
LAYOUT-BASED FAULT INJECTION FOR COMBINATIONAL

LOGIC IN NANOMETER TECHNOLOGIES

By

BRADLEY KIDDIE

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Electrical Engineering

May, 2012

Nashville, Tennessee

Approved:

Professor William H. Robinson

Professor Bharat L. Bhuva

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Vanderbilt Electronic Thesis and Dissertation Archive

https://core.ac.uk/display/46928016?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

ACKNOWLEDGEMENTS

 I would like to thank my adviser Dr. William H. Robinson for his guidance and

support along the way with this research as well as in my pursuit of graduate study in

general. I would also like to thank Dr. Bharat L. Bhuva for his helpfulness in this

research and in providing advice. The Radiation Effects and Reliability group at

Vanderbilt has been instrumental in sparking my interest in this field and providing

feedback on the progress of my work, and I have my family and friends as well to thank

for continued support and encouragement throughout the process.

 This material is based upon work supported by the National Science Foundation

under Grant No. CCF-0747042. Any opinions, findings and conclusions or

recommendations expressed in this material are those of the author(s) and do not

necessarily reflect the views of the National Science Foundation (NSF).

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS .. ii

LIST OF TABLES ...v

LIST OF FIGURES ... vi

Chapter

I. INTRODUCTION ...1

II. MULTIPLE-FAULT ANALYSIS ...3

Related Work ...3

III. LAYOUT-BASED ANALYSIS OF COMBINATIONAL LOGIC6

Design Choices ..6

Synthesis Review ...8

IV. METHODOLOGY ..11

Test Circuits ...11

Layout Generation ...13

Fault Injection Models ...14

Circuit Simulation ..16

V. MULTIPLE-FAULT RESULTS ...20

Individual Benchmark Circuits – Output Error Analysis20

Individual Benchmark Circuits – Alternative Fault Injection....................24

Individual Benchmark Circuits – Gate-Specific Analysis29

Overall Analyses ..44

VI. CONCLUSION ..48

Appendix

A. SYNOPSYS 90-NM LIBRARY ..50

iv

B. FAULT INJECTION VERILOG MODEL ...52

REFERENCES ..55

v

LIST OF TABLES

Table Page

1. Circuits Selected for Simulation and Analysis ..12

2. Circuit Output Information ..12

3. Gate-Specific Data Showing Average Output Error Probability

Change for Each Step in Upset Coverage ..45

4. Synopsys 90-nm Generic Library Standard Gates ...51

vi

LIST OF FIGURES

Figure Page

1. Synthesis Flow for Circuit Design ...8

2. Example of Fault Insertion...16

3. Example of Gate Adjacency in Layout ..17

4. 74283 Probability of Output Error Vs. Number of Faults21

5. 74182 Probability of Output Error Vs. Number of Faults22

6. 74L85 Probability of Output Error Vs. Number of Faults22

7. 74182 Probability of Output Error Vs. Number of Faults: Set-High Faults25

8. 74182 Probability of Output Error Vs. Number of Faults: Set-Low Faults...........25

9. 74182 Probability of Output Error Vs. Number of Faults: Set-High,

Set-Low Combined Data..26

10. 74283 Probability of Output Error Vs. Number of Faults: Set-High Faults27

11. 74283 Probability of Output Error Vs. Number of Faults: Set-Low Faults...........28

12. 74283 Probability of Output Error Vs. Number of Faults: Set-High,

Set-Low Combined Data..28

13. 74283 Probabilities for Node-to-Output Fault Propagation30

14. 74283 Probabilities for Node-to-Output Fault Propagation: S[0]32

15. 74283 Probabilities for Node-to-Output Fault Propagation: S[1]33

16. 74283 Probabilities for Node-to-Output Fault Propagation: S[2]33

17. 74283 Probabilities for Node-to-Output Fault Propagation: S[3]34

18. 74283 Probabilities for Node-to-Output Fault Propagation: C434

vii

19. 74182 Probabilities for Node-to-Output Fault Propagation36

20. 74182 Probabilities for Node-to-Output Fault Propagation: PBo36

21. 74182 Probabilities for Node-to-Output Fault Propagation: GBo37

22. 74182 Probabilities for Node-to-Output Fault Propagation: CNX37

23. 74182 Probabilities for Node-to-Output Fault Propagation: CNY38

24. 74182 Probabilities for Node-to-Output Fault Propagation: CNZ38

25. 74L85 Probabilities for Node-to-Output Fault Propagation39

26. 74L85 Probabilities for Node-to-Output Fault Propagation: ALBo39

27. 74L85 Probabilities for Node-to-Output Fault Propagation: AGBo40

28. 74L85 Probabilities for Node-to-Output Fault Propagation: AEBo40

29. 74181 Probability of Output Error Vs. Number of Faults43

30. 74181 Probabilities for Node-to-Output Fault Propagation43

31. Overall Logical Reconvergence Analysis ..46

1

CHAPTER 1

INTRODUCTION

As integrated circuits (ICs) utilize nanometer fabrication technologies, concern

has grown for design reliability in the presence of radiation-induced faults. Research has

been conducted to better understand the sensitivity of ICs to the effects of radiation [1, 2].

This sensitivity is not confined to just memory but can also affect the logic components

of the circuit. In particular, recent experimental results have demonstrated the

susceptibility of combinational logic to radiation-induced faults and provided a

comparison of the error rates to sequential logic [3]. With the complexity of modern

digital circuits, combinational and sequential logic are typically synthesized using

standard library cells [4]. With the size of these library cells in nanometer technologies, a

single particle strike can create charge collection inside multiple cells [5-7], which leads

to multiple transients within the logic of the design. As these transients propagate, they

can create complex responses to affect the overall soft error rate (SER).

Typically, fault injection studies rely upon the insertion of a bit flip in a single

storage element, using the assumption that a particle strike causes one fault [8-10].

However, these studies have not accounted for the spatial relationship of the layout (i.e.,

library cells) in nanometer technologies. Multiple transients caused by a single particle

strike will originate in a single location in the layout of a circuit. Physically adjacent logic

cells will simultaneously produce faults, which may then separately propagate through

the circuit or may experience reconverging fan-out before arriving at a storage element

2

where it can be detected. This thesis describes the coupling of layout information directly

with the circuit behavior to conduct fault injection to nearest-neighbor logic cells. By

assessing the logical propagation of these faults, the probability of error can be

determined for designs synthesized with standard library cells. Several benchmark

circuits were selected and synthesized with a 90-nm cell library, and the results show that

spatially injecting multiple faults can produce significantly more complex behavior than

when only a single fault is considered.

When using only a single injected fault (i.e., assuming that a particle strike only

affects one cell), the output error percentage can be underestimated. Reconverging fan-

out will limit the effects of the faults within the circuit. This thesis shows that in most

cases, the probability of errors occurring at the output of a combinational circuit increases

with an increasing number of radiation-affected cells, and that in some cases,

recombination helps mitigate this effect and contribute fewer errors. These more complex

cases will show that multiple-transient analysis is a unique challenge for the field of

radiation effects, but the data presented herein will expose a number of trends which can

be used to help design for better reliability in combinational logic.

The rest of this thesis is organized as follows. Chapter 2 covers previous and

related work as a springboard for layout-based fault injection. Chapters 3 and 4 describe

the design choices and methodology for this work. Chapter 5 discusses the results for the

selected benchmark circuits. Chapter 6 concludes the thesis and offers some future

avenues for study.

3

CHAPTER II

MULTIPLE-FAULT ANALYSIS

Related Work

The research area of radiation-induced multiple-fault analysis in combinational

logic has been the result of gradual changes in the whole field of reliability analysis. The

primary area of study in this field is of single-event upsets (SEUs). Much work has been

put into understanding how charge-carrying particles strike a circuit, interact with nodes,

and affect the charge stored at a point in a logic design [11, 12]. Research also examines

how single faults dissipate or propagate through a circuit; this topic has been extended for

multiple faults. The goal is to determine if there are ways to prevent fault propagation,

through selective gate hardening [13, 14] or other specific design methods [15, 16].

Several works regarding faults in memory were referenced as a basis of general

understanding of reliability analysis for this work [3, 11, 17]. As frequency rates increase

in developing technology, combinational circuits as compared to sequential circuits

become increasingly vulnerable to logic errors [3, 18].

In the study of fault propagation, several barriers present themselves to make a

thorough understanding difficult. Early work that attempts to take timing and charge

deposition quantities into account found that analyzing large circuits are nearly

impossible with such detail [19]. Using such an analysis for multiple faults rather than

just SEUs would be intractable in terms of required simulation time. Other approaches

attempted a more symbolic, mathematical analysis [20, 21]. These analyses can be

4

effective to produce values describing the circuit in general, but are difficult to visualize

and use in practical application.

Miskov-Zivanov and Marculesu focus on a unified treatment of three masking

factors: logical, electrical, and latching-window masking [22]. This analysis was applied

separately to combinational logic and sequential logic, so this framework required timing

information on latches included in the circuits or appended to the inputs/outputs of the

combinational logic sectors. Their method of analysis was heavily mathematical, but

managed to decrease simulation time by first analyzing small components of the circuit

and then merging these results to form a picture of the overall circuit.

The key takeaway from observing the several methods attempted already is that,

without some sort of approximation or the use of a supercomputer, it is necessary to

either make some assumptions or to study only limited aspects of reliability; a 100%

accurate and precise study of anything but the smallest circuits is too resource-intensive.

When examining combinational logic, an understudied characteristic is

reconverging fan-out, which describes how a fault may propagate through a circuit to

produce several effects. The faults may remain separated or potentially join together at a

later gate, which could mitigate errors or magnify them. The level of possible

reconvergence depends on each circuit, but an accurate analysis requires simulation of

the circuit as a whole rather than as individual components (e.g., individual gates).

In terms of studying multiple upsets stemming from a single strike, a few different

methods have been attempted. The simplest would be to simulate multiple faults over an

entire circuit – any two nodes could be selected to receive upsets during a given run [23],

and all of the results could be averaged together for a snapshot of the circuit as a whole

5

with a single fault versus two faults. Producing results this way is more akin to simulating

two simultaneous particle strikes, rather than merely one affecting multiple, adjacent

nodes. While it may give some information on the possible behavior that multiple faults

may produce, it is an inaccurate way to predict precisely what that behavior will be.

