
QOS ASSURANCE AND CONTROL OF LARGE SCALE DISTRIBUTED

COMPONENT BASED SYSTEMS

By

Nilabja Roy

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

December, 2010

Nashville, Tennessee

Approved:

Dr. Aniruddha Gokhale

Dr. Douglas C. Schmidt

Dr. Larry Dowdy

Dr. Gautam Biswas

Dr. Janos Sztipanovits

To Ma, Mashi, Baby and Anindita for always being there. And of course Oishi, such a bundle of joy

ii

ACKNOWLEDGMENTS

I would like to take up this opportunity to thank anyone and everyone who helped me in

coming to this point in my life. First and foremost my advisors Dr. Douglas Schmidt and

Dr. Aniruddha Gokhale for believing in me and giving me an opportunity to work in the

DOC group. Doug had been immensely influential in my development showing me a new

perspective of academic and professional world. His ways of teaching are unique in that he

wants his students to become independent and teaches more through questions rather than

answers. Through his ways he has taught me to be mature technically as well as a person

and has equipped me to be s stronger person to face the real world.

Dr Gokhale or Andy as we know him has been like both a friend and an advisor. I will

always be grateful to him for believing in my thesis topic at a time when I was looking for

funding sources. He spent countless hours discussing my problem area and ways in which

to take it further to make it more relevant to current technologies. He has also been a great

friend and his sense of humor being a great help in difficult times.

A great influence in my graduate student career has been that of Dr. Larry Dowdy. It

was his course on Computer System Analysis which opened my mind to ideas and ways

which helped me form my thesis topic. I have worked on mostly all my papers with him. Dr

Dowdy helped me in focusing on the things that I want to do and teaching me immensely on

techniques which I had no clue about. A whole new world of system analysis was unveiled

to me through his teachings. The one to one sessions that I had with him helped me to

become a better scholar and a person.

I also want to thank Dr. Gautam Biswas for advising me on a part of my thesis. I

had spent a summer and another semester working with him. It was truly enjoyable and it

taught me new ways of doing research.I would also like to thank Dr. Daniel Waddington

with whom I worked in Lockheed Martin, Advanced Technology Lab, New Jersey for a

year and half. He gave me new visions which helped me get my thesis direction.

iii

All former and current DOC group members have been of great help. Nishanth and

Kitty helped me initially. Jai has been a great friend. The frequent coffee sessions with

Sumant, Akshay and Jai were always enjoyable. All of them greatly helped during good

and bad times. ISIS has served as a great help always providing with new exposure through

pizza lectures or advice from students in related areas.

I also want to mention about my wife Anindita who has provided tremendous support

to me during all this difficult period. Many times she was the only audience to my frequent

tales of frustration during the difficult days. She also has been very courageous in carving

out a career of her own here in Nashville. Life in Nashville has been great and more so

due to some great friends that I am lucky to have. Our bengali friends have been of great

support and has been always there during dark days when entertainment and fun was badly

required.

I would also like to thank my uncle Dr. Sumitra Deb and his wife Dr Swati Deb for

always encouraging me to go on with my thesis. They are both professors and always urged

me from my childhood days to work for higher education. Finally, my mother has been a

great influence. I had heard stories of her PhD days when I was a kid and graduate studies

was always something which I looked forward to. She had always been encouraging to

my life as a grad student and was always there with advice whenever I was in trouble. My

brother had been a great friend specially when things were not good and we used to spent

long hours in conversation which helped me to get my perspectives right and carry on with

my goal. My aunt, had been a great support always and has a great positive attitude. She

always supported me with any decision that I have taken which has been of great help.

Thanks to you all for helping me to reach this point in my life.

iv

ABSTRACT

Large scale distributed component based applications provide a number of different

services to its clients. Such applications normally serve huge number of concurrent clients

and need to provide a decent Quality of Service (QoS). A deployment domain composed of

several machines are used to host these applications. The application components are dis-

tributed across the machines and communicate among themselves. An important objective

of the owner of such a deployment will be to handle as much clients as possible during any

given time which will obviously maximize the revenue earned. But this also needs to be

done by keeping the costs down and also by providing every customer a minimum amount

of QoS. The cost can be reduced by minimizing the number of machines used and using

less power.

This thesis works towards a solution to the above and comes up with novel application

component placement heuristics which makes sure that the overall resources of the domain

is utilized in the best possible way. The intuition behind this work is that components are

the smallest elements of an application from the perspective of resource usage. By dis-

tributing the components in a judicious way across the machines, it is possible to ensure

that a minimum of resources is wasted. The work presented here uses a three phase strat-

egy to come up with a solution. In the first phase, the component resource requirement is

identified using profiling and workload modeling techniques. In the second phase detailed

performance estimation of the application is carried out using analytical methods. In the

third and final phase heuristics are proposed which uses the component resource require-

ment and the performance estimation methods to come up with placing the components

across the machines. It ensures that such a placement will waste the least of resources.

In the final part of this work, it applies this work in the context of modern data center

planning. The most important challenge in modern day data centers is to support large

v

customer bases with high expectation of performance. The incoming workload to the ap-

plication is highly varying with periodic increase and decrease of workload. If resources

are allocated for average workload then performance suffers during peak workload while

planning for peak workload keeps resources idle during less workload. Cloud computing

is an emerging trend which allows the elastic configuration of resources where machines

can be acquired and released on the go. This work proposes a dynamic capacity planning

framework for cost minimization based on a look ahead control algorithm which combines

performance modeling, workload forecasting and cost optimization to plan for resource al-

location in a dynamic environment. The results show how the resources can be allocated

just-in-time with workload fluctuations. The dissertation also presents the various way

resource is allocated as the various cost components change.

vi

TABLE OF CONTENTS

Page

DEDICATION . ii

ACKNOWLEDGMENTS . iii

ABSTRACT . v

LIST OF TABLES . xi

LIST OF FIGURES . xiii

Chapter

I. Introduction . 1

I.1. Problem Area: SLA driven application management 1
I.2. Factors Affecting Performance 2
I.3. Solution Approach . 4
I.4. Place Components To Balance Resource Usage 5
I.5. Component Resource Requirement 7
I.6. Performance Estimation . 8
I.7. Requirements of Deployment Planning 9
I.8. Rice University Bidding System (RUBiS) - A Case Study 10

II. Related Research . 13

II.1. What Is Missing ? . 14

I Identifying Component Resource Requirement 16

III. Profiling Of Distributed Component Based Systems 18

III.1. Inserting Probes into OS Services 18
III.2. Microsoft Windows Performance Counters 21
III.3. Distributed System Monitoring 22

III.3.1. Monitoring of Component-Based Systems (MCBS) . . 23
III.3.2. OVATION . 25

III.4. Virtual Machine Profiling . 26
III.4.1. Virtual Machine Sampling 27
III.4.2. Profiling via VM Hooks 28
III.4.3. Bytecode Instrumentation 30
III.4.4. Aspect-Oriented Techniques used for Instrumentation . 32

vii

III.5. Conclusion . 36

IV. Framework For Monitoring & Profiling Distributed Component Based Ap-
plications . 37

IV.1. The Design of the Bulls-Eye Target Manager 37
IV.1.1. Structure of Bulls-Eye 37
IV.1.2. Functionality of Bulls-Eye 39

IV.2. Resolving Bulls-Eye Design Challenges 41
IV.2.1. Challenge 1: Integrating Heterogeneous APIs of Mul-

tiple Platforms . 41
IV.2.2. Challenge 2: Providing a Common Access Point to

Provision Domain Resources 43
IV.2.3. Challenge 3: Presenting data to clients with bounded

response time in uniform structure 44
IV.2.4. Challenge 4: Using Multiple Configurable Monitor Com-

ponents to Extract Variety of Data 46
IV.3. Workload Modeling . 47
IV.4. Conclusion . 49

II Performance Estimation of Large Scale Distributed Component
Based Systems 51

V. Analytical Models for Performance Estimation 53

V.0.1. Analytical Modeling of RUBiS Servlets 54
V.1. Challenges in Analytical Modeling of Multi-Tiered Applications 56

V.1.1. System Activity at Heavy Load 57
V.1.2. Multiprocessor effects 59
V.1.3. Dependent Transactions 59
V.1.4. Solution: Profile driven Regression based Extended Closed

Queuing Network . 65
V.2. Conclusion . 75

VI. Modeling Software Contention Using Colored Petri Nets 78

VI.1. Model Driven Application Configuration 78
VI.2. Application Case Study: Target Tracking Simulator 80

VI.2.1. Overview of the Target Tracker 80
VI.2.2. Case Study Application Goals 82

VI.3. Experiments . 84
VI.3.1. Application Profiling 84
VI.3.2. Colored Petri Net Model Construction 86
VI.3.3. Calibrating the Model 88
VI.3.4. Model Validation . 88

VI.4. Application Configuration . 91

viii

VI.5. Related Work . 94
VI.6. Concluding Remarks . 95

VII. Modeling of Real Time Systems . 104

VII.1.Real Time Systems . 104
VII.2.Motivating Example . 105
VII.3.Problem Formulation . 106
VII.4.Modeling Approach . 107

VII.4.1.Workload Modeling 107
VII.4.2.System Modeling . 108

VII.5.A Complete Example . 115
VII.6.Broader Methodology Benefits 116

VII.6.1.Sensitivity Analysis 117
VII.6.2.New Optimal Scheduling Algorithms 119

VII.7.Concluding Remarks . 123

III Application Placement 125

VIII. Multi-Capacity Resource Allocation in Distributed Component Based Sys-
tems . 127

VIII.1.Resource Allocation As A Bin Packing Problem 127
VIII.1.1.Point of Diminishing Returns for Running Resource

Allocation Algorithms 132
VIII.2.Concluding Remarks . 134

IX. Component Assignment Framework For QoS Assurance 137

IX.1. Problem Formulation and Requirements 137
IX.2. CAFe: A Component Assignment Framework for Multi-Tiered

Web Portals . 139
IX.2.1. Allocation Routine . 139
IX.2.2. Algorithmic Framework to Co-ordinate Placement and

Performance Estimation 141
IX.3. Experimental Evaluation . 143

IX.3.1. Rice University Bidding System 143
IX.3.2. Computing Service Demand 144
IX.3.3. Customer Behavior Modeling Graph 146
IX.3.4. Analytical Modeling of RUBiS Servlets 147
IX.3.5. Application Component Placement 147
IX.3.6. Implementation of the CAFe Deployment Plan 150
IX.3.7. Algorithm for Component Replication and Placement . 152

IX.4. Evaluating The Replication And Placement Algorithm 157
IX.5. Conclusion . 161

ix

X. Modern Day Data Center . 163

X.1. Introduction . 163
X.2. Related Research . 165
X.3. Solution Approach: On Demand Resource Provisioning Using

Look-Ahead Optimization . 169
X.4. Solution Details . 173

X.4.1. Workload Prediction 173
X.4.2. Identifying resource requirement 173
X.4.3. Optimizing Resource Provisioning 174

X.5. Experimental Evaluation . 176
X.5.1. Just in time resource allocation 177
X.5.2. Resource usage under various cost priorities 178

X.6. Conclusion . 189

XI. Concluding Remarks . 192

REFERENCES . 195

x

LIST OF TABLES

Table Page

1. Optimization Problem To Maximize Clients 4

2. The Dual Problem: Minimize Resources 4

3. Transition Probabilities Between Various Services 48

4. Machine Configurations Used . 62

5. Correction Factors for Various Services 73

6. Profiled Data from the Application . 85

7. Model Predicted Data . 89

8. Target Hit Chances for Various Configurations 92

9. Runtime Target Hit Occurrences . 93

10. A highly loaded system . 105

11. A lightly loaded system . 106

12. Erlang distribution parameters . 108

13. Task Parameters . 110

14. Task parameters . 115

15. Example performance metrics . 116

16. Task parameters . 117

17. Success Rate of Heuristics on Solvable Problems 132

18. Component Names for Each Service . 144

19. CPU Service Demand for Each Component 146

xi

20. Transition Probabilities Between Various Services 147

21. Component Placement and RUBiS Performance After Iteration 1 148

22. Iteration 2:Component Placement by Allocation Routine 149

23. Successive Iterations:Response Time of Each Service 149

24. Success Rate of Heuristics on Solvable Problems:Courtesy Chapter VIII . 155

25. Response Time and Utilization . 159

26. Components of Cost Function . 178

27. Summary Of Research Contributions 193

28. Summary of Publications . 194

xii

LIST OF FIGURES

Figure Page

1. Workload and Resource Affect Response Time 3

2. Bottleneck Node:Typical Scenario . 5

3. Balanced Utilization: Accommodates Mode Clients 6

4. Response Time Comparison . 6

5. RUBiS Architecture: Java Servlets Version 11

6. Gap in current state of the art . 15

7. Process Systems calls "Intercepted" by Profiling Library 19

8. MCBS Stubs and Skeletons are Instrumented with Probes 23

9. Applications Running on Virtual Machine 26

10. The Bulls-Eye Target Manager Architecture 38

11. Using the Adapter Pattern in Bulls-Eye 42

12. Providing a Common Access Point to Domain Resource Data 44

13. Customer Behavior Modeling Graph of a Typical User 49

14. Create Models of Application . 54

15. Closed Queuing Model for Rubis Java Servlets Version 55

16. Validation of Analytical Model . 56

17. Comparison of Analytical vs Empirical Data 58

18. Concurrent Overlapping Queries Have Similar Response Times 60

19. Traditional Closed Queuing Model . 61

20. Additional Queue to Model Software Blocking 61

xiii

21. Model of Inter-Dependent Queries . 63

22. Comparison of Analytical vs Empirical Data 64

23. Comparison of Analytical vs Empirical Data In Configuration 2 64

24. Overall Service Demand . 68

25. Response Time in Single Processor Machine 76

26. Response Time in Multiple Processor Machine 76

27. Comparison of Empirical Correction Factor with Suri Proposed 77

28. Inverse of Correction Factor (CI) . 77

29. Active Objects in Target Tracker . 80

30. Application Logical Flows in the Target Tracking Simulator 97

31. CPN Model of Application Case Study 98

32. A CPN Model of Target’s Active Object Thread 98

33. Contention Model for Software Lock 99

34. The CPN Model of CPU . 99

35. The Formula for Cache Effects . 99

36. Response Time of Target Thread with Locks 100

37. Throughput of Satellite Thread with Locks 100

38. Throughput of Location Thread with Locks 101

39. Throughput of Tracker Thread with Locks 101

40. Throughput of Location Thread without Locks 102

41. Response Time of Target Thread without Locks 102

42. Throughput of Satellite Thread without Locks 103

43. Task Representation . 109

44. Task Arrivals . 111

xiv

45. Task Execution/Deadline - EDF . 113

46. A Simple Example using EDF scheduling 115

47. System with 83% Utilization . 118

48. System with 67% Utilization . 118

49. System with 47% Utilization . 119

50. Utilization versus Variance . 120

51. Optimal Algorithm (93% Util.) . 120

52. Optimal Algorithm (93% Util.) . 122

53. Optimal algorithm (83% Util.) . 123

54. Distribution of Items (0-100 range) . 130

55. Performance Comparison of Different Heuristics 131

56. The CAFe Component Assignment Framework Architecture 139

57. The Utilization of Memory and Disk for RUBiS Benchmark 145

58. Response Time with Increasing Clients 150

59. Deployment of CAFe Suggested Assignment 151

60. Performance of CAFe Installation . 151

61. CPU Utilization . 153

62. Queuing Model of RUBiS Scenario . 158

63. Node Usage of Tiered and MAQ-PROWESS 159

64. Allocation of Components for 2,000 Client 160

65. Coefficent of Variation of Node Usage 161

66. Response Time for Tiered and MAQ-PROWESS 162

67. Client Population With Time . 171

xv

68. Just in time resource allocation with load 177

69. Resource Allocation for Low SLA Violation Cost and High Machine Cost 179

70. Resource Allocation for Medium SLA Violation Cost 180

71. Resource Allocation for High SLA Violation Cost 180

72. Resource Allocation for variety of systems 181

73. Resource Allocation for High SLA violation with low reconfiguration cost184

74. Resource Allocation for High SLA violation with medium reconfigura-
tion cost . 185

75. Resource Allocation for High SLA violation with high reconfiguration
cost . 186

76. Resource Allocation for Medium SLA violation with low reconfigura-
tion cost . 187

77. Resource Allocation for Medium SLA violation with medium reconfig-
uration cost . 187

78. Resource Allocation for Medium SLA violation with high reconfigura-
tion cost . 188

79. Low SLA violation, Medium Machine Cost and low reconfiguration cost 189

80. Low SLA violation, Medium Machine Cost and medium reconfiguration
cost . 190

81. Low SLA violation, Medium Machine Cost and high reconfiguration cost 190

82. Low SLA violation, Medium Machine Cost and very high reconfigura-
tion cost . 191

xvi

CHAPTER I

INTRODUCTION

I.1 Problem Area: SLA driven application management

Large scale component based distributed systems form the backbone of many applica-

tions in the modern computing world such as distributed data centers supporting large scale

medical records processing or social networking applications; shipboard computing com-

posed of numerous components distributed over nodes in a running ship and web portals

that are multi-tier web applications supporting millions of users simultaneously.

In all of the above, the application is composed of a number of components that are

distributed over numerous clusters of nodes. These clusters can be located in a single

data center or distributed across several data centers located geographically apart. These

applications also provide various types of services each of which are implemented with the

use of separate set of components. In this chapter, an example of a web portal is used to

motivate the challenges faced in deploying and maintaining such a large scale application.

Close scrutiny of the dynamics of such applications will reveal that at any instant in

time a number of clients are logged onto the application, and each client is engaged in

using one or more of the many diverse set of services provided. Individual clients ex-

pect these services to be dependable implying that clients must obtain acceptable response

times and service availability in accordance with the service level agreement (SLA) despite

fluctuations in system loads.

Service providers that own such applications will obviously want to maximize the

amount of clients handled since that increases the utility of the application. For this, careful

capacity planning must be carried out to handle the user base while meeting their SLAs.

This challenge must be met without unduly increasing the cost of procuring and maintain-

ing resources. Thus, minimizing resources and efficiently utilizing the resources is a key

1

objective. The above problem can be expressed in terms of an optimization problem as

follows:

Maximize Workload (W Clients)
Subject To

Resources <= R Nodes
Performance >= SLA Bound

The problem essentially states that a maximum number of clients need to be handled

while ensuring that average performance characteristics is above some bound agreed in an

SLA. All this needs to be done while using minimum hardware resources. This is a tricky

problem since both clients and resources affect the performance of the system. It is thus

important that the optimal operating point needs to be selected which enables a set of given

resources to handle the maximum workload while maintaining the performance bounds.

This is explained in more detail in the next section.

I.2 Factors Affecting Performance

Workload quantity and available resource both affect the performance of the applica-

tion. Figure 1 shows how response time which is a performance characteristic varies with

workload (clients) and with resources.

The SLA for the response time is 100 msec shown by the horizontal line in Figure 1.

The objective of an administrator will be to handle as many clients as possible while main-

taining the average response time within 100 msec. So the operating point of the application

will be made as close as possible to the SLA value. This occurs with a little above 1000

clients when there are high resources and around 800 with medium resources and 575 with

low resources. Thus its clear that number of clients is directly proportional to resources.

The job of an administrator will be to balance the cost of the resources with the revenue

from clients so that the overall utility of the application is maximized.

2

0

50

100

150

200

250

300

350

400

450

250 350 500 650 750 900 1000 1250 1500

Clients

R
es

po
ns

e
Ti

m
e

(m
se

c)

High Resources Medium Resources Low Resources

SLA

Figure 1: Workload and Resource Affect Response Time

Over and above workload and resources there are also other factors that affect the per-

formance of an application. They are explained below

• Workload Mix: Each client request can be different from the other. Each type of ser-

vice is composed of different set of components. A client making a call on a service

will load those components that make up the service. So the overall performance of

the application will depend on how many calls of each type of service is made.

• Think Time or Period: In case of an interactive system or for periodic calls, the think

time or period of the jobs also will affect performance. The distribution of the think

time may also matter.

• Arrival Distribution: In a system which has a regular flow of arrival requests, the

distribution of arrival requests will also determine the performance of the application.

3

• Faults: There could also be both hardware and software faults. These will also affect

the performance of an application.

It can be seen that there are a number of factors that affect the performance of an

application. Its important to understand all of these in order to design a reliable, dependable

application which assures Quality of service (QoS) parameters like response time.

I.3 Solution Approach

The above problem of maximizing the utility of an application by maximizing the num-

ber of clients handled and by minimizing the amount of resources required can be posed as

a optimization problem(Table 1).

Maximize Workload (W Clients)
Subject To

Resources <= R Nodes
Performance >= SLA Bound

Table 1: Optimization Problem To Maximize Clients

The problem can also be expressed in terms of the dual equivalent problem of the above

which is given by Table 2.

Minimize Resources (Nodes)
Subject To

Workload >= W Clients
Performance >= SLA Bound

Table 2: The Dual Problem: Minimize Resources

The next few sections detail strategies to come up with solutions for the above problem.

4

I.4 Place Components To Balance Resource Usage

In order to solve either of the above problems there is the need to quantify the main

factors 1) workload, 2) resources and 3) performance. An example scenario in a distributed

application is presented in Figure 2. Here the processor on the node named "App Server"

is saturated with near 100% utilization. So if clients are increased then there will be a steep

increase in the response time of the clients. Thus although there is some spare processing

power on the other nodes the system cannot accommodate further clients. Figure 3 shows

an alternate scenario where the utilizations are better balanced among the three machines

and none of them are fully utilized this makes it possible to accommodate more clients.

Thus using the same number of resources, its possible to increase the client size by balanc-

ing resource utilizations.

DB
Server
CPU

Figure 2: Bottleneck Node:Typical Scenario

Figure 4 compares the response times for the two systems. The response time is mea-

sured with increasing clients. The SLA bound for response time is assumed to be 100 msec.

It can be seen that the system with the balanced resource reaches a response time of 100

msec much later than the imbalanced system. Thus it can be seen that the resources can be

much better utilized if the utilization levels can be balanced across the nodes.

The applications that are considered in this work are composed of multiple components.

5

Web
Server
CPU

App
Server
CPU

DB
Server
CPU

Figure 3: Balanced Utilization: Accommodates Mode Clients

0

50

100

150

200

250

300

350

400

450

250 500 750 1000 1250
Clients

R
es

po
ns

e
Ti

m
e

(m
se

cs
)

Balanced Unbalanced

Figure 4: Response Time Comparison

6

Each basic functionality (such as a business logic or a database query) is wrapped within

a component, such as a Java class. Several components are then composed together to im-

plement a single functionality, such as placing bids in an auction site or booking air tickets

in a travel site. Each component consumes an amount of resource. Since a component is

the smallest part of the application, its easier to allocate the components to the nodes and

achieve more balanced utilization across the nodes. Compare this to a tier-based develop-

ment where each tier provides a number of functionalities and need to be collocated in the

same machine. Obviously it will be difficult to balance load with larger tiers.

The above explanation will be clearer when thought in the context of a bin-packing

problem. Lets assume that there are a number of items each having a finite size. These

need to be packed onto bins which have a finite capacity. Its much easier to pack in smaller

items onto the bins and ensure that the bins are balanced than having larger items. Thus

the smaller granularity of components help in balancing the utilization of the nodes in the

application. Using this insight as a central theme, the further challenges to coming up with

the solution is pursued in the following sections.

I.5 Component Resource Requirement

As discussed in the previous section, the components help in balancing the resource

usages on the different nodes. But before that can be done, it is required to find out the

resource requirement of each component. Each component can have multiple resource

requirements like cpu, memory, disk and network. The base resource requirement of the

component is the amount of resource taken for one call and can be found by profiling.

But the overall resource requirement of a component also depends on the workload of

the application. For example if there are an average of 100 calls on the component, it will

require more resource than when there are 50 calls. So it is important to find out the average

number of incoming calls for each component. Once this can be done, the average resource

requirement of each component can be computed.

7

In order to quantify the number of incoming calls on a component there is the need to

model the workload to the application. In an web application, there could be different types

of calls such as calls to the ’Home’ page, to the ’Search Items’ page, to the selling page or

to the bidding page. Using historical data the number of hits to each type of page can be

computed and an estimate for the number of calls to a particular component can be made.

This can be used to compute the total resource requirement for each component. But note

that this will be specific to a particular workload study. In case of a different/new installa-

tion the requirements will vary. Thus the resource requirement of each component can be

found in two steps first by profiling the component and then by modeling the workload.

I.6 Performance Estimation

As mentioned in the earlier sections, the resource requirement of the components can

be computed and can be used to place the components onto the available nodes. The system

objective also requires that the performance of the application should be within a particular

threshold. Thus for any kind of placement of the components, the performance of the

application should also be verified to be within the given SLA bounds. This can be done by

creating a performance model of the application. Such a model should be simple enough

so that it can be run as part of an algorithm for placing the application components. On the

other hand, it should also be aware of a few important things as given below:

• Model Resource Contention: Since multiple components are required to be placed

in the same node. The components will contend for resources. Thus a performance

model should take this contention into account and model the waiting time that a job

may suffer due to contention.

