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CHAPTER 1 

 

INTRODUCTION 

 

As integrated circuits (ICs) utilize nanometer fabrication technologies, concern 

has grown for design reliability in the presence of radiation-induced faults. Research has 

been conducted to better understand the sensitivity of ICs to the effects of radiation [1, 2]. 

This sensitivity is not confined to just memory but can also affect the logic components 

of the circuit. In particular, recent experimental results have demonstrated the 

susceptibility of combinational logic to radiation-induced faults and provided a 

comparison of the error rates to sequential logic [3]. With the complexity of modern 

digital circuits, combinational and sequential logic are typically synthesized using 

standard library cells [4]. With the size of these library cells in nanometer technologies, a 

single particle strike can create charge collection inside multiple cells [5-7], which leads 

to multiple transients within the logic of the design. As these transients propagate, they 

can create complex responses to affect the overall soft error rate (SER). 

Typically, fault injection studies rely upon the insertion of a bit flip in a single 

storage element, using the assumption that a particle strike causes one fault [8-10]. 

However, these studies have not accounted for the spatial relationship of the layout (i.e., 

library cells) in nanometer technologies. Multiple transients caused by a single particle 

strike will originate in a single location in the layout of a circuit. Physically adjacent logic 

cells will simultaneously produce faults, which may then separately propagate through 

the circuit or may experience reconverging fan-out before arriving at a storage element 
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where it can be detected. This thesis describes the coupling of layout information directly 

with the circuit behavior to conduct fault injection to nearest-neighbor logic cells. By 

assessing the logical propagation of these faults, the probability of error can be 

determined for designs synthesized with standard library cells. Several benchmark 

circuits were selected and synthesized with a 90-nm cell library, and the results show that 

spatially injecting multiple faults can produce significantly more complex behavior than 

when only a single fault is considered.  

When using only a single injected fault (i.e., assuming that a particle strike only 

affects one cell), the output error percentage can be underestimated. Reconverging fan-

out will limit the effects of the faults within the circuit. This thesis shows that in most 

cases, the probability of errors occurring at the output of a combinational circuit increases 

with an increasing number of radiation-affected cells, and that in some cases, 

recombination helps mitigate this effect and contribute fewer errors. These more complex 

cases will show that multiple-transient analysis is a unique challenge for the field of 

radiation effects, but the data presented herein will expose a number of trends which can 

be used to help design for better reliability in combinational logic.  

The rest of this thesis is organized as follows. Chapter 2 covers previous and 

related work as a springboard for layout-based fault injection. Chapters 3 and 4 describe 

the design choices and methodology for this work. Chapter 5 discusses the results for the 

selected benchmark circuits. Chapter 6 concludes the thesis and offers some future 

avenues for study. 
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CHAPTER II 

 

MULTIPLE-FAULT ANALYSIS 

 

Related Work 

The research area of radiation-induced multiple-fault analysis in combinational 

logic has been the result of gradual changes in the whole field of reliability analysis. The 

primary area of study in this field is of single-event upsets (SEUs). Much work has been 

put into understanding how charge-carrying particles strike a circuit, interact with nodes, 

and affect the charge stored at a point in a logic design [11, 12]. Research also examines 

how single faults dissipate or propagate through a circuit; this topic has been extended for 

multiple faults. The goal is to determine if there are ways to prevent fault propagation, 

through selective gate hardening [13, 14] or other specific design methods [15, 16]. 

Several works regarding faults in memory were referenced as a basis of general 

understanding of reliability analysis for this work [3, 11, 17]. As frequency rates increase 

in developing technology, combinational circuits as compared to sequential circuits 

become increasingly vulnerable to logic errors [3, 18].  

In the study of fault propagation, several barriers present themselves to make a 

thorough understanding difficult. Early work that attempts to take timing and charge 

deposition quantities into account found that analyzing large circuits are nearly 

impossible with such detail [19]. Using such an analysis for multiple faults rather than 

just SEUs would be intractable in terms of required simulation time. Other approaches 

attempted a more symbolic, mathematical analysis [20, 21]. These analyses can be 
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effective to produce values describing the circuit in general, but are difficult to visualize 

and use in practical application.  

Miskov-Zivanov and Marculesu focus on a unified treatment of three masking 

factors: logical, electrical, and latching-window masking [22]. This analysis was applied 

separately to combinational logic and sequential logic, so this framework required timing 

information on latches included in the circuits or appended to the inputs/outputs of the 

combinational logic sectors. Their method of analysis was heavily mathematical, but 

managed to decrease simulation time by first analyzing small components of the circuit 

and then merging these results to form a picture of the overall circuit.  

The key takeaway from observing the several methods attempted already is that, 

without some sort of approximation or the use of a supercomputer, it is necessary to 

either make some assumptions or to study only limited aspects of reliability; a 100% 

accurate and precise study of anything but the smallest circuits is too resource-intensive.  

When examining combinational logic, an understudied characteristic is 

reconverging fan-out, which describes how a fault may propagate through a circuit to 

produce several effects. The faults may remain separated or potentially join together at a 

later gate, which could mitigate errors or magnify them. The level of possible 

reconvergence depends on each circuit, but an accurate analysis requires simulation of 

the circuit as a whole rather than as individual components (e.g., individual gates).  

In terms of studying multiple upsets stemming from a single strike, a few different 

methods have been attempted. The simplest would be to simulate multiple faults over an 

entire circuit – any two nodes could be selected to receive upsets during a given run [23], 

and all of the results could be averaged together for a snapshot of the circuit as a whole 
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with a single fault versus two faults. Producing results this way is more akin to simulating 

two simultaneous particle strikes, rather than merely one affecting multiple, adjacent 

nodes. While it may give some information on the possible behavior that multiple faults 

may produce, it is an inaccurate way to predict precisely what that behavior will be.  

Another method is to use information from the circuit organization and induce 

upsets at nodes that are fan-in/fan-out neighbors [22, 24]. This method is decidedly more 

accurate, as these nodes are likely to be placed next to each other. However, physical 

adjacency is not always coupled with logical adjacency. If nodes are chosen this way, 

then the level of reconvergence will be much higher than that seen in an actual 

manufactured design. The only true way to simulate faults at adjacent nodes is to utilize 

layout information to determine which nodes have actually been placed next to each other 

on a chip. Some multiple-fault events will affect cells that are logically connected (i.e., 

within the same logic cone), while others will affect cells that are logically separated. 

When performed on several different designs, these simulations will provide an accurate 

look at the effects of radiation-induced multiple faults in combinational logic in general.   

Studies thus far on the effects of multiple faults in combinational logic have 

therefore been found lacking in accuracy – a full circuit must be simulated as a whole, 

rather than as individual gates, and the correct mechanism must be chosen in order to not 

over- or under-estimate the effects of logical reconverging fan-out. At the same time, 

simulation methodology must be carefully chosen so that the tests are doable in a 

reasonable amount of time, while the circuits must still be large enough to be practically 

useful.  
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CHAPTER III 

 

LAYOUT-BASED ANALYSIS OF COMBINATIONAL LOGIC 

 

Design Choices 

The contribution of this work is to conduct multiple-fault analysis coupled with 

actual physical layouts, as opposed to previous studies that use assumed dependencies or 

randomized multiple-fault analysis. This work focuses on using layout information from 

an automated place-and-route tool. This method of circuit characterization enhances 

awareness of all information available during the design of a combinational logic module. 

