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CHAPTER I

INTRODUCTION

Telomeres are the ends of chromosomes in eukaryotic cells. They are repeated DNA sequences

that do not contain genetic information. A cell goes through several phases in its cycle, the final

being mitosis - division of the cell into two daughters. Although both daughters are genetically

identical to the mother, the splitting of chromosomes is not symmetrical - there is DNA loss. This

loss occurs at the ends of the chromosomes, so it is only loss of telomeres. Each cell has a finite

number of telomeres, therefore its descendants can only divide a finite number of times (the cells

that cannot divide any further eventually die). The number of those divisions is called a Hayflick

limit [28][40][31].

At the top of the telomere hierarchy is the stem cell. The stem cell has two properties that char-

acterize it: self-renewal and potency. Self-renewal is the ability of the cell to divide and reproduce

itself without differentiation (i.e. one daughter of the stem cell remains a stem cell). Potency is the

ability of the stem cell to differentiate into specialized cell types (i.e. the other daughter will be

a cell with more specific functions)(Figure I.1). Those two abilities allow the stem cells to create

organs and tissues: self-renewal guarantees constant supply of cells, and differentiation guarantees

the production of cells whose functions are essential for the tissue [40][31]. Other types of cells in

the differentiation hierarchy are progenitor cells, and differentiated (mature) cells. Differentiated

cells perform very specific functions in the body. They cannot self-renew. Progenitor cells are a

middle stage between stem cells and differentiated cells.

A hierarchy imposed in the model divides cells into classes, based on how long their telomeres

are, which coincides with how differentiated they are. The more differentiated cells have the short-

est and the least differentiated cells, the stem cells, have the longest telomeres.

There is strong evidence that cancer develops after several stages of mutagenesis of normal

cells (Figure I.2). Mutations can not only change the characteristics and functions of the cell but
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also alter its capability of survival. Cancer cells generally proliferate faster, are more competitive

for resources, and grow larger than normal cells [48][37][12].

In the present model a mutation can occur only during replication of DNA (i.e. during cell

division). This mutation would be exhibited by the daughter cells. The daughter cells also inherit

the mutations their mother cell has accumulated before division. The descendants of the daughter

cells can acquire further mutations until, eventually, their descendants reach the number (and type)

of mutations necessary for the formation of a cancer cell. Thus, we impose a hierarchial structure

upon the cells, based on how many mutations they have accumulated (which is equivalent to how

close they are to being cancerous). However, both non-cancer and cancer cells exhibit the telom-

ere hierarchy. Therefore, combining both hierarchies, we can split cells into classes depending on

the number of acquired mutations, and the number of differentiations left until their descendants

become fully differentiated.

The main objective of the model presented in this article is to describe the interactions between

cells of several levels of differentiation and malignancy by tracking their lineages. The model tries

to address three questions:

1. Considering cell mutation as a dynamic population process, rather than a one-time random

event, what can we show about cancer cell population growth in relation to the growth of the

populations of non-cancer cells?

2. What is the role of stem cells in the cell population dynamics?

3. Is the cancer stem cell count as small as scientists have claimed (some results claim that only

one in ten thousand cancer cells is a cancer stem cell[13][9])?

The model addresses these questions through both mathematical analysis and numerical simula-

tions and the answers appear in the Discussion.

Difficulty in observing and experimenting with stem cells has led to a rise in mathematical

models, which can describe cell growth and interaction. Several previous models have considered a

telomere or differentiation hierarchy [32][30]. In [2], Arino, Kimmel, and Webb looked at a model
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of telomere loss in both discrete and continuous time. Under their assumptions, the cells grew in

polynomial time, the fastest growing cells being the ones with the least telomeres. However, it is

the initial reservoir of the cells with highest amount of telomeres that determines the size of the

asymptotic population. In [3], Arino, Sánchez, and Webb looked at telomere loss using a continu-

ous model involving a linear system of partial differential equations. In fact, the model presented

here can be considered an expansion of their model. Their result was consistent with [3] - polyno-

mial growth of all cell classes and faster growth of cells with less telomeres. In [28], Levy, et al,

gave another discrete model of telomere loss, exploring its connection to cell senescence. Discrete

classification of maturity and tracking of a cell cohort during successive divisions have been done

previously in [7] by Bernard, Pujo-Menjouet, and Mackey. These authors considered cells in two

phases: resting phase and proliferative phase. Their results are consistent with experimental data

and their model is a good framework for characterization of different cell subpopulations. In [22]

Fearon and Vogelstein introduced a model for sequential accumulation of mutations, known as a

”Vogelgram”. Their hypothesis, that a cell goes through several mutations to become cancerous,

is a very important assumption for our model. In [23], Gentry, Ashkenazi, and Jackson developed

a model that combined cell hierarchy with sequential accumulation of mutations. They focused on

the effect different types of mutations had on cancer growth. The mathematical model proposed

in the present paper differs from theirs in several ways. In [23], the model considers cell maturity

as a continuous variable correlated to differentiation, while in the present work differentiation is

discrete and determines cell classes. The present model tracks cell lineages through multiple gen-

erations, not unlike [7], and focuses on the role of the stem cells as generators of this lineage.

The model presented here is an age-dependent structured population model, represented by a

system of partial differential equations. Models of this type are originally known from works by

Sharpe, Lotka, and McKendrick, extended by M. Gurtin and R. MacCamy. A general treatment of

age-dependent population dynamics models is given by Glenn Webb in [45]. Such models are also

often used as examples within the field of semigroups of linear operators and their applications

[20].

3



Figure I.1: The process of asymmetrical telomere shortening as a cell divides. The top cell is a stem cell
with full length chromosomes. The leftmost branch of division consists of stem cells (self-renewal). The
other branches depict more differentiated cells. They exhibit loss of chromosome ends - telomeres [28].
Note that a cell may lose different telomere lengths when dividing.

Figure I.2: A Genetic Model for Colorectal Tumorigenesis. This is an example of a Vogelgram - multistep
cancer progression model [22]

.
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CHAPTER II

THE LINEAR MODEL

The assumptions of the model are:

1. Telomere loss only occurs during division. There is no loss of telomeres driven by outside

sources (oxidation, etc.[1][50]).

2. If a mutation occurs during the division of a cell, the mutation is exhibited by the daughters

of the cell and not by the mother cell.

The model is formulated as the following system of partial differential equations:



∂uj,i(a,t)

∂t
+

∂uj,i(a,t)

∂a
= −(µj,i(a) + βj,i(a))uj,i(a, t)

uj,i(0, t) = 2
n∑
k=j

(pj,k,i

∫ ∞
0

βk,i(a)uk,i(a, t)da+

qj,k,i−1

∫ ∞
0

βk,i−1(a)uk,i−1(a, t)da)

uj,i(a, 0) = φj,i(a),

(II.1)

where:

Definition II.1.

1. j = 1, ..., n; i = 0, ...,m− 1; also, for the rest of the paper, let N = nm.

2. j represents the number of telomeres of a cell, 1 ≤ j ≤ n. Hence it also represents the

number of divisions a cell has to go through until one of its descendants cannot divide any

further. Moreover, it is the number of differentiation stages the lineage of a cell goes through

until a fully differentiated cell is produced.

3. i is the number of mutations a cell has accumulated, 0 ≤ i ≤ m− 1.
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4. For t ≥ 0, uj,i(a, t) ∈ L1([0,∞)), represents the density of cells with age a at time t, in the

jth telomere class, with i mutations.

5. µj,i(a) ≥ 0, is the age-specific mortality rate of cells in the jth telomere, ith mutation class.

6. βj,i(a) > 0, is the age-specific proliferation rate of cells in the jth telomere, ith mutation

class.

7. µj,i(a) ∈ L∞[0,∞).

8. βj,i(a) ∈ L∞[0,∞).

9. Therefore, we can define β̄, such that β̄ ≥ βj,i(a),∀1 ≤ j ≤ n, 0 ≤ i ≤ m−1, ∀a ∈ [0,∞).

10. Similarly, define µ̄, such that µ̄ ≥ µj,i(a),∀1 ≤ j ≤ n, 0 ≤ i ≤ m− 1, ∀a ∈ [0,∞).

11. pj,k,i > 0, is the probability that one of the daughters of a cell in the kth telomere and ith

mutation class will be a cell in the jth telomere, ith mutation class.

12. qj,k,i−1 > 0, is the probability that a cell in the kth telomere, (i − 1)thmutation class will

produce, by acquiring a mutation during division, a cell in the jth telomere, ith mutation

class.

Remark II.2. In Equation II.1, if i = 0, qj,k,i−1 = 0, 1 ≤ j ≤ n, j ≤ k ≤ n.

Hypothesis II.3. A mother cell in the jth telomere, ith mutation class, j = 1, ..., n; i = 0, ...,m −

1, produces one daughter cell in the same class. The other daughter could be either in a lower

telomere, same mutation class, lower telomere, (i+1)th mutation class, or same telomere, (i+1)th

mutation class. We do not keep track of cells in the 0th telomere class (they cannot divide). A cell

with m− 1 mutations is considered cancerous and cannot acquire any further mutations.

The hypothesis means that:

1. pj,j,i = 1
2
,∀1 ≤ j ≤ n, 0 ≤ i ≤ m− 1.

2. pj,k,i = 0 for j > k, ∀2 ≤ j ≤ n, 0 ≤ i ≤ m− 1.
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3. qj,k,i = 0 for j > k, ∀2 ≤ j ≤ n, 0 ≤ i ≤ m− 1.

4.
∑n

k=j+1 pj,k,i +
∑n

k=j qj,k,i = 1
2
,∀1 ≤ j ≤ n; 0 ≤ i ≤ m− 2.

Remark II.4. Since we do not track the 0th telomere class, the probabilities regarding the offspring

of cells of telomere class (j, i), j = 1, 0 ≤ i ≤ m− 1, need not add up to 1.

Hypothesis II.5.
∫∞

0
βj,i(a)e−

∫ a
0 βj,i(x)dxda = 1,∀1 ≤ j ≤ n, 0 ≤ i ≤ m− 1.

Hypothesis II.5 presents the net reproduction rate
∫∞

0
βj,i(a)e−

∫ a
0 βj,i(x)dxda. In population mod-

els, the net reproduction rate generally refers to the expected number of offspring a population unit

(cell in our case) is expected to have within its lifetime. For our model,
∫∞

0
βj,i(a)e−

∫ a
0 βj,i(x)dxda

is the probability that a cell in class (j, i) will go into mitosis and produce a cell in the same class,

if it does not die. From Hypothesis II.3, this probability is 1, hence the balance law given by Hy-

pothesis II.5.
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CHAPTER III

ANALYSIS OF THE LINEAR MODEL RECAST AS AN ORDINARY DIFFERENTIAL

EQUATION

III.1 The Total Population Ordinary Differential Equation

Hypothesis III.1. µj,i(a) = µj,i ≥ 0 and βj,i(a) = βj,i > 0,∀1 ≤ j ≤ n; 0 ≤ i ≤ m− 1 (i.e. they

are constants).

Remark III.2. Hypothesis II.5 is automatically satisfied if βj,i(a) is a constant.

Integrating II.1 with respect to a over [0,∞), we get:

∫ ∞
0

∂uj,i(a, t)

∂t
da− uj,i(0, t) = −(µj,i + βj,i)

∫ ∞
0

uj,i(a, t)da (III.1)

Since uj,i(a, t) is a density function,
∫ ∞

0

uj,i(a, t)da gives the total population of the (j, i)th

class of cells. Call it Uj,i(t). Also,

uj,i(0, t) = 2
n∑
k=j

(pj,k,i

∫ ∞
0

βk,iuk,i(a, t)da+ qj,k,i−1

∫ ∞
0

βk,i−1uk,i−1(a, t)da).

Then, the problem is recast as a system of ordinary differential equations:

U ′j,i(t) = −(µj,i + βj,i)Uj,i(t) + 2
n∑
k=j

(pj,k,iβk,iUk,i(t) + qj,k,i−1βk,i−1Uk,i−1(t))

= −(µj,i + βj,i)Uj,i(t) + 2pj,j,iβj,iUj,i(t)+

+ 2
n∑

k=j+1

pj,k,iβk,iUk,i(t) + 2
n∑
k=j

qj,k,i−1βk,i−1Uk,i−1(t)

From Hypotheses II.3, since pj,j,i = 1
2
, the equation above simplifies to:
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U ′j,i(t) = −µj,iUj,i(t) + 2
n∑

k=j+1

pj,k,iβk,iUk,i(t) + 2
n∑
k=j

qj,k,i−1βk,i−1Uk,i−1(t) (III.2)

Let ~U(t) = (U1,0(t), ..., Un,0(t), U1,1(t), ..., Un,1(t), ..., Uj,i(t), ..., Un,m−1(t))>, where ~v> is the

transpose of ~v. Then, the system of equations can be rewritten as:


~U ′(t) = A~U(t)

~U(0) = ~Φ

(III.3)

where:

1. A is an N × N matrix that can be described as an m × m block matrix. Each block is an

n× n matrix. A is a lower-triangular block matrix.

