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SUMMARY

Systems biology is an emerging field of study that seeks to provide systems-level

understanding of biological systems through the integration of high-throughput biological

data into predictive computational models. The integrative nature of this field is in sharp

contrast as compared to the Reductionist methods that have been employed since the advent

of molecular biology. Systems biology investigates not only the individual components of

the biological system, such as metabolic pathways, organelles, and signaling cascades, but

also considers the relationships and interactions between the components in the hope that

an understandable model of the entire system can eventually be developed. This field

of study is being hailed by experts as a potential vital technology in revolutionizing the

pharmaceutical development process in the post-genomic era.

This work not only provides a systems biology investigation into principles governing

de novo sphingolipid metabolism but also the various computational obstacles that are

present in converting high-throughput data into an insightful model. First, the work lays

out the basics of the remaining work in a comprehensive introduction. The components

of this introduction include the following: systems biology’s previous studies as well as

the potential the future of field holds are explored, the basics of simple chemical reactions

as well as established enzymatic reaction models are presented, a brief survey into the

elementary concepts of sphingolipids is provided, and basics of the optimization methods

employed are discussed. Secondly, a computational framework is set up to accommodate

the parameter selection and simulation of a model created from experimental results. The

third chapter investigates the validation of the framework with simulated data. Chapter

four compares numerical integration schemes on various test problems to determine which

numerical integration method is most ideal in solving systems biology problems. The fifth

chapter examines the potential use of high performance computing techniques to enhance

the previous efforts. Finally, all of the previously mentioned techniques are combined to

xv



prepare a case study that investigates a biochemical model, which accurately models both

the normal state of sphingolipid synthesis in human embryonic kidney cells and the abnormal

state in cells created by over-expressing a necessary enzyme, serine palmitoyl transferase.
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CHAPTER I

INTRODUCTION

The introductory chapter discusses four major topics. First, the motivations and objectives

of systems biology are discussed. This section includes a short history of how and why

systems biology came into existence as well as a glance at previous work in the field. The

second section investigates the basic principles of sphingolipids and their de novo synthesis

pathways, which are used as a proof of concept biological system throughout the work.

The third section examines common mathematical models used in modeling the enzymatic

reactions that are commonplace in systems biology. The fourth section introduces various

optimization schemes that are used throughout the remaining chapters.

1.1 Systems Biology Background and Previous Work

1.1.1 Why the time for Systems Biology is Now?

As genetics has progressed from Mendel’s time until today, more evidence suggests that

complex networks rather than single gene expression are responsible for determining phe-

notype [7]. Not only have large-scale biological network simulations been created but they

have also shown non-intuitive biological insights in areas such as bifurcation analysis of the

cell cycle and metabolic analysis [9, 65, 66]. When these insights have been experimentally

examined, the simulations were consistent with experimental data [21].

Recent advances in genetics, most notably the completion of the human genome project,

have fueled an interest in genetic disposition as the root of many diseases. Several of biotech-

nology’s latest high throughput procedures, such as DNA microarrays, have made through

genetic screening a more realistic opportunity. Microarrays are advantageous because they

dramatically increase the amount of information obtained in a relatively short time span

[79].

Tremendous advances in molecular biology, both in understanding and development of
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high throughput data acquisition methods, provide ample means for the studying complex

biological control networks, which have been a curiosity for some time [27, 46] . Many recent

studies suggest that complex interaction networks are the key component in connecting

cellular gene expression to observed phenotype [17, 22, 20]. However, a static interaction

map may not provide enough information. A control network’s static molecular interaction

map is the equivalent of looking at the blueprints of a machine whereas a dynamic pathway

model is the equivalent of dismantling the machine and analyzing it piece by piece. One

can achieve some understanding by looking only at the blueprints but nothing compared to

what is possible with through testing the individual components [46]. The dynamic pathway

model, the core of systems biology, can explain the relationship between structure, function,

and regulation in complex cellular networks by combining experimental and theoretical

approaches [46].

Traditional scientific pursuits have typically involved a cycle with three distinct stages,

observation, theory, and physical experimentation. The process starts as an observation,

which leads to a hypothesis, and then preliminary theory is developed to explain the hy-

pothesis. The scientist then goes about designing an isolated experiment to analyze the

theory. After collecting the results from the experiment, the scientist appends, refines, or

rejects the preliminary theory. The experimental data collection then leads back to again

observing nature and the cycle restarts [73]. While observations and theory can take con-

siderable effort, this process is commonly stalled in the experimentation phase because of

lack of resources like molecular biology tools to instantly measure particular interactions in

living cells with a given accuracy. Since the dawn of the computer revolution, scientists now

have another tool at their disposal in addition to constantly evolving experimental tech-

niques. This tool is numerical simulation. Numerical simulation has proven quite effective,

even dominant in certain types of research, such as astrophysics. Numerical simulation, al-

though in its infancy in the field, has proven to give valuable insight into various functions

vital to life including lipid metabolism and cell signal transduction [3, 98]. The use of

computers and numerical science techniques in the life sciences has been predicted for quite

sometime but it has only recently begun to take hold as a method of accelerating discovery
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[52, 45].

Even with recent substantial advances in data management, genomics, and robotics,

the discovery of new pharmaceutical agents has not accelerated over the last few years.

Although the drug industry may be approaching a saturation point for single targeted drugs,

simple drug treatments that effectively target a control network still hold a great deal of

promise [7]. Even though biological network analysis is seldom used as inspiration for drug

targets, its limited use has already enhanced the treatment of certain diseased states, most

notably HIV. Mathematical simulations of these complex networks provide pharmaceutical

researchers a means of linking the biochemistry of a reaction pathway to not only the

resulting healthy phenotype but also to the dysfunctional disease state [13, 77, 67]. While

still in its early years, the principles of systems biology could have profound effects leading

to more hypothesis-driven research in drug discovery [45].

1.1.2 Previous Studies in Systems Biology

For years, biological control systems have been analyzed with control theory and recent

studies [96, 97] are continuing this trend. Biological systems have shown both feed-forward

and feedback control mechanisms. Several studies have demonstrated that bacteria chemo-

taxis depends on an integral feedback [2, 100]. With just minimal knowledge of kinetic

parameters, biological control models allow not only a mechanism to show the response of

biological network under different conditions but also a method of testing potential mod-

ifications to produce desirable effects [18]. The true difficulty in this approach comes in

the location of equation specific kinetic parameters but can successfully be overcome with

the use of analytical derivations and parameter estimation techniques [88]. In order to ac-

curately simulate the sphingolipid metabolism pathway, a vast number of kinetic constants

and reaction order constants must be acquired. Although equation-specific kinetic parame-

ters are rarely available, a rough estimate can be obtained numerically since most systems

are inherently robust and slight deviations from the optimum constants produces a mini-

mum effect [2, 100]. Studies have shown biological control systems rely much more on the
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structure of their network than the value of specific kinetic parameters. Even though a pre-

liminary network model can usually be derived from existing data, a series of well-designed

experiments with sufficient coverage can greatly enhance the model [46].

Biological metabolism and regulatory networks are amazingly robust against certain

perturbations, but this robustness often does come at a price. The well-engineered systems,

including biological ones, can be made highly resistant of expected variations but are often

left very susceptible to slight unknown perturbations [12, 11]. Biological networks such

as cancer cells have high resistance to known perturbations and are also likely exhibit

extreme sensitivity to certain parameters [46, 47]. After performing system identification,

a process of mathematically describing a network in terms of mathematical relationships

and parameters, simulation of the system under a wide variety of hypothetical conditions

can be preformed and analyzed to find the situations that induce a significant change in the

systems behavior. Assessing the simulation’s instability regions, conditions that produce

large changes, and finding the sensitive parameters could potentially yield insight into non-

intuitive treatment options for robust cancer cells [47]. The one caveat is that system

identification can be exceedingly difficult in complex systems like the intracellular signaling

regulation of cancer cells [31].

Metabolic Engineering has recently embraced the new opportunities afforded by recom-

binant DNA techniques to redirect metabolite towards desired products by accelerating or

bypassing pathway bottlenecks [6, 75]. Initially, the shift towards desired projects was

thought to be possible using two primary methods, knocking out enzyme function or insert-

ing novel enzyme coding regions into the host’s genome [83]. These pursuits failed to give

the expected results. The principle flaw with these approaches concerns the overlooking of

the complexity and rigidity of biological networks, which is vital to the organisms survival.

This type of response is inline with what in seen in other fields such as microbes becoming

resistant to antibiotics after prolonged exposure. Several early works cautioned the use of

these methods as a perfect solution and recent studies in systems biology have confirmed it

[2, 89, 100].

Several distinct yet mathematically related approaches have been applied in silco to
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various metabolism pathways. The earliest method implemented basic chemical reac-

tion engineering principles to link the flow from given substrates to potential products

[55, 56, 57, 54, 58, 59]. The major advantage of this method is its hierarchical modular

structure, but it may be too simplistic because it assumes that reactions can be broken

down into single steps and then systematically reconstructed to get the final pathway. The

use of a system of linearly independent basis vectors in flux space is another attempt to

mathematically characterize metabolism reaction sequences [80]. This method is scaleable

to increase the simulations scope but may fail to accurately account for nonlinear behavior,

potential feedback mechanisms, and enzymatic reaction mechanisms. A third mathematical

representation is one made from a series of elementary flux modules or basic reaction mod-

ules [83]. A network built on this method can be decomposed into subsystems that exert

limited control on each other [82]. This modeling framework until recently could only make

steady state assumptions, which is a major disadvantage since dynamic behavior resulting

from sudden changes in conditions could explain how known signaling pathways are trig-

gered in response to stimuli. The fourth type of mathematical expression commonly applied

to metabolism is a power law representation known as the S-system [92, 94]. The S-system

contains modules each consisting of power law differential equations that accurately account

for the nonlinear behavior of biological regulatory network [93]. This modeling framework

provides a complex differential equation-based model by linearizing the nonlinear system

in logarithmic space. Although the S-System is not widely accepted among enzymologists

and biochemists, the model’s simple structure that allows feedback mechanisms to easily be

included and insight to quickly be obtained is advantageous before employing more complex

traditional models, such as Michaelis-Menten.

1.2 Sphingolipid Basics

In addition to simply picking an underlying chemical reaction formulation, systems biology

research also necessitates picking a suitable test case. Here we have chosen a test case asso-

ciated with a normal and abnormal state of sphingolipid metabolism because of availability
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Figure 1: Sphingolipid Structure: All sphingolipids contain the following three basic com-
ponents: one molecule of the long-chain amino alcohol sphingosine (shown in pink), one
molecule of long chain fatty acid (shown in yellow) and some version of a polar head group
(shown in the blue section).

of suitable high throughput data collection [62] and cell models. Before discussing the ex-

act numerical equations that make up sphingolipid metabolism networks a small section of

background information on sphingolipid functions, chemical structures, and synthesis pro-

cess is appropriate. Figure 1 shows the three basic entities that when combined constitutes

a sphingolipid species [50].

All complex sphingolipids contain the following three basic components: one molecule

of the long-chain amino alcohol sphingoid base, one molecule of long chain fatty acid and

some version of a polar head group. Although sphingolipid species can vary in any of the

three pieces previously mentioned, serine most often combines with the fatty acid Palmitoyl-

CoA in human cells to form the precursor that eventually becomes the sphingosine species

in the Figure 2. Stearoyl-CoA is also a possible sphingosine precursor, but this class of

sphingolipids is typically only found in brain tissue. The causes and effects of altering the

composition of the sphingosine backbone is largely unknown but is thought to play some

role in the aging process. Sphingolipids made of fatty acids of different lengths and different

degrees of saturation can be produced through cellular signaling and environmental pres-

sures. The long term effects on cells that produce a different composition of sphingolipids

is largely unknown and could be a key indicator of progression of various diseases. The

polar head group can be a variety of substances, such as sugars or phosphate groups, linked

using glycosidic linkage or phosphodiester bond that attaches the sphingoid base core to
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Figure 2: Sphingolipid Pathway Map: The sphingolipid de novo synthesis pathway is
presented in the above figure [61].

the polar head group [1].

One of the biggest advantages of choosing sphingolipid metabolism as the first test case

for a dynamic pathway algorithm is that the variety of species discussed in the previous

paragraph are all chemically constructed from a common set of reactions in which a unique

series of these reactions gives rise to a unique product. This feature can be best illustrated by

presenting the sphingolipid metabolism pathway, which is shown in Figure 2 [61]. Another

advantage is the potential therapeutic targets contained in the pathway. One potential

therapeutic target in the sphingolipid metabolism system is to cause the accumulation of

the species ceramide, which is the precursor to all other types of sphingolipids. Excessive

ceramide accumulation has been shown to play a role in apoptosis [87]. An accurate

model that describes the sphingolipid metabolic network is useful in determining the role

of sphingolipids in complex diseases and also a first step towards accelerating the potential

use of ceramide and other sphingolipid species as molecular targets fighting these complex
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diseases such as cancer.

Previous studies that presented models of sphingolipid metabolism [3, 4] focused on

gathering literature information to collect in vitro determined parameters for kinetic models

of these reactions. This literature information was then used to derive a model for each of the

considered reactions. The literature was also scanned for potentially important regulatory

interactions. While literature is certainly the gold standard of available information, critical

information required to build models is often difficult to obtain or be based on in vitro

classifications in very different organisms. This study considers the relationships between

six metabolites four of which that were not included in the published yeast model [4].

1.3 Mathematical Models of Enzymatic Reactions

Mathematical expressions that describe enzyme kinetics are certainly not new. Michaelis

and Menten proposed what is still the most dominate expression in 1912. The late 1960s

and 1970s saw the introduction of more complicated binding models as seen in [70]. Not

much in concepts of enzyme kinetics has changed since the 1970s but [51] presents an

updated comprehensive review of the available models both old and new. The mathematical

expressions used in various parts of this work are presented in this section. The following

models are presented: zero order kinetics, mass action kinetics, reversible mass action

kinetics, Michaelis-Menten kinetics, reversible Michaelis-Menten kinetics, the kinetic UniUni

mechanism, generalized mass action kinetics, reversible generalized mass action kinetics, and

the S-system. If a more detailed derivation of any of the formalisms is required beyond the

brief descriptions presented here, the noted references should be consulted.

1.3.1 Zero Order Kinetics

Zero order kinetics is the name given to a mathematical description of a chemical reaction

where the flux from the reactant to the product is independent of both the reactant and

product concentration. It is called zero order because all of the reaction orders of reactants

and products are zero. This simplifies to give a constant flux of substrate being converted

to product. Equations 1 – 5 shows a typical reaction of A converting into P modeled by a
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Zero Order Reaction.

A
kf→ P (1)

Flux = kf [A]0[P ]0 (2)

Flux = kf = Constant (3)

dP

dt
= Flux (4)

dA

dt
= −Flux (5)

1.3.2 Mass Action Kinetics

Mass action kinetics has the same form as zero order kinetics but the reaction orders under

mass action have values that reflect their stoichmetric constants instead of being zero. This

kinetic model has been used for the investigation of many biological reactions including

ligand-receptor binding [49, 33]. A mass action model describing a molecule of A combining

with two molecules of B to produce P is presented in Equations 6 – 10.

A + 2B
kf→ P (6)

Flux = kf [A]1[B]2 (7)

dP

dt
= Flux (8)

dA

dt
= −Flux (9)

dB

dt
= −2Flux (10)

1.3.3 Reversible Mass Action Kinetics

Chemical reactions sometimes are bidirectional meaning that under certain conditions it

possible for the reactants to become the products as well as the products reverting back

to the reactants. These types of reactions often reach equilibrium, where the forward

production of products is equal to the reverse production of reactants. Reversible mass

action kinetics is essentially the same as modeling a reaction with a mass action model

in both the forward and reverse direction. A reversible mass action model describing a

molecule of A combining with two molecules of B to produce a molecule of P and also
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a molecule of P converting into a molecule of A and two molecules of B is presented in

Equations 11 – 16.

A + 2B
kf /kr
⇀↽ P (11)

ForwardF lux = kf [A]1[B]2 (12)

ReverseF lux = kf [P ]1 (13)

dP

dt
= ForwardF lux−ReverseF lux (14)

dA

dt
= ReverseF lux− ForwardF lux (15)

dB

dt
= 2ReverseF lux− 2ForwardF lux (16)

1.3.4 Michaelis-Menten Kinetics

Michaelis-Menten kinetics is the most popular model of enzyme reaction models in bio-

chemical literature. This reaction model uses several mass action processes along with the

steady state assumption on the enzyme levels to produce a model capable of displaying

characteristics like enzyme saturation. The first reaction is the substrate and enzyme re-

acting via a reversible mass action process to produce an enzyme-substrate complex. This

enzyme substrate complex then can undergo an irreversible mass action process to become

product and free enzyme. The conversion of a substrate, S, to product, P , in the presence

of enzyme, E, is presented in equations 17 – 22. KM is the Michaelis constant, Vmax is the

maximal reaction velocity, and E0 is the total amount of enzyme present.

A + E
k1/k−1

⇀↽ ES
k2→ E + P (17)

Flux =
VmaxS

S + KM
(18)

Vmax = k2[E0] (19)

KM =
k−1 + k2

k1
(20)

dP

dt
= Flux (21)

dS

dt
= −Flux (22)
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1.3.5 Reversible Michaelis-Menten Kinetics

Reversible Michaelis-Menten kinetics is the same as the original Michaelis-Menten formal-

ism except the enzyme-substrate complex to product plus enzyme reaction is considered

reversible. This minor switch leads to a rate law that is very similar to the original for-

malism and is derived for the same substrate to product enzymatic reaction as before [19].

This rate law is shown in equations 23 – 30.

A + E
k1/k−1

⇀↽ ES
k2/k−2

⇀↽ E + P (23)

Flux =
KSE0S −KP E0P

1 + S
KMS

+ P
KMP

(24)

KMS =
k−1 + k2

k1
(25)

KMP =
k−1 + k2

k−2
(26)

KS =
k1k2

k−1 + k2
(27)

KP =
k−1k−2

k−1 + k2
(28)

dP

dt
= Flux (29)

dS

dt
= −Flux (30)

1.3.6 The Kinetic UniUni Mechanism

While combustion reactions are primarily driven by the random collison of molecules, an

adsorption process primarily drives enzymatic reactions [51]. An enzymatic reaction can

be defined by the process of the single substrate binding to free enzyme, which reversibly

forms the enzyme-substrate complex that is then reversibly converted to the product-enzyme

complex, which can be reversibly decomposed into the product and free enzyme. This type

of reaction is often written as equation 31 [44].

E + S
k1/k2
⇀↽ ES

k3/k4
⇀↽ EP

k5/k6
⇀↽ E + P (31)

The rate equation of product formation would be written as equation 32 [44].

dP

dt
= k5[EP ]− k6[E][P ] (32)

11



When the above equation is multiplied by the identity [E0]
[E]+[ES]+[EP ] the resulting equa-

tion is given by equation 33.

dP

dt
=

k5[EP ][E0]− k6[E][P ][E0]
[E] + [ES] + [EP ]

(33)

The enzyme species in the above equation can be substituted by solving for them in

terms of rate constants, product, and substrate equations. The first step is to rewrite

the chemical equation in terms of these enzyme containing species, which is presented in

equation 34.

E
k1S/k2

⇀↽ ES
k3/k4
⇀↽ EP

k5/k6P
⇀↽ E (34)

If equation 34 is broken into terms representing enzyme species, the resulting combina-

tions describe the particular enzyme species in terms of the kinetic rate constants, product

concentration, and substrate concentration. These representations can now be inserted into

the product rate equation. The resulting equation is given in equation 35.

Flux =
k1k3k5[S][E0]− k2k4k6[P ][E0]

k2k5 + k2k4 + k3k5 + (k1k3 + k1k4 + k1k5)[S] + (k2k6 + k3k6 + k4k6)[P ]
(35)

The rate of product production (and substrate depletion) is now defined in terms of

the six kinetic parameters, substrate concentration, product concentration, and total initial

enzyme concentration. Equations 35 and 36 show the equation for product accumulation

and substrate depletion, respectively.

dP

dt
= Flux (36)

dS

dt
= −Flux (37)

1.3.7 Generalized Mass Action (GMA) Kinetics

Generalized mass action kinetics is an alteration of mass action kinetics that allows the

reaction orders of each of the substrates and products to take on a value that does not

necessarily directly reflect the stoichiometry of the reaction. This kinetic model has been

used for the investigation of many biological reactions especially in the metabolism studies.

A comprehensive reference on the GMA and mathematical operations that can be utilized
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with this form is given in [94]. A generalized mass action model describing a molecule of

A combining with two molecules of B to produce P is presented in equations 38 – 42.

A + 2B
kf→ P (38)

Flux = kf [A]g1 [B]g2 (39)

dP

dt
= Flux (40)

dA

dt
= −Flux (41)

dB

dt
= −2Flux (42)

1.3.8 Reversible Generalized Mass Action Kinetics

Chemical reactions sometimes are bidirectional meaning that under certain conditions it is

possible for the reactants to become the products as well as the products reverting back to

the reactants. These types of reactions often reach equilibrium, where the forward produc-

tion of products is equal to the reverse production of reactants. Reversible generalized mass

action kinetics is essentially the same as modeling a reaction with a generalized mass action

model in both the forward and reverse direction. A reversible mass action model describing

a molecule of A combining with two molecules of B to produce a molecule of P and also

a molecule of P converting into a molecule of A and two molecules of B is presented in

equation 43 – 48.

A + 2B
kf /kr
⇀↽ P (43)

ForwardF lux = kf [A]g1 [B]g2 (44)

ReverseF lux = kf [P ]h1 (45)

dP

dt
= ForwardF lux−ReverseF lux (46)

dA

dt
= ReverseF lux− ForwardF lux (47)

dB

dt
= 2ReverseF lux− 2ForwardF lux (48)
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1.3.9 Reversible Generalized Mass Action Kinetics

In the S-System format each of the elementary fluxes are grouped into aggregate fluxes

that represent the total influx and total outflux for each metabolite pool. The standard

differential equation for the S-System can be written as Equation 49.

dXi

dt
= V+i − V−i (49)

Any S-System differential equation can be written in the above form. V+i is the aggregated

influx. V−i is the aggregated outflux. If each of the aggregate fluxes is represented with a

power law approximation, the general form shown in Equation 50 is derived.

dXi

dt
= αi

n+m∏
j=1

X
gij

j − βi

n+m∏
j=1

X
hij

j (50)

1.4 Optimization Method Background

In addition to the underlying mechanisms that are used to quantify enzymatic reactions, op-

timization methods are also vital to this work to take an initial guess for the parameters and

iteratively improving the parameters to better fit the experimental data. The methods that

have been solicited for this fitting task are Monte Carlo selection, nonlinear least squares

using the Gauss-Newton Method, nonlinear least squares using the Marquardt-Levenberg

method, a Nelder-Mead based method that uses randomly determined initial conditions,

Simulated Annealing, and Genetic Algorithm. Each of the optimization procedures is ex-

plained in the following sections.

1.4.1 Monte Carlo Methods

Monte Carlo methods have been applied in many problems, most notably integration. Monte

Carlo methods offer a random sample of the entire search space. The principle behind this

tool is that a sufficiently large random sample will be to converge to accurately represent

the entire search space. In addition to gathering population statistics in a much timelier

manner than exhaustive brute force searching, sufficient Monte Carlo sampling allows a

reasonable approximation for the global extremes but does not guarantee that the true

global minimum will be found.
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1.4.2 Nonlinear Least Squares using the Gauss-Newton Method

The Gauss-Newton method is an iterative method used to overcome difficulties in satisfying

least squares that are presented when fitting an expectation function (i.e. the mathematical

model which relates the parameters and independent variables) as closely as possible to

the experimental data. Least Squares can be simply constructed with the following two

statements.

1. First, find the point η on the expectation surface (the surface created by the mathe-

matical model being fit to) that is closest to y (the vector containing actually experi-

mental measurements).

2. Secondly, determine the parameter vector that corresponds to this closest point η.

For a linear model, both of the above steps are straightforward. Step 1 is straightforward

because the expectation surface is a plane of infinite extent, which allows the use of an

explicit expression for the point on the plane closest to y. This expression is shown below

in equation 51 [8].

η = QQT y (51)

Q in the above equation represents the orthogonal matrix produced from QR matrix

decomposition. QT is the Q matrix transposed and y is the experimental data column vector.

The second statement describing least squares with regards to a linear system can also be

explicitly defined by a simple equation, which is given in terms of QR decomposition in

equation 52 [8].

θ = R−1QT η (52)

θ is the parameter vector that corresponds to the closet point on the expectation

surface,η. R−1 in the above equation corresponds to the inverse of the upper triangular

matrix created by QR matrix decomposition. QT again represents the transpose of the

orthogonal matrix.

Accomplishing the two steps presented above describing the least squares process is ex-

ceedingly more difficult for the nonlinear version than the linear version with its explicit
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formulas. The first step is difficult to achieve using a nonlinear system because the ex-

pectation surface is curved and at least has edges or is often of finite extent. The second

least squares require is also difficult to uphold because the system maps easily in only one

direction, from the parameter plane to the expectation surface (opposite of what item 2 re-

quires). The Gauss-Newton method uses a linear approximation to the expectation function

to iteratively improve the initial guess for the parameter plane until the difference between

successive iteration is negligible. The process starts with a Taylor series expansion about

the initial parameter plane. This expansion is represented below in equation 53 [8].

f(xn, θ) ≈ f(xn, θ0) + vn1(θ1 − θ0
1) + vn2(θ2 − θ0

2), . . . ,+vnP (θP − θ0
P ) (53)

θ in the above equation represents the true best fit parameters, θ0 represents the initial

guess at the best parameters, xn is a vector containing the independent variables (in the

sphingolipid metabolism system this is the concentration of each node species), and f is the

expectation function, the function that relates the fitting parameters to the independent

variables. The partial derivative of an independent variable with respect to a particular

fitting parameter, generically θP , is given as the quantity vnp. The equation for vnp is given

in equation 54 [8].

vnp =
δf(xn, θ)

δθP
|θ0 (54)

The V 0 matrix (initial derivative matrix) of size NxP (independent variables by the number

of fitting parameters) is formed with elements vnp. Incorporating all independent variables

the following general expression can be written as equation 55 [8].

η(θ) = η(θ0) + V 0(θ − θ0) (55)

The initial residuals z0 are defined in equation 56. The actual residuals z(θ) are described

in terms of z0 and δ, the difference between the actual best parameters, θ, and the initial

guess for the best parameters, θ0, is also shown below [8].

z0 = y − η(θ0) (56)

δ = θ − θ0 (57)

16



z(θ) ≈ y[η(θ0) + V 0δ] = z0 − V 0δ (58)

The approximation of the true residuals, noted above, can now be used in traditional

least squares methodology to find δ0, the initial Gauss increment. The least squares process

that is used to determine the δ0, which is the increment applied to improve the initial

parameter guess, θ0, is shown below in equations 59 – 62. Again QR decomposition is used.

V 0 = Q1R1 (59)

η1 = Q1(QT
1 z0) (60)

R1δ
0 = QT

1 z0 (61)

θ1 = θ0 + δ0 (62)

After the initial parameter guesses have been incremented, the process restarts by cal-

culating a new derivative matrix and repeating the above least squares routine to find the

next Gauss increment, δ1, which is again applied to the parameter vector to improve it.

This process continues until δn is negligible [8]. This is a local parameter search because

it depends on the first derivative. When the first derivative becomes essentially zero, the

Gauss increment is also approximately zero, which calls for the routine to stop repeating.

1.4.3 Nonlinear Least Squares using the Marquardt-Levenberg Method

The Marquardt-Levenberg method is an incremental enhancement of the Gauss-Newton

method presented previously. Near singularity of V , the derivative matrix, causes δ, the

Gauss increment to be very large, which may move the iterative method into undesirable

regions of the parameter space (imaginary regions). The V matrix can become singular

when the columns of the matrix are collinear. Levenberg proposed the initial solution to

the derivative matrix singularity problem in 1944. Levenberg alters Gausss formulation of

the increment δ using equation 63 [8].

δ(k) = (V T V + kI)−1V T (y − η) (63)

I in the above equation is the identity matrix, k is a conditioning factor, V again is

the derivative matrix, y is the vector of measured values, and η is the closet point on
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the expectation surface to y. The above reformulation of δ results from the least squares

solution to a system with an altered derivative matrix, VL, shown below in equations 64

– 68. Substituting VL into the Gauss-Netwon yields the Levenberg Method of performing

nonlinear least squares. This methodology is shown below the definition of VL [8].

VL =

 V
√

kI

 (64)

V 0
L = QL1RL1 (65)

ηL
1 = QL1(QT

L1z
0) (66)

RL1δ
0
L = QT

L1z
0 (67)

θ1
L = θ0 + δ0

L (68)

The above algorithm is an altered version of the Gauss-Newton method presented previ-

ously. All symbols represent the same symbols as the Gauss-Newton method except where

differences are noted with a subscript L, meaning these symbols are redefined when using

the Levenberg method. Although the Levenberg method does in fact solve the singularity

problem with the derivative matrix in the Gauss-Newton method, it has its own deficiency

in the fact that the Levenberg increment is variant under different scaling transformations.

In order to provide an invariant increment under all scaling transformations, Marquardt

proposed a minor alteration of the Levenberg method in 1963. Marquardt’s increment in-

flates the diagonal of the derivative matrix by a factor of 1 + k instead of k as suggested by

Levenberg. The Marquardt increment is shown in the equation 69 [8].

δ(k) = (V T V + kD)−1V T (y − η) (69)

D in the above equation is the diagonal matrix with entries equal to the diagonal entries

of V T V . The Marquardt increment is given by following the Gauss-Newton process starting

with an altered derivative matrix, VM . First the equation, 70, describes how VM is formed

from the derivative matrix. The remaining equations detail how the Marquardt increment

is applied to the Gauss-Newton process [8].

VM =

 V
√

kD1/2

 (70)
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V 0
M = QM1RM1 (71)

ηM
1 = QM1(QT

M1z
0) (72)

RM1δ
0
M = QT

M1z
0 (73)

θ1
M = θ0 + δ0

M (74)

The above equations represent the Marquardt-Levenberg method for performing non-

linear least squares [8]. The method is equally as computationally effective but much more

robust than Gauss-Newton method. The Marquardt-Levenberg method still relies on a

linear approximation and a first derivative, which makes the method tend to be equally

satisfied with local and global minima. Therefore, searching a rough terrain (an expecta-

tion surface with many local minima) to find a global is difficult unless initial conditions

can be approximated close enough to the global minimum to prevent entrapment in a local

minimum.

1.4.4 Nelder-Mead Simplex Method for Function Minimization

The Nelder-Mead downhill simplex method is an efficient derivative-free way of determining

the local minimum of function of multiple independent variables. The algorithm works to

minimize an N -dimensional (containing N independent variables) cost function by first

setting up an N -dimensional geometric figure consisting of N + 1 points. This geometric

figure is called a simplex. The first point on the simplex is the initial guess of the minimum.

The other points that make up the simplex, Pi, are determined by the equation 75 [72].