By comparing the adjacent cells in these layouts, reconvergence is also observed and 

studied within combinational logic.  

Many different methods exist to create a circuit layout from design synthesis. 

Therefore, the most general steps are taken for this research in order to provide a 

snapshot of a typical manufactured circuit and its behavior with multiple induced faults. 

Multiple circuits were chosen as well, both to provide different sets of results and to 

enable general conclusions about combinational circuits as a whole. 

In future analyses, this work can be expanded to more specific synthesis methods 

or larger circuits. One aim would be to see if area-minimized synthesis was more reliable 

versus power-minimized synthesis. Or, larger circuits should show the greater or smaller 

effects that a strike in a single location may cause. It is anticipated that larger circuits 

would see smaller effects overall due to a comparably smaller area that is directly 

affected by a particle strike.  
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However, the scope of this work requires some limitations; therefore, standard 

synthesis using tools by a single manufacturer (Synopsys) was selected. All default 

options are chosen when possible, and standard benchmark circuits are sent through the 

process. Larger circuits are often composed of these smaller benchmark circuits, so they 

are valuable pieces to analyze. Understanding the reliability characteristics of different 

pieces of an overall design allows us to determine the reliability of the circuit as a whole.  

Since sequential circuits are not analyzed in this work, circuit timing was not 

considered. Each circuit is studied as a stand-alone combinational logic model, where a 

given set of inputs and a particle strike at a specified physical sector of the circuit will 

produce a definite set of outputs. Given the speed of microprocessor designs of today, it 

is easily possible for the effects of a particle strike to last multiple clock cycles [3], so this 

is well within the boundaries of normal circuit operation. 

Once simulation data are collected for varying numbers of adjacent faults per 

circuit, these data can then be analyzed to show precisely how much of an impact particle 

strikes will have on combinational logic. It is expected that there will be a wide range of 

behavior, but this study will show how multiple-fault characteristics differ from the 

single-fault reliability approach, as well as show what limitations there may be, through 

the effects of reconverging fan-out and the behavior of different gates or circuits. 

 

Synthesis Review 

One of the key background elements of this work is how it relates to circuit 

design and manufacturing. Figure 1 illustrates the synthesis process of a typical design. In 

this process, an idea is first given specifications, then is written down with a hardware 
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description language in code (e.g., VHDL [25], Verilog [26]). At this point, the design is 

sent through automated synthesis, which performs a series of operations on the code: it is 

first paired with a standard library of gates to produce a gate-level netlist, then a physical 

layout of the gates as arranged on a die is generated, then ultimately a portfolio of 

information is generated that can be used to automatically manufacture the circuit on a 

chip. This thesis describes how the gate-level netlist can be used in conjunction with the 

physical layout in order to understand the effects of single events that induce multiple 

transients in combinational logic. In order to better understand the relation between these 

two pieces of information, it is worthwhile to explore the synthesis process. 

 

 

 

Figure 1: Synthesis flow for circuit design. 

 

 

This work uses the Synopsys Design Compiler and IC Compiler electronic design 

automation (EDA) tools to perform all of the required processing on the circuits before 

simulation. Initially, Design Compiler reads the user-supplied code and links it with a 

selected cell library. Next, the compilation step will rewrite the given code to ensure that 
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its format matches that of the library and is optimized for the logic gates available within 

that library. This result is called the “mapped” code, which is used directly in this thesis 

to run simulations using a logic simulator. The mapped code will likely differ in 

appearance from the original written code, but functionally they are the same. The 

compilation process can be modified based on the preferences of the user – certain gates 

or blocks can be preferred over others, or the design can be synthesized to prioritize 

timing, area, or power constraints. The flexibility of the code without any physical 

information can be exploited to pursue these design choices.  

Next, IC Compiler transforms the final code into a chip layout. The synthesized 

code is again linked with the cell library, and then a basic floorplan is initialized. The 

user has the option to prioritize different characteristics or include specific features in the 

layout. IC Compiler will then optimize several items. Typically, area is minimized by 

placing the cells in an efficient grid. Congestion can be minimized by rearranging these 

cells according to how they are used and how they interact with other cells. The 

automated place-and-route manages all of these concerns as well as others, such as 

minimizing power, and design for test. 

EDA tools such as these are used for all modern chip designs. Manual place-and-

route to produce layouts is an overly complex and lengthy process, so tools such as the 

Synopsys suite allows the different synthesis choices to be made quickly and 

automatically. Given the large number of different layouts that can be generated for a 

given design, this thesis chooses to utilize EDA tools in a very general matter, producing 

a “normal” layout for each chosen circuit. There have been studies that examine the 

effects of different synthesis constraints on reliability for single fault propagation [27], 
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and this may be extended for multiple transients in future work, but this thesis focuses 

only on “default” synthesis. The effect of using automated place-and-route is that 

adjacent cells may or may not be logically related, which produces the interesting results 

found in this work.  
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CHAPTER IV 

 

METHODOLOGY 

 

Following an industrial design flow from circuit selection through synthesis and 

layout development, this research requires a thorough methodology with information 

collected from each step. First, circuits are selected to test. Second, layout information is 

generated for each. Third, faults are injected to collect data for analysis. 

 

Test Circuits 

The first step was the selection of appropriate circuits to analyze. Thoroughness in 

simulation was the primary intent, so smaller circuits were chosen out of the 74XXX 

suite, enabling us to perform exhaustive fault injection. The use of the 74XXX suite 

ensures that these logic structures are commonly used and worthy of examination. 

Several of these circuits were used in Verilog form, taken from the University of 

Michigan suite [28]. The 74182 is a 4-bit carry look-ahead generator, the 74283 is a 4-bit 

adder, the 74L85 is a 4-bit magnitude comparator, and the 74181 is a 4-bit ALU. This 

selection gives a fairly good cross-section of common functions that are also at a smaller, 

more manageable size for simulations. Table 1 provides other pertinent information about 

these circuits and their relative sizes. Table 2 gives further information about the purpose 

of each circuit’s output for better insight into analyzing the results of the simulations later 

on. The number of gates is defined via the original code in the University of Michigan 
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suite; when linked to a library in the synthesis process, this count is reduced to the 

number of nodes listed. 

 

 

Table 1: Circuits selected for simulation and analysis 

Circuit Description Gates Inputs Outputs Nodes 

74182 4-bit carry look-ahead generator 19 9 5 14 

74283 4-bit adder 36 9 5 12 

74L85 4-bit magnitude comparator 33 11 3 28 

74181 4-bit ALU 61 14 8 39 

 

 

Table 2: Circuit output information 

Circuit Output Description 

4-bit carry 

look-ahead 

generator 

PBo Propagate signal to cascade to another block 

GBo Generate signal to cascade to another block 

CNX/Y/Z Three carry out signals based on inputs 

4-bit adder S[3..0] 4-bit sum of 4-bit inputs A and B 

C4 Carry-out associated with sum 

4-bit 

magnitude 

comparator 

ALBo Signal high if A < B 

AGBo Signal high if A > B 

AEBo Signal high if A = B 

4-bit ALU 

F[3..0] 4-bit computation based on 4-bit inputs A and B 

X Propagate signal (look-ahead carry) 

Y Generate signal (look-ahead carry) 

CN4b Ripple carry output associated with F 

AEB Indicates if A = B 

 

 

For this thesis, all four circuits were examined and tested through all possible 

simultaneous faults. The 4-bit carry look-ahead generator, the 4-bit adder, and the 4-bit 

magnitude comparator are small enough that every possible input combination was used 

in each simulation run. The 4-bit ALU circuit required additional premeditative analysis 



13 
 

using the Synopsys TetraMAX tool for automated test pattern generation [29] because of 

its larger size; covering all input vectors would require a significant amount of simulation 

time. 