Another method is to use information from the circuit organization and induce

upsets at nodes that are fan-in/fan-out neighbors [22, 24]. This method is decidedly more

accurate, as these nodes are likely to be placed next to each other. However, physical

adjacency is not always coupled with logical adjacency. If nodes are chosen this way,

then the level of reconvergence will be much higher than that seen in an actual

manufactured design. The only true way to simulate faults at adjacent nodes is to utilize

layout information to determine which nodes have actually been placed next to each other

on a chip. Some multiple-fault events will affect cells that are logically connected (i.e.,

within the same logic cone), while others will affect cells that are logically separated.

When performed on several different designs, these simulations will provide an accurate

look at the effects of radiation-induced multiple faults in combinational logic in general.

Studies thus far on the effects of multiple faults in combinational logic have

therefore been found lacking in accuracy – a full circuit must be simulated as a whole,

rather than as individual gates, and the correct mechanism must be chosen in order to not

over- or under-estimate the effects of logical reconverging fan-out. At the same time,

simulation methodology must be carefully chosen so that the tests are doable in a

reasonable amount of time, while the circuits must still be large enough to be practically

useful.

6

CHAPTER III

LAYOUT-BASED ANALYSIS OF COMBINATIONAL LOGIC

Design Choices

The contribution of this work is to conduct multiple-fault analysis coupled with

actual physical layouts, as opposed to previous studies that use assumed dependencies or

randomized multiple-fault analysis. This work focuses on using layout information from

an automated place-and-route tool. This method of circuit characterization enhances

awareness of all information available during the design of a combinational logic module.

By comparing the adjacent cells in these layouts, reconvergence is also observed and

studied within combinational logic.

Many different methods exist to create a circuit layout from design synthesis.

Therefore, the most general steps are taken for this research in order to provide a

snapshot of a typical manufactured circuit and its behavior with multiple induced faults.

Multiple circuits were chosen as well, both to provide different sets of results and to

enable general conclusions about combinational circuits as a whole.

In future analyses, this work can be expanded to more specific synthesis methods

or larger circuits. One aim would be to see if area-minimized synthesis was more reliable

versus power-minimized synthesis. Or, larger circuits should show the greater or smaller

effects that a strike in a single location may cause. It is anticipated that larger circuits

would see smaller effects overall due to a comparably smaller area that is directly

affected by a particle strike.

7

However, the scope of this work requires some limitations; therefore, standard

synthesis using tools by a single manufacturer (Synopsys) was selected. All default

options are chosen when possible, and standard benchmark circuits are sent through the

process. Larger circuits are often composed of these smaller benchmark circuits, so they

are valuable pieces to analyze. Understanding the reliability characteristics of different

pieces of an overall design allows us to determine the reliability of the circuit as a whole.

Since sequential circuits are not analyzed in this work, circuit timing was not

considered. Each circuit is studied as a stand-alone combinational logic model, where a

given set of inputs and a particle strike at a specified physical sector of the circuit will

produce a definite set of outputs. Given the speed of microprocessor designs of today, it

is easily possible for the effects of a particle strike to last multiple clock cycles [3], so this

is well within the boundaries of normal circuit operation.

Once simulation data are collected for varying numbers of adjacent faults per

circuit, these data can then be analyzed to show precisely how much of an impact particle

strikes will have on combinational logic. It is expected that there will be a wide range of

behavior, but this study will show how multiple-fault characteristics differ from the

single-fault reliability approach, as well as show what limitations there may be, through

the effects of reconverging fan-out and the behavior of different gates or circuits.

Synthesis Review

One of the key background elements of this work is how it relates to circuit

design and manufacturing. Figure 1 illustrates the synthesis process of a typical design. In

this process, an idea is first given specifications, then is written down with a hardware

8

description language in code (e.g., VHDL [25], Verilog [26]). At this point, the design is

sent through automated synthesis, which performs a series of operations on the code: it is

first paired with a standard library of gates to produce a gate-level netlist, then a physical

layout of the gates as arranged on a die is generated, then ultimately a portfolio of

information is generated that can be used to automatically manufacture the circuit on a

chip. This thesis describes how the gate-level netlist can be used in conjunction with the

physical layout in order to understand the effects of single events that induce multiple

transients in combinational logic. In order to better understand the relation between these

two pieces of information, it is worthwhile to explore the synthesis process.

Figure 1: Synthesis flow for circuit design.

This work uses the Synopsys Design Compiler and IC Compiler electronic design

automation (EDA) tools to perform all of the required processing on the circuits before

simulation. Initially, Design Compiler reads the user-supplied code and links it with a

selected cell library. Next, the compilation step will rewrite the given code to ensure that

9

its format matches that of the library and is optimized for the logic gates available within

that library. This result is called the “mapped” code, which is used directly in this thesis

to run simulations using a logic simulator. The mapped code will likely differ in

appearance from the original written code, but functionally they are the same. The

compilation process can be modified based on the preferences of the user – certain gates

or blocks can be preferred over others, or the design can be synthesized to prioritize

timing, area, or power constraints. The flexibility of the code without any physical

information can be exploited to pursue these design choices.

Next, IC Compiler transforms the final code into a chip layout. The synthesized

code is again linked with the cell library, and then a basic floorplan is initialized. The

user has the option to prioritize different characteristics or include specific features in the

layout. IC Compiler will then optimize several items. Typically, area is minimized by

placing the cells in an efficient grid. Congestion can be minimized by rearranging these

cells according to how they are used and how they interact with other cells. The

automated place-and-route manages all of these concerns as well as others, such as

minimizing power, and design for test.

EDA tools such as these are used for all modern chip designs. Manual place-and-

route to produce layouts is an overly complex and lengthy process, so tools such as the

Synopsys suite allows the different synthesis choices to be made quickly and

automatically. Given the large number of different layouts that can be generated for a

given design, this thesis chooses to utilize EDA tools in a very general matter, producing

a “normal” layout for each chosen circuit. There have been studies that examine the

effects of different synthesis constraints on reliability for single fault propagation [27],

10

and this may be extended for multiple transients in future work, but this thesis focuses

only on “default” synthesis. The effect of using automated place-and-route is that

adjacent cells may or may not be logically related, which produces the interesting results

found in this work.

11

CHAPTER IV

METHODOLOGY

Following an industrial design flow from circuit selection through synthesis and

layout development, this research requires a thorough methodology with information

collected from each step. First, circuits are selected to test. Second, layout information is

generated for each. Third, faults are injected to collect data for analysis.

Test Circuits

The first step was the selection of appropriate circuits to analyze. Thoroughness in

simulation was the primary intent, so smaller circuits were chosen out of the 74XXX

suite, enabling us to perform exhaustive fault injection. The use of the 74XXX suite

ensures that these logic structures are commonly used and worthy of examination.

Several of these circuits were used in Verilog form, taken from the University of

Michigan suite [28]. The 74182 is a 4-bit carry look-ahead generator, the 74283 is a 4-bit

adder, the 74L85 is a 4-bit magnitude comparator, and the 74181 is a 4-bit ALU. This

selection gives a fairly good cross-section of common functions that are also at a smaller,

more manageable size for simulations. Table 1 provides other pertinent information about

these circuits and their relative sizes. Table 2 gives further information about the purpose

of each circuit’s output for better insight into analyzing the results of the simulations later

on. The number of gates is defined via the original code in the University of Michigan

12

suite; when linked to a library in the synthesis process, this count is reduced to the

number of nodes listed.

Table 1: Circuits selected for simulation and analysis

Circuit Description Gates Inputs Outputs Nodes

74182 4-bit carry look-ahead generator 19 9 5 14

74283 4-bit adder 36 9 5 12

74L85 4-bit magnitude comparator 33 11 3 28

74181 4-bit ALU 61 14 8 39

Table 2: Circuit output information

Circuit Output Description

4-bit carry

look-ahead

generator

PBo Propagate signal to cascade to another block

GBo Generate signal to cascade to another block

CNX/Y/Z Three carry out signals based on inputs

4-bit adder S[3..0] 4-bit sum of 4-bit inputs A and B

C4 Carry-out associated with sum

4-bit

magnitude

comparator

ALBo Signal high if A < B

AGBo Signal high if A > B

AEBo Signal high if A = B

4-bit ALU

F[3..0] 4-bit computation based on 4-bit inputs A and B

X Propagate signal (look-ahead carry)

Y Generate signal (look-ahead carry)

CN4b Ripple carry output associated with F

AEB Indicates if A = B

For this thesis, all four circuits were examined and tested through all possible

simultaneous faults. The 4-bit carry look-ahead generator, the 4-bit adder, and the 4-bit

magnitude comparator are small enough that every possible input combination was used

in each simulation run. The 4-bit ALU circuit required additional premeditative analysis

13

using the Synopsys TetraMAX tool for automated test pattern generation [29] because of

its larger size; covering all input vectors would require a significant amount of simulation

time.

Ideally, analyses of the effects of multiple adjacent upsets would include much

larger circuits, such as those from the standard ISCAS’85 benchmark suite. However, the

primary goal of this work is thoroughness in all of the possible fault combinations.

Testing circuits with a very large number of nodes is beyond the scope of this work;

rather, smaller “building block” circuits can be analyzed and the effects will contribute

similarly to when these smaller circuits are used in larger designs.

Layout Generation

Each circuit was taken in Verilog form and sent through a series of Synopsys

software suites to emulate the typical design process taken by a circuit designer. These

EDA tools produced a place-and-route layout of the circuit. The aim is to ultimately test

these circuits for single-event multiple upsets when the circuit is in the form seen by most

designers.

Using the standard 90-nm Synopsys design library [30], the Synopsys Design

Compiler synthesizes the circuits and produces gate-level netlists. In order to allow for

fault insertion at the output of each actual gate, only low-level gates (i.e., no multiplexers,

adders, or other complex blocks) were permitted in the synthesis process. More

information about the logic gates used and the library chosen is available in Appendix A.

Synopsys IC Compiler then creates a layout to show which gates are adjacent. These

tools were used in the most general manner possible to produce these circuits in

14

“common” forms. Since only combinational circuits were selected, clock and timing

information was not described or constrained, area was minimized, and all other settings

remained unconstrained or at their default positions.

