimulus time-series was convolved with the hemodynamic response 

function using statistical parametric mapping (SPM8) to create an appropriate design 

matrix. The model was fit to the response and regression parameter was estimated using 

SPM8. Activated regions in the left and right primary visual cortex were identified by 

contrasting left versus rest and right versus rest and using a FWE corrected p-value  

(<0.05). We used MarsBaR (Brett et al., 2002) to select a region of interest (ROI) each 

from the right and the left primary visual cortex regions including activated areas around 

the calcarine fissure. The MarsBaR selected only activated voxels from the selected 

region. We selected spherical region where the radius was chosen so the total number of 

activated voxels selected matched with other methods. The ROIs were applied across all 

functional runs to extract the signals for each session.  
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7.2.5 Detection of Timing Differences Using Granger Causality  

A first order bi-variate autoregressive (AR) model was fit to the average time-

series, x and y, from right and left hemispheres of V1, respectively. The Granger 

causality difference (GCD) Fx!y
"F

y!x was then computed to assess the overall ability of x 

to predict y (Roebroeck et al., 2005). In the absence of any overall temporal precedence, 

the GCD should be zero. A positive value of the GCD implies an ability of x to predict y 

or precedence of x over y and a negative value means the opposite. It should be 

emphasized the Granger causality measure was used to detect temporal shifts in BOLD 

responses and not to quantify any direct neuronal influences in this work. 

7.2.6 Detecting Timing Differences Using Inverse Logit (IL) Model 

To compare the results from Granger causality analysis, we used inverse logit (IL) 

functions to model the hemodynamic response. We fit the model on the average BOLD 

responses from right and left hemispheres and estimated the timing parameters to 

compare the temporal differences. We used a gradient descent solution to fit the model 

and used the parameter estimation procedure described in chapter 6 (section 4) to 

calculate the height (H), time-to-peak (T), and full width at half maximum (W) from fit 

HRF estimates. The difference in time-to-peak (TTPD) between right and left 

hemispheres was used to compare the temporal shift. 

7.2.7 Statistical Inference 

Conclusions about the significance of the GCD (Fx!y
"F

y!x ) and difference in 

time-to-peak (TTPD) measures were obtained by estimating the 95% confidence intervals 

using the time-series block bootstrap (Efron and Tibshirani, 1993). This allows robust 
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testing of the null hypothesis that GCD is equal to zero at the specific stimulus onset 

difference (SOA) for each subject. The time-series were divided into individual trials and 

1000 independent bootstrap samples were drawn randomly with replacement from the set 

of trials. The measures were then calculated on the reconstructed time-series and 95% 

confidence intervals were determined. We used a bias-corrected accelerated (BCa) 

interval that adjusts the percentiles to correct for bias and skewness (Efron and 

Tibshirani, 1993).  

We fit a linear mixed-effects model to compare the GCD and TTPD measures 

with the stimulus onset differences (SOA). Granger causality in general is not a linear 

function of timing difference (Roebroeck et. al., 2005); however, in the time range of 

interest, the linear model is suitable for Granger causality difference. The GCD and 

TTPD yield measures of BOLD timing differences in different units. To allow direct 

comparison, the t statistic for the linear slope of the model was calculated to compare the 

precision of each method in terms of the standardized effect size. The precision compares 

the strength of the linear relationship against the amount of variability in the data. 

Similarly, the t statistic for the linear intercept was measured to compare the bias of the 

fits. The bias should be zero indicating that a zero BOLD timing difference produces a 

zero value of the measurement. Confidence intervals on the precision and bias estimates 

were generated using the case-resampling bootstrap. 
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7.3 Results 

7.3.1 Identifying Task-related FMRI Signals  

Analyses were conducted on the datasets for five subjects using four voxel 

selection methods to extract signals related to the fMRI task. Fig. 7.2 shows the 10x10 

SOM output map with traces of node prototypes for a subject after applying the self-

organizing map (SOM) algorithm. There are 100 nodes and their corresponding prototype 

time-series arranged in a 2D map.  

 

Fig. 7.2. The 10x10 matrix of prototypes from SOM output nodes. The arrows show 
labels of each block of the matrix. Each node is associated with a different set of voxels 
from the image slice, and the prototype traces correspond to the associated fMRI time-
series. The prototypes corresponding to task-evoked fMRI signals are towards the lower 
right-hand corner of the map. Note: The average of trials (18 s) of the prototype time-
series is shown here. 
 
 
In order to identify prototypes representing task-related signals, we used graph-based 

visualizations of the SOM output map. We used the combined connectivity (Fig. 7.3 (c)) 
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obtained by merging the density-based connectivity (Fig. 7.3 (a)) and the correlation-

based connectivity (Fig. 7.3 (b)) between node prototypes (described in appendix B) to 

reveal clusters in the data. The cluster containing task-related signals was identified from 

its voxel map. The cluster whose prototypes are shown in red traces in Fig. 7.3 (d) 

constituted voxels in the calcarine fissure region and chosen for our analysis. 

 

Fig. 7.3. (a) Density-based connectivity visualization: Visualization of node connectivity 
based on local density distribution on the 10x10 SOM lattice. Connectivity is interpreted 
in gray scale where darker and wider lines mean strong connections. (b) Correlation-
based connectivity visualization: Visualization of connectivity based on local correlation 
(correlation coefficient between the neighboring prototypes) on the SOM lattice. (c) 
Combined connectivity visualization: Visualization of connectivity based on local density 
distribution and local correlation on the SOM lattice. (d) The output map showing traces 
of prototypes in different colors for different clusters. The cluster shown in red traces 
whose voxel map included the calcarine fissure regions was chosen for our analysis. 
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Voxels that were mapped to these prototypes are shown in Fig. 7.4 (a) after manual 

division into right hemisphere (red) and left hemisphere (blue) categories. The area 

denoted by ‘R’ is right V1. Voxels identified by other methods for the same subject after 

manual division into respective hemispheres are also shown in Fig. 7.4. The signals from 

voxels in these right and left hemisphere regions were averaged to create right and left 

hemisphere time-series for further analysis.  