Pi = P0 + λεi (75)

P0 represents the initial guess of the lowest point, λ in the above equation is constant

representing the estimated characteristic length of the specific problem, epsiloni is specific

unit vector of the set ε, which contains N unit vector in different directions. Once the

initial simplex is set up, the algorithm first evaluates P0 and each Pi in the cost function to

determine which one produces the largest cost. The Nelder-Mead requires an additional cost

function based on the experimental system, which is minimized. The cost function can be
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defined as the sum of squared residuals, like Gauss-Newton and Marquardt-Levenberg, but

is not limited to being dependent on the squared residuals. After the point with the largest

cost has been determined, the algorithm undertakes a combination of three operations,

reflection, contraction, or expansion to iteratively remove the worst point on the simplex.

The first attempted operation for each of the iterations is always reflection. The reflection

equation to determine a new simplex point, P ∗, is given in equation 76 [64].

P ∗ = (1 + α)P − αPh (76)

α is the reflection coefficient, a positive constant, Ph is the point on the simplex that

gives the highest cost, and P is the centroid of the remaining points on the simplex. P ∗

is then evaluated in the cost function to generate y∗. If y∗ is between yh, the value of the

cost function at Ph, and yl, the minimum cost of the points in the simplex, P ∗ is accepted

as a replacement for Ph and the algorithm begins another iteration by determining the new

Ph and repeating the same process. If y∗ < yl, a new minimum has been located and the

algorithm will attempt to expand further in the direction of the new found minimum, which

is done using the expansion equation given in equation 77 [64].

P ∗∗ = γP ∗ + (1 + γ)P (77)

P ∗∗ is the new point on the simplex after expansion, P ∗ is still the reflected point, P is

still the centroid of other points on the simplex, and γ is the expansion coefficient, which

is greater than unity and represents the ratio [P ∗∗P ] to [P ∗P ]. If y∗∗, the cost function

evaluation of P ∗∗, is less than yl, P ∗∗ replaces Ph and the algorithm restarts. If y∗∗ > yl,

then expansion failed and P ∗ will replace Ph and the algorithm will restart [64]. If on

reflecting Ph to P ∗, y∗ is still greater than the cost of all other points on the simplex, the

point with less cost (between P ∗ and Ph) is assigned to be the new Ph and the algorithm

enters into a contraction step. The contraction equation is give below by equation 78.

P ∗∗∗ = βPh + (1− β)P (78)

The contraction coefficient, β, is a constant between zero and one that represents the

ratio of the distance of [P ∗∗∗P ] to [PhP ]. P ∗∗∗ is accepted as a replacement for Ph and the
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algorithm restarts unless y∗∗∗ is greater than lesser of y∗ and yh, which therefore results

in a failed contraction. A failed contraction causes all of the points on the simplex to be

replaced according to the following equation, 79 [64].

Pnew
i =

Pi + Pl

2
(79)

The point on the simplex with the lowest cost, Pl, is added to each point on the simplex

and then divided by 2 thus moving the entire simplex closer to the best point and the

algorithm restarts with the new simplex. The Nelder-Mead downhill simplex algorithm

continues to apply reflections, expansions, and contractions until the cost is minimized.

The algorithm exits when the change in the cost does not exceed a preset tolerance [64].

The Nelder-Mead downhill simplex method is an effective minimization scheme because

of its simplicity and effectiveness. The method has such advantages such being able to

converge to a correct minimum even if the initial simplex is situated over a region with

two local minima (two valleys) and being able to apply constraints to certain values. The

algorithm also has several disadvantages such as being dependent on the initial conditions

because the method not being able to converge a significant distance outside of the initial

simplex.

1.4.5 Simulated Annealing

Simulated Annealing is an optimization procedure based on a natural optimization proce-

dure in the area of thermodynamics. If a metal is heated to a temperature above its melting

temperature, the individual metal atoms are in a state of highly excited random motion.

When these excited atoms are gradually cooled, a process called annealing, the atoms begin

to lose thermal mobility as the energy states continue to be lowered. As the cooling process

is progressing, the system may enter various meta-stable states (local minima) only to gain

energy and progress to the lowest possible energy state. When a sufficient cooling cycle is

applied to a molten metal, nature is always able to settle into the lowest energy state, a

global minimum, which is a highly structured crystal. The general optimization method

and the approximate natural mathematically depend on the Boltzmann Distribution, which
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is defined with the equation 80 below [81].

p(E) =
1

kT
exp(

−E

kT
) (80)

E in the above equation represents a particular energy state, k is the Boltzmann con-

stant, T is the temperature of the system, and p(E) is the probability of energy state E

at temperature T . Suppose a n x 1 vector x contains the configuration of the individual

atoms (the value of adjustable parameters in the general optimization case) and f(x), the

objective function, computes the energy level E (relative cost in the general case). The

annealing process effectively performs unconstrained optimization [81]. If ∆x is defined as

a vector size x that represents a random change in the values of x. Supposing a k analogous

to the Boltzmann constant, and an artificial temperature T , the distribution of ∆x could

be represented by the following Gaussian distribution with a zero mean [81].

p(∆xj) =
1√
2πT

exp(
−∆xj

T 2
) (81)

The above probability distribution has a standard deviation of T , which means for the

initial large values of T the random changes will be large but will decrease in magnitude as

the temperature is gradually reduced. If the random change in x, ∆x, is applied to an initial

guess, x0, the resulting change in the objective function, ∆f , is defined by the equation 82

[81].

∆f = f(x0 + ∆x)− f(x0) (82)

If ∆f < 0, this represents an improvement in the value of the objective function so

x0 + ∆x is accepted as the new best point, x1. However, even if ∆f ≥ 0, the increment can

still be accepted if the probability of ∆f , determined by equation 83 below, is greater than

uniform random number generated on the interval zero to 1
kT [81].

p(∆f) =
1

kT
exp(

−∆f

kT
) (83)

The acceptance of a detrimental step, a step that increases the value of the objective

function, allows the algorithm to escape local minima. If neither a true accepted step nor a

detrimental accepted step are accepted, the process continues to generate a new ∆x until a
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step is accepted creating an incremented x value, x1. As the temperature is being decreased

on a predefined cooling schedule, the process of incrementing x continues until an iteration

maximum is reached or x is not moving beyond a predefined tolerance [41].

Simulated Annealing is quite different from the nonlinear parameter estimation algo-

rithms discussed thus far in that it does not aggressively and irreversibly attempt to find

the minimum of the objective function, a cost function made from comparing experimental

data to a specific point on the expectation surface. The reversible property of simulated

annealing allows the method to escape local minima by enabling a random chance that the

value of the objective function can actually increase. Since the algorithm has the ability

to escape local minima, Simulated Annealing can be used with a wide variety of initial

conditions on rough terrain (an expectation surface with many local minima) and with

the proper cooling schedule and enough computational time will always approach the same

minimum value of the objective function. This characteristic of the algorithm has been

exploited to solve problems that were previously thought to be unsolvable. The famous

traveling salesman problem is an example of the type of combinatorial optimization prob-

lem Simulated Annealing can solve of size N on the order of N to some small power instead

of the exp(constant x N), which is required for a brute force solution [72]. The traveling

salesman problem and the application of simulated annealing to solve it are described in

[68].

Although Simulated Annealing has many advantageous qualities already mentioned,

these qualities come with a high computation cost because of the passive nature of algo-

rithm. The efficacy of the algorithm is also very dependent on the cooling schedule set at

initialization. The cooling cycle has to be “sufficiently slow” to mimic that of nature but

“sufficiently slow” can vary greatly between similar problems.

1.4.6 Genetic Algorithm

The genetic algorithm, initially conceived by John Holland, is population-based routine

rooted in the evolution theory of Charles Darwin [36]. The genetic algorithm mimics

the principles of natural selection through a series of operators defined in computer code.
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Selection, crossover, mutation, and inversion were the basic operators employed in Hollands

original formulation. Most current genetic algorithm implementations, including the ones

discussed in this work, only employ the selection, crossover, and mutation operators [63].

The selection operator decides which members of the population are most likely to re-

produce into the next generation. The more fit an individual, or in the case of optimization

the lower the cost of the specified parameters, the more likely it is able to have its offspring

be represented in the next generation (step in algorithm progression). The GA crossover

operator is analogous to the principle of recombination in genetics. The simplest crossover

operator divides the binary chromosomes into two sections at a randomly chosen place. One

set of the complimentary sections from each parent is exchanged giving rise to two unique

children chromosomes. More complicated crossover operators divide the binary chromo-

somes into a variable number of pieces by assigning a crossover probability for any section

of the chromosome. The mutation operator, which has a low probability for occurrence, sim-

ply flips a particular bit in the binary chromosome. Typically, the crossover and mutation

operators have been implemented in series but some more recent implementations actually

implement these operations in parallel thus insuring a percentage of the new population is

independently created from each operator.

A scheme for a simple genetic algorithm starts with generating an initial population

of a certain size. If no prior knowledge or preliminary method can generate a reasonable

initial population, the initial population is most often randomly generated. The fitness of

each individual in the initial population is then calculated. Next, the selection method is

employed, usually with replacement, to generate the number of parental pairs necessary

to reproduce a population of the same size. The crossover operator then recombines the

parental pairs to produce unique offspring. After the offspring are produced, the mutation

operator randomly alters bits to slightly change members of the offspring population. The

offspring population then replaces the parent population and the process restarts by first

evaluating the fitness of each member of the new generation. This population is passed

through the series of operators again to produce another new population. This process

continues until some exit criterion is met, most often after a certain number of generations
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has been exhausted [29, 63].
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CHAPTER II

CONSTRUCTION OF A MODELING FRAMEWORK

This chapter will discuss the progress in building a simulation model that not only attempts

to overcome the deficiencies of its predecessors but also produce a large-scale, biochemically

relevant model that fits within the framework of established enzyme kinetics literature. The

work is presented in phases in chronological order to emphasize the progression from ele-

mentary chemical reactions to parameter estimation in a simulated sphingolipid metabolism

system.

2.1 General Algorithm Design Phase 1

The first phase of algorithm development involves creation of three distinct functions and

establishing a workflow relationship to connect the individual pieces cohesively. The indi-

vidual functions in this phase were an optimization routine, a cost function, and a system

of ordinary differential equations that govern the accumulation or depletion of each par-

ticular sphingolipid species or precursor in the network being studied. Two sphingolipid

metabolism systems, each having six time points with multiple replicates at each time point

were used in this first phase. The particulars of these systems will be discussed in the follow-

ing two sections that describe the lowest level of proposed algorithm, the system of ordinary

differential equations. Figure 3 shows the relationship between the three primary functions

in the phase one algorithm design.

2.1.1 Building Nonlinear Rate Functions

The initial six-node system was composed of a group of sphingolipids all containing the

same fatty acid chain attached to the sphingosine backbone. In other words, the same

sphinganine precursor is combined with serine to produce a sphinganine that is common

to all species. The common sphinganine is then combined with a specific fatty acid (C16)

to produce a dihydroceramide species that serves as the root of the six-node system. This
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Figure 3: High Level Algorithm Design Phase 1: The relationship between the three pri-
mary components of the design are shown as well as the information that is passed between
each of them.

dihydroceramide species can be converted in three other species bringing the network size

to four. The reactions of the dihydroceramide species include the following: the enzymatic

replacement of the hydrogen X group (see figure 1) with a phosphocholine to produce

dihydrosphingomyelin, the enzymatic replacement of the hydrogen X group (see figure 1)

with a glucose to produce dihydroglucosylceramide, and a desaturation reaction that inserts

a double bond in the sphingosine backbone to produce ceramide (see figure 2). The first two

reactions in this proposed pathway are considered terminal with a parameter that allows

for “leak”, which is production or comsumption by a chemical species that falls outside

the indicated network. This concept of “leak” will be discussed in further detail when the

governing differential equations are presented later in this section. The third of the above

reactions produces ceramide, which is able to be further converted into different species

by replacing the hydrogen X group (see figure 1) with either a phosphocholine to produce

sphingomyelin or a glucose to produce glucosylceramide. The addition of the sphingomyelin

and glucosylceramide nodes constitutes the entire 6-node system. The sphingomyelin and

glucosylceramide nodes are also terminal nodes analogous to the dihydrosphingomyelin and
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Figure 4: Six Node Sphingolipid Metabolism System considered in Phase 1: The chemical
names in the model are given for each of the metabolites. The modelled metabolic network
is composed of six dependent variables. Each of the five reversible fluxes are placed on the
map as numbered arrows.

dihydroglucosylceramide nodes. The figure 4 is a graphical representation that shows the

relationship between the nodes as discussed in the preceding paragraph. Note that all

reactions are reversible.

Now that the preliminary network topology has been established, the general equations

governing the interactions of the above nodes can be investigated. As noted before the

dihydroceramide to ceramide reaction is a desaturation reaction, which is loosely defined as

a catalytic process in fatty acids that replaces two carbon-hydrogen bonds by substituting

a double carbon-carbon bond for a single one. This requires several reactants besides

the dihydroceramide species including hydrogen ions, oxygen, and nicotinamide adenine

dinucleotide phosphate (NADP) [50], which could not be measured to the same accuracy

as the primary species at the time when equations governing this model were constructed.

Since measurements for all of the species in the desaturation reaction could not be obtained,

the forward reaction is assumed to be driven only by the concentration of dihydroceramide

and the reverse reaction is likewise only driven by the concentration of ceramide. This

assumption is valid in this case because the cellular concentration of the other reactants
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is in large excess compared to the sphingolipid species thus making the sphingolipids the

rate limiting reactants in the respective forward and reverse reactions. The other four

interactions between nodes involve the addition (and the reverse) of a molecular species

being added to the dihydroceramide or ceramide species in order to produce a different

sphingolipid. The forward and reverse reactions for all of these interactions were again

made dependent only on the concentration of the particular sphingolipid species instead of

all reactants. This assumption is not as strong as in the case of the desaturation reaction

because the concentration of glucose or phosphocholine may not be in massive excess in

the sections of the cell involved in the metabolism process, which could result in a strong

dependency on the concentration of either phosphocholine or glucose.

Although the assumptions outlined previously sufficiently provide the reversible reaction

pieces necessary to use mass action kinetics discussed in Section 1.3, a slight correction must

be applied to allow the system to exist in the context of a larger biochemical network (the

cell) in which there is some ambiguity as to what other cellular reactions affect this pathway.

This slight correction is the “leak” term discussed previously in this section. The “leak”

term can either increase the concentration of a particular species or decrease it. A “leak”

term that has a positive effect on the accumulation of a species could be caused by the

breakdown of other sphingolipid species not in the 6-node pathway. A “leak” term that

reduces the accumulation of a particular species could be representative of a reaction that

consumes the sphingolipid species in order to build a more complex sphingolipid species.

An example of this reduction of a particular species is the consumption of glucosylceramide

in order to make lactosylceramide. A few important notes on the “leak” term in this phase

of development are that only a single “leak” term is included (this term effectively models

the difference between outside consumption and production) and the outside production or

consumption is assumed to be constant in time and independent of all species concentrations.

Although these assumptions, especially the independent of all species concentrations one,

are not a particularly strong, they serve as a simple starting ground in which more complex

schemes can be built. After all the assumptions governing the reversible reactions and the

“leak” term have been incorporated into a mass action kinetics scheme, balance equations
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84 – 89 are produced for the network map in figure 4.

dCDH

dt
= MDH − k1C

α1
DH + k2C

α2
C − k3C

α3
DH + k4C

α4
SMDH − k5C

α5
DH + k6C

α6
GCDH (84)

dCSMDH

dt
= MSMDH + k3C

α3
DH − k4C

α4
SMDH (85)

dCGCDH

dt
= MGCDH + k5C

α5
DH − k6C

α6
GCDH (86)

dCC

dt
= MC + k1C

α1
DH − k2C

α2
C − k7C

α7
C + k8C

α8
SM − k9C

α9
C + k10C

α10
GC (87)

dCSM

dt
= MSM + k7C

α7
C − k8C

α8
SM (88)

dCGC

dt
= MGC + k9C

α9
C − k10C

α10
GC (89)

2.1.2 Cost Function

The cost function and optimization method are intertwined in the cases where nonlinear

regression was used to fit the data. In the intertwined case the cost function is the least

residual squares. In cases where the optimization method and cost function are separate, the

fitting method is the sum of absolute residuals. The method of calculating cost in instances

where the optimization method and cost function are separate is given by equations 90 –

93.

Cost1 = |ĊDATA
DH − ĊCALC

DH |+ |ĊDATA
SMDH − ĊCALC

SMDH | (90)

Cost2 = |ĊDATA
GCDH − ĊCALC

GCDH |+ |ĊDATA
C − ĊCALC

C | (91)

Cost3 = |ĊDATA
SM − ĊCALC

SM |+ |ĊDATA
GC − ĊCALC

GC | (92)

Cost = Cost1 + Cost2 + Cost3 (93)

The above equations shows the experimental derivative of each species being compared to

the calculated derivative of each species. The absolute values of these comparisons are

summed to give the cost, which is reported to the optimization function. An important

note is in the comparison of concentration derivatives a good deal of error is introduced

by calculating the experimental derivative since the time scale is in hours. Although the

concentration is thought to change on a much faster time schedule than hours, this limitation

was accepted in this preliminary development stage.
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2.1.3 Results and Discussion

The following section presents the results of the phase 1 system and discusses these results.

Six cost function and optimization combinations were used to generate the following results.

Gauss Newton and Marquardt-Levenberg algorithms were used with the standard least

squares cost function. Simulated Annealing and Nelder-Mead, both discussed previously

in section 1.4, were paired with the sum of absolute residuals cost function as presented in

the cost function section, 2.1.2. Two simple additional methods were included as a baseline

benchmark by which the more sophisticate methods can be judged against. These simple

methods are linear regression and random selection.

2.1.3.1 Linear Regression

Least squares linear regression was the first parameter estimation method attempted due

to its speed and simplicity. Linear regression is easily computed from the systems equation

presented in the previous nonlinear rate function with all αs set equal to 1. After forming the

respective X and Y matrices using the 30 experimental data points, a single line of Matlab

code, Param = inv(XT X) ∗XT ∗ Y , which very similar to the linear algebra process that

can be done by hand, is required to solve for the best least squares fit. Note that when

solving the linear system of equations X1 and X4 must be divided into X11, X12, X13, X41,

X42, and X43, respectively. The six resulting graphs from the linear fit are presented below

in Figure 5.

As Figure 5 clearly shows, linear regression on the entire system equation does not appear

to give a quality fit. The system is dependent on other variables, or it is not linear. The

absolute sum of residuals is approximately 4000 for this fit. The processing time required

was less than 5 seconds. There is no variability in the output answer.

2.1.3.2 Gauss-Newton Method

Gauss suggested a method for fitting nonlinear equations that uses a linear approximation

of expectation function to iteratively improve the initial guess towards the actual solution of

the parameters. This method effectively does a Taylor Series expansion on the data matrix
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Figure 5: Linear Regression Fitting Results Phase 1: The blue solid lines represent the
time derivative taken from actual data measurements. The discontinuous red line shows
the line predicted by the linear regression parameters.
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and ignores the higher order terms to get a linear approximation.

The Gauss-Newton method is available in both the Matlab statistics toolbox and the

optimization toolbox. When the algorithm was employed to fit the six-node network system

equation, parameters were found in roughly 10 seconds. Although the algorithm returned

numbers, the fitted parameters were nonsense and caused the system equation to be NaN

(not a number) at every evaluation point. The algorithm may be sensitive to initial con-

ditions but that was not seen in this system because it never produced a reliable answer

regardless of the start position.

Singularity of the matrix used in determining step size causes the step size to be rather

sizeable when the matrix is nearly singular giving the Gauss-Newton method erratic be-

havior. The singularity of the derivative matrix arises because of the collinearity of its

columns [8]. It should be noted that in the later stages of this project it was realized that

singularity of this matrix might have been avoided if a mechanism was in place to prevent

the species concentration from becoming negative. The derivative can in fact be negative

(loss of accumulation) but negative concentration has no physical meaning.

2.1.3.3 Marquardt-Levenberg

The Marquardt-Levenberg (ML) is an alteration of the Gauss-Newton algorithm in which

the step size is determined from a different mathematical variation of the derivative matrix.

The step size of this algorithm is delta(k) = (V T V + kD)−1V T (y − η) where y − η is the

residual value using the current parameters, V is the derivative matrix, k is the conditioning

factor, and D is a diagonal matrix whose entries are equal to the diagonal entries of V T V [8].

This algorithm is much more robust and seemed rather insensitive to initial conditions. The

absolute sum of residuals for this fit was consistently around 1100 regardless of the number

of iterations permitted. The computational time required for convergence of a random

initial condition ML fitting is approximately 3 seconds. The results of this algorithm are

presented in figure 6.

Figure 6 is closer to the actual data than the results produced from linear regression

but it still does not capture the dynamic nature of the system. The reaction model could
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Figure 6: Marquardt-Levenberg Fitting Results Phase 1: The solid blue line represents the
derivative calculated from actual experimental data and the red dashed line represents the
values predicted by the parameters from an ML nonlinear fitting.
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be inadequate to describe the system or the time points in which the experimental data

were collected could cause instability in the derivative used to calculate the function used

in fitting.

2.1.3.4 Randomized Nelder-Mead

The Nelder-Mead(NM) simplex (direct) search method has been identified as a very capable

algorithm in finding local minima in multidimensional space [41]. The algorithm sets up an

initial n-dimensional simplex (in three dimensions this is a triangle) and implements a set

of conditions that shrink the simplex towards the local minimum [76]. This method char-

acterized by an average computational speed (3 hours for 5,000 initial conditions each given

1000 simplex moves) and high sensitivity to initial conditions. This algorithm was carried

out with 50,000 different initial conditions on a ten processor cluster and the best result

of the 50,000 iterations was stored. Figure 7 shows the predictive behavior of randomized

Nelder-Mead.

Figure 7 appears more predictive than any of the previous methods. The absolute sum

of residuals was measured to be 995. The figure seems to be in the right range but not

really predictive of nonlinear behavior. This algorithm may prove more useful when the

time scale for experimental data is standardized.

2.1.3.5 Random Selection (Monte Carlo) Method

Although the random selection (RS) method is the second simplest algorithm, the compu-

tational time to get a high quality result is quite high. The algorithm employed in this

method is rather simple. All parameters are scaled between 0 and 1 for rate constants

and −1 and 1 for reaction orders. A 26-element column vector is randomly selected in the

specified parameter range and then inserted into the nonlinear rate function. This process

is repeated many times and the evaluation that gave the lowest sum absolute residuals was

kept. When this algorithm was run 42 million times (computation time of roughly 12 hours

on a single CPU) the lowest sum of absolute residuals was roughly 3,250. When the RS

algorithm was run 500, 000 times (computational time of roughly 10 minutes) the minimum

sum of absolute residuals was 9,300. The results for predictive nature of the model are seen
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Figure 7: Randomized Nelder-Mead Fitting Results Phase 1: The solid blue line represents
the derivative calculated from actual experimental data and the red dashed line represents
the values predicted by the parameters from an NM nonlinear fitting.
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Figure 8: Random Selection (Monte Carlo) Method Results Phase 1: The solid blue line
represents the derivative calculated from actual experimental data and the red dashed line
represents the values predicted by the parameters from a RS nonlinear fitting.

in figure 8.

2.1.3.6 Generalized Simulated Annealing

The generalized simulated annealing algorithm is a Monte Carlo simulation technique that

is physically analogous to the slow cooling of glass and other materials. The minimized cost

function serves as the equivalent to the energy state and a control parameter represents

the physical temperature. The technique has proven especially useful in certain np-hard

problems where many local extrema surround the global minimum. Although GSA vastly

outperforms direct search techniques in these types of problems, the added accuracy comes

with a steep computational cost [68]. The GSA Matlab implementation, which was adapted

from [41], is not only computational intense (a well tuned version takes roughly 10 minutes
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Figure 9: Cosmaze Simulated Annealing Test Function: The expectation landscape for the
two dimensional cosmaze function has a global minimum at [0,0] and various local minima.

for a single iteration) but also highly sensitive to method parameters, both in terms of

accuracy and time (a poorly tuned input could take several days to process, up to 1 million

failed operations can be done in the inner while loop). The sensitivity to initial conditions

was tested in a cosemaze function. The graph of this function is given in Figure 9.

Figure 9 demonstrates a two dimensional function in which most optimization functions

will fail to find the global minimum unless the initial conditions are sufficiently close to

the global minimum. The simulated annealing method consistently finds a minimum near

the global minimum when adequate iterations are given. Figure 10 shows the path of the

simulated annealing algorithm on cosmaze test function when starting at [.85, .85] (blue)

and [−.5,−.75] (red). Each trial took approximately 4 seconds in real time to go through
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Figure 10: Annealing Progress to Global Minimum of Cosmaze Function: The iterations
of the simulated annealing algorithm path on cosmaze test function are shown in the figure
when starting at [.85, .85] (blue) and [−.5,−.75] (red).

10, 000 algorithm iterations.

Because simulated annealing is a search method based on random movements, the

method is not always consistent. Figure 10 shows that red trial reached the vicinity of

the global minimum much faster than the blue trial but given the necessary iterations all

methods would converge to the global minimum. The predictive behavior of a system using

generalized simulated annealing fit parameters is compared to the original data in Figure

11. Figure 9 demonstrates a two dimensional function in which most optimization functions

will fail to find the global minimum unless the initial conditions are sufficiently close to the

global minimum. The simulated annealing method consistently finds a minimum near the

global minimum when adequate iterations are given. Figure 10 shows the path of the sim-

ulated annealing algorithm on cosmaze test function when starting at [.85, .85] (blue) and

[−.5,−.75] (red). Each trial took approximately 4 seconds in real time to go through 10, 000

algorithm iterations.
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Figure 11: Generalized Simulated Annealing Results Phase 1: The solid blue line represents
the derivative calculated from actual experimental data and the red dashed line represents
the values predicted by the parameters from a GSA nonlinear fitting.
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2.1.4 Critique and Conclusions

After the Phase 1 experiments were completed, several design aspects were deemed potential

flaws, which prevented accurate characterization of the experimental data. First and fore-

most was the timing of the experimental measurements. These measurements were made

at time points 0, 1, 4, 8, 24, 48 hours. When these inconsistent intervals were combined

with the necessity to calculate an experimental derivative to fit against, a good amount of

error may have been introduced especially since the state in which the cells were in at 48

hours was thought to be very different than at the earlier time points. The process was also

very user intensive from the building of the matrices to represent the nonlinear rate func-

tion to the adjusting and manipulating the parameters of the various optimization methods

especially simulated annealing. The hope is to automate a majority of these user intensive

tasks in the future phases. Simulated annealing even with its additional computational cost

appeared superior to other methods because of its ability to find a global minimum in even

if passing through a global minimum was required. Although Phase 1 failed in accurately

characterizing the experimental data, a good portion of the groundwork was laid and goals

for future phases were determined.

2.2 General Algorithm Design Phase 2

The primary goals of the second phase of algorithm development were the following: further

automating and enabling the automatic creation of the nonlinear rate function from a

minimal set of text files, allowing the direct comparison of experimental measurements to

predict values, building in a framework that allows algorithm progress tracking for cost,

parameter values, and process time. Figure 12 shows the basic algorithm designs for the

third stage of algorithm development.

Notice the addition of two elements in the Phase 2 design in comparison to the previ-

ous stage of development. The control script was added to provide algorithm flexibility by

altering the script that drives the fitting routine from the command line instead of necessi-

tating a change in the source code. An integrator module was also added to the scheme to

allow the comparison of predicted values directly with the experimental observations. The
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Figure 12: High Level Algorithm Design Phase 2: The relationship between the five primary
components of the design are shown.

integrator module will be discussed at length in a later part of this section.

2.2.1 Building the Nonlinear Rate Function

As seen in the previous phase, the representation of the nonlinear rate function became

increasingly more time demanding to produce as the number of nodes in the network in-

creased. Not only was the computer code readability becoming more of an apparent problem

but also the inflexibility of previous rate functions was clearly in opposition to the long-term

project goals. Although capable of being mathematically identical to the both of the previ-

ous rate equations, the phase three implementation of the nonlinear rate function allowed

flexibility in that any size network could be represented by simply redefining the R and F

matrices. The F matrix or “footprint” is a system of −1s, 0s, and 1s that describe how

the terms in the equation relate to a particular species, which is indicated by the row of

the matrix. The following matrix in equation 94 represents the F matrix for the previously
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discussed six-node sphingolipid system.

F =



−1 1 −1 1 −1 1 0 0 0 0

1 −1 0 0 0 0 0 0 0 0

0 0 1 −1 0 0 0 0 0 0

0 0 0 0 1 −1 −1 1 −1 1

0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 0 1 −1


(94)

Each of the ten columns represents one term in the composite rate equation and each

row represents a particular node. Using the above matrix, the first nodes rate equation is

comprised of a negative term 1, a positive term 2, a negative term 3, a positive term 4, a

negative term 5, and a positive term 6; whereas, the second node is comprised of a positive

term 1 and a negative term 2.

The “footprint” matrix is not sufficient by itself to represent the nonlinear rate term a

second matrix called the R or “reaction” matrix is required to describe the type of network

connectivity. The R matrix is the same size as the F matrix and is composed of 1s and 0s.

Each pair of columns represents a single reversible chemical reaction. The first of the pair

represents the presence of reverse reaction in the rate equation while the second represents

the presence of the forward reaction in the rate equation. The R matrix for the six-node

system is shown in equation 95.

R =



1 0 1 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 1 0 1 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1


(95)

The previous matrix effectively states that the first node rate equation is composed of

three reverse reactions, one with node 2, one with node 3, and the final one with node 4.

The fourth node’s rate equation is made from a forward reaction with node 1, a reverse

reaction with node 5, and a reverse reaction with node 6.
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2.2.2 Integrator Module

The integration of the rate function system can be treated as initial value problem thus

allowing the direct comparison of experimental observations and predicted values. This

comparison is achieved by numerically integrating the system of nonlinear rate functions

to produce a predicted concentration instead of a concentration rate of change as found

in the initial two phases. Adaptive step size Runge-Kutta was selected as the numerical

integration method because of its ability to provide efficient highly accurate solutions, its

simplicity and ease to implement, and its wide spread use [72].