At this point in the methodology, two important pieces of information are

available for each circuit: (1) a Verilog file describing the gate-level netlist, which can be

used to run simulations inserting faults at the desired nodes, and (2) a layout of this same

netlist, showing which gates would be physically adjacent to each other if the circuit were

to be synthesized at default settings and manufactured.

Fault Injection Models

There are multiple options for inserting a fault at a node into a circuit. Simulations

examining single event upsets typically include an additional input line paired with XOR,

OR, or INV-AND gates to set a logic signal high, low, or flip its value. Previous work

conducted on a related study showed that set-high and set-low faults generally occur at

similar rates [31], so it was chosen in this work to use a glitch model for faults. Although

the XOR model is also used by several other similar studies in the field of multiple

transient effects, it is more precise to run simulations with faults modeled as setting

values high (for particle strikes in PFET transistors) and again with faults modeled as

setting values low (for particle strikes in NFET transistors) and to use these data to

understand the circuit’s behavior. Of course, doing this will result in twice as much

information necessary to characterize a circuit. Each circuit in this work was simulated

with the XOR model for fault injection, which provides a moderate response as compared

to running complementary simulations for set-high and set-low models. For an added

15

depth to this work, some circuits were also simulated using the set-high and set-low

models to compare both methodologies.

The most common point at which a fault is produced is at the output of a gate

[22]. Since this work is primarily concerned with the logical behavior of a circuit design

rather than physical effects, faults within a cell are not considered. Inserting faults at the

output of each cell presents the effects of faults between any two gates when a node is

upset. The synthesized Verilog code was modified to allow the introduction of a fault at

each of these locations, by inserting an XOR gate, OR gate, or INV and AND gates with

an additional input line. This input line can be triggered high in order to flip that bit, set it

high, or set it low, respectively, to simulate a fault. The last column of Table 1 indicates

how many of these nodes were available for each circuit. See Figure 2 for an example of

inserting logic gates to allow fault triggering. More information on fault insertion,

including a code example, is available in Appendix B.

Previous research simulated multiple faults by injecting faults at 2 or 3 random

points in the circuit [22] or gates that are fan-in/fan-out neighbors [24]; in real operation,

these assumptions may not accurately represent physical adjacency. A single particle

strike will cause one or more errors in a single localized region, affecting gates that are

physically next to each other (and therefore may or may not be fan-in/fan-out neighbors).

Therefore, the layout information produced by the IC Compiler is used to identify

adjacent nodes. Once these nodes are identified, their fault inputs can be set high

accordingly in order to simulate faults at multiple nodes during a test.

16

Figure 2: Example of fault insertion. The top figure represents an original circuit. The

second is of a glitch XOR model, the third is of a set-high OR model, and the fourth is of

a set-low INV-AND model. Setting Fault = 1 upsets the output of the AND gate,

simulating a glitch, stuck-high fault, or stuck-low fault at that node.

Circuit Simulation

ModelSim [32] is used to simulate the circuits for all possible input vectors for

several runs of each circuit: (1) no faults injected, (2) one fault injected at each internal

node at a time, and (3) each possible combination of 2, 3, 4, and up to a maximum of 5

adjacent faults at a time. Figure 3 shows an example of gate adjacency where multiple

upsets may occur.

17

Figure 3: Example of gate adjacency in layout; cell U29 has five other cells in close

proximity, allowing for simulation of several upset nodes centered at the U29 location.

For example, with a particle strike affecting the circuit area as shown (red circle), ceel

U29, U32, and U46 could simultaneously experience upsets.

For small circuits, all of the specified multiple-fault testing can be done in a

matter of minutes. With increasing numbers of inputs and nodes to be tested, testing time

increases exponentially. For each test, 2 or more physically adjacent gates are selected.

The fault line inputs for these gates are set high, inducing a glitch at the output of the

gates. ModelSim then runs through all of the given input vectors and records the output

for each set of inputs. This information is identified by which faults are active during the

test, and each test can later be compared to a “base run” with no faults during analysis to

determine which parts of the circuit are most affected when strikes occur.

As an example pertaining to Figure 3, single-fault testing would run through all

input combinations with a fault inserted at the output of gate U29. Two-fault testing

would repeat this process with faults inserted at each pair of gates (e.g., U29 and U28,

U29 and U32) for all 5 possibilities. Three-fault and four-fault testing each have 10

possible combinations that include gate U29. And lastly, there are five different possible

18

fault combinations when testing five faults at a time centered at gate U29. Each of these

tests is run, and data are collected at the outputs of the circuit.

With small circuits, it is possible to run through all possible input combinations

for each test in ModelSim. Beginning with the 4-bit ALU and any further work in larger

circuits, this method becomes intractable with the large number of inputs. Therefore,

Synopsys’ TetraMAX tool was used to generate an automatic test pattern – a series of

input combinations that provide 100% coverage of fault detection for single stuck-at

faults. These test vectors can also provide multiple-fault detection [33]. This set of

vectors is used instead, enabling much faster testing while still retaining a good

demonstration of the variety of input possibilities.

Since this research is concerned only with combinational logic, not storage

elements, no clock signals are considered, and therefore timing and glitch duration are

ignored. The goal is to insert each fault statically; for each simulation, all given input

combinations will be run while a specific fault configuration is set, and information about

the output values are collected.

The tests can all be scripted and run automatically, and the results are then

imported into a numerical analysis program for processing. For each circuit, data can be

grouped according to: (1) the node at which the inserted fault(s) were centered, (2) the

output at which an error was detected, (3) the type of gate at the center of the fault(s), or

(4) whether the faults affected logically connected or logically separated gates.

With a 100% coverage of all possible fault combinations (up to 5 faults simulated

at a time) and all possible input vectors, the amount of data for even the small circuits

selected for this work is significant. The data are separated according to the number of

19

simultaneous faults and where they are located, then imported into a numerical analysis

program. Herein it can be analyzed for trends and to observe the behavior of these

circuits under the stress of single-event multiple-upset incidents.

20

CHAPTER V

MULTIPLE-FAULT RESULTS

Individual Benchmark Circuits – Output Error Analysis

Several different methods of analysis are possible based upon the collected data.

The initial approach identifies each node according to its physical location and gate type

and views its effect on the circuit outputs when one or more faults are inserted centered at

that node. Each fault simulation is compared to a simulation with no faults, and the data

are aggregated to state what percentage of input vectors produces an error at each output.

Unless otherwise stated, the data shown are from simulations using a glitch model for

fault injection.

Figure 4 shows a collection of data for the 4-bit adder. The percentage of tests that

result in errors seen at the outputs for each combination of faults and input vectors are

averaged together to show which outputs of the circuit are most likely to have an error

with single or multiple faults. Traditionally, circuit designers would expect that the

likelihood of an error seen at an output would increase progressively with an increasing

number of faults. However, due to logical reconvergence, this is not always the case.

Three of the five outputs are shown to actually decrease in the number of errors at some

point during this testing. For example, the probability of an error present at output S[1]

decreases by 2.4% going from three adjacent faults to four, and again from four to five.

21

Figure 4: Percentage of input vectors that result in errors seen at an output (S[3-0] and

C4) vs. the number of physically adjacent faults inserted into the circuit at any gate in the

circuit. The circuit is a 4-bit fast adder; S[3-0] represents a sum and C4 is the carry-out.

In general, with an increasing number of faults in a circuit, the probability that an

error is seen at an output tends to rise most quickly from no faults to a single fault, then

asymptotically for two or more faults injected. When this probability progressively

increases (due to a low level of logical reconvergence), its behavior is logarithmic. When

the probability decreases, such as in the case of output S[1] mentioned earlier (i.e., a

higher level of logical reconvergence), then its behavior is more unique to its case and

prone to change based on the circuit and the layout.

The other circuits produced show very similar results from the layout-based fault

injection. Traditional models cannot be applied to multiple-fault analysis; rather, some

methods of circuit design or some logical structures may be more or less vulnerable to

multiple-fault effects.

0%

10%

20%

30%

40%

50%

60%

0 1 2 3 4 5

O
u

tp
u

t
Er

ro
r

Total # of Faults

74283 Probability of Output Error Vs.
Number of Physically Adjacent Faults

S[0]

S[1]

S[2]

S[3]

C4

22

Figure 5: Percentage of input vectors that result in errors seen at an output (PBo, GBo,

CNX, CNY, and CNZ) vs. the number of physically adjacent faults inserted into the

circuit at any gate in the circuit. This circuit is a 4-bit carry look-ahead generator; PBo

and GBo are propagate and generate cascade signals, and the others are carry-out signals.

Figure 6: Percentage of input vectors that result in errors seen at an output (ALBo,

AGBo, and AEBo) vs. the number of physically adjacent faults inserted into the circuit at

any gate in the circuit. This circuit is a 4-bit magnitude comparator; the outputs indicate if

A is less than, greater than, or equal to B.

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5

O
u

tp
u

t
Er

ro
r

Total # of Faults

74182 Probability of Output Error Vs.
Number of Physically Adjacent Faults

PBo

GBo

CNX

CNY

CNZ

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5

O
u

tp
u

t
Er

ro
r

Total # of Faults

74L85 Probability of Output Error Vs.
Number of Physically Adjacent Faults

ALBo

AGBo

AEBo

23

Figures 5 and 6 show similar data for two larger circuits: a 4-bit carry look-ahead

generator and a 4-bit magnitude comparator. Figure 5 again demonstrates a high level of

logical reconvergence in output CNY. If a dip is present in a curve on these graphs, it

indicates that regardless of where a multiple-fault-inducing strike occurs in a circuit, it is

likely that these faults will reconverge in the logical path towards the indicated output.

Here, for example, injecting a single fault into the circuit will on average present a 25%

probability of seeing an error at the CNY output. However, when two physically adjacent

faults are injected into the circuit, many of these faults will reconverge and cancel each

other out, with the result that the CNY output will only have a 21% probability of seeing

an error. Data will be presented further on to show how this occurs on a gate-by-gate

basis to present a little more detail.