2. The blocks that form A are of three types:

(a) 0 blocks (n× n 0 matrix)

(b) Pi blocks (they occupy the main block-diagonal of A): n×n upper-triangular matrices

that describe the proliferation dynamics within the ith mutation class of cells. The

diagonal of a Pi matrix consists of the mortality rates −µj,i, 1 ≤ j ≤ n, where the j

corresponds to the telomere class of the cells whose mortality µj,i describes and also

the row −µj,i occupies in Pi. Pi is an upper-triangular matrix, so its other non-zero

elements (all are strictly positive) are located above the main diagonal and consist of

the rates 2pj,k,iβk,i with which cells in class (k, i) produce cells in class (j, i) during

mitosis (1 ≤ j ≤ n − 1;j + 1 ≤ k ≤ n; 0 ≤ i ≤ m − 1). 2pj,k,iβk,i is the (j, k)th

element of Pi.

(c) Qi blocks (they occupy the first block subdiagonal of A): n × n upper-triangular ma-

trices that describe the mutation dynamics between the (i − 1)th and the ith mutation

classes (the cells of mutation class i−1 mutate into cells of class i, 1 ≤ i ≤ m−1). Its

elements are the rates 2qj,k,i−1βk,i−1 with which cells of class (k, i−1) produce cells of
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class (j, i) during mitosis (1 ≤ j ≤ n− 1; j ≤ k ≤ n; 1 ≤ i ≤ m− 1). 2qj,k,i−1βk,i−1

is the (j, k)th element of Qi.

(d) ~Φ = {Φj,i}1≤j≤n;0≤i≤m−1.Φj,i ≥ 0, 1 ≤ j ≤ n; 0 ≤ i ≤ m− 1.

The following equation is an example for the case n = 3, m = 3:

Example III.3.



U′
1,0(t)

U′
2,0(t)

U′
3,0(t)

U′
1,1(t)

U′
2,1(t)

U′
3,1(t)

U′
1,2(t)

U′
2,2(t)

U′
3,2(t)


=


P0 0 0

Q1 P1 0

0 Q2 P2

 .



U1,0(t)

U2,0(t)

U3,0(t)

U1,1(t)

U2,1(t)

U3,1(t)

U1,2(t)

U2,2(t)

U3,2(t)


,

where

P0 =


−µ1,0 2p1,2,0β2,0 2p1,3,0β3,0

0 −µ2,0 2p2,3,0β3,0

0 0 −µ3,0



P1 =


−µ1,1 2p1,2,1β2,1 2p1,3,1β3,1

0 −µ2,1 2p2,3,1β3,1

0 0 −µ3,1



P2 =


−µ1,2 2p1,2,2β2,2 2p1,3,2β3,2

0 −µ2,2 2p2,3,2β3,2

0 0 −µ3,2



10



Q1 =


2q1,1,0β1,0 2q1,2,0β2,0 2q1,3,0β3,0

0 2q2,2,0β2,0 2q2,3,0β3,0

0 0 2q3,3,0β3,0



Q2 =


2q1,1,1β1,1 2q1,2,1β2,1 2q1,3,1β3,1

0 2q2,2,1β2,1 2q2,3,1β3,1

0 0 2q3,3,1β3,1


So, A =



−µ1,0 2p1,2,0β2,0 2p1,3,0β3,0 0 0 0 0 0 0

0 −µ2,0 2p2,3,0β3,0 0 0 0 0 0 0

0 0 −µ3,0 0 0 0 0 0 0

2q1,1,0β1,0 2q1,2,0β2,0 2q1,3,0β3,0 −µ1,1 2p1,2,1β2,1 2p1,3,1β3,1 0 0 0

0 2q2,2,0β2,0 2q2,3,0β3,0 0 −µ2,1 2p2,3,1β3,1 0 0 0

0 0 2q3,3,0β3,0 0 0 −µ3,1 0 0 0

0 0 0 2q1,1,1β1,1 2q1,2,1β2,1 2q1,3,1β3,1 −µ1,2 2p1,2,2β2,2 2p1,3,2β3,2

0 0 0 0 2q2,2,1β2,1 2q2,3,1β3,1 0 −µ2,2 2p2,3,2β3,2

0 0 0 0 0 2q3,3,1β3,1 0 0 −µ3,2


The solution to equation III.3 is:

~U(t) = etA~Φ (III.4)

III.2 Asymptotic Analysis

Theorem III.4. Let hypotheses II.3and III.1 hold and let ~U(t) be the unique solution of Equation

III.3. Then:

1. If, for every 1 ≤ j ≤ n and for every 0 ≤ i ≤ m− 1, µj,i > 0, then limt→∞ Uj,i(t) = 0.

2. If, for every 1 ≤ j ≤ n and for every 0 ≤ i ≤ m− 1, µj,i = 0, then Uj,i(t) is a polynomial in

t of degree n− j + i. Furthermore, the coefficient of tn−j+i of this polynomial is a multiple

of Φn,0.

Proof. Case 1: ∀1 ≤ j ≤ n, 0 ≤ i ≤ m− 1, µj,i > 0
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MatrixA is a lower-triangular block matrix. Therefore, from [8], det(A−λIN) = Πm−1
i=0 det(Pi−

λIn), where Pi are the matrices described above and Ik is the identity k×k matrix (k = n,N ). Each

Pi is an upper-triangular matrix. Therefore, det(Pi−λIn) = Πn
j=1(−µj,i−λ). So, det(A−λIN) =

Πm−1
i=0 Πn

j=1(−µj,i−λ). The equation implies that eigenvalues of matrixA are {−µj,i}1≤j≤n;0≤i≤m−1.

Since they are all negative, limt→∞ e
tA~Φ = 0 (see e.g. [33]). Hence, limt→∞ Uj,i(t) = 0.

Case 2: ∀1 ≤ j ≤ n, 0 ≤ i ≤ m− 1, µj,i = 0

Note, for the remainder of the proof:

1. A block refers to an n × n matrix within the block matrix A and the powers of A. A is an

m×m block matrix and so are its powers.

2. Consider an indexing on the block subdiagonals of a matrix such that the main block diagonal

is the 0th subdiagonal.

3. Consider an indexing on the superdiagonals of the blocks such that the main diagonal is the

0th superdiagonal.

4. Mk,l refers to the (k, l)th block of block-matrix M , where k is the block row, 1 ≤ k ≤ m

and l is the block-column 1 ≤ l ≤ m.

5. Pi and Qi+1, 0 ≤ i ≤ m− 1 are the same matrices defined earlier in the section but with one

important difference: Pi’s main diagonal is zero.

6. All non-zero elements of the matrices we consider are positive.

7. For the remainder of the proof, a matrix is considered ”positive”, if it is non-zero and all of

its non-zero elements are positive.

8. A block row, a block column, or a block subdiagonal is referred to as ”positive” if it consists

of matrices that are ”positive”, according to the definition above.

Throughout the proof, we use a Lemma, which is proved in the Appendix:
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Lemma III.5. Let C and B be n × n positive upper-triangular matrices. Let the first k super-

diagonals of C (the main diagonal is also considered a superdiagonal) be zero and the first m

superdiagonals of B be zero, 0 ≤ k,m ≤ n− 1. Assume every element on the lth superdiagonal of

C, k ≤ l ≤ n− 1, and rth superdiagonal of B, m ≤ r ≤ n− 1 is positive. Then CB and BC are

upper-triangular matrices in which exactly the first k +m superdiagonals are zero (if k +m ≥ n,

CB and BC will be the zero matrix) and every element of the sth superdiagonal, k +m ≤ s ≤ n,

is positive.

We encourage the reader to refer to Example III.6 as an illustration of the Lemmas that follow.

Example III.6. (n = 3, m = 3):

P0 =


0 2p1,2,0β2,0 2p1,3,0β3,0

0 0 2p2,3,0β3,0

0 0 0



P1 =


0 2p1,2,1β2,1 2p1,3,1β3,1

0 0 2p2,3,1β3,1

0 0 0



P2 =


0 2p1,2,2β2,2 2p1,3,2β3,2

0 0 2p2,3,2β3,2

0 0 0



Q1 =


2q1,1,0β1,0 2q1,2,0β2,0 2q1,3,0β3,0

0 2q2,2,0β2,0 2q2,3,0β3,0

0 0 2q3,3,0β3,0



Q2 =


2q1,1,1β1,1 2q1,2,1β2,1 2q1,3,1β3,1

0 2q2,2,1β2,1 2q2,3,1β3,1

0 0 2q3,3,1β3,1
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A =



0 2p1,2,0β2,0 2p1,3,0β3,0 0 0 0 0 0 0

0 0 2p2,3,0β3,0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

2q1,1,0β1,0 2q1,2,0β2,0 2q1,3,0β3,0 0 2p1,2,1β2,1 2p1,3,1β3,1 0 0 0

0 2q2,2,0β2,0 2q2,3,0β3,0 0 0 2p2,3,1β3,1 0 0 0

0 0 2q3,3,0β3,0 0 0 0 0 0 0

0 0 0 2q1,1,1β1,1 2q1,2,1β2,1 2q1,3,1β3,1 0 2p1,2,2β2,2 2p1,3,2β3,2

0 0 0 0 2q2,2,1β2,1 2q2,3,1β3,1 0 0 2p2,3,2β3,2

0 0 0 0 0 2q3,3,1β3,1 0 0 0



A =


P0 0 0

Q1 P1 0

0 Q2 P2



A2 =


P 2

0 0 0

Q1P0 + P1Q1 P 2
1 0

Q2Q1 Q2P1 + P2Q2 P 2
2



P 2
0 =


0 0 4β2,0β3,0p1,2,0p2,3,0

0 0 0

0 0 0


Q1P0 + P1Q1 =

(
0 4β1,0β2,0p1,2,0q1,1,0 + 4β2,0β2,1p1,2,1q2,2,0 4β1,0β3,0p1,3,0q1,1,0 + 4β2,0β3,0p2,3,0q1,2,0 + 4β2,1β3,0p1,2,1q2,3,0 + 4β3,0β3,1p1,3,1q3,3,0

0 0 4β2,0β3,0p2,3,0q2,2,0 + 4β3,0β3,1p2,3,1q3,3,0

0 0 0

)

Q2Q1 =

(
4β1,0β1,1q1,1,0q1,1,1 4β1,1β2,0q1,1,1q1,2,0 + 4β2,0β2,1q1,2,1q2,2,0 4β1,1β3,0q1,1,1q1,3,0 + 4β2,1β3,0q1,2,1q2,3,0 + 4β3,0β3,1q1,3,1q3,3,0

0 4β2,0β2,1q2,2,0q2,2,1 4β2,1β3,0q2,2,1q2,3,0 + 4β3,0β3,1q2,3,1q3,3,0

0 0 4β3,0β3,1q3,3,0q3,3,1

)
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A3 =


0 0 0

Q1P
2
0 + P1Q1P0 + P 2

1Q1 0 0

Q2Q1P0 +Q2P1Q1 + P2Q2Q1 Q2P
2
1 + P 2

2Q2 + P2Q2P1 0



P 3
0 =


0 0 0

0 0 0

0 0 0


Q1P

2
0 + P1Q1P0 + P 2

1Q1 =

(
0 0 8β1,0β2,0β3,0p1,2,0p2,3,0q1,1,0 + 8β2,0β2,1β3,0p1,2,1p2,3,0q2,2,0 + 8β2,1β3,0β3,1p1,2,1

0 0 0

0 0 0

)

Q2Q1P0 +Q2P1Q1 + P2Q2Q1 =


0 c1,2 c1,3

0 0 c2,3

0 0 0

 ,

where

c1,2 = 8β1,0β1,1β2,0p1,2,0q1,1,0q1,1,1 + 8β1,1β2,0β2,1p1,2,1q1,1,1q2,2,0 + 8β2,0β2,1β2,2p1,2,2q2,2,0q2,2,1

c1,3 = 8β1,0β1,1β3,0p1,3,0q1,1,0q1,1,1 + 2β3,0p2,3,0(4β1,1β2,0q1,1,1q1,2,0 + 4β2,0β2,1q1,2,1q2,2,0) +