 

Fig. 7.4. Voxels selected from V1 via (a) SOM (Voxel count: Right – 103, Left –101), 
(b) ICA (Voxel count: Right – 102, Left –103), (c) GLM (Voxel count: Right – 112, Left 
–103), and (d) localizer scan (Voxel count: Right – 103, Left –96). Voxels are shown 
after manual division into right hemisphere (red) and left hemisphere (blue) categories. 
(e) All activated voxels on the entire slice obtained using GLM analysis of the event-
related experiment (SPM8).  
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Fig. 7.5 shows average BOLD responses (averaged across trials) extracted by SOM from 

a subject when the stimulus onset difference was 112 ms. 
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Fig. 7.5. Average trial BOLD responses from right and left hemispheres extracted by 
SOM for a subject at 112 ms SOA. 
 

7.3.2 Granger Causality Can Detect Sub-100 ms Timing Differences From FMRI 

We fit a bivariate AR model of first order to the average time-series from right 

and left V1 and calculated the Granger causality difference measures (GCD) 

F
x!y

"F
y!x for different stimulus onset asynchronies (SOAs). Fig. 7.6 (a) shows the plot of 

the GCD measures versus SOA in five subjects for voxels selected by SOM. GCD was 

approximately zero at zero SOA and increased linearly with SOA as indicated by the 

linear mixed-effects model (dark line, p<0.00001). The color code represents results from 

95% time-series block bootstrap confidence intervals on each measure: blue indicates a 
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“correct” conclusion and red “incorrect” for a test of the null hypothesis that GCD=0 for 

the specific subject at the specific SOA. For zero SOA, blue means the confidence 

interval included zero and for other SOAs, blue means its confidence interval excluded 

zero. Red indicates otherwise. Differences down to 28 ms were detectable in at least three 

subjects.  
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Fig. 7.6. (a) Granger causality difference (Fx!y
"F

y!x ) versus stimulus onset asynchrony 
(SOA) for voxels selected via SOM. GCD was approximately zero at zero SOA and 
increased linearly with SOA as indicated by the linear mixed-effects model (dark line, 
p<0.00001). The color code represents results from 95% time-series block bootstrap 
confidence intervals on each measure: blue indicates a “correct” conclusion and red 
“incorrect” for a test of the null hypothesis that GCD=0 for the specific subject at the 
specific SOA. For zero SOA, blue means the confidence interval included zero and for 
other SOAs, blue means its confidence interval excluded zero. Red indicates otherwise. 
Difference down to 28 ms was detectable in at least three subjects. (b) Time-to-peak 
differences (TTPD) from inverse logit (IL) fits on signals obtained via SOM. TTPD had a 
positive linear relationship with SOA (dark line) but it was statistically weak (p=0.27). 
 
 
Fig. 7.7 (a) shows the GCD measures for voxels identified by ICA. GCD increased 

linearly with the increase in SOA (p=0.0006). However, there was a loss in sensitivity of 

GCD towards the stimulus onset differences when compared to results from SOM in Fig. 

7.6 (a). Differences down to 84 ms were detectable in three out of five (60%) subjects 
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while four subjects produced positive (greater than zero) GCD measures for differences 

down to 28 ms. 
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Fig. 7.7. (a) GCD (Fx!y

"F
y!x ) versus SOA for voxels selected via ICA. The color code 

represents results from 95% time-series block bootstrap confidence intervals on each 
measure (same as in Fig. 6). GCD was approximately zero at zero SOA and increased 
linearly with SOA as indicated by the linear mixed-effects model (dark line, p<0.0006). 
Loss of sensitivity of Granger causality in detecting timing differences in signals chosen 
from ICA (when compared to those from SOM in Fig. 6) was evident. Difference down 
to 84 ms was completely detected in three out of five (60%) subjects. Four subjects 
resulted in positive (greater than zero) GCDs for differences down to 28 ms. (b) TTPD 
from inverse logit (IL) fits on signals obtained via ICA. The linear relationship of TTPD 
with SOA (dark line) was stronger for ICA (p=0.08) than for SOM. 
 

Fig. 7.8 (a) shows the corresponding results with signals obtained from GLM. The 112 

ms difference was detected in four (80%) subjects and differences down to 56 ms were 

detected in two (40%) subjects. The linear relationship of GCD with SOA for GLM was 

statistically weaker (dark line, p=0.008) than the relationship for SOM and ICA. 
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Fig. 7.8. (a) GCD (Fx!y
"F

y!x ) versus SOA for voxels selected via GLM. The color code 
represents results from 95% time-series block bootstrap confidence intervals on each 
measure (same as in Fig. 6.6). GCD at 0 ms stimulus onset asynchrony indicated positive 
bias in one subject. The 112 ms difference was detected in four (80%) subjects. 
Difference down to 56 ms was detected in two (40%) subjects. The linear relationship 
between GCD and SOA indicated by the linear mixed-effects model was weaker (dark 
line, p=0.008) than for SOM and ICA. (b) TTPD from inverse logit (IL) fits on signals 
obtained via GLM. The linear relationship between TTPD and SOA was statistically very 
weak (dark line, p=0.83). 
 
 
For the localizer, 112 ms was detected in all subjects and differences down to 28 ms were 

resolved in two out of five (40%) subjects using GCD measures (Fig. 7.9 (a)). GCD was 

approximately zero for zero SOA and increased linearly with SOA (dark line, p=0.0001). 
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Fig. 7.9. (a) GCD (Fx!y
"F

y!x ) versus SOA for voxels selected via localizer. The color 
code represents results from 95% time-series block bootstrap confidence intervals on 
each measure (same as in Fig. 5). GCD was approximately zero at zero SOA and 
increased linearly with SOA as indicated by the linear mixed-effects model (dark line, 
p=0.0001).  Differences down to 28 ms were detectable in two out of the five (40%) 
subjects. The 112 ms difference was detected in all subjects. (b) TTPD from inverse logit 
(IL) fits on signals obtained via localizer. The dark lines are linear mixed-effects model 
on the measures. TTPD increases linearly with SOA with p=0.02 (dark line). 
 