Conclusions can begin to be drawn based on this data on the reliability of specific

circuit structures. Figure 5 shows that the carry-out signals of this standard carry look-

ahead circuit are most fragile when it comes to single- and multiple- faults. However, the

generate and propagate cascade signals are more reliable. Note that, given the design of

the circuit, there are several logic gates shared between the logic paths leading to the

CNX, CNY, and CNZ outputs. Specifically, much of the logic in the CNX logic path is

contained within CNY, and much of that is contained within CNZ. Although there are

therefore more gates and vulnerabilities in the CNZ path over CNY and CNY over CNX,

there are also more opportunities for reconverging fan-out and logical masking to have

effects. This is why the results do not show errors increasing in order between CNX,

CNY, and CNZ. Errors at outputs depend upon the logical masking of a circuit, and

24

under multiple-fault analysis, also the physical layout (i.e., gates that are adjacent and

experience related upsets).

In Figure 6 looking at the output error probabilities, we see that a magnitude-

comparator runs a high risk of giving an unreliable answer when the two input numbers

are different. The ALBo and AGBo output signals have a 30-40% chance of registering

an error when multiple faults occur in the circuit, while the AEBo output signal only

ranges from 10-20%. Observations like these can help circuit designers understand the

weak points in their designs and therefore which circuit functions should be avoided or

selectively hardened against radiation effects.

Individual Benchmark Circuits – Alternative Fault Injection Techniques

 As mentioned earlier, using an XOR glitch model is typical in fault injection

studies, and also allows for succinct data reporting. However, to be more precise, a

particle strike in a circuit will most likely affect either NFETs or PFETs, with only a rare

occurrence of both. Although the focus of this work is on understanding multiple-fault

effects and reconverging fan-out with layout information, two of the test circuits were

also simulated using set-high and set-low models, to further enhance the understanding of

fault behavior in combinational logic. These tests can be examined separately to

understand PFET and NFET strikes individually, or averaged for the entire circuit’s

response, assuming particle strike effects are equally probable in either location.

25

Figure 7: Percentage of input vectors that result in errors seen at an output (PBo, GBo,

CNX, CNY, and CNZ) vs. the number of physically adjacent set-high faults inserted into

the 4-bit carry look-ahead generator circuit at any gate in the circuit. Compare to Figure

5’s XOR model.

Figure 8: Percentage of input vectors that result in errors seen at an output (PBo, GBo,

CNX, CNY, and CNZ) vs. the number of physically adjacent set-low faults inserted into

the 4-bit carry look-ahead generator circuit at any gate in the circuit. Compare to Figure

5’s XOR model.

0%

10%

20%

30%

40%

50%

60%

0 1 2 3 4 5

O
u

tp
u

t
Er

ro
r

Total # of Faults

74182 Probability of Output Error Vs. Number of
Physically Adjacent Upsets: Set-High Faults

PBo

GBo

CNX

CNY

CNZ

0%

10%

20%

30%

40%

50%

60%

0 1 2 3 4 5

O
u

tp
u

t
Er

ro
r

Total # of Faults

74182 Probability of Output Error Vs. Number of
Physically Adjacent Upsets: Set-Low Faults

PBo

GBo

CNX

CNY

CNZ

26

Figure 9: Percentage of input vectors that result in errors seen at an output (PBo, GBo,

CNX, CNY, and CNZ) vs. the number of physically adjacent faults inserted into the 4-bit

carry look-ahead generator circuit at any gate in the circuit. Figures 7 and 8 averaged.

Figures 7 and 8 demonstrate the results of these alternative methods for the 4-bit

carry look-ahead generator, where faults are inserted via set-high and set-low models,

respectively. These results can be compared to each other and with the XOR model

(shown previously in Figure 5) to gain further precision in fault characterization. Notice

that the set-high model presents a much lower chance of error and that the set-low model

presents a higher chance of error, indicating that signals within the circuit tend to be high

rather than low. The XOR glitch model used before gives a moderate response that is in

between both of these cases. While it gives a succinct, reasonable result, generating data

with these set-high and set-low models provide greater precision.

The data of Figures 7 and 8 can be averaged to produce Figure 9, under the

assumption that the likelihood of a particle strike in an NFET region of a circuit is equal

to that in a PFET region. Comparing Figure 9 to Figure 5, the circuit shows similar

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5

O
u

tp
u

t
Er

ro
r

Total # of Faults

74182 Probability of Output Error Vs. Number of
Physically Adjacent Upsets: Set Faults Combined

PBo

GBo

CNX

CNY

CNZ

27

behavior. The three carry outputs are still the least reliable. CNY no longer has a

dramatic decrease in error between single- and dual-fault analyses, but in both figures, it

shows the worst response in single-fault analysis and is surpassed by CNZ for multiple-

fault analysis. In this analysis as well, note that CNX, CNY, and CNZ experience

increasing error rates in that order for multiple-fault analysis, consistent with the fact that

CNX is a subset of CNY and CNY is a subset of CNZ.

Overall, Figure 9 shows lower probabilities of output error given the combined

set-high and set-low models versus the glitch model of Figure 5. But this sort of behavior

depends on both the specific circuit as well as the typical input vectors. Behavior is

similar between the two; just overall levels differ somewhat. To offer another look at this

concept, the 4-bit adder was run through the same analysis.

Figure 10: Percentage of input vectors that result in errors seen at an output (S[3-0] and

C4) vs. the number of physically adjacent set-high faults inserted into the 4-bit adder

circuit at any gate in the circuit. Compare to Figure 4’s XOR model.

0%

10%

20%

30%

40%

50%

60%

0 1 2 3 4 5

O
u

tp
u

t
Er

ro
r

Total # of Faults

74283 Probability of Output Error Vs. Number of
Physically Adjacent Upsets: Set-High Faults

S[0]

S[1]

S[2]

S[3]

C4

28

Figure 11: Percentage of input vectors that result in errors seen at an output (S[3-0] and

C4) vs. the number of physically adjacent set-low faults inserted into the 4-bit adder

circuit at any gate in the circuit. Compare to Figure 4’s XOR model.

Figure 12: Percentage of input vectors that result in errors seen at an output (S[3-0] and

C4) vs. the number of physically adjacent faults inserted into the circuit at any gate in the

4-bit adder circuit. Figures 10 and 11 averaged.

0%

10%

20%

30%

40%

50%

60%

0 1 2 3 4 5

O
u

tp
u

t
Er

ro
r

Total # of Faults

74283 Probability of Output Error Vs. Number of
Physically Adjacent Upsets: Set-Low Faults

S[0]

S[1]

S[2]

S[3]

C4

0%

10%

20%

30%

40%

50%

60%

0 1 2 3 4 5

O
u

tp
u

t
Er

ro
r

Total # of Faults

74283 Probability of Output Error Vs. Number of
Physically Adjacent Upsets: Set Faults Combined

S[0]

S[1]

S[2]

S[3]

C4

29

 Figures 10 and 11 show the set-high and set-low simulation data for the 4-bit

adder circuit. Since this circuit has a very standard design, where outputs depend entirely

on the inputs and do not have a limited range, the signals within the circuit are not

particularly weighted towards being high or low, and the set-high and set-low fault

models correspondingly provide similar results. When averaged together, there are very

similar results between Figure 12 and the earlier Figure 4 that used glitch model data. The

carry output is still most reliable, and S[2] is still least reliable. Error rates are slightly

lower with the set-high/set-low data, but besides that, there are still similar behaviors

shown. Note that high levels of reconvergence are still displayed in this analysis; the C4

output sees a slight decrease in errors seen at that output going from when 2 faults are

injected in the circuit to when 3 faults are injected in the circuit.

 In summary, using set-high and set-low fault models provide a more precise look

at fault generation and propagation in a circuit. However, classic glitch models still

present similar views of circuit behavior, with the added benefit of being able to

characterize the circuit in half the simulation time and model it with half the information.

Hence, simulation data using the glitch fault model will be used for the rest of the

analyses in this thesis.

Individual Benchmark Circuits – Gate-Specific Analysis

All of the figures shown thus far show the change in errors seen at circuit outputs

as it relates to the number of physically adjacent faults injected into the circuit, regardless

of location. This gives circuit designers good insight into the reliability of specific

functions of these circuits. But another interesting angle would be to observe where the

30

injected faults originated from, and therefore which logic gates and which sectors of the

circuit contribute most to reliability concerns.

Figure 13: Percentage of input vectors that result in errors seen at any output of the 4-bit

adder circuit vs. the number of physically adjacent faults inserted into the circuit centered

at each gate output. U32-U43 are individual gates in the circuit, some internal and some

directly connected to circuit outputs as noted.

Figure 13 shows the same data that from earlier in this discussion (Figure 4) for

the 4-bit adder, arranged according to the node where single and multiple-fault testing

was centered. The percentage of tests that result in errors seen at any output for each node

are all collected and averaged, according to how many faults are simulated at a time (1-

5). This collection allows a look at specific sectors of the circuit layout to see how

individual nodes or areas affect reliability. Much of the data show an increasing

probability of output errors with an increasing number of injected faults, but again, this is

0%

10%

20%

30%

40%

50%

60%

70%

U32
NAND

U33
AND

U34
NOR

U35
NOR

U36
AO222

U37
AO222

U38
AO222

C4

U39
NOT

U40
AO222

S[0]

U41
XOR3
S[1]

U42
XOR3
S[2]

U43
XOR3
S[3]

A
ve

ra
ge

 O
u

tp
u

t
Er

ro
r

74283 Probabilities for Node-to-Output Fault Propagation

1

2

3

4

5

31

not always the case. Nodes can experience little change (e.g., U34) or even show

decreasing fault propagation probabilities with an increasing number of injected faults

(e.g., U35), which demonstrates a high level of logical reconvergence.

When a cell is surrounded by logically related cells (e.g., fan-in/fan-out

neighbors), then logical reconvergence may occur under the effect of multiple faults,

presenting more reliable performance than if just one fault was simulated. Alternately, if

a cell is surrounded by unrelated cells, then unrelated faults may propagate through the

entire circuit and not be mitigated at all, worsening the effect on the overall circuit. It is

important to allow for both of these possibilities in a unified analysis such as that

presented here, in order to provide a reasonable picture of how this circuit would function

in an actual design.

One notable feature of the chosen methodology is the way nodes on the boundary

of a design contribute data. Node U39, for example, is located in the corner of the layout

and there is only one adjacent gate. Tests can be run for a single fault or 2 faults

including U39, but not for 3, 4, or 5 faults. In a larger circuit design which uses the 4-bit

adder structure alongside other sub-designs, a particle strike in this location of the chip

would affect the 4-bit adder sector as shown, and the other surrounding structures would

exhibit their own behavior. If these sub-designs interact later in the circuit, this behavior

can be predicted simply by summing the effects of this individual sub-designs. For the

purposes of this testing, the test results for 2 faults at U39 are copied over to 3, 4, and 5

faults to fill out the diagram; this technique should also represent how the circuit would

actually operate as part of a larger design.