Fehlberg proposed the original adaptive step size Runge-Kutta algorithm. The Fehlberg

algorithm consists of embedded Runge-Kutta formulae of order four and five in which the

fifth order formula is used as an error metric to determine the accuracy of the fourth order

solution. If the terms agree within a predefined tolerance, the step is accepted and the step

size for the next step is enlarged proportional to the degree by which the tolerance was

exceeded. If the difference in the terms is beyond the preset tolerance, the step is rejected

and the step repeated with the step size is reduced to a degree, which the algorithm predicts

will meet the tolerance. The following equations, 96 – 104, constitute the Runge-Kutta-

Felhberg Method [53].

k1 = hf(tk, yk) (96)

k2 = hf(tk +
1
4
h, yk +

1
4
k1) (97)

k3 = hf(tk +
3
8
h, yk +

3
32

k1 +
9
32

k2) (98)

k4 = hf(tk +
12
13

h, yk +
1932
2197

k1 −
7200
2197

k2 +
7296
2197

k3) (99)

k5 = hf(tk + h, yk +
439
216

k1 − 8k2 +
3680
513

k3 −
845
4104

k4) (100)

k6 = hf(tk +
1
2
h, yk −

8
27

k1 + 2k2 −
3544
2565

k3 +
1859
4104

k4 −
11
40

k5) (101)

The previous equations are used to produce the fourth and fifth order approximations

given by the following equations [53]. y represents the fourth order approximation and z
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represents the fifth order approximation.

yk+1 = yk +
25
216

k1 +
1408
2565

k3 +
2197
4104

k4 −
1
5
k5 (102)

zk+1 = yk +
16
135

k1 +
6656
12825

k3 +
28, 561
56, 430

k4 −
9
50

k5 +
2
55

k6 (103)

The calculation of step size scalar s, which controls the amount by which the step size

increases or decreases, is given by equation 104 below.

s =
(

tol ∗ h

2|zk+1 − yk+1|

)1/4

(104)

Several advances in adaptive step size Runge-Kutta have been made since Fehlberg’s

original formulation. One sight alteration is to use the fourth order formula as error metric

for the fifth order approximation. Another improvement is to use the slightly more efficient

constants derived by Cash and Karp [14]. These alterations and a practical step size

adjustment suggested by Press et al. were incorporated to produce a suitable integration

function [72].

2.2.3 Cost Function

The Phase 2 cost function is identical to the Phase 1 cost function except the Phase 2

cost function incorporated the actual observations instead of the derivatives. The data was

input as a simple matrix where the first column is the time points and the subsequent

columns are the concentrations of the nodes at the given time points. For example, the

six-node system discussed earlier with six time points would give rise to a 6x7 matrix. The

equations that were used to provide the data fit are given below in equations 105 – 110. The

implementation of this cost function was also designed to provide a high cost for parameters

that are overly difficult to integrate.

CDH =
∫ 6

0
MDH − k1C

α1
DH + k2C

α2
C − k3C

α3
DH + k4C

α4
SMDH − k5C

α5
DH + k6C

α6
GCDHdt (105)

CSMDH =
∫ 6

0
MSMDH + k3C

α3
DH − k4C

α4
SMDHdt (106)

CGCDHdt =
∫ 6

0
MGCDH + k5C

α5
DH − k6C

α6
GCDHdt (107)

CC =
∫ 6

0
MC + k1C

α1
DH − k2C

α2
C − k7C

α7
C + k8C

α8
SM − k9C

α9
C + k10C

α10
GC dt (108)
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CSM =
∫ 6

0
MSM + k7C

α7
C − k8C

α8
SMdt (109)

CGC =
∫ 6

0
MGC + k9C

α9
C − k10C

α10
GC dt (110)

The cost function and optimization method are intertwined in the cases where nonlinear

regression was used to fit the data. In the intertwined case the cost function is the least

residual squares. In cases where the optimization method and cost function are separate the

fitting method is the sum of absolute residuals. The method of calculating cost in instances

where the optimization method and cost function are separate is given by equations 111 –

114.

Cost1 = |CDATA
DH − CCALC

DH |+ |CDATA
SMDH − CCALC

SMDH | (111)

Cost2 = |CDATA
GCDH − CCALC

GCDH |+ |CDATA
C − CCALC

C | (112)

Cost3 = |CDATA
SM − CCALC

SM |+ |CDATA
GC − CCALC

GC | (113)

Cost = Cost1 + Cost2 + Cost3 (114)

The above equations show the experimental measurement of each species being compared

to the calculated measurement of each species. The absolute values of these comparisons

are summed to give the cost, which is reported to the optimization function.

2.2.4 Critique and Conclusions

Phase 2 was a success in that the code required for fitting not only was universal for any

network but also was substantially compacted and more readable. Other advantages include

the ability to track the progress of the algorithm as it accepts steps, and its compatibility

to run on both on ia32 and ia64 systems.

The major disadvantage was the system of equations was sufficiently stiff; meaning

the dependent variables (the node concentrations) changed on very different independent

variable scales (the kinetic parameters). Most chemical kinetics problems are sufficiently

stiff and require a numerical integration method that remains stable [42]. The implemented

explicit Runge-Kutta integrator was unable to integrate the system of rate equations without

taking extremely minute step sizes, which often times exceeded the limits of floating point

mathematical operations.
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Figure 13: High Level Algorithm Design Phase 3: The relationship between the six primary
components of the design are shown.

2.3 General Algorithm Design Phase 3

The primary goals of the third design phase were to incorporate a stiff integrator and provide

an interchangeable set of enzymatic reaction models. The design map of Phase 3 is given

in Figure 13. Notice in Figure 13 that the insertion of two pieces, the ODE Constructor,

and the set of Enzymatic Rate Equations, have replaced the nonlinear rate function, which

was used in all previous phases.

2.3.1 Enzymatic Rate Equation

Since experimental data is only available for a single substrate and single product for each of

the numbered reactions in the network map in Figure 14, only the Uni Uni Mechanism was

used in this phase. The process of adding more enzymatic rate equations will be described in

the section about the ode constructor. The velocity for the five Uni Uni reactions (numbered
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Figure 14: Six-Node Network Diagram: Each of the Enzymatic Reaction are numbered to
reflect the labeling through out Phase 3.

in Figure 14) used in this phase are given in equations 115 – 119.

V1 =
k1k3k5[CDH ][E1]− k2k4k6[CSMDH ][E1]

k2k5 + k2k4 + k3k5 + (k1k3 + k1k4 + k1k5)[CDH ] + (k2k6 + k3k6 + k4k6)[CSMDH ]
(115)

V2 =
k7k9k11[CDH ][E2]− k8k10k12[CGCDH ][E2]

k8k11 + k8k10 + k9k11 + (k7k9 + k7k10 + k7k11)[CDH ] + (k8k12 + k9k12 + k10k12)[CGCDH ]
(116)

V3 =
k13k15k17[CDH ][E3]− k14k16k18[CC ][E3]

k14k17 + k14k16 + k15k17 + (k13k15 + k13k16 + k13k17)[CDH ] + (k14k18 + k15k18 + k16k18)[CC ]
(117)

V4 =
k19k21k23[CC ][E4]− k20k22k24[CSM ][E4]

k20k23 + k20k22 + k21k23 + (k19k21 + k19k22 + k19k23)[CC ] + (k20k24 + k21k24 + k22k24)[CSM ]
(118)

V5 =
k25k27k29[CC ][E5]− k26k28k30[CGC ][E5]

k26k29 + k26k28 + k27k29 + (k25k27 + k25k28 + k25k29)[CC ] + (k26k30 + k27k30 + k28k30)[CGC ]
(119)
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2.3.2 ODE Constructor

The purpose of the ODE constructor is to build the governing ordinary differential equation

for each node from a specified combination of enzymatic equations. The “footprint” matrix,

is made of −1 ’s, 0 ’s, and 1 ’s, gives the combination of required equations for each

node. The “footprint” matrix of the six-node system is given in equation 120. Each row

describes the rate equations that a particular species is involved. A −1 means the species

of that row is the substrate in the particular reaction given by the column. For example,

species 1 (dihydroceramide) is the substrate in reaction 1, 2, and 3, whereas, species 2

(dihydrosphingomyelin) is the product in the first reaction.

F =



−1 −1 −1 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 −1 −1

0 0 0 1 0

0 0 0 0 1


(120)

The R matrix has been simplified from the previous versions. The R, “reaction”, matrix

is now a row vector with length number of reactions which describes what type of enzymatic

reaction is required for each reversible reaction in the network. Since only the Uni Uni

Mechanism was available due to the experimental constraints, the six-node R matrix is a

vector of ones length five, which is given in equation 121.

R =
[

1 1 1 1 1
]

(121)

Once the enzymatic rate functions are calculated, the system of ordinary differential

equations to be integrated is given by the expression in equation 122.

deriv = (
∑

(F ∗ diag(V ))T )T (122)
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2.3.3 Integrator

The integrator was in this third phase was the odes15s integrator from the Matlab ODE

Suite [85]. This integrator is valid for both stiff and nonstiff sets of ordinary differien-

tial equation initial value problems. This integrator uses either Backward Differentiation

Formulas (BDFs), as known as Gears Methods, and Numerical Differentiation Formulas

(NDFs) [85].

2.3.4 Cost Function

The cost function in the third stage is again a comparison of the experimental observations

and a predicted concentration derived from the integration of the composite rate function.

The equations for the third phase are given below in equations 123 – 126.

Cost1 = |CDATA
DH − CCALC

DH |+ |CDATA
SMDH − CCALC

SMDH | (123)

Cost2 = |CDATA
GCDH − CCALC

GCDH |+ |CDATA
C − CCALC

C | (124)

Cost3 = |CDATA
SM − CCALC

SM |+ |CDATA
GC − CCALC

GC | (125)

Cost = Cost1 + Cost2 + Cost3 (126)

2.3.5 Results and Discussion

The Phase 3 design unlike Phase 2 design was able to produce results. The experimental

measurement of a particular species concentration is shown in the plots below as a blue

circle, whereas the predict value of the rate is seen as a dashed red line.

A quick glance at Figure 15 shows that the kinetic parameters found by this fitting

method are not ideal. Figure 15 was from the best-fit trial in terms of cost, ending cost

value of roughly 438. To put this into perspective, if all zeros were selected as the kinetic

parameters, the resulting cost is roughly 500. One possible explanation of the poor fit is

that the algorithm was simply not run long enough. Figure 16 shows the progression of the

algorithm in terms of cost as computational time increases.

Figure 16 clearly shows nearly flat line improvement from the simulated annealing al-

gorithm after roughly 800 seconds. The algorithm was clearly run long enough in this case
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Figure 15: Generalized Simulated Annealing Results Phase 3: The blue circles represent
the derivative calculated from actual experimental data and the red dashed line represents
the values predicted by the parameters from a GSA nonlinear fitting.
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Figure 16: Generalized Simulated Annealing Results Phase 3 Algorithm Progression: The
plot shows the progression of the simulated annealing method for the best fit trial against
time.
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barring a sudden drop in cost after a period of flat lining. Another potential explanation

of the algorithms lackluster performance is that the algorithm got stuck in a neighborhood

that it could not leave. After analyzing the conditions under which the simulated annealing

procedure operated, it is rather easy to see how the algorithm could stick in a certain area.

The kinetic parameters, which have a potential dynamic range or ten orders of magnitude,

were scaled from 0 to 1 then multiplied by 109 to apply the correct range. Simulated Anneal-

ing, as mentioned before, operates using a uniform random number generator. If random

initial conditions are selected, then on average 99% of the kinetic parameters will lie in the

region between 107 and 108. This is clearly not what was intended and locks the algorithm

in this neighborhood of a single order of magnitude. Several methods that attempted to

distribute the initial conditions were devised including using a logarithm. These methods

potentially allowed the system of equations to become too stiff for the integrator in nearly

1 in 1,000 cases. If 1,000 random guesses were made consecutively, the integrator showed a

failure rate of roughly 66% in terms of being able to complete 1,000 successive iterations.

2.3.6 Critique and Conclusions

Although algorithm development has gained substantially on the overall goal through the

completion of the three phases, a quality, accurate, relevant solution has still not been

elucidated. The failure of a commercial integrator was clearly not foreseen but not totally

unexpected since this fitting problem has been actively pursued for some time without

success. The next logical steps are first to produce an integrator or other function capable of

distinguishing ultra-stiff problems, which are not likely to be quality results. Another worthy

task is to study and facilitate optimal fitting performance. This task requires extensively

studying the paths and preferences of optimization and fitting methods.
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CHAPTER III

VALIDATION OF THE MODELING FRAMEWORK

WITH SIMULATED DATA

The purpose of the work in this chapter is to elucidate the kinetic parameters that govern

a simulated sphingolipid metabolism system using various global optimization routines in-

cluding Monte Carlo, Simulated Annealing, and Genetic Algorithms. Here a simulated six

node system was built from five UniUni reaction equations with known kinetic parameters.

Each node was treated as a combination of single substrate, single product catalyzed re-

actions. This defined system of equations is then sampled at a rate that mimics the mass

spectrometry measurements of the complex pathway in time shown in [34]. As the inves-

tigation on mathematical models of biological events continues to gain popularity, the use

of global optimization methods to quickly and reliably estimate missing parameters will

become more vital. This work investigates the use of global parameter estimation schemes

in terms of their reliability to the true underlying kinetic parameters. When the amount

of fitting parameters is sufficiently large, it is likely to find parameter sets that predict the

data decently well, but the optimized parameters often are not closely related to the true

underlying parameters.

3.1 Methods

In order to meet the objectives of the study, several computational tasks had to be pursued.

The first of these tasks was setting a suitable simulated network. The other critical task in

this study was to prepare implementations of the necessary optimization methods.

3.1.1 Simulated System Design

A simulated six-node system was developed to mirror the topology of the network in Figure

17. Each of the reversible connections, shown in the figure as two arrows, is modeled as a
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Figure 17: Six-Node Network with Numbered Enzymatic Reactions: The species listed here
are real metabolites in the sphingolipid metabolism pathway. This network is only a small
section of the larger sphingolipid and metabolism networks (See www.sphingomap.org for
complete pathway). Typically, this network is highly influenced by surrounding pathways
but here we consider it as an isolated system.

kinetic UniUni mechanism [51, 44].

3.1.2 Monte Carlo Implementation

Monte Carlo methods have been applied in many problems, most notably integration. The

Monte Carlo methods employed in this work consist of picking a vector of random numbers

that represent the kinetic rate constants. A uniform distribution from zero to one is returned

for each element of the vector. This number between zero and one directly maps to a rate

constant between 0.1 and 109. Care was taken to insure that roughly an equal probability

for each order of magnitude was provided.

3.1.3 Simulated Annealing Implementation

A simulated annealing methodology was adapted from a Matlab routine used to optimize

parameters in single chemical reactions [41]. In addition to increasing the number of
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dimensions being optimized, several tests were run to investigate if the parameters of the

algorithm needed to be adjusted due to the scale change. This optimization method also

operates on scaled parameters with a range between 0 and 1. This number between zero

and one directly maps to a rate constant between 0.1 and 109.

3.1.4 Genetic Algorithm Implementation

First, an initial population of 50 individuals, each with 30 genes representing the 30 param-

eters being fit, is randomly generated. The cost of all of the individuals is evaluated in a

systematic fashion. Arbitrarily high cost values are given to the individuals with genes out

of 0 to 1 range and those that are unable to be integrated. After cost values are assigned

to each of the population members, the two members with the lowest cost are placed in

the next generation. The process of filling the remaining 48 spots in the next generation

starts with selecting parents from the current generation. A selection procedure was used

to insure that the more fit individuals had a higher probability of having their genes repre-

sented in the next generation. After a suitable number of parents have been selected, 95%

of the next generation is formed through crossover of two parents and the remaining 5%

is done randomly mutating the parents a random number of times. Now a new generation

is formed and process iterates in order to produce the following generation and continues

until a defined number of generations have passed.

3.2 Results and Discussion

The results of this work are classified in two different ways. First the computational kinetic

parameters are judged according to how well they describe the system behavior. In order

to show this behavior fitness, the synthetic data points (red circles), which were used to get

the cost in each of the optimization routines, were plotted against a line that describes the

time course behavior for the particular metabolite. These graphs were prepared for each

node in the network. Figure 18 shows the behavior fitness for the lowest cost result in the

first Monte Carlo trial.

Plots showing the best-fit results for the second Monte Carlo trial are shown in Figure

19. Again, here the red circles represent the data points being fit to and the blue line
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Figure 18: Best-Fit Monte Carlo Trial 1: All plots represent the concentration per unit cell
number of a particular metabolite species in time. The circles represent the data measure-
ment in which the random trials of the Monte Carlo study were compared. All units on
the y-axis are pico-moles per unit cell number. The units for time on the x-axis are hours.
Together the plots describe a hypothetical six node five connection metabolism network
analogous to the one described in the system design section. Plot A represents the hypo-
thetical accumulation of dihydroceramide. Plot B represents the hypothetical accumulation
of dihydroglucoslyceramide. Plot C is the accumulation of dihydrosphingomyelin. Plot D
is the ceramide accumulation. Plot E is the glucoslyceramide accumulation. Plot F is the
sphingomyelin accumulation.
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Figure 19: Best-Fit Monte Carlo Trial 2: All plots represent the concentration per unit cell
number of a particular metabolite species in time. The circles represent the data measure-
ment in which the random trials of the Monte Carlo study were compared. All units on
the y-axis are pico-moles per unit cell number. The units for time on the x-axis are hours.
Together the plots describe a hypothetical six node five connection metabolism network
analogous to the one described in the system design section. Plot A represents the hypo-
thetical accumulation of dihydroceramide. Plot B represents the hypothetical accumulation
of dihydroglucoslyceramide. Plot C is the accumulation of dihydrosphingomyelin. Plot D
is the ceramide accumulation. Plot E is the glucoslyceramide accumulation. Plot F is the
sphingomyelin accumulation.

represents the time course of each metabolite as predicted by the best kinetic parameters.

Plots showing the best-fit results for the first Simulated Annealing trial are shown in

Figure 20. Again, here the red circles represent the data points being fit to and the blue line

represents the time course of each metabolite as predicted by the best kinetic parameters.

Plots showing the best-fit results for the second Simulated Annealing trial are shown in

Figure 21. Again, here the red circles represent the data points being fit to and the blue line

represents the time course of each metabolite as predicted by the best kinetic parameters.

Plots showing the best-fit results for the Genetic Algorithm trial are shown in Figure 22.
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Figure 20: Best-Fit Simulated Annealing Trial 1: All plots represent the concentration
per unit cell number of a particular metabolite species in time. The circles represent the
simulated data measurements the algorithm is fitting (runtime of 5.5 hours). All units on
the y-axis are pico-molar per unit cell number. The time units on the x-axis are hours.
Together the plots describe a hypothetical six node five connection metabolism network
analogous to the one described in the system design section. Plot A represents the hypo-
thetical accumulation of dihydroceramide. Plot B represents the hypothetical accumulation
of dihydroglucoslyceramide. Plot C is the accumulation of dihydrosphingomyelin. Plot D
is the ceramide accumulation. Plot E is the glucoslyceramide accumulation. Plot F is the
sphingomyelin accumulation.
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Figure 21: Best-Fit Simulated Annealing Trial 2: All plots represent the concentration
per unit cell number of a particular metabolite species in time. The circles represent the
simulated data measurements the algorithm is fitting (runtime of 5.5 hours). All units on
the y-axis are pico-molar per unit cell number. The time units on the x-axis are hours.
Together the plots describe a hypothetical six node five connection metabolism network
analogous to the one described in the system design section. Plot A represents the hypo-
thetical accumulation of dihydroceramide. Plot B represents the hypothetical accumulation
of dihydroglucoslyceramide. Plot C is the accumulation of dihydrosphingomyelin. Plot D
is the ceramide accumulation. Plot E is the glucoslyceramide accumulation. Plot F is the
sphingomyelin accumulation.
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Figure 22: Best-Fit Genetic Algorithm: All plots are the concentration per unit cell number
of a particular metabolite species in time. The circles represent the simulated data measure-
ments the algorithm is fitting. All units on the y-axis are pico-moles per unit cell number.
The time units on the x-axis are in hours. Together the plots describe a hypothetical six
node five connection metabolism network analogous to the one described in the system de-
velopement section. Plot A represents the hypothetical accumulation of dihydroceramide.
Plot B represents the hypothetical accumulation of dihydroglucoslyceramide. Plot C is the
accumulation of dihydrosphingomyelin. Plot D is the ceramide accumulation. Plot E is the
glucoslyceramide concentration versus time. Plot F is the sphingomyelin accumulation.

Again, here the red circles represent the data points being fit to and the blue line represents

the time course of each metabolite as predicted by the best kinetic parameters.

The computational output can be investigated not only by examining overall network

behavior but also by comparing the predicted kinetic parameters to the known values since

the network was built from known parameters. Table 1 shows the true kinetic parameters

and the kinetic parameters that were used to generate the previous figures.

In contrast to what we see in figures 19-22, Table 1 shows that the actual kinetic pa-

rameters used to construct the fitted line are significantly different from the true underlying

parameters. The measure of how well the fitted line fits to the data also does not seem to
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Table 1: True Kinetic Parameters from Simulated System (TRUE) and Best Fit Parameters
for 2 Monte Carlo Trials (MC1 and MC2), 2 Simulated Annealing Trials (SA1 and SA2),
and a Genetic Algorithm trial (GA).
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be correlated to how close the fitted parameters are to the actual parameters. The Monte

Carlo trials on average are closer to the actual parameters than those predicted by the

Genetic Algorithm even though the Genetic Algorithm is much more visually appealing.

Although the parameter fitting was able to produce reasonable approximations of the

complex behavior, the underlying kinetic constants that define the network are typically

very different than the true kinetic constants. If true kinetic constants need to be obtained,

more sophisticated cost fitness measurements, higher data sampling rates, or more advanced

algorithms are required. The future of this work involves improving algorithm scalability

and capability as well as enhancing computational performance.
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CHAPTER IV

COMPARISON OF NUMERICAL INTEGRATION

METHODS FOR USE IN SYSTEMS BIOLOGY

4.1 Abstract

Analyses of dynamic network models, which are composed of a system of differential equa-

tions, often require the use of numerical integration methods to estimate the networks

behavior filling the void left by the lack of an attainable analytical solution. Large sys-

tems, as well as moderate-sized, and even small systems of differential equations, often can

not be solved analytically. These systems of biochemical differential equations are also es-

pecially susceptible to stiffness, a mathematical property that necessitates using a special

class of solvers in order to achieve efficient solving. Stiffness arises in systems of differential

equations when the integrated variables are changing on very different timescales.

Here, I profile the performance of nine common numerical integration techniques on

eight problems obtained from literature. Each of the integrators solved the test problems

at different levels of numerical tolerance and was evaluated on two primary criteria, time of

execution and time lag error in the obtained solution. I find that no particular integrator

outperforms the others under all circumstances but the backward differentiation formu-

lae (BDF) have the best average performance when both stiff and non-stiff problems are

considered.

Efficient numerical integration methods are especially important in parameter estimation

exercises where a vast number of potential dynamic network models with differing degrees

of stiffness are evaluated. The future of systems biology differential equation models greatly

depends on harnessing capable numerical methods to solve large problems in a correct and

timely manner.
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4.2 Background

Although many of the landmark papers on the comparison of numerical integration methods

were completed decades ago [23, 30, 38, 86, 37], the rapid advancement of computers, the

increasing availability of grid computing resources, and the desire to expand both the size

and complexity of dynamic network models have necessitated that commonly employed nu-

merical methods be re-examined. While computing power enhancement is often exclusively

viewed in terms of processor speed and Moores Law, the improvement of many other com-

ponents, such as RAM speed, may cause the rank order performance of specific integration

algorithms to change with new generation processors. Due to the varying improvement rate

of processing components, algorithms previously not competitive may suddenly outperform

yesterday’s premier methods. Grid computing is rapidly emerging as a viable scientific re-

source and necessitating a change in the way algorithms are designed. The advent of grid

computing, much like the different evolution times for computing components, has created a

potential solution where the yesterday’s premier algorithms are no longer competitive with

previously inferior algorithms that have been more effectively parallelized for grid usage.

Current size of state of the art differential equation models [4] pale in comparison with the

size of large linear models of biochemical pathways [74] and the effectiveness of numerical

solvers likely plays a role in creating the observed disparity. Dynamic network models are

rapidly expanding to include more reactions and components, which in the case of differ-

ential equations models may necessitate using a different solving technique because of size

limitations or the more likely induction of numerical stiffness.

Numerical integration methods can largely be classified into two distinct categories, stiff

and non-stiff solvers. Non-stiff solvers employ explicit methods to solve the initial value

problem. The term explicit means that the next point in the solution can be computed

by a function that only depends on the previously value of the solution. The function

is first evaluated at the initial value and then iteratively proceeds until the end of the

integration interval. Explicit integration methodologies mainly vary in their composition

of the function to predict the next point in the solution. In this study, we investigate
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the following methods: Runge-Kutta with Cash-Karp constants [14], Adams-Bashforth-

Moulton [35], and the Bulirsch-Stoer method [90]. Runge-Kutta, including the variant

used in this study, combines several algebraic expressions to exactly match a Taylor series

expansion of a certain order. The Adams-Bashforth-Moulton is a multistep scheme where

first a predictor equation is used to extrapolate the next point in the solution and then a

corrector estimates the local truncation error for the iteration. The Bulirsch-Stoer method

combines the modified midpoint method and rational extrapolation. This integrator works

by first explicitly estimating the point in the solution with several finite step sizes and

extrapolating the value of the solution as would be determined by step size of zero [72].

Although integration option not studied here is a Taylor series integrator that calculates the

Taylor series of a certain order directly by numerically computing the necessary derivatives

at each point in the solution. Recursive programming techniques are employed to defray

the high computational cost of the Taylor series integrator [40].

Stiffness can be defined as a property of the set of differential equations where a signif-

icant depression in step size is required in some numerical solvers for at least part of the

integration interval. Stiffness arises when the solutions of two or more of the differential

equations evolve at vastly different timescales [39]. Stiff sets of differential equations can

efficiently be solved with implicit methods. Implicit methods differ from comparable ex-

plicit methods by requiring the next step in the solution to be a function of not only the

previous value of the solution but also a function of the solution value being determined.

The stability of each integration step is no longer dependent on the size of the integration

step with implicit methods and therefore allows efficient solution of stiff problems [72]. This

enhanced stability of implicit methods comes with a cost of decreased solution accuracy as

compared to explicit methods. The following implicit solvers were included in this integrator

comparison study: backward differentiation formulae (BDF) [26, 35], numerical differen-

tiation formulae (NDF) [85], a Rosenbrock method [84], and semi-implicit extrapolation

method [5]. Backward differentiation formulae are implicit predictor-corrector methods

that are especially well suited for stiff problems [26]. Numerical differentiation formulae is

a recent alteration of the BDF method that allows the truncation error of the solution to
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be reduced therefore providing a solution with improved accuracy while still retaining the

stability profile of the BDF method [85]. Rosenbrock methods are implicit versions of the

Runge-Kutta method. The semi-implicit extrapolation method is a semi-implicit version of

the explicit Bulirsch-Stoer method.

Existing software for building and solving models of differential equations in Systems

Biology typically employs an integration scheme that is capable of efficiently solving both

stiff and non-stiff problems. The most common choice of the integrator for these softwares

is LSODA, an integrator that automatically switches between an Adams type method for

non-stiff problems and a BDF method for stiff problems [69]. Some of the software pack-

ages that use LSODA or similar integration methods include Gepasi [60] and E-Cell [91].

Several software packages also use the similar NDF method such as OBIYagns [43]. Spe-

cialized tools, which take advantage of particular mathematical form, have been developed

for specific models such as power law systems including PLAS [94].

4.3 Methods

The test problems, integrators, and analysis scripts were all written in the C programming

language. The C programming language was selected because of the vast availability of inte-

gration methods, its noted performance in numerical methods, and its potential to be used in

parallel computing environments including grids. High quality implementations for all of the

integration methods were obtained in the C programming language with the exception of nu-

merical differentiation formulae, which was converted from MATLAB 6.5 by the author. The

Runge-Kutta with Cash-Karp constants, the Bulirsch-Stoer method, Rosenbrock method,

and semi-implicit extrapolation method are all available for purchase at www.nr.com. The

Adams predictor-corrector method and backward differentiation formulae are available for

free download as part of the SUNDIALS integrator suite at www.llnl.gov/CASC/sundials.

The numerical differentiation formulae (NDF) integrator is available as the MATLAB func-

tion ode15s in latest version of MATLAB (www.mathworks.com). All of the test problems

were also written in the C and MATLAB languages and are in appendix B.
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4.4 Results

The first four test problems are examples of classic integrator test problems obtained from

previous integrator comparison studies [30]. The fifth test problem models the aerobic

oxidation of nicotinamide adenine dinucleotide (NADH) in horseradish [99]. The fifth test

problem was included because it is a well studied example of a biochemical system capable

of oscillations. The sixth test problem is physiologically based pharmacokinetic model,

which details how an intravenous drug disperses and is eliminated from the body [71].

The seventh test problem investigates the signalling and receptor internalization of HER2

receptors [33]. The eighth test problem is recent large-scale metabolism model [4, 3]. Each

of the modern numerical integration methods were tested on the entire set of test problems

and results are reporting in the following sections.

4.4.1 Test Problem 1: The Oregonator Model

Oregonator is a classical differential equation model that accurately predicts the oscillatory

behavior of the Belousov-Zhabotinskii chemical reaction. The organic chemical reaction ex-

hibits limit cycle behaviour characterized by the stable periodic oscillations of intermediate

reaction products [24]. The values of the initial conditions, kinetic rate constants, and

comparison time as well as the structure of the ordinary differential equations for the three

variable system were obtained from [30]. Table 2 shows the results of each of the numerical

integrators in terms of execution time and error in the comparison time.

4.4.2 Test Problem 2: High Irradiance Response Model (HIRES)

The HIRES model describes the growth and differentiation of plant tissue under the condi-

tion of high levels of irradiance [78]. The model is composed of an eight variable non-linear

ordinary differential equation. The structure, initial conditions, equation parameters, and

characteristic time value were obtained from [32] and [30]. Table 3 shows the results of

each of the numerical integrators in terms of execution time and error in the comparison

time.
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Table 2: OREGO Results: The Oregonator test problem was simulated from time zero to
time 316 seconds. The time column represents the execution time in microseconds. The
error column is the percent error of the intergrators result when y(1) reaches the initial
condition of 4.0 a second time. The best value for this time is 302.85805 as reported in
[30].

Table 3: HIRES Results: The HIRES test problem was simulated from time zero to time
400 seconds. The time column represents the execution time in microseconds. The error
column is the percent error of the intergrators result when y(7) reaches the same value of
y(8), which is 0.00285. The best value for this time is 321.8122 as reported in [30].
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Table 4: CLAUS Results: The CLAUS test problem was simulated from time zero to time
40 seconds. The time column represents the execution time in microseconds. The error
column is the percent error of the intergrators result when y(10) reaches 90% of its steady
state value. The best value for this time is 36.7234 as reported in [30].

4.4.3 Test Problem 3: Transient Molecular Flow through a Tube (CLAUS)

The CLAUS problem is partial differential equation model that investigates the transient

molecular flow in a tube as treated by Clausing [15]. The partial differential equation

model can be discretized into a system of ordinary differential equations as presented by

Gottwald and Wanner [30]. The model used for this work was a ten compartment model

without chemically reacting flow. The structure, initial conditions, equation parameters,

and characteristic time value were obtained from [30]. Table 4 shows the results of each of

the numerical integrators in terms of execution time and error in the comparison time.