In summary, GCD could resolve sub-100 ms differences. Differences as short as 

28 ms, the shortest timing difference investigated, were resolved in individual subjects 

and most consistently with voxels selected by SOM.  

7.3.3 Time-to-peak Difference (TTPD) Not As Consistent As Granger Causality 
Difference 

Fig. 7.6 (b) shows the time-to-peak difference (TTPD) measures from inverse 

logit fits on the average signals obtained from SOM. The color code indicates results 

from 95% time-series block bootstrap confidence intervals on each measure (same as in 

Fig. 7.6 (a)) for statistical inference. The estimated TTPDs did not follow the 

corresponding stimulus onset differences in absolute sense. However, the linear fit on the 

timing measurements indicated increase in measures with the increase in SOA. TTPD 
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had a positive linear relationship with SOA but it was statistically weak (dark line, 

p=0.27). The linear relationship trend was evident with results for ICA (Fig. 7.7 (b), 

p=0.08) and localizer (Fig. 7.9 (b), p=0.02). With GLM (Fig. 7.8 (b)), the linear 

relationship between TTPD and SOA was obscure (p=0.83).  

In summary, time-to-peak difference (TTPD) measures from inverse logit fits 

were not as stable and as consistent as the Granger causality difference measures in 

interpreting the temporal shifts in the signals.  

7.3.4 Performance Comparison Using Precision and Bias Plots 

To compare the performance of GCD and TTPD timing measurements from four 

voxel selection techniques, we fit linear mixed-effects model on the timing measures and 

computed precision and bias of the fit for each method as described in the Methods 

section.  
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Fig. 7.10. Performance comparison of the voxel selection methods using results from the 
linear mixed-effects modeling. (a) Precision was measured with the t statistic for the 
slope (linear term of the fit) describing the relationship to stimulus onset asynchrony. (b) 
Bias was measured with the t statistic for the intercept of the fit. The error bars indicate 
95% confidence intervals from 2000 bootstrap samples generated using the case-
resampling bootstrap. 
 



 84 

Table 7.1 shows p-values for the strength of the linear relationship between timing 

difference measures (GCD or TTPD) and stimulus onset asynchrony (SOA). The 

combination of SOM and GCD showed the strongest linear relationship while GLM and 

TTPD showed the weakest. GCD showed stronger linear relationship than TTPD for all 

voxel selection techniques. 

 
Table 7.1. Results from linear mixed-effects modeling. p values indicate the strength of 
the linear relationship between timing difference measures (GCD or TTPD) and stimulus 
onset asynchrony (SOA). 
 
 

Timing 
Measurements 

p values For Voxel Selection 
SOM ICA GLM Localizer 

GCD p<0.00001 p=0.0006 p=0.008 p=0.0001 
TTPD p=0.27 p=0.08 p=0.83 p=0.02 

 

Fig. 7.10 shows (a) precision and (b) bias of the fits for GCD and TTPD measures 

from all voxel selection techniques. The error bars indicate 95% confidence intervals 

from 2000 bootstrap samples. Two conclusions can be made from the precision plot: 1) 

Precision measures for GCD were higher than for TTPD for all voxel selection 

techniques. This meant that the sensitivity of the timing measurements for the stimulus-

induced differences (SOA) and their linear relationship were stronger for GCD than for 

TTPD and 2) Voxels selected by SOM produced the highest precision value followed by 

localizer, ICA and GLM, in that order. The bias plot indicated that signals selected by 

SOM might be prone to higher bias than other techniques, especially with GCD timing 

measures. However, no strong conclusions can be made from their confidence intervals 

(Fig. 7.10 (b)). Localizer seemed to produce the least amount of bias with GCD 

measurements but a strong negative bias with TTPD measurements. We made an 
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assessment of the impact of threshold or the number of voxels on the detectability of 

timing differences. The new results were in agreement with the presented results.  

In summary, GCD outperformed TTPD in the relative timing measurements and 

SOM outperformed ICA, GLM and localizer approach in selecting voxels contributing to 

the timing measurements in visual cortex.  

7.4 Discussion 

In this chapter, we assessed the ability to detect short BOLD timing differences 

from fMRI data. Brain images were acquired at ultrahigh field (7 T) and voxels 

responding to the task were identified with a multivariate data-driven approach using a 

novel visualization scheme for self-organizing map. We used a controlled slow even-

related design that modulated the timing differences by controlling the visual stimuli 

onset delay. Based on our results, we reached the following conclusions: 1) Differences 

as small as 28 ms (the shortest investigated) were detectable in individual subjects in 

visual cortex using Granger causality as a measure of relative timings in conjunction with 

self-organizing map (SOM) as a voxel selection method, 2) Granger causality difference 

(GCD) outperformed time-to-peak difference (TTPD) from inverse logit fits for the 

detection of relative timings of BOLD responses in visual cortex, and 3) Self-organizing 

map (SOM) outperformed ICA, GLM and localizer approach in identifying task-related 

voxels for the detection of timing differences.  

7.4.1 Benefits of Self-organizing map (SOM) on Detectability 

The ability to detect small timing from fMRI data depends on the ability to 

identify task-related voxels in the data. FMRI data typically comprise a large noisy 
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dataset where the magnitudes of detectable signals may be very low and signals of 

interest may be confined to a few voxels in the high-dimensional image space. The low 

contrast to noise ratios and spatial resolutions of fMRI challenge our ability in identifying 

task-related voxels critical for detecting small temporal differences. This demands a 

robust voxel selection strategy. A simple fixed anatomical region of interest (ROI) may 

not always ensure selection of important task-related signals constituting critical timing 

information, especially when the timing differences to be measured are small. The timing 

information in the task-induced signals may also have been muddled by late signals 

coming though draining veins.  