+ 8β1,1β2,1β3,0p1,2,1q1,1,1q2,3,0 + 8β2,1β2,2β3,0p1,2,2q2,2,1q2,3,0 +

+ 2β3,0(4β1,1β3,1p1,3,1q1,1,1 + 4β2,1β3,1p2,3,1q1,2,1)q3,3,0 +

+ 2β3,0q3,3,0(4β2,2β3,1p1,2,2q2,3,1 + 4β3,1β3,2p1,3,2q3,3,1)

c2,3 = 8β2,0β2,1β3,0p2,3,0q2,2,0q2,2,1 + 8β2,1β3,0β3,1p2,3,1q2,2,1q3,3,0 + 8β3,0β3,1β3,2p2,3,2q3,3,0q3,3,1
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A4 =
0 0 0

0 0 0

Q2Q1P
2
0 +Q2P1Q1P0 + P2Q2Q1P0 +Q2P

2
1Q1 + P 2

2Q2Q1 + P2Q2P1Q1 0 0


Q2Q1P

2
0 +Q2P1Q1P0 + P2Q2Q1P0 +Q2P

2
1Q1 + P 2

2Q2Q1 + P2Q2P1Q1 =


0 0 c1

1,3

0 0 0

0 0 0

 ,

where

c1
1,3 = 16β1,0β1,1β2,0β3,0p1,2,0p2,3,0q1,1,0q1,1,1 + 16β1,1β2,0β2,1β3,0p1,2,1p2,3,0q1,1,1q2,2,0 +

+ 16β2,0β2,1β2,2β3,0p1,2,2p2,3,0q2,2,0q2,2,1 + 16β1,1β2,1β3,0β3,1p1,2,1p2,3,1q1,1,1q3,3,0 +

+ 16β2,1β2,2β3,0β3,1p1,2,2p2,3,1q2,2,1q3,3,0 + 16β2,2β3,0β3,1β3,2p1,2,2p2,3,2q3,3,0q3,3,1

A5 =


0 0 0

0 0 0

0 0 0


The proof also uses the following three lemmas, which are also proved in the Appendix:

Lemma III.7. If 1 ≤ k ≤ m − 1, the kth block subdiagonal is the highest indexed positive block

subdiagonal of Ak. Any block subdiagonal of higher index is 0.

Lemma III.8. In Ak, 1 ≤ k ≤ m + n, any block element of a positive block subdiagonal indexed

by i, 0 ≤ i ≤ m− 1, is an upper-triangular matrix in which exactly the first k − i superdiagonals

(including the main diagonal) are 0.

Lemma III.9. If n ≤ k < n+m, the (k−n+1)th block subdiagonal is the lowest indexed positive

block subdiagonal of Ak. Any block subdiagonal of lower index is 0.
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All eigenvalues of A are zero, therefore, An+m = 0, A is nilpotent, and etA~Φ is a finite poly-

nomial vector in t. Thus, each cell class has a polynomial growth in t.

First, we need to determine the polynomials in t that describe the growth of each mutation

class. This is equivalent to determining the polynomials in t that corresponds to a block-row i in

etA = I + tA + t2A2

2
+ ... + tm+n−1Am+n−1

(m+n−1)!
, 1 ≤ i ≤ m. This is, in turn, equivalent to determining

for which powers k of Ak, the block row corresponding to the mutation class is positive.

From Lemma III.7, the power k, for which a block subdiagonal indexed (i− 1) in Ak becomes

positive (i.e. the power for which this block becomes the highest indexed positive block in Ak) is

(i− 1). So, any polynomial in t that describes the growth of cells in mutation class corresponding

to block row i, 1 ≤ i ≤ m, is at least ti−1.

From Lemma III.9, it follows that a block row i, 1 ≤ i ≤ m, becomes 0 only when the

(i−1)th block subdiagonal,which contains the block element Aki,1, becomes 0 for some power k of

Ak, k ≥ n. Therefore, one can conclude that when k = n+ i− 2, the (i− 1)th block subdiagonal

is positive in An+i−2 and when k = n+ i− 1, it is 0 in An+i−1.

Therefore, any polynomial in t that describes the growth of cells in mutation class correspond-

ing to block row i, 1 ≤ i ≤ m, is at most tn+i−2.

What needs to be determined next is what polynomials describe the growth of the cells within

the telomere classes of mutation class i− 1. This is equivalent to determining the highest power of

k for which a row j, 1 ≤ j ≤ n remains positive in Aki,1, i− 1 ≤ k ≤ n+ i− 1. The last statement,

in turn, is equivalent to determining the highest power of k for which the superdiagonal indexed

n− j remains positive in Aki,1. From Lemma III.8, this power is k = i+ n− j − 1. Therefore, the

row j in block row i corresponds to a polynomial in t of power ti+n−j−1, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

If we switch the indexing of i to make it correspondent to how many mutations a class of cells

a block row represents, the growth of cells in mutation class i, 0 ≤ i ≤ m − 1, telomere class

j, 1 ≤ j ≤ n is determined by a polynomial in t of power ti+n−j .

Example III.10. (n = 2, m = 2):

17



A =



0 2p1,2,0β2,0 0 0

0 0 0 0

2q1,1,0β1,0 2q1,2,0β2,0 0 2p1,2,1β2,1

0 2q2,2,0β2,0 0 0


 U1,0

U2,0

U1,1

U2,1

 = etA.~Φ =

=

 Φ1,0 + 2p2,1,0β2,0Φ2,0t

Φ2,0

Φ1,1 + 2p2,1,1β2,1Φ2,1t + 2Φ1,0q1,1,0β1,0t + 2Φ2,0(q1,2,0β2,0t + p2,1,0β2,0q1,1,0β1,0t
2 + p2,1,1β2,1q2,2,0β2,0t

2)

Φ2,1 + 2Φ2,0q2,2,0β2,0t


From Lemma III.8 and the above, the element that contains the highest power of t, ti+n−j ,

in row j, block row i in etA, 1 ≤ j ≤ n; 1 ≤ i ≤ m, is in the nth column of block etAi,1. This

column contains the elements that are matrix multiplied by Φn,0 when determining etA~Φ. Hence,

the coefficient of tn−j+i, 1 ≤ j ≤ n; 0 ≤ i ≤ m− 1, is a multiple of Φn,0

In Theorem III.4.1, the model depicts a situation in which cell mortality has profound effect on

the outcome - eventually all cells die. It can predict the cell dynamics in a long-term in vitro or in

vivo experiment. Theorem III.4.2 presents a model, more suitable to depict short term in vitro and

in vivo interaction between the different cell classes, because cell mortality does not play a major

role in short term experiments. Part 2 of the theorem shows that the more differentiated a cell popu-

lation is, the faster it grows. This result is consistent with our knowledge of the distribution of cells

within the cell hierarchy of the human body, for example the hierarchy of human hematopoiesis

[29]. Further, the theorem also shows that cell populations that have acquired a higher number

of malignant mutations grow faster. This result is consistent with the nature of aggressive cancer

growth [48][39][24]. Note that Theorem III.4 makes no assumption about the proliferation rate,

βj,i, of different classes. Therefore, the increased growth can be explained by the processes of cell

differentiation and mutation accumulation. In the model, those processes are presented in Equation

II.1, which describes the sources of new cells for the different cell classes. This fact suggests that
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mutation acquisition is reason enough for cancer cells to grow faster than normal cells. A more

complete treatment of the issue is given in the Discussion section.

19



CHAPTER IV

ANALYSIS OF THE ORIGINAL LINEAR MODEL AS A PARTIAL DIFFERENTIAL

EQUATION - THE ABSTRACT PROBLEM

We would like to introduce some notation for convenience:

Let X be an N-dimensional Banach space, ~v ∈ X and Q ∈ L(X), where L(X) is the space of

linear operators on X . Then:

1. {vk}∨ = ~v, where vk is the kth component of ~v, 1 ≤ k ≤ N , 1 ≤ k ≤ N .

2. Qvk is the kth component of Q~v, 1 ≤ k ≤ N .

3.
j=n,i=m−1∑
j=1,i=0

vj,i = v1,0+v2,0+...+vn,0+v1,1+...+vn,1+...v1,m−1+...vn,m−1, where j and i are

the indexes referring to the telomere and mutation classes of cell populations, respectively.

4. diag[ak] is a diagonal matrix with dimension N whose diagonal entries are a1, a2, ..., aN .

IV.1 Solution of the Original Problem

Let us refer to Equation II.1, together with Hypothesis II.3 and Definition II.1, as the Original

Problem (OP).

Let X := L1(R+;RN) with the norm ||~v||X =
N∑
k=1

||vk||L1(R), where ||vk||L1(R) =
∫∞

0
|vk(x)|dx,

1 ≤ k ≤ N .

Remark IV.1. For convenience, if ~v ∈ RN, we define ||~v||X := ||~v||l1 =
N∑
k=1

|vk|.
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The (OP) can be recast as the following abstract Cauchy problem:



d
dt
~u(a, t) = A~u(a, t)

~u(0, t) = N~u(a, t)

~u(a, 0) = ~φ(a),

(IV.1)

where A and N are linear operators on X .

Remark IV.2.

1. A~v := − d
da
~v(a)− diag[βj,i(a) + µj,i(a)]~v(a), 1 ≤ j ≤ n, 0 ≤ i ≤ m− 1, ∀~v ∈ D(A), the

domain of A.

2. D(A) := {~v ∈ X : d
da
~v(a) ∈ X,~v(0) = N~v}.

3. N~v := M{
∫∞

0
βj,i(a)vj,i(a)da}∨, 1 ≤ j ≤ n, 0 ≤ i ≤ m − 1, where M is the matrix

involving the probabilities for class distributions of daughter cells of dividing cells, as in

Definition II.1.

The matrix M has the following structure:

1. M is an N × N matrix that can be described as an m ×m block matrix. Each block is an

n× n matrix. M is a lower-triangular block matrix.

2. The blocks that form M are of three types:

(a) 0 blocks (n× n 0 matrix)

(b) Pi blocks (they occupy the main block-diagonal ofM ): n×n upper-triangular matrices

that describe the proliferation dynamics within the ith mutation class of cells. The

elements on the diagonal of a Pi matrix is 2pj,j,i = 1 (from Hypothesis II.3), ∀1 ≤

j ≤ n. Pi is an upper-triangular matrix, so its other non-zero elements (all are strictly
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positive) are located above the main diagonal and consist of the probabilities 2pj,k,i for

the daughters of cells in class (k, i) to be cells in class (j, i)(1 ≤ j ≤ n − 1;j + 1 ≤

k ≤ n; 0 ≤ i ≤ m− 1). 2pj,k,i is the (j, k)th element of Pi.

(c) Qi blocks (they occupy the first block subdiagonal of M ): n × n upper-triangular

matrices that describe the mutation dynamics between the (i−1)th and the ith mutation

classes (the cells of mutation class i − 1 mutate into cells of class i, 1 ≤ i ≤ m − 1).

Its elements are the probabilities 2qj,k,i−1 for the daughters of cells of class (k, i − 1)

to be cells of class (j, i) (1 ≤ j ≤ n − 1; j ≤ k ≤ n; 1 ≤ i ≤ m − 1). 2qj,k,i−1 is the

(j, k)th element of Qi.

The following matrix is an example for the case n = 3, m = 3:

Example IV.3. 
P0 0 0

Q1 P1 0

0 Q2 P2

 ,

where

P0 =


1 2p1,2,0 2p1,3,0

0 1 2p2,3,0

0 0 1



P1 =


1 2p1,2,1 2p1,3,1

0 1 2p2,3,1

0 0 1
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P2 =


1 2p1,2,2 2p1,3,2

0 1 2p2,3,2

0 0 1



Q1 =


2q1,1,0 2q1,2,0 2q1,3,0

0 2q2,2,0 2q2,3,0

0 0 2q3,3,0



Q2 =


2q1,1,1 2q1,2,1 2q1,3,1

0 2q2,2,1 2q2,3,1

0 0 2q3,3,1


So, M = 

1 2p1,2,0 2p1,3,0 0 0 0 0 0 0

0 1 2p2,3,0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

2q1,1,0 2q1,2,0 2q1,3,0 1 2p1,2,1 2p1,3,1 0 0 0

0 2q2,2,0 2q2,3,0 0 1 2p2,3,1 0 0 0

0 0 2q3,3,0 0 0 1 0 0 0

0 0 0 2q1,1,1 2q1,2,1 2q1,3,1 1 2p1,2,2 2p1,3,2

0 0 0 0 2q2,2,1 2q2,3,1 0 1 2p2,3,2

0 0 0 0 0 2q3,3,1 0 0 1


Remark IV.4. Note that ||M ||B(X) = 2,∀N ≥ 1 , because of the distribution of probabilities. We

use the column matrix norm for our calculations.