Ideally, analyses of the effects of multiple adjacent upsets would include much 

larger circuits, such as those from the standard ISCAS’85 benchmark suite. However, the 

primary goal of this work is thoroughness in all of the possible fault combinations. 

Testing circuits with a very large number of nodes is beyond the scope of this work; 

rather, smaller “building block” circuits can be analyzed and the effects will contribute 

similarly to when these smaller circuits are used in larger designs.  

 

Layout Generation 

Each circuit was taken in Verilog form and sent through a series of Synopsys 

software suites to emulate the typical design process taken by a circuit designer. These 

EDA tools produced a place-and-route layout of the circuit. The aim is to ultimately test 

these circuits for single-event multiple upsets when the circuit is in the form seen by most 

designers.  

Using the standard 90-nm Synopsys design library [30], the Synopsys Design 

Compiler synthesizes the circuits and produces gate-level netlists. In order to allow for 

fault insertion at the output of each actual gate, only low-level gates (i.e., no multiplexers, 

adders, or other complex blocks) were permitted in the synthesis process. More 

information about the logic gates used and the library chosen is available in Appendix A. 

Synopsys IC Compiler then creates a layout to show which gates are adjacent. These 

tools were used in the most general manner possible to produce these circuits in 
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“common” forms. Since only combinational circuits were selected, clock and timing 

information was not described or constrained, area was minimized, and all other settings 

remained unconstrained or at their default positions. 

At this point in the methodology, two important pieces of information are 

available for each circuit: (1) a Verilog file describing the gate-level netlist, which can be 

used to run simulations inserting faults at the desired nodes, and (2) a layout of this same 

netlist, showing which gates would be physically adjacent to each other if the circuit were 

to be synthesized at default settings and manufactured.  

 

Fault Injection Models 

There are multiple options for inserting a fault at a node into a circuit. Simulations 

examining single event upsets typically include an additional input line paired with XOR, 

OR, or INV-AND gates to set a logic signal high, low, or flip its value. Previous work 

conducted on a related study showed that set-high and set-low faults generally occur at 

similar rates [31], so it was chosen in this work to use a glitch model for faults. Although 

the XOR model is also used by several other similar studies in the field of multiple 

transient effects, it is more precise to run simulations with faults modeled as setting 

values high (for particle strikes in PFET transistors) and again with faults modeled as 

setting values low (for particle strikes in NFET transistors) and to use these data to 

understand the circuit’s behavior. Of course, doing this will result in twice as much 

information necessary to characterize a circuit. Each circuit in this work was simulated 

with the XOR model for fault injection, which provides a moderate response as compared 

to running complementary simulations for set-high and set-low models. For an added 
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depth to this work, some circuits were also simulated using the set-high and set-low 

models to compare both methodologies.  

The most common point at which a fault is produced is at the output of a gate 

[22]. Since this work is primarily concerned with the logical behavior of a circuit design 

rather than physical effects, faults within a cell are not considered. Inserting faults at the 

output of each cell presents the effects of faults between any two gates when a node is 

upset. The synthesized Verilog code was modified to allow the introduction of a fault at 

each of these locations, by inserting an XOR gate, OR gate, or INV and AND gates with 

an additional input line. This input line can be triggered high in order to flip that bit, set it 

high, or set it low, respectively, to simulate a fault. The last column of Table 1 indicates 

how many of these nodes were available for each circuit. See Figure 2 for an example of 

inserting logic gates to allow fault triggering. More information on fault insertion, 

including a code example, is available in Appendix B. 

Previous research simulated multiple faults by injecting faults at 2 or 3 random 

points in the circuit [22] or gates that are fan-in/fan-out neighbors [24]; in real operation, 

these assumptions may not accurately represent physical adjacency. A single particle 

strike will cause one or more errors in a single localized region, affecting gates that are 

physically next to each other (and therefore may or may not be fan-in/fan-out neighbors). 

Therefore, the layout information produced by the IC Compiler is used to identify 

adjacent nodes. Once these nodes are identified, their fault inputs can be set high 

accordingly in order to simulate faults at multiple nodes during a test. 
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Figure 2: Example of fault insertion. The top figure represents an original circuit. The 

second is of a glitch XOR model, the third is of a set-high OR model, and the fourth is of 

a set-low INV-AND model. Setting Fault = 1 upsets the output of the AND gate, 

simulating a glitch, stuck-high fault, or stuck-low fault at that node. 

 

 

Circuit Simulation 

ModelSim [32] is used to simulate the circuits for all possible input vectors for 

several runs of each circuit: (1) no faults injected, (2) one fault injected at each internal 

node at a time, and (3) each possible combination of 2, 3, 4, and up to a maximum of 5 

adjacent faults at a time. Figure 3 shows an example of gate adjacency where multiple 

upsets may occur.  
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Figure 3: Example of gate adjacency in layout; cell U29 has five other cells in close 

proximity, allowing for simulation of several upset nodes centered at the U29 location. 

For example, with a particle strike affecting the circuit area as shown (red circle), ceel 

U29, U32, and U46 could simultaneously experience upsets.  

 

 

For small circuits, all of the specified multiple-fault testing can be done in a 

matter of minutes. With increasing numbers of inputs and nodes to be tested, testing time 

increases exponentially. For each test, 2 or more physically adjacent gates are selected. 

The fault line inputs for these gates are set high, inducing a glitch at the output of the 

gates. ModelSim then runs through all of the given input vectors and records the output 

for each set of inputs. This information is identified by which faults are active during the 

test, and each test can later be compared to a “base run” with no faults during analysis to 

determine which parts of the circuit are most affected when strikes occur.  

As an example pertaining to Figure 3, single-fault testing would run through all 

input combinations with a fault inserted at the output of gate U29. Two-fault testing 

would repeat this process with faults inserted at each pair of gates (e.g., U29 and U28, 

U29 and U32) for all 5 possibilities. Three-fault and four-fault testing each have 10 

possible combinations that include gate U29. And lastly, there are five different possible 
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fault combinations when testing five faults at a time centered at gate U29. Each of these 

tests is run, and data are collected at the outputs of the circuit. 

With small circuits, it is possible to run through all possible input combinations 

for each test in ModelSim. Beginning with the 4-bit ALU and any further work in larger 

circuits, this method becomes intractable with the large number of inputs. Therefore, 

Synopsys’ TetraMAX tool was used to generate an automatic test pattern – a series of 

input combinations that provide 100% coverage of fault detection for single stuck-at 

faults. These test vectors can also provide multiple-fault detection [33]. This set of 

vectors is used instead, enabling much faster testing while still retaining a good 

demonstration of the variety of input possibilities.  

Since this research is concerned only with combinational logic, not storage 

elements, no clock signals are considered, and therefore timing and glitch duration are 

ignored. The goal is to insert each fault statically; for each simulation, all given input 

combinations will be run while a specific fault configuration is set, and information about 

the output values are collected.  

The tests can all be scripted and run automatically, and the results are then 

imported into a numerical analysis program for processing. For each circuit, data can be 

grouped according to: (1) the node at which the inserted fault(s) were centered, (2) the 

output at which an error was detected, (3) the type of gate at the center of the fault(s), or 

(4) whether the faults affected logically connected or logically separated gates.  