• Component Aware: Since the whole solution approach is based on placing compo-

nents onto different nodes, its important that the performance models are aware of

components. Thus when a component is moved from one node to another, the models

should be able to be modified with the least number of steps.

8

I.7 Requirements of Deployment Planning

The earlier sections discussed the problems of maximizing utility for a large scale dis-

tributed component based application. Utility is expressed as the difference between rev-

enue from clients and cost of resources. The motivation of an owner/administrator of such

an application will be to maximize this utility. This can be done by increasing the clients

while keeping the resources constant or by minimizing the amount of resources required

for a given set of clients. One way to ensure this is to make sure that resource wastage

is minimized. By placing components across the nodes in an intelligent manner such that

resource usage is balanced across machines, this can be achieved. The requirement of such

a solution has been identified in the earlier sections and they are broadly in 3 areas. The

individual areas along with their specific requirement is given below:

1. Component Resource Requirement

• Component Profiling

• Workload Modeling

2. Performance Estimation

• Model Resource Contention

• Component Aware

3. Component Placement Algorithm

• Respect SLA bound

• Balance Resource Utilization

The next section discusses a case study which will be used as a running example to

highlight many of the problems and solutions.

9

I.8 Rice University Bidding System (RUBiS) - A Case Study

This section describes a case study application for large scale distributed component

based application. This application is then used as a representative application in the rest

of the chapter to showcase many aspects of the overall problem.

RUBiS [3] is a prototype of an auction site modeled after ebay that has the features of an

online web portal. It implements the core functionality of an auction site: selling, browsing

and bidding. It does not implement complementary services like instant messaging or

newsgroups. Three kinds of user sessions: visitor, buyer, and seller are distinguished.

For a visitor session, users need not register but are only allowed to browse. Buyer and

seller sessions require registration. In addition to the functionality provided during visitor

sessions, during a buyer session users can bid on items and consult a summary of their

current bids, rating and comments left by other users. Seller sessions require a fee before a

user is allowed to put up an item for sale. An auction starts immediately and lasts typically

for no more than a week. The seller can specify a reserve (minimum) price for an item.

RUBiS is a free, open source initiative. Several versions of RUBiS are implemented using

three different technologies: PHP, Java servlets and EJB (Enterprise Java Bean).

RUBiS can be used from a web browser for testing purposes or with the provided bench-

marking tool. A client is designed that emulates users behavior for various workload pat-

terns and provides statistics.

The auction site defines 26 interactions that can be performed from the client’s Web

browser. Among the most important ones are browsing items by category or region, bid-

ding, buying or selling items, leaving comments on other users and consulting one’s own

user page (known as myEbay on eBay). Browsing items also includes consulting the bid

history and the sellerŠs information. The two workload mixes are: a browsing mix made up

of only read-only interactions and a bidding mix that includes 15% read-write interactions.

The bidding mix is the most representative of an auction site workload.

A client-browser emulator is designed. A session is a sequence of interactions for the

10

same customer. For each customer session, the client emulator opens a persistent HTTP

connection to the Web server and closes it at the end of the session. Each emulated client

waits for a certain think time before initiating the next interaction. The next interaction

is determined by a state transition matrix that specifies the probability to go from one

interaction to another one.

The think time and session time for all benchmarks are generated from a negative ex-

ponential distribution with a mean of 7 seconds and 15 minutes, respectively. The load on

the site is varied by varying the number of clients.

Workstation

Servlets Server DB Server

Workstation

Workstation

Workstation

Workstation

Internet

Figure 5: RUBiS Architecture: Java Servlets Version

A MySQL database is used that contains 7 tables: users, items, categories, regions, bids,

buy_now and comments. The users table records contain the user’s name, nickname, pass-

word, region, rating and balance. Besides the category and the seller’s nickname, the items

table contains the name that briefly describes the item and a more extensive description,

usually an HTML file. Every bid is stored in the bids table, which includes the seller, the

bid, and a max_bid value used by the proxy bidder (a tool that bids automatically on behalf

of a user). Items that are directly bought without any auction are stored in the buy_now

11

table. The comments table records comments from one user about another. As an opti-

mization, the number of bids and the amount of the current maximum bid are stored with

each item to prevent many expensive lookups of the bids table. This redundant informa-

tion is necessary to keep an acceptable response time for browsing requests. As users only

browse and bid on items that are currently for sale, the item table is splitted into a new and

an old item table. The very vast majority of the requests access the new items table, thus

considerably reducing the working set used by the database.

The system sizing is done according to some observations found on the eBay Web site.

There is always about 33,000 items for sale, distributed among eBayŠs 20 categories and 62

regions. A history of 500,000 auctions in the old-items table is there. There is an average of

10 bids per item, or 330,000 entries in the bids table. The buy_now table is small, because

less than 10% of the items are sold without auction. The users table has 1 million entries. It

is assumed that users give feedback (comments) for 95% of the transactions. The comments

table contains about 506,500 comments refering either to items or old items. The total size

of the database, including indices, is 1.4GB.

The next chapter will discuss related work within the context of the requirements iden-

tified in Section II.1 for deployment planning of large scale distributed applications for

maximizing utility.

12

CHAPTER II

RELATED RESEARCH

This chapter discusses the related work in the research literature in the context of the

main areas of focus that were identified in section I.7. Various work in the different areas

such as 1) analytical techniques for performance estimation, 2) profile driven techniques

for system management and 3) application placement techniques using optimization are

presented here. These are compared against the requirements that have been described in

section I.7.

Analytical Techniques: A large body of work on analytical techniques to model and es-

timate the performance of multi-tiered internet applications exists. For example, [52, 75,

77, 84, 85] use closed queuing networks to model multi-tiered internet applications. These

efforts typically model an entire tier as a queue. Such models are also usually service-

aware. This allows system management decisions involving components and services to be

implemented. These efforts also typically model an entire tier as a queue.

Profile-based Techniques: Stewart et. al. [70] propose a profile-driven performance model

for cluster based multi-component online services. They use this model to perform system

management and implement component placement across nodes in the cluster. Profiling

is nicely used to find the resource required by each class of service. It is found that the

resource requirement increases linearly with client population. An M/G/1 queue is used to

represent each server and all the different classes of services are approximated by one class

of service. This overall service has a service time equal to the sum of the service times of the

different services. A problem with this kind approach is that performance characteristics

of individual services like throughput and device utilzation cannot be computed and thus

cannot be used for system management.

Application Placement Techniques: Karve et al. [30] and Kimbrel et. al. [34] present a

13

framework for dynamic placement of clustered web applications. Their approach consid-

ers multiple resources, some being load dependent while others are load independent. An

optimization problem is solved which attempts to alter the component placement at run-

time when some external event occurs. Components are migrated to respond to external

demands. A simple model calculates service demands of different requests to characterize

resource requirements of components. Carrera et al. [14] design a similar system but they

also provide utility functions of applications mapping CPU resource allocation to the per-

formance of an application relative to its objective. Urgaonkar et. al. [76] identify resource

needs of application capsules (components) by profiling them and using this information

to characterise the application’s Quality of Service (QoS) requirements. They also propose

an algorithm for mapping the application capsules onto the platforms (nodes).

All of the work above uses a performance estimation mechanism that do not take into

account resource contention among different classes of requests. Resource contention and

the waiting time accrued due to that accounts for a large part of the response time of a

request. This is more so important at high utilization. Thus there is the need to use some

kind of technique which will quantify the wait time due to resource contention. None of

the prior works above (except [77]) enforces explicit performance bounds.

II.1 What Is Missing ?

This section outlines the missing link in the related research that is discussed above in

the context of the research focus areas given in section I.7.

Figure 6 shows the gap in the current state of the art. There is the need for compo-

nent placement techniques that use performance estimation methods which are component

aware as also should take into account resource contention among various jobs. From the

above analysis three basic research challenges are identified and are enumerated as below,

1. Component Resource Requirement needs to find out the resource requriement of each

14

Figure 6: Gap in current state of the art

component. It also needs to model the workload so that overall component needs can

be identified.

2. Performance Estimation needs to predict the performance characteristic of the appli-

cation under various environment and workload. It has to take into account resource

contention among the various jobs and also should be component aware.

3. Component Placement involves the assigning of the individual components onto the

nodes such that the overall performance of the application is within given bounds. It

will also ensure that the utility of the application is maximized by reducing cost and

increasing workload.

15

Part I

Identifying Component Resource

Requirement

16

This part of the dissertation deals with the issues in finding out the resource requirement

of application components. Chapter III discusses various methods of profiling that are used

and the pros and cons of each. Chapter IV discusses a profiling and monitoring framework

for distributed component based systems. This chapter also discusses workload modeling

concepts which helps in identifying the average number of hits to each component which

in turns helps in estimating the overall resource requirement of a component.

17

CHAPTER III

PROFILING OF DISTRIBUTED COMPONENT BASED SYSTEMS

All applications rely upon services provided by the underlying Operating System(OS).

These services are primarily used to coordinate access to shared resources within the sys-

tem. To measure service "requests" probes can be placed directly within the OS code that

can record individual application access to provided services. Many COTS operating sys-

tems also provide a number of performance counters that explicitly track usage of shared

resources. Data generated from these counters along with data from embedded probes can

be usefully combined to form a more complete picture of application behavior. Another

common form of shared processing infrastructure is distributed computing middleware,

such as OMG’s CORBA and Microsoft’s .NET, which provide common services, such as

location transparency and concurrency management. Distributed computing middleware

often provides a number of "hook points" that are accessible to users. These hooks provide

placeholders for adding probe functionality that can be used to measure events typically

hidden deeper within the middleware. This chapter first discusses techniques that can be

used to place probes into OS services and how one can combine this information with data

generated from OS-performance counters. The general practices of distributed-application

monitoring using the services available in distributed computing middleware are discussed

after that.

III.1 Inserting Probes into OS Services

A typical OS process contains one or more threads and a shared memory space. Ap-

plication code that is executed by threads within a process is free to access various OS

resources and services, such as virtual memory, files, and network devices. Access to these

resources and services is facilitated through APIs that are provided by system libraries.

18

Each thread in the system executes in either user space or kernel space, depending upon

the work that it is doing at that given time. Whenever a thread makes a system call, it

transitions (e.g., via a trap) into kernel mode (Soloman, 1998; Beck, et al., 1999). Calls

to system calls for thread management (e.g., thread creation, suspension, or termination)

and synchronization (e.g., mutex or semaphore acquisition) will often incur a transition to

kernel mode. System-call transitioning code therefore provides a useful interception point

at which process activity can be monitored and a profile of system resource use can be

extracted on a per-thread basis. Figure 7 shows the use of this so-called "inter-positioning"

technique where libraries are built that mimic the system API. These libraries contain code

that records a call event and then forward calls to the underlying system library.

Compiled
Binary

Running
Process

System
Library

Instrumented
Library User Space

Kernel Space

Figure 7: Process Systems calls "Intercepted" by Profiling Library

The threadmon [12] tool uses inter-positioning to insert trace code between the user-

level threads library and the application by redefining many of the functions that the library

uses internally to change thread state. This technique is also used by VPPB [9] to gather

user-level thread information. In both approaches, data obtained by user library inter-

positioning is integrated with data collected from other OS services, such as the UNIX

/proc file system or kstat utility. The threadmon and VPPB tools both target the Solaris

19

OS and therefore rely upon Solaris-specific system utilities, such as memory mapping of

/dev/kmem to access the kernel.

Cantrill et al. [12] and Broberg et. al. [9] have also used another tool known as Trace

Normal Form (TNF) [50]. This tool generates execution event traces from the Solaris

kernel and user processes. Solaris provides an API for inserting TNF probes into the source

code of any C/C++ program. A TNF probe is a parameterized macro that records argument

values. The code excerpt below shows how C macro probes can be inserted at the beginning

and end of critical code to record the absolute (wall-clock) time required for the code to

execute.

i n c l u d e < t n f / p robe . h>

.

.

e x t e r n mutex_ t l i s t _ m u t e x ;

.

.

TNF_PROBE_1 (c r i t i c a l _ s t a r t , " c r i t i c a l s e c t i o n s t a r t " ,

" mutex a c q u i r e " , t n f_o paque , l i s t _ l o c k , &l i s t _ m u t e x)

mutex_ lock (& l i s t _ m u t e x) ;

.

.

/ * c r i t i c a l s e c t i o n code * /

.

.

mutex_unlock (& l i s t _ m u t e x) ;

20

TNF_PROBE_1 (c r i t i c a l _ e n d , " c r i t i c a l s e c t i o n end " , " mutex r e l e a s e " ,

t n f_op aque , l i s t _ l o c k , &l i s t _ m u t e x)

These probes can be selectively activated dynamically at run time. Events are recorded

each time a probe is executed. Each probe automatically records thread-specific informa-

tion, such as the thread identifier, but it may also record other data related to the state of

the application at the time the event was triggered. Event records are written to a binary

file that is subsequently parsed and analyzed by an offline process. The Solaris kernel also

contains a number of TNF probes that can record kernel activity, such as system calls, I/O

operations, and thread state change. These probes can be enabled/disabled using a com-

mand line utility known as prex [50]. Data records from the probes are accumulated within

a contiguous portion of the kernel’s virtual- address space and cannot be viewed directly.

Another utility that runs with administrator privileges can be used to extract the data and

write it to a user file. This data can then be correlated with other user-level data to provide a

clear understanding of the behavior of the application run. The probe-based technique de-

scribed above provides a detailed view of the running state of the application. Behavioral

data details call counts, timing information, and resource use (thread and system state).

There are some drawbacks to this type of approach, however, including: " The solution

is not portable because it depends on Solaris features that are not available on other oper-

ating systems. " It requires a considerable amount of development effort because thread

libraries must be modified. " Applications must be separately built and linked for profiling.

" Tools that are used to collect the data like TNF or kstat may require lengthy setup and

configuration.

III.2 Microsoft Windows Performance Counters

Other operating systems have comparable features that can be used to get compara-

ble data-defining application behavior. For example, Microsoft Windows provides perfor-

mance counters that contain data associated to the running system. Windows provides a

21

console that can be used to select certain specific counters related to specific processes.

Once selected, the values of these counters will be displayed on the console at regular

intervals. Table 5 shows example counters that are available.

Table 5. Performance Counters Provided by the Windows Operating System Windows

stores the collected values in the registry, which is refreshed periodically. Developers typi-

cally retrieve the data from the registry directly or use an API known as Performance Data

Helper. Alternatively, the Microsoft .NET framework provides the System.Diagnostics

namespace that facilitates access to all the counters from within a .NET application. Win-

dows performance counters can be used to acquire data related to the running system, which

can be correlated with a particular application run. These counters give an external view of

the application, however, and there is no straightforward method of mapping counter val-

ues to logical application events. To more closely inspect a running application, therefore,

instrumentation is needed within the application itself to record logical events and combine

them with data generated through performance counters.

III.3 Distributed System Monitoring

A distributed application consists of components spread over a network of hosts that

work together to provide the overarching functionality. The complexity of distributed ap-

plications is often considerably greater than a stand-alone application. In particular, dis-

tributed applications must address a number of inherent complexities such as latency, causal

ordering, reliability, load balancing, and optimal component placement, that are either ab-

sent from (or less complicated in) stand-alone applications. The analysis and profiling of

distributed applications involves monitoring key interactions and their characteristics along

with localized functionality occurring within each component.

22

III.3.1 Monitoring of Component-Based Systems (MCBS)

MCBS [40] is a middleware-based monitoring framework that can be used to capture

application semantics, timing latency, and shared resource usage. The MCBS approach

recreates call sequences across remote interfaces. Probes are instrumented automatically

through the Interface Description Language (IDL) compiler, which directly modifies the

generated stubs and skeletons that record function entry and return, as shown in Figure 8.

Instrumented
Probes

Client ServerSkeletonStub

Instrumented
Probes

Figure 8: MCBS Stubs and Skeletons are Instrumented with Probes

Along with tracking interactions, the MCBS-modified stubs and skeletons also record

all transactions (as a call sequence), parameters (e.g., in, in/out), and return values. Event

data is recorded to a log and a unique identifier assigned so that the scenario/call chain can

be identified later. This identifier is generated at the start probe and is propagated through

the calling sequence via thread-specific storage [23]. When each new interface is invoked,

the stub receives the identifier from the thread-specific storage, creates a record with it, and

stores a number identifying its position in the call chain. After control returns to the caller

stub, the last record is generated. Hence, the call chain is recorded and mapped across

threads. Whenever a new thread is created by the user application code the parent thread

23

identifier is stored along with the new thread identifier, which helps identify the actual

call chain in cases where threads are spawned by user-application code (i.e., by tracking

parental hierarchy). Event data is stored in a memory buffer during application execution

and is dumped to a file regularly as the buffer becomes full. An offline data collector picks

up the different files for the different processes and loads it in a database. The analyzer

component processes the data in the database and forms the entire call graph. The end-to-

end timing latency of call scenarios is measured by noting the time at the client stub when

the call is made and again when the call returns from the server. The latency is measured

from the difference of these two timestamps. The overhead due to the interference of these

probes is measured and tabulated against normal non-instrumented operation [40]. Table 6

shows performance data for a sample application. The sample scenarios are known to have

deterministic functionality, i.e., they perform the same set of actions every time they run,

so multiple system runs can be compared together. To minimize measurement overhead,

only specific components of the application are monitored. This selection process can be

done in two ways: " Statically prior to executing, where monitored components are se-

lected and the application is then run. The application must be stopped and restarted if the

selected set of components changes. " Dynamically while the application is running, where

the monitored components can be selected at runtime. Dynamic selection helps develop-

ers focus on problem area and analyze it without incurring overhead due to measurement

of other components. Table 6. Overhead of Instrumentation Due to Probes Inserted in

Stubs and Skeletons [40] has implemented both approach and shown that static selection

is less complex than dynamic selection because dynamic selection needs to take care of

data inconsistency, which can occur if a component process receives an off event (whereby

monitoring is stopped) while it runs. In this case, selection must be deferred until the sys-

tem reaches a steady state. Steady state will vary from application to application and is thus

hard to identify in generically.

24

III.3.2 OVATION

OVATION is a distributed monitoring framework that uses similar concepts as the

MCBS framework, but it is targeted for CORBA middleware, such as TAO [64] and JacORB [10].

It therefore uses CORBA Portable Interceptors to insert probes. Portable Interceptors are

based on the Interceptor pattern [23], which allows transparent addition of services to a

framework and automatic triggering of these services when certain events occur. When-

ever a CORBA client calls a server component, therefore, client stub and server skeleton

interceptors are invoked, which record the event. These interception points also occur in the

reverse order when the call returns from server to client. OVATION thus provides a more

transparent and standard than the non-standard way of inserting probes into the stub and

skeleton code used by MCBS. OVATION provides a number of pre-defined probes, such

as: " Snooper Probe, which captures the CORBA end-to-end invocation path. Provides

such things as request name, arguments, request start time, end time and the threads and

the processes to which it belongs. " Milestone Probe, which permits the manual demar-

cation of specific events in the application code. " Trace Probe, which is used to capture

information about the other non-CORBA, C++ object method calls. It also allows users

to add their own probes to the monitoring framework, thereby allowing application devel-

opers to monitor certain application-specific characteristic without changing their source

code. OVATION also provides mechanisms that allow applications to enable or disable

these probes transparently. OVATION re-creates the dynamic-system-call graph among

components in a given scenario, along with latency measurement. OVATION generates

log files during program execution that contain information detailing processes, threads

and objects involved in the interaction. The OVATION visualizer transforms the log file

into a graphical representation of the recorded remote object interactions. The distributed-

system monitoring tools described above help monitor distributed application behavior by

re-creating call graphs along with latency information for application traces. This capabil-

ity is helpful because it simplifies the generation and collection of distributed application

25

data so it can analyzed in detail. For example, [40] describes how shared-resource-use

data, such as processor consumption or heap-memory use in a particular application run,

can help measure performance, devise capacity plans, and guide component-placement al-

gorithms. One disadvantage of these tools is that they cannot follow local procedure calls,

so a developer cannot track local application events. It may therefore be necessary to com-

bine distributed monitoring tools with other application profiling tools, such as threadmon

described in Section III.1. As a result, the entire profiling process may become unduly

complicated because both sets of tools must be configured in a single run and there may be

subtle interdependencies, such as conflicts in thread-library instrumentation used by local

techniques, such as threadmon [12] and MCBS [40].

III.4 Virtual Machine Profiling

With the rebirth of virtual machines (VMs), such as the Java Virtual Machine and the

Microsoft Common Runtime Language (CLR), the paradigm of application development

and deployment has changed from the traditional architecture of applications interacting

directly with the underlying OS. Figure 9 illustrates a typical VM-based application archi-

tecture where each user application is layered above the VM.

Figure 9: Applications Running on Virtual Machine

The use of VMs to run managed programs helps make profiling more portable. For

example, techniques like dynamic instrumentation of complete binaries (discussed in Sec-

tion 3) for VM platforms is more straightforward because the application runs within the

26

context of the VM and is thus easier to access and profile, and generated bytecode [25]

is standardized, portable, and more straightforward to instrument. In general, profiling

techniques, such as sampling and instrumentation, remain the same in a VM. There are a

number of ways, however, in which these techniques can be used. The main factors that

affect a particular method include (1) implementation difficulty, (2) overhead incurred, and

(3) level of detail in the output. This section describes different methods used for VM

profiling and compares and contrasts the pros and cons of each.

III.4.1 Virtual Machine Sampling

Sampling techniques typically result in less overhead than instrumentation techniques

because sampling involves recording the program-counter value at regular (usually fixed)

intervals, rather than using embedded code snippets into the application program at var-

ious points to record events. The corresponding program counter values (i.e., memory

addresses) associated with each method are identified a priori and stored in a search struc-

ture. When the application runs on the VM, the program counter for each thread is recorded

at regular intervals and stored with a processor timestamp. Once profiling is complete, the

recorded data is analyzed, the number of invocations on each method counted, and the

time spent executing each call calculated. Despite being relatively lightweight, however,

sampling-based profiling methods are susceptible to certain problems [71], including: "

Straddling effect of counters - the initial analysis to segregate the bytecode for different

methods will be approximate, causing inconsistent results. " Short sub-methods - short-

lived calls that take less time than the sampling frequency may not be recorded at all. "

Resonance effects - the time to complete a single iteration of a loop can coincide with the

sampling period, which may sample the same point each time, while other sections are

never measured. These problems can be avoided by using techniques described in [71].

To obtain a consistent picture of application behavior, however, a significant number of

runs must be performed. This number will again vary from application to application, so

27

the sampling period also may need to be configured for a particular application. Another

method of sampling is described by [7]. This approach does not check the program counter

at regular intervals. Instead, a snapshot of the call stack is recorded by each thread after a

certain number of bytecodes are executed. The motivation for this approach is that byte-

code counting is a platform-independent method of resource accounting [5, 6]. Bytecode

counting can also be done without relying on more low-level, platform-dependent, utilities

to acquire resource usage data, which make it more portable and easier to maintain. The

work in [7] is an example of bytecode counting implemented by statically instrumenting

bytecode.

III.4.2 Profiling via VM Hooks

A VM hook is a previously defined event, such as method entry/exit or thread start/stop,

that can occur within the context of a running application. The profiling agent implements

callback methods on the profiling interface and registers them with VM hooks. The VM

then detects the events and invokes the corresponding callback method when these events

occur in the application. It is straightforward to develop profilers based on VM hooks be-

cause profiler developers need only implement an interface provided by the VM and need

not worry about the complications that can arise due to interfering with the running appli-

cation. Although the VM and profiling agent provide the monitoring infrastructure, profiler

developers are responsible for certain tasks, such as synchronization. For example, multi-

threaded applications can fire multiple instances of the same event simultaneously, which

will invoke the same callback method on the same instance of the profiling agent. Call-

backs must therefore be made reentrant via synchronization mechanisms, such as mutexes,

so the profiler internal state is not compromised. The Microsoft Common Language Run-

time (CLR) profiler and the Java Virtual Machine Tool Interface (JVMTI) are examples of

VM profilers that that support VM hooks, as discussed below.

28

III.4.2.1 CLR Profiler

The CLR Profiler interface allows the integration of custom profiling functionality pro-

vided in the form of a pluggable dynamic link library, written in a native language like C or

C++. The plug-in module, termed the agent, accesses profiling services of the CLR via the

ICorProfilerInfo2 interface. The agent must also provide an implementation of ICorProfil-

erCallback2 so that the CLR can call back the agent to indicate the occurrence of events in

the context of the profiled application. At startup, the CLR initializes on the agent, which

configures the CLR and establishes which events are of interest to the agent. When an

event occurs, the CLR calls the corresponding method on the ICorProfilerCallback2 inter-

face. The agent then collects the running state of the application by calling methods on

ICorProfilerInfo2. In between processing function enter/exit call-backs, the profiling agent

requests a stack snapshot so that it can identify the fully qualified method name and also

the parent (i.e., the method from which the method being traced was call) of the call. In-

specting the stack to determine parental methods (and ultimately the call-chain) is a useful

technique for disambiguating system calls. For example, this approach can be used to dis-

ambiguate different lock calls so that per-lock information (e.g., hold and wait times) can

be correlated with different call sites in the source code.