Definition IV.5. (From [20]) Let X be a Banach space. A strongly continuous semigroup (C0-

semigroup) in X is a family of bounded linear operators {T (t)}t≥0, such that:

1. T (t+ s) = T (t)T (s),∀t, s ≥ 0.

2. T (0) = I , where I is the identity operator in B(X).

3. The map t→ T (t)v is continuous from R+ to X for each fixed v ∈ X .

Definition IV.6. (From [20]) Let X be a Banach space and let {T (t)}t≥0 be a C0-semigroup. The
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infinitesimal generator of {T (t)}t≥0 is the mapping A from a subset of X to X , such that:

Av := lim
t→0+

T (t)v − v
t

with domain D(A) := {v ∈ X : lim
t→0+

T (t)v − v
t

exists }.

Then the properties of the solution are given in following Proposition:

Proposition IV.7. ~u(a, t) is a generalized solution to (OP) iff it is a solution to Equation IV.1. It

satisfies the following properties:

1. The problem is well-posed, i.e. there exists a unique solution for every initial ~φ ∈ D(A).

2. The maximal interval of existence with respect to t is [0,∞).

3. ∀t ≥ 0, if ~φ is inX+, the positive cone ofX , so is ~u(a, t) , i.e. if φj,i(a, t) ≥ 0, ∀t ≥ 0, a ≥ 0,

then uj,i(a, t) ≥ 0, ∀t ≥ 0, a ≥ 0, 1 ≤ j ≤ n, 0 ≤ i ≤ m − 1. We are obviously only

interested in non-negative solutions.

4. ∀t ≥ 0, ~u(·, t) is a continuous mapping from [0,∞) to D(A).

5. ~u(a, t) = (T (t)~φ)(a), where T := {T (t)}t≥0 is a strongly continuous semigroup of bounded

linear operators from X to itself. A is the infinitesimal generator of T .

6. D(A) = X , i.e. D(A) is dense in X .

The Proposition is a result of the well-known properties of age-dependent population models

and proofs of it can be found in [45] and [3]. We will use the method of characteristics to establish

a form for the solution that will help us prove results in the further analysis.

Let:

1. t− a = c.
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2. wcj,i(t) := uj,i(t− c, t), 1 ≤ j ≤ n, 0 ≤ i ≤ m− 1.

3. tc := max{0, c}.

4. t ≥ tc.

∂wcj,i
∂t

= lim
h→0+

uj,i(t+ h− c, t+ h)− uj,i(t− c, t)
h

= (−µj,i(t− c)− βj,i(t− c))wcj,i(t), t ≥ tc

So, wcj,i(t) = wcj,i(tc)e
−

∫ t
tc
µj,i(s−c)+βj,i(s−c)ds, t ≥ tc

If c = t− a, then t ≥ a, c ≥ 0, tc = c, and wcj,i(t) = wcj,i(c)e
−

∫ t
c µj,i(s−c)+βj,i(s−c)ds

Therefore, uj,i(a, t) = uj,i(0, t− a)e−
∫ t
t−a µj,i(s−c)+βj,i(s−c)ds, t > a

If c = t− a, then t ≤ a, c ≤ 0, tc = 0, and wcj,i(t) = wcj,i(0)e−
∫ t
0 µj,i(s−t+a)+βj,i(s−t+a)ds

So, uj,i(a, t) = uj,i(a− t, 0)e−
∫ t
0 µj,i(s−t+a)+βj,i(s−t+a)ds, a ≥ t

Combining them:

uj,i(a, t) =


φj,i(a− t)e−

∫ a
a−t µj,i(s)+βj,i(s)ds, t ≤ a, 1 ≤ j ≤ n, 0 ≤ i ≤ m− 1

uj,i(0, t− a)e−
∫ a
0 µj,i(s)+βj,i(s)ds, t > a, 1 ≤ j ≤ n, 0 ≤ i ≤ m− 1

(IV.2)

IV.2 Preliminary Results from the Theory of Semigroups of Bounded Linear Operators

We would like to introduce several definitions and propositions referring to strongly continuous

semigroups that will be used in the analysis of the (OP).

Lemma IV.8. (Proved in [20]) Let {T (t)}t≥0 be a C0-semigroup on a Banach space X . Then

∀t0 ≥ 0, ∃C(t0) ∈ R+, such that ||T (t)||B(X) ≤ C(t0),∀t ∈ [0, t0].

Lemma IV.9. (Proved in [20]) For aC0-semigroup {T (t)}t≥0 on a Banach spaceX , limt→0 T (t)v =

v,∀v ∈ X .
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Lemma IV.10. (Proved in [20]) For every C0-semigroup {T (t)}t≥0, there are constants ω ∈

R, C ≥ 1, such that ||T (t)||B(X) ≤ Ceωt,∀t ≥ 0.

Definition IV.11. (From [20]) For a C0-semigroup {T (t)}t≥0, we define ω0(T ) := inf{ω : ω is

defined as in Lemma IV.10}.

Definition IV.12. Let X be a Banach space and let A be a linear operator on X . Then:

1. The resolvent of A, ρ(A) := {λ : (λ− A)−1 ∈ B(X)} and D((λ− A)−1) is dense in X}.

2. The spectrum of A, σ(A) := C/ρ(A).

3. The spectral bound of A, s(A) := sup{Reλ : λ ∈ σ(A)}.

4. An eigenvector corresponding to the eigenvalue λ of A is a ~v ∈ D(A), ~v 6= 0, such that

(λ− A)~v = 0.

5. An eigenspace corresponding to the eigenvalue λ of A is the subspace Xλ of X , spanned by

all the eigenvectors, associated with λ.

6. An eigenprojection corresponding to the eigenvalue λ is a linear operator Πλ, such that

Π2
λ = Πλ and ∀~v ∈ X,Πλ~v ∈ Xλ.

Definition IV.13. A linear operator on a Banach space X is compact if it maps bounded sets in X

into sets with compact closure in X .

Definition IV.14. (From [20]) Let X be a Banach space. Let K(X) be the space of all compact

linear operators on X . Then, for every linear operator T on X , ||T ||ess := dist(T,K(X)).

Definition IV.15. (From [20]) Let A be the infinitesimal generator of C0-semigroup {T (t)}t≥0.

Then the essential growth bound of A, ωess := inft>0
1
t

log ||T (t)||ess .

Remark IV.16. Note that if A ∈ K(X), then ωess(A) = −∞.
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Lemma IV.17. (Proved in [20]) Let {T (t)}t≥0 be a C0-semigroup of a Banach space X with

generator A. Then

ω0 = max{ωess, s(A)}

Moreover, for every ω > ωess, the set σω := σ(A) ∩ {λ ∈ C : Reλ ≥ ω} is finite and the

corresponding spectral projection has finite rank.

Definition IV.18. (From [20]) AC0-semigroup {T (t)}t≥0 on a Banach spaceX is called uniformly

exponentially stable if there exists ε > 0 such that limt→∞ e
εt||T (t)||B(X) = 0

Lemma IV.19. (Proved in [20]) For a C0-semigroup {T (t)}t≥0, if ω0 < 0, T is a uniformly

exponentially stable semigroup.

Definition IV.20. (From [20]) A C0-semigroup {T (t)}t≥0 on a Banach space X is called quasi-

compact if

lim
t→∞

inf{||T (t)− S|| : S ∈ K(X)} = 0

.

IV.3 Compactness of the Trajectories and Asymptotic Stability

Define for all ~φ ∈ X:

(V (t)~φ)(a) =


0 a.e. a ∈ (0, t)

(T (t)~φ)(a) a.e. a ∈ (t,∞)

(IV.3)

(W (t)~φ)(a) =


(T (t)~φ)(a) a.e. a ∈ (0, t)

0 a.e. a ∈ (t,∞)

(IV.4)

Proposition IV.21. Let {T (t)}t≥0, be the C0-semigroup associated with (OP). Assume ∃ µ > 0,
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such that µ ≤ µj,i(a),∀1 ≤ j ≤ n, 0 ≤ i ≤ m− 1, a ∈ [0,∞). Then, for all ~φ ∈ X , t ≥ 0,

||V (t)~φ||X ≤ e−µt||~φ||X

.

Proof. From IV.2,

||V (t)~φ||X =

j=n,i=m−1∑
j=1,i=0

∫ ∞
t

φj,i(a− t)e−
∫ a
a−t µj,i(x)+βj,i(x)dxda

≤
j=n,i=m−1∑
j=1,i=0

∫ ∞
t

φj,i(a− t)e−
∫ a
a−t µ dxda

=

j=n,i=m−1∑
j=1,i=0

∫ ∞
t

φj,i(a− t)e−µtda

= e−µt
j=n,i=m−1∑
j=1,i=0

∫ ∞
t

φj,i(a− t)da

= e−µt||~φ||X

Lemma IV.22. (Proved in [17]) A closed and bounded subset C of L1 is compact iff the following

two conditions hold:

lim
h→0

∫ ∞
0

|φ(a)− φ(a+ h)|da = 0 (IV.5)

uniformly for φ ∈ C (φ(a+ h) := 0 if a+ h < 0).

lim
h→∞

∫ ∞
h

|φ(a)|da = 0 (IV.6)

uniformly for φ ∈ C.

Proposition IV.23. Consider the strongly continuous semigroup {T (t)}t≥0, associated with the
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solution to the (OP). For every t > 0, the operator W (t), defined in IV.4, is compact on X .

Proof. Fix t. Consider the set {~φ ∈ X : ||~φ||X ≤ C1}. Also, from IV.8, ∃r > 0, such that

||T (s)||B(X) ≤ r,∀s ∈ [0, t]. From Equations IV.2 and IV.4,

(W (t)~φ)(a) = (T (t− a)Nφj,i)(a)e−
∫ a
0 µj,i(x)+βj,i(x)dx

∨

We want to show that W (t) maps bounded sets in D(A) to precompact sets in X . Since T (t) is

a bounded operator, so is W (t), hence W (t) maps bounded sets of D(A) to bounded sets in X .

Hence, if we show that the set W (t)X satisfies the requirements of Lemma IV.22, then its closure

will be a compact set in X .

Pick h > t. Then
∫∞
h

(W (t)~φ)(a)da = 0, from a > t, the definition of W (t) and IV.2. Therefore,

IV.6 is satisfied.

Pick h < t. From IV.2:

j=n,i=m−1∑
j=1,i=0

∫ ∞
0

|(W (t)φj,i)(a+ h)− (W (t)φj,i)(a)|da

≤
j=n,i=m−1∑
j=1,i=0

∫ t−h

0

|(W (t)φj,i)(a+ h)− (W (t)φj,i)(a)|da

+

j=n,i=m−1∑
j=1,i=0

∫ t

t−h
|(W (t)φj,i)(a+ h)− (W (t)φj,i)(a)|da.
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Let’s concentrate on the first integral:

j=n,i=m−1∑
j=1,i=0

∫ t−h

0

|(W (t)φj,i)(a+ h)− (W (t)φj,i)(a)|da

=

j=n,i=m−1∑
j=1,i=0

∫ t−h

0

|(T (t− (a+ h))Nφj,i)(a)e−
∫ a+h
0 µj,i(x)+βj,i(x)dx

− (T (t− (a+ h))Nφj,i)(a)e−
∫ a
0 µj,i(x)+βj,i(x)dx

+ (T (t− (a+ h))Nφj,i)(a)e−
∫ a
0 µj,i(x)+βj,i(x)dx

− (T (t− a)Nφj,i)(a)e−
∫ a
0 µj,i(x)+βj,i(x)dx|da

≤
j=n,i=m−1∑
j=1,i=0

∫ t−h

0

|(T (t− (a+ h))Nφj,i)(a)[e−
∫ a+h
0 µj,i(x)+βj,i(x)dx − e−

∫ a
0 µj,i(x)+βj,i(x)dx]|da

+

j=n,i=m−1∑
j=1,i=0

∫ t−h

0

e−
∫ a+h
0 µj,i(x)dx|(T (t− (a+ h))Nφj,i)(a)− (T (t− a)Nφj,i)(a)|da

Let:

J1(j, i) :=

∫ t−h

0

|(T (t− (a+ h))Nφj,i)(a)[e−
∫ a+h
0 µj,i(x)+βj,i(x)dx − e−

∫ a
0 µj,i(x)+βj,i(x)dx]|da,

1 ≤ j ≤ n, 0 ≤ i ≤ m− 1.

J2(j, i) :=

∫ t−h

0

e−
∫ a+h
0 µj,i(x)dx|(T (t− (a+ h))Nφj,i)(a)− (T (t− a)φj,i)(0)|da,

1 ≤ j ≤ n, 0 ≤ i ≤ m− 1.