With a 100% coverage of all possible fault combinations (up to 5 faults simulated 

at a time) and all possible input vectors, the amount of data for even the small circuits 

selected for this work is significant. The data are separated according to the number of 
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simultaneous faults and where they are located, then imported into a numerical analysis 

program. Herein it can be analyzed for trends and to observe the behavior of these 

circuits under the stress of single-event multiple-upset incidents. 
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CHAPTER V 

 

MULTIPLE-FAULT RESULTS 

 

Individual Benchmark Circuits – Output Error Analysis 

Several different methods of analysis are possible based upon the collected data. 

The initial approach identifies each node according to its physical location and gate type 

and views its effect on the circuit outputs when one or more faults are inserted centered at 

that node. Each fault simulation is compared to a simulation with no faults, and the data 

are aggregated to state what percentage of input vectors produces an error at each output. 

Unless otherwise stated, the data shown are from simulations using a glitch model for 

fault injection. 

Figure 4 shows a collection of data for the 4-bit adder. The percentage of tests that 

result in errors seen at the outputs for each combination of faults and input vectors are 

averaged together to show which outputs of the circuit are most likely to have an error 

with single or multiple faults. Traditionally, circuit designers would expect that the 

likelihood of an error seen at an output would increase progressively with an increasing 

number of faults. However, due to logical reconvergence, this is not always the case. 

Three of the five outputs are shown to actually decrease in the number of errors at some 

point during this testing. For example, the probability of an error present at output S[1] 

decreases by 2.4% going from three adjacent faults to four, and again from four to five.  
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Figure 4: Percentage of input vectors that result in errors seen at an output (S[3-0] and 

C4) vs. the number of physically adjacent faults inserted into the circuit at any gate in the 

circuit. The circuit is a 4-bit fast adder; S[3-0] represents a sum and C4 is the carry-out. 
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increases (due to a low level of logical reconvergence), its behavior is logarithmic. When 

the probability decreases, such as in the case of output S[1] mentioned earlier (i.e., a 

higher level of logical reconvergence), then its behavior is more unique to its case and 

prone to change based on the circuit and the layout.  

The other circuits produced show very similar results from the layout-based fault 

injection. Traditional models cannot be applied to multiple-fault analysis; rather, some 
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Figure 5: Percentage of input vectors that result in errors seen at an output (PBo, GBo, 

CNX, CNY, and CNZ) vs. the number of physically adjacent faults inserted into the 

circuit at any gate in the circuit. This circuit is a 4-bit carry look-ahead generator; PBo 

and GBo are propagate and generate cascade signals, and the others are carry-out signals. 

 

 

 

Figure 6: Percentage of input vectors that result in errors seen at an output (ALBo, 

AGBo, and AEBo) vs. the number of physically adjacent faults inserted into the circuit at 

any gate in the circuit. This circuit is a 4-bit magnitude comparator; the outputs indicate if 

A is less than, greater than, or equal to B. 
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Figures 5 and 6 show similar data for two larger circuits: a 4-bit carry look-ahead 

generator and a 4-bit magnitude comparator. Figure 5 again demonstrates a high level of 

logical reconvergence in output CNY. If a dip is present in a curve on these graphs, it 

indicates that regardless of where a multiple-fault-inducing strike occurs in a circuit, it is 

likely that these faults will reconverge in the logical path towards the indicated output. 

Here, for example, injecting a single fault into the circuit will on average present a 25% 

probability of seeing an error at the CNY output. However, when two physically adjacent 

faults are injected into the circuit, many of these faults will reconverge and cancel each 

other out, with the result that the CNY output will only have a 21% probability of seeing 

an error. Data will be presented further on to show how this occurs on a gate-by-gate 

basis to present a little more detail. 

Conclusions can begin to be drawn based on this data on the reliability of specific 

circuit structures. Figure 5 shows that the carry-out signals of this standard carry look-

ahead circuit are most fragile when it comes to single- and multiple- faults. However, the 

generate and propagate cascade signals are more reliable. Note that, given the design of 

the circuit, there are several logic gates shared between the logic paths leading to the 

CNX, CNY, and CNZ outputs. Specifically, much of the logic in the CNX logic path is 

contained within CNY, and much of that is contained within CNZ. Although there are 

therefore more gates and vulnerabilities in the CNZ path over CNY and CNY over CNX, 

there are also more opportunities for reconverging fan-out and logical masking to have 

effects. This is why the results do not show errors increasing in order between CNX, 

CNY, and CNZ. Errors at outputs depend upon the logical masking of a circuit, and 
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under multiple-fault analysis, also the physical layout (i.e., gates that are adjacent and 

experience related upsets).   

In Figure 6 looking at the output error probabilities, we see that a magnitude-

comparator runs a high risk of giving an unreliable answer when the two input numbers 

are different. The ALBo and AGBo output signals have a 30-40% chance of registering 

an error when multiple faults occur in the circuit, while the AEBo output signal only 

ranges from 10-20%. Observations like these can help circuit designers understand the 

weak points in their designs and therefore which circuit functions should be avoided or 

selectively hardened against radiation effects.  

 

Individual Benchmark Circuits – Alternative Fault Injection Techniques 

 As mentioned earlier, using an XOR glitch model is typical in fault injection 

studies, and also allows for succinct data reporting. However, to be more precise, a 

particle strike in a circuit will most likely affect either NFETs or PFETs, with only a rare 

occurrence of both. Although the focus of this work is on understanding multiple-fault 

effects and reconverging fan-out with layout information, two of the test circuits were 

also simulated using set-high and set-low models, to further enhance the understanding of 

fault behavior in combinational logic. These tests can be examined separately to 

understand PFET and NFET strikes individually, or averaged for the entire circuit’s 

response, assuming particle strike effects are equally probable in either location. 
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Figure 7: Percentage of input vectors that result in errors seen at an output (PBo, GBo, 

CNX, CNY, and CNZ) vs. the number of physically adjacent set-high faults inserted into 

the 4-bit carry look-ahead generator circuit at any gate in the circuit. Compare to Figure 

5’s XOR model. 

 

 

 

Figure 8: Percentage of input vectors that result in errors seen at an output (PBo, GBo, 

CNX, CNY, and CNZ) vs. the number of physically adjacent set-low faults inserted into 

the 4-bit carry look-ahead generator circuit at any gate in the circuit. Compare to Figure 

5’s XOR model. 

 

0%

10%

20%

30%

40%

50%

60%

0 1 2 3 4 5

O
u

tp
u

t 
Er

ro
r 

Total # of Faults 

74182 Probability of Output Error Vs. Number of 
Physically Adjacent Upsets: Set-High Faults 

PBo

GBo

CNX

CNY

CNZ

0%

10%

20%

30%

40%

50%

60%

0 1 2 3 4 5

O
u

tp
u

t 
Er

ro
r 

Total # of Faults 

74182 Probability of Output Error Vs. Number of 
Physically Adjacent Upsets: Set-Low Faults 

PBo

GBo

CNX

CNY

CNZ



26 
 

 

Figure 9: Percentage of input vectors that result in errors seen at an output (PBo, GBo, 

CNX, CNY, and CNZ) vs. the number of physically adjacent faults inserted into the 4-bit 

carry look-ahead generator circuit at any gate in the circuit. Figures 7 and 8 averaged. 
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behavior. The three carry outputs are still the least reliable. CNY no longer has a 

dramatic decrease in error between single- and dual-fault analyses, but in both figures, it 

shows the worst response in single-fault analysis and is surpassed by CNZ for multiple-

fault analysis. In this analysis as well, note that CNX, CNY, and CNZ experience 

increasing error rates in that order for multiple-fault analysis, consistent with the fact that 

CNX is a subset of CNY and CNY is a subset of CNZ.  