For voxel selection in this study, we used two univariate methods: general linear 

model (GLM) and localizer scan that followed hypothesis-driven approach and two 

multivariate data-driven techniques: self-organizing map (SOM) and independent 

component analysis (ICA). The localizer and the GLM methods followed the 

conventional GLM-based multiple regression analysis using statistical parametric 

mapping (SPM) which performed linear convolution of the canonical double-gamma 

hemodynamic response function with the deterministic stimulus timing function to 

construct the reference function. These modeling assumptions and deterministic 

characteristics of the reference function may have been restrictive to capture the range of 

stimulus-driven BOLD transitions (Liao et al., 2008). This may have in effect diminished 

the power of Granger causality into detecting BOLD timing differences. Additionally, 

GLM and the localizer followed a voxel-by-voxel hypothesis testing approach that was 

massively univariate and unable to capitalize on neighborhood relationships or inter-

voxel dependencies to improve sensitivity. 
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 Our implementation of SOM used neighborhood correlation to group data based 

on similarities in their temporal patterns. The neighborhood function made use of inter-

voxel relationships that increased its sensitivity. We used graph-based visualization 

scheme that delineates small structures of clusters in the data and helps in making correct 

timing assessments in fMRI by distinguishing early signals from late signals (Katwal et 

al., 2011). The other advantage of SOM, especially over GLM or similar model-based 

approach, is that it is unsupervised. It does not need the model of the response or stimulus 

timing information a priori but uses a machine learning approach for data analysis that is 

unsupervised and without any biases from assumptions. For ICA, we used spatial ICA 

that determined maximally independent components from the data by maximizing non-

Gaussianity. This ensures segregation of task-related signals from other non-relevant 

signals and noise. Although data-driven, ICA made a strong assumption of independence 

between components which may have introduced bias and decreased its ability to detect 

task-related signals (Daubechies et al., 2009; Meyer-Bäse et al., 2004; McKeown et al., 

1998). This may have resulted in the reduced power of ICA (compared to SOM) in 

capturing important BOLD transitions related to crucial timing information, which may 

in turn have produced lower sensitivity of ICA as suggested by the results (Fig. 7.7).  

7.4.2 Importance of Granger Causality on Detectability 

Granger causality has typically been formalized in terms of a multivariate 

autoregressive process that captures the temporal evolution of signals and reveals their 

inter-relationships. This allows detection of small temporal shifts in signals from fMRI 

data, as shown by our results. However, regional variability in the HRF can affect the 

detectability of timing differences (Deshpande et al., 2010, Smith et al. 2011). Previous 
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studies have suggested that the HRF shape and magnitude can vary across brain regions 

and individuals (Aguirre et al., 1998; Handwerker et al., 2004). On this premise, 

Deshpande et al. (2010) investigated the sensitivity of Granger causality analysis to HRF 

variability in single subjects concluding that fMRI could infer delays on the order of tens 

of milliseconds using Granger causality in the absence of HRF confounds (delay) across 

regions while an HRF delay can reduce the sensitivity of Granger causality to hundreds 

of milliseconds. In addition to this loss in sensitivity for true positives, the HRF 

variability may cause Granger causality analysis to result in spurious connection (false 

positive) between regions. In the assessment of temporal precedence in this work, the 

spurious connections may lead to the conclusion that signal A is preceding or following 

signal B when they have no temporal relationships in reality. While modulation of the 

activity (delays in this study) by experimental demands could cancel out the effect of 

hemodynamic variation and rule out such spurious findings (Roebroeck et al., 2005), 

results from simulation conducted by Schippers et al. (2011) using practical HRF models 

from Handwerker et al. (2004) suggested that such findings are actually rare and non-

significant in a statistical sense.  

The Granger causality difference (GCD) may reflect actual neuronal timing 

differences if a change in the experimental context (delays in our studies) modulates the 

measured differences ruling out hemodynamics as the cause of the results. The apparent 

linear relationship between SOA and BOLD timing measures in this study is compelling 

evidence that the results are not an artifact of the hemodynamic variability and the 

measured BOLD timing differences can be attributed to the stimulus timing differences. 

This shows that Granger causality is capable of reflecting the relative timings of neuronal 
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activities in visual cortex although it does not give absolute values of the timing 

differences in physical units. Results from the study conducted by Roebroeck et al. 

(2005) suggested that Granger causality is capable of revealing temporal precedence even 

if the time scale and delay is smaller than the sampling interval (TR). In this case, 

Granger causality may lose much of its sensitivity. But it still possesses enough power to 

detect interactions at a finer time scale (Roebroeck et al., 2005, Abler et al., 2006, 

Deshpande et al., 2010). This was indicated by successful measurements of delays 

smaller than the sampling time in our study as well. These findings validate the use of 

Granger causality in detecting short timing differences from fMRI data.  

7.4.3 Detectability with Time-to-peak from Inverse Logit Fit 

The Granger causality difference compares signals and indicates their temporal 

precedence. A weakness of the method is that it does not measure timing differences in 

physical units. We wanted to see if the measured timing differences could follow the 

actual delay between the stimulus onsets. Our estimates of difference in time-to-peak 

(TTPD) parameters obtained from inverse logit fits did not reflect the corresponding 

stimulus onset differences, SOA (Fig. 6.6 (b) -Fig. 6.9 (b)). Although there was some 

linear trend in the relationship between the two (as indicated by the linear fits), the 

measured values had some strong, random biases and variability. This is due to the fact 

that the hemodynamic response function is a complex, non-linear function of the 

neuronal or vascular changes and the HRF model (inverse logit functions) is limited in 

terms of its statistical accuracy for accurate recovery of the true response parameters 

(time-to-peak, width and height). This restricts accurate representation and may lead to 

unsystematic biases and confusion among the estimated response parameters (Lindquist 
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et al., 2009). We examined the width and the height parameters (not shown here) for the 

right and left V1 BOLD responses. They matched closely for both hemispheres although 

not without some random bias and variability.  