Note that

e−
∫ a+h
0 µj,i(x)+βj,i(x)dx − e−

∫ a
0 µj,i(x)+βj,i(x)dx

=

∫ h

0

(µj,i(a+ b) + βj,i(a+ b))e−
∫ a+b
0 µj,i(x)+βj,i(x)dxdb

≤ h(β̄ + µ̄).
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Therefore, from above and the definition of D(A),

J1(j, i) ≤ rh(β̄ + µ̄)

∫ t−h

0

Nφj,i(a)da

= rh(β̄ + µ̄)

∫ t−h

0

M

∫ ∞
0

βj,i(x)φj,i(x)dx da

≤ 2rhβ̄(β̄ + µ̄)C1(t− h).

So, lim
h→0

j=n,i=m−1∑
j=1,i=0

J1(j, i) = 0.

On the other hand,

J2(j, i) ≤
∫ t−h

0

|(T (t− (a+ h))Nφj,i)(a)− (T (t− a)Nφj,i)(a)|da,

1 ≤ j ≤ n, 0 ≤ i ≤ m− 1.

If h > 0,

∫ t−h

0

|(T (t− (a+ h))Nφj,i)(a)− (T (t− a)Nφj,i)(a)|da

=

∫ t−h

0

(I − T (h))(T (t− (a+ h))Nφj,i)(a)da

=

∫ t−h

0

(I − T (h))T (t− (a+ h))M

∫ ∞
0

βj,i(x)φj,i(x)dx da

≤ 2(t− h)rβ̄||(I − T (h))φj,i||X → 0 as h→ 0+, for 1 ≤ j ≤ n, 0 ≤ i ≤ m− 1,

from IV.9.

Similarly, if h < 0,

∫ t−h

0

|(T (t− (a+ h))Nφj,i)(a)− (T (t− a)Nφj,i)(a)|da

=

∫ t−h

0

(T (−h)− I)(T (t− a)Nφj,i)(a)da

≤ 2(t− h)rβ̄||(T (−h)− I)φj,i||X → 0 as h→ 0−.

So, lim
h→0

j=n,i=m−1∑
j=1,i=0

J2(j, i) = 0.
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If h > 0, from IV.4,

∫ t

t−h
|(W (t)φj,i)(a+ h)− (W (t)φj,i)(a)|da

=

∫ t

t−h
(W (t)φj,i)(a)da

=

∫ t

t−h
(T (t− a)Nφj,i)(a)da

≤ 2hrβ̄C1 → 0 as h→ 0+.

If h < 0,

∫ t

t−h
|(W (t)φj,i)(a+ h)− (W (t)φj,i)(a)|da

=

∫ t

t−h
(W (t)φj,i)(a+ h)da

=

∫ t

t−h
(T (t− (a+ h))Nφj,i)(a)da

≤ 2|h|rβ̄C1 → 0 as h→ 0−, for 1 ≤ j ≤ n, 0 ≤ i ≤ m− 1.

Therefore, from the above results

lim
h→0

j=n,i=m−1∑
j=1,i=0

∫ ∞
0

|(W (t)φj,i)(a+h)−(W (t)φj,i)(a)|da = 0, so IV.5 is satisfied. Therefore,W (t)

is a compact operator on X for every t ≥ 0.

Proposition IV.24. Assume ∃ µ > 0, such that µ < µj,i(a),∀1 ≤ j ≤ n, 0 ≤ i ≤ m − 1, a ∈

[0,∞). Then the spectral bound of the strongly continuous semigroup {T (t)}t≥0, associated with

the solution to the (OP), is negative.

Proof. What we want to do is show that the resolvent set ρ(A) is the complex numbers to the right

of the line Reλ = −µ, λ ∈ C. From Definition IV.12, since D(A) is dense in X , what we need to

show that if Reλ > −µ, (λ− A)−1 is in B(X). Consider the characteristic equation for the (OP):
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λ~φ− A~φ = ~f, f ∈ X . It is equivalent to:


λ~φ(a) + ~φ′(a) + diag[µj,i(a) + βj,i(a)]~φ(a) = ~f(a), 1 ≤ j ≤ n, 0 ≤ i ≤ m− 1

~φj,i(0) = M{
∫∞

0
βj,i(a)φj,i(a)da}∨, 1 ≤ j ≤ n, 0 ≤ i ≤ m− 1

(IV.7)

The general solution is:

~φ(a) = {φj,i(0)e−
∫ a
0 λ+µj,i(x)+βj,i(x)dx}∨ + {

∫ a
0
e−

∫ a
y λ+µj,i(x)+βj,i(x)dxfj,i(y)dy}∨, 1 ≤ j ≤ n, 0 ≤

i ≤ m− 1. Apply diag[βj,i(a)], 1 ≤ j ≤ n, 0 ≤ i ≤ m− 1, integrate from 0 to∞ with respect to

a, and apply M on both sides. Then, for 1 ≤ j ≤ n, 0 ≤ i ≤ m− 1:

M{
∫ ∞

0

βj,i(a)φj,i(a)da}∨

= M{φj,i(0)

∫ ∞
0

βj,i(a)e−
∫ a
0 λ+µj,i(x)+βj,i(x)dxda}∨

+M{
∫ ∞

0

βj,i(a)

∫ a

0

e−
∫ a
y λ+µj,i(x)+βj,i(x)dxfj,i(y)dyda}∨.

Note that M{
∫∞

0
βj,i(a)φj,i(a)da}∨ = {φj,i(0)}∨.

Therefore, for 1 ≤ j ≤ n, 0 ≤ i ≤ m− 1

(IN −Mdiag[
∫∞

0
βj,i(a)e−

∫ a
0 λ+µj,i(x)+βj,i(x)dxda])~φ(0)

= M{
∫∞

0
βj,i(a)

∫ a
0
e−

∫ a
y λ+µj,i(x)+βj,i(x)dxfj,i(y)dy da}∨,

where IN is the N ×N identity matrix.

Let H(λ) := IN −Mdiag[
∫∞

0
βj,i(a)e−

∫ a
0 λ+µj,i(x)+βj,i(x)dxda]

Let us look at the structure of H(λ) for two cases.

Example IV.25. n = 2, m = 1. Then

M =

 1 1

0 1

 ,
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diag[

∫ ∞
0

βj,i(a)e−
∫ a
0 λ+µj,i(x)+βj,i(x)dxda] =

 ∫∞
0
β1,0(a)e−

∫ a
0 λ+µ1,0(x)+β1,0(x)dxda 0

0
∫∞

0
β2,0(a)e−

∫ a
0 λ+µ2,0(x)+β2,0(x)dxda

 .

So,

H(λ) =

 1−
∫∞

0
β1,0(a)e−

∫ a
0 λ+µ1,0(x)+β1,0(x)dxda

∫∞
0
β2,0(a)e−

∫ a
0 λ+µ2,0(x)+β2,0(x)dxda

0 1−
∫∞

0
β2,0(a)e−

∫ a
0 λ+µ2,0(x)+β2,0(x)dxda

 .

Example IV.26. n = 2, m = 2. Let hj,i(λ) :=
∫∞

0
βj,i(a)e−

∫ a
0 λ+µj,i(x)+βj,i(x)dxda

M =



1 p1,2,0 0 0

0 1 0 0

q1,1,0 q1,2,0 1 1

0 q2,2,0 0 1


,

diag[

∫ ∞
0

βj,i(a)e−
∫ a
0 λ+µj,i(x)+βj,i(x)dxda] =



h1,0(λ) 0 0 0

0 h1,0(λ) 0 0

0 0 h1,0(λ) 0

0 0 0 h1,0(λ)


.
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So,

H(λ) =



1− h1,0(λ) p1,2,0h2,0(λ) 0 0

0 1− h2,0(λ) 0 0

q1,1,0h1,0(λ) q1,2,0h2,0(λ) 1− h1,1(λ) 1

0 q2,2,0h2,0(λ) 0 1− h2,1(λ)


.

We return to the general case. The matrix H(λ) is invertible if and only if its determinant does

not equal 0. Since H(λ) is a lower-triangular block matrix,

det(H(λ)) =

j=n,i=m−1∏
j=1,i=0

(1−
∫ ∞

0

βj,i(a)e−
∫ a
0 λ+µj,i(x)+βj,i(x)dxda).

Let λ = α + iγ. Let us consider and arbitrary pair (j, i), 1 ≤ j ≤ n, 0 ≤ i ≤ m− 1. Then

1−
∫ ∞

0

βj,i(a)e−
∫ a
0 λ+µj,i(x)+βj,i(x)dxda

= 1−
∫ ∞

0

βj,i(a)e−
∫ a
0 βj,i(x)dxeα cos(γ)e−

∫ a
0 µj,i(x)dxda

+ i

∫ ∞
0

βj,i(a)e−
∫ a
0 βj,i(x)dxeα sin(γ)e−

∫ a
0 µj,i(x)dxda.

If Reλ > −µ,

Re

∫ ∞
0

βj,i(a)e−
∫ a
0 λ+µj,i(x)+βj,i(x)dxda

≤
∫ ∞

0

βj,i(a)e−
∫ a
0 Reλ+µj,i(x)+βj,i(x)dxda < 1,

since

eReλe−
∫ a
0 µj,i(x)dx < e−

∫ a
0 µj,i(x)−µdx < 1,∀a > 0.

Therefore, if Reλ > −µ, det(H(λ)) 6= 0, so the matrix H(λ) is invertible. We continue the

analysis with the assumption that Reλ > −µ.
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From II.1,

j=n,i=m−1∑
j=1,i=0

M{
∫ ∞

0

|βj,i(a)

∫ a

0

e−
∫ a
y λ+µj,i(x)+βj,i(x)dxfj,i(y)dy|da}∨

≤ β̄

j=n,i=m−1∑
j=1,i=0

M{
∫ ∞

0

|
∫ a

0

e−
∫ a
y λ+µj,i(x)+βj,i(x)dxfj,i(y)dy|da}∨

≤ β̄

j=n,i=m−1∑
j=1,i=0

M{
∫ ∞

0

|
∫ a

0

e−(λ+µ)(a−y)fj,i(y)dy|da}∨,

which, by Young’s Inequality,

≤ β̄||f ||X
∫∞

0
|e−(λ+µ)a|da

≤ β̄||f ||X
|Reλ+µ| .

Therefore, ||φ(0)||X ≤
β̄||H(λ)−1||B(X)||f ||X

|Reλ+µ|

Let C2(λ) :=
β̄||H(λ)−1||B(X)

|Reλ+µ| . Therefore, by an argument, similar to the ones above,

||φ||X ≤
j=n,i=m−1∑
j=1,i=0

||φj,i(0)||X
∫ ∞

0

|e−
∫ a
0 λ+µj,i(x)+βj,i(x)dx|da

+

j=n,i=m−1∑
j=1,i=0

∫ ∞
0

|
∫ a

0

e−
∫ a
y λ+µj,i(x)+βj,i(x)dxfj,i(y)dy|da

≤ C2(λ) + 1

|Reλ+ µ|
||f ||X .

Therefore, if Reλ > −µ, (λ − A)−1 is a bounded linear operator on D(A) and (−µ,∞) ∈ ρ(A).

Hence, s(A) ≤ −µ.

Theorem IV.27. Assume ∃ µ> 0, such that µ < µj,i(a),∀1 ≤ j ≤ n, 0 ≤ i ≤ m− 1, a ∈ [0,∞).

Then, the strongly continuous semigroup {T (t)}t≥0, associated with the solution to the (OP), is

uniformly stable and ω0 ≤ −µ.

Proof. Note that T (t) = V (t)+W (t) from IV.3 and IV.4. From Proposition IV.23,W (t) ∈ K(X).

Then, from IV.21,

limt→∞ ||T (t)−W (t)||B(X) = limt→∞ ||V (t) +W (t)−W (t)||B(X)
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= limt→∞ ||V (t)||B(X) ≤ lim
t→∞

e−µt = 0.

Therefore, from Definition IV.20 the semigroup {T (t)}t≥0 is quasi-compact. From Definitions

IV.15 and IV.15, ωess ≤ −µ. From Proposition IV.24, s(A) ≤ −µ, so, from Lemma IV.17,

ω0 ≤ −µ . Then {T (t)}t≥0 is uniformly stable from Lemma IV.19.

The result is the equivalent of Theorem III.4.2 for the (OP): when we have positive mortality,

all cell classes eventually go to extinction.
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CHAPTER V

A NONLINEAR VERSION OF THE ORDINARY DIFFERENTIAL EQUATION MODEL

V.1 Introduction to the Logistic Equation

We introduce a crowding term in equation III.3:


~U ′(t) = A~U(t)− F (~U(t))~U(t)

~U(0) = ~Φ,

(V.1)

where A is the matrix defined in the linear case, ~U(t), as before, is the vector representing

the total number of cells of the different telomere and mutation classes, ~Φ is the vector of the

initial cell populations, and for fixed t ≥ 0, F is a positive linear functional from L1(RN
+ ) to R+.