4.4.4 Test Problem 4: Nerve Excitation Model of Hodgkin and Huxley (HODGK)

The HODGK model is a set of four ordinary differential equations that describes the behav-

ior of the membrane potential and different ionic currents associated with nervous system

firing and signal propagation. The first three differential equations describe the potassium

activation, sodium activation, and sodium inactivation. The fourth equation describes the

membrane potential difference [25]. The structure, initial conditions, equation parameters,
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Table 5: HODGK Results: The HODGK test problem was simulated from time zero to
time 20 seconds. The time column represents the execution time in microseconds. The
error column is the percent error of the intergrators result when y(4) reaches zero. The best
value for this time is 8.17888 as reported in [30].

and characteristic time value were obtained from [30]. Table 5 shows the results of each of

the numerical integrators in terms of execution time and error in the comparison time.

4.4.5 Test Problem 5: Aerobic Oxidation of NADH in Horseradish (PO)

Peroxidase-Oxidase reaction involves the oxidation of organic electron donors by molecular

oxygen [99]. The catalyst for the reaction is Horseradish Peroxidase (HRP), present in the

roots of the horseradish plant, is a cell wall bound enzyme. It consists of a ferric heme group,

308 amino acid residues, two Ca2+, and eight neutral carbohydrate side chains. HRP, in

vivo, uses peroxide to oxidize substrates hence this reaction is referred to as peroxidase-

oxidase, that is, an oxidation with a peroxidase enzyme as the catalyst. The reaction is

modeled as a system of differential equations built from mass action kinetics. This widely

studied system has models that widely vary in complexity from several to a vast number

of differential equations. Here, we have chose the simplest model that can demonstrate

the oscillatory behavior as presented in [48]. The first and second equations represent the

rate of concentration changes of oxygen and NADH, respectively. The third and fourth
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Table 6: PO Results: The PO test problem was simulated from time zero to time 200
seconds. The time column represents the execution time in microseconds. The error column
is the percent error of the intergrators result when y(1), oxygen, reaches 95% of its steady
state value. The best value for this time is 82.4159 as determined by high accuracy numerical
solution.

differential equations represent the concentration rate of change for a radical form of NAD

and radical form of the peroxidase enzyme, respectively. The characteristic time used for

this test problem was when oxygen reaches 95% of its steady state value. Table 6 shows

the results of each of the numerical integrators when the problem was run from time zero

to 100 minutes.

4.4.6 Test Problem 6: Physiologically Based Pharmacokinetics Model (PBPK)

Typical pharmacokinetic models target a specific tissue and investigate the performance of

the major pharmacokinetic processes, which are absorption, distribution, metabolism, and

elimination. Physiologically-based pharmacokinetic models combine the in vitro classified

traditional pharmacokinetic models with in vivo information pertaining to blood volumes

and flow rates to create a model that is capable of predicting in vivo behavior of an intra-

venously injected drug. In this study, we used a thirteen compartment model of diazepam

distribution in a 250 gram rat. Each compartment was model with a differential equation

that accounted for absorption, elimination, and metabolism. The compartments were ar-

terial blood, venous blood, liver, lungs, adipose, bone, brain, gut, spleen, heart, kidney,
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Table 7: PBPK Results: The PBPK test problem was simulated from time zero to time
40 minutes. The time column represents the execution time in microseconds. The error
column is the percent error of the integrators result when y(3), liver concentration, reaches
a level corresponding to 70% of the peak concentration. The best value for this time is
32.6682 as determined by high accuracy numerical solution.

skeletal muscle, and skin each represented by differential equations one through thirteen,

respectively [71]. The comparison time used for this test problem was the time in which

the amount of diazepam 70% of the peak concentration. Table 7 shows the computational

time results as well as the error for each of the integrators on this test problem.

4.4.7 Test Problem 7: HER2-mediated Endocytosis Model (HER2)

The family of epidermal growth factor receptors are a set of tyrosine kinases that have been

implicated in various cancers most notably breast cancer. In addition to initiating signalling

cascades from the plasma membrane, this receptor type is able to leave the cell surface and

be transported into the cell via endocytosis. The model presented in [33] investigates

the concentration of two of the receptor family subtypes in various forms. These include

homodimers, hetereodimers, ligand receptor complexes, antibody bound receptors, and free

receptors both inside cells and at the surface of cells. The set of 18 differential equations

were integrated from zero to ten minutes. The characteristic time used here was the time

at which the concentration of ligand inside the cell reaches 4.75 nM. The timing of each of
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Table 8: HER2 Results: The HER2 test problem was simulated from time zero to time 20
minutes. The time column represents the execution time in microseconds. The error column
is the percent error of the integrators result when y(15), intracellular ligand concentration,
first reaches 4.75 nM. The best value for this time is 7.7620 as determined by high accuracy
numerical solution.

the integrators as well as the error value for the characteristic time is presented for each of

the integrators in Table 8.

4.4.8 Test Problem 8: Yeast Sphingolipid Metabolism Model (SPHINGO)

The SPHINGO model is a set of 25 ordinary differential equations that describe the de novo

synthesis of sphingolipids in yeast from precursor products such as fatty acids [4]. The

model is built from literature derived reaction information that is converted into generalized

mass action (GMA) reaction models [94], which are summed according to network topology

to produce rate laws for each of the dependent components. The integration of the system

of rate laws allows the concentration of each of the sphingolipids and pathway intermediates

to be determined. The structure, initial conditions, and equation parameters were obtained

from [4]. The characteristic time of the set of equations was taken to be the point where

acetyl CoA reaches 1300mM. This point was determined by solving the system of equations

with a very low tolerance. Table 9 shows the results of each of the numerical integrators in

terms of execution time and error in the comparison time.
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Table 9: SPHINGO Results: The SPHINGO test problem was simulated from time zero to
time 50 minutes. The time column represents the execution time in microseconds. The error
column is the percent error of the integrators result when y(25), acetyl-CoA concentration,
first reaches 1300 mM. The best value for this time is 48.6294 minutes as determined by
high accuracy numerical solution.

4.5 Discussion

The OREGO problem was sufficiently stiff and required many of the integration methods

to fail to complete the integration time course. The non-stiff solvers failed in every case

except the adaptive step size Runge-Kutta with Cask-Karp constants when a very loose

tolerance was employed. The Runge-Kutta method still required an excessive amount of

time to complete this integration even at a lose tolerance. The non-stiff solver was two to

three orders of magnitude slower than the stiff methods. The Rosenbrock method failed

for all tolerance levels. This failure is likely due to the fact that the problem was very

stiff instead of a moderately stiff problem, which is typically solved with the Rosenbrock

methods. The numerical differentiation formulae (NDF) integrator was the only method

to provide an accurate solution at all tolerance levels. The semi-implicit extrapolation

and backward differentiation formulae (BDF) integrators provided accurate solutions in a

timelier manner than the NDF integrator when the tolerance was below 0.0001. While both

are considerably better than the other methods, neither the semi-implicit extrapolation nor
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the BDF integrator appear to have a distinct advantage over one another in this test case.

The HIRES test problem was capable of being solved by all of the integration methods

regardless of their classification of being stiff or non-stiff solvers. The problem does still

appear to have some degree of stiffness as the non-stiff solvers are typically one to two

orders of magnitude slower than the comparable stiff methods. The Runge Kutta and

Adams solvers both provide solutions accurate to two hundredths of a percent as compared

to the actual value at all tolerances. The Burlisch-Stoer solver provides a solution a less

accurate solution, half of one percent, in three to tenfold less time as compared to the other

non-stiff solvers. The Rosenbrock method delivers a solution that is nearly as accurate as

the the Runge Kutta and Adams solvers but with much improved computation speed. The

BDF method is again fairly accurate and efficient but fails at the highest tolerance setting.

Although the semi-implicit extrapolation integrator appears inferior at low tolerances, the

NDF and semi-implicit extrapolation integrators return solutions in a comparable amount

of time and with a comparable amount of accuracy for the remaining tolerances. Even with

a failure at the crudest tolerance, the BDF method appears to be the preferred method for

this problem because of its apparent speed advantage over the other methods while still

maintaining accuracy within one percent of the true value.

When the reported time is used for comparison with the integration of the CLAUS

problem, none of the integrators appear to perform well with Burlisch-Stoer at crudest error

tolerance being the exception. After reinvestigating a figure in the original manuscript the

90% of steady state value time appears to be closer to 30 than the reported 36.7234. All

of the integration methods appear to approximate the time as closer to the suspected value

shown in the original figure as opposed to the reported value in the text of the original

manuscript. The non-stiff methods appear to outperform the stiff methods for each of the

comparable types except when comparing the Adams and BDF solvers. The BDF and

Adams methods both appear very effective at efficiently and accurately solving the CLAUS

problem, when the true time is adjusted. The computational time required for the BDF

solver appears to be consistently less than that of the Adams solver.
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In analyzing the results of the HODGK test problem, only two of the integration meth-

ods, Runge-Kutta and semi-implicit extrapolation, were capable of producing a solution

that differed from the reported time value by less than one percent. This accurate solution

for each of the methods was only possible at the strictest error tolerance, 0.000001. The

Rosenbrock and NDF methods were especially inefficient at solving the HODK test prob-

lem both in terms of accuracy and execution speed. The remaining methods were able to

execute with sufficient speed but were not able to produce solutions within one percent of

the true time at the tolerances tested. The semi-implicit extrapolation solver appeared to

provide the best results for the test problem as it was able to produce a solution with more

than half of the percent error and with an execution time of half that compared to the

second best integrator, the Runge Kutta.

The peroxidase-oxidase (PO) test problem was generally solved with acceptable accuracy

by both stiff and non-stiff solvers with the exceptions being the Adams and Burlisch-Stoer

methods that fail at the crudest error tolerances. The stiff integrators typically outperform

the non-stiff solvers in terms of execution time and have near the same level of accuracy. The

NDF method performs the integration with the worst accuracy on average. The Rosenbrock,

BDF, and semi-implicit extrapolation integrators all have fast execution times with percent

error measurements less than one tenth of one percent at the low and moderate tolerances.

BDF, semi-implicit extrapolation, and Rosenbrock solvers are all acceptable choices but

semi-implicit extrapolation method performs best over the entire range of tested tolerances.

The physiologically based pharmacokinetic model (PBPK) test problem was not able

to be solved by either of extrapolation methods, Burlisch-Stoer and semi-implicit extrapo-

lation, for any error tolerance. The stiff integrators were generally outperformed by their

non-stiff counterparts. The Runge Kutta method provided the most accurate solution for

all of the tested tolerances. The Adams solver was also quite efficient at providing a reason-

able estimate of the solution with an execution time of roughly half of the Runge Kutta at

the cruder tolerances. The NDF solver has a faster execution time than the BDF solver but

the solution is less accurate in most cases. Although the Rosenbrock method was capable

of producing a solution that was among the most accurate when a tighter tolerance was
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used, the execution time was noticeably slower than all of the other methods. The Runge

Kutta and Adams solvers are the preferred solvers for the PBPK test problem.

In the HER2 test problem, the predictor corrector methods, Adams, BDF, and NDF

solvers, were largely ineffective. While the predictor corrector solvers were able to run at

execution times not previously seen, the percent error in the comparison time was never

lower than 20%, thus providing a largely inaccurate approximation to the true underlying

solution. The Rosenbrock and Runge Kutta methods provide accurate solutions in a timely

manner with the Rosenbrock method being slightly more efficient at crude tolerances and

the Runge Kutta method being superior at tight error tolerances. The extrapolation meth-

ods are also capable at providing acceptable solutions but with the Burlisch-Stoer method

having slightly more error and the semi-implicit extrapolation solver having a longer ex-

ecution time. The Runge Kutta solver is the preferred solver for the HER2 test problem

because of this consistent performance across all tested tolerances.

The SPHINGO model is the largest of the test problems and provided suitable challenge

to all of the solvers. The Runge Kutta, Adams, Rosenbrock, and semi-implicit extrapolation

method fail to reach the y(25) level required under all tolerances. The Burlisch-Stoer

method provides the most accurate solution but it comes at the cost of very large execution

time. The BDF and NDF solvers are quite capable at obtaining a solution in a much

more efficient manner as compared to the Burlisch-Stoer solver. The BDF consistently

outperforms the NDF method both in terms of accuracy and execution speed for all tested

tolerances. While the Burlisch-Stoer method provides an unparalleled accuracy advantage

over the other methods, the BDF solver is an acceptable alternative for this problem when

decreasing the execution time is a priority.

4.6 Conclusion

No integration method was clearly superior over all of the remaining methods for all of the

test problems. The stiff integrators were by in large had faster execution times and less

accuracy even when the test problem was termed stiff. The modern Runge Kutta solver,

adaptive step size Runge Kutta with Cash Karp constants, was very robust compared
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to the other non-stiff solvers and was able to integrate most of the test problems, stiff

or not stiff. The efficiency of the Runge Kutta method was often much less than the

other methods. The Rosenbrock method, semi-implicit Runge Kutta, appeared to be only

marginally more effective and sometimes less effective compared to the non-stiff routine

when solving stiff problems. The Burlisch-Stoer method was very capable of providing high

accuracy solutions that came at a large execution cost for most of the test problems. The

semi-implicit extrapolation solver was decently robust and very effective in solving certain

test problems. The predictor corrector solvers were on average the best performing class of

solvers. Even though the NDF method was created to be more efficient than the older BDF

method, the high quality implementation of the BDF method in CVODE not only made

up the lost computational efficiency but also provided a more accurate solution for most of

the test problems. The Adams method was quite capable providing high quality solutions

for non-stiff problems.

Overall, the CVODE implementation of the Adams and BDF solvers is the logical first

choice for an integrator. This implementation provided a timely solution with sufficient

accuracy in most of the test problems as well as having built in parallel computing poten-

tial. For parameter estimation in systems of differential equations that model biochemical

processes, there is no substitute for preparing a Monte Carlo test case for the integration

method using the expected ranges of the parameters. In certain cases, multiple integration

methods might have to be used to get an accurate approximation of the true behavior of

the biologically inspired system of differential equations.
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CHAPTER V

A HIGH PERFORMANCE COMPUTING SOLUTION TO

PARAMETER ESTIMATION IN METABOLIC

NETWORKS

5.1 Abstract

The primary goal of this work is to develop a high performance-computing framework to

extend previous metabolic pathway parameter estimation techniques for use in larger, more

complex pathway models. The high performance computing solution is also beneficial to

smaller networks as the parameter estimation can be completed in a timelier manner thus

allowing more time to do replicate fittings to boost parameter confidence. The current

paradigm for achieving this goal is enhancing several previously implemented optimization

routines with the standard message passing interface library (MPI) allowing the routine to

run on a distributed set of multiprocessors, a commodity cluster. In this current work, we

concentrate on improving the speed parameter estimation in smaller networks with the hope

of perfecting these techniques before moving to larger systems. We construct a simulated

six node network with 30 parameters. The parameter estimation is performed with an

MPI-enhanced Monte Carlo technique, and an MPI-enhanced Genetic Algorithm.

This work considers hypothetical six node five connection network where the under-

lying kinetic parameters that determine the action in the network are known. The two

aforementioned optimization routines are applied to this hypothetical network in order to

elucidate the known parameters. The predictability of network action and of the accuracy

of kinetic parameters themselves is discussed along with computational effort necessary to

generate the results. The current method did not provide suitable parameters for building a

large-scale predictive solution. The hope is that this small-scale approach on synthetic data

can be enhanced and combined with other computational methods to accurately estimate
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the necessary parameters to build an accurate large-scale simulation of multiple component

cellular process.

5.2 Background

In modern life science research as well as many other areas, the computational problems

are becoming increasing larger and more complex at astounding rate. While Moores law

has shown that computing speed doubles every eighteen months, common scientific com-

putational tasks in today’s world to be completed in a timely manner still require more

processing power than the average central processing unit (CPU) can provide. In previous

generations, this discrepancy in computing power was often addressed by the use of super

computers [73]. Super computers, expensive specialized hardware developed oftentimes for

a specific scientific computing task, have been employed to solve difficult problems since the

days of World War II [73]. The super computing model has been enhanced and evolved

greatly over the past 50 years but until recently cost concerns have prevented the average

scientific researcher from harnessing super computing power to solve their computational

problems. Only in recent years, programming standards and hardware manufactures have

opened a new avenue to achieve super computing performance at a fraction of the cost [73].

This new computing model involves effectively dividing computational tasks into smaller

components that can be run in parallel to each other on a set of commodity computers

connected with an interconnect. Each of these subtasks can communicate and trade data

with the other tasks to create a superior computation vehicle [73].

The message passing interface (MPI) is a standard communication library for C and

FORTRAN programming languages. This library allows serial codes developed in C or

FORTRAN to run simultaneously across distributed systems. The primary reason for ad-

hering to the MPI Standard, other than ease of development, is that the source code becomes

portable as it can be run on a diverse set of hardware architectures. Thus, allowing source

developed on today’s machines to run on tomorrow’s faster parallel computers.
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5.3 Methods

The overarching goal of this work and the work that preceded it is to develop a method

to determine kinetic parameters of enzymatic biochemical reactions for use in large scale

metabolism simulation networks. The current methodology for achieving this larger goal

involves completing a combination of experimental and computational steps. This work

focuses on the investigating the computational objective, determining kinetic parameters

from time course experimental data. Here, we use various two global optimization routines

to provide an estimate of the kinetic parameters by producing a best fit of the simulated

network. This section highlights the differences in the basic system design imperative to

the high performance computing implementation.

5.3.1 Integration Method

The integrator module in the workflow is the odes15s integrator from the Matlab ODE Suite

[85]. This integrator is valid for both stiff and non-stiff sets of ordinary differiential equa-

tion initial value problems. The integrator uses a combination of Backward Differentiation

Formulas (BDFs), as known as Gears Methods, and Numerical Differentiation Formulas

(NDFs) [85]. Preliminary trials showed that vast range of kinetic parameters required

that a stiff integrator be used. Even with a satisfactory stiff integrator, points of excessive

stiffness still were attainable using global search methods so the integrator was altered to

eliminate points on the optimization surface that required excessive computational effort.

The vital components of Matlabs ode15s for integrating the type of differential equation

specific to enzymatic reactions were converted to C to allow efficient incorporation into a

C/MPI code.

5.3.2 Monte Carlo

The Monte Carlo methods employed in this work consist of picking a vector of random

numbers that represent the kinetic rate constants. A uniform distribution from zero to one

is returned for each element of the vector. This number between zero and one directly maps

to a rate constant between 0.1 and 109. Monte Carlo methods have been applied in many
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problems, most notably integration.

Monte Carlo methods offer a random sample of the entire search space. The principle

behind this tool is that a sufficiently large random sample will be to converge to accurately

represent the entire search space. In addition to gathering population statistics in a much

timelier manner than exhaustive brute force searching, sufficient Monte Carlo sampling

allows a reasonable approximation for the global extremes but does not guarantee that the

true global minimum will be found.

Because of the obvious independence of individual random samples from each other,

Monte Carlo methods are trivially and effectively converted into parallel computing meth-

ods. Extra caution only needs to be taken to insure that the same sequence of random

numbers is not used on each processor.

5.3.3 Genetic Algorithm

The genetic algorithm, initially conceived by John Holland, is population-based routine

rooted in the evolution theory of Charles Darwin [36]. The genetic algorithm mimics

the principles of natural selection through a series of operators defined in computer code.

Selection, crossover, mutation, and inversion were the basic operators employed in Holland’s

original formulation. Most current genetic algorithm implementations, including the one

discussed in this work, only employ the selection, crossover, and mutation operators [63].

For more on Genetic Algorithm basics see section 1.4.6.

Parallelizing the genetic algorithm is much more conceptually challenging than Monte

Carlo methods. An extensive amount of research has gone into developing competent

schemes where genetic algorithms achieve speedup [10]. Since genetic algorithms are ran-

dom processes, parallelization should increase the chance of discovery in the same way that

replicate runs do but mathematical proof of insured speedup still has yet to be found [10].

The genetic algorithm employed here is equivalent of running replicate genetic algorithms

with different random states.
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5.4 Results and Discussion

This work was comprised of three sections with each section further extending the work

completed in the previous sections. First, the integrator performance was investigated.

Secondly, the results of the parallel Monte Carlo trials are discussed. Finally, a parallel

genetic algorithm implementations performance is presented.

5.4.1 Integrator Performance

A study in integrator reliability and performance is warranted because the integrator used

in this work required language translation to enable its use in a multiprocessor environment.

The converted source underwent several quality control metrics. The first one insured that

a comparable number of steps are taken by both the original Matlab implementation and

the C version. Figure 23 shows the value of the step size for the entire integration of a

sample problem for the C and Matlab integrators.

Figure 23 shows that the steps each integrator implementation takes to complete the

integration is essentially the same given the difference in working precision. The sample

problem is a rather simple integration so slightly more variation is likely to exist in more

difficult stiff problems but this increased difference is likely still insignificant. In addition

to the step size, the actual integrated values in time were also investigated. Figure 24

is representative example of how the exact values of one of the variable in the system of

equations in the integration compare between the implementations.

Figure 24 demonstrates the C implementations ability to reproduce the value of a vari-

able in time compared with the Matlab implementation. While the minimal variation can

be seen in the above figure, the following two figures accentuate the differences between the

two implementations. Figure 25 displays the absolute difference while Figure 26 displays

the percent error assuming the Matlab implementation value is the actual.

Figures 23 – 26 show conclusion proof that the C implementation is able to mimic

the behavior of the Matlab standard function. This proves the integrator translation is

capable at replacing the Matlab function used in the previous workflow. Many other sample

problems of varying degrees of difficulty were also checked for accuracy in the same manner
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Figure 23: Integrator Step Size Comparison: The step size of each integrator implemen-
tation is shown in the figure. The C integrator 37 steps while the original Matlab ode15s
solved the problem in 38 steps.
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Figure 24: Integration Value Comparison: The values in time that are predicted by each in-
tegrator implementation for a representative variable in the system of equations integrated.
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Figure 25: Integrator Absolute Difference: The absolute difference for a representative
integrated variable from the sample system of equations ranges from zero to 0.36.
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Figure 26: Integrator Percent Error: The percent error for a representative integrated
variable from the sample system of equations ranges from zero to roughly 0.08%. This
implies for this particular value the C integrator is at least 99.92% accurate in producing
the same value as the Matlab function.
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as the previous sample problem. The results of these screenings are similar suggesting and

appear to be without systematic error that a robust translation has been made.

Now that the implementation has proven competent the performance must be gauged

to insure computational time is not being wasted. Although the Matlab programming

language is quite efficient for certain types of problems, the source scripts are interpreted

on the fly as the program executes. Typically, interpreted languages lag behind compiled

languages so performance improvement would not be shocking. The Matlab code is of

commercial quality so many source optimizations have been likely been done to enhance

performance. The goal of the source conversion is to have the code execute with at least the

same speed of the interpreted source. Figure 27 shows the performance of three integrator

implementations: the original ode15s, a stripped down Matlab version of ode15s, and the

C implementation of the stripped down source.

As Figure 27 depicts, the C integrator was capable of considerable speedup versus either

of the Matlab implementations. All of the lines are linear because an identical problem was

solved 1,000 times. Although these measurements were made on different operating systems,

the results are indicative of what could be expected on any platform. The processor clock

speed of the machine used to get the C benchmark was only roughly 60% of the clock speed

of the machine for the Matlab benchmarks.

In order to insure the observed speedup was not just an artifact of solving a particular

problem, a set of 100 randomly chosen integration problems was prepared. Figure 28

shows the computing time required to solve the 100 random integrations for all three of

the implementations.

While speedup of the integration with the C integrator is still apparent, the amount of

difference between the integrators is not as large as previous tests indicate. Because the 100

sample problems are chosen at random, the results of this test may vary with every trial

but the C integrator on average appears to be roughly five times faster.
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Figure 27: Integrator Performance on Non-stiff problem: The three integrator implemen-
tations execution times were gathered from solving the same non-stiff system of ordinary
differential equations 1,000 times.
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Figure 28: Integrator Execution Time 100 Random Problems: Each of the integrator
implementation completed the same 100 problems that were randomly generated. The
C integrator also allowed the integration of problems that produced negative mass to be
terminated as soon as the mass of one chemical species became negative.
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Figure 29: Parallel Monte Carlo Speed Up as a function of Number of Processors: The data
for the figure was obtained on a cluster of 34 HP rx-2600 dual processor nodes. The small
problem contained 1,000 trials and executed in roughly seven seconds on a single processor.
The medium size was ten times larger than the small problem with 10,000 iterations. The
large problem was ten times larger than the medium problem with a total iteration count
of 100,000. Each of the data points, gathered at 1, 4, 8, 16, 32, 64, and 68 processors, is an
average execution time over six trials.

5.4.2 Monte Carlo Trials

Several Monte Carlo trials were performed to gauge the potential speed up due to par-

allelization and also assess the parallel Monte Carlos ability to predict parameters in the

given test problem.

Figure 29 displays speedup, the serial execution time over the parallel execution time.

While the two smaller problems deviate from the linear trend between 64 and 68 processors,

linear speed is observed. Although less likely a measurement artifact because of replicates,

the sudden jump in speedup is likely due to the precision of the timing device. Perfect

speedup of a Monte Carlo process would give a straight line with a slope of one. In this
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Figure 30: Parallel Monte Carlo best fit: The Monte Carlo scheme completed in 4.5 hours

work, the slope of the line for the largest tested sample problem is roughly .97, which implies

a speed of approximately 66 times on 68 nodes. This study shows the same type of parallel

efficiency that previous work involving parallel Monte Carlo codes has shown.

Although the parallel Monte Carlo codes proved computationally efficient, the parallel

methods ability to find acceptable parameters to fit the data effectively still needs to be

investigated. Figure 30 below shows the best fit of a single parallel Monte Carlo trial with

34 million iterations.

5.4.3 Genetic Algorithm Trials

The performance of the genetic algorithm was also evaluated in the same that the Monte

Carlo method was but due to the heterogeneity of replicate runs speed of graphs were not

obtained. Genetic Algorithms are largely probabilistic serial events so a measure of the
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amount of quality improvement due parallelization is difficult to define. When the paral-

lel code was executed for 10,000 generations with a population size of 50, single processor

completion times varied between 100 and 1,000 times different. Because of the large differ-

ence in computing time between processors, a simplistic load balance scheme was devised

to more effectively use the computational power. This scheme affords the processors that

finish quickly the ability to reinitialize and complete a second trial while the program is still

waiting for the other divisions to finish. Once the slowest division finishes a termination

signal is sent the processors that have been reinitialized. Typically, faster processors can

complete their work and be reinitialized up to 20 times before the algorithm terminates.

This scheme still does not completely rid the algorithm of efficiency problems but it is

considerably more effective than the initial parallelization.

The load balanced parallel genetic algorithm was used to provide parameter estimates

for the same sample problem used in the Monte Carlo trial. The best-fit results of this trial

are show in Figure 31.

Although the parallel genetic algorithm process produced mediocre fitting results, the

method establishes an entry point for more complicated methodologies that can be pursued

in the refinement of the current work. The genetic algorithm accomplished a best-fit that

is similar to one found using 46 hours of parallel Monte Carlo. More research most go into

choosing mutation rates and other genetic algorithm parameters to ensure a high quality

parameter estimates are made for all types of problems.

5.5 Conclusion

While the scientific results of these parallel endeavors are minimal, significant research

progress was made in equipping the parameter estimation method with more computing

power. Even though the immediate benefits of the work are not apparent, the vastly aug-

mented computational power and portability this work affords the previously developed

methodology will aid in the methods ability to solve more complex problems as scientific

refinements to the method are completed.

There are numerous avenues of future work. Computationally, more can be done to load
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Figure 31: Parallel Genetic Algorithm Best Fit: The parallel genetic algorithm trial used
to create this fit ensured that each processor completed at least one 10,000-generation run
with a population size of 50. The process took about 27 hours on 34 CPUs.
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balance the genetic algorithm to ensure better speedup. Local optimization routines used

in conjunction with either the Monte Carlo search or the genetic algorithm can be explored.

Scientifically, more research must be put into the studying the behavior of the set of dif-

ferential equations under various conditions and into developing methods to intelligently

reduce the parameter space.

96



APPENDIX A

MATLAB CODES USED IN MODELING FRAMEWORK

This chapter contains the Matlab implementations of the components of the Modeling

Framework.