32

The data shown in Figure 13 averages together the results of each output equally.

However, of course, injecting faults at gates will result in more errors at some outputs

than at others. To see this behavior more precisely, this graph can be split up to examine

the effects of faults injected centered at each node on each individual output of the

circuit. The results will show that for single-fault testing, only gates within the logic path

of an output contribute to potential errors at that output. Typically, the closer to an output

a logic gate is, the stronger its effect is, as there is less room for logical masking. With

multiple-fault testing, overlapping particle strikes at physically adjacent cells will

contribute to output errors as well. The following graphs demonstrate these ideas for the

4-bit adder circuit.

Figure 14: Percentage of input vectors that result in errors seen at the S[0] output of the

4-bit adder circuit vs. the number of physically adjacent faults inserted into the circuit

centered at each gate output.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

U32
NAND

U33
AND

U34
NOR

U35
NOR

U36
AO222

U37
AO222

U38
AO222

C4

U39
NOT

U40
AO222

S[0]

U41
XOR3
S[1]

U42
XOR3
S[2]

U43
XOR3
S[3]

O
u

tp
u

t
Er

ro
r

74283 Probabilities for Node-to-Output Fault Propagation: S[0]

1

2

3

4

5

33

Figure 15: Percentage of input vectors that result in errors seen at the S[1] output of the

4-bit adder circuit vs. the number of physically adjacent faults inserted into the circuit

centered at each gate output.

Figure 16: Percentage of input vectors that result in errors seen at the S[2] output of the

4-bit adder circuit vs. the number of physically adjacent faults inserted into the circuit

centered at each gate output.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

U32
NAND

U33
AND

U34
NOR

U35
NOR

U36
AO222

U37
AO222

U38
AO222

C4

U39
NOT

U40
AO222

S[0]

U41
XOR3
S[1]

U42
XOR3
S[2]

U43
XOR3
S[3]

O
u

tp
u

t
Er

ro
r

74283 Probabilities for Node-to-Output Fault Propagation: S[1]

1

2

3

4

5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

U32
NAND

U33
AND

U34
NOR

U35
NOR

U36
AO222

U37
AO222

U38
AO222

C4

U39
NOT

U40
AO222

S[0]

U41
XOR3
S[1]

U42
XOR3
S[2]

U43
XOR3
S[3]

O
u

tp
u

t
Er

ro
r

74283 Probabilities for Node-to-Output Fault Propagation: S[2]

1

2

3

4

5

34

Figure 17: Percentage of input vectors that result in errors seen at the S[3] output of the

4-bit adder circuit vs. the number of physically adjacent faults inserted into the circuit

centered at each gate output.

Figure 18: Percentage of input vectors that result in errors seen at the C4 output of the 4-

bit adder circuit vs. the number of physically adjacent faults inserted into the circuit

centered at each gate output.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

U32
NAND

U33
AND

U34
NOR

U35
NOR

U36
AO222

U37
AO222

U38
AO222

C4

U39
NOT

U40
AO222

S[0]

U41
XOR3
S[1]

U42
XOR3
S[2]

U43
XOR3
S[3]

O
u

tp
u

t
Er

ro
r

74283 Probabilities for Node-to-Output Fault Propagation: S[3]

1

2

3

4

5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

U32
NAND

U33
AND

U34
NOR

U35
NOR

U36
AO222

U37
AO222

U38
AO222

C4

U39
NOT

U40
AO222

S[0]

U41
XOR3
S[1]

U42
XOR3
S[2]

U43
XOR3
S[3]

O
u

tp
u

t
Er

ro
r

74283 Probabilities for Node-to-Output Fault Propagation: C4

1

2

3

4

5

35

The preceding five figures (14 through 18) demonstrate the contribution injected

faults centered at each gate in the circuit have to each output. The four sum outputs of

course have similar responses in general, each weighted towards gates in their own

specific logic path. The carry output sees a lower number of logic gates which contribute

greatly to output errors, which was reflected in the overall output error graph (Figure 4)

with a lower probability of errors for C4.

Note how single-fault errors are typically maximized for logic gates within the

logical path of a specific output, then decrease for multiple-fault errors. This indicates the

effect of logical reconvergence. For output S[2], a strike at the output of gates U36 or

U42 will flip that value and cause that output to be incorrect for all cases. But if two or

more faults are injected at this location in the circuit, neighboring upset nodes will

propagate faults through the circuit, and in some cases, these multiple faults will

reconverge and cancel out their effects, leading to a lower chance of error. This effect is

much more pronounced when the data is separated for each circuit output as done here.

Of course, in other cases, multiple faults injected into a circuit are situated such that

reconvergence is unlikely, and the contribution to errors at the chosen output increases.

The next several pages contain Figures 19-24, detailing the per-gate responses for

the 4-bit carry look-ahead generator for average output error and for individual output

error, and Figures 25-28, which presents data organized in the same way for the 4-bit

magnitude comparator. These are larger circuits analyzed with the same method,

producing similar results.

36

Figure 19: Percentage of input vectors that result in errors seen at any output of the 4-bit

carry look-ahead generator circuit vs. the number of physically adjacent faults inserted

into the circuit centered at each gate output.

Figure 20: Percentage of input vectors that result in errors seen at the PBo output of the

4-bit carry look-ahead generator circuit vs. the number of physically adjacent faults

inserted into the circuit centered at each gate output.

0%

10%

20%

30%

40%

50%

60%

70%

U16
NAND

U17
NAND
CNX

U18
NAND

U19
NOT

U20
AND

U21
NAND3

U22
NOT

U23
NOR
CNY

U24
NOT

U25
OAI21

U26
OA21
CNZ

U27
NAND3

U28
OA21
GBo

U29
OR4
PBo

A
ve

ra
ge

 O
u

tp
u

t
Er

ro
r

74182 Probabilities for Node-to-Output Fault Propagation

1

2

3

4

5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

U16
NAND

U17
NAND
CNX

U18
NAND

U19
NOT

U20
AND

U21
NAND3

U22
NOT

U23
NOR
CNY

U24
NOT

U25
OAI21

U26
OA21
CNZ

U27
NAND3

U28
OA21
GBo

U29
OR4
PBo

O
u

tp
u

t
Er

ro
r

74182 Probabilities for Node-to-Output Fault Propagation: PBo

1

2

3

4

5

37

Figure 21: Percentage of input vectors that result in errors seen at the GBo output of the

4-bit carry look-ahead generator circuit vs. the number of physically adjacent faults

inserted into the circuit centered at each gate output.

Figure 22: Percentage of input vectors that result in errors seen at the CNX output of the

4-bit carry look-ahead generator circuit vs. the number of physically adjacent faults

inserted into the circuit centered at each gate output.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

U16
NAND

U17
NAND
CNX

U18
NAND

U19
NOT

U20
AND

U21
NAND3

U22
NOT

U23
NOR
CNY

U24
NOT

U25
OAI21

U26
OA21
CNZ

U27
NAND3

U28
OA21
GBo

U29
OR4
PBo

O
u

tp
u

t
Er

ro
r

74182 Probabilities for Node-to-Output Fault Propagation: GBo

1

2

3

4

5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

U16
NAND

U17
NAND
CNX

U18
NAND

U19
NOT

U20
AND

U21
NAND3

U22
NOT

U23
NOR
CNY

U24
NOT

U25
OAI21

U26
OA21
CNZ

U27
NAND3

U28
OA21
GBo

U29
OR4
PBo

O
u

tp
u

t
Er

ro
r

74182 Probabilities for Node-to-Output Fault Propagation: CNX

1

2

3

4

5

38

Figure 23: Percentage of input vectors that result in errors seen at the CNY output of the

4-bit carry look-ahead generator circuit vs. the number of physically adjacent faults

inserted into the circuit centered at each gate output.

Figure 24: Percentage of input vectors that result in errors seen at the CNZ output of the

4-bit carry look-ahead generator circuit vs. the number of physically adjacent faults

inserted into the circuit centered at each gate output.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

U16
NAND

U17
NAND
CNX

U18
NAND

U19
NOT

U20
AND

U21
NAND3

U22
NOT

U23
NOR
CNY

U24
NOT

U25
OAI21

U26
OA21
CNZ

U27
NAND3

U28
OA21
GBo

U29
OR4
PBo

O
u

tp
u

t
Er

ro
r

74182 Probabilities for Node-to-Output Fault Propagation: CNY

1

2

3

4

5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

U16
NAND

U17
NAND
CNX

U18
NAND

U19
NOT

U20
AND

U21
NAND3

U22
NOT

U23
NOR
CNY

U24
NOT

U25
OAI21

U26
OA21
CNZ

U27
NAND3

U28
OA21
GBo

U29
OR4
PBo

O
u

tp
u

t
Er

ro
r

74182 Probabilities for Node-to-Output Fault Propagation: CNZ

1

2

3

4

5

39

Figure 25: Percentage of input vectors that result in errors seen at any output of the 4-bit

magnitude comparator circuit vs. the number of physically adjacent faults inserted into

the circuit centered at each gate output.

Figure 26: Percentage of input vectors that result in errors seen at the ALBo output of the

4-bit magnitude comparator circuit vs. the number of physically adjacent faults inserted

into the circuit centered at each gate output.

0%

10%

20%

30%

40%

50%

60%

70%

80%

A
ve

ra
ge

 O
u

tp
u

t
Er

ro
r

74L85 Probabilities for Node-to-Output Fault Propagation

1

2

3

4

5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

O
u

tp
u

t
Er

ro
r

74L85 Probabilities for Node-to-Output Fault Propagation: ALBo

1

2

3

4

5

40

Figure 27: Percentage of input vectors that result in errors seen at the AGBo output of the

4-bit magnitude comparator circuit vs. the number of physically adjacent faults inserted

into the circuit centered at each gate output.

Figure 28: Percentage of input vectors that result in errors seen at the AEBo output of the

4-bit magnitude comparator circuit vs. the number of physically adjacent faults inserted

into the circuit centered at each gate output.