III.4.2.2 JVMTI Profiler

The JVMTI is similar to the CLR Profiler Interface in that it requires a plug-in, which

is implemented as a dynamic link library using a native language that supports C. The JVM

interacts with the agent through JVMTI functions, such as Agent_OnLoad(JavaVM *vm,

char *options, void *reserved) and Agent_OnUnload(JavaVM *vm), which are exported

by the agent. The JVM supplies a pointer, via the Agent_Onload() call, that the agent can

use to get an instance of the JVMTI environment. The agent can use this pointer to access

JVMTI features, such as reading the state of a thread, stopping/interrupting threads, ob-

taining a stack trace of a thread, or reading local variable information. The agent uses the

29

SetEventCallbacks() method to pass a set of function pointers for different events it is inter-

ested. When events occur, the corresponding function is called by the JVM, which allows

the agent to record the state of the application. The CLR and JVMTI profilers share many

common features, such as events related to methods or threads and stack tracing ability.

There are differences, however, e.g., the JVMTI provides application-specific details, such

as the method name, object name, class name, and parameters, from the calls, whereas the

CLR interface provides them in a metadata format and details can only be extracted using

the metadata API, which is tedious. The JVMTI also provides additional features com-

pared to the CLR, including monitor wait and monitor waited, which provide information

related to thread blocking on critical sections of code. Research [57, 58] has shown that

the JVMTI interface incurs significant runtime overhead This overhead stems from the fact

that profiling agent is written in a native language, so whenever there is a call to this agent

there is the need to make JNI calls. JNI calls can incur significant overhead because they

perform actions like saving registers, marshaling arguments, and wrapping objects in JNI

handles [19]. This overhead may not be acceptable for some applications, so explicit byte-

code instrumentation may be a solution that has less overhead because it does not require

the use of JNI.

III.4.3 Bytecode Instrumentation

Although sampling and hook-based instrumentation can be performed with relatively

little overhead, the extent of the information collected is limited and often insufficient to

build application-level detail. Bytecode instrumentation inserts bytecode that performs

application tracing within compiled code. In this approach, profiler developers redefine

classes they need to profile by replacing the original bytecode with instrumented bytecode

that contains logging actions at the occurrence of specified events. This approach enables

the capture of application-specific events, such as transaction completion or data regarding

critical sections of the application that may not be possible using only the standard events

30

provided by the profiler interface discussed in Section 5.3. Bytecode instrumentation there-

fore has less overhead and greater flexibility the profiler interface, though it can also be

more complex. There are several types of bytecode instrumentation, including: " Static

instrumentation, which involves changing the compiled code offline before execution i.e.,

creating a copy of the instrumented intermediate code. Many commercial profilers, such

as OptimizeIt (Borland 2006), work this way. Static instrumentation has also been imple-

mented by [57] and later extended in [58]. " Load-time instrumentation, which calls the

agent before loading each class, and passes it the bytecode for the class that can be changed

by the agent and returned. The JVMTI/CLR profiler interfaces are examples of load-time

instrumentation. " Dynamic instrumentation, which works when the application is already

running and also uses a profiler interface (Dmitriev, 2002). The agent makes a call to the

VM passing it the new definitions of the classes that are installed by the VM at runtime.

As discussed in Section 3, dynamic instrumentation supports "fix and continue" debug-

ging instead of exiting, recompiling, and restarting. It also helps to reduce application

overhead by enabling developers to (1) pinpoint specific regions of code that are experi-

encing performance problems at runtime and (2) instrument the classes’ involved, rather

than instrumenting the entire application. Instrumented classes can be replaced with the

original ones after sufficient data is collected. The gathered data can be analyzed offline,

the problem fixed, and the classes can be replaced at runtime. Dynamic instrumentation

of bytecode is more straightforward than dynamic instrumentation of low-level machine

instructions (as described in Section 3). It can also be more portable across operating sys-

tems because it uses bytecode. There is a method call provided by the JVMTI known as

RedefineClasses() that is called by a profiler agent to insert the "new" bytecode of the class.

When this method is called, the JVM performs all the steps needed to load a class, parse

the class code, create objects of the class, and initializes them. After these steps are com-

plete, the JVM performs hot-swapping by suspending all threads and replacing the class,

while ensuring that all pointers are updated to point to the new object [20]. These dynamic

31

instrumentation activities can incur significant overhead in production environments and

thus must be accounted for during dynamic instrumentation. Current research is address-

ing this problem by optimizing the swapping method so that bytecode replacement can be

done at the finer-grained method level, rather than at the coarser-grained class level [19].

Similar techniques are also being explored on the .NET platform by (Vaswani, 2003). A

number of tools have been developed to help instrument bytecode, much like the API for

Pin described in Section 3. Examples of these tools include BIT (Lee, 1997) and IBM’s

Jikes Bytecode Toolkit (IBM Corporation, 2000). These tools shield application develop-

ers from the complexity of bytecode by providing an API that can be used to parse the

bytecode and change it. The three bytecode instrument techniques described above incur

similar overhead, due to the execution of instrumented code. Although dynamic bytecode

instrumentation is the most flexible approach, it also has several drawbacks, including: "

It is more complex and error-prone, than static and load time instrumentation, especially

because it allows bytecode modification at runtime. " Dynamic instrumentation requires

creating ’new’ objects of the ’new’ classes corresponding to all ’old’ objects in the appli-

cation, initializing their state to the state of the old object, suspend the running threads, and

switching all pointers to the ’old’ objects to the ’new’ objects. This replacement process

is complicated, e.g., application state may be inconsistent after the operation, which can

cause incorrect behavior. " Static and load-time instrumentation are generally easier to im-

plement than dynamic instrumentation because they need not worry about the consistency

of a running applicationĚ Dynamic instrumentation has a broader range of applicability,

however, if done efficiently. Current research [19, 21] is focusing on how to make dynamic

instrumentation more efficient and less complicated.

III.4.4 Aspect-Oriented Techniques used for Instrumentation

Although explicit bytecode instrumentation is more flexible and incurs less overhead

than VM hooks, the implementation complexity is higher because developers must be

32

highly skilled in bytecode syntax to instrument it effectively without corrupting applica-

tion code. Aspect Oriented Programming (AOP) helps remove this complexity and enables

bytecode instrumenting at a higher level of abstraction. Developer can therefore focus

on the logic of the code snippets and the appropriate insertion points, rather than wrestling

with low-level implementation details [17]. Relevant AOP concepts include (1) join-points,

which define placeholders for instrumentation within the application code, (2) point-cuts,

which identify a selection of join-points to instrument, and (3) advice, which specifies the

code to be inserted at the corresponding join-point. AspectWerkz [8] is a framework that

uses AOP to support static, load-time, and dynamic (runtime) instrumentation of bytecode.

The pros and cons of the various techniques are largely similar to that discussed in Sec-

tion 5.4. There are also other pros and cons affecting the use of AOP, which is discussed

below. The AOP paradigm makes it easier for developers to insert profiling to an existing

application by defining a profiler aspect consisting of point-cuts and advice. The following

excerpt illustrates the use of AspectWerkz to define join-points before, after, and around

the execution of the method HelloWorld.greet(). The annotations in the comments section

of the Aspect class express the semantics e.g.,

" @Before e x e c u t i o n (* < package \ _name >. < c l a s s \ _name >. < method \ _name >)"

means the method will be called before the execution of the <method_name> mentioned.

/ /

/ /

package testAOP ;

i m p o r t o rg . codehaus . a s p e c t w e r k z . j o i n p o i n t . J o i n P o i n t ;

p u b l i c c l a s s He l loWor ldAspec t {

/ * *

33

* @Before e x e c u t i o n (* testAOP . Hel loWor ld . g r e e t (. .))

* /

p u b l i c vo id b e f o r e G r e e t i n g (J o i n P o i n t j o i n P o i n t) {

System . o u t . p r i n t l n (" b e f o r e g r e e t i n g . . . ") ;

}

/ * *

* @After e x e c u t i o n (* testAOP . Hel loWor ld . g r e e t (. .))

* /

p u b l i c vo id a f t e r G r e e t i n g (J o i n P o i n t j o i n P o i n t) {

System . o u t . p r i n t l n (" a f t e r g r e e t i n g . . . ") ;

}

/ * *

* @Around e x e c u t i o n (* testAOP . Hel loWorld2 . g r e e t (. .))

* /

p u b l i c O b j e c t a r o u n d _ g r e e t (J o i n P o i n t j o i n P o i n t) {

O b j e c t g r e e t i n g = j o i n P o i n t . p r o c e e d () ;

r e t u r n "< y e l l >" + g r e e t i n g + " </ y e l l > " ;

}

}

Advice code can be written in the managed language, so there is no need to learn the

low-level syntax of bytecode because the AOP framework can handle these details. The

bulk of the effort therefore shifts to learning the framework rather than bytecode/IL syntax,

which is advantageous because these frameworks are similar even if the target application

language changes, e.g., from Java to C#. Another advantage is the increased reliability

and stability provided by a proven framework with dedicated support, e.g., developers need

34

not worry about problems arising with hot-swap or multiple threads being profiled because

these are handled by the framework. Some problems encountered by AOP approaches are

the design and deployment overhead of using the framework. AOP frameworks are gen-

erally extensive and contain a gamut of configuration and deployment options, which may

take time to master. Moreover, developers must also master another framework on top of

the actual application, which may make it hard to use profiling extensively. Another poten-

tial drawback is that profiling can only occur at the join-points provided by the framework,

which is often restricted to the methods of each class, i.e., before a method is called or af-

ter a method returns. Application-specific events occurring within a method call therefore

cannot be profiled, which means that non-deterministic events cannot be captured by AOP

profilers. For a specific case, therefore, the decision to choose a particular profiling tech-

nique depends upon application requirements. The following criteria are useful to decide

which approach is appropriate for a given application: " Sampling is most effective when

there is a need to minimize runtime overhead and use profiling in production deployments,

though application-specific logical events may not be tracked properly. " The simplest way

to implement profiling is by using the JVMTI/CLR profiling interface, which has the short-

est development time and is easy to master. Detailed logical events may not be captured,

however, and the overhead incurred may be heavier than bytecode/IL instrumentation. "

Bytecode/IL instrumentation is harder to implement, but gives unlimited freedom to the

profiler to record any event in the application. Implementing a profiler is harder than using

the JVMTI/CLR profiling interface, however, and a detailed knowledge of bytecode/IL is

required. Among the different bytecode/IL instrumentation ways, complexity of imple-

mentation increases from static-time instrumentation to load-time to dynamic instrumenta-

tion. Dynamic instrumentation provides powerful features, such as "fix and continue" and

runtime problem tracking. " The use of an AOP framework can reduce the development

complexity and increase reliability because bytecode/IL need not be manipulated directly.

35

Conversely, AOP can increase design and deployment overhead, which may make it unsuit-

able for profiling. Moreover, application-level events may be hard to capture using AOP if

the join-points locations are limited.

III.5 Conclusion

This chapter reviewed the approaches to profiling distributed component based systems.

The advantages and disadvantages of each approach with respect to measuring the perfor-

mance of systems was highlighted. It was also demonstrated how these approaches can be

applied in practice. The main contention is between two conflicting factors, the richness

of data collected to the level of intrusion allowed. A nice proper balance between the two

needs to be sought and that also depends on a particular application and its requirement.

The material provided in the above chapter will help anyone wanting to develop such a tool

for system management.

36

CHAPTER IV

FRAMEWORK FOR MONITORING & PROFILING DISTRIBUTED
COMPONENT BASED APPLICATIONS

This chapter describes a resource monitoring framework based upon the Object Man-

agement Group (OMG), specification for Deployment and Configurations of Component

based applications. This framework is known as Bulls-Eye Target Manager or Bulls-Eye

in short.

IV.1 The Design of the Bulls-Eye Target Manager

Bulls-Eye is a resource provisioning service designed to enable software developers and

applications in enterprise systems to (1) retrieve a list of the initial available resources in a

target domain, thereby enabling the preparation of a deployment plan that meets the alloca-

tion and connection requirements of each component, (2) allocate resources for a particular

deployment plan and release resources when the components or the entire deployment is

removed, (3) obtain runtime resource available in the system, and (4) dynamically update

the resource consumption data. This section describes the structure and functionality of

Bulls-Eye.

IV.1.1 Structure of Bulls-Eye

Figure 10 shows the architecture of Bulls-Eye, which implements the CORBA inter-

face in the Target Manager specification. Bulls-Eye’s architecture has two parts: (1) a

logically centralized service, known as the Target Manager Core (TM-Core), which is used

by applications and system services to allocate/release resources and (2) multiple monitors

(TM-Monitors) distributed in the domain to perform resource moni-toring and update the

TM-Core’s model of the amount of resources available.

37

TM- Core Resource
Consumed/Available<<clients>>

RACE Controller

<<clients>>
RACE Planner

Domain

TM-MonitorMonitor Monitor

Component Host

TM-MonitorMonitor Monitor

Component Host

Figure 10: The Bulls-Eye Target Manager Architecture

The Domain contains all the elements of a target environment, including the nodes,

interconnects between nodes, bridges connecting interconnects, and the set of resources

belonging to these elements. A Domain is a logical concept, i.e., a single resource or node

element can be part of more than one target domain. Domains can therefore be structured

hierarchically, which a top-level domain containing other Domains. Each Domain has a

TM-Core that accumulates the resource information for elements in the target domain. The

TM-Core provides a standard set of operations that applications and system services can

use to provision available resources statically (i.e., prior to system launch) as well as dy-

namically (i.e., during system runtime) in the form of a generic structure known as the

DomainStruct [51]. This structure describes the contents of the entire target environment

by composing data related to available nodes in the network, the connections between

nodes, connection between networks, the shared resources among them, and the resources

for each element. A TM-Monitor is placed on each node in the target domain to mon-

itor the resource usage in that node. The TM-Monitor sends updates periodically to the

TM-Core, with the current resource utilization/availability on that node. Upon receiving

the updates, the TM-Core aggregates the data received with previous data and updates its

content. Bulls-Eye uses standard CORBA request/response calls for this communication.

Bulls-Eye maintains a top-level Domain element that contains all the elements of a target

38

domain and is identified by a universally unique identifier (UUID). This Domain element

is designed so that all possible elements in the target domain can be incorporated, thereby

alleviating the need to create separate structures for different types of resources, such as

processors, memory, storage, and/or network bandwidth. This design also makes client

code flexible by alleviating the need for any specific type of resource in the target domain

since it can handle all the varieties of resource elements present. TM-Monitors collect data

pertaining to their sub-domain and update the TM-Cores with fresh data. Clients are inter-

ested in data across sub-domains, so the data from different TM-Monitors are aggregated

and presented uniformly. To avoid latency issues, the distributed monitors exchange only

the data that changed from the previous update. This data is aggregated with the remaining

target domain data that are already present.

IV.1.2 Functionality of Bulls-Eye

Bulls-Eye provides the following standard Target Manager operations that can be in-

voked by clients to provision system resources:

• Querying static resources. Developers or planner applications can use getAllRe-

sources() to obtain the initial static resource availability in the target domain. This

operation returns the Domain structure that describes the entire target domain re-

sources hierarchically.

• Querying dynamic resources. Dynamic resource availability can be returned by

getAvailableResource(). This operation returns the same Domain structure as above,

except that the resources reflect their remaining capacity.

• Committing resources. A planning application can call createResourceCommitment()

to commit (i.e., allocate) resources for a deployment plan. This operation creates a

ResourceCommitmentManager that can commit and release resources for a specific

39

plan. A pool of resources can be specified when a call to createResourceCommit-

ment() is made or can be allocated after it is created. An exception is raised if a

requested resource cannot be committed.

• Releasing resources. When an application or component is deleted all its resources

must be released so they can be reallocated to subsequent applications. Applications

can release resources by calling releaseResources() on the associated ResourceCom-

mitmentManager. When a ResourceCommitmentManager is itself deleted via de-

stroyResourceCommitment(), all remaining committed resources it holds are released

automatically.

• Updating dynamic resource data. The target domain data in the TM-Core can be

updated via updateDomain(). The updated information is passed using the Domain

structure, which is a subset of the higher level domain structure. An enumeration

called DomainUpdateKind can be used to tell Bulls-Eye whether the subset should

be added, deleted, or updated.

The Bulls-Eye Target Manager functionality plays a key role in the deployment and

configuration of enterprise DRE systems. On startup, it reads a standard XML configura-

tion script that describes the resources present in the target domain. The script is prepared

by a human or automated domain administrator who understands the initial target domain

contents, such as nodes, the interconnects that link them, and the resources contained in

them (such as processor capacity, memory capacity, and disk capacity) that are available

for application usage. This script is structured according to a standard DomainStruct de-

scribed in Section 3.1. The TM-Monitor used to monitor component resources on a node

is collocated and started together with its associated Node Manager, which is an entity

defined by the OMG D&C specification and implemented by CIAO as a daemon process

running on each node. The TM-Core finds the object reference addresses of the various

Node Managers from a Naming Service and establishes connection with them. At startup,

40

the TM-Core is passed the subset of the entire Domain, which it then uses to instructs the

TM-Monitors on each node which resources to monitor. Each TM-Monitor then checks

the Domain information and reports any discrepancies (such as the hard disk capacity be-

ing smaller than the initial domain description or the node is single processor instead of

a multiprocessor) to the TM-Core. After Bulls-Eye starts running, clients can use it to

query information about the domain, e.g., RACE components can extract domain related

information for preparing a deployment plan. Any entity, such as an Execution Manager,

that deploys plans in the target domain needs to provision resources via Bulls-Eye to run

applications successfully.

IV.2 Resolving Bulls-Eye Design Challenges

Although the CCM specification defines the interface and the functionality of the Tar-

get Manager service it does not prescribe any design details. Thus there are a number

of unresolved design challenges in implementing Bulls-Eye. This section describes key

challenges encountered, presents the solutions, and outlines how these are applied to the

shipboard computing applications supported by the MLRM subsystem described in Section

2.

IV.2.1 Challenge 1: Integrating Heterogeneous APIs of Multiple Platforms

Context. The resource utilization information provided to clients of Bulls-Eye should

be consistent, i.e., use similar units/structures. Otherwise, the users of the data will need

to convert them manually, which is tedious, error-prone, and can yield redundancies and/or

inconsistencies in conversion logic.

Problem Encapsulating diverse resource utilization APIs on different OS platforms.

The target domain of DRE systems typically consists of multiple operating systems, each

with its own platform-specific APIs that provide information on resource usage. For ex-

ample, the Unix/Linux /proc file system tracks process resources usage, such as processor,

41

memory, and byes sent/received from network devices. Windows, in contrast, has multiple

ways of procuring this information, including (1) using a DLL (PDH.dll) that provides an

API for querying resource consumption data or (2) extracting the raw data from the system

registry using the HKEY_LOCAL_MACHINE key. The data structures and units returned

by platform-specific OS APIs are sufficiently diverse that it is hard to write portable re-

source management algorithms. Diversity even extends to different versions of the same

OS, e.g., performance data in Windows NT 4.0 is contained in a counter named ’% Total

processor time’, which is named ’% processor time’ in Windows XP. Ideally, the middle-

ware should convert the diverse OS-specific APIs and data into a uniform and consistent

format that can be used portably by clients.

Solution. Use the Adapter pattern to adapt diverse API. To mitigate the problem of

diverse resource usage APIs and data in Bulls-Eye, the Adapter pattern was used [24]. This

pattern converts non-standard APIs that extract resource data into the standard interface

defined by the Target Manager specification, as shown in Figure 11. The implementation

of this interface converts the platform-specific data into a uniform type for storing and

disseminating resource usage information to Bulls-Eye clients.

Figure 11: Using the Adapter Pattern in Bulls-Eye

The extraction of resource consumption data is tricky and obtaining accurate values de-

pends on certain optimizations [67], such as keeping /proc open between reads and reading

data in a block rather than individual characters. Likewise, extracting raw value from the

registry is faster on Windows, though it is more complicated to program since it involves

42

parsing a text stream and extracting different structures containing performance counters.

Each structure is variable length and contains headers that must be parsed to get details

about the data. Although the PDH.dll mentioned above does this parsing automatically it

is somewhat slower since it incurs more overhead.

IV.2.2 Challenge 2: Providing a Common Access Point to Provision Domain Re-

sources

Context. Enterprise DRE systems are often distributed across many entities. The entire

application environment is arranged hierarchically, with a top-level domain containing sub-

domains, which in turn contain computing nodes connected via bridges and interconnects.

Any planner for a target domain will require information of resources contained in the

entire domain.

Problem. Monitoring resource utilization of multiple physically distributed resources.

Information regarding resource utilization and/or availability of system resources is tracked

by multiple monitors that are physically distributed across the domain. If clients were

responsible for determining the resource utilization and/or availability of system resources

they would have to (1) obtain the location of the monitors, (2) contact the monitors to obtain

the resource utilization data, and (3) process the data acquired from multiple monitors to

obtain a global view of utilization of system resource, which is tedious, error-prone, and

non-scalable for each client to perform individually.

Solution. Use distributed monitors to collect data across the domain and consolidate the

information via a common access point. To provide a common access point for data in the

target domain, Bulls-Eye uses the TM-Monitors to send data updates at a periodic interval

(which can be configured) to a centralized location, the TM-Core. TM-Monitors are located

on each node in the target domain infrastructure shown in Figure 12 and use the platform-

independent adapters described in Challenge 1 to extract the resource information. The

43

TM-Core serves as a common access point where the clients can obtain the information

regarding global resource availability/utilization in a target domain.

Allocation
Algorithms

Control
Algorithms

Recovery
Algorithms

Resource
Data

Target DomainInterface TM -Core

Multiple Instances of
TM-Monitor

Figure 12: Providing a Common Access Point to Domain Resource Data

IV.2.3 Challenge 3: Presenting data to clients with bounded response time in uni-

form structure

Context. An enterprise DRE system typically have many resources present in various

forms of composition. For example, a target domain may contain multiple nodes, and each

node may in-turn contain multiple resources, e.g., a node may contain multiple network

cards and thus be connected to many other nodes in the domain. The data from different

parts of a domain should be presented in a uniform and aggregated form for the clients to

manage resources effectively.

Problem Providing aggregated data of entire domain within bounded delay quickly. In

a typical enterprise DRE system scenario there can be many domain elements, the data

exchanged by these elements may be large, and there may be significant latency transfer-

ring such information. Data updates from distributed monitors will reach the TM-Core

separately and will only pertain to a subset of the entire domain. When these updates are

44

merged along with many other updates to the main data store, parsing and locating the data

store for a particular resource can considerably slow down response time. As a result, there

is a need for an efficient and scalable algorithm to merge the data. Moreover, changes in

target domain resource usage should be disseminated to clients within bounded delay so

the clients can utilize the data for time-sensitive planning and resource management.

Solution. Combination of heap-sort and timer based aggregation algorithm. To solve

the problem of aggregating domain data quickly, Bulls-Eye uses a combination of the fol-

lowing approaches:

• It optimizes communication to minimize unnecessary CPU and network processing

by maintaining a cache of the last update sent to the TM-Core. When Bulls-Eye

gets fresh data from the underlying component it compares the data received with

the cached data and only sends an update if it detects differences. For example, no

update is sent to the TM-Core if a particular reading informs the TM-Monitor that

memory usage has not changed from the last update.

• Bulls-Eye also uses a combination of heap-sort and a timer-based aggregation mech-

anism [4] that provides O (log n) time complexity in the worst case. Each resource

entity is labeled with a unique identity and is stored in a heap together with the label

a pointer to the actual data so that getting the actual data from the resource label can

be done in constant time. Each resource entity is labeled with a unique identity that

is placed along with pointers to the actual data structure in a heap. Once updated

data is received from the monitors, it is stored in a cache. An externally configured

timer then fires at regular intervals and the cache is examined for any outstanding

data update. The resource entity id of the update is located in the heap in O (log n)

time and its corresponding data structure is updated in constant time.

45

IV.2.4 Challenge 4: Using Multiple Configurable Monitor Components to Extract

Variety of Data

Context. There are many types of elements in a target domain for an enterprise DRE

system. Each element can have its own TM-Monitor tracking its resource usage. There can

also be multiple monitors for the same resource to record data from various perspectives.

For example, system utilization can be monitored via the load average value on a CPU, the

percentage of CPU usage, or the average amount of slack time in each cycle.

Problem. Configuring and using different resource data extraction mechanisms. There

may be a variety of monitor elements that record resource data using different mechanisms,

e.g., in some platforms (e.g., Windows) vendor-supplied software may track processor con-

sumption, whereas in other platforms (e.g., Linux) developers may need to write code to

access the data. In yet other platforms (e.g., VxWorks), developers may want to use spe-

cialized third-party hardware monitoring utilities. Since each mechanism may use different

APIs Bulls-Eye should be well-equipped to integrate and configure different types of mon-

itors with minimal developer effort.