Overall, Figure 9 shows lower probabilities of output error given the combined 

set-high and set-low models versus the glitch model of Figure 5. But this sort of behavior 

depends on both the specific circuit as well as the typical input vectors. Behavior is 

similar between the two; just overall levels differ somewhat. To offer another look at this 

concept, the 4-bit adder was run through the same analysis. 

 

 

 

Figure 10: Percentage of input vectors that result in errors seen at an output (S[3-0] and 

C4) vs. the number of physically adjacent set-high faults inserted into the 4-bit adder 

circuit at any gate in the circuit. Compare to Figure 4’s XOR model.  
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Figure 11: Percentage of input vectors that result in errors seen at an output (S[3-0] and 

C4) vs. the number of physically adjacent set-low faults inserted into the 4-bit adder 

circuit at any gate in the circuit. Compare to Figure 4’s XOR model. 

 

 

 

Figure 12: Percentage of input vectors that result in errors seen at an output (S[3-0] and 

C4) vs. the number of physically adjacent faults inserted into the circuit at any gate in the 

4-bit adder circuit. Figures 10 and 11 averaged.  
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 Figures 10 and 11 show the set-high and set-low simulation data for the 4-bit 

adder circuit. Since this circuit has a very standard design, where outputs depend entirely 

on the inputs and do not have a limited range, the signals within the circuit are not 

particularly weighted towards being high or low, and the set-high and set-low fault 

models correspondingly provide similar results. When averaged together, there are very 

similar results between Figure 12 and the earlier Figure 4 that used glitch model data. The 

carry output is still most reliable, and S[2] is still least reliable. Error rates are slightly 

lower with the set-high/set-low data, but besides that, there are still similar behaviors 

shown. Note that high levels of reconvergence are still displayed in this analysis; the C4 

output sees a slight decrease in errors seen at that output going from when 2 faults are 

injected in the circuit to when 3 faults are injected in the circuit.  

 In summary, using set-high and set-low fault models provide a more precise look 

at fault generation and propagation in a circuit. However, classic glitch models still 

present similar views of circuit behavior, with the added benefit of being able to 

characterize the circuit in half the simulation time and model it with half the information. 

Hence, simulation data using the glitch fault model will be used for the rest of the 

analyses in this thesis.   

 

Individual Benchmark Circuits – Gate-Specific Analysis 

All of the figures shown thus far show the change in errors seen at circuit outputs 

as it relates to the number of physically adjacent faults injected into the circuit, regardless 

of location. This gives circuit designers good insight into the reliability of specific 

functions of these circuits. But another interesting angle would be to observe where the 
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injected faults originated from, and therefore which logic gates and which sectors of the 

circuit contribute most to reliability concerns.  

 

 

 

Figure 13: Percentage of input vectors that result in errors seen at any output of the 4-bit 

adder circuit vs. the number of physically adjacent faults inserted into the circuit centered 

at each gate output. U32-U43 are individual gates in the circuit, some internal and some 

directly connected to circuit outputs as noted. 
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not always the case. Nodes can experience little change (e.g., U34) or even show 

decreasing fault propagation probabilities with an increasing number of injected faults 

(e.g., U35), which demonstrates a high level of logical reconvergence.  

When a cell is surrounded by logically related cells (e.g., fan-in/fan-out 

neighbors), then logical reconvergence may occur under the effect of multiple faults, 

presenting more reliable performance than if just one fault was simulated. Alternately, if 

a cell is surrounded by unrelated cells, then unrelated faults may propagate through the 

entire circuit and not be mitigated at all, worsening the effect on the overall circuit. It is 

important to allow for both of these possibilities in a unified analysis such as that 

presented here, in order to provide a reasonable picture of how this circuit would function 

in an actual design.  

One notable feature of the chosen methodology is the way nodes on the boundary 

of a design contribute data. Node U39, for example, is located in the corner of the layout 

and there is only one adjacent gate. Tests can be run for a single fault or 2 faults 

including U39, but not for 3, 4, or 5 faults. In a larger circuit design which uses the 4-bit 

adder structure alongside other sub-designs, a particle strike in this location of the chip 

would affect the 4-bit adder sector as shown, and the other surrounding structures would 

exhibit their own behavior. If these sub-designs interact later in the circuit, this behavior 

can be predicted simply by summing the effects of this individual sub-designs. For the 

purposes of this testing, the test results for 2 faults at U39 are copied over to 3, 4, and 5 

faults to fill out the diagram; this technique should also represent how the circuit would 

actually operate as part of a larger design.  
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The data shown in Figure 13 averages together the results of each output equally. 

However, of course, injecting faults at gates will result in more errors at some outputs 

than at others. To see this behavior more precisely, this graph can be split up to examine 

the effects of faults injected centered at each node on each individual output of the 

circuit. The results will show that for single-fault testing, only gates within the logic path 

of an output contribute to potential errors at that output. Typically, the closer to an output 

a logic gate is, the stronger its effect is, as there is less room for logical masking. With 

multiple-fault testing, overlapping particle strikes at physically adjacent cells will 

contribute to output errors as well. The following graphs demonstrate these ideas for the 

4-bit adder circuit.  

 

 

 

Figure 14: Percentage of input vectors that result in errors seen at the S[0] output of the 

4-bit adder circuit vs. the number of physically adjacent faults inserted into the circuit 

centered at each gate output. 
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Figure 15: Percentage of input vectors that result in errors seen at the S[1] output of the 

4-bit adder circuit vs. the number of physically adjacent faults inserted into the circuit 

centered at each gate output. 

 

 

 

Figure 16: Percentage of input vectors that result in errors seen at the S[2] output of the 

4-bit adder circuit vs. the number of physically adjacent faults inserted into the circuit 

centered at each gate output. 
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Figure 17: Percentage of input vectors that result in errors seen at the S[3] output of the 

4-bit adder circuit vs. the number of physically adjacent faults inserted into the circuit 

centered at each gate output. 

 

 

 

Figure 18: Percentage of input vectors that result in errors seen at the C4 output of the 4-

bit adder circuit vs. the number of physically adjacent faults inserted into the circuit 

centered at each gate output. 
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The preceding five figures (14 through 18) demonstrate the contribution injected 

faults centered at each gate in the circuit have to each output. The four sum outputs of 

course have similar responses in general, each weighted towards gates in their own 

specific logic path. The carry output sees a lower number of logic gates which contribute 

greatly to output errors, which was reflected in the overall output error graph (Figure 4) 

with a lower probability of errors for C4. 

Note how single-fault errors are typically maximized for logic gates within the 

logical path of a specific output, then decrease for multiple-fault errors. This indicates the 

effect of logical reconvergence. For output S[2], a strike at the output of gates U36 or 

U42 will flip that value and cause that output to be incorrect for all cases. But if two or 

more faults are injected at this location in the circuit, neighboring upset nodes will 

propagate faults through the circuit, and in some cases, these multiple faults will 

reconverge and cancel out their effects, leading to a lower chance of error. This effect is 

much more pronounced when the data is separated for each circuit output as done here. 