A.1 Cost Function

function cost=kinetics_costFunNew (k, X, F, R, Et)

%KINETICS_COSTFUN Sum of Absolute Residuals Cost Function

% COST=KINETICS_COSTFUN(k,X,F,R) returns a scalar cost that is a metric

% of the how well a set of reaction constants fits the experimental

% dataset. X is a matrix containing experimental data includign time

% points and measurements (size time points x nodes). k is a vector of

% the kinetic parameters sent fromt he optimization functioon. F is the

% nxm footprint matrix which describes how the networks n nodes are

% connected via m reactions. R is the lxm reaction description matrix

% which gives the type of reaction for each of the columns in F.

for i = 1:length(k),

if (k(i) < 0) || (k(i) > 1)

cost = 15;

return

end

end

sizeX = size(X);

time= X(:,1);

Y_zero = X(1,2:sizeX(2))’;

OPTIONS = [];
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for i=1:length(time),

timespan(i)=X(i,1);

end

[t,Y] = ode15Ps(’kinetics_odefunNew’,timespan,Y_zero,OPTIONS,k,F,R, Et);

sizeY = size(Y);

if t(length(t)) ~= timespan(length(timespan))

Y_save(1,1) = -909.00;

else

Y_save = Y;

end

if Y_save(1,1) == -909,00;

cost = 10;

return

%elseif sum(Y_save < 0) > 0

%cost = 10^10;

%return

else

for i=1:length(Y_zero),

cost_temp(i) = 0;

for j=2:length(time),

%if (X(j,i+1) ~= 0)

cost_temp(i) = cost_temp(i) + (X(j,i+1)-Y_save(j,i))^2;

%else

%cost_temp(i) = cost_temp(i)+ ((abs(X(j,i+1)-Y_save(j,i)))/1) * 100;

%end

end

end

end

cost = log10(sum(cost_temp));
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A.2 ODE Constructor

function deriv = kinetics_odefunU(t,y,OPTIONS,k,F,R,Et)

%KINETIC_ODEFUN General Function representing a system of enzymatic

%reactions

% DERIV = KINETIC_ODEFUN(t,y,k,F,R) returns a nxl vector that represents

% the derivatives of a system of kinetic equations. t is a scalar time

% point at which the derivative system is evaluated. y is an nxl vector

% representing the current concentration of each of the n species. k

% represents the vector of kinetic rate constants being fit by the

% optimization function size varies based on R. F is the nxm footprint

% matrix which describes how the networks n nodes are connected via m

% reactions. R is the lxm reaction description matrix which gives the

% type of reaction for each of the columns in F.

neq = length(y);

ncn = length(R);

kstart = 1;

for i=1:ncn,

A=0;

Aset = 0;

B=0;

P=0;

Pset = 0;

Q=0;

numSvar = 0;

numPvar = 0;

for j=1:neq,

if(F(j,i)== -1) & (Aset == 0)

A=y(j);

Aset = 1;
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numSvar = 1;

elseif(F(j,i)== -1) & (Aset ~= 0)

B=y(j);

numSvar = 2;

end

if(F(j,i)== 1) & (Pset == 0)

P=y(j);

Pset = 1;

numPvar = 1;

elseif(F(j,i)==-1) & (P~=0)

Q=y(j);

numPvar = 2;

end

end

decide = R(i);

if(decide == 0)

%Constant Flux (Zero Order)

k_fun = k(kstart);

reactionVelocity(i) = Reaction_ZeroOrderU(k_fun, Et(i));

kstart = kstart+1;

end

if(decide == 1)

%Mass Action Flux

k_fun = k(kstart);

reactionVelocity(i) = Reaction_MassActionU(k_fun, A, B, numSvar);

kstart = kstart + 1;

end

if(decide == 2)

%Reversible Mass Action
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k_fun = k(kstart:(kstart+1));

reactionVelocity(i) = Reaction_RevMassActionU(k_fun, A, B,

P, Q, numSvar, numPvar);

kstart = kstart + 2;

end

if(decide == 3)

%Michaelis Menten Single Substrate Flux

k_fun = k(kstart:(kstart+2));

reactionVelocity(i) = Reaction_MichaelisMU(k_fun , A, Et(i));

kstart = kstart + 3;

end

if(decide == 4)

%Single Substrate Reversible Michaelis Menten Flux

k_fun = k(kstart:(kstart+3));

reactionVelocity(i) = Reaction_RevMichaelisMU(k_fun, A, P, Et(i));

kstart = kstart + 4;

end

if(decide == 5)

%Uni Uni Flux Rate

k_fun = k(kstart:(kstart+5));

reactionVelocity(i) = Reaction_UniUniU(k_fun, A, P, Et(i));

kstart=kstart + 6;

end

if(decide == 6)

%GMA Flux

k_fun = k(kstart:(kstart + numSvar));

reactionVelocity(i) = Reaction_GMAU(k_fun, A, B, numSvar);

kstart = kstart + (numSvar + 1);

end
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if(decide == 7)

%Reversible GMA Flux

k_fun = k(kstart:(kstart + numSvar + numPvar + 1));

reactionVelocity(i) = Reaction_RevGMAU(k_fun, A, B, P, Q, numSvar, numPvar);

kstart = kstart + (numSvar + numPvar + 2);

end

end

deriv_temp=sum((F*diag(reactionVelocity))’);

deriv=deriv_temp’;

A.3 Zero Order Reaction

function velocity = Reaction_ZeroOrderU(kfun, Et)

%Zero Order Reaction

velocity = kfun;

end

A.4 Mass Action Reaction

function velocity = Reaction_MassActionU(kfun, A, B, numSvar)

%Mass Action Reaction

% if (kfun(1) <= .25)

% k_scaled(1) = kfun(1) / .25 * 1e-2;

% elseif (kfun(1) <= .50)

% k_scaled(1) = (kfun(1) - .25) / .25 * 1e-1;

% elseif (kfun(1) <= .75)

% k_scaled(1) = (kfun(1) - .50) / .25;

% else

% k_scaled(1) = (kfun(1) - .75) / .25 * 1e1;

% end

k_scaled(1) = kfun(1);
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% if (numSvar == 1)

velocity = k_scaled(1) * A;

% elseif (numSvar == 2)

% velocity = k_scaled * A * B;

% end

end

A.5 Reversible Mass Action Reaction

function velocity = Reaction_RevMassActionU(kfun, A, B, P, Q, numSvar, numPvar)

%Reversible Mass Action Reaction

% for i=1:2,

% if (kfun(i) <= .25)

% k_scaled(i) = kfun(i) / .25 * 1e-2;

% elseif (kfun(i) <= .50)

% k_scaled(i) = (kfun(i) - .25) / .25 * 1e-1;

% elseif (kfun(i) <= .75)

% k_scaled(i) = (kfun(i) - .50) / .25;

% else

% k_scaled(i) = (kfun(i) - .75) / .25 * 1e1;

% end

% end

k_scaled(1) = kfun(1);

k_scaled(2) = kfun(2);

% if (numSvar == 1)

velocityF = k_scaled(1) * A;

% elseif (numSvar == 2)

% velocityF = k_scaled(1) * A * B;

% end

% if (numPvar == 1),
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velocityR = k_scaled(2) * P;

% elseif (numPvar == 2)

% velocityR = k_scaled(2) * P * Q;

% end

velocity = velocityF - velocityR;

end

A.6 Michaelis Menten Reaction

function velocity = Reaction_MichaelisMU(k , S, Et)

%Three Parameter Michaelis Menten Model

% if(k(1) < .33333)

% k1 = k(1)/.33333 * 10^6;

% elseif(k(1) < .66666)

% k1 = (k(1)-.33333)/.33333 * 10^7;

% elseif(k(1) < .99999)

% k1 = (k(1) - .66666)/.33333 * 10^8;

% else

% k1 = 10^8;

% end

% k1 = k1 * 3600 * 10^-12;

% if(k(2) < .25)

% kn1 = k(2)/.25 * 10^1;

% elseif(k(2) < .50)

% kn1 = (k(2)-.25)/.25 * 10^2;

% elseif(k(2) <= .75)

% kn1 = (k(2) - .50)/.25 * 10^3;

% elseif(k(2) > .75)

% kn1 = (k(2) - .75)/.25 * 10^4;

% end
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% kn1 = kn1 * 3600;

% if(k(3) < .20)

% k2 = k(3)/.20 * 10^1;

% elseif(k(3) < .40)

% k2 = (k(3)-.20)/.20 * 10^2;

% elseif(k(3) < .60)

% k2 = (k(3) - .40)/.20 * 10^3;

% elseif(k(3) <= .80)

% k2 = (k(3) - .60)/.20 * 10^4;

% elseif(k(3) > .80)

% k2 = (k(3) - .80)/.20 * 10^5;

% end

% k2 = k2 * 3600;

k1 = k(1);

kn1 = k(2);

k2 = k(3);

KM = (kn1 + k2) / k1;

Vmax = k2 * Et;

velocity = (Vmax * S) / (S + KM);

end

A.7 Reversible Michaelis Menten Reaction

function velocity = Reaction_RevMichaelisMU(k , S, P, Et)

%Four Parameter Reversible Michaelis Menten Model

% if(k(1) < .33333)

% k1 = k(1)/.33333 * 10^6;

% elseif(k(1) < .66666)

% k1 = (k(1)-.33333)/.33333 * 10^7;

% elseif(k(1) < .99999)
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% k1 = (k(1) - .66666)/.33333 * 10^8;

% else

% k1 = 10^8;

% end

% k1 = k1 * 3600 * 10^-12;

% if(k(2) < .25)

% kn1 = k(2)/.25 * 10^1;

% elseif(k(2) < .50)

% kn1 = (k(2)-.25)/.25 * 10^2;

% elseif(k(2) <= .75)

% kn1 = (k(2) - .50)/.25 * 10^3;

% elseif(k(2) > .75)

% kn1 = (k(2) - .75)/.25 * 10^4;

% end

% kn1 = kn1 * 3600;

% if(k(3) < .20)

% k2 = k(3)/.20 * 10^1;

% elseif(k(3) < .40)

% k2 = (k(3)-.20)/.20 * 10^2;

% elseif(k(3) < .60)

% k2 = (k(3) - .40)/.20 * 10^3;

% elseif(k(3) <= .80)

% k2 = (k(3) - .60)/.20 * 10^4;

% elseif(k(3) > .80)

% k2 = (k(3) - .80)/.20 * 10^5;

% end

% k2 = k2 * 3600;

% if(k(4) < .20)

% kn2 = k(4)/.20 * 10^1;
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% elseif(k(4) < .40)

% kn2 = (k(4)-.20)/.20 * 10^2;

% elseif(k(4) < .60)

% kn2 = (k(4) - .40)/.20 * 10^3;

% elseif(k(4) <= .80)

% kn2 = (k(4) - .60)/.20 * 10^4;

% elseif(k(4) > .80)

% kn2 = (k(4) - .80)/.20 * 10^5;

% end

% kn2 = kn2 * 3600 * 10^-12;

k1 = k(1);

kn1 = k(2);

k2 = k(3);

kn2 = k(4);

KMS = (kn1 + k2) / k1;

KS = (k1 * k2) / (kn1 + k2);

KMP = (kn1 + k2) / kn2;

KP = (kn1 * kn2) / (kn1 + k2);

velocity = ((KS * Et * S) - (KP * Et * P))/(1.0 + S/KMS + P/KMP);

end

A.8 Uni Uni Reaction

function velocity = Reaction_UniUniU(k,S,P,Et)

% KINETIC_UNIUNI Enzymatic Reaction Model

% VELOCITY=KINETIC_UNIUNI(K,S,P) gives the accumulation of the product

% species as a function reaction rate constants (k -- 6x1 vector),

% substrate concentration (S -- 1x1 value ) and product concentration ( P

% -- 1x1 value).

% References : [1] EL King and C Altman, A schematic Method deriving
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% the rate laws for enzyme catalyzed reactions,

% Journal of Physical Chemistry, 60 (1956), pp1375-1378

% [2] V Leskovac, Comprehensive enzyme kinetics,

% Kluwer Academic/Plenum Pub, New York, 2003

% [3] K.M. Plowman, Enzyme Kinetics, McGraw-Hill, New York,1971

%for i=1:6,

%if(k(i) < .11)

%k_unscaled(i)=k(i)*10^1;

%elseif(k(i)<.21)

%k_unscaled(i)=(k(i)-.1)*10^2;

%elseif(k(i)<.31)

%k_unscaled(i)=(k(i)-.2)*10^3;

%elseif(k(i)<.41)

%k_unscaled(i)=(k(i)-.3)*10^4;

%elseif(k(i)<.51)

%k_unscaled(i)=(k(i)-.4)*10^5;

%elseif(k(i)<.61)

%k_unscaled(i)=(k(i)-.5)*10^6;

%elseif(k(i)<.71)

%k_unscaled(i)=(k(i)-.6)*10^7;

%elseif(k(i)<.81)

%k_unscaled(i)=(k(i)-.7)*10^8;

%elseif(k(i)<.91)

%k_unscaled(i)=(k(i)-.8)*10^9;

%elseif(k(i)<= 1)

%k_unscaled(i)=(k(i)-.9)*10^10;

%end

%end

%k_unscaled(1) = k_unscaled(1) * 3600 * 10^-12;
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%k_unscaled(2) = k_unscaled(2) * 3600;

%k_unscaled(3) = k_unscaled(3) * 3600;

%k_unscaled(4) = k_unscaled(4) * 3600;

%k_unscaled(5) = k_unscaled(5) * 3600;

%k_unscaled(6) = k_unscaled(6) * 3600 * 10^-12;

k_unscaled(1) = k(1);

k_unscaled(2) = k(2);

k_unscaled(3) = k(3);

k_unscaled(4) = k(4);

k_unscaled(5) = k(5);

k_unscaled(6) = k(6);

num = (k_unscaled(1) * k_unscaled(3) * k_unscaled(5) * S

- k_unscaled(2) * k_unscaled(4) * k_unscaled(6) * P) * Et;

den1 = k_unscaled(2) * k_unscaled(5) + k_unscaled(2) * k_unscaled(4)

+ k_unscaled(3) * k_unscaled(5);

den2 = S * k_unscaled(1) * (k_unscaled(3) + k_unscaled(4) + k_unscaled(5));

den3 = P * k_unscaled(6) * (k_unscaled(2) + k_unscaled(3) + k_unscaled(4));

velocity = num / (den1 + den2 + den3);

end

A.9 GMA Reaction

function velocity = Reaction_GMA(k, A, B, numSvar)

%Two Substrate GMA

g = zeros(2,1);

% if(k(1) <= .33333)

% kf = k(1)/.33333 * 1e1;

% elseif(k(1) <= .66666)

% kf = (k(1)-.33333)/.33333 * 1e2;

% elseif(k(1) <= .99999)

109



% kf = (k(1) - .66666)/.33333 * 1e3;

% else

% kf = 1e3;

% end

% for i=1:2,

% if(k(i + 1) <= .33333)

% g(i) = k(i+1)/.33333 * 1.0;

% elseif(k(i +1) <= .66666)

% g(i) = (k(i +1)-.33333)/.33333 * 2.0;

% elseif(k(i +1) <= .99999)

% g(i) = (k(i +1) - .66666)/.33333 * 3.0;

% else

% g(i) = 3.0;

% end

% end

kf = k(1);

g(1) = k(2);

%g(2) = k(3);

if (numSvar == 1)

if (A < 1.0e-8)

velocity = 0.0;

else

velocity = kf * A ^ g(1);

end

elseif (numSvar == 2)

if ((A < 1.0e-8) || (B < 1.0e-8))

velocity = 0.0;

else

velocity = kf * A ^ g(1) * B ^ g(2);
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end

end

end

A.10 Reversible GMA Reaction

function velocity = Reaction_RevGMA(k, A, B, P, Q, numSvar, numPvar)

%Two Substrate Two Product Reversible GMA

g = zeros(4,1);

% if(k(1) <= .33333)

% kf = k(1)/.33333 * 1e1;

% elseif(k(1) <= .66666)

% kf = (k(1)-.33333)/.33333 * 1e2;

% elseif(k(1) <= .99999)

% kf = (k(1) - .66666)/.33333 * 1e3;

% else

% kf = 1e3;

% end

% if(k(2) <= .33333)

% kr = k(2)/.33333 * 1e1;

% elseif(k(2) <= .66666)

% kr = (k(2)-.33333)/.33333 * 1e2;

% elseif(k(2) <= .99999)

% kr = (k(2) - .66666)/.33333 * 1e3;

% else

% kr = 1e3;

% end

% for i=1:(numSvar + numPvar),

% if(k(i + 1) <= .33333)

% g(i) = k(i+1)/.33333 * 1.0;
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% elseif(k(i +1) <= .66666)

% g(i) = (k(i +1)-.33333)/.33333 * 2.0;

% elseif(k(i +1) <= .99999)

% g(i) = (k(i +1) - .66666)/.33333 * 3.0;

% else

% g(i) = 3.0;

% end

% end

kf = k(1);

kr = k(2);

g(1) = k(3);

g(2) = k(4);

if (numSvar == 1)

if (A < 1.0e-8)

velocityF = 0.0;

else

velocityF = kf * A ^ g(1);

end

elseif (numSvar == 2)

if ((A < 1.0e-8) || (B < 1.0e-8))

velocityF = 0.0;

else

velocityF = kf * A ^ g(1) * B ^ g(2);

end

end

if (numPvar == 1)

if (P < 1.0e-8)

velocityR = 0.0;

else
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velocityR = kr * P ^ g(numSvar + 1);

end

elseif (numSvar == 2)

if ((P < 1.0e-8) || (Q < 1.0e-8))

velocityR = 0.0;

else

velocityR = kr * P ^ g(numSvar + 1) * Q ^ g(numSvar + 2);

end

end

velocity = velocityF - velocityR;

end
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APPENDIX B

INTEGRATOR TEST PROBLEMS IN MATLAB

This chapter contains the integrator test problems in their Matlab form.

B.1 OREGO

function dydt = OREGO_Model(t,y)

dydt = zeros(3,1);

dydt(1) = 77.27 * (y(2) + y(1) * (1.0 - 8.375e-5 * y(1) - y(2)));

dydt(2) = (y(3) - (1.0 + y(1)) * y(2)) / 77.27;

dydt(3) = 0.1610 * (y(1) - y(3));

B.2 HIRES

function dydt = HIRES_Model(t,y)

dydt = zeros(8,1);

dydt(1) = -1.71 * y(1) + 0.43 * y(2) + 8.32 * y(3) + 0.0007;

dydt(2) = 1.71 * y(1) - 8.75 * y(2);

dydt(3) = -10.03 * y(3) + .43 * y(4) + 0.035 * y(5);

dydt(4) = 8.32 * y(2) + 1.71 * y(3) - 1.12 * y(4);

dydt(5) = -1.745 * y(5) + 0.43 * y(6) + 0.43 * y(7);

dydt(6) = -280.0 * y(6) * y(8) + 0.69 * y(4) + 1.71 * y(5) - 0.43 * y(6)

+ 0.69 * y(7);

dydt(7) = 280.0 * y(6) * y(8) - 1.81 * y(7);

dydt(8) = -280.0 * y(6) * y(8) + 1.81 * y(7);

B.3 CLAUS

function dydt = CLAUS_Model(t,y)
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dydt = zeros(10,1);

dydt(1) = 1.0 - 2.0 * y(1) + y(2);

dydt(2) = y(1) - 2.0 * y(2) + y(3);

dydt(3) = y(2) - 2.0 * y(3) + y(4);

dydt(4) = y(3) - 2.0 * y(4) + y(5);

dydt(5) = y(4) - 2.0 * y(5) + y(6);

dydt(6) = y(5) - 2.0 * y(6) + y(7);

dydt(7) = y(6) - 2.0 * y(7) + y(8);

dydt(8) = y(7) - 2.0 * y(8) + y(9);

dydt(9) = y(8) - 2.0 * y(9) + y(10);

dydt(10) = y(9) - 2.0 * y(10);

B.4 HOGK

function dydt = HODGK_Model(t,y)

dydt = zeros(4,1);

an = 0.01 * (y(4) + 10.0) / (exp(0.1 * y(4) + 1.0) - 1.0);

bn = 0.125 * exp(y(4) / 80.0);

am = 0.1 * (y(4) + 25.0) / (exp(0.1 * y(4) + 2.5) - 1.0);

bm = 4.0 * exp(y(4) / 18.0);

ah = 0.07 * exp(0.05 * y(4));

bh = 1.0 / (exp(0.1 * y(4) + 3.0) + 1.0);

dydt(1) = an * (1.0 - y(1)) - bn * y(1);

dydt(2) = am * (1.0 - y(2)) - bm * y(2);

dydt(3) = ah * (1.0 - y(3)) - bh * y(3);

dydt(4) = -36.0 * pow(y(1), 4) * (y(4) - 12.0) - 0.3 * (y(4) + 10.6) - 120.0

* pow(y(2), 3) * y(3) * (y(4) + 115.0);

B.5 PO

function dydt = Horseradish_Model(t,y)
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%Parameters

k1 = 1;

k2 = 1250;

k3 = 0.046875;

k4 = 20;

k5 = 1.104;

k6 = 0.001;

k7 = 0.89;

kn7 = 0.1175;

k8 = 0.5;

N = zeros(4,9);

N(1,1) = -1;

N(2,1) = -1;

N(3,1) = 1;

N(3,2) = -2;

N(4,2) = 2;

N(1,3) = -1;

N(2,3) = -1;

N(3,3) = 2;

N(4,3) = -1;

N(3,4) = -1;

N(4,5) = -1;

N(3,6) = 1;

N(1,7) = 1;

N(2,8) = 1;

N(1,9) = -1;

V = zeros(9,1);

V(1) = k1 * y(1) * y(2) * y(3);

V(2) = k2 * y(3) ^ 2;
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V(3) = k3 * y(1) * y(2) * y(4);

V(4) = k4 * y(3);

V(5) = k5 * y(4);

V(6) = k6;

V(7) = k7;

V(8) = k8;

V(9) = kn7 * y(1);

dydt = N * V;

B.6 PBPK

B.6.1 Model

function dydt = PBPK_Model(t,y)

Qc = .235 * .250 ^ .75;

dydt = zeros(length(y),1);

V(1) = 0.0272;

V(2) = 0.0544;

V(3) = 0.0366;

V(4) = 0.005;

V(5) = 0.076;

V(6) = 0.0057;

V(7) = 0.027;

V(8) = 0.002;

V(9) = 0.0033;

V(10) = 0.0073;

V(11) = 0.404;

V(12) = 0.19;

V(13) = 0.04148;

Q(1) = Qc;

Q(2) = Qc;
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Q(3) = 0.175 * Qc;

Q(4) = Qc;

Q(5) = 0.07 * Qc;

Q(6) = 0.02 * Qc;

Q(7) = 0.131 * Qc;

Q(8) = 0.02 * Qc;

Q(9) = 0.049 * Qc;

Q(10) = 0.141 * Qc;

Q(11) = 0.278 * Qc;

Q(12) = 0.058 * Qc;

Q(13) = 0.122 * Qc;

Ptp(1) = 5.62;

Ptp(2) = 0;

Ptp(3) = 4.99;

Ptp(4) = 5.62;

Ptp(5) = 12.09;

Ptp(6) = 11.82;

Ptp(7) = 7.20;

Ptp(8) = 2.65;

Ptp(9) = 3.87;

Ptp(10) = 4.59;

Ptp(11) = 2.89;

Ptp(12) = 6.32;

Ptp(13) = 6.03;

% double BP = 1.04;

BP = 1.04;

Eh = 0.851;

%Simplification Variables

u = (Q(3) - Q(7) - Q(8)) * y(1);
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v = Q(7) * y(7) / (Ptp(7)/BP) + Q(8) * y(8) / (Ptp(8)/BP);

dydt(1) = PBPK_Mass(Q(1), -y(1), -y(4), V(1), Ptp(1), BP);

dydt(2) = 0.0;

dydt(3) = (u + v - Q(3) * y(3) / (Ptp(7)/BP)) / V(3) - ((u + v) * Eh)/V(3);

dydt(4) = PBPK_Mass(Q(4), y(2), y(4), V(4), Ptp(4), BP);

dydt(2) = dydt(2) + PBPK_Mass2(Q(3), Q(2), y(3), y(2), V(2), Ptp(3), BP);

for i = 5:13,

dydt(i) = PBPK_Mass(Q(i), y(1), y(i), V(i), Ptp(i), BP);

dydt(2) = dydt(2) + PBPK_Mass2(Q(i), Q(2), y(i), y(2), V(2), Ptp(i), BP);

end

B.6.2 Supporting Functions

function dCdt = PBPK_Mass(Q, C1, C2, V, Ptp, BP)

Cvbt = C2 / (Ptp/BP);

dCdt = (Q * (C1 - Cvbt)) / V;

function dCdt = PBPK_Mass2(Q1, Q2, C1, C2, V, Ptp, BP)

Cvbt = C1 / (Ptp/BP);

dCdt = (Q1 * Cvbt - Q2 * C2) / V;

B.7 HER2

function dydt = HER2_Model(t,y)

dydt = zeros(18,1);

%Model Parameters

kon = 9.7 * 10^7;

koff = 0.24;

konFab = 1.4 * 10^7;

koffFab = 0.30;

keR1 = 0.08;

keR2 = 0.03;
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keR1R2 = 0.04;

keR1L = 0.28;

keR1R2L = 0.10;

kc = 1.0 * 10 ^ -3;

kuR1R1 = 10.0;

kuR1R2 = 10.0;

kuR2R2 = 1.0;

kuR1R2L = 0.1;

kuLR1R1L = 0.1;

L = 16.0 * 10 ^ -9;

Ab = 1.3 * 10 ^ -9;

dydt(1) = -kc * y(1) * y(2) + kuR1R2 * y(4) - 2 * kc * y(1) * y(1) +

2 * kuR1R1 * y(3) - kc * y(1) * y(10) + kuR1R2 * y(11) - kon * L * y(1)

+ koff * y(6) - kc * y(1) * y(6) + kuR1R1 * y(8);

dydt(2) = -2 * kc * y(2) * y(2) + 2 * kuR2R2 * y(5) - kc * y(1) * y(2) +

kuR1R2 * y(4) - konFab * y(2) * Ab + koffFab * y(10) - kc * y(2)* y(10)

+ kuR2R2 * y(12) - kc * y(6) * y(2) + kuR1R2L * y(7);

dydt(3) = kc * y(1) * y(1)- kuR1R1 * y(3) - kon * L * y(3) + koff * y(8);

dydt(4) = kc * y(1) * y(2) - kuR1R2 * y(4) - konFab * Ab * y(4)

+ koffFab * y(11) - kon * L * y(4) + koff * y(7);

dydt(5) = kc * y(2) * y(2) - kuR2R2 * y(5) - konFab * Ab * y(5) + koffFab * y(12);

dydt(6) = kon * L * y(1) - koff * y(6) - 2 * kc * y(6) * y(6) + 2 * kuLR1R1L * y(9)

- kc * y(6) * y(2) + kuR1R2L * y(7) - kc * y(6) * y(10) + kuR1R2L * y(14)

- kc * y(1) * y(6) + kuR1R1 * y(8) - keR1L * y(6);

dydt(7) = kon * L * y(4) - koff * y(7) + kc * y(6) * y(2) - kuR1R2L * y(7)

- konFab * Ab * y(7) + koffFab * y(14) - keR1R2L * y(7);

dydt(8) = kon * L * y(3) - koff * y(8) - kon * L * y(8) + koff * y(9)

+ kc * y(1) * y(6) - kuR1R1 * y(8) - keR1L * y(8);

dydt(9) = kc * y(6) * y(6) - kuLR1R1L * y(9) + kon * L * y(8)
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- koff * y(9) - keR1L * y(9);

dydt(10) = konFab * y(2) * Ab - koffFab * y(10) - 2 * kc * y(10) * y(10)

+ 2 * kuR2R2 * y(13) - kc * y(1) * y(10) + kuR1R2 * y(11) - kc * y(6) * y(10)

- kc * y(2) * y(10) + kuR2R2 * y(12) - keR2 * y(10);

dydt(11) = kc * y(1) * y(10) - kuR1R2 * y(11) + konFab * Ab * y(4) - koffFab * y(11)

- kon * L * y(11) + koff * y(14) - keR1R2 * y(11);

dydt(12) = konFab * Ab * y(5) - koffFab * y(12) - konFab * Ab * y(12)

+ koffFab * y(13) + kc * y(2) * y(10) - kuR2R2 * y(12) - keR2 * y(12);

dydt(13) = konFab * Ab * y(12) - koffFab * y(13) + kc * y(10) * y(10)

- kuR2R2 * y(13) - keR2 * y(13);

dydt(14) = kc * y(6) * y(10) - kuR1R2L * y(14) + kon * L * y(11) - koff * y(14)

+ konFab * Ab * y(7) - koffFab * y(14) - keR1R2L * y(14);

dydt(15) = keR1L * y(6) + keR1L * y(8) + keR1R2L * y(7) + 2 * keR1L * y(9);

dydt(16) = keR2 * y(10) + keR2 * y(12) + 2 * keR2 * y(13)

+ keR1R2 * y(11) + keR1R2L * y(14);

dydt(17) = keR1L * y(6) + 2 * keR1L * y(9) + keR1R2L * y(7) + 2 * keR1L * y(8)

+ keR1R2L * y(14) + keR1 * y(11);

dydt(18) = keR1R2L * y(7) + keR2 * y(10) + 2 * keR2 * y(13) + 2 * keR2 * y(12)

+ keR1R2 * y(11) + keR1R2L * y(14);

B.8 SHINGO

function dydx = SPHINGO_Model(t,y)

X26 = .266e-2;

X27 = .262e-3;

X28 = 1100;

X29 = .54e-5;

X30 = .508e-1;

X31 = .13e-2;

X32 = .45e-2;
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X33 = .33e-3;

X34 = .165e-4;

X35 = .1650000000e-3;

X36 = .4e-5;

X37 = 446;

X38 = .332e-2;

X39 = .24e-2;

X40 = .61e-3;

X41 = .8e-3;

X42 = .66e-3;

X43 = .1e-3;

X44 = .172e-2;

X45 = .1e-2;

X46 = .833e-3;

X47 = 1176;

X48 = 20;

X49 = .394e-2;

X50 = .367e-4;

X51 = .15e-3;

X52 = .89e-2;

X53 = .198e-4;

X54 = .17e-3;

X55 = .8250000000e-4;

X56 = .1066e-4;

X57 = .106e-3;

X58 = .5e-1;

X59 = .6000000000e-3;

X60 = .22e-1;

X61 = 60;
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X62 = .1e-1;

X63 = .73;

X64 = .15e-3;

dydx = zeros(25,1);

dydx(1) = 174059.9223* X57 * y(12)^.9986438167 * y(13)^.1980849053

- 671635.4946 * y(1)^.9996667780 * X27;

dydx(2) = 671635.4946 * y(1)^.9996667780 * X27

+ 3057.424256 * y(3)^.5000000001 * X29 + 12.01395274 * y(4)^.9688581315 * X41

- 196097.2998 * y(2)^.9642857143 * X34 * y(23)^ .5278118802

- 2626.951478 * y(2)^.9743589746 * X28^.1120348511e-2 * X36

- 50469.00266 * y(2)^.5000000000 * X54;

dydx(3) = 196097.2998 * y(2)^.9642857143 * X34 * y(23)^.5278118802

+ 89.10166634 * y(8)^.9722222223 * X64 + 152.5467333 * X64 * y(18)^.9296482412

+ 5371.916271 * X64 * y(19)^.9955924294 - 3057.424256 * y(3)^.5000000001 * X29

- 549.5746692 * X54 * y(3)^.4999999998

- 10.85002492 * X33* y(15)^1.685 * y(2)^-.3358742751e-2

* y(5)^-.2424327076e-1 * y(3)^.9739478958;

dydx(4) = 2626.951478 * y(2)^.9743589746 * X28^.1120348511e-2 * X36

- 12.01395274 * y(4)^.9688581315 * X41 - 2224.471846 * y(4)^.9604829853 * X50;

dydx(5) = 50469.00266 * y(2)^.5000000000 * X54

+ 222.9333962 * X41 * y(6)^.8615384613 + 2547.853547 * y(7)^.5000000002 * X53

- 818569.3952 * y(5)^.8000000000* X34 * y(23)^.5278118802

- 81726.07870 * y(5)^.9600000000 * X28^.1120348511e-2 * X36;

dydx(6) = 81726.07870 * y(5)^.9600000000 * X28^.1120348511e-2 * X36

-222.9333962 * X41 * y(6)^.8615384613 - 36885.26610 * y(6)^.8293838859 * X50;

dydx(7) = 818569.3952 * y(5)^.8000000000 * X34 * y(23)^.5278118802

+ 297.0055545 * y(8)^.9722222223 * X51 + 549.5746692 * X54 * y(3)^.4999999998

+ 355.9423777 * X51 * y(18)^.9296482412 + 8694.450406 * X51 * y(19)^.9955924294

- 2547.853547 * y(7)^.5000000002 * X53
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- 10.49201130 * X33 * y(15)^1.685 * y(7)^.9629101285 * y(2)^ -.3320804470e-2

* y(5)^ -.2397510852e-1 - 37651.04526 * y(7)^.4999999997 * X43;

dydx(8) = 10.49201130 * X33 * y(15)^1.685 * y(7)^.9629101285

* y(2)^-.003320804470 * y(5)^-.02397510852 + 10.85002492 * X33 * y(15)^1.685

* y(2)^-.003358742751 * y(5)^.02424327076 * y(3)^.9739478958 + .1983043588e-1

* y(20)^.5 - 297.0055545 * y(8)^.9722222223 * X51

- 675.1417734 * y(8)^.5000000000 * X35

- 89.10166634 * y(8)^.9722222223 * X64 -.06262242910* y(8)^.5;

dydx(9) = 2508.655816 * y(11)^.9940357859 * X40

- 212.2543754 * y(13)^.0002063074440 * y(9)^.9933310571 * X38

* y(2)^-.006568638313 * y(5)^-.01305154574 * y(16)^-.2704826039

* y(14)^ -.01424888297 * y(11)^.235 * y(15)^.088 - 107.6712152

* y(9)^.9122962616 * y(16)^.06424469194 * X26;

dydx(10) = 212.2543754 * y(13)^.0002063074440 * y(9)^.9933310571 * X38

* y(2)^-.006568638313 * y(5)^-.0130515457 * y(16)^ -.2704826039

* y(14)^ -.01424888297 * y(11)^.235 * y(15)^ .088

- 88659.84118 * y(10)^ .5307262571 *X56;

dydx(11) = 113966.8672 * y(12) * X49 * y(10)^ .1493

- 94.55645807 * y(11)^ .4230769231 * X39 * y(2)^ -.02071563088 * y(5)^-.05022831050