Previous studies suggest why time-to-peak measure from a hemodynamic model 

could be useful in the studies of timing in fMRI. Miezin et al. (2000) investigated 

hemodynamic response timing parameters and found that the time-to-peak estimate is 

stable across separate datasets for the same region within a subject and is a reliable 

measure of the hemodynamic response. A comparative study of the hemodynamic 

response models conducted by Lindquist et al. (2009) suggested that the inverse logit 

model is immune to a large degree of model misspecification and provides the least 

amount of bias and confusion between the response parameters than other models 

including canonical gamma and finite impulse response. Also, the use of a sparse event-

related design helps to recover true response parameters. However, the presence of bias 

and confusion between estimated response parameters may challenge and deter accurate 

estimation, especially in the measurement of small timing differences.  

The multivariate autoregressive model regresses the current value of a response 

onto its past values without having to estimate the shape of the hemodynamic response. 

This may have resulted in higher sensitivity of Granger causality measures than time-to-

peak difference estimates in detecting small timing differences in this work. 

7.4.4 Implications 

The Granger causality analysis can be applied in conjunction with self-organizing 

map (SOM) for voxel selection to achieve higher sensitivity for detecting small temporal 

precedence in signals across brain regions. Our results showed that even sub-100-ms 
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temporal differences could be resolved in visual cortex. Such capabilities may qualify 

fMRI for timing studies normally performed using EEG or MEG (Menon, 2012). This 

has important implications for decoding the temporal sequence of brain activations to 

better understand the neural dynamics of brain processes using fMRI. Our results may not 

generalize to studies involving different experimental conditions and regions of brain. A 

naïve computation of Granger causality to quantify temporal precedence across various 

regions in brain could be misleading. In particular, the variability in hemodynamic delay 

across brain regions could give misleading inferences on the actual delay. Our study 

focused on one region (calcarine fissure) of brain where voxelwise variability in 

hemodynamics may not have had much impact on measurement and interpretation of the 

actual delay. This may have increased sensitivity in measuring small delays in this study. 

However, the effect of hemodynamic variability may be more severe as we apply these 

methods in other cortical regions, e.g. between visual and motor cortex (Miezin et al., 

2000). This will lead to loss in much of the sensitivity and accuracy in timing 

measurements. In this case, modulation of the delay by experimental demands and 

cognitive context become more relevant to rule out hemodynamics as the cause of the 

results and validate the measured timing differences. In summary, with careful 

consideration of experimental design, these methods may be adapted to studies related to 

detecting relative timings of brain activities using fMRI. 

7.5 Conclusions 

In this work, we assessed the ability to detect small differences in the timings of 

brain activities from fMRI data. High-resolution fMRI data were acquired from primary 

visual cortex (V1) with a 7 T MR scanner. A data-driven approach using graph-based 
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visualizations of self-organizing map (SOM) was used to identity voxels responding to 

the task. Voxels were also selected using independent component analysis (ICA), a 

general linear model (GLM) based multiple regression analysis and localizer scans in 

conjunction with GLM. Granger causality analysis was performed to detect temporal 

differences on the average signals. Additionally, we fit curves to the average signals 

using inverse logit functions and measured time-to-peak differences to compare temporal 

differences in the signals. The combination of SOM and Granger causality outperformed 

others by detecting timing differences as small as 28 ms between left and right 

hemispheres in individual subjects. This combination also generated highest precision at 

a moderate bias. In summary, sub-100 ms (as small as 28 ms) timing differences were 

detected in BOLD responses in visual cortex. SOM outperformed ICA, GLM and 

localizer methods in identifying task-related voxels and Granger causality offered highest 

sensitivity for detecting small timing differences from fMRI data.  
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CHAPTER 8 

 

REACTION TIMES: MEASURING RELATIVE TIMINGS OF BRAIN 

ACTIVITIES 

 

8.1 Overview 

In chapter 4, we introduced graph-based visualizations of self-organizing map and 

demonstrated how it helps in advanced visualization of cluster boundaries enabling the 

separation of brain regions with small differences in the timings of their signals. In 

chapter 7, we showed how this approach improves detection of task-related BOLD 

signals from fMRI data allowing measurements of small differences in the timings of 

brain activities in visual cortex using a controlled experiment. In this chapter, we extend 

the use of this approach in a biologically interesting study to assess the relationship 

between fMRI signal timing and reaction time during a visuo-motor task. We extract 

average fMRI signals from the regions identified via SOM using graph-based 

visualizations and compute time-to-peak measures using the inverse logit model of the 

hemodynamic response. We compare the SOM visualization method with independent 

component analysis (ICA) and general linear model (GLM) based multiple regression 

analysis. We fit a linear mixed-effects model on the time-to-peak measures and compare 

the slopes and intercepts of the fits to compare the timing accuracy of signals obtained 

via SOM, ICA and GLM. 
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8.2 Materials and Methods 

8.2.1 Experimental Design 

We used the fMRI dataset originally collected for a study of the unified 

attentional bottleneck (Tombu et al., 2011). The original experiment was composed of 

trials that comprised either an auditory-vocal (AV) task, a visual-manual (VM) task or 

both tasks simultaneously (dual tasks, DT). Nine functional runs with six VM trial, six 

AV and six DT trials, presented randomly, were acquired. For this work, we extracted 

only the VM trials while excluding other tasks from our analysis.  

 

Fig. 8.1. Experimental design of the face discrimination task comprising visual stimulus-
manual response trial (Adapted from Tombu et al., 2011). 
 