Solution. Monitor algorithm wrapped within a shared library and configured using ini-

tial domain data. Bulls-Eye uses the Strategy pattern [24] to encapsulate each monitor

algorithm in a DLL whose common interface defines lifecycle activities and data extrac-

tion methods. When Bulls-Eye starts running the TM-Core sends each TM-Monitor the

initial Domain data containing the DLL name along with the specific configuration details

for each resource element it monitors. The TM-Monitor then uses the Component Config-

urator pattern [35] to link the DLL and update a map that associates each resource element

to its library name. The TM-Monitor calls each library to start/stop monitoring and to peri-

odically get their current data. It also combines the data from each library into one Domain

structure before uploading it to the TM-Core, thereby simplifying extensions to Bull-Eye’s

monitoring capabilities.

46

IV.3 Workload Modeling

This section describes the various factors affecting the workload of a web application

portal which is used as a representative example of a component-based distributed applica-

tion. The workload modeling will include demand for various services, sequence of service

invocations, and roles played by customers. It also describes the methods and strategies that

have been proposed in recent research to characterize those factors and produce workload

models. These workload models can then be used to evaluate web application portal perfor-

mance. The workload modeling process starts from live traces of the system that contains

logs of incoming user requests to the system. The traces represent actual workload and

may potentially contain a substantial amount of data. Since processing such a large amount

of data for performance evaluation is often unrealistic it may be ne-cessary to find some

inherent patterns in the data. This pattern can then be represented through the use of prob-

abilistic models and statistical distributions. The models should be generic enough so they

can be used for a wide set of performance evaluations. For example a web application por-

tal, such as an auction site like ebay, can have a number of different types of users, such as

casual browsers, sellers, buyers, bidders, and reviewers. Users will likely invoke different

services on the portal in different sequences, depending upon their objectives. By studying

the observed log of user behaviors, it is possible to characterize the sequence of activities

of a particular type of user.

Table 20 shows a possible set of transitions of a user doing simple browsing. It also

contains the probability of a browsing user invoking a particular service after another. The

row and the column headings consist of the various available services. Element x_i, j is the

entry in the ith row and the jth column and represents the probability of invoking the ith

row service after invoking the jth column service. For example, consider the entry X_5,7

which is equal to 0.99, which conveys that a typical user invokes "Search_it_reg", 99%

of the times after invoking ""Browse_Cat_Reg". Such a set of transition can be estimated

from the observed logs. In this manner, the behavioral patterns of different categories of

47

Home Browse Browse Browse Browse Srch Srch View View View View View View Probabilities
Cat Region Cat Items Items Items User Bid Items User Bid

Reg Cat Reg Info Hst Reg Info Reg Hst Reg
Home 0 0.01 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0026
Browse 1 0 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0100
Browse Cat 0 0.7 0 0 0 0 0 0 0 0 0 0 0 0.0070
Browse Reg 0 0.29 0 0 0 0 0 0 0 0 0 0 0 0.0029
Browse Cat
Reg

0 0 0 0.99 0 0 0 0 0 0 0 0 0 0.0029

Srch Items
Cat

0 0 0.99 0 0 0.44 0 0.74 0 0 0 0 0 0.3343

Srch Items
Reg

0 0 0 0 0.99 0 0.44 0 0 0 0.74 0 0 0.1371

View Items 0 0 0 0 0 0.55 0 0 0.8 0 0 0 0 0.2436
View User
Info

0 0 0 0 0 0 0 0.15 0 0.99 0 0 0 0.0747

View Bid
Hst

0 0 0 0 0 0 0 0.1 0.19 0 0 0 0 0.0386

View Items
Reg

0 0 0 0 0 0 0.55 0 0 0 0 0.8 0 0.0999

View User
Info Reg

0 0 0 0 0 0 0 0 0 0 0.15 0 0.99 0.0306

View Bid
Hst Reg

0 0 0 0 0 0 0 0 0 0 0.1 0.19 0 0.0158

Table 3: Transition Probabilities Between Various Services

users can be understood. A technique called Customer Behavior Modeling Graph (CBMG)

is presented in [65]. This technique represents user behavior patterns in the form of prob-

abilistic models. Figure 10 shows such a diagram of a typical user moving from one web

page to the other. The figure consists of a set of states and transitions. The states are con-

nected through transitions. Each state represents a web page or service provided by the

application. The transition from each state to another has a probability associated with it.

As shown in Figure 10, a user viewing the "Browse" web page can navigate to the "Browse

Regions" page with a probability of 0.3 and to the "Browse Category" page with a probabil-

ity of 0.7. Similarly a user in "Search Items" can "View Item" with 0.55 chance or go back

to the "Browse Category" page. These probabilistic models can be solved using standard

techniques [84].

The steady state probability (percentage of user sessions) for each service type is de-

noted by the vector π . The value of πi denotes the percentage of user requests that invoke

the the ith service. The vector π can be obtained by using a technique is similar to the one

in [83]. Once computed, the amount of load on each service type can be calculated from

48

the total number of user sessions. The rightmost column in Table 20 gives the steady state

probabilities of each service.

After solving the models, the percentage of user calls for a particular component can

be estimated. This can then be used together with the resource requirement profiled to find

the overall resource requirement of the component.

Figure 13: Customer Behavior Modeling Graph of a Typical User

IV.4 Conclusion

This chapter introduced a framework for runtime monitoring and profiling of compo-

nents in a distributed component based application. The framework consists of agents that

need to placed on each node and a central data collecter in one node. The resource require-

ment data for all the components are collected in a central respository and available upon

49

request. Thus such a framework can be used at runtime to collect usage data which can be

used for either runtime decision making or analysis. This framework also can be used to

collect profile data while the application is run with a basic dummy load. The framework

collects resource usage data which are actually base level profile data.

The chapter also discusses the technique of workload modeling using the CBMG as

an example. By using techniques such as CBMG, amount of hits to each component can

be computed. This, along with the profile data collected using the framework will help in

computing the overall resource requirement of each component for a particular workload.

50

Part II

Performance Estimation of Large Scale

Distributed Component Based Systems

51

This part of the dissertation deals with performance estimation of large scale component

based systems. As discussed previously, this dissertation deals with the issues of assuring

QoS by using novel deployment techniques. In order to ensure QoS, there is the need to

estimate the application QoS such as response time and verify it to be within some accepted

bounds. One way to estimate QoS is by developing a model of the application. This part of

the dissertation discusses different ways to come up with models of an application which

can be used for performance estimation of various kinds of systems.

Enterprise and real time systems together comprise a large part of relevant computer

systems. In enterprise systems, the average value of performance characteristics is impor-

tant while in real time systems there is the need to ensure deadlines associated with the

response time. Due to such different requirements, there is the need for different kind of

models. This part of the dissertation discusses how various kind of models can be built

for such different systems. Chapter V discusses analytical models for enterprise systems,

Chapter VI presents simulation models which simulate software contention which occurs

due to the conflict of different threads in a software program; Chapter VII discusses the

development of analytical models for real-time systems which can be used to analyze the

performance characteristics of multiple co-located tasks under a particular scheduling al-

gorithm such as earliest-deadline first, rate monotonic etc.

52

CHAPTER V

ANALYTICAL MODELS FOR PERFORMANCE ESTIMATION

Chapter I has motivated the requirement of analytical models for large scale distributed

component based applications. This chapter looks into how analytical modeling can be

used to come up with such performance models. First a basic queuing model is prepared

using the case study, RUBiS. In the next sections more specific scenarios that come up in

the real world are discussed.

As discussed in Chapter I there is the need for performance estimation to place com-

ponents. This estimation process involves (1)predicting the resource requirements of each

component for certain application loads, (2) predicting the response time of each service

for a particular placement, and (3) computing the overall resource utilization of each node.

As application components move among the various nodes, the performance of each ser-

vice in the application will vary. Performance also depends upon the components that are

collocated.

A queuing model provides average case performance analysis of a system. It also mod-

els the interaction of collocated multiple components by modeling the queuing delay for

resource contention. A deployment plan is converted into a multiple class queuing model

that maps each service as a class in the model. The components of a single class that

are placed in the same node are considered as a single entity. Their Service Demands are

summed together. After the model outputs the results, the performance parameters of each

class are mapped onto the services.

Figure 14 shows the process of creating a model of the application.

The input to such a process consists of the component placement map (mapping of

application components to nodes) along with their Service Demands and the workload

parameters, such as arrival rate of transactions and number of concurrent user sessions.

53

Servers

CAFe
Workload Parameters
λ: Arrival Rate
M: Concurrent Users
Z:Think Time
P: Arrival Distribution

Component &
Service aware
Queuing Model

Component Placement
with Service Demand

Figure 14: Create Models of Application

Depending upon the workload characteristics, a closed or an open model of the appli-

cation is constructed. An open model assumes a continuous flow of incoming requests with

a given average inter-arrival time between clients. A closed model assumes a fixed num-

ber of user sessions in steady state. The sessions are interactive and users make requests,

then think for some time, and then make a subsequent request. If an application consists

of independent requests arriving and being processed, it can be modeled as an open model.

If there are inter-dependent sequences of requests coming from a single user, however, it

must be modeled using a closed model.

These analytical model can be solved using standard procedures. Mean Value Analysis

(MVA) algorithm [46] is used to solve closed models, while an algorithm based on the

birth-death system is used to solve open models [46]. The solution to the analytical model

provides the response times of the various services and also the utilization of the resources

such as processor or disk usage in the various nodes.

V.0.1 Analytical Modeling of RUBiS Servlets

After the Service Demands and the steady state probability mix for each service is

available, an analytical model of the application can be developed. The RUBiS benchmark

assumes a client to carry out a session with multiple requests with think times in between.

This type of a user behavior must be modeled with a closed model.

54

As soon as a client finishes, a new client takes its place. The average number of clients

remains fixed. Figure 15 shows the analytical model of the RUBiS Servlets version.

.

.

.

Client
Terminals

CPU

Disk

CPU

Disk

Web Server/
Business Tier DB Server

Figure 15: Closed Queuing Model for Rubis Java Servlets Version

As mentioned in Section IX.3.2, the processor is the contentious resource. Each ma-

chine is represented by two queues, one for the CPU and the other for the disk.

Figure 15 also shows two queues for each of the two node in the deployment. The

first node is the Business Tier, which also serves as the web server. The second node is

the Database Server. The various client terminals are represented by delay servers. A

delay server is a server that does not have a queue, so clients wanting to use the server can

access it directly it without waiting. This design models user think times since as soon as a

response to a previous request comes back, the user starts working on the next request.

Figures 16a and 16b compare the results predicted by the analytical model to the actual

results collected from running the benchmark.

The benchmark is run using progressively increasing number of clients for 250,500,750

and 1,000, respectively. The components are placed in the nodes using RUBiS’s default

strategy, which places all the Business Tier components in the Business Tier node and

the entire database in the database server. The results in these figures show the model

55

Processor Utilization: Model Vs Actual

0

10

20

30

40

50

60

70

80

90

250 500 750 1000

Clients

%
 C

PU
 U

til
iz

at
io

n

Actual
Model

(a) CPU usage

Response Time for "Search by Categories"

0

50

100

150

200

250

300

350

400

450

250 500 750 1000

Clients

Ti
m

e
(m

se
cs

)

Actual
Model

(b) Response Time

Figure 16: Validation of Analytical Model

accurately predicts the response times of the services and the processor utilizations of the

nodes. This model can therefore be used by CAFe to find the placement of the components

that optimizes the capacity of the deployment.

V.1 Challenges in Analytical Modeling of Multi-Tiered Applications

The previous section described how a basic component aware queuing model of an ap-

plication can be developed. These models can be used for a variety of important functions,

such as performance evaluation, capacity planning, configuration management, admission

control, and cost analysis. One important criteria for such models is their accuracy. Accu-

rate models aid in all of the above functions, which in turn help build better and reliable

systems. Unfortunately, developing accurate system models for multi-tiered applications

is hard. Consequently, often these models are approximate and may not truly represent the

actual application.

Significant prior work exists that uses one or more of analytical modeling techniques

for developing accurate models. For example, [70, 75, 77, 84, 85] have used analytical

techniques and profiling to build models of multi-tiered web portals but have not accounted

for increased system activity, such as page-faults which occur with increased load. The

56

emerging trend towards multiple processors/cores has also not been considered by most of

these works.

An additional issue concerns databases. Most prior work fail to account for database

optimizations, e.g., optimizations to handle similar (i.e., overlapping) queries that run con-

currently. Finally, resource allocation, which is a key issue in capacity planning, has been

investigated only at the granularity of an entire tier-level, however, this coarse level of

granularity is insufficient in minimizing the number of and efficiently using resources in

the context of modern multi-tiered systems that are made up of finer-grained components.

This section identifies three some common scenarios that occur in realistic production

environments and highlights the limitation in modeling these scenarios using modeling

techniques developed in recent work on multi-tiered web applications. The cases illustrated

clearly suggest the need for application-specific and/or domain-specific models, which are

modified versions of traditional models catered to a specific scenario. The chapter subse-

quently sketches preliminary ideas on a process that combines profile data and analytical

modeling to develop more accurate models.

The scenarios are shown in the context of the Rice University Bidding System (RU-

BiS) [3] which is a prototype application of an ebay like auction site. The experiments

shows how modeling techniques used in recent research for multi-tiered web applications

fall short in coming up with good estimates of system parameters that in turn limit the

accuracy of the developed models.

V.1.1 System Activity at Heavy Load

Recent work [75, 77, 84, 85] use queuing models to estimate performance of multi-

tiered applications. But such models can introduce errors in estimating performance ac-

curately when system activity, such as context switching and page faults, increases. To

highlight this limitation and understand why these models fall short, we developed a similar

queuing model and used mean value analysis algorithm to estimate response times observed

57

by clients of RUBiS as system activity keeps increasing. We then compared these estimates

against experimentally-measured response times for the SearchByRegion service of-

fered by RUBiS as shown in Figure 22a.1

Figure 22a shows that the two curves remain close to each other at low utilization for

a small number of clients. However, as the number of clients increases (which in turn

increases system activity), the disparity between the experimental and analytical results

becomes significant.

This disparity is attributed primarily to the service demand used by the model, which

is measured by executing only a single job [46] when there is minimal load. The service

demand in the model does not account for excess system activity that takes place with a

large load. This excess system activity needs to be taken into account in the model which

potentially could be done by inflating the service demand as load increases. Thus our

approach is to model the service demand as a function of the load and use it in the MVA

calculation. This will consider the increased system activity and will improve the model

estimation.

4000

6000

8000

10000

12000

Ti
m

e
(m

s)

Actual

Model

0

2000

250 500 750 1000

R
es

po
ns

e

Clients

Figure 17: Comparison of Analytical vs Empirical Data

1Similar comparisons were made for services like SearchByCategory but are not shown due to lack
of space.

58

V.1.2 Multiprocessor effects

With increasing availability and use of multi-processors and multi-cores for multi-tiered

applications such as web portals, existing closed queuing network models [61, 77, 85] must

now incorporate support for multiple servers. Although existing closed queuing networks

can be solved efficiently using the mean value analysis (MVA) algorithm, accounting for

multiple-server models requires computing the probability mass function of the queue sizes

for each server. The mass function is used within MVA to calculate the total expected wait-

ing time that a customer experiences on a server. This approach, however, significantly

increases the complexity of the MVA solution. A potential solution has been suggested

in [72] where a correction factor is used that estimates the server waiting time for multi-

processors. But it is also suggested that this correction factor will be application and hard-

ware specific. Thus there is the need to somehow measure such a correction factor in order

to use it.

V.1.3 Dependent Transactions

Multi-tiered applications often comprise databases, which means that user invocations

will result in database transactions that operate on related data. Modern day databases

use different kinds of optimizations for multiple overlapping queries. These optimizations

include caching of intermediate data [63] or using heuristics [62]. Such optimizations could

result in unpredictable performance for concurrently executing and overlapping queries,

which makes it hard to estimate the performance of multi-tiered applications at design-

time. Nonetheless, it is important to model these effects since they can play a dominant

role in the overall performance of the multi-tiered application. Note that such effects will

be primarily application- and query-specific and can be modeled with the help of extensive

profiling.

We highlight this challenge using a specific example in RUBiS and then describe how

to model such behavior based on profiled data. We focus on two types of browsing queries

59

in RUBiS: SearchByRegion and SearchByCategory. Both these queries work on

the same table named items. However, SearchByRegion also uses an additional users

table. We observed that when the two different queries execute all by themselves (i.e., no

concurrency), the SearchByCategory is much faster than the SearchByRegion as

shown in Figure 18 (Lines SearchByCategory and SearchByRegion).

4000

6000

8000

10000

12000

po
ns

e
Ti

m
e

(m
se

c)

SearchByCategory
SearchByRegion
OvrLp Search Cat
OvrLp Search Reg

0

2000

250 500 750 1000

R
es

p

Clients

Figure 18: Concurrent Overlapping Queries Have Similar Response Times

However, when the two queries execute concurrently on the same database, their indi-

vidual response times become almost the same (Lines OvrLp Search Cat and OvrLp

Search Reg). With a low number of clients the response times are somewhat differ-

ent but as the number of clients increase (and hence the overlapping queries increase), the

response times experienced by all the clients are almost the same. We surmise that this

behavior is attributed to some optimization in the databases when multiple overlapping

queries run concurrently. Intuitively it seems that since both queries are using the same

table, there is some locking due to a software lock such as a semaphore or a mutex.

60

Although we can only surmise the exact cause of the behavior shown in Figure 18, we

were able to reproduce this behavior across multiple experiments. Figure 19 shows a closed

queuing model where the processor on which the query executes is modeled as a queue.

CPU

Figure 19: Traditional Closed Queuing Model

An additional delay server models the client think time. This is the normal way in

which such database queries can be modeled using queuing networks. Here we assume

that only one resource is being used, which is the CPU. This model also assumes there is

no internal blocking and thus works properly as long as there are no optimizations.

To model the blocking effect stemming from the use of software locking for overlapped

query optimizations, we introduced another resource on which each query waits for some

time. This resource could be thought of as a software lock where each query waits to

grab the lock before accessing the table. Thus, the newly introduced resource simulates

the blocking time spent by the queries when executed concurrently. Figure 20 shows the

enhanced queuing model which introduces an extra queue compared to Figure 19.

CPULock

Figure 20: Additional Queue to Model Software Blocking

61

Configuration Configuration Details
Configuration 1 Four 2.8 GHz Xeon CPUs, 1GB ram, 40GB HDD
Configuration 2 Quad Core 2.4 GHz Xeon CPUs, 4GB ram

Table 4: Machine Configurations Used

Having developed the model, the next step is to estimate how long a query waits on the

lock. Intuitively it appears that a query of one type will wait for the query of the other type

to finish. Thus, it will wait for the length of the time equal to what the other query takes to

finish its job. In other words, the waiting time for the query under consideration is equal to

the service demand of the other concurrently running query on that processor. This might

not be the perfect way to estimate the time spent on the lock and the actual time depends

upon the optimizations in the database. But our objective is to build an approximate model.

Thus, we assign the service demand of the query on the lock to be equal to the service

demand of the other query on the processor.

Capacity planners must identify sources of such database optimizations in their appli-

cations and use the suggested technique of modeling the extra locking queue to obtain

accurate performance estimates. An alternative way of modeling this scenario would be to

consider the two job classes as a single one. But then the parameters of each separate job

class will not be available and cannot be used if they are required.

The model is validated and Figure 21 shows the performance estimation of the inter-

dependent queries. It can be seen from the figure that our model accurately estimates

the effect of the inter-dependent queries. The above queuing model is used to predict the

response times of various services of RUBiS under two different hardware configurations.

The hardware configurations are given in the Table 4:

Two sets of experiments are run in each machine configuration, one when a single

service is run another in which multiple services(class) are run. The former exhibits the

performance of each component running in isolation while the latter gives an idea of the

62

Dependant Queries Running Together

0

1000

2000

3000

4000

5000

6000

250 500 750 1000

Clients

R
es

po
ns

e
Ti

m
e

(m
se

c)

Model Search Cat

Model Search Reg

Actual Search Cat

Actual Search Reg

Figure 21: Model of Inter-Dependent Queries

effect of collocation of components. In both cases, we use the above queuing model to

predict the response time. The parameters (service demand) of the queuing model depend

upon the machines on which the application runs. The service demands are thus computed

by profiling each single component on the different machines by running with a single

client in the system. In previous work[14], it was seen that CPU activity of RUBiS increases

with load compared to memory and bandwidth which remain fairly constant. Thus CPU is

mainly considered here.

Figure 22a shows the response time when a single service of RUBiS is run with Con-

figuration 1. Similar behavior is also seen when multiple services are run, as shown in

Figure 22. Here we reproduce two of the services “SearchByCategory” and “SearchByRe-

gion” which have higher response times. In this experiment around 12 services are running

each service having 3 components. The other services also incur similar estimation errors.

Figures 23a, 23b, 23c show the response time of the same above services when multiple

services are running together in Configuration 2. The model prediction is also shown.

63

4000

6000

8000

10000

12000

Ti
m

e
(m

s)
Actual

Model

0

2000

250 500 750 1000

R
es

po
ns

e

Clients

(a) Single Service

200

300

400

500

600

700

800

on
se
 T
im

e
(m

se
c)

Actual

Model

0

100

200

250 400 650 750 900

Re
sp
o

Client

(b) Multi Service: SearchByRegion

200

300

400

500

600

700

ns
e
Ti
m
e
(m

se
cs
)

Actual

Model

0

100

200

250 400 650 750 900

Re
sp
o

Clients

(c) Multi Service: SearchByCategory

Figure 22: Comparison of Analytical vs Empirical Data

1000

1500

2000

2500

on
se
 T
im

e
(m

se
c)

Actual

Model

0

500

250 500 750 900 1000

Re
sp
o

Clients

(a) Multi Service: SearchByRegion

600

800

1000

1200

1400

1600

1800

on
se
 T
im

e
(m

se
c)

Actual

Model

0

200

400

250 500 750 900 1000

Re
sp
o

Client

(b) Multi Service: SearchByCategory

10

15

20

25

30

35

40

CP
U
 U
ti
l

Actual

Model

0

5

10

250 500 750 900 1000

Clients

ctua

(c) CPU Utilization

Figure 23: Comparison of Analytical vs Empirical Data In Configuration 2

Strange behavior is seen in this experiment, as shown in Figure 23c where the CPU is

only loaded till around 30%. After this point, as load increases the response time shoots

up even though the CPU is underloaded. The memory and bandwidth also remains much

below its capacity(not shown here for lack of space). It is evident that there is some other

bottleneck in the system which causes the response time to shoot up. It could be due to

software contention. The queuing model understandably cannot predict this behavior since

the "invisible bottleneck" is not modeled. Thus it estimates the CPU utilization to increase

with load while in reality it saturates around 30% as shown in Figure 23c.

Finding the root cause of this bottleneck is hard since it might require investigating

immense amount of code and analyzing various scenarios. In a real world scenario it could

also be caused by third-party libraries, the code for which may not be available. In such

64

cases, finding the root cause is nearly impossible. In such a scenario, a basic queuing

model becomes increasingly erroneous and cannot be relied upon for proper prediction.

Such scenarios are extremely challenging and it is very difficult to come up with models

which estimate performance characteristics in a proper way.

A straightforward way would be to profile the system with different workload and cre-

ate statistical regression models. But such an approach will not help us in predicting the

performance when components are arbitrarily placed in different combinations in the ma-

chines since this will require us to profile the application using every combination of the

components which is clearly not possible. The next section details the solution approach

followed in this work.

V.1.4 Solution: Profile driven Regression based Extended Closed Queuing Network

This section discusses the details of the modeling techniques developed by enriching

basic closed queuing models with statistical regression models to come up with increased

accuracy in estimating application performance.

In our approach we come up with the following steps to produce better models: (a) Pro-

file individual components, (b) Create regression models, and (c) Extend queuing models

with regression models

This helps us in estimating the performance of multiple components running together in

the same machine using profile data of individual components. One one hand it leverages

the strength of regression models where unique scenarios or environmental effects are cap-

tured through profiling and on the other hand uses the strength of queuing models which

enables the performance estimation of multiple classes (or collocated components). The

above approach ensures that the profiling is kept to no more than it is absolutely required

and also leverage existing queuing models to estimate multi-component behavior which

can be used for component placement decisions.

65

V.1.4.1 Modeling Increased System Activity

The Figures 22a, 22b and 22c show that there is increased error in model prediction at

high load. This section discusses the probable reasons for such error and comes up with

solutions to address them.

Queuing models can be efficiently solved using approximate Mean-Value Analysis

(MVA) algorithm [46]. The main equation that is used to compute response time is given

by

R = Dir +ni×Dir (V.1)

where Dir is the service demand of service r on device i and ni is the number of waiting

jobs on device i. The service demand gives the actual resource time used by a component

while processing the job. At high load, additional activity in the machine due to system

work including context switches, paging, swapping etc also adds to the response time. This

excess system activity is not accounted by Equation V.1.