* y(9)^ .326 * y(15)^ .248 - 2508.655816 * y(11)^ .9940357859 *X40;

dydx(12) = 23067.02892 * X58^.9975062347 * X30

+ 476.8620195 * y(25)^.007910349154 * y(24)^.1318391563 * X52

+ 2224.471846 * y(4)^.9604829853 * X50 + 36885.26610 * y(6)^.8293838859 * X50

- 174059.9223 * X57 * y(12)^ .9986438167 * y(13)^ .1980849053

- 113966.8672 * y(12) * X49 * y(10)^ .1493 - 300.0628238 * y(12) * X48

- 16807.75082 * y(12)^.9999230829 * y(24)^ .4157339305 * X59;

dydx(13) = 2227.478731 * X37^.1663551402 * X31

- 212.2543754 * y(13)^.0002063074440 * y(9)^.9933310571 * X38

* y(2)^-.006568638313 * y(5)^ -.01305154574 * y(16)^ -.2704826039
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* y(14)^ -.01424888297 * y(11)^ .235 * y(15)^.088 - 174059.9223 * X57

* y(12)^.9986438167 * y(13)^.1980849053 - 192.8863284 * y(13)^.1999999997 * X32;

dydx(14) = 94.55645807 * y(11) ^ .4230769231 * X39 * y(2)^ -.02071563088

* y(5)^ -.05022831050 * y(9)^ .326 * y(15)^ .248 + 10.49201130 * X33

* y(15)^1.685 * y(7)^.9629101285 * y(2)^ -.003320804470 * y(5)^ -.02397510852

+ 10.85002492 * X33 * y(15)^1.685 * y(2)^ -.003358742751 * y(5)^ -.02424327076

* y(3)^ .9739478958 + 6.574294837 * y(15)^1.685 * y(18)^ .5000000001 * X55

- 31.01460421 * X45 * y(14)^.9683760683 * y(17)^ .5000000003

- 22634.48184 * X42 * y(14)^.9867081784;

dydx(15) = 107.6712152 * y(9)^ .9122962616 * y(16)^ .06424469194 * X26

- 10.49201130 * X33 * y(15)^1.685 * y(7)^ .9629101285 * y(2)^ -.003320804470

* y(5)^ -.02397510852 - 10.85002492 * X33 * y(15)^ 1.685 * y(2)^ -.003358742751

* y(5)^ -.02424327076 * y(3)^ .9739478958 - 62.50743872 * y(15)^.9441006585

* X28^.3344404739e-2 * X44 - 6.574294837 * y(15)^1.685 * y(18)^ .5000000001 * X55;

dydx(16) = 56.94734470 * X46 * X47^.5008488966

- 107.6712152 * y(9)^.9122962616 * y(16)^ .06424469194 * X26;

dydx(17) = 2224.471846 * y(4)^.9604829853 * X50

+ 36885.26610 * y(6)^ .8293838859 * X50

- 31.01460421 * X45 * y(14)^ .9683760683 * y(17)^.500000000;

dydx(18) = 675.1417734 * y(8)^ .5000000000 * X35

+ .01692654532 * y(21)^.5

- 152.5467333 * X64 * y(18)^ .9296482412

- 355.9423777 * X51 * y(18)^ .9296482412

- 6.574294837 * y(15)^ 1.685 * y(18)^ .5000000001 * X55

- .05345224838 * y(18)^.5;

dydx(19) = 6.574294837 * y(15)^ 1.685 * y(18)^ .5000000001 * X55

+ .01807753815 * y(22)^ .5

- 5371.916271 * X64 * y(19)^ .9955924294

- 8694.450406 * X51 * y(19)^ .9955924294 -.1084652289 * y(19)^ .5;
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dydx(20) = .06262242910* y(8)^ .5 -.01983043588 * y(20)^.5;

dydx(21) = .5345224838 * y(18)^.5 - .01692654532 * y(21)^.5;

dydx(22) = .1084652289 * y(19)^.5 - .01807753815 * y(22)^.5;

dydx(23) = 16807.75082 * y(12)^.9999230829 * y(24)^.4157339305 * X59

- 196097.2998 * y(2)^.9642857143 * X34 * y(23)^ .5278118802

- 818569.3952 * y(5)^ .8000000000 * X34 * y(23)^ .5278118802;

dydx(24) = 17.25388687 * y(25)^ .04460212912

* y(12)^ -.04577407228 * y(23)^ -.1583280558 * X28^.3750000000 * X60

- 16807.75082 * y(12)^ .9999230829 * y(24)^ .4157339305 * X59

- 476.8620195 * y(25)^ .007910349154 * y(24)^ .1318391563 * X52;

dydx(25) = 1.757713590 * X28^.5000000001 * X62^.9999519254

* X63 * X61^.7986577182 * y(12)^ -.111

- 17.25388687 * y(25)^.04460212912 * y(12)^ -.04577407228

* y(23)^ -.1583280558 * X28 ^.3750000000 * X60;
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APPENDIX C

HIGH PERFOMANCE COMPUTING MONTE CARLO C

SOURCE

This chapter contains a complete C/MPI Monte Carlo Code.

C.1 Main

//Peter Henning 2005

//Monte Carlo MPI Estimation Code

#include <stdio.h>

#include <math.h>

#include <sys/time.h>

#include <string.h>

#include <mpi.h>

#define NEQ 6

#define NCN 12

#define NTSPAN 7

#define NUMVAR 12

int MonteCarloDriver(int iter, long double k[], long double X[], int F[], int R[],

long double Et[], int numVar, int neq, int ncn, int timepts, long seed,

char save_root[], int id, int p);

long double CostFunction(long double k[], long double X[], int F[], int R[],

long double Et[], int neq, int ncn, int RowsX, int ColsX, long double timespan[],

long double Y_Zero[]);

int ShampineStiffInetgrator(long double tout[], long double yout[],

long double timespan[], long double Y_Zero[], long double k[], int F[], int R[],

long double Et[], int neq, int ncn, int ntspan);
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int OdeConstructor(long double t, long double y[], long double ydot[],

long double k[], int F[], int R[], long double Et[], int neq, int ncn);

int JacobianConstructor(long double t,long double y[],long double dfdy[],

long double k[], int F[],int R[],long double Et[],int neq, int ncn);

int MaxVectorScalerCompare (long double wt[], long double y[],

long double threshold, int neq);

int MaxVectorVectorCompare (long double temp[], long double y[],

long double ynew[], int neq);

long double InfinityNormAndDivide (long double yp[], long double wt[], int neq);

long double InfinityNormAndMultiply (long double ynew[], long double invwt[],

int neq);

long double MinScalerScalerCompare (long double hmax, long double htspan);

long double MaxScalerScalerCompare (long double absh, long double hmin);

int SquareMaxtrixTimesVector(long double tempvector[], long double dfdy[],

long double yp[], int neq);

int LUDecomp (long double Miter[], int neq, int indx[]);

int LUSolver(long double Miter[], int neq, int indx[], long double del[]);

int Cumprod (long double difRU[], int n);

int MatrixMultiplySpecial (long double difRU[], long double tempmatrix[],

long double difU[], int n, int m, int p, int rows_out, int rows_in1, int rows_in2);

int MatrixTimesVector(long double psi[], long double dif[],

long double tempvector2[], int rows, int cols, int row_size);

int SumRows (long double yinterp[], long double dif[], int rows,

int cols, int row_size);

int Interpolation (long double tempvector[], long double tinterp, long double tnew,

long double ynew[], long double h, long double dif[], int kcount, int neq);

long double Reaction_ZeroOrder(long double k[], long double Et);

long double Reaction_MassAction(long double k[], long double A, long double B,

int numSvar);
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long double Reaction_RevMassAction(long double k[], long double A, long double B,

long double P, long double Q, int numSvar, int numPvar);

long double Reaction_MichaelisM(long double k[], long double S, long double Et);

long double Reaction_RevMichaelisM(long double k[], long double S, long double P,

long double Et);

long double Reaction_UniUni(long double k[], long double S, long double P,

long double Et);

long double Reaction_GMA(long double k[], long double A, long double B,

int numSvar);

long double Reaction_RevGMA(long double k[], long double A, long double B,

long double P, long double Q, int numSvar, int numPvar);

long double kinetic_MassActionSder(long double k[], long double A,

long double B, int numSvar);

long double kinetic_RevMassActionSder(long double k[], long double A, long double B,

long double P, long double Q, int numSvar, int numPvar);

long double kinetic_RevMassActionPder(long double k[], long double A, long double B,

long double P, long double Q, int numSvar, int numPvar);

long double kinetic_MichaelisSder(long double k[], long double S, long double Et);

long double kinetic_RevMichaelisSder(long double k[], long double S,

long double P, long double Et);

long double kinetic_RevMichaelisPder(long double k[], long double S,

long double P, long double Et);

long double kinetic_uniunisder(long double k[],long double S,

long double P, long double Et);

long double kinetic_uniunipder(long double k[],long double S,

long double P,long double Et);

long double kinetic_GMASder(long double k[], long double A,

long double B, int numSvar);

long double kinetic_RevGMASder(long double k[], long double A, long double B,
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long double P, long double Q, int numSvar, int numPvar);

long double kinetic_RevGMAPder(long double k[], long double A, long double B,

long double P, long double Q, int numSvar, int numPvar);

long double ran2(long *idum);

int main (int argc, char *argv[])

{

int ncn = NCN;

int neq = NEQ;

int ntspan = NTSPAN;

int numVar = NUMVAR;

long double X[NTSPAN * (NEQ+1)];

int F[NEQ * NCN];

int R[NCN];

long double Et[NCN];

long double k[NUMVAR];

long seed = -110605;

int i;

int j;

int id;

int p;

char save_root[30] = "MC_TEST";

MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &id);

MPI_Comm_size (MPI_COMM_WORLD, &p);

if (id == 0){

FILE *pRead;

pRead = fopen("F.txt", "r");

if (pRead == NULL) {

printf("\nFile cannot be Opened\n");
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} else {

while ( !feof(pRead) ) {

for(i=0; i<neq; i++) {

for(j=0; j<ncn; j++) {

fscanf(pRead, "%d", &F[ncn * i + j]);

}

}

}

}

fclose(pRead);

pRead = fopen("XC16.txt", "r");

if (pRead == NULL) {

printf("\nFile cannot be Opened\n");

} else {

while ( !feof(pRead) ) {

for(i=0; i<ntspan; i++) {

for(j=0; j<(neq+1); j++) {

fscanf(pRead, "%Le", &X[(neq+1) * i + j]);

}

}

}

}

fclose(pRead);

//Initializing R and Et (Maybe from Files in the Future)

for(i=0; i<ncn; i++){

Et[i] = 1.0;

R[i] = 0;

}

R[0] = 0;
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R[1] = 1;

R[2] = 1;

R[3] = 1;

R[4] = 1;

R[5] = 1;

R[6] = 1;

R[7] = 1;

R[8] = 1;

R[9] = 1;

R[10] = 1;

R[11] = 1;

Et[0] = 10000.0;

}

//Broadcast Variables from Master

MPI_Bcast (F, (NEQ * NCN), MPI_INT, 0, MPI_COMM_WORLD);

MPI_Bcast (R, NCN, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Bcast (Et, NCN, MPI_LONG_DOUBLE, 0, MPI_COMM_WORLD);

MPI_Bcast (X, (NTSPAN * (NEQ +1)), MPI_LONG_DOUBLE, 0, MPI_COMM_WORLD);

//Variable Initialization Complete

//Call Optimization Routine

int iter = 100;

MonteCarloDriver(iter, k, X, F, R, Et, numVar, neq, ncn, ntspan, seed,

save_root, id, p);

MPI_Finalize();

return 0;

}

C.2 Monte Carlo Driver

int MonteCarloDriver(int iter, long double k[], long double X[], int F[], int R[],
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long double Et[], int numVar, int neq, int ncn, int timepts, long seed,

char save_root[], int id, int p)

{

int i;

int j;

int RowsX = timepts;

int ColsX = neq + 1;

long double timespan[NTSPAN];

long double Y_Zero[NEQ];

long double Cost;

long double BestCost = 16.0;

MPI_Status status;

if (id == 0) {

struct timeval tp1, tp2;

int process_num;

int finished = p - 1;

gettimeofday(&tp1, NULL);

char errorFile[37] = "Error_";

char paramFile[37] = "Param_";

FILE *pWrite1;

FILE *pWrite2;

//sprintf(idname,"%d", id);

strncat(errorFile, save_root, 36 - strlen(errorFile));

strncat(paramFile, save_root, 36 - strlen(paramFile));

//strncat(errorFile, idname, 36 - strlen(errorFile));

//strncat(paramFile, idname, 36 - strlen(paramFile));

pWrite1 = fopen(errorFile, "a");

pWrite2 = fopen(paramFile, "a");

while (finished != 0){
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MPI_Recv(&process_num, 1, MPI_INT, MPI_ANY_SOURCE, 0, MPI_COMM_WORLD, &status);

MPI_Recv(&Cost, 1, MPI_LONG_DOUBLE, process_num, 0, MPI_COMM_WORLD, &status);

MPI_Recv(k, NUMVAR, MPI_LONG_DOUBLE, process_num, 0, MPI_COMM_WORLD, &status);

MPI_Recv(&i, 1, MPI_INT, process_num, 0, MPI_COMM_WORLD, &status);

//printf("I’m recieved message on iter %d\n", i);

if (Cost < BestCost) {

fprintf(pWrite1, "%Le\n", Cost);

for(j=0; j<numVar; j++){

fprintf(pWrite2, "%Lf\t", k[j]);

}

fprintf(pWrite2, "\n");

BestCost = Cost;

} else if (Cost < 5.3) {

fprintf(pWrite1, "%Le\n", Cost);

for(j=0; j<numVar; j++){

fprintf(pWrite2, "%Lf\t", k[j]);

}

fprintf(pWrite2, "\n");

}

if (i == iter){

finished = finished - 1;

}

}

fclose(pWrite1);

fclose(pWrite2);

gettimeofday(&tp2, NULL);

printf("%d\n", (int)(tp2.tv_sec - tp1.tv_sec));

} else {

seed = seed - id;
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for(i=0; i<timepts; i++){

timespan[i] = X[i * ColsX];

}

for(i=0; i<neq; i++){

Y_Zero[i] = X[i+1];

}

for(i=0;i<iter;i++){

for(j=0; j<numVar; j++){

k[j] = ran2(&seed);

//k[j] = 0.5;

}

Cost = CostFunction(k, X, F, R, Et, neq, ncn, RowsX, ColsX, timespan, Y_Zero);

if ((Cost < BestCost) && (i != iter)){

//printf("I’m sending message on iter %d\n", i);

MPI_Send(&id, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);

MPI_Send(&Cost, 1, MPI_LONG_DOUBLE, 0, 0, MPI_COMM_WORLD);

MPI_Send(k, NUMVAR, MPI_LONG_DOUBLE, 0, 0, MPI_COMM_WORLD);

MPI_Send(&i, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);

BestCost = Cost;

} else if ((Cost < 5.3) && (i != iter)){

MPI_Send(&id, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);

MPI_Send(&Cost, 1, MPI_LONG_DOUBLE, 0, 0, MPI_COMM_WORLD);

MPI_Send(k, NUMVAR, MPI_LONG_DOUBLE, 0, 0, MPI_COMM_WORLD);

MPI_Send(&i, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);

}

}

printf("I’m sending message on iter %d\n", i);

MPI_Send(&id, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);

MPI_Send(&Cost, 1, MPI_LONG_DOUBLE, 0, 0, MPI_COMM_WORLD);
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MPI_Send(k, NUMVAR, MPI_LONG_DOUBLE, 0, 0, MPI_COMM_WORLD);

MPI_Send(&i, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);

}

return 0;

}

C.3 Cost Function

long double CostFunction(long double k[], long double X[], int F[], int R[],

long double Et[], int neq, int ncn, int RowsX, int ColsX,

long double timespan[], long double Y_Zero[])

{

int errcode = 1;

int i;

int j;

long double cost = 0.0;

long double tout[NTSPAN];

long double yout[NTSPAN * NEQ];

errcode = ShampineStiffInetgrator(tout, yout, timespan, Y_Zero, k, F, R,

Et, neq, ncn, RowsX);

if(errcode == 1){

cost = 15.0;

return cost;

}

if(errcode == 2){

cost = 9.0;

return cost;

}

if(errcode == 3){

cost = 10.0;
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return cost;

}

for(i=0; i<neq; i++){

for (j=1; j<RowsX; j++){

cost += pow((X[j * ColsX + (i+1)] - yout[j * neq + i]), 2.0);

}

}

//printf("Cost is %Le\n", cost);

return log10(cost);

}

C.4 NDF Integrator

int ShampineStiffInetgrator(long double tout[], long double yout[],

long double timespan[], long double Y_Zero[], long double k[], int F[],

int R[], long double Et[], int neq, int ncn, int ntspan)

{

//Routine Initialization Steps

//Replacement for odearguments

int i;

int j;

int next = 1;

int tdir = 1;

long double t0 = timespan[0];

long double tfinal = timespan[NTSPAN-1];

long double f0[NEQ];

long double rtol = 1e-3;

long double threshold = 1.0e-3;

long double htspan = timespan[1] - timespan[0];

long double hmax = timespan[NTSPAN-1] * .10;
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//Getting F_Zero

OdeConstructor(t0, Y_Zero, f0, k, F, R, Et, neq, ncn);

int Mt[NEQ][NEQ];

long double t = t0;

long double y[NEQ];

int maxk = 4;

for(i=0; i<neq; i++){

for(j=0; j<neq; j++){

if (i == j){

Mt[i][j] = 1;

} else {

Mt[i][j] = 0;

}

}

y[i] = Y_Zero[i];

}

//Initializing Method Parameters

long double G[5] = {1.0, 3.0/2.0, 11.0/6.0, 25.0/12.0, 137.0/60.0};

long double alpha[5] = {-37.0/200.0, -1.0/9.0, -0.0823, -0.0415, 0.0};

long double invGa[5];

long double erconst[5];

int kJ[5][5];

int kI[5][5];

long double difU[25] = {-1.0, -2.0, -3.0, -4.0, -5.0, 0.0, 1.0, 3.0, 6.0, 10.0, 0.0,

0.0, -1.0, -4.0, -10.0, 0.0, 0.0, 0.0, 1.0, 5.0, 0.0, 0.0, 0.0, 0.0, -1.0};

for(i=0;i<5; i++){

invGa[i] = 1.0 / (G[i] * (1 - alpha[i]));

erconst[i] = alpha[i] * G[i] + (1.0 / (i+2.0));

for(j=0; j<5; j++){
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kI[i][j] = i+1;

kJ[i][j] = j+1;

}

}

int maxit = 3;

//Get Initial slope yp

long double yp[NEQ];

for(i=0; i<neq; i++){

yp[i] = f0[i];

}

//First Jacobian Call

long double dfdy[NEQ * NEQ];

int Jcurrent = JacobianConstructor(t, y, dfdy, k, F, R, Et, neq, ncn);

// hmin is a small number such that t + hmin is clearly different from t in

// the working precision, but with this definition, it is 0 if t = 0.

long double eps = 2.220446049250313e-16;

long double hmin = 16 * eps * fabs(t);

//Compute an initial step size h using yp = y’(t).

long double wt[NEQ];

MaxVectorScalerCompare(wt, y, threshold, neq);

long double rh = 1.25 * InfinityNormAndDivide(yp, wt, neq) / sqrt(rtol);

long double absh = MinScalerScalerCompare(hmax,htspan);

if ((absh * rh) > 1){

absh = 1 / rh;

}

absh = MaxScalerScalerCompare(absh, hmin);

//The error of BDF1 is 0.5*h^2*y’’(t), so we can determine the optimal h.

long double h = tdir * absh;

long double tdel =(t + tdir * MinScalerScalerCompare(sqrt(eps) *
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MaxScalerScalerCompare(fabs(t), fabs(t+h)), absh)) - t;

//Calculating f1

long double f1[NEQ];

OdeConstructor(t + tdel, y, f1, k, F, R, Et, neq, ncn);

long double dfdt[NEQ];

long double tempvector[NEQ];

SquareMaxtrixTimesVector(tempvector, dfdy, yp, neq);

for (i=0; i<neq; i++){

dfdt[i] = (f1[i] - f0[i])/tdel;

tempvector[i] = dfdt[i] + tempvector[i];

}

rh = 1.25 * sqrt(0.5 * InfinityNormAndDivide(tempvector, wt, neq) /rtol);

absh = MinScalerScalerCompare(hmax,htspan);

if ((absh * rh) > 1){

absh = 1 / rh;

}

absh = MaxScalerScalerCompare(absh, hmin);

h = tdir * absh;

//Initialize

int kcount = 0;

int klast = kcount;

long double abshlast = absh;

long double dif[NEQ * (4+3)];

for (i=0; i<neq; i++){

for (j=0; j<=maxk+2; j++){

if (j == 0){

dif[i * 7 + j] = h * yp[i];

} else {

dif[i * 7 + j] = 0.0;
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}

}

}

long double hinvGak = h * invGa[kcount];

int nconhk = 0;

long double Miter[NEQ * NEQ];

for (i=0; i<neq; i++){

for (j=0; j<neq; j++){

Miter[i * neq + j] = Mt[i][j] - hinvGak * dfdy[i * neq + j];

}

}

int indx[NEQ];

LUDecomp(Miter, neq, indx);

int havrate = 0;

//Allocate memory for generated output

int nout = 0;

tout[nout] = t;

for(i=0; i<neq; i++){

yout[nout * neq + i] = y[i];

}

//The Main Loop

int done = 0;

long double tempMatrix1[25];

long double tempMatrix2[NEQ * (4+2)];

long double difRU[25];

int nofailed = 1;

int gotynew = 0;

long double psi[NEQ];

long double tempvector2[5];
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long double tnew;

long double pred[NEQ];

long double ynew[NEQ];

long double difkp1[NEQ];

long double invwt[NEQ];

long double minnrm = 0.0;

int tooslow = 0;

long double rhs[NEQ];

long double del[NEQ];

long double newnrm;

long double rate;

long double errit;

long double oldnrm;

long double err;

long double hopt;

long double errkm1;

long double hkm1;

int nsteps = 0;

int fsteps = 0;

int ssteps = 0;

long double tstep;

long double ystep[NEQ];

int oldnout;

long double temp;

long double temp2;

int kopt;

int madeMass = 0;

long double errkp1;

long double hkp1;
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//Code Testing Variables

//int print = 1;

while (done == 0){

hmin = 16 * eps * fabs(t);

absh = MinScalerScalerCompare(hmax, MaxScalerScalerCompare(absh, hmin));

h = tdir * absh;

//Stretch the step if within 10% of tfinal-t.

if ((1.1 * absh) >= fabs(tfinal -t)){

h = tfinal - t;

absh = fabs(h);

done = 1;

}

if ((absh != abshlast) || (kcount != klast)){

for(i=0; i<5; i++){

for(j=0; j<5; j++){

tempMatrix1[i * 5 + j] = (kI[i][j] - 1 - kJ[i][j] * (absh/abshlast)) / (kI[i][j]);

}

}

Cumprod(tempMatrix1, 5);

MatrixMultiplySpecial(difRU, tempMatrix1, difU, 5, 5, 5, 5, 5, 5);

MatrixMultiplySpecial(tempMatrix2, dif, difRU, neq, (kcount+1), (kcount+1), 7, 7, 5);

for(i=0; i<neq; i++){

for(j=0; j<=kcount; j++){

dif[i * 7 + j] = tempMatrix2[i * 7 + j];

}

}

hinvGak = h * invGa[kcount];

nconhk = 0;

for (i=0; i<neq; i++){
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for (j=0; j<neq; j++){

Miter[i * neq + j] = Mt[i][j] - hinvGak * dfdy[i * neq + j];

}

}

LUDecomp(Miter, neq, indx);

havrate = 0;

}

//LOOP FOR ADVANCING ONE STEP

nofailed = 1;

while (1){

gotynew = 0;

while (gotynew == 0){

//Compute the constant terms in the equation for ynew

for(i=0; i<=kcount; i++){

tempvector2[i] = G[i] * invGa[kcount];

}

MatrixTimesVector(psi, dif, tempvector2, neq, (kcount+1), 7);

//Predict a solution at t+h

tnew = t + h;

if (done == 1){

tnew = tfinal;

}

h = tnew - t;

SumRows (tempvector, dif, neq, kcount+1, 7);

for(i=0; i<neq; i++){

pred[i] = y[i] + tempvector[i];

ynew[i] = pred[i];

//if (ynew[i] < 0.0){

//printf("y became neqative\n");
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//return 2;

//}

difkp1[i] = 0.0;

}

//The difference, difkp1, between pred and the final accepted

//ynew is equal to the backward difference of ynew of the order

//kcount+1. Initialize to zero for the iteration to compute ynew.

MaxVectorVectorCompare (tempvector, y, ynew, neq);

MaxVectorScalerCompare(invwt, tempvector, threshold, neq);

for(i=0; i<neq; i++){

invwt[i] = 1 / invwt[i];

}

minnrm = 100 * eps * InfinityNormAndMultiply(ynew, invwt, neq);

//Iterate with simplified Newton method

tooslow = 0;

for(i=0; i<=maxit; i++){

OdeConstructor(tnew, ynew, tempvector, k, F, R, Et, neq, ncn);

for(j=0; j<neq; j++){

rhs[j] = (hinvGak * tempvector[j]) - (psi[j]+difkp1[j]);

del[j] = rhs[j];

}

LUSolver(Miter, neq, indx, del);

newnrm = InfinityNormAndMultiply(del, invwt, neq);

for(j=0; j<neq; j++){

difkp1[j] = difkp1[j] + del[j];

ynew[j] = pred[j] + difkp1[j];

}

if (newnrm <= minnrm){

gotynew = 1;
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break;

} else if (i == 0) {

if (havrate == 1){

errit = newnrm * rate / (1 - rate);

if (errit <= 0.05 * rtol){

gotynew = 1;

break;

}

} else {

rate = 0.0;

}

} else if (newnrm > 0.9 * oldnrm) {

tooslow = 1;

break;

} else {

rate = MaxScalerScalerCompare((0.9 * rate), (newnrm / oldnrm));

havrate = 1;

errit = newnrm * rate / (1 - rate);

if (errit <= (0.5 * rtol)) {

gotynew = 1;

break;

} else if (i == maxit) {

tooslow = 1;

break;

} else if ((0.5 * rtol) < (errit * pow(rate, (maxit - i)))) {

tooslow = 1;

break;

}

}
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oldnrm = newnrm;

} //End of Newton Loop

if (tooslow == 1){

//Speed up the iteration by forming new linearization or reducing h.

ssteps = ssteps + 1;

if (Jcurrent == 0){

OdeConstructor(t, y, f0, k, F, R, Et, neq, ncn);

Jcurrent = JacobianConstructor(t, y, dfdy, k, F, R, Et, neq, ncn);

} else if (absh <= hmin) {

//printf("Failed to Meet Integration Tolerances with reducing stepsize below %Le at

time %Lf\n", hmin, t);

tout[0] = -99.0;

tout[ntspan - 1] = -99.0;

return 1;

} else {

abshlast = absh;

absh = MaxScalerScalerCompare((0.3 * absh), hmin);

h = tdir * absh;

done = 0;

for(i=0; i<5; i++){

for(j=0; j<5; j++){

tempMatrix1[i * 5 + j] = (kI[i][j] - 1 - kJ[i][j] * (absh/abshlast)) / (kI[i][j]);

}

}

Cumprod(tempMatrix1, 5);

MatrixMultiplySpecial(difRU, tempMatrix1, difU, 5, 5, 5, 5, 5, 5);

MatrixMultiplySpecial(tempMatrix2, dif, difRU, neq, (kcount+1), (kcount+1), 7, 7, 5);

for(i=0; i<neq; i++){

for(j=0; j<=kcount; j++){
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dif[i * 7 + j] = tempMatrix2[i * 7 + j];

}

}

hinvGak = h * invGa[kcount];

nconhk = 0;

}

for (i=0; i<neq; i++){

for (j=0; j<neq; j++){

Miter[i * neq + j] = Mt[i][j] - hinvGak * dfdy[i * neq + j];

}

}

LUDecomp(Miter, neq, indx);

havrate = 0;

}

}

//End of While Loop for getting ynew

//difkp1 is now the backward difference of ynew of order kcount + 1

err = InfinityNormAndMultiply(difkp1, invwt, neq) * erconst[kcount];

if (err > rtol) {

//Failed Step

fsteps = fsteps + 1;

if (absh <= hmin){

//printf("Failed to Meet Integration Tolerances with reducing stepsize below %Le at

time %Lf\n", hmin, t);

tout[0] = -99.0;

tout[ntspan - 1] = -99.0;

return 1;

}

abshlast = absh;
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if (nofailed == 1) {

nofailed = 0;

temp = (rtol/err);

temp2 = 1.0/(kcount + 2);

hopt = absh * MaxScalerScalerCompare(0.1, (0.833 * pow(temp, temp2))); // 1/1.2

if (kcount > 0) {

for(i=0; i<neq; i++){

tempvector[i] = dif[i * 7 + kcount] + difkp1[i];

}

errkm1 = InfinityNormAndMultiply(tempvector, invwt, neq) * erconst[kcount-1];

temp = (rtol/errkm1);

temp2 = 1.0/(kcount + 1);

hkm1 = absh * MaxScalerScalerCompare(0.1, (0.769 * pow(temp, temp2))); // 1/1.3

if (hkm1 > hopt){

hopt = MinScalerScalerCompare (absh, hkm1);

kcount = kcount - 1;

}

}

absh = MaxScalerScalerCompare(hmin, hopt);

} else {

absh = MaxScalerScalerCompare(hmin, 0.5 * absh);

}

h = tdir * absh;

if (absh < abshlast){

done = 0;

}

for(i=0; i<5; i++){

for(j=0; j<5; j++){

tempMatrix1[i * 5 + j] = (kI[i][j] - 1 - kJ[i][j] * (absh/abshlast)) / (kI[i][j]);
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}

}

Cumprod(tempMatrix1, 5);

MatrixMultiplySpecial(difRU, tempMatrix1, difU, 5, 5, 5, 5, 5, 5);

MatrixMultiplySpecial(tempMatrix2, dif, difRU, neq, (kcount+1), (kcount+1), 7, 7, 5);

for(i=0; i<neq; i++){

for(j=0; j<=kcount; j++){

dif[i * 7 + j] = tempMatrix2[i * 7 + j];