The ”crowding” term, F (~U(t))~U(t), describes a situation under which the growth of the total cell

population, or the population of certain cell classes, slows down. The biological interpretations are

numerous. Crowding can occur because of limited nutrients, space, or events during which cells

get signals to cease proliferation. The model presented in Equation V.1 does not choose a specific

crowding term in this section. In the next section, Numerical Simulations, we choose a specific

linear functional F and a biological interpretation. However, the mathematical results that follow

do not depend on the biological interpretation of the crowding term. The following assumptions

hold:

Hypothesis V.1.

1. µj,i(a) = µj,i > 0, ∀1 ≤ j ≤ n; 0 ≤ i ≤ m− 1

2. βj,i(a) = βj,i > 0,∀1 ≤ j ≤ n; 0 ≤ i ≤ m− 1

3. pj,k,i = 0 for j > k, ∀1 ≤ j ≤ n; 0 ≤ i ≤ m− 1.
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4. qj,k,i = 0 for j > k, ∀2 ≤ j ≤ n, 0 ≤ i ≤ m− 1.

Note: pj,j,i need not equal 1
2
,∀1 ≤ j ≤ n, 0 ≤ i ≤ m− 1

By an argument similar to the one in the proof of Theorem III.4, Case 1, the eigenvalues of A

are of the form:−µj,i − βj,i + 2pj,j,iβj,i. Let λ0 denote the dominant eigenvalue, that is λ0 > λ,

where λ is any other eigenvalue of A.

Hypothesis V.2. λ0 = −µn,m−1 − βn,m−1 + 2pn,n,m−1βn,m−1.

In other words, the dominant eigenvalue is associated with the growth of the cancer stem cells.

We can assume this since stem cells have higher degree of self-renewal than other cells, hence

pn,n,m−1 ≥ pj,j,i, ∀1 ≤ j ≤ n; 0 ≤ i ≤ m − 1 [44][23][43]. Also, cancer cells are assumed to

have higher proliferation rate than normal cells, hence βn,m−1 ≥ βj,i,∀1 ≤ j ≤ n, 0 ≤ i ≤ m− 1

[12][37][44][23]. Note that if pn,n,m−1 >
1
2

and βn,m−1 >
µn,m−1

2pn,n,m−1−1
, then λ0 > 0.

Let λ0 > 0. Let A′ := A − λ0I . A′ is a block matrix with structure similar to A, the only

difference being the diagonal entries, hence the only difference being the Pi blocks. For simplicity

of notation, let:

m̄j,i := −µj,i − βj,i + 2pj,j,iβj,i − (−µn,m−1 − βn,m−1 + 2pn,n,m−1βn,m−1)

and

p̄j,k,i := 2pj,k,iβk,i, 1 ≤ j ≤ n− 1, 0 ≤ i ≤ m− 1, k > j.

Then , for 0 ≤ i < m− 1,

P ′i :=



m̄1,i p̄1,2,i . . . . . .

0 m̄2,i p̄2,3,i
. . .

... . . . . . . . . .

0 . . . . . . m̄n,i


.
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For i = m,

P ′m−1 :=



m̄1,i p̄1,2,i . . . . . .

0 m̄2,i p̄2,3,i
. . .

... . . . . . . . . .

0 . . . . . . 0


.

Therefore,

A′ =



P ′0 0 . . . 0

Q1 P ′1 . . .
...

. . . . . . . . . . . .

0 . . . Qn P ′m−1



V.2 Asymptotic Behavior

Theorem V.3. Assume Hypotheses V.1 and V.2. Then, Equation V.1 has a unique solution and the

eigenspace of the dominant eigenvalue λ0 of A is one dimensional. Further, if Π0 is the eigenpro-

jection associated with λ0, ~U(t) is the unique solution to Equation V.1, and ~Ψ is an eigenvector of

λ0, then the first N − n entries of ~Ψ are 0, the last n are non-zero, and limt→∞ ~U(t) = λ0Π0
~Φ

F (Π0
~Φ)

=

λ0
~Ψ

F (~Ψ)
.

Before we go into the proof, let us remark on the solution to Equation V.1 as a semigroup of

nonlinear operators and introduce two Lemmas that describe the connection between a semigroup

and its dominant eigenvalue in more detail.

Remark V.4.

1. The matrix A is the infinitesimal generator of semigroup T := {T (t)}t≥0, given by T (t)~v :=

etA~v =
∑∞

k=1
tkAk~v
k!

.

2. The unique solution of Equation V.1 is given by the nonlinear semigroup S(t)~v := T (t)~v

1+
∫ t
0 F (T (s)~v)ds

,

a result proved in [18].

3. Note that since A is an N ×N matrix, it is a compact operator on RN.
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Lemma V.5. (Proved in [20]) Let T := {T (t)}t≥0 be a C0 semigroup on a Banach space X with

generator A and take λ1, ..., λm ∈ σ(A) satisfying Reλ1, ..., Reλm > ωess(A). Then λ1, ..., λm

are isolated spectral values of A with finite algebraic multiplicity. If Π1, ...,Πm denote the corre-

sponding spectral projections and k1, ..., km the corresponding indexes (multiplicities), then

T (t) = T1(t) + · · ·+ Tm(t) +Rm(t),

where

Tn(t) = eλnt
kn−1∑
j=0

tj

j!
(A− λn)jΠn , n = 1, ...,m.

Moreover, for every ω > sup{ωess(A)} ∪ {Reλ : λ ∈ σ(A) \ {λ1, ..., λm}},

there exists Cω > 0 such that

||Rm(t)||B(X) ≤ Cωe
ωt,∀t ≥ 0.

Remark V.6. From the proof of the above lemma, found in [20], if Π :=
∑m

n=1 Πn is the spectral

projection of A corresponding to the spectral set {λ1, ..., λm}, then T (t) = T (t)Π + T (t)(I − Π),

so Rm(t) = T (t)(I − Π), where I − Π is the projection to X \ ΠX .

Lemma V.7. (Proved in [46]) Let X be a Banach space and let X+ denote the the cone of

nonnegative elements of X . Let T = {T (t)}t≥0 be a C0 semigroup of bounded linear operators in

X with infinitesimal generator A and T (t)x ∈ X+, for x ∈ X+. Let there exist a real number λ0

and a direct sum decomposition X = X0 ⊕ X1 with associated projections Πi, ΠiX = Xi, i =

0, 1, such that ΠiT (t) = T (t)Πi, i = 0, 1, T (t)Π0 = eλ0Π0, t ≥ 0, and for some constants

Cω ≥ 1, ω < λ0, ||T (t)Π1||B(X) ≤ Cωe
ωt||Π1||B(X), t ≥ 0. Let F be a bounded linear functional

on X such that Fx > 0 for x ∈ X+ − {0}. Then Equation V.1 has a unique solution. Moreover, if

λ0 > 0, then limt→∞ S(t)~v = λ0Π0~v
F (Π0~v)

.

Proof of Theorem V.3 From Remark V.4, we know ~U(t) := S(t)Φ defines a unique solution to

equation V.1. Since A is a matrix on a finite dimensional space X , A is a compact linear operator
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and from Remark IV.16, ωess(A) = −∞. Then, from Lemma V.5,

T (t) = eλ0tΠ0 +R0(t).

From V.6, R0(t) = T (t)(I − Π0). Referring to Lemma V.7,

X0 := Π0X , X1 := (I − Π0)X , and X = X0 ⊕X1.

Moreover,

T (t)Π0 = eλ0Π2
0 +R0(t)Π0 = eλ0Π0.

Let T (t)|Ker(Π0) be the restriction of T (t) to the kernel of Π0, which is the range of I − Π0.

The infinitesimal generator of T (t)|Ker(Π0) is A|Ker(Π0) from [20], and

ω0(A|Ker(Π0)) = sup{ωess(A|Ker(Π0)), s(A|Ker(Π0))}.

Since A|Ker(Π0) is a finite matrix, ωess(A|Ker(Π0)) = −∞.

s(A|Ker(Π0)) = sup{Reλ : λ ∈ σ(A) \ {λ0}}.

Therefore, from Lemma IV.10, ∃ω such that

ω0(A|Ker(Π0)) < ω < λ0

and ∃Cω ≥ 1, such that

||T (t)|Ker(Π0)||B(X) ≤ Cωe
ω.

Therefore,

||R0(t)||B(X) = ||T (t)(I − Π0)||B(X) ≤ ||T (t)|Ker(Π0)||B(X)||I − Π0||B(X) ≤ Cωe
ω||I − Π0||B(X)
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Therefore, by Lemma V.7, limt→∞ ~U(t) = λ0Π0
~Φ

F (Π0
~Φ)

.

We are interested in finding the eigenvector of λ0, in other words ~Ψ ∈ RN , such that A′~Ψ = 0.

Let us initially restrict our attention to solutions of P ′0~Ψ0 = 0, where ~Ψ0 is the vector of the first n

entries of ~Ψ. Refer to Example V.8 throughout the proof.

Example V.8. (n = 3):

P ′0 =


m̄1,0 p̄1,2,0 p̄1,3,0

0 m̄2,0 p̄2,3,0

0 0 m̄3,0

 ,

~Ψ0 =


Ψ1,0

Ψ2,0

Ψ3,0

 .

So,

P ′0.~Ψ0 =


m̄1,0Ψ1,0 + p̄1,2,0Ψ2,0 + p̄1,3,0Ψ3,0

m̄2,0Ψ2,0 + p̄2,3,0Ψ3,0

m̄3,0Ψ3,0

 = 0.

Hence, Ψ3,0 = 0⇒ Ψ2,0 = 0⇒ Ψ1,0 = 0.

P ′m−1 =


m̄1,m−1 p̄1,2,m−1 p̄1,3,m−1

0 m̄2,m−1 p̄2,3,m−1

0 0 0

 ,

~Ψm−1 =


Ψ1,m−1

Ψ2,m−1

Ψ3,m−1

 ,

43



P ′m−1.
~Ψm−1 = 0,

hence Ψ3,m−1 is a free variable, Ψ2,m−1 = −p̄2,3,m−1

m̄2,m−1
Ψ3,m−1,

and Ψ1,m−1 = ( p̄1,2,m−1p̄2,3,m−1

m̄1,m−1m̄2,m−1
− p̄1,3,m−1

m̄1,m−1
)Ψ3,m−1

P ′0
~Ψ0 = 0 is a system of n equations of n variables. Note that since P ′0 is positive and upper-

triangular, each variable Ψj,0, 1 ≤ j ≤ n is linearly dependent on all variables Ψk,0, j < k ≤ n.

The last equation of the system is mn,0
~Ψn,0 = 0, therefore ~Ψn,0 = 0. The (n − 1)th equation is

mn−1,0
~Ψn−1,0 + p̄n−1,n,0

~Ψn,0 = 0, so ~Ψn−1,0 = 0. By similar arguments for the other elements

Ψj,0, 1 ≤ j < n− 1, in ~Ψ0, ~Ψ0 = 0.

Let us consider the second block-row of A′. We need to solve, in block-matrix form, the

equation:

(
Q1 P ′1

)
.


Ψ1,0

...

Ψn,1

 = 0.

The first elements of (Ψ1,0...Ψn,1)> = ~Ψ0 are zero. So, from the argument above and the

rules of matrix multiplication, Q1 does not contribute to the solution of the system. Therefore, the

equation above is reduced to :

(
P ′1

)
.


Ψ1,1

...

Ψn,1

 = 0.

By an argument similar to the one above, (Ψ1,1, ...,Ψn,1)> = 0. By a similar inductive argument,

it is easy to show that (Ψ1,0...Ψn,m−2)> = 0.

The solution to the equation A′~Ψ = 0 is reduced to solving:

(
P ′m−1

)
.


Ψ1,m−1

...

Ψn,m−1

 = 0,
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which is a system of n equations and n variables, one of them free. The last row of P ′m−1 is

zero, so the free variable is Ψn,m−1. P ′m−1 is an upper-triangular, positive (except for its nth, last

row, which is 0) matrix. Therefore, every variable Ψj,m−1 is linearly dependent on the variables

Ψk,m−1, j < k ≤ n. Therefore, each Ψl,m−1, 1 ≤ l ≤ n can be expressed as a positive multiple

of Ψn,m−1. So, the eigenvector associated with λ0, ~Ψ, is unique up to a choice of Ψn,m−1. Its first

N − n entries are 0 and the last n entries are positive multiples of Ψn,m−1. Fix Ψn,m−1 > 0 and let

~Ψ be the so defined eigenvector of the eigenspace of A, associated with λ0. Thus, the eigenspace

is one-dimensional. Hence λ0Π0
~Φ

F (Π0
~Φ)

= λ0C~Ψ

F (C~Ψ)
= λ0C~Ψ

CF (~Ψ)
= λ0

~Ψ

F (~Ψ)
, C ∈ C. F (~Ψ) is a constant, hence

limt→∞ ~U(t) = λ0
~Ψ

F (~Ψ)
, an N-dimensional vector, whose only non-zero elements correspond to the

telomere classes of the cancer cells.