To further investigate this intuition we measure the number of context switches that

occur per second as client population is increased (measured using Configuration 1 as given

in Table 4). This data is plotted in Figure 24. It can be seen that the number of context

switches per second steadily increases with increase in client population. Since context

switch is one type of system activity, it clearly shows that the amount of system activity

increases with clients. The challenge now is to capture and quantify this increased system

activity in terms of resource usage so that it can be added to the MVA analysis which will

then produce better estimation of performance parameters.

Next we measure the total CPU utilization per job as we increase client population.

This measurement is done by capturing the total CPU utilization for the lifetime of the

experiment and dividing it by the total number of jobs completed in the same interval. The

observed total CPU utilization per job is shown in Figure 24 along with the context switches

per sec. It is seen that the CPU utilization per job steadily increases along with the number

of context switches per sec and becomes steady after some time. Initially, at very low load

66

(single client) there is nearly zero context switch/sec. The CPU utilization/job is also very

less and matches with the service demand value. Consequently it can be deduced that as

system activity increases the excess CPU utilization per job is due to additional system

activity. Obviously such effect must be accounted for in a performance model. However,

traditional queuing models do not account for this behavior.

To overcome this limitation we define a term "Overall Service Demand" (OSD) which

is defined as the total resource time required to complete a single transaction. Thus the

CPU utilization shown in Figure 24 is actually the OSD for the concerned service. As

shown in Figure 24 the OSD has the potential to vary with load since it is the sum of the

service demand and resource usage due to system activity.

Overall service demand (OSD) can be measured using the service demand law [46].

The service demand law is given as Di = Ui/X where Di is the service demand on the ith

device, Ui is the utilization of the ith device, and X is the total number of transactions/sec

or throughput of the system. When the service demand law is used at high load it returns

the OSD which is a sum of the service demand and the resource time spent due to system

activity. The OSD can thus be obtained for different client population by measuring the de-

vice utilization and the throughput of the services while client size is varied. The measured

values are then used with the above law to obtain the OSD.

We empirically profiled each service hosted by the RUBiS web portal by varying the

client size from an initial small value to a large value. Here we assume that individual

components (services) of a large, multi-tiered system are available for unit testing and

profiling. We measured the processor usage and the number of successful calls for each

client population size. The service demand law is then used to compute the overall service

demand for each client size.

As seen in Figure 24, the overall service demand remains steady at low utilization

(≤ 10) and then follows a near linear increase till around 80% utilization or 350 clients.

The linear rise can be attributed to the increase in system activity as clients increase. Since

67

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

0
10
20
30
40
50
60
70
80
90

on
te
xt
 S
w
it
ch
/S
ec

Jo
b
(m

se
c)

Overall Service
Demand

Context
Switches/sec

00

Co

CP
U
 T
im

e
Pe

r
J

Clients

Figure 24: Overall Service Demand

each client represents a thread in RUBiS, consequently, an increase in the number of clients

increases the number of threads.

This behavior is better understood from the number of context switches as utilization

and clients increases. There is negligible context switching for low number of clients but

increases linearly with clients until 350 clients when it becomes steady. At 350 clients,

the service demand also stabilizes because the device (e.g., CPU) utilizations are close

to saturation (greater than 90%) and there is not much scope for any increase in system

activity. We have observed similar behavior in the other services of RUBiS.

Based on these insights, the overall service demand is modeled as a load-dependent

function of processor utilization which is piecewise linear. To empirically obtain accurate

demand functions, the Polyfit tool provided in the Matlab Curve Fitting Toolkit is used. The

68

resulting function which represents the overall service demand for the SearchByRegion

service is given by:

OSDsr(U) =


48 for U < 8

0.4264×U +45.1062 for 8 <=U <= 85

81.62 for U > 85

(V.2)

and the function representing the service demand for the SearchByCategory service is

given by:

OSDsc(U) =


28 for U ≤ 5

0.0457×U +24.94 for 5 <=U <= 84

52.06 for N ≥ 84

(V.3)

The coefficient of determination, R2, value for the linear fit is 0.99 for both equations

indicating very good fits. Capacity planners using MAQ-PRO should adopt a similar ap-

proach to obtain accurate functions for overall service demands of individual services be-

longing to their applications.

The MVA algorithm used is now modified to include usage of the overall service de-

mand instead of the original service demand which represents the actual resource time used

by a transaction. Thus Equation V.1 is replaced by the following:

R = OSDir(U)+ni×OSDir(U) (V.4)

where OSDir is the overall service demand for the rth class on the ith device. So the single

constant value of service demand is replaced by overall service demand which takes into

account the system activity in the machine.

Using the above version of MVA, we validate the response time prediction of the model

69

against actual measured response time under a single processor machine and is shown in

Figure 25. It can be seen that for single processor machines, our extended MVA can nicely

approximate the response time.

V.1.4.2 Modeling Multiprocessor Effects

Due to the increasing availability and use of multi-processors and multi-cores for large

scale applications, such as web portals, existing closed queuing network models must

model multi-processor effects on performance. We use the extended version of MVA ex-

plained in Section V.1.4.1 to validate the prediction under hardware Configuration 1 as

given in Table 4. Figure 26 compares the model estimation with empirical measurement

and shows that there is still some gap in the estimation which is investigated in this next

section.

Typically multiple-server queuing models are solved by considering each multiple server

as a load dependent server [46] and computing the probability mass function of the queue

sizes for each server. The mass function can then be used within MVA to calculate the total

expected waiting time that a customer experiences on a server. This approach, however,

significantly increases the complexity of the MVA solution. There have been attempts in

recent research [72] in which a simple approximate method is presented that extends MVA

to analyze multiple-servers. In [72], the authors introduce the notion of a correction factor,

which estimates the waiting time. When a transaction is executed on multi-processor ma-

chines, the waiting time for each transaction on the processor is taken to be the product of a

constant factor, the service demand, and the average number of waiting clients as captured

by the following formula:

R(N) = SD+ c×SD×n (V.5)

where R(N) is the response time of a transaction when there are a total of N customers

in the system, SD is the service demand of the job, n is the average number of customers

waiting on the device, and c is the correction factor to compute the waiting time. In their

70

work they theoretically compute the value of the correction factor. [72] also considers

a constant service demand and thus Equation V.5 need to be adjusted by using Overall

Service Demand instead of service demand to incorporate increased system activity at high

load. Equation V.6 shows the revised version including overall service demand (OSD).

R(N) = OSD(U)+ c×OSD(U)×n (V.6)

We surmise that such a correction factor will depend on a number of factors, such as the

domain of the operation, and the service time characteristics for the underlying hardware,

the cache hit ratio, memory usage levels, memory sharing etc. Therefore, the correction

factor will vary with each different scenario and need to be profiled on the particular hard-

ware. We now describe how we found the correction factor for the RUBiS example.

Capacity planners using the MAQ-PRO process should adopt a similar approach for

their applications. The data needed to compute the correction factor can be extracted from

the same experiments done to estimate the OSD as mentioned in Section V.1.4.1. Thus there

is no need to conduct additional experiments and a single experiment will suffice for both

the OSD and the correction factor. Our approach again is to profile individual components

and then estimate the expected performance when any combination of the components are

placed in the machines.

Referring to Equation V.6, the value of the overall service demand OSD(U) can be

found using the profile-based curve fitting approach explained in Section V.1.4.1. The

average number of customers waiting on the CPU, n, is obtained by using standard system

monitoring tools. The response time for each transaction, R(N), can be obtained from the

application logs or by time-stamping client calls. The only unknown in Equation V.6 is the

correction factor, c, which can be obtained by solving the equation.

We ran a number of experiments for different classes of services supported by RUBiS

with different client population sizes and the variable n was monitored. R(N) was obtained

from the RUBiS logs. The load-dependent service demands, OSD(U), were obtained from

71

Equations V.2 and V.3. The correction factor was then computed using Equation V.6, which

is presented in Table 5 for two different services in RUBiS for a 4 processor machine.

Figure 27 shows the comparison of the empirically obtained correction factor to the one

proposed by Suri. It clearly shows that the actual correction factor is much different and

depends upon the specific scenario.

Table 5 presents the experimental values and the computation for the correction factor

with different client population for the two main services in RUBiS. The inverse of the

correction factor is given in the rightmost column of the table. It is termed as CI. It can be

seen that the correction factor varies with clients or processor utilization.

Since the correction factor actually represents the multi-processor effects on perfor-

mance, it should be dependant on the number of processors in the machine. To validate our

hypothesis, we configured the machine to use different number of processors and repeated

the experiment with 1 and 2 processors, respectively. Figure 28 shows the value of CI

with clients for the service "SearchByCategory". Similar results were obtained for other

services but are not shown due to space constraints.

The value of CI is interesting. It has a very high value with less load but slowly con-

verges to a steady value at high load. The steady value appears to converge to the number

of processors in the system. It can also be seen that the variation in the factor increases

with increase in processors. Higher values of CI (i.e., lower value of the correction factor)

improves the response time as seen from Equation V.6. This observation indicates that the

correction factor could also be indicative of the inherent optimizations such as caching that

occur in the system.

This hypothesis needs further investigations and will become part of our future work. It

also tells us that at high load there may not be much scope of optimization and the system

behaves like a straightforward fluid flow system and can be modeled using variations of

fluid flow modeling techniques as done by many recent work. [11, 38, 54]

The value of CI for each client population is averaged over all the services. It is then

72

Service Clients Service Avg Response Corr. CI
Name Demand (msec) Waiting Time Factor CI

Search 100 51.71 2.00 54 0.022 45.16
ItemsByReg 150 57.12 2 62 0.043 23.40

200 64.29 3 77 0.066 15.17
250 71.4 5 103 0.089 11.29
300 78.3 10 222 0.183 5.45
350 80.78 40 909 0.256 3.90
400 81.12 86 1968 0.27 3.69
500 81.62 185 4232 0.275 3.64

Search 100 51 2 54 0.029 34.00
ItemsByCat 150 31.25 2 34 0.044 22.73

200 33.45 2 37 0.053 18.85
250 35.6 2 40 0.062 16.18
300 38.38 3 47 0.075 13.36
350 41.28 4 58 0.101 9.88
400 43.16 5 73 0.138 7.23
450 46.14 8 116 0.189 5.28
500 50.88 34 513 0.267 3.74

Table 5: Correction Factors for Various Services

approximated against processor utilization. A piecewise linear function is developed to

express CI as a function of utilization which is calculated using polyfit function in Matlab

and is given by

CI(U) =


−0.5632×U +38.75 for U <= 58

−0.1434×U +15.71 for 58 <U < 85

3.69 for U ≥ 85

(V.7)

Equation V.7 is then used from within MVA algorithm to compute the response time in

each iteration.

V.1.4.3 Modifying Mean Value Analysis Algorithm

As described in Section V.1.4.1, we develop a multi-class closed queuing model for RU-

BiS as shown in Figure 62. An approximate MVA algorithm based on the Schweitzer [46]

73

Algorithm 1: Modified Mean Value Analysis
Input:

R Number of Job Classes
K Number of Devices
Di,r Service Demand for rth job class on ith device
Nr Number of clients for rth class

Output:
Response Time R← vector containing response time for all classes of jobs

begin
// Run initial MVA with lowest service demand
while Error > ε do

// Initialization
for r← 1 to R do

for i← 1 to K do
Di,r = OSDi,r(Ur) // Call function for Service Demand with device

utilization as parameter
Ri,r = Di,r× (1+CI(Ur)×nr)

end
Xr =

Nr
Zr+∑

K
i=1 Ri,r

end
// Error = Maximum Difference in Utilization between successive iterations

end
end

assumption can be used to solve this model and calculate performance values, such as re-

sponse time, number of jobs in the system, and device utilizations for closed systems [46].

We developed an approximation to the original MVA algorithm as shown in Algorithm 1.

Some details in the initialization phase are not shown due to space constraints.

The algorithm starts by assuming that the clients are evenly balanced across all the

devices and then adjusts the clients in the various devices iteratively. In each iteration, the

algorithm computes the number of clients on each device, response time, utilization and

throughput of each job type. It continues this iteration until the error in the number of

clients in each device reduces below a given minimum.

The boldface parts shown are the places where the original MVA algorithm is modified

74

to include the functions for overall service demand and refined correction factor. The func-

tion OSDi,r represents the service demand function for rth job class in the ith device while

function CI(Ur) is the Equation V.7. Both of these functions need device utilizations which

is computed on every loop. They also need an utilization value which needs to be provided

for the first iteration. For this reason, initially the first iteration is run using the lowest value

of overall service demand for each service as given by Equations V.2, V.3 and the value of

CI equal to the number of processors in the system.

V.2 Conclusion

This chapter presented techniques to develop analytical models of distributed compo-

nent based systems. It first showed how basic queuing models can be developed which

nicely estimated response time, utilizations and throughput of the system. These models

work very well under low utilization, independent transactions and single processor. Un-

fortunately in the real world, there is mostly high utilization, dependent transactions and

multiple processors. The second part of the chapter shows how traditional queuing models

can be enriched with empirically collected data so that the models become more accurate

and robust. The pitfall of this technique is that there is the need to profile any new applica-

tion or hardware that is introduced. But this may not be a serious disadvantage as long as

such events are within a limit.

75

2000

3000

4000

5000

6000

7000

on
e
Ti
m
e
(m

se
c)

Actual

Model

0

1000

2000

50 100 150 200 250 300 350 500

Re
sp
o

Clients

200

300

400

500

600

700

on
se
 T
im

e
(m

se
c)

Model

0

100

200

250 400 650 750 900

Re
sp
o

Clients

Actual

Figure 26: Response Time in Multiple Processor Machine

76

0.1

0.15

0.2

0.25

0.3

or
re
ct
io
n
Fa
ct
or

Empirical Correction
Factor Suri Correction

Factor

0

0.05Co

Utilization

Figure 27: Comparison of Empirical Correction Factor with Suri Proposed

15

20

25

30

35

40

45

50

CI
 V
al
ue

4 Processor

2 Processor

1

0

5

10

50 100 150 200 250 300 350 400

Clients

Processor

Figure 28: Inverse of Correction Factor (CI)

77

CHAPTER VI

MODELING SOFTWARE CONTENTION USING COLORED PETRI NETS

The previous chapter discussed about creating a performance model using queuing net-

works. This model is an analytical one and can be included as part of an algorithm. But

analytical modeling can be approximate in some cases. If the requirement is to get more ac-

curate models which closely mimics the actual scenario then simulation models are created.

This chapter discusses simulation modeling and goes through a case study using a multi-

threaded application. It shows how a simulation model is created of a multi-threaded appli-

cation and how it is used to configure the application so that the objective of the application

is maximized. The next section motivates the requirement of proper software configuration

in the face of modern day hardware characteristics such as multiple cores/processors.

VI.1 Model Driven Application Configuration

S ervers, such as database servers or web servers, typically receive incoming requests,

process them, and then returns responses to the requesting clients. One way to improve the

response time of a server is to create multiple threads to service requests. Each incoming

request can be assigned to a thread that processes it and prepares the response.

With the growing adoption of multi-core and multi-processor machines, software appli-

cations require multi-threading to leverage hardware resources effectively [73]. In theory,

multi-threading can significantly improve system performance. In practice, however, multi-

threading can incur excessive overhead due to software contention (e.g., mutually exclusive

operations needed to mediate thread access to shared data) and physical contention (e.g.,

access to hardware resources, such as CPUs and memory). There is a trade-off between (1)

increasing the number of threads to decrease client response time vs. (2) a larger number

of threads causing bottlenecks that can increase response time.

78

What is needed, therefore, is a technique for selecting the optimal number of threads,

which depends upon various factors including the underlying hardware, multi-threading

architecture, and application logic.

In conventional multi-threaded systems, application developers and deployers make

these decisions manually using their experience and intuition, which can be tedious and

error-prone. Moreover, when workloads change, it is hard to estimate the effect on applica-

tion performance since there is no explicit and analyzable model of application component

behavior. As a result, performance problems typically emerge late in the software life-cycle

during the integration phase, where they are more costly to fix.

Solution approach→Optimize an application configuration using simulation models.

This chapter presents and evaluates a method for modeling the software and physical con-

tention of multi-threaded applications to estimate the number of threads needed to produce

optimal performance using a particular set of hardware resources.

This method constructs a simulation model of a complex multi-threaded application

using Colored Petri Nets (CPNs) [27], which are a discrete-event modeling language that

extends Petri nets with a “color” for each token. A CPN model of a system is an executable

model consisting of different states and events, along with a notation that represents the

time taken to trigger events. CPNs are suited for modeling concurrency, communication,

and synchronization among different system components. Our work uses CPN tools [28],

which help construct and analyze CPN models via an engine that conducts simulation-

based performance analysis using the functional language Standard ML [48].

CPNs are used in this chapter to model simultaneous resource possession for a target

tracking application containing many threads sharing multiple locks. The application is

first profiled and runtime performance data is collected, which is used to parameterize the

CPN model. The CPN model is then run to predict application performance under various

configurations. The predictions are compared with measured data to validate the CPN

79

Target
Tracks

Get

Data

SpawnsTracks Location

Updates

Location

TrackersTrackers
Trackers

LocationLocationLocation
SatellitesSatellitesSatellites

Figure 29: Active Objects in Target Tracker

model. This chapter describes the challenges that are addressed in building the CPN model

and using it to predict the behavior of the target-tracking application.

VI.2 Application Case Study: Target Tracking Simulator

This section describes the application that is created and used as a case study to evaluate

the work on performance prediction of multi-threaded applications.

VI.2.1 Overview of the Target Tracker

The case study involves a target-tracking simulation application composed of active

objects [65], such as target, tracker, and satellites shown in Figure 29.

There can be multiple instances of trackers and satellites; each tracker collects the tar-

get’s latest location from a satellite. To increase the probability of finding the target, the

application must be configured with the right number of trackers and satellites.

Each active object has its own thread and executes methods of its own object, i.e.,

there is a one-to-one correspondence between an active object and a thread. Every active

object executes its application logic as shown in Figure 30. Sometimes an active object

interacts with the other active objects to exchange data, e.g., each tracker collects data from

the satellite during every period. An active object therefore performs a periodic task that

80

sleeps for a specified length of time, wakes up and performs some work, and goes back to

sleep, as shown in Figure 30.

As evident from the Figure 30, each active object has its own control flow and can block

contending for shared data with other objects. The following active objects are defined in

the application case study (shown in Figure 29):

• Target, which simulates a target that moves through an area and tries to evade its

trackers. Every time it wakes up, it randomly calculates a new direction and velocity and

goes to sleep again. While sleeping, it moves in a particular direction with designated

velocity. There is one instance of the target in the application.

• Satellites, which gather information of the latest position of the target. Within the ap-

plication, the latest coordinates of the target is placed in a global variable that each satellite

reads periodically.

• Trackers, which pursue the target by obtaining its latest position via the location

objects described below. Each tracker recalculates its new direction and velocity every

period depending on the target’s latest position. It also checks if it “hits” the target, i.e., if

its current position is within some small distance of the target.

• Tracker location updates, which are created by trackers for each satellite present

in the application. The location objects periodically call on the satellite, obtain the latest

position of the target, and update the local database within the tracker. Each pair of satellite

and tracker objects are associated with a location active object.

Although the target object does not exhibit any contention with any other object, the

other objects contend with each other. As shown in Figure 30, the “Update tracker DB”

activity in the tracker flow contends with the “Update Data” activity in the Location flow.

Likewise, the “Get new position of target” activity contends with the “Get latest target

position” activity on the satellite flow. The blocking time on these locks increases when the

number of objects increases which also increases the number of threads.

81

VI.2.2 Case Study Application Goals

Our case study application is designed to track down the target a maximum number of

times. In theory it may appear that the chances of hitting the target grows with an increased

number of satellites and trackers, though in practice this approach may increase contention,

which can decrease tracker and satellite throughput, as well as decrease their effectiveness

and increase the time to hit the target. In particular, increasing the number of active objects

or threads might improve application performance but it could also degrade performance

by increasing bottleneck contention. Application deployers will therefore benefit from a

technique that can determine the optimal number of trackers and satellites needed to hit the

target in the least amount of time.

VI.2.2.1 Predict Application Performance

The first goal of our case study is to predict the performance of the target tracker ap-

plication under configurations that differ in terms of the number of tracker and the satellite

objects. The notation that is used to depict each configuration is: # of target objects_# of

tracker objects_# of satellite objects. Thus, a configuration of 1_2_3 means that there is 1

target, 2 trackers, and 3 satellites. As mentioned in section VI.2.1 there is a location object

for each pair of tracker/satellite. As a result, the configuration 1_2_3 would have 2x3=6

location objects, resulting in a total of 1+2+3+6=12 objects. Since there is a single thread

per active object, this means there are 12 threads in the application for this configuration.

The application is observed until the target performs 500 periods. The target completes

one iteration of sleep and computation per period, as shown in Figure 30. The application

runs two scenarios: (1) with all locks and (2) with no locks. The latter method is obviously

incorrect from a functionality point of view but it quantifies the impact of contention and

blocking on performance.

The accuracy of the prediction is not important; the key point is that the relative perfor-

mance characteristics should be captured by the model, i.e., the performance patterns/trends

82

should be predicted. For example, the model should tell if the average throughput of the

tracker decreases or increases when a particular configuration is changed. The magnitude

of the difference is less important.

VI.2.2.2 Extract Optimal Configuration

The performance data predicted by a simulation model of the application is used to

choose the best configuration for the application, where “best” is defined as the greatest

likelihood of the trackers hitting the target. To use the model predicted data, a utility

function is used that quantifies the chances to hit the target the most number of times by

maximizing the following factors:

• Tracker activity should maximize Ntr ∗µtr, where Ntr is the number of trackers con-

figured in the application and µtr is the average throughput of each tracker. This expression

represents the number of times a tracker activity takes place in unit time, e.g., per second.

• Location updates should maximize Ntr ∗ µloc, where µloc is the average throughput

of the location object for each tracker. This expression represents how frequently the latest

position is updated to the tracker.

• Satellite throughput should maximize Nsat ∗µsat , where Nsat is the number of satel-

lites configured and µsat is the average throughput of each satellite. This expression repre-

sents the number of times the satellite updates the latest location of the target.

The chance of hitting the target with Ntr trackers is expressed by the function H(Ntr)

and is computed as:

H(Ntr) = Ntr ∗ (µtr +µloc)+Nsat ∗µsat (VI.1)

The configuration that maximizes the value of this function should provide the preferred

application setting, which can be computed by predicting tracker, location, and the satellite

throughput and using them in the above equation.

83

VI.3 Experiments

This section discusses how a model of the application case study described in Sec-

tion VI.2 is created and validated the model against profiled data.

VI.3.1 Application Profiling

Experiment design. The application case study is profiled under various thread config-

urations to collect performance data which is used to calibrate and validate the simulation

model. The experiments run on a single CPU, Intel Pentium, 1.70 GHz machine with 1

GB RAM. The OS is Windows XP Professional Version 2002 with service pack 2. This

application runs until the target completed 500 iterations. The time taken by the target

is recorded (Ttg), along with the number of iterations of other objects or threads. After

this data is recorded the throughput of satellite and location are measured. The throughput

of the satellite is defined as Nsat/Ttg, where Nsat is the number of iterations of a satellite.

Likewise, the throughput of the location is Nloc/Ttg, where Nloc is the number of location

iterations.

To capture the throughput and response time of different threads, the activities of their

associated active objects are profiled. Application methods of the target object were instru-

mented to include timestamp recording. Instrumentation code was inserted into the satellite

and tracker objects to count the number of iterations.

Experiment results. After inserting the instrumentation code, the application case

study is run for 13 different thread configurations and collected the profiled data. The

results are shown in Table 6. Each row of the Table 6 contains the data recorded for a

single configuration.

Analysis of results. The results in Table 6 show variability which is non-intuitive.

For example, the data for the configuration 1_0_1 (with 1 target and 1 satellite) in the

table shows a throughput of 3.70 iterations/sec for the satellite active object, whereas the

throughput of the satellite active object in configuration 1_0_2 (i.e., with 1 target and 2

84

With Mutex Without Mutex
Config Target

run time
(secs)

Satellite
Through-
put
(period-
s/sec)

Tracker
through-
put
(period-
s/sec)

Location
Through-
put
(period-
s/sec)

Target
run time
(secs)

Satellite
Through-
put
(period-
s/sec)

Tracker
Through-
put
(period-
s/sec)

Location
Through-
put
(period-
s/sec)

1_0_0 140 _ _ _ 140 _ _ _
1_0_1 135 3.706 _ _ 135 3.71 _ _
1_0_2 130 3.85 _ _ 130 3.84 _ _
1_0_3 135 3.7 _ _ 135 3.7 _ _
1_1_1 138 2.12 65.89 2.69 139.2 3.58 61.89 3.01
1_2_1 137 1.29 67.85 1.44 135.3 3.68 29.5 3.12
1_3_1 138 0.91 68.79 0.99 131.77 3.79 18.54 3.19
1_1_2 144 2.15 51.43 2.62 131.74 3.78 54.31 3.18
1_2_2 144 1.26 54.49 1.39 130.7 3.81 23.32 3.17
1_3_2 145 0.89 55.92 0.95 153.2 3.24 9.61 2.68
1_1_3 144 2.18 42.96 2.7 132.6 3.76 44.64 3.10
1_2_3 145 1.28 47.20 1.42 170.39 2.94 10.73 2.43
1_3_3 145 0.91 48.95 0.97 212.5 2.37 4.24 1.91

Table 6: Profiled Data from the Application

satellites) is 3.85 iterations/sec. The throughput for satellite objects therefore increases as

the number of satellites increase. When the number of satellites increases to 3, however,

the throughput decreases since CPU utilization increases due to higher contention.