}

}

hinvGak = h * invGa[kcount];

nconhk = 0;

for (i=0; i<neq; i++){

for (j=0; j<neq; j++){

Miter[i * neq + j] = Mt[i][j] - hinvGak * dfdy[i * neq + j];

}

}

LUDecomp(Miter, neq, indx);

havrate = 0;

} else {

break;

}

} //End while (true)

nsteps = nsteps + 1;

if (nsteps > 5000) {

return 3;
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}

for (i=0; i<neq; i++){

dif[i * 7 + kcount + 2] = difkp1[i] - dif[i * 7 + kcount + 1];

dif[i * 7 + kcount + 1] = difkp1[i];

ystep[i] = ynew[i];

}

for (i=kcount; i>=0; i--){

for (j=0; j < neq; j++){

dif[j * 7 + i] = dif[j * 7 + i] + dif[j * 7 + i + 1];

}

}

tstep = tnew;

oldnout = nout;

while (next <= ntspan) {

if (tdir * (tnew - timespan[next]) < 0){

break;

} else if (tnew == timespan[next]) {

nout = nout + 1;

tout[nout] = tnew;

for (i=0; i<neq; i++){

yout[nout * neq + i] = ynew[i];

}

next = next + 1;

break;

}

nout = nout + 1;

tout[nout] = timespan[next];

Interpolation (tempvector, timespan[next], tstep, ystep, h, dif, kcount, neq);

for (i=0; i<neq; i++){

151



yout[nout * neq + i] = tempvector[i];

}

next = next + 1;

}

klast = kcount;

abshlast = absh;

if ((nconhk+1) < (maxk+3)) {

nconhk = nconhk + 1;

} else {

nconhk = maxk+3;

}

if (nconhk >= (kcount + 3)) {

temp = 1.2 * pow((err/rtol), (1.0/(kcount + 2)));

if (temp > 0.1) {

hopt = absh / temp;

} else {

hopt = 10.0 * absh;

}

kopt = kcount;

if (kcount > 0){

for (i=0; i<neq; i++){

tempvector[i] = dif[i * 7 + kcount];

}

errkm1 = InfinityNormAndMultiply(tempvector, invwt, neq) * erconst[kcount-1];

temp = 1.3 * pow((errkm1/rtol), (1.0/(kcount + 1)));

if (temp > 0.1) {

hkm1 = absh / temp;

} else {

hkm1 = 10.0 * absh;
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}

if (hkm1 > hopt) {

hopt = hkm1;

kopt = kcount - 1;

}

}

if (kcount < maxk){

for (i=0; i<neq; i++){

tempvector[i] = dif[i * 7 + kcount + 2];

}

errkp1 = InfinityNormAndMultiply(tempvector, invwt, neq) * erconst[kcount+1];

temp = 1.4 * pow((errkp1/rtol), (1.0/(kcount + 3)));

if (temp > 0.1) {

hkp1 = absh / temp;

} else {

hkp1 = 10.0 * absh;

}

if (hkp1 > hopt) {

hopt = hkp1;

kopt = kcount + 1;

}

}

if (hopt > absh) {

absh = hopt;

if (kcount != kopt){

kcount = kopt;

}

}

}
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//Advance Integration One Step

t = tnew;

for (i=0; i<neq; i++){

y[i] = ynew[i];

}

Jcurrent = 0;

} //End While Not Done

return 0;

}

C.5 ODE Constructor

int OdeConstructor(long double t, long double y[], long double ydot[],

long double k[], int F[], int R[], long double Et[], int neq, int ncn)

{

int i;

int j;

int kstart = 0;

long double A = 0.0;

long double B = 0.0;

long double P = 0.0;

long double Q = 0.0;

int Aset = 0;

int Pset = 0;

long double k_fun[6];

long double ReactionVelocity[NCN];

long double total;

int numSvar = 0;

int numPvar = 0;

for(i=0; i < ncn; i++)
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{

A = 0.0;

Aset = 0;

B = 0.0;

P = 0.0;

Pset = 0;

Q = 0.0;

numSvar = 0;

numPvar = 0;

for(j=0; j < neq; j++)

{

if((F[ncn * j + i] == -1) && (Aset == 0))

{

A = y[j];

Aset = 1;

numSvar = 1;

} else if((F[ncn * j + i]== -1) && (Aset != 0)) {

B = y[j];

numSvar = 2;

}

if((F[ncn * j + i] == 1) && (Pset == 0))

{

P = y[j];

Pset = 1;

numPvar = 1;

} else if((F[ncn * j + i] == 1) && (Pset != 1)) {

Q = y[j];

numPvar = 2;

}
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}

if(R[i] == 0)

{

for(j=0;j<1;j++)

{

k_fun[j]=k[kstart+j];

}

ReactionVelocity[i] = Reaction_ZeroOrder(k_fun, Et[i]);

kstart=kstart+1;

}

if(R[i] == 1)

{

for(j=0;j<1;j++)

{

k_fun[j]=k[kstart+j];

}

ReactionVelocity[i] = Reaction_MassAction(k_fun, A, B, numSvar);

kstart=kstart+1;

}

if(R[i] == 2)

{

for(j=0;j<2;j++)

{

k_fun[j]=k[kstart+j];

}

ReactionVelocity[i] = Reaction_RevMassAction(k_fun, A, B, P, Q, numSvar, numPvar);

kstart=kstart+2;

}

if(R[i] == 3)
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{

for(j=0;j<3;j++)

{

k_fun[j]=k[kstart+j];

}

ReactionVelocity[i] = Reaction_MichaelisM(k_fun, A, Et[i]);

kstart=kstart+3;

}

if(R[i] == 4)

{

for(j=0;j<4;j++)

{

k_fun[j]=k[kstart+j];

}

ReactionVelocity[i] = Reaction_RevMichaelisM(k_fun, A, P, Et[i]);

kstart=kstart+4;

}

if(R[i] == 5)

{

for(j=0;j<6;j++)

{

k_fun[j]=k[kstart+j];

}

ReactionVelocity[i] = Reaction_UniUni(k_fun, A, P, Et[i]);

kstart=kstart+6;

}

if(R[i] == 6)

{

for(j=0;j<(numSvar + 1);j++)
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{

k_fun[j]=k[kstart+j];

}

ReactionVelocity[i] = Reaction_GMA(k_fun, A, B, numSvar);

kstart=kstart + (numSvar + 1);

}

if(R[i] == 7)

{

for(j=0;j<(numSvar + numPvar + 2); j++)

{

k_fun[j]=k[kstart+j];

}

ReactionVelocity[i] = Reaction_RevGMA(k_fun, A, B, P, Q, numSvar, numPvar);

kstart=kstart + numSvar + numPvar + 2;

}

}

for(j=0; j<neq; j++)

{

total=0.0;

for(i=0; i<ncn; i++)

{

total+= F[ncn * j + i] * ReactionVelocity[i];

}

ydot[j] = total;

}

return 0;

}
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C.6 Jacobian Constructor

int JacobianConstructor(long double t,long double y[], long double dfdy[],

long double k[], int F[], int R[], long double Et[], int neq, int ncn)

{

int i;

int j;

int kstart = 0;

int Row_S;

int Row_P;

int Row_S_set;

int Row_P_set;

long double k_fun[6];

long double A;

long double B;

long double P;

long double Q;

int Aset = 0;

int Pset = 0;

long double substrateDer[NCN];

long double productDer[NCN];

long double jpieces[NEQ][NCN];

int numSvar = 0;

int numPvar = 0;

for(i=0;i<ncn;i++)

{

A = 0.0;

Aset = 0;

B = 0.0;

P = 0.0;
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Pset = 0;

Q = 0.0;

numSvar = 0;

numPvar = 0;

for(j=0; j < neq; j++)

{

if((F[ncn * j + i] == -1) && (Aset == 0))

{

A = y[j];

Aset = 1;

numSvar = 1;

} else if((F[ncn * j + i]== -1) && (Aset != 0)) {

B = y[j];

numSvar = 2;

}

if((F[ncn * j + i] == 1) && (Pset == 0))

{

P = y[j];

Pset = 1;

numPvar = 1;

} else if((F[ncn * j + i] == 1) && (Pset != 1)) {

Q = y[j];

numPvar = 2;

}

}

if(R[i] == 0)

{

for(j=0;j<1;j++)

{
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k_fun[j]=k[kstart+j];

}

substrateDer[i] = 0.0;

productDer[i] = 0.0;

kstart=kstart + 1;

}

if(R[i] == 1)

{

for(j=0;j<1;j++)

{

k_fun[j]=k[kstart+j];

}

substrateDer[i] = kinetic_MassActionSder(k_fun, A, B, numSvar);

productDer[i] = 0.0;

kstart=kstart + 1;

}

if(R[i] == 2)

{

for(j=0;j<2;j++)

{

k_fun[j]=k[kstart+j];

}

substrateDer[i] = kinetic_RevMassActionSder(k_fun, A, B, P, Q, numSvar, numPvar);

productDer[i] = kinetic_RevMassActionPder(k_fun, A, B, P, Q,numSvar, numPvar);

kstart=kstart + 2;

}

if(R[i] == 3)

{

for(j=0;j<3;j++)
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{

k_fun[j]=k[kstart+j];

}

substrateDer[i] = kinetic_MichaelisSder(k_fun,A, Et[i]);

productDer[i] = 0.0;

kstart=kstart + 3;

}

if(R[i] == 4)

{

for(j=0;j<4;j++)

{

k_fun[j]=k[kstart+j];

}

substrateDer[i] = kinetic_RevMichaelisSder(k_fun,A,P, Et[i]);

productDer[i] = kinetic_RevMichaelisPder(k_fun,A,P, Et[i]);

kstart=kstart + 4;

}

if(R[i] == 5)

{

for(j=0;j<6;j++)

{

k_fun[j]=k[kstart+j];

}

substrateDer[i] = kinetic_uniunisder(k_fun,A,P,Et[i]);

productDer[i] = kinetic_uniunipder(k_fun,A,P,Et[i]);

kstart=kstart + 6;

}

if(R[i] == 6)

{
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for(j=0;j<(numSvar + 1);j++)

{

k_fun[j]=k[kstart+j];

}

substrateDer[i] = kinetic_GMASder(k_fun, A, B, numSvar);

productDer[i] = 0.0;

kstart=kstart + (numSvar + 1);

}

if(R[i] == 7)

{

for(j=0;j<(numSvar + numPvar + 2); j++)

{

k_fun[j]=k[kstart+j];

}

substrateDer[i] = kinetic_RevGMASder(k_fun, A, B, P, Q, numSvar, numPvar);

productDer[i] = kinetic_RevGMAPder(k_fun, A, B, P, Q, numSvar, numPvar);

kstart=kstart + numSvar + numPvar + 2;

}

}

for(i=0;i< (neq * neq);i++)

{

dfdy[i] = 0.0;

}

for(i=0; i<ncn; i++)

{

Row_S_set = 0;

Row_P_set = 0;

for(j=0; j<neq; j++)

{
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jpieces[j][i]=0;

if(F[ncn * j + i] == -1)

{

jpieces[j][i]= -1 * substrateDer[i];

Row_S=j;

Row_S_set = 1;

}

if(F[ncn * j + i] == 1)

{

jpieces[j][i] = productDer[i];

Row_P=j;

Row_P_set = 1;

}

}

if ((Row_S_set == 1) && (Row_P_set == 1)){

dfdy[Row_S * neq + Row_P]= -1 * productDer[i];

dfdy[Row_P * neq + Row_S]= substrateDer[i];

}

}

for(i=0; i<neq; i++)

{

for(j=0; j<ncn; j++)

{

dfdy[i * neq + i] += jpieces[i][j];

}

}

return 1;

}
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C.7 Matrix Manipulation Codes

int MaxVectorScalerCompare (long double wt[], long double y[],

long double threshold, int neq)

{

int i;

for(i=0; i<neq; i++){

wt[i] = threshold;

if ((fabs(y[i])) > threshold){

wt[i] = fabs(y[i]);

}

}

return 0;

}

int MaxVectorVectorCompare (long double temp[], long double y[],

long double ynew[], int neq)

{

int i;

for(i=0; i<neq; i++){

temp[i] = 0.0;

if (fabs(y[i]) >= fabs(ynew[i])){

temp[i] = fabs(y[i]);

} else {

temp[i] = fabs(ynew[i]);

}

}

return 0;

}

long double InfinityNormAndDivide (long double yp[],

long double wt[], int neq)
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{

int i;

long double maximum = fabs(yp[0]/wt[0]);

for(i=1; i<neq; i++){

if (maximum < fabs(yp[i]/wt[i])){

maximum = fabs(yp[i]/wt[i]);

}

}

return maximum;

}

long double InfinityNormAndMultiply (long double ynew[],

long double invwt[], int neq)

{

int i;

long double maximum = fabs(ynew[0] * invwt[0]);

for(i=1; i<neq; i++){

if (maximum < fabs(ynew[i] * invwt[i])){

maximum = fabs(ynew[i] * invwt[i]);

}

}

return maximum;

}

long double MinScalerScalerCompare (long double hmax, long double htspan)

{

long double minimum;

if (hmax < htspan){

minimum = hmax;

} else {

minimum = htspan;
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}

return minimum;

}

long double MaxScalerScalerCompare (long double absh, long double hmin)

{

long double maximum;

if (absh > hmin){

maximum = absh;

} else {

maximum = hmin;

}

return maximum;

}

int SquareMaxtrixTimesVector(long double tempvector[], long double dfdy[],

long double yp[], int neq)

{

int i;

int j;

for(i=0; i<neq; i++){

tempvector[i] = 0.0;

for (j=0; j<neq; j++){

tempvector[i] += dfdy[i * neq + j] * yp[j];

}

}

return 0;

}

int LUDecomp (long double Miter[], int neq, int indx[])

{

int i;
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int j;

int k;

int imax;

long double big;

long double dum;

long double sum;

long double temp;

long double vv[NEQ];

for(i=0; i<neq; i++){

big = 0.0;

for(j=0; j<neq; j++){

temp = fabs(Miter[i * neq + j]);

if (temp > big){

big = temp;

}

}

if (big == 0.0){

printf("The Matrix sent into LU Decomposition is Singular\n");

}

vv[i] = 1.0/ big;

}

for(j=0; j<neq; j++){

for (i=0; i<j; i++){

sum = Miter[i * neq + j];

for (k=0; k<i; k++){

sum -= Miter[i * neq + k] * Miter[k * neq + j];

}

Miter[i * neq + j] = sum;

}
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big = 0.0;

for (i=j; i<neq; i++){

sum = Miter[i * neq + j];

for(k=0; k<j; k++){

sum -= Miter[i * neq + k] * Miter[k * neq + j];

}

Miter[i * neq + j] = sum;

dum = vv[i] * fabs(sum);

if (dum >= big){

big = dum;

imax = i;

}

}

if (j != imax){

for(k=0; k<neq; k++){

dum = Miter[imax * neq + k];

Miter[imax * neq + k] = Miter[j * neq + k];

Miter[j * neq + k] = dum;

}

vv[imax] = vv[j];

}

indx[j]=imax;

if (Miter[j * neq + j] == 0.0){

Miter[j * neq + j] = 1.0e-20;

}

if (j != (neq-1)){

dum = 1.0/(Miter[j * neq + j]);

for(i=j+1; i<neq; i++){

Miter[i * neq + j] *= dum;
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}

}

}

return 0;

}

int LUSolver(long double Miter[], int neq, int indx[], long double del[])

{

int i;

int ii = 0;

int ip;

int j;

long double sum;

for (i=0;i<neq;i++) {

ip=indx[i];

sum=del[ip];

del[ip]=del[i];

if (ii) {

for(j=ii;j<=i-1;j++){

sum -= Miter[i * neq + j] * del[j];

}

} else if (sum) {

ii=i;

}

del[i]=sum;

}

for (i=(neq-1); i>=0; i--){

sum=del[i];

for (j=i+1; j<neq; j++){

sum -= Miter[i * neq + j] * del[j];
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}

del[i]= sum /Miter[i * neq + i];

}

return 0;

}

int Cumprod (long double difU[], int n)

{

int i;

int j;

int k;

for(i=1; i<n; i++){

for(j=0; j<n; j++){

difU[i * n + j] = difU[i * n + j] * difU[(i-1) * n + j];

}

}

return 0;

}

int MatrixMultiplySpecial (long double difRU[], long double tempmatrix[],

long double difU[], int n, int m, int p, int rows_out, int rows_in1, int rows_in2)

{

int i;

int j;

int k;

for(i=0; i<n; i++){

for(j=0; j<p; j++){

difRU[i * rows_out + j] = 0.0;

for(k=0; k<m; k++){

difRU[i * rows_out + j] += tempmatrix[i * rows_in1 + k] * difU[k * rows_in2 + j];
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}

}

}

return 0;

}

int MatrixTimesVector(long double psi[], long double dif[],

long double tempvector2[], int rows, int cols, int row_size)

{

int i;

int j;

for(i=0; i<rows; i++){

psi[i] = 0.0;

for (j=0; j<cols; j++){

psi[i] += dif[i * row_size + j] * tempvector2[j];

}

}

return 0;

}

int SumRows (long double tempvector[], long double dif[], int rows, int cols,

int row_size)

{

int i;

int j;

for(i=0; i<rows; i++){

tempvector[i] = 0.0;

for(j=0; j<cols; j++){

tempvector[i] += dif[i * row_size + j];

}
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}

return 0;

}

C.8 Interpolation Function

int Interpolation (long double yinterp[], long double tinterp, long double tnew,

long double ynew[], long double h, long double dif[], int kcount, int neq)

{

int i;

int j;

long double tempvector[kcount];

long double tempvector2[NEQ];

long double s = (tinterp - tnew) / h;

if (kcount == 0){

for (i=0; i<neq; i++){

yinterp[i] = ynew[i] + dif[i * 7] * s;

}

} else {

for (i=0; i<kcount; i++){

tempvector[i] = (s + i) / (i+1);

}

MatrixTimesVector(tempvector2, dif, tempvector, neq, (kcount+1), 7);

for (i=0; i<neq; i++){

yinterp[i] = ynew[i] + tempvector2[i];

}

}

return 0;

}
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C.9 Zero Order Reaction

long double Reaction_ZeroOrder(long double kfun[], long double Et)

{

long double velocity;

velocity = kfun[0] * Et;

return velocity;

}

C.10 Mass Action Reaction

long double Reaction_MassAction(long double kfun[], long double A, long double B,

int numSvar)

{

long double k_scaled;

long double velocity;

if (kfun[0] <= .25){

k_scaled = kfun[0] / .25 * 1e-2;

} else if (kfun[0] <= .50){

k_scaled = (kfun[0] - .25) / .25 * 1e-1;

} else if (kfun[0] <= .75){

k_scaled = (kfun[0] - .50) / .25;

} else {

k_scaled = (kfun[0] - .75) / .25 * 1e1;

}

if (numSvar == 1){

velocity = k_scaled * A;

} else if (numSvar == 2) {

velocity = k_scaled * A * B;

}

return velocity;
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}

C.11 Reversible Mass Action Reaction

long double Reaction_RevMassAction(long double kfun[], long double A, long double B,

long double P, long double Q, int numSvar, int numPvar)

{

int i;

long double k_scaled[2];

long double velocityF;

long double velocityR;

long double velocity;

for (i=0; i<2; i++){

if (kfun[i] <= .25){

k_scaled[i] = kfun[i] / .25 * 1e-2;

} else if (kfun[i] <= .50){

k_scaled[i] = (kfun[i] - .25) / .25 * 1e-1;

} else if (kfun[i] <= .75){

k_scaled[i] = (kfun[i] - .50) / .25;

} else {

k_scaled[i] = (kfun[i] - .75) / .25 * 1e1;

}

}

if (numSvar == 1){

velocityF = k_scaled[0] * A;

} else if (numSvar == 2) {

velocityF = k_scaled[0] * A * B;

}

if (numPvar == 1){

velocityR = k_scaled[1] * P;
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} else if (numPvar == 2) {

velocityR = k_scaled[1] * P * Q;

}

velocity = velocityF - velocityR;

return velocity;

}

C.12 Michaelis Menten Reaction

long double Reaction_MichaelisM(long double k[], long double S, long double Et)

{

long double k1;

long double kn1;

long double k2;

long double KM;

long double Vmax;

long double velocity;

if(k[0] <= .33333){

k1 = k[0]/.33333 * 1e6;

} else if( k[0] <= .66666) {

k1 = (k[0]-.33333)/.33333 * 1e7;

} else if(k[0] <= .99999) {

k1 = (k[0] - .66666)/.33333 * 1e8;

} else {

k1 = 1e8;

}

k1 = k1 * 3600 * 1e-12;

if(k[1] <= .25){

kn1 = k[1]/.25 * 1e1;

} else if(k[1] <= .50) {
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kn1 = (k[1]-.25)/.25 * 1e2;

} else if(k[1] <= .75) {

kn1 = (k[1] - .50)/.25 * 1e3;

} else if(k[1] > .75) {

kn1 = (k[1] - .75)/.25 * 1e4;

}

kn1 = kn1 * 3600;

if(k[2] <= .20){

k2 = k[2]/.20 * 1e1;

} else if(k[2] <= .40){

k2 = (k[2]-.20)/.20 * 1e2;

} else if(k[2] <= .60){

k2 = (k[2] - .40)/.20 * 1e3;

} else if(k[2] <= .80){

k2 = (k[2] - .60)/.20 * 1e4;

} else if(k[2] > .80){

k2 = (k[2] - .80)/.20 * 1e5;

}

k2 = k2 * 3600;

KM = (kn1 + k2) / k1;

Vmax = k2 * Et;

velocity = (Vmax * S) / (S + KM);

return velocity;

}

C.13 Reversible Michaelis Menten Reaction

long double Reaction_RevMichaelisM(long double k[], long double S,

long double P, long double Et)
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{

long double k1;

long double kn1;

long double k2;

long double kn2;

long double KMS;

long double KMP;

long double KS;

long double KP;

long double velocity;

if(k[0] <= .33333){

k1 = k[0]/.33333 * 1e6;

} else if( k[0] <= .66666) {

k1 = (k[0]-.33333)/.33333 * 1e7;

} else if(k[0] <= .99999) {

k1 = (k[0] - .66666)/.33333 * 1e8;

} else {

k1 = 1e8;

}

k1 = k1 * 3600 * 1e-12;

if(k[1] <= .25){

kn1 = k[1]/.25 * 1e1;

} else if(k[1] <= .50) {

kn1 = (k[1]-.25)/.25 * 1e2;

} else if(k[1] <= .75) {

kn1 = (k[1] - .50)/.25 * 1e3;

} else if(k[1] > .75) {

kn1 = (k[1] - .75)/.25 * 1e4;

}
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kn1 = kn1 * 3600;

if(k[2] <= .20){

k2 = k[2]/.20 * 1e1;

} else if(k[2] <= .40){

k2 = (k[2]-.20)/.20 * 1e2;

} else if(k[2] <= .60){

k2 = (k[2] - .40)/.20 * 1e3;

} else if(k[2] <= .80){

k2 = (k[2] - .60)/.20 * 1e4;

} else if(k[2] > .80){

k2 = (k[2] - .80)/.20 * 1e5;

}

k2 = k2 * 3600;

if(k[3] <= .20){

kn2 = k[3]/.20 * 1e1;

} else if(k[3] <= .40){

kn2 = (k[3]-.20)/.20 * 1e2;

} else if(k[3] <= .60){

kn2 = (k[3] - .40)/.20 * 1e3;

} else if(k[3] <= .80){

kn2 = (k[3] - .60)/.20 * 1e4;

} else if(k[3] > .80){

kn2 = (k[3] - .80)/.20 * 1e5;

}

kn2 = kn2 * 3600 * 1e-12;

KMS = (kn1 + k2) / k1;

KS = (k1 * k2) / (kn1 + k2);

KMP = (kn1 + k2) / kn2;

KP = (kn1 * kn2) / (kn1 + k2);
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velocity = ((KS * Et * S) - (KP * Et * P))/(1.0 + S/KMS + P/KMP);

return velocity;

}

C.14 Uni Uni Reaction

long double Reaction_UniUni(long double kfun[], long double S,

long double P, long double Et)

{

int i;

long double k_unscaled[6];

long double num;

long double den1;

long double den2;

long double den3;

long double velocity;

for(i=0; i<6; i++)

{

if(kfun[i] < .11)

{

k_unscaled[i]=kfun[i]*1e1;

}

else if (kfun[i]<.21)

{

k_unscaled[i]=(kfun[i]-.1)*1e2;

}

else if (kfun[i]<.31)

{

k_unscaled[i]=(kfun[i]-.2)*1e3;
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}

else if (kfun[i]<.41)

{

k_unscaled[i]=(kfun[i]-.3)*1e4;

}

else if (kfun[i]<.51)

{

k_unscaled[i]=(kfun[i]-.4)*1e5;

}

else if (kfun[i]<.61)

{

k_unscaled[i]=(kfun[i]-.5)*1e6;

}

else if (kfun[i]<.71)

{

k_unscaled[i]=(kfun[i]-.6)*1e7;

}

else if (kfun[i]<.81)

{

k_unscaled[i]=(kfun[i]-.7)*1e8;

}

else if (kfun[i]<.91)

{

k_unscaled[i]=(kfun[i]-.8)*1e9;

}

else if (kfun[i]<= 1)

{

k_unscaled[i]=(kfun[i]-.9)*1e10;

}
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}

k_unscaled[0] = k_unscaled[0] * 3600 * 1e-12;

k_unscaled[1] = k_unscaled[1] * 3600;

k_unscaled[2] = k_unscaled[2] * 3600;

k_unscaled[3] = k_unscaled[3] * 3600;

k_unscaled[4] = k_unscaled[4] * 3600;

k_unscaled[5] = k_unscaled[5] * 3600 * 1e-12;

num = (k_unscaled[0] * k_unscaled[2] * k_unscaled[4] * S -

k_unscaled[1] * k_unscaled[3] * k_unscaled[5] * P) * Et;

den1 = k_unscaled[1] * k_unscaled[4] +

k_unscaled[1] * k_unscaled[3] + k_unscaled[2] * k_unscaled[4];

den2 = S * k_unscaled[0] * (k_unscaled[2] + k_unscaled[3] + k_unscaled[4]);

den3 = P * k_unscaled[5] * (k_unscaled[1] + k_unscaled[2] + k_unscaled[3]);

velocity = num / (den1 + den2 + den3);

return velocity;

}

C.15 Generalized Mass Action Reaction

long double Reaction_GMA(long double k[], long double A, long double B, int numSvar)

{

int i;

long double kf;

long double g[2];

long double velocity;

if(k[0] <= .33333){

kf = k[0]/.33333 * 1e1;

} else if( k[0] <= .66666) {

kf = (k[0]-.33333)/.33333 * 1e2;

} else if(k[0] <= .99999) {
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kf = (k[0] - .66666)/.33333 * 1e3;

} else {

kf = 1e3;

}

for(i=0; i<2; i++){

if(k[i + 1] <= .33333){

g[i] = k[i+1]/.33333 * 1.0;

} else if( k[i +1] <= .66666) {

g[i] = (k[i +1]-.33333)/.33333 * 2.0;

} else if(k[i +1] <= .99999) {

g[i] = (k[i +1] - .66666)/.33333 * 3.0;

} else {

g[i] = 3.0;

}

}

if (numSvar == 1){

if (A < 1.0e-8){

velocity = 0.0;

} else {

velocity = kf * pow(A, g[0]);

}

} else if (numSvar == 2) {

if ((A < 1.0e-8) || (B < 1.0e-8)){

velocity = 0.0;

} else {

velocity = kf * pow(A, g[0]) * pow(B, g[1]);

}

}

return velocity;

183



}

C.16 Reversible Generalized Mass Action Reaction

long double Reaction_RevGMA(long double k[], long double A, long double B,

long double P, long double Q, int numSvar, int numPvar)

{

int i;

long double kf;

long double kr;

long double g[4];

long double velocity;

long double velocityF;

long double velocityR;

if(k[0] <= .33333){

kf = k[0]/.33333 * 1e1;

} else if( k[0] <= .66666) {

kf = (k[0]-.33333)/.33333 * 1e2;

} else if(k[0] <= .99999) {

kf = (k[0] - .66666)/.33333 * 1e3;

} else {

kf = 1e3;

}

if(k[1] <= .33333){

kr = k[1]/.33333 * 1e1;

} else if( k[1] <= .66666) {

kr = (k[1]-.33333)/.33333 * 1e2;

} else if(k[1] <= .99999) {

kr = (k[1] - .66666)/.33333 * 1e3;

} else {
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kr = 1e3;

}

for(i=0; i<(numSvar + numPvar); i++){

if(k[i + 1] <= .33333){

g[i] = k[i+1]/.33333 * 1.0;

} else if( k[i +1] <= .66666) {

g[i] = (k[i +1]-.33333)/.33333 * 2.0;

} else if(k[i +1] <= .99999) {

g[i] = (k[i +1] - .66666)/.33333 * 3.0;

} else {

g[i] = 3.0;

}

}

if (numSvar == 1){

if (A < 1.0e-8){

velocityF = 0.0;

} else {

velocityF = kf * pow(A, g[0]);

}

} else if (numSvar == 2) {

if ((A < 1.0e-8) || (B < 1.0e-8)){

velocityF = 0.0;

} else {

velocityF = kf * pow(A, g[0]) * pow(B, g[1]);

}

}

if (numPvar == 1){

if (P < 1.0e-8){

velocityR = 0.0;
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} else {

velocityR = kr * pow(P, g[numSvar]);

}

} else if (numPvar == 2) {

if ((P < 1.0e-8) || (Q < 1.0e-8)){

velocityR = 0.0;

} else {

velocityR = kr * pow(P, g[numSvar]) * pow(Q, g[numSvar+1]);

}

}

velocity = velocityF - velocityR;

return velocity;

}

C.17 Mass Action Substrate Derivative

long double kinetic_MassActionSder(long double kfun[], long double A,

long double B, int numSvar)

{

long double k_scaled;

long double deriv;

if (kfun[0] <= .25){

k_scaled = kfun[0] / .25 * 1e-2;

} else if (kfun[0] <= .50){

k_scaled = (kfun[0] - .25) / .25 * 1e-1;

} else if (kfun[0] <= .75){

k_scaled = (kfun[0] - .50) / .25;

} else {

k_scaled = (kfun[0] - .75) / .25 * 1e1;

}
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if (numSvar == 1){

deriv = k_scaled;

} else if (numSvar == 2) {

deriv = k_scaled * B;

}

return deriv;

}

C.18 Reversible Mass Action Substrate Derivative

long double kinetic_RevMassActionSder(long double kfun[], long double A,

long double B, long double P, long double Q, int numSvar, int numPvar)

{

int i;

long double k_scaled[2];

long double deriv = 0.0;

for (i=0; i<2; i++){

if (kfun[i] <= .25){

k_scaled[i] = kfun[i] / .25 * 1e-2;