0%
10%
20%

30%
40%
50%
60%
70%
80%
90%

100%

O
u

tp
u

t
Er

ro
r

74L85 Probabilities for Node-to-Output Fault Propagation: AGBo

1

2

3

4

5

0%
10%
20%

30%
40%
50%
60%

70%
80%
90%

100%

O
u

tp
u

t
Er

ro
r

74L85 Probabilities for Node-to-Output Fault Propagation: AEBo

1

2

3

4

5

41

Traditional reliability analysis assumes that decreasing feature size, allowing for

an increasing number of affected nodes in a local area due to a single strike, would result

in an increasing number of errors. But this is not always the case – some nodes exhibit

similar behavior in single and multiple faults (e.g., 74182 U20, U21, U23, U26; 74L85

U52 for average output error), or are even less volatile under multiple faults (e.g., 74182

U22, 74L85 U49 for average output error). The analysis done here to produce the graphs

on the last several pages explicitly show circuit designers which gates and sections of the

circuit they need to worry about most when guaranteeing the reliability of specific

functions of a circuit.

Rather than hardening an entire circuit to multiple-fault effects, this analysis

provides the possibility of hardening only select gates, minimizing speed and area

penalties while gaining significant reliability benefits. For example, if a circuit designer

wanted to harden the AEBo logic path for the 4-bit magnitude comparator against

multiple-fault effects, Figure 28 could be generated and utilized. Selectively hardening

the U25, U45, U48, and U50 gates would make the AEBo logic path almost invulnerable

to single-event errors, at only a slight cost as compared to hardening all 28 gates in the

circuit. Similar operations could be performed on the 4-bit carry look-ahead generator

given Figures 20-25.

 While the 4-bit carry look-ahead generator circuit is still small, the 4-bit

magnitude comparator is barely tenable for observing gate-specific results. There are still

only 28 nodes considered, but it is difficult to aggregate this data into a form that is useful

for analysis. Regardless, it is important to look at a variety of circuits of different sizes in

order to see how reliability characteristics may change according to variables such as

42

circuit size and function. For example, here the function of these two circuits can be

compared. The 4-bit magnitude comparator uses two modified 4-bit carry generators in

its netlist for the AGBo and ALBo output alongside just a few more supporting logic

gates for the AEBo output. Understandably, the AGBo and ALBo logic paths exhibit

similar reliability, while the AEBo logic path has entirely different behavior.

The 4-bit adder circuit observed earlier (Figure 13) uses one modified 4-bit carry

generator (Figure 19), but it also has a large number of other logic gates in its design.

When synthesized, this produces an entirely different circuit that therefore behaves much

differently when under strain of multiple-fault testing. Most of the output errors for this

circuit are at approximately the 30-40% level when averaging together all output errors.

 This work culminated with the analysis of a larger, general-purpose circuit, the 4-

bit ALU. This circuit consists of 16 logic functions that operate on the 4-bit input

numbers A and B. Given the economized design of this circuit as well as the further

simplifying effects of synthesis, this circuit provides a good demonstration of logical

interconnect among cells as well as many examples of separated logic paths.

 The relevant data for this circuit are shown in Figures 29 and 30. As this is a

significantly larger circuit than the others selected, there is a more reasonable, smoothed

response in the final data sets. While data from Figure 30 were separated to show the

response for each individual logic path, those figures are not included here since this

analysis has already been shown for the other circuits. These figures serve the same

usefulness as described earlier, for circuit designers to use in selectively hardening logic

paths for individual circuit designs.

43

Figure 29: Percentage of input vectors that result in errors seen at an output (F[3-0], X, Y,

CN4b, and AEB) vs. the number of physically adjacent faults inserted into the circuit at

any gate in the circuit.

Figure 30: Percentage of input vectors that result in errors seen at any output of the 4-bit

ALU circuit vs. the number of physically adjacent faults inserted into the circuit centered

at each gate output.

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5

O
u

tp
u

t
Er

ro
r

Total # of Faults

74181 Probability of Output Error Vs.
Number of Physically Adjacent Faults

F[0]

F[1]

F[2]

F[3]

X

Y

CN4b

AEB

0%

10%

20%

30%

40%

50%

60%

U
4

4 N
A

N
D

U
4

5 N
A

N
D

U
4

6 N
A

N
D

U
4

7 N
A

N
D

U
4

8 N
A

N
D

U
4

9 N
A

N
D

U
5

0 N
A

N
D

U
5

1 N
O

T
U

5
2 N

O
T

U
5

3 N
O

T
U

5
4 A

O
2

2
1

U
5

5 N
O

T
U

5
6 O

A
2

2
1

U
5

7 N
O

T
U

5
8 N

O
T

U
5

9 O
A

2
2

1
U

6
0 A

O
2

2
1

U
6

1 O
A

2
1

U
6

2 O
A

I2
2

1
U

6
3 A

O
2

2
1

U
6

4 O
A

2
1

U
6

5 A
O

2
2

1
U

6
6 N

O
T

U
6

7 A
O

2
2

1
U

6
8 O

A
2

2
1

U
6

9 N
O

T
U

7
0 X

N
O

R
U

7
1 A

O
2

2
1

U
7

2 X
N

O
R

U
7

3 N
O

T
U

7
4 N

A
N

D
3

U
7

5 X
N

O
R

U
7

6 N
O

R
U

7
7 X

O
R

U
7

8 A
N

D
4

U
7

9 N
A

N
D

4
U

8
0 O

A
2

1
U

8
1 O

A
2

1
U

8
2 O

A
I2

1

74181 Probabilities for Node-to-Output Fault Propagation

1 2 3 4 5

44

 Figure 29 shows an even response in the output error seen due to faults within the

circuit. As these are averaged for a large number of nodes (39), every output continually

sees an increase in error as simulations progress from single faults to 2, 3, 4, and 5

simultaneous adjacent faults. Again, these results are asymptotic; the most egregious

errors are seen with single faults, while multiple faults increase the overall output error

seen comparably less for each additional fault. Meanwhile, the data in Figure 30 present a

more detailed look at the individual gate responses. These results continue to stress the

important of analyzing each circuit on its own rather than operating simply on statements

made about logic as a whole. Some gates show very low error propagation rates or rates

that change very little as multiple upsets occur. Most are highly sensitive to the effects of

multiple fault testing. Ideally, a tool would be created and utilized for easily examining

every design sent to manufacturing, but that is beyond the scope of this work. However,

there are several overall analyses that can be safely made.

Overall Analyses

This work intends to analyze several circuits and display the results, to show the

general idea of what occurs under multiple upsets. But aside from this analytical aim, the

possibilities of new circuit design methods become apparent. If some nodes are more

resistant than others to multiple fault propagation, then this fact could theoretically be

leveraged in other designs. Similar logic structures may operate similarly, giving rise to

an overall circuit design that is more reliable to multiple events.

45

Table 2: Gate-specific data showing average output error probability change for each step

in upset coverage

Gate

Tested
Average Error

Increase Per Step (%) StDev

NAND 25 4.95 2.86

AND 3 5.10 4.47

NOT 19 4.52 4.12

OR 4 4.28 5.60

NOR 9 2.13 3.02

XOR/XNOR 8 5.20 2.22

OA/AO/OAI 24 4.85 2.99

A more specific analysis demonstrates this idea on a more fundamental level. To

produce Table 2, the slope for each node in Figures 13, 19, 25, and 30 is calculated, then

an average and standard deviation for each gate type present in these three circuits is

calculated. More data would be necessary for higher confidence in these values, but there

are some restrained suggestions to make based upon these results. For example, NOR

gates seem to be more resistant to larger numbers of errors than the rest of the gates

shown. However, the other gates all present averages at around the same point, and

standard deviations are comparably very large. This table makes it clear that this study

cannot make conclusions about reliability based purely on gates – larger logical structures

such as the benchmark circuits in the preceding section of this thesis or even larger

standardized circuits will have their own characteristics. The way that logic gates are

used in a circuit determines their reliability behavior, rather than being inherent to the

gates themselves.

Instead of looking at specific logic structures, the data can be categorized based

on connection between cells. The characteristic that most seriously dictates the gravity of

46

errors due to multiple faults is whether or not these faults originate in cells that are

logically connected. If two cells are logically connected and both register a fault, then

reconverging fan-out may cancel out both faults. If the two cells are in separate logic

paths, then the faults will operate like separate events and cause significantly more effects

in the circuit. Figure 31 demonstrates this principle by looking at all 4 circuits examined

separately above.

Figure 31: Aggregated analysis of logically connected and separated cells, based on data

from tests simulating two simultaneous adjacent faults.

 To produce this graph, the simulations run with two injected faults were

reorganized based on logical connections between cells. If a simulation produced an error

at an output, then the two logic gates where faults were injected were examined. If one

gate propagates into the other, then the two are in the same logic path and are labeled

“logically connected.” If the two gates produce signals that never interact, then they are

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

7
4

1
8

2
 P

B
o

7
4

1
8

2
 G

B
o

7
4

1
8

2
 C

N
X

7
4

1
8

2
 C

N
Y

7
4

1
8

2
 C

N
Z

7
4

2
8

3
 S

[0
]

7
4

2
8

3
 S

[1
]

7
4

2
8

3
 S

[2
]

7
4

2
8

3
 S

[3
]

7
4

2
8

3
 C

4

7
4

L8
5

 A
LB

o

7
4

L8
5

 A
G

B
o

7
4

L8
5

 A
EB

o

7
4

1
8

1
 F

[0
]

7
4

1
8

1
 F

[1
]

7
4

1
8

1
 F

[2
]

7
4

1
8

1
 F

[3
]

7
4

1
8

1
 X

7
4

1
8

1
 Y

7
4

1
8

1
 C

N
4

b

7
4

1
8

1
 A

EB

P
e
rc

e
n

t
o

f
O

u
tp

u
t

E
rr

o
rs

Percentage of Output Errors Vs. Logical Cell Connections

Logically Connected Cells Logically Separated Cells

47

“logically separated.” Twenty-one different circuit logic paths are shown, and of these,

only 3 exhibit a greater percentage of errors due to logically connected faults. In other

words, 86% of the time when multiple faults occur, faults in separated logic paths

contribute more to overall circuit errors than those that are logically connected. This is an

important observation. If a circuit designer can guarantee that physically adjacent cells

are also logically connected, then particle strikes in this region of a circuit that induce

faults have the potential of canceling out each other’s effects. This will raise the level of

reconvergence and therefore increase the reliability of the circuit. If this methodology is

not considered and physically adjacent cells in a layout are not logically connected, then

reconvergence is not possible, and output error will only increase under multiple-fault

events.