Such effects can also be seen from the response time of the target in Table 6. For ex-

ample, when the target active object runs on its own (1_0_0) the time taken to complete

500 iterations is 140 secs, where when a satellite active object runs concurrently with it

(1_0_1) the time reduces to 135 secs. This variability arises either from cache effects or

operating system jitter. Caching could cause this difference since the target and the satel-

lite active objects perform similar arithmetic computations, so as the number of satellite

objects increase the cache effects become apparent until the CPU utilization reaches a cer-

tain threshold, after which the response time starts to increase.

There was no real time scheduling used in the experiments so fluctuations in perfor-

mance could also arise from OS jitter. Petrini et al [55] and Kramer et al [37] show how

OS jitter can cause variability in performance. For simplicity, the term “cache effects” or

“OS jitter” will be used to refer to such variability in the chapter.

85

VI.3.2 Colored Petri Net Model Construction

The simulation model of the application case study using Colored Petri Nets (CPNs) is

now explained. Figure 31 shows a screenshot of the CPN tool and our application modeled

using CPN. The four aspects of the application that are part of the system modeling process

include (1) modeling application flow, which models the logic of each object similar to the

workflows shown in Figure 29, (2) modeling lock contention, which models the waiting

and acquiring on the software locks, i.e., process scoped mutexes, also known on Windows

as “critical sections,” (3) modeling resource access, which models the concurrent access

of the physical resources by each thread, and (4) modeling cache effects/OS jitters, which

models the variability in computation time due to simultaneous threads performing similar

work on the CPU. Below, the modeling of these four aspects is elaborated.

VI.3.2.1 Modeling Application Flows

Colored Petri nets model application flows via places, transitions, and tokens. Each

transition moves tokens from the input places to the output places. The placement of a

token in a place indicates the location of control within the application thread.

Figure 32 shows the application flow of the thread in the active object. In this figure

places are connected through transitions. Whenever the input places has a token, the con-

nected transition can fire and move the token. Control therefore moves from each place to

the next corresponding to the workflow shown in Figure 29.

Figure 32 shows how sleep is used to implement a delay that simulates the interval

where the task fires. Transition firing times of the second and third transitions model phys-

ical device access, which is the CPU in this case. As seen in the figure, when the device

access is completed control flows back to the starting position.

86

VI.3.2.2 Modeling Lock Contention

Colored Petri nets can also model contentions. For example, Figure 33 shows a portion

of a CPN model where the threads in the satellite and location active objects contend for a

shared lock. The place named “lock” represents the software lock, which is available if a

token is present in that place. The places in the thread flow named “Wait on lock” model

the thread waiting on the lock. If the token is available, the transition on a single thread

is executed and the token moves out of the place “lock,” which causes the other thread to

block until the token again becomes available.

VI.3.2.3 Modeling Resource Access

CPNs can model resources (such as the CPU) similarly to locks. Multiple objects con-

tend for the CPU, but only one thread at a time can access it. A place is therefore created

in the model to represent the CPU and every object has a connection to it.

Since the CPU is accessed by all threads, the model becomes visually cluttered. A

feature of hierarchical nets of the CPN tool can be used, however, to move the place rep-

resenting the CPU to a different page of the CPN model. It is then referred from every

flow. The broken arrows connecting the two places shown in the Figure 32 represent the

underlying contention for the CPU. Figure 34 shows the model of the CPU.

VI.3.2.4 Modeling Cache Effects/OS Jitters

Cache effects/OS jitters were observed during profiling, as discussed in Section VI.3.1.

These effects should be incorporated within the CPN model so the model predicted perfor-

mance data is as close to the actual values as possible. Figure 35 gives an empirical formula

that is implemented within the place representing the CPU. This formula calibrates the ex-

ecution time of a thread running on the CPU. The formula decreases the execution time of

a thread as the inter-arrival time between threads decreases.

The ’tint’ variable in the formula represents the current inter-arrival time. If ’tint’ is less

87

than 180 the execution time is modified to 94% of the original. In the extreme, if it is less

than 35, the execution time is modified to 40% of the original. The percentage numbers

above were computed by calibrating the CPN model via repeatedly running it with the

data from configurations 1_0_0, 1_0_1, 1_0_2, 1_0_3 in Table 6. The various percentage

values were tweaked multiple times until the response time of the target thread in the model

converged to the empirical data.

VI.3.3 Calibrating the Model

The techniques described in Section VI.3.2 helped implement the CPN model of the ap-

plication. It is then calibrated using the profile data gathered as described in Section VI.3.1.

Some of the profile data are used as a training set to tune the model parameter; the rest of

the data are used to validate the model. The data for the configurations 1_0_0, 1_0_1,

1_0_2, 1_0_3 in Table 6 are used to train the model. These timing data were used to tune

the formula to model the caching shown in Figure 35. The model is repeatedly run with

the different configurations and the various percentage values in the formula is tweaked

multiple times to converge to the above values shown in Figure 35.

Once the model is properly calibrated, it is run for the remaining configurations. For

each configuration, the response time of the target thread and the throughput of the satellites

and the location threads are calculated. Table 7 gives the resulting model prediction data,

VI.3.4 Model Validation

The results from profiling the application (Section VI.3.1) is now compared against the

model prediction results (Section VI.3.2). These results are explained from the perspective

of two conflicting factors: (1) the CPU hardware resource bottleneck and (2) the software

lock contention due to shared data accessed by various threads. Results are presented with

different thread configurations on the x-axis and the runtime performance metric on the

y-axis.

88

With Mutex Without Mutex
Config Target

run time
(secs)

Satellite
Through-
put
(period-
s/sec)

Tracker
Through-
put
(period-
s/sec)

Location
Through-
put
(period-
s/sec)

Target
run time
(secs)

Satellite
Through-
put
(period-
s/sec)

Tracker
Through-
put

Location
Through-
put
(period-
s/sec)

1_0_0 140 _ _ _ 140 _ _ _
1_0_1 135 3.69 _ _ 135 3.70 _ _
1_0_2 130 3.83 _ _ 130 3.85 _ _
1_0_3 135 3.69 _ _ 135 3.69 _ _
1_1_1 132 3.59 73.12 2.77 130 3.83 51.22 3.26
1_2_1 132 3.69 77.41 1.54 135 3.70 25.67 3.16
1_3_1 132 3.79 76.74 1.02 144 3.49 11.06 2.87
1_1_2 143 3.78 30.58 2.25 143 3.48 8.30 2.89
1_2_2 144 3.81 38.49 1.35 170 2.96 4.94 2.18
1_3_2 144 3.24 39.49 0.92 191 2.57 4.05 1.66
1_1_3 153 3.76 7.19 1.54 170 2.94 4.62 2.05
1_2_3 162 2.94 13.10 1.12 209 2.37 3.39 1.26
1_3_3 162 2.37 13.79 0.79 237.77 1.99 2.79 0.95

Table 7: Model Predicted Data

VI.3.4.1 Target Thread Response Time

Figure 36 shows that the response time of the thread in the target active object remains

nearly constant as the number of objects are varied in the application case study. This result

occurs for two reasons (1) the target does not contend with other objects, so it does not face

any extra blocking as the number of other objects increases and (2) as the number of objects

increases, the threads in these objects block each other due to software locks, which keeps

the CPU relatively free so the target thread can use the CPU when needed.

This result seems non-intuitive since the underlying hardware is a single CPU machine.

It seems reasonable that increasing the number of threads in an application running on a

single CPU should increase the overhead and reduce the performance of each thread. The

results in Figure 36, however, show how the performance of a thread that uses no software

locks will increase when more threads that do use locks are added to the application.

VI.3.4.2 Throughput of Satellite and Tracker

Figure 37 shows the satellite thread behavior with locks in the system. Each set of three

configurations in this graph (e.g., data for configuration 1_1_2, 1_2_2 and 1_3_2) should

89

be considered together. Between the former configurations the number of location threads

are increased, which increases contention and decreases throughput since the threads now

spend more time blocked on the locks. The location thread also exhibits a similar trend as

the satellite data, as shown in Figure 38.

Tracker throughput is shown in Figure 39. The error percent in model data is larger

compared to other data, but the general trend of the application behavior is captured. For

example, in each set of three successive readings with one satellite (1_1_1, 1_2_1 and

1_3_1), two satellites (1_1_2, 1_2_2 and 1_3_2), and three satellites (1_1_3, 1_2_3 and

1_3_3) the throughput increases as the number of trackers increase. This application be-

havior trend helps identify the optimal thread configuration. The accuracy of the prediction

is less important since it is only important in determining if a configuration is better than

another, not how much better they are.

VI.3.4.3 Performance Metrics with the Locks Removed

For this experiment all the locks in the application are removed, which clearly compro-

mised its behavior since shared data could be corrupted due to simultaneous modifications

by multiple threads. The locks are removed, however, to compare the performance of each

thread and show the impact of using locks in the system. The CPN model is also modified

and used to predict the performance of the system. The model predicted data is shown

along with the measured data in the Figures 41, 42 and 40.

Figure 41 shows the target thread response time, which increased as the number of ob-

jects increased. In this case, when the number of other objects increased they do not block

each other and directly contend for the CPU, which increases the waiting time of the target

at the CPU and its response time. Figure 42 shows the behavior of the satellite thread when

there are no locks in the system. When the data in Figure 42 is compared with Figure 37,

it is clear that throughput degrades less as the number of threads or objects increase due to

90

the fact that there are no bottleneck due to locks. Nevertheless, the throughput still goes

down due to the increased CPU contention.

VI.3.4.4 Model Prediction

Although the CPN model accurately predicted the underlying trend in application be-

havior in the experiments described above there were errors in the model prediction. Some

specific points have inconsistencies, e.g., configuration 1_1_3 seems to indicate problems

since the throughput of tracker and location predicted by the CPN model is much less than

the actual value. Figures 39, 38 and 40 show that the model prediction differs significantly

from the actual data. Potential reasons for these differences include (1) there is increased

OS activity due to context switching or other activities that increase the throughput of the

thread and/or (2) some form of cache effects cause this behavior. Overall, however, the

CPN model mimics the application behavior, so developers and deployer can use these

models to estimate application behavior accurately.

VI.4 Application Configuration

This section demonstrates how the performance data predicted by the model can be

leveraged to optimize application thread configurations. In particular, our case study used

the results presented in Table 7 to find the optimal thread configuration. To verify the

decision made using the model, the application is profiled and the number of hits made by

the trackers are calculated for each configuration.

Equation(VI.1) is used from Section VI.2 to compute the hit chance value for each con-

figuration, as shown in Table 8. The average throughput values of tracker and satellite are

used from the model predicted data in Table 7. Table 8 shows configuration 1_3_1 max-

imizes the trackers hitting the target, as explained in Section VI.2, so this configuration

91

Config Tracker
Num.

Tracker
Through-
put
(period-
s/sec)

Location
Through-
put
(period-
s/sec)

Satellite
Number

Satellite
Through-
put
(period-
s/sec)

Hit
chance

1_0_0 0 _ _ 0 _ 0
1_0_1 0 _ _ 1 3.69 3.69
1_0_2 0 _ _ 2 3.83 7.67
1_0_3 0 _ _ 3 3.69 11.09
1_1_1 1 73.11 2.77 1 2.32 78.20
1_2_1 2 77.41 1.54 1 1.38 159.28
1_3_1 3 76.74 1.01 1 1.36 234.63
1_1_2 1 30.58 2.25 2 2.18 37.19
1_2_2 2 38.49 1.35 2 1.37 82.43
1_3_2 3 39.49 0.91 2 1.26 123.75
1_1_3 1 7.19 1.53 3 2.16 15.22
1_2_3 2 13.10 1.12 3 1.30 32.37
1_3_3 3 13.79 0.79 3 1.13 47.18

Table 8: Target Hit Chances for Various Configurations

should thus be optimal. To verify whether this configuration is optimal, the running appli-

cation was then profiled to record the number of times the trackers hit the target, as shown

in Table 9.

The validity of Equation(VI.1) needs to be verified as a right quantifier of the appli-

cation performance. The measured value of tracker, location, and satellite throughput are

therefore used to compute the value of the equation for each configuration (omitted due

to lack of space). Using these values each configuration is ranked and it matches exactly

with the ranking given by the data from actual hit counts(Table 9) except one configuration,

1_2_3. This result proves that Equation(VI.1) is a reasonable estimator of the application

performance.

This table shows that configuration 1_3_3 has the highest number of hits, which vali-

dates that the configuration chosen using the modeled data and the utility function given by

equation(VI.1) is optimal. Comparing the data shown in Table 8 and Table 9, there exists

quite a few discrepencies in the ranking of the configurations. This is due to the error in

92

Config Tracker
1

Tracker
2

Tracker
3

Total
Hits

1_0_0 _ _ _ 0
1_0_1 _ _ _ 0
1_0_2 _ _ _ 0
1_0_3 _ _ _ 0
1_1_1 212 _ _ 212
1_2_1 127 142 _ 269
1_3_1 220 222 230 672
1_1_2 163 _ _ 163
1_2_2 111 121 _ 232
1_3_2 183 190 179 552
1_1_3 130 _ _ 130
1_2_3 159 144 _ 303
1_3_3 148 153 161 462

Table 9: Runtime Target Hit Occurrences

93

the prediction of the throughput of the various active objects. If the error is reduced, the

prediction will be more accurate.

The results above show how a simulation model can be used to determine the opti-

mal configuration of threads for our case study application. Combining simulations with

profiling helps application deployers optimize the performance of application thread con-

figurations without the need for tedious and error-prone manual effort.

VI.5 Related Work

Prior work has explored techniques for modeling software contention using analytical

techniques and modeling thread contention using Petri nets. This section compares and

contrasts our work with this related work.

In [44] and [46] two queueing network models are created: (1) a hardware queueing

network model of the physical contention and (2) a software queueing network model of

the software contention. Each model is solved iteratively until the results from the two

converge to within a predefined value.

Our CPN-based approach uses a simulation model rather than an analytical model to

improve model accuracy. Although simulation models require more time to predict per-

formance [46] they are appropriate for our purposes since the models are analyzed before

application deployment. Our solution is also based upon modeling of the application flow

and does not require detailed knowledge of queueing-theoretic techniques or simultaneous

resource possession. Domain experts with good knowledge of the application can therefore

readily create a simulation model using CPN.

Queuing Petri Nets are used in [36] to model the performance of distributed component-

based systems. [36] conducts a case study of the performance evaluation of a J2EE ap-

plication server and then presents a performance evaluating method for modeling thread

contention in a load balancer used with the application server. The focus in [36] is on mod-

eling the number of threads in a thread pool for the load balancer. In contrast, our work

94

models the thread contention caused from software locks and hardware resources, which is

complementary to the work in [36].

Analytic performance models of software servers are developed in [45], which also

studies the thread contention due to usage of thread pools. [45] develops a queuing-

theoretic analytical model to obtain the optimal number of threads in a software server

that uses a fixed number of threads in a pool. The underlying assumption in the use case

is that each service provided by a thread does not contend with any other thread for soft-

ware locks. Unlike our work with CPNs, [45] does not evaluate the problem of software

contention due to software locks.

A Petri net model of an application is presented in [31], which captures software con-

tentions and models software locks in a manner similar to ours. The main difference is

that [31] does not consider the case of multi-level resource contention, i.e., a thread per-

forms its entire computation once it acquires a software lock. In contrast, in our approach

a thread waits for a software lock and then contends for the hardware resource, which is

more representive of common multi-threading scenarios.

Simulation-based performance of web servers [81] has created a simulation based model

of a web server. [81] models physical resources, such as CPU, disk, and network, but does

not consider the complex interation between software resources and hardware resources.

In contrast, our approach also models both these resources.

VI.6 Concluding Remarks

The work presented in this chapter describes a technique that is developed to model and

simulate software contention. Colored Petri Nets (CPN) is used to validate the model data

with the results captured by profiling the application. CPN models the non-determinism

inherent in the case of multiple threads contending on a single lock. Profiling is performed

to measure application runtime performance and the resulting data is validated against data

95

predicted by the CPN model. The results show that the CPN model accurately predicts the

pattern of behavior in the application within certain error limits.

96

Figure 30: Application Logical Flows in the Target Tracking Simulator

97

Figure 31: CPN Model of Application Case Study

sleep sleep

Figure 32: A CPN Model of Target’s Active Object Thread

98

Wait
on

Lock

lock

sleep

Wait
on

Lock
sleep

Figure 33: Contention Model for Software Lock

Figure 34: The CPN Model of CPU

Figure 35: The Formula for Cache Effects

99

0

20

40

60

80

100

120

140

160

180

1_0_0 1_0_1 1_0_2 1_0_3 1_1_1 1_2_1 1_3_1 1_1_2 1_2_2 1_3_2 1_1_3 1_2_3 1_3_3

Configurations

T
im

e
 (

s
e
c
s
)

Actual Value (secs) Model Estimation (secs)

Figure 36: Response Time of Target Thread with Locks

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1_0_1 1_0_2 1_0_3 1_1_1 1_2_1 1_3_1 1_1_2 1_2_2 1_3_2 1_1_3 1_2_3 1_3_3

Configurations

In
v
o

c
a
ti

o
n

s
/s

e
c

Actual Model Estimation

Figure 37: Throughput of Satellite Thread with Locks

100

0

0.5

1

1.5

2

2.5

3

1_1_1 1_2_1 1_3_1 1_1_2 1_2_2 1_3_2 1_1_3 1_2_3 1_3_3

Configurations

In
v
o

c
a
ti

o
n

s
/s

e
c

Actual Model

Figure 38: Throughput of Location Thread with Locks

0

10

20

30

40

50

60

70

80

90

1_1_1 1_2_1 1_3_1 1_1_2 1_2_2 1_3_2 1_1_3 1_2_3 1_3_3

Configurations

In
v
o

c
a
ti

o
n

s
/s

e
c

Actual Model Predicted

Figure 39: Throughput of Tracker Thread with Locks

101

0

0.5

1

1.5

2

2.5

3

3.5

1_1_1 1_2_1 1_3_1 1_1_2 1_2_2 1_3_2 1_1_3 1_2_3 1_3_3

Configurations

In
v
o

c
a
ti

o
n

s
/s

e
c

Actual Model Predicted

Figure 40: Throughput of Location Thread without Locks

0

50

100

150

200

250

1_1_1 1_2_1 1_3_1 1_1_2 1_2_2 1_3_2 1_1_3 1_2_3 1_3_3

Configurations

T
im

e
(s

e
c
s
)

Actual Model Estimation

Figure 41: Response Time of Target Thread without Locks

102

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1_1_1 1_2_1 1_3_1 1_1_2 1_2_2 1_3_2 1_1_3 1_2_3 1_3_3

Configurations

In
v
o

c
a
ti

o
n

s
/s

e
c

Actual Model Estimated

Figure 42: Throughput of Satellite Thread without Locks

103

CHAPTER VII

MODELING OF REAL TIME SYSTEMS

This chapter looks at creating performance models of real time systems. Real time sys-

tems has the property of completing the tasks withing a specified deadline. Hard real-time

systems incur an unacceptable cost when any deadline is missed. Soft real-time systems

can tolerate some degree of missed deadlines to either (1) improve resource utilization and

system throughput or (2) provide some degree of quality-of-service (QoS) when the task

arrival, deadline, and/or execution times cannot be known deterministically.This chapter

presents a novel technique for modeling soft real-time systems. The next section discusses

basic real time concepts.

VII.1 Real Time Systems

Soft real time systems such as live audio-video or wireless sensor networks are be-

coming increasingly popular in our society. Such systems can tolerate some number of

deadline misses and still provide some value as long as deadline misses are within an ac-

ceptable bound. These systems typically function in an uncertain environment where the

underlying infrastructure, such as wireless communication, is unpredictable. This causes

data exchange between distributed entities of the system to be somewhat unpredictable,

which in turn causes inter-arrival times of events to be variable. Because input to such sys-

tems (e.g., events captured by a sensor or frame sizes of audio/video signals) are variable,

the processing time of each event may vary across non-trivial ranges.

This chapter presents a formal technique of modeling and analyzing soft real time sys-

tems. The method of stages [39] is used to model the variability and uncertainty present

in arrival and execution times of all tasks in the system. This technique, Method of Stages

based Analysis of soft Real Time systems (MoSART), models a soft real time system and

104

estimates the deadline misses and other important metrics such as response time, through-

put, and resource utilizations for each task. Recent work [18, 33] in this area only cal-

culates response time distributions not other system parameters. Others have considered

arrival time as deterministic [41]. MoSART is useful to predict various system parameters

given a particular deployment of the tasks onto a set of nodes.

VII.2 Motivating Example

This section presents two motivating examples which illustrates how variability in task

arrival and execution times can impact system performance. Such variability is a direct

result of the uncertainty/non-determinism present in the environment in which such systems

operate.

A highly loaded system: Consider a highly loaded system consisting of two tasks, one

which is highly variable (i.e., Task 2) in its arrival times, while the other task (i.e., Task 1)

has less variance in its arrival times. Both tasks have the same average arrival and execution

times. Subsequent arrivals are assumed to impose a deadline for the previous task arrivals.

This system is simulated and the deadlines met for each task is obtained when each task is

given scheduling priority. The task details are given in Table 10.

Inter-Arrival Time Execution Time
Tasks Mean C.V. Mean C.V. Deadline Met % Deadline Met %

(secs) (secs) Priority Task 1 Priority Task 2
Task 1 10.00 0.32 6.0 0.32 86.91 44.60
Task 2 10.00 1.00 6.0 0.32 27.66 55.83
Total _ _ _ _ 57.28 50.22

Table 10: A highly loaded system

Although the tasks are identical except in their second moment (i.e., coefficient of variation

(CV) = standard deviation/mean), giving priority to the less variable Task 1 improves the

105

number of met deadlines by over 14%. This indicates that scheduling based on the variance

in the tasks impacts the number of deadlines met/missed.

A lightly loaded system: Now consider the exact same set of tasks but with one ex-

ception. The mean inter-arrival time of the tasks is increased to make the system lightly

loaded. As before, the two tasks are identical except for their second moment. The results

are shown in Table 11. In this case the number of deadlines met is better when priority

is given to the task with higher variance. This result is opposite to what was seen in the

earlier, highly loaded, system. Though this is a simple example, it clearly indicates that

both the variance and the system load should be considered when making scheduling deci-

sions. Simplistic techniques (e.g., RM, EDF, LL), that only consider the mean and ignore

the variance and the system load, are suboptimal. Therefore, it is necessary to develop a

technique capable of modeling the variance in the tasks as well as the variability in the

system load. Such a technique can then be used to estimate crucial system parameters such

as the deadline miss rate, response time, and resource utilization of a given system.

Inter-Arrival Time Execution Time
Tasks Mean C.V. Mean C.V. Deadline Met % Deadline Met %

(secs) (secs) Priority Task 1 Priority Task 2
Task 1 30.00 0.32 6.0 0.32 99.96 98.80
Task 2 30.00 1.00 6.0 0.32 77.43 82.03
Total _ _ _ _ 88.69 90.42

Table 11: A lightly loaded system

VII.3 Problem Formulation

In this chapter a real-time system is viewed as a set of N independent tasks. Each task

Ti consists of a series of job arrivals. Ji, j represents the jth instance of task Ti and has a

deadline that corresponds to the next arrival of the task, along with an expected execution

time. Both the inter-arrival time and the execution time are variable and are considered

106

to be random variables with a probability distribution. It is assumed that the distribution

of both is available from historical data. The problem is to estimate the percentage of

deadlines being missed/met, the expected task response time, and the resource utilization

when a set of tasks is assigned to a processor, given a specified scheduling algorithm(e.g.,

rate monotonic, earliest deadline first).

VII.4 Modeling Approach

This section describes the methodology underlying MoSART. In its simplest form, the

system is viewed as a single processor (i.e., resource) that is shared by several tasks. For

simplicity, and without loss of generality, it is assumed that the deadline of a job coincides

with the subsequent job arrival from the task, (i.e., each job Ji, j is expected to finish before

the next job Ji, j+1 of task Ti arrives).

VII.4.1 Workload Modeling

Workload modeling consists of three parts: the inter-arrival time, the deadline, and the

execution time. For simplicity reasons, since the deadline is assumed to coincide with the

next arriving task, only the inter-arrival time and the execution time processes need to be

modeled explicitly.

As illustrated in Section VII.2, it’s important to model the variance present in task

parameters. Thus both the inter-arrival time and the execution time of tasks are treated as

random variables with a probability distribution. Phase-type distributions [39] are used to

approximate these distributions. An Erlang distribution using the method of stages (MOS)

is a special form of a phase type distribution which helps in modeling distributions with a

coefficient of variation (CV, which is the ratio of the mean to the standard deviation) less

than 1. In the case of a distribution having a CV greater than 1, an analogous technique

using a hyper-exponential method of stages can be used. However, in this chapter, the

discussion is restricted to distributions with CVs less than 1.