Of course, in other cases, multiple faults injected into a circuit are situated such that 

reconvergence is unlikely, and the contribution to errors at the chosen output increases.  

The next several pages contain Figures 19-24, detailing the per-gate responses for 

the 4-bit carry look-ahead generator for average output error and for individual output 

error, and Figures 25-28, which presents data organized in the same way for the 4-bit 

magnitude comparator. These are larger circuits analyzed with the same method, 

producing similar results.  
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Figure 19: Percentage of input vectors that result in errors seen at any output of the 4-bit 

carry look-ahead generator circuit vs. the number of physically adjacent faults inserted 

into the circuit centered at each gate output.  

 

 

 

Figure 20: Percentage of input vectors that result in errors seen at the PBo output of the 

4-bit carry look-ahead generator circuit vs. the number of physically adjacent faults 

inserted into the circuit centered at each gate output.  
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Figure 21: Percentage of input vectors that result in errors seen at the GBo output of the 

4-bit carry look-ahead generator circuit vs. the number of physically adjacent faults 

inserted into the circuit centered at each gate output.  

 

 

 

Figure 22: Percentage of input vectors that result in errors seen at the CNX output of the 

4-bit carry look-ahead generator circuit vs. the number of physically adjacent faults 

inserted into the circuit centered at each gate output.  
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Figure 23: Percentage of input vectors that result in errors seen at the CNY output of the 

4-bit carry look-ahead generator circuit vs. the number of physically adjacent faults 

inserted into the circuit centered at each gate output.  

 

 

 

Figure 24: Percentage of input vectors that result in errors seen at the CNZ output of the 

4-bit carry look-ahead generator circuit vs. the number of physically adjacent faults 

inserted into the circuit centered at each gate output.  
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Figure 25: Percentage of input vectors that result in errors seen at any output of the 4-bit 

magnitude comparator circuit vs. the number of physically adjacent faults inserted into 

the circuit centered at each gate output.  

 

 

 

Figure 26: Percentage of input vectors that result in errors seen at the ALBo output of the 

4-bit magnitude comparator circuit vs. the number of physically adjacent faults inserted 

into the circuit centered at each gate output.  
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Figure 27: Percentage of input vectors that result in errors seen at the AGBo output of the 

4-bit magnitude comparator circuit vs. the number of physically adjacent faults inserted 

into the circuit centered at each gate output.  

 

 

 

Figure 28: Percentage of input vectors that result in errors seen at the AEBo output of the 

4-bit magnitude comparator circuit vs. the number of physically adjacent faults inserted 

into the circuit centered at each gate output.  
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Traditional reliability analysis assumes that decreasing feature size, allowing for 

an increasing number of affected nodes in a local area due to a single strike, would result 

in an increasing number of errors. But this is not always the case – some nodes exhibit 

similar behavior in single and multiple faults (e.g., 74182 U20, U21, U23, U26; 74L85 

U52 for average output error), or are even less volatile under multiple faults (e.g., 74182 

U22, 74L85 U49 for average output error). The analysis done here to produce the graphs 

on the last several pages explicitly show circuit designers which gates and sections of the 

circuit they need to worry about most when guaranteeing the reliability of specific 

functions of a circuit.  

Rather than hardening an entire circuit to multiple-fault effects, this analysis 

provides the possibility of hardening only select gates, minimizing speed and area 

penalties while gaining significant reliability benefits. For example, if a circuit designer 

wanted to harden the AEBo logic path for the 4-bit magnitude comparator against 

multiple-fault effects, Figure 28 could be generated and utilized. Selectively hardening 

the U25, U45, U48, and U50 gates would make the AEBo logic path almost invulnerable 

to single-event errors, at only a slight cost as compared to hardening all 28 gates in the 

circuit. Similar operations could be performed on the 4-bit carry look-ahead generator 

given Figures 20-25. 

 While the 4-bit carry look-ahead generator circuit is still small, the 4-bit 

magnitude comparator is barely tenable for observing gate-specific results. There are still 

only 28 nodes considered, but it is difficult to aggregate this data into a form that is useful 

for analysis. Regardless, it is important to look at a variety of circuits of different sizes in 

order to see how reliability characteristics may change according to variables such as 
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circuit size and function. For example, here the function of these two circuits can be 

compared. The 4-bit magnitude comparator uses two modified 4-bit carry generators in 

its netlist for the AGBo and ALBo output alongside just a few more supporting logic 

gates for the AEBo output. Understandably, the AGBo and ALBo logic paths exhibit 

similar reliability, while the AEBo logic path has entirely different behavior.  

The 4-bit adder circuit observed earlier (Figure 13) uses one modified 4-bit carry 

generator (Figure 19), but it also has a large number of other logic gates in its design. 

When synthesized, this produces an entirely different circuit that therefore behaves much 

differently when under strain of multiple-fault testing. Most of the output errors for this 

circuit are at approximately the 30-40% level when averaging together all output errors.  

 

 This work culminated with the analysis of a larger, general-purpose circuit, the 4-

bit ALU. This circuit consists of 16 logic functions that operate on the 4-bit input 

numbers A and B. Given the economized design of this circuit as well as the further 

simplifying effects of synthesis, this circuit provides a good demonstration of logical 

interconnect among cells as well as many examples of separated logic paths.  

 The relevant data for this circuit are shown in Figures 29 and 30. As this is a 

significantly larger circuit than the others selected, there is a more reasonable, smoothed 

response in the final data sets. While data from Figure 30 were separated to show the 

response for each individual logic path, those figures are not included here since this 

analysis has already been shown for the other circuits. These figures serve the same 

usefulness as described earlier, for circuit designers to use in selectively hardening logic 

paths for individual circuit designs.  
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Figure 29: Percentage of input vectors that result in errors seen at an output (F[3-0], X, Y, 

CN4b, and AEB) vs. the number of physically adjacent faults inserted into the circuit at 

any gate in the circuit. 

 

 

 

Figure 30: Percentage of input vectors that result in errors seen at any output of the 4-bit 

ALU circuit vs. the number of physically adjacent faults inserted into the circuit centered 

at each gate output.  
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 Figure 29 shows an even response in the output error seen due to faults within the 

circuit. As these are averaged for a large number of nodes (39), every output continually 

sees an increase in error as simulations progress from single faults to 2, 3, 4, and 5 

simultaneous adjacent faults. Again, these results are asymptotic; the most egregious 

errors are seen with single faults, while multiple faults increase the overall output error 

seen comparably less for each additional fault. Meanwhile, the data in Figure 30 present a 

more detailed look at the individual gate responses. These results continue to stress the 

important of analyzing each circuit on its own rather than operating simply on statements 

made about logic as a whole. Some gates show very low error propagation rates or rates 

that change very little as multiple upsets occur. Most are highly sensitive to the effects of 

multiple fault testing. Ideally, a tool would be created and utilized for easily examining 

every design sent to manufacturing, but that is beyond the scope of this work. However, 

there are several overall analyses that can be safely made. 