The biological interpretation of the result of Theorem V.3 is that all cell populations converge

to a steady state, in which only cancer cells survive. Given the assumptions about the higher pro-

liferation rate and higher probability of self-renewal of the cancer stem cell, pn,n,m, the cancer cells

eventually overtake all other existing cells. However, they also reach an equilibrium determined

by the fact that there is a crowding effect in the cell environment. Therefore, the cancer cells, by

being more competitive, have taken over the somatic cellular tissue. However, because of limited

resources they cannot increase their population indefinitely.
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CHAPTER VI

NUMERICAL RESULTS FOR THE ORDINARY DIFFERENTIAL EQUATION MODEL

VI.1 Purpose and Data

Table VI.1: Numerical values for parameters in the model
Parameter Range based Simulation

on references Value
Non-cancer cell proliferation rate, βj,i, 0.5 - 3.36 0.65 (Stem Cell);
1 ≤ j ≤ n, 0 ≤ i ≤ m− 2 (cells/week) [47][6] 0.7 (Non-Stem Cell)
Cancer cell proliferation rate, βj,m−1 (cells/week) [39][48] 0.35 to 13.44 3.0
Cell mortality rate, µj,i (cells/week) [6][23] 0.001 - 1.68 0.001 (nonlinear simulation)
1 ≤ j ≤ n, 0 ≤ i ≤ m− 1 (cells/week) 0 (linear simulation)
Mutation probability, qj,k,i [23] 0.00001 0.00001
1 ≤ j ≤ n, j ≤ k ≤ n, 0 ≤ i ≤ m− 2
Stem Cell self-renewal probability, 0.65 (nonlinear simulation)
pj,j,i, j = n, 0 ≤ i ≤ m− 1 0.5 (linear simulation)
Non-Stem Cell self-renewal probability, 0.5
pj,j,i, 1 ≤ j ≤ n− 1, 0 ≤ i ≤ m− 1

The main purpose of this section is to show numerical simulations of the mathematical results

and demonstrate them in a visual setting. In Table VI.1 one can see the parameters used, ranges

for the values of the parameters, based on evidence or previous models, and the values used in the

simulations.

The proliferation rate, βj,i, depends on the type of cells it refers to (stem, differentiated, cancer,

etc.). The numerical values used in the simulation have been chosen to have biological meaning

(based on the references), as well as simulation convenience. The mortality rate, µj,i, would also

differ based on the type of cells it refers to. However, the values used in the simulations are the

same for all cells. A more thorough discussion of this decision can be found in Section VII. The

mutation probability is evenly distributed among the possible mutation outcomes. For example, a

cell in class (j = 3 telomeres, i = 0 mutations) can produce mutated daughters in classes (j = 3

telomeres, i = 1 mutation), (j = 2 telomeres, i = 1 mutation), and (j = 1 telomere, i = 1
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Figure VI.1: Linear model with n = 3 maximum number of telomeres and m = 3 mutation classes (2
mutations necessary to reach malignancy). Polynomial growth of cells with one mutation (i = 1 mutation),
according to the results of Theorem III.4.2. Stem cells (j = 3 telomeres) grow linearly, progenitor cells
(j = 2 telomeres) in t2, and differentiated cells (j = 1 telomere) in t3.

Figure VI.2: Linear model with n = 3 maximum number of telomeres and m = 3 mutation classes (2
mutations necessary to reach malignancy). Polynomial growth (t4) of differentiated cancer cells(j = 1
telomere, i = 2 mutations), according to the results of Theorem III.4.2.

mutation) with equal probability 1
3
× 10−5. The self-renewal probability of the cells refers to the

asymmetric cell division assumption that one daughter of a cell will have the same characteristics
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Figure VI.3: Linear model with n = 3 maximum number of telomeres and m = 3 mutation classes (2 muta-
tions necessary to reach malignancy). Polynomial growth (t3) of progenitor cancer cells (j = 2 telomeres,
i = 2 mutations), according to the results of Theorem III.4.2.

Figure VI.4: Linear model with n = 3 maximum number of telomeres and m = 3 mutation classes (2
mutations necessary to reach malignancy). Polynomial growth (t2) of cancer stem cells (j = 3 telomeres,
i = 2 mutations), according to the results of Theorem III.4.2.

(telomere length, in particular) as its mother. The remaining cell genealogy probabilities, referring

to the daughter cell losing telomeres and not acquiring a mutation, are also evenly distributed

among the possible outcomes. The figures were generated with Mathematica [49].
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VI.2 Linear Model Simulation

The simulation for the linear model (Equation III.3) represents an experiment of cellular dynamics

with a relatively short duration. However, the main reason for the simulation is to present the

different polynomial rates of growth for the different classes of cell population and to emphasize

the fact that all cell types eventually develop, even though the initial cell population consists of

only stem cells (which is implied in the result of Theorem III.4.2). Only three telomere classes

(corresponding to stem (j = 3 telomeres), progenitor (j = 2 telomeres), and differentiated cells

(j = 1 telomere)) and only three mutation classes (normal cells (i = 0 mutations), cells with

one mutation (i = 1 mutation), and cancerous cells (i = 2 mutations)) are presented. Note that

retinoblastoma is a cancer that develops after two mutations, which supports the assumption of the

linear model simulation [26]. Initially, there are 10 million stem cells. Figures VI.1-VI.4 show the

different rates of polynomial growth of the different cell classes. In Figure VI.4, after 100 weeks

we get the first cancer stem cell. At 200 weeks we have around 4 cancer stem cells and 170 000

differentiated cancer cells. The ratio between the cancer stem cells and the differentiated cancer

cells at that time is consistent with previous results [13].

VI.3 Nonlinear Model Simulation

The nonlinear model simulation was run with n = 8 telomere classes and m = 6 mutation classes

and presents a more complex example of a ”Vogelgram” [22]. In other words, j = 8 telomeres

represents stem cells, j = 1 telomere is the index of the telomere class of differentiated cells,

i = 0 mutations is the number of mutations for normal cells, and i = 5 mutations is the index

of the mutation class for cancer cells (i.e. cancer cells develop after acquiring 5 mutations). The

crowding function F is given by: F (~x) = 0.0001||~x||X , ~x ∈ RN . The choice of F describes loss

of cells because the total cellular population is too large for the environment to handle because of

spatial constraints. Therefore, cells stop proliferating or die and are not accounted for any further.

One can view the scenario as cells entering a quiescent state. However, the numerical simulation is
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mainly used to portray the steady state equilibrium that is achieved in the nonlinear model, rather

than depict a very specific phenomenon.

Different tissues have different stages of differentiation but it is known that erythropoiesis

Figure VI.5: Nonlinear model with n = 8 maximum number of telomeres and m = 6 mutation classes (5
mutations necessary to reach malignancy). Cancer cells (i = 5 mutations) taking over the tissue environment
according to the asymptotic steady state result in Theorem V.3.

(production of red blood cells) has about 8 stages of differentiation [29]. Also, although different

types of cancer go through a different number of mutations, 4-7 is the general number of mutations

a cell needs to acquire to become cancerous [4][22]. The scenario we assumed for the nonlinear

model is that the cells in a region of an organ, or in a cell culture dish, have reached homeostasis,

consisting of only normal cells (i = 0 mutations). Once homeostasis is established, mutations

were introduced and, hence, the possibility for cancer development. Homeostatic values were es-

tablished at 0.0402333 million stem cells (j = 8 telomeres) and 580.567 million differentiated cells

(j = 1 telomere). The full vector of values for the different differentiation classes of normal cells

is: (580.567, 49.3302, 7.72654, 1.68346, 0.455944, 0.14457, 0.0517274, 0.0402333)>). Once mu-

tations are introduced, only cancer cells (i = 5 mutations) remain after around 280 weeks (Figure
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VI.5). The resulting vector of the cancer cell populations is (2690.99, 244.64, 40.7741, 9.40954,

2.68848, 0.896172, 0.336069, 0.261392)>, where the first number refers to the number, in millions,

of differentiated cancer cells (j = 1 telomere, i = 5 mutations) and the last - the number, in mil-

lions, of cancer stem cells (j = 8 telomeres, i = 5 mutations) in the region. The curve that shows

the growth of the cancer cells is similar to the Gompertzian curve, which is achieved in many

models [23][41][34]. The results, depending on the interpretation of the scenario, is that the cancer

cells overtake either the region in the organ or the cell culture dish.
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CHAPTER VII

DISCUSSION

We have presented two models of intercellular dynamics: one linear and one nonlinear. Both

models incorporate similar ideas: cells lose telomeres during mitosis and differentiation; cells can

acquire mutations during division; when a normal cell acquires a certain number of mutations, it

becomes cancerous[22][4].

In the Introduction, there were three questions we tried to address. Here are the answers,

according to the presented models:

1. Question: Considering cell mutation as a dynamic population process, rather than a one-

time random event, what can we show about cancer cell population growth in relation to the

growth of the populations of non-cancer cells?

Answer: Theorem III.4.2 proves that the number of cancer cells grows faster polynomially

than any other type of cell (of the same telomere class). The Theorem does not assume any

advantages of cancer cells in proliferation rates, mortality rates, and self-renewal probability.

The only advantage cancer cells have over other cells, according to the model, is the number

of mutations they have accumulated. According to Theorem III.4.2, the more mutations a

cell population has, the faster it grows with respect to time. Therefore, it is the nature of

mutation acquisition that may explain the higher population growth of cancer cells.

However, Theorem III.4 does not address how quickly cancer develops and whether it devel-

ops within a human life. This question was answered by the numerical simulations, in par-

ticular of the nonlinear scenario. In the simulation, equilibrium of normal cells was reached

first, after which, with the given initial conditions, mutations were introduced and, hence,

the possibility for the development of cancer cells. The experiments were run for several

values of the proliferation rate of cancer cells. In our simulations, βj,5 = 3.0 cells/week,

1 ≤ j ≤ 8, gave the most realistic result as far as time-frame is concerned. From Figure

52



VI.5, one can see that cancer cells begin their invasion after about 240 weeks, become dom-

inant after 250 weeks, and overtake the tissue (or cell dish) after 270 weeks. These results

are consistent with the aggressive development of certain types of cancer, for example small

cell lung cancer [36]. Therefore, according to the model and the current knowledge of the

nature of cancer cells, cancer cells do need to exhibit high proliferation rate in order for their

population to grow to levels dangerous for the organism in a realistic time frame.

2. Question: What is the role of stem cells in the cell population dynamics?

Answer: Theorem III.4.2 proves that the coefficient of the highest power of the polyno-

mial that determines the growth of the cell populations, relative to time, is a multiple of the

initial number of stem cells. Therefore, stem cells are crucial for the development of all

other cell classes and are also important for the rate at which those different cell popula-

tions grow. The importance of stem cells for the development of the somatic cells is known:

[19][14][31][40].

The significance of cancer stem cells is shown through Theorem V.3. The result does as-

sume advantages for the cancer stem cell (higher proliferation rate, higher self-renewal

probability), consistent with the characteristics associated with this type of cells [9][27]

[15][16][12][37][5][24]. Under these assumptions, the cancer cells overtake the whole re-

gion of tissue (or cell culture dish), which confirms the importance of cancer stem cells for

the aggressive development of cancer.

3. Question: Is the cancer stem cell count as small as scientists have claimed?

Answer: According to the numerical simulations, the ratio of cancer stem cells to overall

cancer cell populations is quite small (order of 1 in 10000) and there has been evidence

for similar ratios [13][9]. These specific results do depend on the different parameter values

chosen for the simulations. However, mathematical evidence that cancer stem cells can be a

small fraction of the total number cancer cells and still generate the cancer cell population

can be found in Theorem III.4.2, where it’s shown that they grow at a slower polynomial rate
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than any other type of cancer cell, while differentiating into those types and, thus, constantly

providing new cells for their lineage. Therefore, a relatively small subpopulation of cancer

stem cells can generate the total population of cancer cells.