48

CHAPTER VI

CONCLUSION

Several fundamental circuits were chosen in this work and processed with typical

circuit synthesis. The layout information was used in conjunction with the circuits to

perform realistic simulations of multiple transients caused by a single particle strike. The

data show that, in opposition to traditional analysis, simulating single faults in a circuit is

not sufficient to characterize the circuit. Typically, the probability of an error occurring

increases significantly with multiple transient faults, but there are methods to mitigate or

even negate this effect. Today’s technology nodes require deeper analysis of these

multiple errors. Specific design methods may help to absorb the impact of multiple-

transient errors, or even to provide better reliability in comparison to the single fault

model. Reliability-aware design will enable circuit designers to make more informed

decisions and produce more dependable circuits.

It is already possible to make several conclusions about reliability under multi-

fault analysis given the data from this thesis. The circuits examined herein each have

their own systems of behavior, which can be used to predict their reliability contribution

when referenced in larger designs overall. In general, this thesis’ analysis shows that the

effects of reconverging fan-out are significant under the effects of multiple upsets, and

that circuits which are designed based on this principle will see better reliability behavior.

Specific gates do not inherently have better characteristics than others, but certain circuit

modules and design philosophies will contribute to the overall behavior of a design.

49

The collection of the data presented here is the formational step for analysis

planned in the field of reliability. Further extensions of this work would include

collecting data for larger benchmark circuits, such as those in the ISCAS85 suite. These

data can be combined with what has already been collected to further support the

observations reported within this thesis and offer more practical application of this

analysis.

When aggregated properly, the data already collected and that from the larger

circuits will be able to present more information regarding circuit design. It is anticipated

that these data will allow further conclusions to be drawn about reliability based on gates

as well as specific design methods. If certain settings are chosen during design synthesis

(i.e., area minimization versus power minimization, manual layout placement, alternate

routing selections), these characteristics could affect reliability as well.

Lastly, given that the methodology of this work is already highly systemized and

follows a specific formula for every circuit, it should be possible to establish a framework

for automatically analyzing circuits and producing detailed reliability information,

perhaps in the form of a simple-to-use application. This aim is on the order of a full-scale

application for commercial or academic uses, but is a future aspiration nonetheless.

50

APPENDIX A

SYNOPSYS 90-NM LIBRARY

The chosen library for this work is the Synopsys 90-nm Generic Library [30]. The

choice of library is not entirely important for this thesis, except that it is compatible with

the EDA tools and uses gates that are realistically sized in comparison with one another.

However, the Synopsys 90-nm Generic Library still presents a full suite of information to

allow its use in a variety of environments, and is particularly suited for Synopsys tools

and designs optimized for low power.

Of most interest for this work is the digital standard cell library portion. This

contains 340 logic cells, both combinational and sequential. A variety of gates is used in

this thesis, including AND, OR, INV gates and a variety of OR-AND combinations.

Higher-order designs, such as multiplexers, adders, or other complex blocks are not

permitted in the Design Compiler synthesis process, since these are ultimately composed

of simpler gates. When multiple upsets occur in physical operation, they will affect a

small area. By inserting upsets in small gates, this work ensures that multiple upsets are

reasonable to occur.

The original 74XXX code taken from the University of Michigan suite [28] uses

generic language for logic gates. A selection of individual gates used from the Synopsys

library is given in the following table, along with a general description of the operation of

each gate:

51

Table 4: Synopsys 90-nm Generic Library standard gates

Synopsys Cell Name Purpose

INVX0 Inverter

NAND2X0 2-input NAND

NAND3X0 3-input NAND

NAND4X0 4-input NAND

NOR2X0 2-input NOR

OR2X1 2-input OR

OR3X1 3-input OR

OR4X1 4-input OR

AND2X1 2-input AND

AND3X1 3-input AND

AND4X1 4-input AND

XOR2X1 2-input XOR

XOR3X1 3-input XOR

XNOR2X1 2-input XNOR

OA21X1 OR-AND 2/1

OA22X1 OR-AND 2/2

OA221X1 OR-AND 2/2/1

OAI21X1 OR-AND-Invert 2/1

OAI221X1 OR-AND-Invert 2/2/1

AO22X1 AND-OR 2/1

AO221X1 AND-OR 2/2/1

AO222X1 AND-OR 2/2/2

52

APPENDIX B

XOR FAULT INJECTION VERILOG MODEL

 In order to inject faults into a circuit in ModelSim, the Verilog code has to be

modified to include additional input lines to trigger specific nodes. Therefore, each circuit

should be modified so that a fault can be artificially inserted at the output of each gate.

An inserted fault could take the form of a flipped value, stuck-low, or stuck-high value;

the primary simulations in this thesis use the flipped model - this would be the result of a

physical occurrence called a “glitch.” The original 74XXX code is taken from the

University of Michigan suite and synthesized through Synopsys Design Compiler. To

prepare for fault insertion, each circuit must be modified from the resultant gate-level

netlist in Verilog to insert a 2-input XOR gate at each internal node, as well as just before

each output. Faults are not allowed to be inserted at input nodes in this testing, as each

circuit is considered unto itself rather than as part of a larger overall design. The Verilog

files are taken from the “mapped” directory (Design Compiler output) and the following

changes are made:

1) Replace each internal signal n# with n#i and n#o and add a signal for each output

2) Add an input X# for each original internal node and each output

3) Update the inputs and outputs for gates in the code to reflect the new internal signals

4) Add XOR gates to the end of the code, tying together the new inputs and new internal

signals

5) Add more XOR gates which connect the new output internal nodes with the outputs

53

With the size of the 74XXX benchmark circuits, these changes are made

relatively easily by hand. If work were to proceed to the ISCAS85 circuits, Python will

need to be used to ensure that errors in translating the circuit do not occur. An easy way

to check for errors, regardless of code transformation method, is to run the regular code

(with no XOR gates) and the transformed code both in ModelSim, and compare the

results when all fault injection inputs are set to 0. This step was taken for each circuit to

ensure that no errors had been made.

As an example of this code transformation, a small circuit, the 4-bit adder, is

shown below. First, the “regular” output of Design Compiler:

module Circuit74283 (C0, A, B, S, C4);

 input [3:0] A;

 input [3:0] B;

 output [3:0] S;

 input C0;

 output C4;

 wire \Ckt74283/C[0] , n27, n28, n29, n30, n31, n32, n33;

 assign \Ckt74283/C[0] = C0;

 NOR2X0 U32 (.IN1(A[0]), .IN2(B[0]), .QN(n29));

 AND2X1 U33 (.IN1(A[0]), .IN2(B[0]), .Q(n30));

 NOR2X0 U34 (.IN1(\Ckt74283/C[0]), .IN2(n30), .QN(n27));

 NOR2X0 U35 (.IN1(n29), .IN2(n27), .QN(n31));

 AO222X1 U36 (.IN1(A[1]), .IN2(B[1]), .IN3(A[1]), .IN4(n31),

.IN5(B[1]),

 .IN6(n31), .Q(n32));

 AO222X1 U37 (.IN1(A[2]), .IN2(B[2]), .IN3(A[2]), .IN4(n32),

.IN5(B[2]),

 .IN6(n32), .Q(n33));

 AO222X1 U38 (.IN1(B[3]), .IN2(A[3]), .IN3(B[3]), .IN4(n33),

.IN5(A[3]),

 .IN6(n33), .Q(C4));

 INVX0 U39 (.IN(n29), .QN(n28));

 AO222X1 U40 (.IN1(\Ckt74283/C[0]), .IN2(n30),

.IN3(\Ckt74283/C[0]), .IN4(

 n29), .IN5(n28), .IN6(n27), .Q(S[0]));

 XOR3X1 U41 (.IN1(A[1]), .IN2(B[1]), .IN3(n31), .Q(S[1]));

 XOR3X1 U42 (.IN1(B[2]), .IN2(A[2]), .IN3(n32), .Q(S[2]));

 XOR3X1 U43 (.IN1(B[3]), .IN2(A[3]), .IN3(n33), .Q(S[3]));

endmodule

54

 Then, the code after it has been modified to allow fault injection:

module Circuit74283x (C0, X, A, B, S, C4);

 input [3:0] A;

 input [3:0] B;

 input [11:0] X;

 output [3:0] S;

 input C0;

 output C4;

 wire \Ckt74283x/C[0] , n27i, n27o, n28i, n28o, n29i, n29o,

n30i, n30o, n31i, n31o, n32i, n32o, n33i, n33o, s0i, s1i, s2i,

s3i, c4i;

 assign \Ckt74283x/C[0] = C0;

 NOR2X0 U32 (.IN1(A[0]), .IN2(B[0]), .QN(n29i));

 AND2X1 U33 (.IN1(A[0]), .IN2(B[0]), .Q(n30i));

 NOR2X0 U34 (.IN1(\Ckt74283x/C[0]), .IN2(n30o), .QN(n27i));

 NOR2X0 U35 (.IN1(n29o), .IN2(n27o), .QN(n31i));

 AO222X1 U36 (.IN1(A[1]), .IN2(B[1]), .IN3(A[1]), .IN4(n31o),

.IN5(B[1]),

 .IN6(n31o), .Q(n32i));

 AO222X1 U37 (.IN1(A[2]), .IN2(B[2]), .IN3(A[2]), .IN4(n32o),

.IN5(B[2]),

 .IN6(n32o), .Q(n33i));

 AO222X1 U38 (.IN1(B[3]), .IN2(A[3]), .IN3(B[3]), .IN4(n33o),

.IN5(A[3]),

 .IN6(n33o), .Q(c4i));

 INVX0 U39 (.IN(n29o), .QN(n28i));

 AO222X1 U40 (.IN1(\Ckt74283x/C[0]), .IN2(n30o),

.IN3(\Ckt74283x/C[0]), .IN4(

 n29o), .IN5(n28o), .IN6(n27o), .Q(s0i));