The visual-manual (VM) face discrimination task used one of three male faces 

(6.4° of visual angle). Each trial comprised 12 s of a black fixation marker (0.1° of visual 

angle) followed by the stimuli presentation for 200 ms. The last 2 s of the fixation 

included an enlargement of the fixation point to alert the subjects about the following 

stimulus presentation (Fig. 8.1). With the stimulus presentation, a 4 s response interval 

was initiated, which was followed by a 200 ms post-response period before the start of 

the next trial. Responses were made with right index, middle and ring fingers for the 

respective faces. 
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8.2.2 Data Acquisition 

The data were collected after approval from the institutional review board (IRB) 

at Vanderbilt University (Tombu et al., 2011). Twelve healthy volunteers (five female; 

aged 21-33) were recruited to participate in the study. Functional (T2*) images 

(TR=1200 ms, TE=35 ms, flip angle=70°, FOV=220 mm; 64x64 matrix) consisting of 20 

slices (4.5 mm thick, 0.5 mm skip) were acquired parallel to the anterior commissure 

(AC)-posterior commissure (PC) line on a Philips Achieva 3T Intera MR scanner. Stimuli 

were presented on a liquid crystal display panel and back-projected onto a screen in front 

of the scanner. Manual responses were collected with five-key keypads (Rowland 

Institute of Science). Reaction time (RT) was recorded for each trial. Stimulus 

presentation was synchronized with fMRI volume acquisition with the interleaved design 

such that the intervening trials began 600 ms (1/2 TR) after the scanner pulse. There were 

in total nine runs. One subject completed only seven runs due to discomfort.  

8.2.3 Data Preprocessing 

Before analyzing the data for voxel selection, we ran them through a 

preprocessing pipeline that included motion correction and slice-time correction. We then 

extracted the visual-manual trials (a total of 54) from all runs for a given subject and 

divided the trials based on the reaction times (RT) into two groups (clusters): slow RT 

and fast RT using the K-means algorithm.  If one cluster ended up having just a few 

trials, we discarded them as outliers and divided the other cluster into two groups. Fig. 

8.2 shows boxplots of the means of the two RT groups for all 12 subjects. The median 

values for the fast and slow RTs over subjects were approximately 750 ms and 1000 ms, 

respectively. We concatenated fast and slow RT trials to choose voxels from the 
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combined signals. The concatenated time-series was temporally filtered with a 120 s 

(0.0083 Hz) high-pass filter including detrending to remove low-frequency drifts and 

linear trends in the data.  
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Fig. 8.2. Boxplots of the means of the fast (RT1) and slow (RT2) reaction times from 12 
subjects. The approximate median values for RT1 was 750 ms and for RT2 was 1000 ms.  

 

8.2.4 Voxel Selection Using Self-organizing Map (SOM) 

The preprocessed signals were used as inputs to the SOM algorithm to detect 

voxels responding to the task. The initial learning rate (α) was set at 0.1 and the total 

number of nodes (N) was chosen to be 100 (arranged in a 10x10, 2-D lattice grid format). 

The initial value of the full width at half maximum (FWHM) of the Gaussian kernel (σ) 

in the neighborhood function was set to be equal to the radius of the lattice (seven nodes). 

The weight vectors associated with the nodes were initialized with first two principal 
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components of the input data from the brain region. The winner node or the best 

matching unit was selected using: 

corr(x, m
c
) =max

i

corr(x, m
i
){ }, i =1, ... , N            (8.1) 

where corr(x, m
i
)  denotes correlation coefficient between the input x  and the weight 

vector of the ith node, m
i
. The lagged correlation did not make any difference in the 

fMRI data so we used the regular (lag-0) correlation. 

Both learning rate (α) and FWHM of the Gaussian kernel (σ) were decreased 

exponentially with the increase in the learning iteration for a total of 100 iterations. The 

training resulted in a 10x10 map of output nodes with a prototype and a voxel map for 

each node. Using our visualization scheme, we delineated clusters on the map. The 

clusters whose voxels mapped to the visual and motor regions were chosen for further 

analysis. 

8.2.5 Voxel Selection Using Independent Component Analysis (ICA) 

We used GIFT to extract task-related signals from the fMRI dataset. We ran the 

independent component analysis for each individual subject using FastICA algorithm 

incorporated in GIFT. The number of components was determined by the minimum 

description length (MDL) principle. We examined the spatial map for each component 

and selected the one whose voxel map included the visual and motor regions. Brain 

signals from the regions were extracted using a suitable threshold to match the number of 

voxels obtained from SOM. 
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8.2.6 Voxel Selection Using General Linear Model (GLM) 

We performed GLM-based multiple regression analysis using statistical 

parametric mapping (SPM8). The regressor was constructed by convolving the event-

related stimulus time-series with a canonical hemodynamic response based on gamma-

variate functions. GLM was fit to the response using SPM8 and regression parameter was 

estimated. A suitable threshold for the t statistic was chosen so the number of voxels from 

visual and the motor regions matched with other methods. 

8.2.7 Measuring Timing Differences Using Inverse Logit (IL) Model 

Inverse logit functions were used to model the hemodynamic response. We fit the 

model on average BOLD responses from visual and left motor regions for two reaction 

time groups and estimated their timing parameters. We used a gradient descent solution 

to fit the model and used the parameter estimation procedure (section 6.4) to calculate the 

height (H), time-to-peak (T), and full width at half maximum (W) from fit HRF estimates. 

The difference in time-to-peak (TTPD) between average motor and visual responses was 

used to measure reaction times. 
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Fig. 8.3. 10x10 matrix of prototypes from SOM output map (from a subject) showing 
traces of prototypes (averaged across trials) of the nodes.  
 

8.3 Results 

The extracted functional time-series data from brain regions was fed as input to 

the SOM algorithm. Fig. 8.2 shows the 10x10 SOM output map with traces of node 

prototypes (averaged across trials) for a subject. The density-based connectivity 

(CONNDDvis) showed number of clusters at different regions of the map (Fig. 8.3 (a)). 