There are several assumptions of the basic framework of the model that should be commented on

further. First, the model assumes that cancer stem cells mutate from normal stem cells. Although

there is strong evidence for the existence of cancer cells that exhibit stem cell characteristics, their

existence is still a hypothesis. Cancer stem cells have also been found only in certain types of

cancer. Furthermore, the origin of cancer stem cells is ambiguous: some suggest they do come

from mutated stem cells ([27]), others that they are mutated progenitor or differentiated cells. The

model heavily relies on the assumption that stem cells mutate into cancer stem cells. In fact, it was

designed to investigate the importance of this phenomenon and draw the conclusions above.

Second, Hypothesis II.3 assumes asymmetric cell division (one daughter cell is identical with

the mother cell and the other is genetically different). Differentiation of cells and loss of telom-

eres are well-established: [25][40][11]. However, the literature is not conclusive with the rate of

telomere loss [28], which may be dynamic [35]. Further, the role of the enzyme telomerase has not

been explicitly included in the model. Asymmetric division of stem cells has been demonstrated.

In fact, one of the main properties of stem cells is self-renewal [40][31]. Also, it is hypothesized

that some progenitor cells could self-renew as well [11]. Therefore, the assumption of the model

that cells can self-renew is supportable. This assumption is only used for the analysis of the linear

model and has no effect on the result of Theorem V.3.

Third, Theorem III.4.2 assumes µj,i = 0 for all cells and the nonlinear numerical simulation

uses a constant mortality for all cell classes. For Theorem III.4.2, this assumption is made so that

the various rates of population growth of the different cell types can be observed. Therefore, the

linear model with zero mortality is suitable for modeling short-term in vitro or in vivo experiments

(mortality of cells would have less of an effect on the outcome of the experiment).

As far as the mortality rate used for the simulations goes, the focus of the model analysis is on

the interaction between cell populations and, to some extent, the role of the proliferation rate in
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the inter-cellular dynamics. The mortality rate is, like the proliferation rate, dependent on the cell

class. There exist mechanisms within the body that force mutated cells to go into apoptosis. Also,

cancer cells often have lower mortality rate than normal cells [24]. One can explore those options

by manipulating the mortality rate for certain cell classes. However, such investigation is beyond

the scope of this paper.

Finally, the assumption that cells acquire their sequence of mutation in a particular order may

be too simplistic [42]. However, the model does not address different types of mutation, only their

number. So, the focus is on the process of mutation acquisition and not on the effect of specific

mutations on the cell characteristics.

The linear model with zero mortality can be used to model short term in vitro and in vivo ex-

periments: cell mortality does not play a major role in a short time span. Linear and polynomial

rates of growth of cancer cell populations have been observed: [21][14][37][12][10][38]. Further,

polynomial growth of high degree is similar in behavior to exponential growth if the time frame is

short, and exponential models are often used to describe initial populations growth.

The numerical simulation of the nonlinear model shows growth of the cancer cell population

similar to the Gompertzian curve, which is achieved in many models [23][41][34]. This result sup-

ports the usefulness of the model framework for modeling both in-vivo and in-vitro experiments

by showing its consistency with previous work.

The strength of the modeling framework presented in the current paper lies within its flexibil-

ity. The linear model can predict short-term behavior, the nonlinear - long term behavior. Further,

the choice of the operator F is up to the researcher and allows for the investigation of other ques-

tions within the intra-cellular dynamics. More, we have made suggestions for future researchers

and how they can address different problems by simply modifying the parameters of the model.

Those suggestions and different scenarios will be investigated in future work. Future work would

also feature the addition of fitness and competition between healthy and cancer cells, investigating

possible cellular Darwinism. Another flexibility of the model is the open number of telomere and

mutation classes, which implies that one can mimic different tissues and different types of cancer.

55



Therefore, the presented models, although complex, can be readily used to describe a wide variety

of cell interactions, which makes the model framework useful for researchers.
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APPENDIX

Proof of Lemma III.5. Without loss of generality, let us look at the structure of the matrix CB.

Since C and B are uppertriangular matrices, so is CB, so all its subdiagonals lower than the main

diagonal, are automatically zero.

Consider an arbitrary element in the lth superdiagonal of CB, row j, 0 ≤ l ≤ k + m − 1, l ≤

n− 1, 1 ≤ j ≤ n− l. (note that the main diagonal is a superdiagonal of index 0). This element is

element (j, j + l) of CB and is equal to the matrix multiplication of row j in C and column j + l

in B.

The first j + k − 1 elements of row j in C are zero. The first j + l −m elements in column j + l

in B are positive.

Therefore, the first positive element of row j in C is (j, j + k). If j + k > n, then row j in C is

zero, so the element (j, j + l) of CB is zero. So, let’s assume j + k ≤ n.

The last positive element of column j + l in B is (j + l−m, j + l) If j + l−m = 0, column j + l

in B is zero, so the element (j, j + l) of CB is zero. So, let’s assume j + l −m > 0.

However, j + l −m < j + k since j < m + k. Therefore, the CB element (j, j + l) cannot be

positive because all positive elements in row j of C will be multiplied by zero elements of column

j + l in C and vice versa. Therefore, it is zero.

Let k+m ≤ l. If k+m ≥ n, the argument above shows that the matrix CB is the zero matrix (all

of its superdiagonals will be zero).

So, let l < n. Consider an arbitrary element in the lth superdiagonal of CB, row j, 1 ≤ j ≤ n− l.

From the argument above, the first positive element of row j in C is (j, j + k). The last positive

element of column j + l in B is (j + l −m, j + l).

Since j+k ≤ j+ l−m, elements (j, j+k) in C and (j+k, j+ l) inB are both positive, therefore,

so it element (j, j + l) in CB.

57



Example VII.1.

C =



0 0 0 1 1

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


(The first 3 superdiagonals of C are 0),

B =



0 1 1 1 1

0 0 1 1 1

0 0 0 1 1

0 0 0 0 1

0 0 0 0 0


(The first superdiagonal of B is 0), then

BC = CB =



0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


(The first 3+1 = 4 superdiagonals of BC and CB are 0).

Proof of Lemma III.7. (By induction) Basic Step: In A, by construction, the highest indexed posi-

tive block subdiagonal is its first block subdiagonal.

Inductive Step: Let the statement be true for Ak, 1 ≤ k ≤ m − 2. Pick an arbitrary block

element in the (k+ 1)th block subdiagonal of Ak+1, Ak+1
l+k+1,l, 1 ≤ l ≤ m− k− 2. It is constructed

by matrix multiplying the (l+ k + 1)th block row of Ak with the lth block-column of A. From the

structure of A, Ak+1
l+k+1,l = Akl+k+1,lPl−1 +Al+k+1

l+1 Ql. From the inductive assumption, Akl+k+1,l = 0,
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since it is an element in the (k + 1)th block subdiagonal of Ak. However, Akl+k+1,l+1, which is an

element in the kth block subdiagonal of Ak, is positive. From Lemma III.5 and the fact that Ql

has no zero superdiagonals, Al+k+1
l+1 Ql 6= 0. Therefore, the (k + 1)th block subdiagonal of Ak+1is

positive.

Consider the (k + 2)th subdiagonal of Ak+1. If k = m − 2, it does not exist. So, let k < m − 2.

Let Ak+1
l+k+2,l, 1 ≤ l ≤ be an arbitrary element in the (k+ 2)th subdiagonal of Ak+1. By the rules of

matrix multiplication, and the structure of A, Ak+1
l+k+2,l = Akl+k+2,lPl−1 + Akl+k+2,l+1Ql. However,

Akl+k+2,l is an element in the (k + 2)th block subdiagonal of Ak and Akl+k+2,l+1 is an element in

the (k + 1)th block subdiagonal of Ak. From the inductive assumption, both the (k + 1)th and the

(k+ 2)th block subdiagonals of Ak are 0. Therefore, the (k+ 2)th subdiagonal of Ak+1 is 0, which

proves the Lemma.

Proof of Lemma III.9. (By induction) Basic Step: Since A is a lower-triangular block matrix, the

main block diagonal block elements of An, Ani,i = P n
i−1, 1 ≤ i ≤ m. From Lemma III.5, since

the main diagonal of Pi−1 is 0, P n
i−1 = 0. From Lemma III.8, the first block subdiagonal of An

consists of upper-triangular matrices , in which exactly the first n−1 superdiagonals are 0. Hence,

the first block subdiagonal of An is positive.

Inductive step: Assume the statement is true for Ak, n < k < n+m. Then, from Lemma III.8,

the (k − n + 2)th block subdiagonal of Ak consists of upper-triangular matrices in which exactly

the first n−2 superdiagonals are 0 and the (k−n+1)th block subdiagonal ofAk consists of upper-

triangular matrices in which exactly the first n− 1 superdiagonals are 0. Consider Ak+1. Pick and

arbitrary block element in its (k−n+2)th block subdiagonal,Ak+1
l+k−n+2,l, 1 ≤ l ≤ m−k+n−2. It is

constructed by matrix multiplying the (l+k−n+2)th block row ofAk with the lth block-column of

A. The only positive block elements of the lth block-column of A are Al,l = Pl−1 and Al+1,l = Ql.

Therefore, by the rules of matrix multiplication, Ak+1
l+k−n+2,l = Akl+k−n+2,lPl−1 + Akl+k−n+2,l+1Ql.

Akl+k−n+2,l+1 is a block element in the (k − n + 1)th block subdiagonal of Ak and Ql is an upper-

triangular matrix without 0 superdiagonals. Therefore, by Lemma III.5, the result of their matrix

multiplication is an upper-triangular matrix in which exactly the first n − 1 superdiagonals are 0.
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Akl+k−n+2,l is a block element in the (k − n + 2)th block subdiagonal of Ak and Pl−1 is an upper-

triangular matrix whose main diagonal is 0. Therefore, by Lemma III.5, the result of their matrix

multiplication is an upper-triangular matrix in which exactly the first n − 1 superdiagonals are 0.

Hence, Ak+1
l+k−n+2,l is an upper-triangular matrix in which exactly the first n − 1 superdiagonals

are 0 and the last one is positive. Pick and arbitrary block element in the (k − n + 1)th block

subdiagonal of Ak+1, Ak+1
l+k−n+1,l, 1 ≤ l ≤ m− k + n− 1. It is constructed by matrix multiplying

the (l + k − n + 1)th block row of Ak with the lth block-column of A. The only positive block

elements of the lth block-column of A are Al,l = Pl−1 and Al+1,l = Ql. Therefore, by the rules

of matrix multiplication, Ak+1
l+k−n+1,l = Akl+k−n+1,lPl−1 + Akl+k−n+1,l+1Ql. Akl+k−n+1,l+1 is a block

element in the (k − n)th block subdiagonal of Ak, so it is 0. Akl+k−n+1,l is a block element in the

(k−n+ 1)th block subdiagonal of Ak and Pl−1 is an upper-triangular matrix whose main diagonal

is 0. Therefore, by Lemma III.5, the result of their matrix multiplication is 0. Hence, Ak+1
l+k−n+1,l is

0. Similar results would follow for any other lower indexed subdiagonal of Ak+1.

60



BIBLIOGRAPHY

[1] S. Ahmed et al. “Telomerase Does Not Counteract Telomere Shortening But Protects Mi-
tochondrial Function Under Oxidative Stress”. In: Journal of Cell Science 121 (2008),
pp. 1046–1053.

[2] O. Arino, M. Kimmel, and G. F. Webb. “Mathematical Modeling of the Loss of Telomere
Sequences”. In: J. theor. Biol. 177 (1995), pp. 45–57.

[3] O. Arino, E. Sánchez, and G. F. Webb. “Polynomial Growth Dynamics of Telomere Loss in a
Heterogeneous Cell Population”. In: Dynamic Control Discrete Impulsive System 3 (1997),
pp. 263–282.

[4] P. Armitage and R. Doll. “The age distribution of cancer and a multi-stage theory of car-
cinogenosis”. In: IJE 33 (6 2004), 1174–1179.

[5] S. Bagheri et al. “Genes and pathways downstream of telomerase in melanoma metastasis”.
In: PNAS 103 (30 2006), 11306–11311.

[6] H.T. Banks. et al. “Estimation of Cell Proliferation Dynamics Using CFSE Data”. In: Bul-
letin of Mathematical Biology 73 (1 2011), pp. 116–150.

[7] S. Bernard, L. Pujo-Menjouet, and M. C. Mackey. “Analysis of Cell Kinetics Using a Cell
Division Marker: Mathematical Modeling of Experimental Data”. In: Biophysical Journal
84 (2003), 34143424.

[8] D. S. Bernstein. Matrix Mathematics, Second Edition. Princeton University Press, 2009.

[9] D. Bonnet and J. E. Dick. “Human Acute Myeloid Leukemia is Organized as a Hierarchy
That Originates From a Primitive Hematopoetic Cell”. In: Nature Medicine 3 (7 1997),
pp. 730–737.
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