 

Overall Analyses 

 

This work intends to analyze several circuits and display the results, to show the 

general idea of what occurs under multiple upsets. But aside from this analytical aim, the 

possibilities of new circuit design methods become apparent. If some nodes are more 

resistant than others to multiple fault propagation, then this fact could theoretically be 

leveraged in other designs. Similar logic structures may operate similarly, giving rise to 

an overall circuit design that is more reliable to multiple events.  
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Table 2: Gate-specific data showing average output error probability change for each step 

in upset coverage 

 

Gate 
# 

Tested 
Average Error 

Increase Per Step (%) StDev 

NAND 25 4.95 2.86 

AND 3 5.10 4.47 

NOT 19 4.52 4.12 

OR 4 4.28 5.60 

NOR 9 2.13 3.02 

XOR/XNOR 8 5.20 2.22 

OA/AO/OAI 24 4.85 2.99 

 

 

A more specific analysis demonstrates this idea on a more fundamental level. To 

produce Table 2, the slope for each node in Figures 13, 19, 25, and 30 is calculated, then 

an average and standard deviation for each gate type present in these three circuits is 

calculated. More data would be necessary for higher confidence in these values, but there 

are some restrained suggestions to make based upon these results. For example, NOR 

gates seem to be more resistant to larger numbers of errors than the rest of the gates 

shown. However, the other gates all present averages at around the same point, and 

standard deviations are comparably very large. This table makes it clear that this study 

cannot make conclusions about reliability based purely on gates – larger logical structures 

such as the benchmark circuits in the preceding section of this thesis or even larger 

standardized circuits will have their own characteristics. The way that logic gates are 

used in a circuit determines their reliability behavior, rather than being inherent to the 

gates themselves. 

Instead of looking at specific logic structures, the data can be categorized based 

on connection between cells. The characteristic that most seriously dictates the gravity of 



46 
 

errors due to multiple faults is whether or not these faults originate in cells that are 

logically connected. If two cells are logically connected and both register a fault, then 

reconverging fan-out may cancel out both faults. If the two cells are in separate logic 

paths, then the faults will operate like separate events and cause significantly more effects 

in the circuit. Figure 31 demonstrates this principle by looking at all 4 circuits examined 

separately above.  

 

Figure 31: Aggregated analysis of logically connected and separated cells, based on data 

from tests simulating two simultaneous adjacent faults.  
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“logically separated.” Twenty-one different circuit logic paths are shown, and of these, 

only 3 exhibit a greater percentage of errors due to logically connected faults. In other 

words, 86% of the time when multiple faults occur, faults in separated logic paths 

contribute more to overall circuit errors than those that are logically connected. This is an 

important observation. If a circuit designer can guarantee that physically adjacent cells 

are also logically connected, then particle strikes in this region of a circuit that induce 

faults have the potential of canceling out each other’s effects. This will raise the level of 

reconvergence and therefore increase the reliability of the circuit. If this methodology is 

not considered and physically adjacent cells in a layout are not logically connected, then 

reconvergence is not possible, and output error will only increase under multiple-fault 

events.   
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CHAPTER VI 

 

CONCLUSION 

 

Several fundamental circuits were chosen in this work and processed with typical 

circuit synthesis. The layout information was used in conjunction with the circuits to 

perform realistic simulations of multiple transients caused by a single particle strike. The 

data show that, in opposition to traditional analysis, simulating single faults in a circuit is 

not sufficient to characterize the circuit. Typically, the probability of an error occurring 

increases significantly with multiple transient faults, but there are methods to mitigate or 

even negate this effect. Today’s technology nodes require deeper analysis of these 

multiple errors. Specific design methods may help to absorb the impact of multiple-

transient errors, or even to provide better reliability in comparison to the single fault 

model. Reliability-aware design will enable circuit designers to make more informed 

decisions and produce more dependable circuits. 

It is already possible to make several conclusions about reliability under multi-

fault analysis given the data from this thesis. The circuits examined herein each have 

their own systems of behavior, which can be used to predict their reliability contribution 

when referenced in larger designs overall. In general, this thesis’ analysis shows that the 

effects of reconverging fan-out are significant under the effects of multiple upsets, and 

that circuits which are designed based on this principle will see better reliability behavior. 

Specific gates do not inherently have better characteristics than others, but certain circuit 

modules and design philosophies will contribute to the overall behavior of a design. 
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The collection of the data presented here is the formational step for analysis 

planned in the field of reliability. Further extensions of this work would include 

collecting data for larger benchmark circuits, such as those in the ISCAS85 suite. These 

data can be combined with what has already been collected to further support the 

observations reported within this thesis and offer more practical application of this 

analysis.  

When aggregated properly, the data already collected and that from the larger 

circuits will be able to present more information regarding circuit design. It is anticipated 

that these data will allow further conclusions to be drawn about reliability based on gates 

as well as specific design methods. If certain settings are chosen during design synthesis 

(i.e., area minimization versus power minimization, manual layout placement, alternate 

routing selections), these characteristics could affect reliability as well. 

Lastly, given that the methodology of this work is already highly systemized and 

follows a specific formula for every circuit, it should be possible to establish a framework 

for automatically analyzing circuits and producing detailed reliability information, 

perhaps in the form of a simple-to-use application. This aim is on the order of a full-scale 

application for commercial or academic uses, but is a future aspiration nonetheless.  
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APPENDIX A 

 

SYNOPSYS 90-NM LIBRARY 

 

The chosen library for this work is the Synopsys 90-nm Generic Library [30]. The 

choice of library is not entirely important for this thesis, except that it is compatible with 

the EDA tools and uses gates that are realistically sized in comparison with one another. 

However, the Synopsys 90-nm Generic Library still presents a full suite of information to 

allow its use in a variety of environments, and is particularly suited for Synopsys tools 

and designs optimized for low power.  

Of most interest for this work is the digital standard cell library portion. This 

contains 340 logic cells, both combinational and sequential. A variety of gates is used in 

this thesis, including AND, OR, INV gates and a variety of OR-AND combinations. 

Higher-order designs, such as multiplexers, adders, or other complex blocks are not 

permitted in the Design Compiler synthesis process, since these are ultimately composed 

of simpler gates. When multiple upsets occur in physical operation, they will affect a 

small area. By inserting upsets in small gates, this work ensures that multiple upsets are 

reasonable to occur.  

The original 74XXX code taken from the University of Michigan suite [28] uses 

generic language for logic gates. A selection of individual gates used from the Synopsys 

library is given in the following table, along with a general description of the operation of 

each gate: 
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Table 4: Synopsys 90-nm Generic Library standard gates 

Synopsys Cell Name Purpose 

INVX0 Inverter 

NAND2X0 2-input NAND 

NAND3X0 3-input NAND 

NAND4X0 4-input NAND 

NOR2X0 2-input NOR 

OR2X1 2-input OR 

OR3X1 3-input OR 

OR4X1 4-input OR 

AND2X1 2-input AND 

AND3X1 3-input AND 

AND4X1 4-input AND 

XOR2X1 2-input XOR 

XOR3X1 3-input XOR 

XNOR2X1 2-input XNOR 

OA21X1 OR-AND 2/1 

OA22X1 OR-AND 2/2 

OA221X1 OR-AND 2/2/1 

OAI21X1 OR-AND-Invert 2/1 

OAI221X1 OR-AND-Invert 2/2/1 

AO22X1 AND-OR 2/1 

AO221X1 AND-OR 2/2/1 

AO222X1 AND-OR 2/2/2 
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APPENDIX B 

 

XOR FAULT INJECTION VERILOG MODEL 

 

 In order to inject faults into a circuit in ModelSim, the Verilog code has to be 

modified to include additional input lines to trigger specific nodes. Therefore, each circuit 

should be modified so that a fault can be artificially inserted at the output of each gate. 