 XOR3X1 U41 (.IN1(A[1]), .IN2(B[1]), .IN3(n31o), .Q(s1i));

 XOR3X1 U42 (.IN1(B[2]), .IN2(A[2]), .IN3(n32o), .Q(s2i));

 XOR3X1 U43 (.IN1(B[3]), .IN2(A[3]), .IN3(n33o), .Q(s3i));

 XOR2X1 U44 (.IN1(n27i), .IN2(X[0]), .Q(n27o));

 XOR2X1 U45 (.IN1(n28i), .IN2(X[1]), .Q(n28o));

 XOR2X1 U46 (.IN1(n29i), .IN2(X[2]), .Q(n29o));

 XOR2X1 U47 (.IN1(n30i), .IN2(X[3]), .Q(n30o));

 XOR2X1 U48 (.IN1(n31i), .IN2(X[4]), .Q(n31o));

 XOR2X1 U49 (.IN1(n32i), .IN2(X[5]), .Q(n32o));

 XOR2X1 U50 (.IN1(n33i), .IN2(X[6]), .Q(n33o));

 XOR2X1 U51 (.IN1(s0i), .IN2(X[7]), .Q(S[0]));

 XOR2X1 U52 (.IN1(s1i), .IN2(X[8]), .Q(S[1]));

 XOR2X1 U53 (.IN1(s2i), .IN2(X[9]), .Q(S[2]));

 XOR2X1 U54 (.IN1(s3i), .IN2(X[10]), .Q(S[3]));

 XOR2X1 U55 (.IN1(c4i), .IN2(X[11]), .Q(C4));

endmodule

55

REFERENCES

[1] J. F. Ziegler, H. W. Curtis, F. P. Muhlfeld, C. J. Montrose, B. Chin, M. Nicewicz, C.

A. Russell, W. Y. Wang, L. B. Freeman, P. Hosier, L. E. LaFave, J. L. Walsh, J. M.

Orro, G. J. Unger, J. M. Ross, T. J. O'Gorman, B. Messina, T. D. Sullivan, A. J.

Sykes, H. Yourke, T. A. Enger, V. Tolat, T. S. Scott, A. H. Taber, R. J. Sussman, W.

A. Klein, and C. W. Wahaus, "IBM experiments in soft fails in computer electronics

(1978-1994)," IBM Journal of Research and Development, vol. 40, pp. 3-18, 1996.

[2] P. E. Dodd and L. W. Massengill, "Basic mechanisms and modeling of single-event

upset in digital microelectronics," IEEE Transactions on Nuclear Science, vol. 50,

pp. 583-602, 2003.

[3] N. N. Mahatme, S. Jagannathan, T. D. Loveless, L. W. Massengill, B. L. Bhuva, S. J.

Wen, and R. Wong, "Comparison of combinational and sequential error rates for a

deep submicron process," IEEE Transactions on Nuclear Science, vol. 58, pp. 2719-

2725, 2011.

[4] G. De Micheli, Synthesis and optimization of digital circuits. New York: McGraw-

Hill, 1994.

[5] O. A. Amusan, A. F. Witulski, L. W. Massengill, B. L. Bhuva, P. R. Fleming, M. L.

Alles, A. L. Sternberg, J. D. Black, and R. D. Schrimpf, "Charge collection and

charge sharing in a 130 nm CMOS technology," IEEE Transactions on Nuclear

Science, vol. 53, pp. 3253-3258, 2006.

[6] J. D. Black, D. R. Ball II, W. H. Robinson, D. M. Fleetwood, R. D. Schrimpf, R. A.

Reed, D. A. Black, K. M. Warren, A. D. Tipton, P. E. Dodd, N. F. Haddad, M. A.

Xapsos, H. S. Kim, and M. Friendlich, "Characterizing SRAM single event upset in

terms of single and multiple node charge collection," IEEE Transactions on Nuclear

Science, vol. 55, pp. 2943-2947, 2008.

[7] R. Harada, Y. Mitsuyama, M. Hashimoto, and T. Onoye, “Neutron induced single

event multiple transients with voltage scaling and body biasing,” 2011 International

Reliability Physics Symposium, pp. 3C.4.1-3C.4.5, April 2011.

[8] R. Velazco, S. Rezgui, and R. Ecoffet, "Predicting error rate for microprocessor-

based digital architectures through C.E.U. (Code Emulating Upsets) injection," IEEE

Transactions on Nuclear Science, vol. 47, pp. 2405-11, 2000.

[9] G. P. Saggese, N. J. Wang, Z. T. Kalbarczyk, S. J. Patel, and R. K. Iyer, "An

experimental study of soft errors in microprocessors," IEEE Micro, vol. 25, pp. 30-

39, 2005.

[10] C. T. Toomey, B. D. Sierawski, A. Sternberg, D. B. Limbrick, B. L. Bhuva, L. W.

Massengill, W. H. Robinson, S.-J. Wen, R. Wong, and S. Martin, "Statistical fault

56

injection and analysis at the register transfer level using the Verilog Procedural

Interface," in 36th Annual Government Microcircuit Applications and Critical

Technology Conference (GOMACTech 2011), Orlando, FL, 2011.

[11] R. C. Baumann, "Radiation-induced soft errors in advanced semiconductor

technologies," IEEE Transactions on Device and Materials Reliability, vol. 5, pp.

305-316, 2005.

[12] R. K. Iyer, N. M. Nakka, Z. T. Kalbarczyk, S. Mitra, "Recent advances and new

avenues in hardware-level reliability support," IEEE Micro, vol.25, no.6, pp. 18- 29,

Nov.-Dec. 2005.

[13] V. Srinivasan, A. L. Sternberg, A. R. Duncan, W. H. Robinson, B. L. Bhuva, and L.

W. Massengill, "Single-event mitigation in combinational logic using targeted data

path hardening," IEEE Transactions on Nuclear Science, vol. 52, pp. 2516-2523,

2005.

[14] D. B. Limbrick, D. A. Black, K. Dick, N. M. Atkinson, N. J. Gaspard, J. D. Black,

W. H. Robinson, A. F. Witulski, "Impact of logic synthesis on soft error

vulnerability using a 90-nm bulk CMOS digital cell library," 2011 Proceedings of

IEEE Southeastcon, pp.430-434, 17-20 March 2011.

[15] D. G. Mavis, P. H. Eaton, "Soft error rate mitigation techniques for modern

microcircuits," 40th Annual Reliability Physics Symposium Proceedings, pp. 216-

225, 2002.

[16] H. S. Deogun, D. Sylvester, D. Blaauw, "Gate-level mitigation techniques for

neutron-induced soft error rate," 6th International Symposium on Quality of

Electronic Design, pp. 175- 180, 21-23 March 2005.

[17] R. Baumann, “The impact of technology scaling on soft error rate performance and

limits to the efficacy of error correction,” in IEDM Technical Digest, pp. 329–332,

2002.

[18] S. Buchner, M. Baze, D. Brown, D. McMorrow, and J. Melinger., “Comparison of

error rates in combinational and sequential logic.” IEEE Transactions on Nuclear

Science, 44(6):2209–2216, December 1997.

[19] N. Miskov-Zivanov, D. Marculescu, "MARS-S: Modeling and Reduction of Soft

Errors in Sequential Circuits," 8th International Symposium on Quality Electronic

Design, pp.893-898, 26-28 March 2007.

[20] G. Asadi and M. B. Tahoori, “An analytical approach for soft error rate estimation of

SRAM-based FPGAs”, presented at the 2004 Military and Aerospace

Programmable Logic Devices Conference (MAPLD), 2004.

57

[21] Z. Wo and I. Koren, "Technology mapping for reliability enhancement in logic

synthesis," 6th International Symposium on Quality of Electronic Design, pp. 137-

142, 21-23 March 2005.

[22] N. Miskov-Zivanov and D. Marculescu, “Multiple transient faults in combinational

and sequential circuits: a systematic approach,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 29, pp. 1614-1627, 2010.

[23] M. C. Casey, A. R. Duncan, B. L. Bhuva, W. H. Robinson, and L. W. Massengill,

“Simulation study on the effect of multiple node charge collection on error cross-

section in CMOS sequential logic,” IEEE Transactions on Nuclear Science, vol. 55,

pp. 3136–3140, 2008.

[24] N. Miskov-Zivanov and D. Marculescu, “A systematic approach to modeling and

analysis of transient faults in logic circuits,” in 10th International Symposium on

Quality Electronic Design, 2009, pp. 408-413.

[25] "IEEE Standard VHDL Language Reference Manual," IEEE Standard 1076-2008

(Revision of IEEE Standard 1076-2002), pp. c1-626, Jan. 26 2009.

[26] "IEEE Standard for Verilog Hardware Description Language," IEEE Standard 1364-

2005 (Revision of IEEE Standard 1364-2001), pp. 0_1-560, 2006.

[27] D. B. Limbrick, S. Yue, W. H. Robinson, and B. L. Bhuva, "Impact of synthesis

constraints on error propagation probability of digital circuits," in 2011 IEEE

International Symposium on Defect and Fault Tolerance in VLSI and

Nanotechnology Systems (DFT), Vancouver, Canada, 2011, pp. 103-111.

[28] ISCAS85 High Level Models. Available: http://www.eecs.umich.edu/~jhayes/iscas

/benchmark.html

[29] Synopsys. Synopsys TetraMAX ATPG. Available: http://www.synopsys.com/Tools/

Implementation/RTLSynthesis/Pages/TetraMAXATPG.aspx

[30] Synopsys. Synopsys University Program. Available: http://www.synopsys.com

/Community/UniversityProgram/Pages/default.aspx

[31] K. Dick, “Fault de-interleaving for reliability in high-speed circuits,” in Electrical

Engineering, Master of Science, Nashville, TN: Vanderbilt University, 2010.

[32] ModelSim - Advanced Simulation and Debugging. Available: http://model.com/

[33] J. L. A. Hughes and E. J. McCluskey, "An analysis of the multiple fault detection

capabilities of single stuck-at fault test sets," presented at the 1984 International Test

Conference on the Three Faces of Test: Design, Characterization, Production,

Philadelphia, PA, 1984.

http://www.eecs.umich.edu/~jhayes/iscas%20/benchmark.h
http://www.eecs.umich.edu/~jhayes/iscas%20/benchmark.h
http://www.synopsys.com/
http://model.com/