The correlation-based connectivity showed strong and weak connections on the map as 

well (Fig. 8.3 (b)). The combined connectivity delineated clusters that could be relevant 

to our analysis (Fig. 8.3 (c)).  
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Fig. 8.4. (a) CONNDDvis: Density-based connectivity visualization from a subject 
performing the visual stimulus-manual response (VM) task. (b) CONNCCvis: 
Correlation-based connectivity visualization. (c) CONNDDCCvis: Combined 
connectivity visualization. A number of node clusters were identified including those 
shown in red and blue. (d) The same clusters shown on the output map with traces of 
prototypes. The prototypes indicated in blue and red contained voxels in visual and motor 
regions, respectively (Fig. 8.4 (a)).   
 
 
A number of (about 12) clusters became apparent on the map. The clusters indicated in 

blue and red included prototypes whose voxels mapped to visual and left motor regions, 

respectively in Fig. 8.5 (a).  
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Fig. 8.5. Voxels identified by (a) SOM (Voxel count: Visual – 21, Motor – 16), (b) ICA 
(Voxel count: Visual – 18, Motor – 12) and (c) GLM (Voxel count: Visual – 22, Motor –
14) for a subject. The same voxels are shown with the colormap (based on correlation 
with the reference function) on the right. 
 
 
Average signals from these regions were extracted and divided into fast and slow reaction 

time (RT) groups or trials. The inverse logit hemodynamic model was fit on the average 

signals for the two RT groups. Fig. 8.6 shows the average signals from (a) visual (a) and 
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(b) motor regions and their respective inverse logit model fits for a subject. The reaction 

time differences are quite evident from the motor signals (Fig. 8.6 (b)).  
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Fig. 8.6. Average signals from (a) visual and (b) motor regions (chosen via SOM) for a 
subject for fast and slow reaction time groups. The broken lines are average fits from the 
inverse logit model. The timing difference between fast and slow reaction time groups is 
evident from the motor signals. 
 

The estimated hemodynamic response functions for the two regions and RT 

groups are shown in Fig. 8.7. Timing differences between visual and motor and slow and 

fast RT average trials are evident. We estimated time-to-peak parameters for each 

response. The differences in time-to-peak (TTPD) between visual and motor signals for 

the two RT groups were compared with the mean of the recorded reaction times. The 

time-to-peak differences (TTPD) increased (from 1.52 s to 1.8 s) with the increase in 

reaction time (from 0.8 s to 1.19 s). This is indicative of the ability of average signals 

from visual and left motor cortices to reflect the reaction time differences.  
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Fig. 8.7. Estimated HRFs from visual (blue) and motor (red) regions (chosen via SOM) 
for a subject for two reaction time groups.  Visual TTP1 (solid blue) = 9.13 s, visual TTP2 
(broken blue) = 9.51 s, Motor TTP1 (solid red) = 10.65 s and Motor TTP2  (broken red) = 
11.31 s. Visual –Motor TTP: TTPD1 = 1.52 s and TTPD2 = 1.8 s. Actual mean reaction 
times were: RT1 = 0.80 s and RT2 = 1.19 s.  
 
 

We also chose voxels using ICA (Fig. 8.5 (b)) and GLM (Fig. 8.5 (c)) and 

computed the time-to-peak measures from average responses for slow and fast timing 

groups. The time-to-peak differences between motor and visual cortices for both timing 

groups were compared with the corresponding reaction times. Fig. 8.8 shows 

relationships between the computed time-to-peak difference (TTPD) measures and the 

mean reaction times (RT) for 12 subjects for all three voxel selection techniques. The 

linear relationships between TTPD and RT were strongest for SOM (Fig. 8.8 (c)) as 

indicated by the linear mixed-effects model (dark line, p=0.007). For voxels selected by 

ICA, the TTPD increased with RT in some subjects while decreased for others (Fig. 8.8 
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(b)). The mixed effects model indicated weaker linear relationship (dark line, p=0.06). 

For GLM (Fig. 8.8 (a)), the linear relationship was not apparent (dark line, p=0.82). Table 

8.1 summarizes p values indicating the strength of the linear relationship between TTPD 

measures and reaction times. 

We fit a linear mixed-effects model on the time-to-peak difference (TTPD) 

measures and computed slope and intercept of the fit for each voxel selection method. 

The t statistic for the slope of the model was calculated to compare the precision of each 

method in terms of the standardized effect size. The precision compares the strength of 

the linear relationship between TTPD and reaction times against the amount of variability 

in the data. Similarly, the t statistic for the intercept was measured to compare the bias of 

the fits. 
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Fig. 8.8. Time-to-peak difference (TTPD) between average motor and average visual 
cortex signals obtained via (a) GLM, (b) ICA and (c) SOM versus two mean reaction 
times (RT) from 12 subjects. TTPD increased linearly with RT in most of the subjects for 
voxels selected by SOM as indicated by the linear mixed-effects model (dark line, 
p=0.007). For voxels selected by ICA, the TTPD increased with RT in some subjects 
while decreased for others (dark line, p=0.06). For GLM, a linear relationship was not 
apparent (dark line, p=0.82). 
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Table 8.1. Results from linear mixed-effects modeling. p values indicate the strength of 
the linear relationship between TTPD and reaction time (RT). 
 

p-values For Voxel Selection 
SOM ICA GLM 

p=0.007 p=0.06 p=0.82 
 

Fig. 8.9 shows (a) precision and (b) bias of the fits on the measures from SOM, 

ICA and GLM. The error bars indicate 95% confidence intervals from 2000 bootstrap 

samples using the case-resampling bootstrap. Signals identified by SOM produced the 

highest precision of all. No bias was evident statistically for any of the methods (Fig. 8.8 

(b)). 
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Fig. 8.9. Performance comparison of the voxel selection methods using results from 
linear mixed-effects modeling. (a) Precision was measured with the t statistic for the 
slope (linear term of the fit) describing the relationship to reaction time. (b) Bias was 
measured with the t statistic for the intercept of the fit. The error bars indicate 95% 
confidence intervals from 2000 bootstrap samples generated by case-resampling 
bootstrap. 
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8.4 Conclusions 

Our approach of voxel selection using graph-based visualizations of SOM 

outperformed independent component analysis (ICA) and general linear model (GLM) by 

providing highest sensitivity in classifying regions based on the timings of their 

responses. We fit the average signals from the visual and motor regions in this reaction 

time experiment using inverse logit model of the hemodynamic response and measured 

time-to-peak differences (TTPD) to compare to reaction times (RT). Signals identified by 

SOM showed statistically strong linear relationship between reaction times and time-to-

peak differences.  