An inserted fault could take the form of a flipped value, stuck-low, or stuck-high value; 

the primary simulations in this thesis use the flipped model - this would be the result of a 

physical occurrence called a “glitch.” The original 74XXX code is taken from the 

University of Michigan suite and synthesized through Synopsys Design Compiler. To 

prepare for fault insertion, each circuit must be modified from the resultant gate-level 

netlist in Verilog to insert a 2-input XOR gate at each internal node, as well as just before 

each output. Faults are not allowed to be inserted at input nodes in this testing, as each 

circuit is considered unto itself rather than as part of a larger overall design. The Verilog 

files are taken from the “mapped” directory (Design Compiler output) and the following 

changes are made: 

1) Replace each internal signal n# with n#i and n#o and add a signal for each output 

2) Add an input X# for each original internal node and each output 

3) Update the inputs and outputs for gates in the code to reflect the new internal signals 

4) Add XOR gates to the end of the code, tying together the new inputs and new internal 

signals 

5) Add more XOR gates which connect the new output internal nodes with the outputs 
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With the size of the 74XXX benchmark circuits, these changes are made 

relatively easily by hand. If work were to proceed to the ISCAS85 circuits, Python will 

need to be used to ensure that errors in translating the circuit do not occur. An easy way 

to check for errors, regardless of code transformation method, is to run the regular code 

(with no XOR gates) and the transformed code both in ModelSim, and compare the 

results when all fault injection inputs are set to 0. This step was taken for each circuit to 

ensure that no errors had been made. 

As an example of this code transformation, a small circuit, the 4-bit adder, is 

shown below. First, the “regular” output of Design Compiler: 

module Circuit74283 ( C0, A, B, S, C4 ); 

  input [3:0] A; 

  input [3:0] B; 

  output [3:0] S; 

  input C0; 

  output C4; 

  wire   \Ckt74283/C[0] , n27, n28, n29, n30, n31, n32, n33; 

  assign \Ckt74283/C[0]  = C0; 

 

  NOR2X0 U32 ( .IN1(A[0]), .IN2(B[0]), .QN(n29) ); 

  AND2X1 U33 ( .IN1(A[0]), .IN2(B[0]), .Q(n30) ); 

  NOR2X0 U34 ( .IN1(\Ckt74283/C[0] ), .IN2(n30), .QN(n27) ); 

  NOR2X0 U35 ( .IN1(n29), .IN2(n27), .QN(n31) ); 

  AO222X1 U36 ( .IN1(A[1]), .IN2(B[1]), .IN3(A[1]), .IN4(n31), 

.IN5(B[1]),  

        .IN6(n31), .Q(n32) ); 

  AO222X1 U37 ( .IN1(A[2]), .IN2(B[2]), .IN3(A[2]), .IN4(n32), 

.IN5(B[2]),  

        .IN6(n32), .Q(n33) ); 

  AO222X1 U38 ( .IN1(B[3]), .IN2(A[3]), .IN3(B[3]), .IN4(n33), 

.IN5(A[3]),  

        .IN6(n33), .Q(C4) ); 

  INVX0 U39 ( .IN(n29), .QN(n28) ); 

  AO222X1 U40 ( .IN1(\Ckt74283/C[0] ), .IN2(n30), 

.IN3(\Ckt74283/C[0] ), .IN4( 

        n29), .IN5(n28), .IN6(n27), .Q(S[0]) ); 

  XOR3X1 U41 ( .IN1(A[1]), .IN2(B[1]), .IN3(n31), .Q(S[1]) ); 

  XOR3X1 U42 ( .IN1(B[2]), .IN2(A[2]), .IN3(n32), .Q(S[2]) ); 

  XOR3X1 U43 ( .IN1(B[3]), .IN2(A[3]), .IN3(n33), .Q(S[3]) ); 

endmodule 
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 Then, the code after it has been modified to allow fault injection: 

module Circuit74283x ( C0, X, A, B, S, C4 ); 

  input [3:0] A; 

  input [3:0] B; 

  input [11:0] X; 

  output [3:0] S; 

  input C0; 

  output C4; 

  wire   \Ckt74283x/C[0] , n27i, n27o, n28i, n28o, n29i, n29o, 

n30i, n30o, n31i, n31o, n32i, n32o, n33i, n33o, s0i, s1i, s2i, 

s3i, c4i; 

  assign \Ckt74283x/C[0]  = C0; 

 

  NOR2X0 U32 ( .IN1(A[0]), .IN2(B[0]), .QN(n29i) ); 

  AND2X1 U33 ( .IN1(A[0]), .IN2(B[0]), .Q(n30i) ); 

  NOR2X0 U34 ( .IN1(\Ckt74283x/C[0] ), .IN2(n30o), .QN(n27i) ); 

  NOR2X0 U35 ( .IN1(n29o), .IN2(n27o), .QN(n31i) ); 

  AO222X1 U36 ( .IN1(A[1]), .IN2(B[1]), .IN3(A[1]), .IN4(n31o), 

.IN5(B[1]),  

        .IN6(n31o), .Q(n32i) ); 

  AO222X1 U37 ( .IN1(A[2]), .IN2(B[2]), .IN3(A[2]), .IN4(n32o), 

.IN5(B[2]),  

        .IN6(n32o), .Q(n33i) ); 

  AO222X1 U38 ( .IN1(B[3]), .IN2(A[3]), .IN3(B[3]), .IN4(n33o), 

.IN5(A[3]),  

        .IN6(n33o), .Q(c4i) ); 

  INVX0 U39 ( .IN(n29o), .QN(n28i) ); 

  AO222X1 U40 ( .IN1(\Ckt74283x/C[0] ), .IN2(n30o), 

.IN3(\Ckt74283x/C[0] ), .IN4( 

        n29o), .IN5(n28o), .IN6(n27o), .Q(s0i) ); 

  XOR3X1 U41 ( .IN1(A[1]), .IN2(B[1]), .IN3(n31o), .Q(s1i) ); 

  XOR3X1 U42 ( .IN1(B[2]), .IN2(A[2]), .IN3(n32o), .Q(s2i) ); 

  XOR3X1 U43 ( .IN1(B[3]), .IN2(A[3]), .IN3(n33o), .Q(s3i) ); 

  XOR2X1 U44 ( .IN1(n27i), .IN2(X[0]), .Q(n27o) ); 

  XOR2X1 U45 ( .IN1(n28i), .IN2(X[1]), .Q(n28o) ); 

  XOR2X1 U46 ( .IN1(n29i), .IN2(X[2]), .Q(n29o) ); 

  XOR2X1 U47 ( .IN1(n30i), .IN2(X[3]), .Q(n30o) ); 

  XOR2X1 U48 ( .IN1(n31i), .IN2(X[4]), .Q(n31o) ); 

  XOR2X1 U49 ( .IN1(n32i), .IN2(X[5]), .Q(n32o) ); 

  XOR2X1 U50 ( .IN1(n33i), .IN2(X[6]), .Q(n33o) ); 

  XOR2X1 U51 ( .IN1(s0i), .IN2(X[7]), .Q(S[0]) ); 

  XOR2X1 U52 ( .IN1(s1i), .IN2(X[8]), .Q(S[1]) ); 

  XOR2X1 U53 ( .IN1(s2i), .IN2(X[9]), .Q(S[2]) ); 

  XOR2X1 U54 ( .IN1(s3i), .IN2(X[10]), .Q(S[3]) ); 

  XOR2X1 U55 ( .IN1(c4i), .IN2(X[11]), .Q(C4) ); 

endmodule 
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