107

The MOS is composed of a series of exponential stages, each with the same mean (λ).

The probability density function (pdf), mean, variance, and coefficient of variance (CV) for

a k-stage Erlang distribution are given in Table 12.

PDF Mean Variance CV
(kλ)k

(k−1)! x
k−1e−kλx 1

λ

1
k (

1
λ
)2 1√

(k)

Table 12: Erlang distribution parameters

When k is equal to 1, the pdf reduces to that of an exponential distribution, which has a

CV of 1. Increasing the value of k decreases the variance of the distribution.

VII.4.2 System Modeling

This section describes the task representation, system model parameters, resource allo-

cation, task arrivals, task execution, and task deadlines. Together with a specified schedul-

ing algorithm, a comprehensive modeling framework is provided.

VII.4.2.1 Task Representation

The system workload is viewed as a collection of tasks. Jobs belonging to a particular

task are statistically identical to each other, but the jobs of different tasks may have different

arrival and service (i.e., execution) characteristics. Each task is modeled by a set of arrival

stages and a set of execution stages.

The arrival stages model the time that the next job in a particular task arrives to the

system. Completion of all the arrival stages indicates an arrival of a new job. The execution

stages represent the execution time of a job in a particular task and completion of the last

108

execution stage indicates job completion. A job will meet its deadline if its execution stages

complete before the arrival stages complete.

Figure 43 shows the representation of a particular task stream. In this example, there

Figure 43: Task Representation

are two arrival stages and four execution stages. The arrival stages are statistically identical

to each other. Similarly, the execution stages are statistically identical to each other.

A detailed description and example of the state space model is developed in subsequent

sections and also in [60]. Since each stage within a particular arrival or execution pro-

cess is statistically identical, and the time spent in a stage is assumed to be exponentially

distributed, the completion time of each process has an Erlang distribution. Therefore,

the underlying state space model is a Markov chain. Specifying the current stage of each

process for each task completely describes the current system state.

VII.4.2.2 Model Parameters

The state space model depends on the following parameters.

• N - number of workload tasks.

• Ai - number of arrival stages for task i jobs.

• Si - number of execution stages for task i jobs.

109

• µi - execution rate for task i jobs. Thus, 1/µi is the average execution time for a job

of task i to complete all of its execution stages. Similarly, 1/(Siµi) is the average time that

a job of task i spends at each of its execution stages.

• λi - arrival rate for task i jobs. Thus, 1/λi is the average inter-arrival time for task i

jobs. In 1/λi time task i completes all its stages, triggering a new arrival (and signalling a

deadline). Naturally, 1/(Aiλi) is the average time that a job of task i spends at each of its

arrival stages.

• P - number of execution resources(e.g., processors).

• scheduling algorithm - algorithm used to determine the resource allocation among

multiple concurrent tasks, example, Rate Monotonic etc. MoSART assumes that task allo-

cation can change at each stage boundary.

VII.4.2.3 State Space Model

This section describes the state space model in the context of an example system of

tasks. It is assumed that the system is pre-emptive and that a scheduling decision is made

at every stage completion. Without loss of generality, a single processor system is assumed.

The set of tasks given in Table 13 is used. The arrival events of task 1 are modeled using 2

stages while the execution is modeled using 4 stages. This is because the CV of each event

is 1/
√

(#o f stages). The stage values are shown in the CV column in Table 13. Similarly,

the arrival of task 2 is modeled using 3 stages and execution with 5 stages. Thus, N = 2,

A1 = 2, A2 = 3, S1 = 4, S2 = 5, and P = 1.

Inter-Arrival Time Execution Time
Tasks Mean(secs) CV Rate Mean(secs) CV Rate

(Jobs/min) (Jobs/min)
Task 1 10.0 0.7(1/

√
(2)) 6.0 4.0 0.5 (1/

√
(4)) 15.0

Task 2 15.0 0.57(1/
√

(3)) 4.0 5.0 0.45(1/
√

(5)) 12.0

Table 13: Task Parameters

110

Figure 44 shows a portion of the underlying state space model that shows the possible

state transitions due to an arriving task. The arrival process for task 1 has a 2-stage (i.e.,

State 1

State 2

State 3

State 4

State 5

State 6

State 7

State 8

State 9

State 10

State 11

2λ1

3λ2

2λ1

2λ1

2λ1

2λ1

2λ1

3λ2

3λ2

3λ2

3λ2

Task 1 job arrives

Task 1 job arrives

Task 1 job arrives

Task 2 job arrives

Task 2 job arrives
3λ2

Figure 44: Task Arrivals

the top series of stages) Erlang distribution with an arrival rate of λ1(6.0). Thus, the rate

leaving each stage is 2λ1(12.0). Job 2 tasks have a 3-stage (i.e., the third series of stages)

Erlang arrival distribution with an arrival rate of λ2(4.0). Thus, the rate leaving each stage

is 3λ2(12.0).

The second and fourth series of stages represents the execution process for task 1 and

task 2, respectively. The solid black circles (stages) in Figure 44 represent the currently ac-

tive stages. For instance, in state 1, the arrival processes of the two tasks are both executing

their first stage and no jobs are executing in the system .

The current stage of each process determines the current state of the job. Collectively,

111

the state of each task represents the overall system state. For example, {(1,1),(2,0)} rep-

resents the state at state 7. This means the state of the first task is (1,1) while that of the

second is (2,0). The first task arrival process is less than 50% complete and execution

is less than 25% complete. Similarly second task arrival is between 33.3% and 66.6%

complete while the execution has not started yet. The completion of any stage results in a

change in the system state.

Task Arrival: The arc labels in Figure 44 indicate the rates at which the various state

transitions occur. Initially, in state 1, neither task has arrived yet and both of the tasks

are in their first stage of arrival. None of the execution processes are active. The arrival

process of task 1 can complete its first arrival stage at rate 2λ1, causing the system to move

to state 2. Alternatively, the arrival process of task 2 can complete its first arrival stage at

rate 3λ2, resulting in a transition to state 3. From state 2, the system can either move to

state 4 if the arrival process of task 1 completes its 2nd stage, or to state 5 if the arrival

process of task 2 completes its 1st stage. In state 4, the arrival process of task 1 has just

completed both its arrival stages, which represents the arrival of a new task 1 task to the

system. Consequently, the execution process of task 1 becomes active (indicated by the

black circle in task 1’s execution process) and the subsequent arrival/deadline process for

task 1 is restarted at stage 1.

Task Completion and Missed Deadlines - A race between stages: Figure 45 shows

another portion of the underlying state space model. In state 2, three transitions are pos-

sible: (1) the arrival/deadline process of task 1 can complete a stage with rate 2λ1 which

models a missed deadline due to the arrival of a new task 1 and the system enters state

5, (2) the execution process of task 1 can complete a stage with rate 4µ1 and the system

enters state 6, or (3) the arrival/deadline process of task 2 can complete a stage with rate

3λ2 and the system enters an unshown state indicated by the tiny arrow. If transition 1

occurs before 2 or 3, the task misses a deadline (as shown in the figure). Similarly, the

transition from state 6 to state 11 represents an execution completion for task 1. This figure

112

State 1

State 2

State 3

State 4

State 5

State 6

State 7

State 8

State 9

State 10

State 11

4µ1

4µ14µ1

4µ1

5µ24µ1 4µ1

5µ2

2

1

3λ
2

3λ
2

State 12
2

2λ1

2

3λ2

2λ
1

3λ
2

State 13

State 14

State 15

5µ2

State 16
Task 2
Misses

Deadline

Task 2
Finishes

Task 1
Misses

Deadline

Task 1
Finishes

Task 1
Finishes

Task 1
Finishes

Task 2
Misses

Deadline

Task 2
Finishes

Figure 45: Task Execution/Deadline - EDF

113

also shows the same for task 2 (i.e., a met deadline in going from state 1 to 3 and a missed

deadline in going from state 1 to 4). A job can terminate in two ways, either the last stage

of its arrival completes or the last stage of its execution process completes. If the execution

stages completes first, then the job meets its deadline. On the other hand, if the arrival

stages completes first, then the job misses its deadline. The model can therefore be thought

of as a horse race. At task arrival time, two “horses” (i.e., an arrival/deadline horse and a

execution horse) begin racing. Each goes at its own pace and begins running through its

successive stages. The first horse crossing the finish line (i.e., its last stage) wins. If the ex-

ecution process horse wins, the task successfully meets its deadline. If the arrival/deadline

horse wins, the task misses its deadline. This approach requires a synchronization between

the arrival and the execution processes. This is what distinguishes MoSART from other

approaches such as matrix-analytic methods [39] who also use phase-type distributions.

Modeling Scheduling Algorithms: The scheduling algorithm modeled in Figure 45

is earliest (expected) deadline first. In the given set of tasks, the arrival/deadline stages

have the same expected time in both the tasks. The same is true for the execution stages of

each task. This allows the reader to simply count the number of remaining arrival/deadline

stages to determine which task has the earliest expected deadline.

For example, in state 1, task 1 has 1 remaining arrival stage until its next arrival/deadline

and task 2 has no remaining arrival stages until its next arrival/deadline. Thus, the expected

deadline for task 2 is earlier than that of task 1 and for this reason, task 2 is allocated the

processor to execute. Since task 1 has no allocated resources, the execution process for task

1 cannot proceed. Task 2’s execution can continue as shown by the transition from state 1

to state 3 with a rate of 5µ2. In state 4, however, task 1’s deadline is 1 stage away, while

task 2’s deadline is 2 stages away. Thus, the processor is given to task 1. When the resource

is allocated to task 1 (task 2), the average execution time for each stage is 1/4µ1 (1/5µ2).

Note that the arrival/deadline process for a task always continues to advance regardless of

114

any allocated resources. The various states and transitions in the state diagram are self-

evident and further details can be found in [60].

VII.5 A Complete Example

This section presents a complete solution to a simple example to illustrate the modeling

methodology. Table 14 presents the task parameters. The set of parameters are deliberately

Inter-Arrival Time Execution Time
Tasks Mean Rate CV Stages Rate/stage Mean Rate CV Stages Rate/stage

(secs) (jobs/min) (jobs/min) (secs) (jobs/min) (jobs/min)
Task 1 10.0 6.0 0.7 2 12.0 5.0 12.0 0.57 3 36.0
Task 2 6.0 10.0 1.0 1 10.0 2.0 30.0 0.7 2 60.0

Table 14: Task parameters

kept simple to illustrate the full solution of the example. Section IX.4 presents results for

more complex sets of tasks. Figure 46 presents the complete Markov chain state space for

this example. The detailed model analysis technique is presented in [60].

State 16

State 15

State 14

State 13

State 11

State 10

State 12

State 8

State 7

State 6

State 3

State 24

State 23

State 22

State 21

State 20

State 19

State 18

State 17

State 9

12

10

12

12

36

36

12

60
10

12
12

12

10

10

60

36

10

60

10

12 10

36

10

60

10

12

10

2
60

10
12

1212

36

10

10

12
1

36

12

60

10

12

10

4 60

10

412

2
36

10

36

9

12

12

60

10

12
10

8

60

12

36

1210

9

512

36

10

12
10

State 1

State 2

State 4

State 5

13

36

17

10

12

10 15

1236

1060

Figure 46: A Simple Example using EDF scheduling

115

Table 15 shows the resulting performance metrics. The data obtained while using the

Earliest Deadline First
Tasks Deadline Misses/min Deadlines Met/min Utilization
Task 1 1.97 (33%) 4.03 (67%) 0.39 (39%)
Task 2 3.30 (33%) 6.70 (67%) 0.25 (25%)
Total 5.27 (33%) 10.73 (67%) 0.64 (64%)

Rate Monotonic
Task 1 2.32 (39%) 3.68 (61%) 0.37 (37%)
Task 2 2.66 (26.6%) 7.34 (73.4%) 0.27 (27%)
Total 4.97 (31%) 11.02 (69%) 0.64 (64%)

Least Laxity First
Task 1 1.91 (32%) 4.09 (68%) 0.40 (40%)
Task 2 3.88 (38.8%) 6.12 (61.2%) 0.24 (24%)
Total 5.79 (36%) 10.21 (64%) 0.64 (64%)

Table 15: Example performance metrics

rate monotonic and least laxity first scheduling algorithms is also included.

The results in Table 15 show that the tasks have a high percentage of deadline misses,

though the utilization of the processor is not high. The reason for this result is the high

variability of the inter-arrival times and the execution times for each task in this example.

The CV of the arrival and execution processes vary between 1.0 and 0.57. The variation

observed in practice is typically lower.

VII.6 Broader Methodology Benefits

MoSART gives a platform to (1) conduct comprehensive sensitivity analysis, and (2)

search for new, optimal scheduling algorithms.

116

VII.6.1 Sensitivity Analysis

By holding certain parameters constant while varying others, new insights and rules-of-

thumb are possible using MoSART. In this sensitivity analysis, three systems are evaluated:

(1) system A with a high utilization of 83%, (2) system B with a medium utilization of 67%,

and (3) system C with a low utilization of 47%. Two tasks are modeled, with parameters

shown in Table 16. For each set of parameters, the MoSART technique provides the per-

Task 1 Task 2
System Arr. Rate Exec. Rate Arr. Rate Exec. Rate Expected

(jobs/min) (jobs/min) (jobs/min) (jobs/min) Util
A 5 15 6 12 83.34
B 5 30 10 20 66.67
C 5 30 6 20 46.67

Table 16: Task parameters

centage of missed deadlines. The results of applying this sensitivity analysis to systems A,

B, and C are shown in Figure 47, 48, and 49. The following conclusions can be derived

from these figures:

• Lower variability improves performance. The performance of the system improves

as the variability within the system decreases(see figure 47).

• No algorithm is uniformly optimal. In most cases, EDF outperforms other algo-

rithms but in some cases RM and LLF also perform better (Figures 47, 48, and 49).

• The scheduling algorithm choice is more important for higher utilized systems.

Figure 47, demonstrates a more distinct difference between the different algorithms when

the utilization is higher.

• Variance causes low utilized systems to miss deadlines. Systems with low uti-

lization(e.g., 47%) can expect relatively high deadline miss ratios(e.g., above 20%) if the

arrival and execution time variability is high(e.g., CV = 1.0).

117

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 (1.0) 2 (0.7) 3 (0.57) 4 (0.50) 5 (0.45) 6 (0.40) 7 (0.37) 8 (0.35)

Stages (C.V)

D
ea

dl
in

e
M

is
s

%

EDF

RM
LLF

Figure 47: System with 83% Utilization

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 (1.0) 2 (0.7) 3 (0.57) 4 (0.50) 5 (0.45) 6 (0.40) 7 (0.37) 8 (0.35)

Stages (C.V)

%
 D

ea
dl

in
e

M
is

s

EDF
LLF
RM

EDF

RM

LLF

Figure 48: System with 67% Utilization

118

0

0.05

0.1

0.15

0.2

0.25

1 (1.0) 2 (0.7) 3 (0.57) 4 (0.50) 5 (0.45) 6 (0.40) 7 (0.37) 8 (0.35)

Stages (C.V)

D
ea

dl
in

e
M

is
s

%

EDF

RM

LLF

Figure 49: System with 47% Utilization

• Missed deadlines lower the processor utilization. As more deadlines are missed,

the actual processor utilization is lower than its theoretical maximum, as shown in Fig-

ure 50.

VII.6.2 New Optimal Scheduling Algorithms

Markov Decision Processes [56] together with MoSART can be used to search for better

scheduling algorithms. The decision to give the processor to the tasks at each state can be

made depending on optimizing a global objective function like overall deadline miss. Such

a technique is used to find a better algorithm shown in Figure 52.

The modeling approach presented here not only analyzes existing scheduling algo-

rithms, but can also be used to search for new algorithms. The modeling methodology

leads to a state space model, where in any particular state, the scheduling algorithm dic-

tates which of the competing tasks receives execution from the processor.

For example, if two tasks are competing for the processor, under EDF the task with

119

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 (1.0) 2 (0.7) 3 (0.57) 4 (0.50) 5 (0.45) 6 (0.40) 7 (0.37) 8 (0.35)

Stages (C.V)

C
PU

 U
til

iz
at

io
n

%

Figure 50: Utilization versus Variance

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 (1.0) 2 (0.7) 3 (0.57) 4 (0.50) 5 (0.45)

Stages (C.V.)

D
ea

dl
in

e
M

is
s

Pe
rc

en
t

EDF
LLF
RM
OPT

OPT

EDF

RM

LLF

Figure 51: Optimal Algorithm (93% Util.)

120

the fewest number of arrival/deadline stages left is assigned the processor, which may not

be optimal. If the first task’s deadline is imminent—but several execution stages have not

completed—the probability that the task will ultimately meet its deadline may be quite low.

In this case, if the processor is allocated to the first task according to the EDF policy, not

only will it likely miss its deadline, but because the processor wasted its time on a lost

cause, the second task might also miss its deadline. It would be better to ”sacrifice" the

first task to save the second task. Such a scheduling policy is heavily state dependent, and

depends upon the state (i.e., the variability of the arrival and executions processes, as well

as the overall system load) represented by each of the competing tasks.

The state space methodology therefore lends itself directly to searching for new, op-

timal, scheduling algorithms. Abstractly, in every state, an unknown probability can be

assigned to how much of the processor is allocated to each of the competing tasks. In a

two-task system, this leads to a p-vector, with one element per system state. Each schedul-

ing algorithm has a unique p-vector. For example, in Figure 46, the 24-element p-vector

representing EDF is given by [xx0100110011100110011011], where x represents a state

where no task is in the system (and, thus, the processor is not allocated to either task), 1

represents a state where the processor is allocated to Task 1, and 0 represents a state where

the processor is allocated to Task 2. Elements in the p-vector could be any number between

0 and 1, which represents the fraction of the processor allocated to Task 1. A p-vector value

of 0.5 therefore represents a state where processor sharing occurs between the two tasks.

The goal of the scheduling algorithm is to make the best scheduling decision at each

state of the system so that the given objective is optimized. By finding (or calculating) a

p-vector that optimizes a particular objective function (e.g., the minimal number of missed

deadlines), and realizing that each p-vector corresponds to a particular scheduling algo-

rithm, new optimal scheduling algorithms can be discovered.

To demonstrate the finding of such a p-vector, consider the specific example in Sec-

tion VII.5. The Matlab optimization toolkit is used to compute an optimal p-vector (i.e., an

121

optimal algorithm) for the system. This algorithm makes scheduling choices at each state

of the system such that the total deadline miss percentage is minimized. The deadline miss

percentage for this optimal algorithm is plotted in Figures 52 and 53.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 (1.0) 2 (0.7) 3 (0.57) 4 (0.50) 5 (0.45)

Stages (C.V.)

D
ea

dl
in

e
M

is
s

Pe
rc

en
t

EDF
LLF
RM
OPT

OPT

EDF

RM

LLF

Figure 52: Optimal Algorithm (93% Util.)

The optimal p-vector algorithm is computed for two systems, one with system utiliza-

tion of 83% and one with 93%. The optimal algorithm performance is plotted with that of

other popular algorithms.

These figures demonstrate that there exists state dependent scheduling algorithms that

outperform EDF, LLF, and RM. In general, the higher the system utilization—and the more

deterministic the system—the higher the potential for improvement by using an optimal

state dependent scheduling algorithm. For example, the right side of Figure 52 demon-

strates that the optimal algorithm outperforms EDF by 8.2%, which outperforms LLF by

11.8%, which outperforms RM by 3.5%. By examining the p-vectors for the optimal al-

gorithm, EDF, LLF, and RM, some (but not all) of the differences can be attributed to the

122

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 (1.0) 2 (0.7) 3 (0.57) 4 (0.50) 5 (0.45)
Stages (C.V)

D
ea

dl
in

e
M

is
s

%

EDF
LLF
RM
OPT

RM

LLFOPT EDF

Figure 53: Optimal algorithm (83% Util.)

sacrificing of one task to save the other task. Such investigations for better state dependent

scheduling algorithms is a topic of continuing research.

VII.7 Concluding Remarks

Various soft real time systems such as wireless sensor networks function under severe,

unpredictable, and uncertain environments. Such conditions cause the arrival rates and

processing times of events to be variable. It is important to model this variability to ac-

curately estimate the various characteristics within soft real time systems. This chapter

presents a novel technique, MoSART, for modeling and analyzing soft real time systems

with variability in the inter-arrival and execution time of events.

MoSART uses the method of stages to model the inter-arrival, deadline, and execution

times. It also presents an intuitive ”race" between arrival and deadline stages to model the

number of deadlines met or missed for any particular job. A limitation of the proposed

technique is state-space explosion. However, approximations, bounds, and simulations can

123

be directly applied. Addressing such limitations, applying the methodology to a wider set

of system parameters, evaluating a richer set of scheduling algorithms, conducting a more

extensive experimental validation, and using the methodology to discover new scheduling

algorithms are promising directions for future research.

124

Part III

Application Placement

125

The previous chapters discussed the challenges of measuring component resource re-

quirement and performance estimation. This part of the dissertation discusses how those

techniques can be combined with component placement strategies to come up with efficient

resource allocation. It also discusses heuristics for bin-packing for multiple dimensions. It

then discusses how all of the above techniques can be applied to a solve resource allocation

problem in a modern data center.

Chapter VIII carries out a detailed study of different bin packing heuristics such as

first-fit, best fit etc. for multiple dimensions and finds interesting results where it found that

each one is better than the other under different circumstances. Chapter IX presents a com-

ponent placement framework which uses a performance model and profiling data to place

components onto nodes. It then goes onto to develop a component replication algorithm

where the findings in chapter VIII are used. Finally in chapter X, the framework is applied

onto modern day data center resource planning where a cloud computing infrastructure is

used to increase and decrease the resources for the application.

126

CHAPTER VIII

MULTI-CAPACITY RESOURCE ALLOCATION IN DISTRIBUTED
COMPONENT BASED SYSTEMS

This chapter deals with resource allocation in distributed component based systems.

In the first section the resource allocation problem is posed as a bin packing problem.

Bin-packing is a NP hard problem. Many heuristics have been proposed in the research

literature to solve the problem. This chapter carries out a detailed study of various bin-

packing heuristics and identifies the different conditions under which each heuristic works

best.

VIII.1 Resource Allocation As A Bin Packing Problem

Applications often require multiple resources to execute properly, and need timely allo-

cation of those resources to maintain required QoS. System resource utilization is a function

of input workload and the required QoS of applications, so runtime utilization may vary sig-

nificantly from estimated values. Moreover, system resource availability, such as available

network bandwidth and battery power, may also be time variant. Numerous algorithms

have been developed, studied, and analyzed for use in resource allocation. For example,

Srivastav and Stangier [69] provide a solution to the resource-constrained scheduling prob-

lem, which is related to the multi-dimensional bin-packing problem.

In particular, bin-packing algorithms provide a natural solution to many resource allo-

cation problems. The classical bin-packing problem packs a set of n items into m bins each

with a maximum capacity C, such that the sum of the items in any bin does not exceed C.

In the context of resource allocation, resources (e.g., processors) form the bins, and items

map to tasks (e.g., components) that require a specified amount of resources.

127

This chapter presents an empirical study of widely used bin-packing algorithms, focus-

ing on the applicability of these algorithms in the context of resource allocation in DRE

systems. For each algorithm, the following is studied and analyzed: (1) how effective the

algorithm is in finding a feasible allocation under stringent time limitations, depending on

the input application characteristics, and (2) how useful additional computation to find an

allocation is for different application characteristics.

Empirical comparison of heuristic performance. As mentioned above this chapter em-

pirically evaluates bin-packing algorithms that is used to make the initial and subsequent

resource allocations. Since complete bin-packing algorithms can be computationally ex-

pensive, different heuristic schemes are studied in a multi-capacity bin-packing framework

to simplify the allocation task. The goal is to determine resource allocation heuristic perfor-

mance patterns, i.e., the likelihood of a heuristic finding an allocation for different classes

of input. These performance patterns can be used to (1) select appropriate resource al-

location algorithms based on the input data set at runtime and (2) determine how much

computation to expend on each.

To determine the performance of multi-capacity extensions to common bin-packing

heuristics, a series of experiments with problems drawn from various input distributions are

run. These experiments used two-capacity bins, applicable to the case of system nodes with

two resource attributes, such as CPU and memory. The performance metrics considered are

“number of successes” in a fixed number of runs. The extension to additional resources for

these heuristics is straightforward from the two-capacity implementation. The size of each

of the two bin capacities are set to 100, representing 100% of the resource. In analyzing the

results, three orthogonal dimensions to the cases being tested are considered, as described

below.

• Heuristic is the performance of each algorithm/heuristic on the generated problems.

The extensions to multi-capacity bin-packing of the popular best-fit, first-fit, and worst-fit

heuristics are evaluated.