} else if (kfun[i] <= .50){

k_scaled[i] = (kfun[i] - .25) / .25 * 1e-1;

} else if (kfun[i] <= .75){

k_scaled[i] = (kfun[i] - .50) / .25;

} else {

k_scaled[i] = (kfun[i] - .75) / .25 * 1e1;

}

}

if (numSvar == 1){

deriv = k_scaled[0];
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} else if (numSvar == 2) {

deriv = k_scaled[0] * B;

}

return deriv;

}

C.19 Reversible Mass Action Product Derivative

long double kinetic_RevMassActionPder(long double kfun[], long double A,

long double B, long double P, long double Q, int numSvar, int numPvar)

{

int i;

long double k_scaled[2];

long double deriv;

for (i=0; i<2; i++){

if (kfun[i] <= .25){

k_scaled[i] = kfun[i] / .25 * 1e-2;

} else if (kfun[i] <= .50){

k_scaled[i] = (kfun[i] - .25) / .25 * 1e-1;

} else if (kfun[i] <= .75){

k_scaled[i] = (kfun[i] - .50) / .25;

} else {

k_scaled[i] = (kfun[i] - .75) / .25 * 1e1;

}

}

if (numPvar == 1){

deriv = k_scaled[1];

} else if (numPvar == 2) {

deriv = k_scaled[1] * Q;

}
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return deriv;

}

C.20 Michaelis Menten Substrate Derivative

long double kinetic_MichaelisSder(long double k[], long double S, long double Et)

{

long double k1;

long double kn1;

long double k2;

long double KM;

long double Vmax;

long double num;

long double denom;

long double numderiv;

long double denomderiv;

long double deriv;

if(k[0] <= .33333){

k1 = k[0]/.33333 * 1e6;

} else if( k[0] <= .66666) {

k1 = (k[0]-.33333)/.33333 * 1e7;

} else if(k[0] <= .99999) {

k1 = (k[0] - .66666)/.33333 * 1e8;

} else {

k1 = 1e8;

}

k1 = k1 * 3600 * 1e-12;

if(k[1] <= .25){

kn1 = k[1]/.25 * 1e1;

} else if(k[1] <= .50) {
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kn1 = (k[1]-.25)/.25 * 1e2;

} else if(k[1] <= .75) {

kn1 = (k[1] - .50)/.25 * 1e3;

} else if(k[1] > .75) {

kn1 = (k[1] - .75)/.25 * 1e4;

}

kn1 = kn1 * 3600;

if(k[2] <= .20){

k2 = k[2]/.20 * 1e1;

} else if(k[2] <= .40){

k2 = (k[2]-.20)/.20 * 1e2;

} else if(k[2] <= .60){

k2 = (k[2] - .40)/.20 * 1e3;

} else if(k[2] <= .80){

k2 = (k[2] - .60)/.20 * 1e4;

} else if(k[2] > .80){

k2 = (k[2] - .80)/.20 * 1e5;

}

k2 = k2 * 3600;

KM = (kn1 + k2) / k1;

Vmax = k2 * Et;

num = (Vmax * S);

denom = (S + KM);

numderiv = Vmax;

denomderiv = 0.0;

deriv = (numderiv * denom - num * denomderiv) / (denom * denom);

return deriv;

}
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C.21 Reversible Michaelis Menten Substrate Derivative

long double kinetic_RevMichaelisSder(long double k[], long double S,

long double P, long double Et)

{

long double k1;

long double kn1;

long double k2;

long double kn2;

long double KMS;

long double KMP;

long double KS;

long double KP;

long double num;

long double denom;

long double numderiv;

long double denomderiv;

long double deriv;

if(k[0] <= .33333){

k1 = k[0]/.33333 * 1e6;

} else if( k[0] <= .66666) {

k1 = (k[0]-.33333)/.33333 * 1e7;

} else if(k[0] <= .99999) {

k1 = (k[0] - .66666)/.33333 * 1e8;

} else {

k1 = 1e8;

}

k1 = k1 * 3600 * 1e-12;

if(k[1] <= .25){

kn1 = k[1]/.25 * 1e1;
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} else if(k[1] <= .50) {

kn1 = (k[1]-.25)/.25 * 1e2;

} else if(k[1] <= .75) {

kn1 = (k[1] - .50)/.25 * 1e3;

} else if(k[1] > .75) {

kn1 = (k[1] - .75)/.25 * 1e4;

}

kn1 = kn1 * 3600;

if(k[2] <= .20){

k2 = k[2]/.20 * 1e1;

} else if(k[2] <= .40){

k2 = (k[2]-.20)/.20 * 1e2;

} else if(k[2] <= .60){

k2 = (k[2] - .40)/.20 * 1e3;

} else if(k[2] <= .80){

k2 = (k[2] - .60)/.20 * 1e4;

} else if(k[2] > .80){

k2 = (k[2] - .80)/.20 * 1e5;

}

k2 = k2 * 3600;

if(k[3] <= .20){

kn2 = k[3]/.20 * 1e1;

} else if(k[3] <= .40){

kn2 = (k[3]-.20)/.20 * 1e2;

} else if(k[3] <= .60){

kn2 = (k[3] - .40)/.20 * 1e3;

} else if(k[3] <= .80){

kn2 = (k[3] - .60)/.20 * 1e4;

} else if(k[3] > .80){
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kn2 = (k[3] - .80)/.20 * 1e5;

}

kn2 = kn2 * 3600 * 1e-12;

KMS = (kn1 + k2) / k1;

KS = (k1 * k2) / (kn1 + k2);

KMP = (kn1 + k2) / kn2;

KP = (kn1 * kn2) / (kn1 + k2);

num = ((KS * Et * S) - (KP * Et * P));

denom = (1.0 + S/KMS + P/KMP);

numderiv = KS * Et;

denomderiv = 1.0/KMS;

deriv = (numderiv * denom - num * denomderiv) / (denom * denom);

return deriv;

}

C.22 Reversible Michaelis Menten Product Derivative

long double kinetic_RevMichaelisPder(long double k[], long double S,

long double P, long double Et)

{

long double k1;

long double kn1;

long double k2;

long double kn2;

long double KMS;

long double KMP;

long double KS;

long double KP;

long double num;

long double denom;
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long double numderiv;

long double denomderiv;

long double deriv;

if(k[0] <= .33333){

k1 = k[0]/.33333 * 1e6;

} else if( k[0] <= .66666) {

k1 = (k[0]-.33333)/.33333 * 1e7;

} else if(k[0] <= .99999) {

k1 = (k[0] - .66666)/.33333 * 1e8;

} else {

k1 = 1e8;

}

k1 = k1 * 3600 * 1e-12;

if(k[1] <= .25){

kn1 = k[1]/.25 * 1e1;

} else if(k[1] <= .50) {

kn1 = (k[1]-.25)/.25 * 1e2;

} else if(k[1] <= .75) {

kn1 = (k[1] - .50)/.25 * 1e3;

} else if(k[1] > .75) {

kn1 = (k[1] - .75)/.25 * 1e4;

}

kn1 = kn1 * 3600;

if(k[2] <= .20){

k2 = k[2]/.20 * 1e1;

} else if(k[2] <= .40){

k2 = (k[2]-.20)/.20 * 1e2;

} else if(k[2] <= .60){

k2 = (k[2] - .40)/.20 * 1e3;
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} else if(k[2] <= .80){

k2 = (k[2] - .60)/.20 * 1e4;

} else if(k[2] > .80){

k2 = (k[2] - .80)/.20 * 1e5;

}

k2 = k2 * 3600;

if(k[3] <= .20){

kn2 = k[3]/.20 * 1e1;

} else if(k[3] <= .40){

kn2 = (k[3]-.20)/.20 * 1e2;

} else if(k[3] <= .60){

kn2 = (k[3] - .40)/.20 * 1e3;

} else if(k[3] <= .80){

kn2 = (k[3] - .60)/.20 * 1e4;

} else if(k[3] > .80){

kn2 = (k[3] - .80)/.20 * 1e5;

}

kn2 = kn2 * 3600 * 1e-12;

KMS = (kn1 + k2) / k1;

KS = (k1 * k2) / (kn1 + k2);

KMP = (kn1 + k2) / kn2;

KP = (kn1 * kn2) / (kn1 + k2);

num = ((KS * Et * S) - (KP * Et * P));

denom = (1.0 + S/KMS + P/KMP);

numderiv = - (KP * Et);

denomderiv = 1.0/KMP;

deriv = (numderiv * denom - num * denomderiv) / (denom * denom);

return deriv;

}
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C.23 Uni Uni Substrate Derivative

long double kinetic_uniunisder(long double k[],long double S,

long double P, long double Et)

{

int i;

long double k_unscaled[6];

long double u;

long double u_prime;

long double v;

long double v_prime;

long double num;

long double den;

for(i=0; i<6; i++)

{

if(k[i] < .11)

{

k_unscaled[i]=k[i]*1e1;

}

else if (k[i]<.21)

{

k_unscaled[i]=(k[i]-.1)*1e2;

}

else if (k[i]<.31)

{

k_unscaled[i]=(k[i]-.2)*1e3;

}

else if (k[i]<.41)

{

k_unscaled[i]=(k[i]-.3)*1e4;
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}

else if (k[i]<.51)

{

k_unscaled[i]=(k[i]-.4)*1e5;

}

else if (k[i]<.61)

{

k_unscaled[i]=(k[i]-.5)*1e6;

}

else if (k[i]<.71)

{

k_unscaled[i]=(k[i]-.6)*1e7;

}

else if (k[i]<.81)

{

k_unscaled[i]=(k[i]-.7)*1e8;

}

else if (k[i]<.91)

{

k_unscaled[i]=(k[i]-.8)*1e9;

}

else if (k[i]<= 1)

{

k_unscaled[i]=(k[i]-.9)*1e10;

}

}

k_unscaled[0] = k_unscaled[0] * 3600 * 1e-12;

k_unscaled[1] = k_unscaled[1] * 3600;

k_unscaled[2] = k_unscaled[2] * 3600;
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k_unscaled[3] = k_unscaled[3] * 3600;

k_unscaled[4] = k_unscaled[4] * 3600;

k_unscaled[5] = k_unscaled[5] * 3600 * 1e-12;

u_prime = k_unscaled[0] * k_unscaled[2] * k_unscaled[4] * Et;

v = k_unscaled[1]*k_unscaled[4] + k_unscaled[1]*k_unscaled[3]

+ k_unscaled[2]*k_unscaled[4] + S*k_unscaled[0]*(k_unscaled[5]

+ k_unscaled[3] + k_unscaled[2]) + P*k_unscaled[5]

*(k_unscaled[1] + k_unscaled[2] + k_unscaled[3]);

v_prime = k_unscaled[0]*(k_unscaled[2] + k_unscaled[4] + k_unscaled[5]);

u = k_unscaled[0]*k_unscaled[2]*k_unscaled[4]*S*Et

- k_unscaled[1]*k_unscaled[3]*k_unscaled[5]*P*Et;

num = u_prime * v - v_prime * u;

den = pow(v, 2.0);

return num/den;

}

C.24 Uni Uni Product Derivative

long double kinetic_uniunipder(long double k[],long double S,

long double P,long double Et)

{

int i;

long double k_unscaled[6];

long double u;

long double u_prime;

long double v;

long double v_prime;

long double num;

long double den;

for(i=0; i<6; i++)
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{

if(k[i] < .11)

{

k_unscaled[i]=k[i]*1e1;

}

else if (k[i]<.21)

{

k_unscaled[i]=(k[i]-.1)*1e2;

}

else if (k[i]<.31)

{

k_unscaled[i]=(k[i]-.2)*1e3;

}

else if (k[i]<.41)

{

k_unscaled[i]=(k[i]-.3)*1e4;

}

else if (k[i]<.51)

{

k_unscaled[i]=(k[i]-.4)*1e5;

}

else if (k[i]<.61)

{

k_unscaled[i]=(k[i]-.5)*1e6;

}

else if (k[i]<.71)

{

k_unscaled[i]=(k[i]-.6)*1e7;

}
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else if (k[i]<.81)

{

k_unscaled[i]=(k[i]-.7)*1e8;

}

else if (k[i]<.91)

{

k_unscaled[i]=(k[i]-.8)*1e9;

}

else if (k[i]<= 1)

{

k_unscaled[i]=(k[i]-.9)*1e10;

}

}

k_unscaled[0] = k_unscaled[0] * 3600 * 1e-12;

k_unscaled[1] = k_unscaled[1] * 3600;

k_unscaled[2] = k_unscaled[2] * 3600;

k_unscaled[3] = k_unscaled[3] * 3600;

k_unscaled[4] = k_unscaled[4] * 3600;

k_unscaled[5] = k_unscaled[5] * 3600 * 1e-12;

u_prime = -k_unscaled[1] * k_unscaled[3] * k_unscaled[5] * Et;

v = k_unscaled[1]*k_unscaled[4] + k_unscaled[1]*k_unscaled[3]

+ k_unscaled[2]*k_unscaled[4] + S*k_unscaled[0]*(k_unscaled[5]

+ k_unscaled[3] + k_unscaled[2]) + P*k_unscaled[5]*(k_unscaled[1]

+ k_unscaled[2] + k_unscaled[3]);

v_prime = k_unscaled[5]*(k_unscaled[1] + k_unscaled[2] + k_unscaled[3]);

u = k_unscaled[0]*k_unscaled[2]*k_unscaled[4]*S*Et

- k_unscaled[1]*k_unscaled[3]*k_unscaled[5]*P*Et;

num = u_prime * v - v_prime * u;

den = pow(v, 2.0);
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return num/den;

}

C.25 Generalized Mass Action Substrate Derivative

long double kinetic_GMASder(long double k[], long double A,

long double B, int numSvar)

{

int i;

long double kf;

long double g[2];

long double deriv;

if(k[0] <= .33333){

kf = k[0]/.33333 * 1e1;

} else if( k[0] <= .66666) {

kf = (k[0]-.33333)/.33333 * 1e2;

} else if(k[0] <= .99999) {

kf = (k[0] - .66666)/.33333 * 1e3;

} else {

kf = 1e3;

}

for(i=0; i<2; i++){

if(k[i + 1] <= .33333){

g[i] = k[i+1]/.33333 * 1.0;

} else if( k[i +1] <= .66666) {

g[i] = (k[i +1]-.33333)/.33333 * 2.0;

} else if(k[i +1] <= .99999) {

g[i] = (k[i +1] - .66666)/.33333 * 3.0;

} else {

g[i] = 3.0;
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}

}

if (numSvar == 1){

if (A < 1.0e-8){

deriv = 0.0;

} else {

deriv = kf * g[0] * pow(A, g[0] - 1.0);

}

} else if (numSvar == 2) {

if ((A < 1.0e-8) || (B < 1.0e-8)){

deriv = 0.0;

} else {

deriv = kf * g[0] * pow(A, g[0] - 1.0) * pow(B, g[1]);

}

}

return deriv;

}

C.26 Reversible Generalized Mass Action Substrate Deriva-
tive

long double kinetic_RevGMASder(long double k[], long double A, long double B,

long double P, long double Q, int numSvar, int numPvar)

{

int i;

long double kf;

long double kr;

long double g[4];

long double deriv = 0.0;

if(k[0] <= .33333){
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kf = k[0]/.33333 * 1e1;

} else if( k[0] <= .66666) {

kf = (k[0]-.33333)/.33333 * 1e2;

} else if(k[0] <= .99999) {

kf = (k[0] - .66666)/.33333 * 1e3;

} else {

kf = 1e3;

}

if(k[1] <= .33333){

kr = k[1]/.33333 * 1e1;

} else if( k[1] <= .66666) {

kr = (k[1]-.33333)/.33333 * 1e2;

} else if(k[1] <= .99999) {

kr = (k[1] - .66666)/.33333 * 1e3;

} else {

kr = 1e3;

}

for(i=0; i<(numSvar + numPvar); i++){

if(k[i + 1] <= .33333){

g[i] = k[i+1]/.33333 * 1.0;

} else if( k[i +1] <= .66666) {

g[i] = (k[i +1]-.33333)/.33333 * 2.0;

} else if(k[i +1] <= .99999) {

g[i] = (k[i +1] - .66666)/.33333 * 3.0;

} else {

g[i] = 3.0;

}

}

if (numSvar == 1){
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if (A < 1.0e-8){

deriv = 0.0;

} else {

deriv = kf * g[0] * pow(A, g[0] - 1.0);

}

} else if (numSvar == 2) {

if ((A < 1.0e-8) || (B < 1.0e-8)){

deriv = 0.0;

} else {

deriv = kf * g[0] * pow(A, g[0] - 1.0) * pow(B, g[1]);

}

}

return deriv;

}

C.27 Reversible Generalized Mass Action Product Deriva-
tive

long double kinetic_RevGMAPder(long double k[], long double A, long double B,

long double P, long double Q, int numSvar, int numPvar)

{

int i;

long double kf;

long double kr;

long double g[4];

long double deriv;

if(k[0] <= .33333){

kf = k[0]/.33333 * 1e1;

} else if( k[0] <= .66666) {

kf = (k[0]-.33333)/.33333 * 1e2;
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} else if(k[0] <= .99999) {

kf = (k[0] - .66666)/.33333 * 1e3;

} else {

kf = 1e3;

}

if(k[1] <= .33333){

kr = k[1]/.33333 * 1e1;

} else if( k[1] <= .66666) {

kr = (k[1]-.33333)/.33333 * 1e2;

} else if(k[1] <= .99999) {

kr = (k[1] - .66666)/.33333 * 1e3;

} else {

kr = 1e3;

}

for(i=0; i<(numSvar + numPvar); i++){

if(k[i + 1] <= .33333){

g[i] = k[i+1]/.33333 * 1.0;

} else if( k[i +1] <= .66666) {

g[i] = (k[i +1]-.33333)/.33333 * 2.0;

} else if(k[i +1] <= .99999) {

g[i] = (k[i +1] - .66666)/.33333 * 3.0;

} else {

g[i] = 3.0;

}

}

if (numPvar == 1){

if (P < 1.0e-8){

deriv = 0.0;

} else {
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deriv = kr * g[numSvar] * pow(P, g[numSvar] - 1.0);

}

} else if (numPvar == 2) {

if ((P < 1.0e-8) || (Q < 1.0e-8)){

deriv = 0.0;

} else {

deriv = kr * g[numSvar] * pow(P, g[numSvar] - 1.0) * pow(Q, g[numSvar+1]);

}

}

return deriv;

}

C.28 Random Number Generator

long double ran2(long *idum)

{

int j;

long k;

static long idum2=123456789;

static long iy=0;

static long iv[32];

long double temp;

long double am = (1.0/2147483563);

long imm1 = (2147483563-1);

long NDIV = (1+imm1/32);

long double eps = 1.2e-7;

long double RNMX = (1.0-eps);

static long IA1 = 40014;

static long IA2 = 40692;

static long IQ1 = 53668;
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static long IQ2 = 52774;

static long IR1 = 12211;

static long IR2 = 3791;

if (*idum <= 0) {

if (-(*idum) < 1) *idum=1;

else *idum = -(*idum);

idum2=(*idum);

for (j=32+7;j>=0;j--) {

k=(*idum)/IQ1;

*idum=IA1*(*idum-k*IQ1)-k*IR1;

if (*idum < 0) *idum += 2147483563;

if (j < 32) iv[j] = *idum;

}

iy=iv[0];

}

k=(*idum)/IQ1;

*idum=IA1*(*idum-k*IQ1)-k*IR1;

if (*idum < 0) *idum += 2147483563;

k=idum2/IQ2;

idum2=IA2*(idum2-k*IQ2)-k*IR2;

if (idum2 < 0) idum2 += 2147483399;

j=iy/NDIV;

iy=iv[j]-idum2;

iv[j] = *idum;

if (iy < 1) iy += imm1;

if ((temp=am*iy) > RNMX) return RNMX;

else return temp;

}
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APPENDIX D

HIGH PERFORMANCE COMPUTING GENETIC

ALGORITHM C SOURCE

This appendix contains the additional C/MPI source necessary to transform the Monte

Carlo Source into a fitting algorithm that uses a Genetic Algorithm.

D.1 Genetic Algorithm Driver

int GeneticAlgorithmDriver(int iter, long double k[], long double X[], int F[],

int R[], long double Et[], int numVar, int neq, int ncn, int timepts,

long seed, char save_root[], int id, int Popsize, long double MRate,

int EliteCount, int p)

{

struct timeval tp1, tp2;

long double *OldPop;

long double *NewPop;

long double *Scores;

long double *Expect;

long double *Elite;

long double *EliteScores;

int *RankedIndex;

int nParents = Popsize * 2 - EliteCount;

int *Parents;

int RowsX = timepts;

int ColsX = neq + 1;

long double timespan[timepts];

long double Y_Zero[neq];
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int count = 0;

int i;

int j;

int eliteindex =0;

long double Cost;

long double BestCost = 1.0e7;

MPI_Status status;

int timeRecord = 0;

int loopStop = 0;

int loopCount = 0;

OldPop = malloc(numVar * Popsize * sizeof(long double));

NewPop = malloc(numVar * Popsize * sizeof(long double));

Scores = malloc(Popsize * sizeof(long double));

Expect = malloc(Popsize * sizeof(long double));

Elite = malloc(numVar * EliteCount * sizeof(long double));

EliteScores = malloc(EliteCount * sizeof(long double));

RankedIndex = malloc(Popsize * sizeof(int));

Parents = malloc(nParents * sizeof(int));

gettimeofday(&tp1, NULL);

if (id == 0) {

int process_num;

int finished = p - 1;

char errorFile[37] = "Error_";

char paramFile[37] = "Param_";

char timeFile[37] = "Time_";

FILE *pWrite1;

FILE *pWrite2;

FILE *pWrite3;

int proccessFinished[p];
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for (i=0; i<p; i++){

proccessFinished[i] = 0;

}

sprintf(idname,"%d", id);

strncat(errorFile, save_root, 36 - strlen(errorFile));

strncat(paramFile, save_root, 36 - strlen(paramFile));

strncat(timeFile, save_root, 36 - strlen(timeFile));

strncat(errorFile, idname, 36 - strlen(errorFile));

strncat(paramFile, idname, 36 - strlen(paramFile));

while (loopCount < p-1){

MPI_Recv(&process_num, 1, MPI_INT, MPI_ANY_SOURCE, 0, MPI_COMM_WORLD, &status);

MPI_Recv(&Cost, 1, MPI_LONG_DOUBLE, process_num, 0, MPI_COMM_WORLD, &status);

MPI_Recv(k, numVar, MPI_LONG_DOUBLE, process_num, 0, MPI_COMM_WORLD, &status);

MPI_Recv(&i, 1, MPI_INT, process_num, 0, MPI_COMM_WORLD, &status);

MPI_Recv(&timeRecord, 1, MPI_INT, process_num, 0, MPI_COMM_WORLD, &status);

//printf("I’m recieved message on iter %d\n", i);

pWrite1 = fopen(errorFile, "a");

pWrite2 = fopen(paramFile, "a");

pWrite3 = fopen(timeFile, "a");

if (Cost < BestCost) {

fprintf(pWrite1, "%Le\n", Cost);

for(j=0; j<numVar; j++){

fprintf(pWrite2, "%Lf\t", k[j]);

}

fprintf(pWrite2, "\n");

fprintf(pWrite3, "%d\n", timeRecord);

BestCost = Cost;

}

fclose(pWrite1);
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fclose(pWrite2);

fclose(pWrite3);

//printf("i is %d\n", i);

//printf("iter is %d\n", iter);

if ((i == iter)&&(proccessFinished[process_num] == 0)){

proccessFinished[process_num] = 1;

finished = finished - 1;

printf("Finished = %d\n", finished);

}

if (finished == 0) {

loopStop = 1;

loopCount = loopCount + 1;

printf("loopCount is %d\n", loopCount);

}

MPI_Send(&loopStop, 1, MPI_INT, process_num, 0, MPI_COMM_WORLD);

//printf("Finished is %d\n", finished);

}

gettimeofday(&tp2, NULL);

printf("%d\n", (int)(tp2.tv_sec - tp1.tv_sec));

} else {

seed = seed - id;

for(i=0; i<timepts; i++){

timespan[i] = X[i * ColsX];

}

for(i=0; i<neq; i++){

Y_Zero[i] = X[i+1];

}

while (loopStop == 0){

//Initial Population Creation and Scoring
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for(i=0;i<Popsize;i++){

for(j=0; j<numVar; j++){

k[j] = ran2(&seed);

OldPop[i * numVar + j] = k[j];

}

Scores[i] = CostFunction(k, X, F, R, Et, neq, ncn, RowsX, ColsX, timespan, Y_Zero);

Cost = Scores[i];

RankedIndex[i] = i;

if ((Cost < BestCost) && (i != iter)){

//printf("I’m sending message on iter %d\n", i);

gettimeofday(&tp2, NULL);

timeRecord = (int)(tp2.tv_sec - tp1.tv_sec);

MPI_Send(&id, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);

MPI_Send(&Cost, 1, MPI_LONG_DOUBLE, 0, 0, MPI_COMM_WORLD);

MPI_Send(k, numVar, MPI_LONG_DOUBLE, 0, 0, MPI_COMM_WORLD);

MPI_Send(&count, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);

MPI_Send(&timeRecord, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);

MPI_Recv(&loopStop, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &status);

BestCost = Cost;

}

}

//Genetic Algorithm Loop

for (count=1; count<iter; count++){

//Call Scaling Function

FitScaling (Expect, Scores, RankedIndex, nParents, Popsize);

//Identifying Elite Members

for (i=0; i<EliteCount; i++){

for(j=0; j<numVar; j++){

Elite[i * numVar + j] = OldPop[RankedIndex[i] * numVar + j];
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}

EliteScores[i] = Scores[i];

}

//Call Selection Function and Shuffle Parents

Selection (Parents, Expect, nParents, Popsize, seed);

//Call Recombination/Mutation Function and Evaluate Fitness

RecombMutFit (NewPop, OldPop, Scores, Parents, nParents, MRate, seed, numVar);

//Replacing Old Generation with Newly Created One and insert Elite Memembers

eliteindex = 0;

for(i=0;i<Popsize;i++){

if (i < (Popsize - EliteCount)){

for(j=0; j<numVar; j++){

OldPop[i * numVar + j] = NewPop[i * numVar + j];

}

Scores[i] = CostFunction(k, X, F, R, Et, neq, ncn, RowsX, ColsX, timespan, Y_Zero);

Cost = Scores[i];

if ((Cost < BestCost) && (i != iter)){

//printf("I’m sending message on iter %d\n", i);

gettimeofday(&tp2, NULL);

timeRecord = (int)(tp2.tv_sec - tp1.tv_sec);

MPI_Send(&id, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);

MPI_Send(&Cost, 1, MPI_LONG_DOUBLE, 0, 0, MPI_COMM_WORLD);

MPI_Send(k, numVar, MPI_LONG_DOUBLE, 0, 0, MPI_COMM_WORLD);

MPI_Send(&count, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);

MPI_Send(&timeRecord, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);

MPI_Recv(&loopStop, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &status);

BestCost = Cost;

}

} else {
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for(j=0; j<numVar; j++){

OldPop[i * numVar + j] = Elite[eliteindex * numVar + j];

}

Scores[i] = EliteScores[eliteindex];

Cost = Scores[i];

eliteindex = eliteindex + 1;

if ((Cost < BestCost) && (i != iter)){

//printf("I’m sending message on iter %d\n", i);

gettimeofday(&tp2, NULL);

timeRecord = (int)(tp2.tv_sec - tp1.tv_sec);

MPI_Send(&id, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);

MPI_Send(&Cost, 1, MPI_LONG_DOUBLE, 0, 0, MPI_COMM_WORLD);

MPI_Send(k, numVar, MPI_LONG_DOUBLE, 0, 0, MPI_COMM_WORLD);

MPI_Send(&count, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);

MPI_Send(&timeRecord, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);

MPI_Recv(&loopStop, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &status);

BestCost = Cost;

}

}

RankedIndex[i] = i;

}

//Migration?

}

loopCount = loopCount + 1;

printf("I’ve completed the GA on process %d %d times\n", id, loopCount);

gettimeofday(&tp2, NULL);

timeRecord = (int)(tp2.tv_sec - tp1.tv_sec);

MPI_Send(&id, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);

MPI_Send(&Cost, 1, MPI_LONG_DOUBLE, 0, 0, MPI_COMM_WORLD);
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MPI_Send(k, numVar, MPI_LONG_DOUBLE, 0, 0, MPI_COMM_WORLD);

MPI_Send(&count, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);

MPI_Send(&timeRecord, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);

MPI_Recv(&loopStop, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &status);

}

}

//Memory Deallocation

free(OldPop);

free(NewPop);

free(Scores);

free(Expect);

free(Elite);

free(EliteScores);

free(RankedIndex);

free(Parents);

OldPop = NULL;

NewPop = NULL;

Scores = NULL;

Expect = NULL;

Elite = NULL;

EliteScores = NULL;

RankedIndex = NULL;

Parents = NULL;

return 0;

}

D.2 Fitness Scaling Function

int FitScaling (long double Expect[], long double Scores[], int index[],

int nParents, int Popsize)
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{

int i;

long double iReal;

long double sumExpect = 0.0;

long double cumsum = 0.0;

sort2(Popsize, Scores, index);

for(i=0; i<Popsize; i++){

iReal = i+1;

Expect[i] = pow(iReal, 0.5) / iReal;

sumExpect = sumExpect + Expect[i];

}

for(i=0; i<Popsize; i++){

Expect[i] = (nParents * Expect[i]) / sumExpect;

cumsum += Expect[i];

Expect[i] = cumsum / nParents;

}

return 0;

}

D.3 Selection Function

int Selection (int Parents[], long double wheel[], int nParents,

int Popsize, long seed)

{

int i;

int j;
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int lowest = 0;

long double shuffle[nParents];

long double stepSize = nParents;

long double position;

stepSize = 1.0/stepSize;

position = ran2(&seed) * stepSize;

for (i=0; i<nParents; i++){

for (j=lowest; j<Popsize; j++){

if (position < wheel[j]) {

Parents[i] = j;

lowest = j;

break;

}

}

position = position + stepSize;

shuffle[i] = ran2(&seed);

}

//Shuffle Parents

sort2(nParents, shuffle, Parents);

return 0;

}

D.4 Combined Recombination and Mutation Function

int RecombMutFit (long double NewPop[], long double OldPop[], long double Scores[],

int Parents[], int nParents, long double MRate, long seed, int numVar)
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{

int i;

int j;

int r1;

int r2;

int index = 0;

int nKids = nParents / 2;

for (i=0; i<nKids; i++){

//Get Parents

r1 = Parents[index];

index = index + 1;

r2 = Parents[index];

index = index + 1;

//Randomly select half of the genes from each parent

for (j=0; j<numVar; j++){

if (ran2(&seed) <= MRate ){

NewPop[i * numVar + j] = ran2(&seed);

} else {

if (ran2(&seed) > 0.5){

NewPop[i * numVar + j] = OldPop[r1 * numVar + j];

} else {

NewPop[i * numVar + j] = OldPop[r2 * numVar + j];

}

}

}

}

return 0;
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