Our estimates of differences in time-to-peak (TTPD) parameters obtained from 

inverse logit model fits did not match the corresponding mean reaction times in absolute 

terms (Fig. 8.7) although their linear relationship was evident (Fig. 8.8 (c)). This was 

understandable as the hemodynamic response function is a complex, non-linear function 

of the neuronal or vascular changes. The HRF model is limited in terms of its statistical 

accuracy for accurate recovery of the true response parameters (Lindquist et al., 2011) as 

also suggested by the results from chapter 7.  

We observed large variation in TTPD measurements in some subjects across 

different methods of voxel selection (Fig. 8.8). The reason could be due to small 

difference between slow and fast reaction times or large variability in reaction time 

across trials for these subjects. In this case, even a slight difference in the voxels selected 

by the methods could result in large difference in the timing measurement. Also, 

inclusion of voxels contributing to late signals from sources such as draining veins can 

prove detrimental to the accuracy of the timing measurement. As suggested by the 
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previous results, our approach of voxel selection using graph-based visualizations of 

SOM is more sensitive to timing differences than other methods and might have been 

able to reduce interference of late signals on these timing measurements. 

A major source of bias in any fMRI-based timing study may arise in the form of 

hemodynamic variability. The hemodynamic shape and timing may vary across brain 

regions and subjects which could give misleading inferences on the actual delay. In this 

case, modulation of the delay by experimental demands and cognitive context (reaction 

time in this experiment) can be employed to rule out hemodynamics as the cause of the 

results and validate the measured timing differences. The linear relationship between 

TTPD measures and reaction times, especially with signals identified by SOM in our 

study, is compelling evidence that these measurements are not source of hemodynamic 

artifacts.  
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CHAPTER 9 

 

CONCLUSIONS 

 

In this dissertation, we presented novel graph-based visualizations of self-

organizing maps as a data-driven approach for unsupervised spatiotemporal fMRI 

analysis that helps to measure relative timings of brain responses. FMRI data are 

commonly analyzed voxel-by-voxel using linear regression models (statistical parametric 

mapping). This requires information about stimulus timing and assumptions about the 

shape and timing of the hemodynamic response. This approach may be too restrictive to 

capture the broad range of possible brain activation patterns in space and time and across 

subjects. This dissertation presented a multivariate data-driven approach using self-

organizing maps that overcome the aforementioned limitations. The self-organizing map 

is a topology-preserving artificial neural network model that transforms high-dimensional 

data into a low-dimensional map of output nodes using unsupervised learning. A 

postprocessing scheme is then necessary to correctly interpret similarity between 

neighboring node prototypes on the output map and delineate clusters and features of 

interest in the data. We used graph-based visualizations of self-organizing maps to 

capture fMRI data features based upon (i) the distribution of data across the receptive 

fields of the prototypes or feature vectors (density-based connectivity), and (ii) temporal 

similarities (correlations) between the prototypes (correlation-based connectivity). The 

density-based connectivity visualization distinguished small timing differences in the 

data, and the correlation-based visualization distinguished signals from noise. The 
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combination of the two provided a fine delineation of the prototypes that contained 

meaningful fMRI signals enabling the separation of task-related regions with small 

differences in the timings of their signals. This was demonstrated by the results from 

chapter 4.  

In chapter 7, we used this approach to assess the ability to measure small 

differences in the timings of brain responses beyond those previously measured from 

fMRI data in human subjects. We introduced known delays between the onsets of visual 

stimuli in a controlled, sparse event-related design and investigated if the temporal shifts 

in the corresponding average BOLD signals were detectable. To maximize sensitivity, we 

used high spatial and temporal resolution fMRI at ultrahigh field (7 T) in conjunction 

with graph-based visualizations of self-organizing maps for voxel selection and Granger 

causality to measure relative timing. This approach detected timing differences as small 

as 28 ms in visual cortex in individual subjects. For signal extraction, our approach 

outperformed independent component analysis, voxelwise univariate linear regression 

analysis and a separate localizer scan. This was verified by observing a statistically strong 

linear relationship between induced and measured timing differences. For relative timing 

measurement, Granger causality outperformed time-to-peak calculations derived from an 

inverse logit curve fit. In summary, high resolution imaging at ultrahigh field, signal 

extraction via self-organizing map, and appropriate use of Granger causality permit the 

detection of small timing differences in fMRI data, despite the intrinsically slow 

hemodynamic response. 

In chapter 8, we applied this approach to identify task-related brain areas in an 

fMRI reaction time experiment involving a visuo-manual response task, and we 
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correlated the time-to-peak of the fMRI responses in these areas with reaction time. Our 

approach outperformed independent component analysis and voxelwise univariate linear 

regression analysis in identifying and classifying relevant brain regions. This was again 

verified by a statistically strong linear relationship between time-to-peak difference 

measurements and reaction times.  

In summary, the graph-based visualizations of self-organizing maps help in 

advanced visualization of cluster boundaries in fMRI data, thereby enabling the 

separation of regions with small differences in the timings of their brain responses and 

helping to measure relative timings of brain responses. 
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