128

• Sorting method is the method used to sort the items before applying the above heuris-

tics. Sorting items by decreasing size before packing the bins often provides better perfor-

mance in traditional bin-packing. In the experiments, items are also sorted in decreasing

order of size, but because the problems are multi-capacity ones, the sorting criteria is non-

trivial. Several definitions for a scalar size value (combining or comparing the multiple

dimensions) could be used, including sum, product, sum of squares, and maximum compo-

nent. The current experiments focus on two scalar definitions of size: sum and maximum

component.

• Item distribution is the characterization of the distribution from which item sizes are

drawn. Different solution methods and heuristics may be more/less applicable to particular

item size distributions. One goal of the experiments is to determine if/when these heuristics

are more effective based on characterization of input item sizes. For these experiments uni-

form distributions were used with various mean values. The total amount of slack between

the capacities of the bins and the sizes of the items are compared. For example, a problem

with 10 bins of capacity (100,100) and a slack of exactly 10 percent in each dimension,

would have a set of items whose sizes sum to (900,900).

VIII.1.0.1 Problem Generation

Three input parameters characterize the problems generated for a given set of test runs:

(1) number of (100,100) capacity bins, (2) range of item sizes, and (3) percentage slack

allowed (as a range) in the generated problems. These experiments use two-capacity bins/-

items, with the item’s size in each dimension independently drawn from uniform distribu-

tions. For example, with 10 bins, 0-70 for item sizes, and 5-10 as the allowable percentage

of slack, the set of problems generated would have items with an average size of ∼35 in

each resource and total size for the sum of items would be between 900 and 950 in each

resource.

129

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

Item Values

N
o

of
 It

em
s

CPU Memory

Figure 54: Distribution of Items (0-100 range)

To generate the problems, rejection-sampling [59] is used, which samples from an ar-

bitrary distribution f(x) using some standard distribution g(x) that is easy to sample. Items

are generated with the constraint that the sum of the item sizes should be less than the sum

of all bin capacities by an amount within the range of allowable slack. Items are generated

from the specified distribution until their sum was within the allowable range of slack or

was greater than the maximum value, in which case that set of items was rejected. The

generated set of items thus meets global bin capacity constraints, but a valid allocation is

not guaranteed, i.e., the problem may or may not be solvable.

10,000 instances of the problems are generated that were run with the different heuris-

tics. The number of bins used was 4 because using more bins made the running time of the

complete algorithm too large to generate results in a reasonable amount of time. The run-

ning time was primarily a problem for distributions with smaller average item size because

there were more items in total. For the other distributions, the experiments were performed

with 10 bins and obtained results that followed the same patterns identified in the 4 bin

experiments presented here.

Figure 54 shows a representative frequency distribution of the item sizes in one of the

two dimensions for a problem with 0-100 item distribution and slack between 0% and 5%.

The problem sets for the other distributions and slack values also closely match their

specified uniform distributions and are not included.

130

0

500

1000

1500

2000

2500

3000

3500

0 - 5 5 - 10 10 - 15 15 - 20

N
o

 o
f

S
u

c
c
e

s
s

% Slack

Best Fit Max Best Fit Sum First Fit Max First Fit Sum Worst Fit Max Worst Fit Sum

(a) Item Range 0-100

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 - 5 5 - 10 10 - 15 15 - 20

N
o

 o
f

S
u

c
c
e

s
s

% Slack

Best Fit Max Best Fit Sum First Fit Max First Fit Sum Worst Fit Max Worst Fit Sum

(b) Item Range 0-70

0

2000

4000

6000

8000

10000

12000

0 - 5 5 - 10 10 - 15 15 - 20

N
o

 o
f

S
u

c
c
e

s
s

% Slack

Best Fit Max Best Fit Sum First Fit Max First Fit Sum Worst Fit Max Worst Fit Sum

(c) Item Range 0-50

0

2000

4000

6000

8000

10000

12000

0 - 5 5 - 10 10 - 15 15 - 20

N
o

 o
f

S
u

c
c
e

s
s

% Slack

Best Fit Max Best Fit Sum First Fit Max First Fit Sum Worst Fit Max Worst Fit Sum

(d) Item Range 0-30

Figure 55: Performance Comparison of Different Heuristics

VIII.1.0.2 Analysis of Results

Figure 55a shows the relative performance of the different heuristics with a uniform

distribution of item sizes between 0 and 100 for each dimension. This result shows that the

best-fit and first-fit heuristics outperform the worst-fit ones overall (for this distribution).

Moreover, the choice of sorting criteria does not make a large difference, as shown by

the similar results for both sum and maximum component sorting when used with each

heuristic.

The results for the items with ranges 0-70 and 0-30 show the same patterns, and are pre-

sented in the Figures 55b and 55d. The results from the 0-50 distribution exhibit a slightly

131

different behavior as shown in Figure 55c. For these problems, there is a significant differ-

ence in performance between sorting criteria, with the sum sorting criteria outperforming

the maximum component sorting criteria.

The results for these experiments clearly show a performance pattern for each heuristic

across different input distributions, which RACE exploits during runtime resource alloca-

tion. For example, if the input distribution is roughly uniform with a mean item size of 25,

these results would direct RACE to first employ the best-fit heuristic with sorting based on

sum of the items, before expending computation on the other heuristics. Conversely, for

uniform distributions with a mean item size near 50, RACE would prefer to first try the

first-fit heuristic with sorting based on maximum component size.

VIII.1.1 Point of Diminishing Returns for Running Resource Allocation Algorithms

Problem. The set of multi-capacity bin-packing heuristics tested in these experiments

make a single attempt at finding an allocation. Extending these heuristics (e.g., with back-

tracking or local search), however, is likely to produce better results in many cases at the

cost of additional computation. Still, this is not consistently the case across all input dis-

tributions tested. RACE must therefore determine whether additional computation would

significantly enhance its chance of finding a solution.

Item Size % Slack
0 - 5 5 - 10 10 - 15 15 - 20

0 - 30 34.84 97.96 99.97 100
0 - 50 10.57 65.49 96.14 99.67
0 - 70 26.44 65.68 93.02 99.14
0 - 100 100 94.93 99.34 99.64

Table 17: Success Rate of Heuristics on Solvable Problems

132

Solution → Empirical study of heuristics performance on solvable problems. Deter-

mining where additional computation can and cannot yield better performance requires fur-

ther analysis of our experimental results. By identifying which input distributions yielded

relatively low rates of success relative to total solvable problems, the cases in which ad-

ditional computation would likely benefit heuristic performance are found. Table 24 sum-

marizes the combined performance of the heuristics on the solvable problems from each

distribution. To determine whether a solution existed for each problem, a complete algo-

rithm was implemented that searched all combinations for packing the items. Due to the

running time of this algorithm, the number of bins in the experiment are limited to 4.

The success rate of the heuristics (computed for the subset of problems for which there

existed a valid allocation) varies with the distribution ranges as well as with the slack in

the bins. It is clear from the results that the heuristics perform quite well when the slack is

relatively large (i.e., greater than 10%). When there is very little slack (i.e., 0-5% slack),

however, the heuristics mostly perform poorly, with performance increasing with greater

slack.

The exception to this trend is the 0-100 range items where there is a preponderance of

medium-to-large size items (relative to bin capacity). In that case, the heuristics perform

extremely well, with the unexpected result that they perform best with very little slack.

These results suggest that when there are a significant number of large items and very little

slack, the problem may only be solvable in one way (or a small number of ways) that is

immediately found by the heuristics as they attempt to pack the bins without exceeding

their capacity. The success rate diminishes a little with greater slack but is still quite high

(99%). This may mean that there are only a few ways to allocate the large items to bins, but

a number of different ways to attempt to pack the remaining smaller items. Due to these

additional possibilities, the heuristics may be less likely to find a valid allocation with their

single attempt. Moreover, the hardest problems are those where the item sizes range from

133

small to medium or medium-large (e.g., 0-50 and 0-70 in these experiments). The 0-30

range is easier because there are many small items, allowing many valid allocations.

The analysis above can be employed to determine when to terminate a particular algo-

rithm. For example, when the components tend toward medium-to-large resource require-

ments, and the heuristics fail to find an allocation, it can be assumed that the components

most likely cannot be allocated, so there is no point in expending additional computa-

tion searching for a solution. Conversely, if the component resource requirements are all

between 0% and 50% with little slack (0-10%), then the heuristics can be run with back-

tracking for a longer duration before terminating the execution.

VIII.2 Concluding Remarks

This work presented in this chapter provides an empirical evaluation of several multi-

capacity bin-packing heuristics for resource allocation to identify performance patterns

associated with these heuristics. These patterns provide a basis for any adaptive resource

management framework to select an appropriate suite of resource allocation methods based

on the resource requirement characteristics of application components. This selection can

be done at design time or runtime. The lessons learned from the work can be summarized

as follows:

Use a suite of heuristics. Analysis of the heuristics presented in Section IX.4 shows

that the performance of a given heuristic depends on (1) the sorting method used to order

the items and (2) the distribution of the item sizes and slack (difference between the bin

capacities and the sum of item sizes). Moreover, no heuristic consistently out-performs

all others. To increase the likelihood of successful runtime resource allocation, an adap-

tive resource management framework, should employ a suite of algorithms/heuristics that

execute in parallel.

Spend time wisely in searching for an allocation. In addition to using each of these

heuristics as a single-shot attempt to find an allocation, further computation may be fruitful

134

in certain cases where the heuristics do not immediately find a solution. For example, the

results suggest there is little benefit to using additional computation when the input contains

a preponderance of medium and large components relative to node capacity (e.g., with the

0-100 distribution the heuristics found a solution almost every time one existed).

Similarly, when there is a great deal of slack between component resource requirements

and total system resources, the heuristics were likely to find a solution, if one existed, and

further computation would not improve performance. Moreover, when the heuristics are

extended to perform multiple attempts at finding an allocation (e.g., through backtracking

or local search), our results suggest that the most efficient solution will be to provide some

of the heuristics more computational resources/time than others.

Classify input to dynamically create weighted heuristic suite. Based on our ex-

periment results, it appears that an effective and efficient process for allocating system

resources to application components involves (1) inspecting and analyzing component re-

source requirements to classify the input item distribution and (2) weighted selection of

a suite of allocation algorithms/heuristics that are most likely to find a valid allocation of

system resources. While the relative weight given to the heuristics could be set based on

system-wide availability of components (e.g., at design time), a more flexible solution is

to dynamically adjust the weights at runtime as applications are provided for allocation.

The input application can be characteried based on component resource requirements and

adjust the weights dynamically to efficiently find a valid allocation.

In future work, the performance of multi-capacity bin-packing heuristics will be tested

on a wider range of input distributions, including normal distributions with a variety of

means and variances. Input patterns for which particular heuristics are likely/unlikely to

succeed with additional backtracking or local search computation are to be classified. This

classification will help support a wider range of systems and applications by improving the

efficiency and effectiveness of dynamic resource allocation.

The implementations of the resource allocation heuristics evaluated in this chapter are

135

available as open-source software from deuce.doc.wustl.edu/Download.html and www.dre.vanderbilt.edu/ ni-

labjar/Allocation, respectively.

136

CHAPTER IX

COMPONENT ASSIGNMENT FRAMEWORK FOR QOS ASSURANCE

This chapter describes the development of a framework for assigning components onto

the nodes in a way that will maximize the utility of the application. It will try to handle the

maximum number of clients while keeping the amount of resources used at a minimum.

This chapter presents the Component Assignment Framework for distributed component

based pplications (CAFe), which is an algorithmic framework for increasing capacity of

a web portal for a fixed set of hardware resources by leveraging the component-aware

design of contemporary web portals. The goal of CAFe is to create a deployment plan

that maximizes the capacity of the web portal so their performance remains within SLA

bounds. It consists of a mechanism to predict the application performance coupled with an

algorithm to assign the components onto the nodes.

IX.1 Problem Formulation and Requirements

As discussed above , the problem CAFe addresses involves maximizing the capacity

(user requests or user sessions) of a web portal for given hardware resources, while en-

suring that the application performance remains within SLA bounds. This problem can be

stated formally as follows: The problem domain consists of the set of n components C,

{C1,C2,Cn}, the set of m nodes P {P1,P2...Pm}, and the set of k services {S1,S2...Sk}.

Each component has Service Demand D {D1,D2...Dn}. Each service has response time RT

{RT1,RT2...RTk}. The capacity of the application is denoted by either the arrival rate, λ for

each service {λ1.....λk} or the concurrent number of customers M {M1,M2,Mk}. SUi,r

gives the utilization of resource r by component i. The SLA gives an upper bound on the

response times of each service k{RTsla,1...RTsla,k}.

CAFe must therefore provide a solution that places the n components in C to the m

137

nodes P such that the capacity (either λ or M) is maximized while the response time is

within the SLA limit RT < RTsla. To achieve this solution, CAFe must meet the following

requirements:

Place components onto nodes to balance resource consumption in polynomial time.

Application components must be placed onto the available hardware nodes such that ap-

plication capacity is maximized while the performance is within the upper bound set by a

SLA. Since this is an NP-Hard problem [74] it is important to find out efficient heuristics

that can find good approximate solutions. Section IX.2.1 describes how CAFe uses an effi-

cient heuristic to place the components onto the available nodes and also ensuring that the

resource utilization is balanced.

Estimate component requirement and application performance for various place-

ment and workload. To place the components in each node, the resource requirement

of each component is required. Moreover, for each placement strategy, the application

performance must be compared with the SLA bound. Both vary with workload and partic-

ular placement. Therefore there is the need of a workload- and component-aware way of

component resource requirement and application performance estimation. Section VI.3.2

describes how CAFe develops an analytical model to estimate component resource require-

ment and application performance.

Co-ordinate placement routine and performance modeling to maximize capacity.

For each particular placement, the application performance need to be estimated to check

if it is within the SLA limit. Conversely, performance estimation can only be done when

a particular placement is given. Placement and performance estimation must therefore

work closely to solve the overall problem. Section IX.2.2 describes how CAFe designs a

algorithmic framework to co-ordinate the actions of a placement routine and an analytical

model in a seamless fashion.

138

IX.2 CAFe: A Component Assignment Framework for Multi-Tiered Web Portals

This section discusses the design of CAFe and how it addresses the problem and re-

quirements presented in Section IX.1. CAFe consists of two components: the placement

algorithm and analytical model, as shown in Figure 56. The input to CAFe includes the

Component
Assignment
Algorithm

Simple
Analytic
Model

Component
Assignment
Framework

Application
Components

Server

ServerServerServer

ServerServer

Available
Hardware

Figure 56: The CAFe Component Assignment Framework Architecture

set of application components and their inter-dependancy, as shown by the box on the left

in Figure 56 and the set of available hardware nodes shown on the right. The output from

CAFe is a deployment plan containing the mapping of application components to nodes.

This mapping will attempt to maximize the application capacity. The rest of this section

describes each element in CAFe.

IX.2.1 Allocation Routine

As mentioned in Section IX.1, there is a need to develop efficient heuristics to place

components onto nodes. Placing components to hardware nodes can be mapped as a bin-

packing problem [15], which is NP-Hard in the general case (and which is what our sce-

narios present). Existing bin-packing heuristics (such as first-fit and best-fit) can be used to

find a placement that is near optimal.

139

Chapter I describes the intuition behind the allocation routine, which is that perfor-

mance increases by balancing the resource utilization between the various nodes and not

allowing the load of any resource to reach 100%. Worst-fit bin packing is used since it

allocates items to bins by balancing the overall usage of each bin.

Algorithm 2 gives the overall allocation routine, which is a wrapper around the worst-fit

Algorithm 2: Allocate
C: Set of components
foreach L:Set of Components that should remain local do
D← Sum the Service Demands of all components in L
Replace all components in L with D in C

end
DP = worst_ f it_bin_packing(C,P)

Algorithm 3. Algorithm 2 groups together components that are constrained to remain co-

located in one machine. For example, they could be the database components that update

the tables and need to be connected to the master instance of a database and hence msut be

allocated to a single node. Algorithm 2 sums the Service Demands of the components that

must be collocated and then replaces them by a hypothetical single component. A call to

the worst_ f it routine is made at the end of algorithm 2.

The worst-fit routine is given in Algorithm 3. The components are first ordered accord-

Algorithm 3: Worst-Fit Bin Packing
begin
Order_Components(C) // Order the Components by resource requirement
;
foreach Ci ∈C,1≤ i≤|C| do

// For all components
Pk← The node with the maximum slack
Place Ci on to Pk

end
end

140

ing to their resource requirements (Line 3). The algorithm then runs in an iterative fashion.

At each step an item is allocated to a bin. All bins are inspected and the least utilized bin is

selected.

IX.2.2 Algorithmic Framework to Co-ordinate Placement and Performance Estima-

tion

Section IX.1 also discusses the need for close co-ordination between placing the com-

ponents and performance estimation. To meet this requirement CAFe provides a framework

that standardizes the overall algorithm and defines a standard interface for communication

between the placement and performance estimation. This framework also allows the con-

figuration of other placement algorithms, such as integer programming and different analyt-

ical models like models based on worst case estimation. Different algorithms or analytical

models can be configured in/out to produce results pertaining to the specific application

domain or scenario.

CAFe uses an analytical model of the application and a placement routine to determine a

mapping of the application components onto the available hardware nodes. CAFe attempts

to maximize the capacity of the web portal, while ensuring that the response time of the

requests is within the SLA bounds.

Algorithm 4 describes the component assignment framework.

The algorithm alternates between invoking the placement algorithm and an evaluation

using the analytic model. In each step, it increases the number of clients in the system by

a fixed amount and rearranges the components across the nodes to minimize the difference

in resource utilization. It then verifies that the response time is below the SLA limit using

the analytical model and iterates on this strategy until the response time exceeds the SLA

limit.

CAFe takes as input the details (such as the Service Demands of each component on

each resource) of the N components to deploy. Service Demand is the amount of resource

141

Algorithm 4: Component Assignment Framework
Input:

C←set of N components to be deployed,
D←set of Service Demands for all components, Di,r ←Service Demand of component i on the device r
P←set of K available nodes
RTsla set of response time values for each service as specified by the SLA

Output:
Deployment plan DP← set of tuples mapping a component to a node,
M: Total Number of concurrent clients
RT ←set of response times for all components
RTi: Total response time of service i
Ur: Total Utilization of each resource r in the nodes
SUi,r: Utilization of resource r by component i
SU ← set of resource utilization of all components
Incr: Incremental capacity at each step
InitCap:Initial Capacity

begin
Intially, DP = {},M = InitCap,SU =U,RTi = ∑r Di,r, incr = Incr ;
while incr > 10 do

while 6 ∃i : RTi > RTsla,i do
// Check if any service RT is greater than SLA bound
;

DP = Allocate(SU,P) // Call Placement routine to get a placement
(RT,SU,U) = Model(M,D,DP)// Call model to estimate performance for current placement
last_M←M // Save the previous capacity
M←M+ incr // Increment the capacity for the next iteration

end
// At least one service has Response Time greater than SLA bound for current capacity
M← last_M // Rollback to previous iteration’s capacity
incr← incr/2 // Decrease incr by half
M←M+ incr // Now Increase capacity and repeat

end
// while(incr > 10)

end

time taken by one transaction without including the queuing delay. For example, a single

Login request takes 0.004 seconds of processor time in the database server. The Service

Demand for Login on the database CPU then takes 0.004 seconds. As output, the frame-

work provides a deployment plan(DP, estimated response (RT) time and total utilization

(U) of each resource.

The initial capacity is an input (Init_Cap, Line 4). The value of M is set equal to

Init_Cap. This capacity is an arrival rate for an open model or “number of users” for

a closed model. The capacity (M) is increased in each step by an incremental step incr

(Line 4) which also can be parameterized (Incr). At each iteration, the response time of all

services is compared with the SLA provided upper bound (inner while loop at Line 4).

Inside the inner loop, the framework makes a call to the Allocate module (Line 4),

which maps the components to the nodes. This mapping is then presented to the Model

142

(Line 4) along with the Service Demand of each component. The Model computes the

estimated response time of each service and the utilization of each resource by each com-

ponent. It also outputs the total utilization of each resource.

The inner loop of Algorithm 4 exits when response time of any service exceeds the SLA

provided upper bound (i.e., M reaches maximum capacity), at which point incr is set to a

lower value (one-half) and the algorithm continues from the previous value of M (Line 4).

If the inner loop exits again, the value of incr is lowered further (Line 4). The algorithm

ends when the value of incr is less than 10.

The output of the algorithm is that value of M, which yields the highest capacity possi-

ble and also a deployment plan (DP) that maps the application components onto the nodes.

Though not provably optimal, the algorithm is a reasonable approximation. An optimal

algorithm would require an integer programming routine [66] to obtain the mapping of the

components to the nodes. Such an implementation would be NP-Hard, however, and thus

not be feasible for large applications. CAFe therefore uses an intuitive heuristic based on

the popular worst-fit bin packing algorithm [15].

IX.3 Experimental Evaluation

IX.3.1 Rice University Bidding System

This section describes our experimental evaluation of CAFe, which used the Java servlets

version of the Rice University Bidding System (RUBiS) [3] to evaluate its effectiveness.

RUBiS is a prototype of an auction site modeled after ebay that has the features of an online

web portal studied in this chapter. It provides three types of user sessions (visitor, buyer,

and seller) and a client-browser emulator that emulates users behavior.

A RUBiS session is a sequence of interactions for the same customer. For each cus-

tomer session, the client emulator opens a persistent HTTP connection to the Web server

and closes it at the end of the session. Each emulated client waits for a certain think time

before initiating the next interaction. The next interaction is determined by a state transition

143

matrix that specifies the probability to go from one interaction to another one. The load on

the site is varied by altering the number of clients.

CAFe requires an analytical model of the application. Once the model is constructed

and validated, it can be used in CAFe to find the appropriate component placement. The

steps required to build the model are (1) compute Service Demand for each service provided

for each customer type such as visitor or buyer and (2) build a customer behavior modeling

graph of user interactions and calculate the percentage of requests for each service. For our

experiments, a workload representing a set of visitor clients were chosen, so the workload

consists of browsing by the users and is thus composed of read-only interactions. The

components for each service in RUBiS is given in Table 18.

Service Name Home Page Browse Page Browse_Cat Browse_Reg Br_Cat_Reg
Business Tier BT_H BT_B BT_BC BT_BR BT_BCR

DB Tier _ _ DB_BC DB_BR DB_BCR

Service Name Srch_It_Cat Srch_It_Reg View_Items Vu_Usr_Info Vu_Bid_Hst
Business Tier BT_SC BT_SR BT_VI BT_VU BT_BH

DB Tier DB_SC DB_SR DB_VI DB_VU DB_BH

Table 18: Component Names for Each Service

The RUBiS benchmark was installed and run on the ISISLab testbed (www.isislab.

vanderbilt.edu) at Vanderbilt University using 3 nodes. One for the client emulators,

one for the "Business Tier" and the other for "Database Tier". Each node has 2.8 GHz Intel

Xeon processor, 1GB of ram, and 40GB HDD running Fedora Core 8.

IX.3.2 Computing Service Demand

The Service Demand of each of the components must be captured to build an analytical

model of the application. The RUBiS benchmark was run with increasing clients and its

144

effect on various CPU, memory, and disk were noted. The memory and disk usages are

shown in Figures 57a and 57b.

Memory Utilization

0

5

10

15

20

25

30

35

40

45

50

250 500 750 1000

Clients

%
 U

til

(a) Memory Utilization

Disk Utilization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

250 500 750 1000

Clients

%
 U

til

(b) Disk Utilization

Figure 57: The Utilization of Memory and Disk for RUBiS Benchmark

Disk usage is low (∼0.2%) and memory usage was∼40%. Moreover, these utilizations

remained steady even as the number of clients are increased. Conversely, CPU usages

increased as number of clients grew (the Actual line in the Figure 16a).

The results in Figures 57a and 57b show that CPU is the bottleneck device. The Service

Demands were computed for the CPU and the disk. Since memory was not used fully, it

is not a contentious resource and will not be used in the analytical model. Moreover, the

CAFe placement routine ignores disk usage since it remains steady and is much less than

CPU usage. The CAFe placement routine thus only uses one resource (CPU) to come up

with the placement.

RUBiS simplifies the calculation of Service Demand. It includes a client-browser emu-

lator for a single client and makes requests on one service at a time. During the experiment,

the processor, disk and memory usages were captured. After the experiment finished the

Service Demand law [46] is used to calculate the Service Demand for that service. In some

services (such as “Search Items in Categories”) the Service Demand is load dependent. For

145

such services the number of clients was increased and the Service Demands were measured

appropriately.

The Service Demands of CPU for all the services measured in such a way are given in

Table 19. Each service in RUBiS is composed of multiple components, with a component

Service Business Tier DB Server Description
Component(secs) Component(secs)

home 0.002 0 Home Page
browse 0.002 0.0 Browse Main Page

browse_cat 0.0025 0.0005 Browse Categories
browse_reg 0.0025 0.0005 Browse Regions
br_cat_reg 0.003 0.0007 Browse Categories in Regions
Srch_it_cat 0.004 0.028 Search Items in Categories
Srch_it_reg 0.0021 0.027 Search Items in Regions
view_items 0.004 0.0009 View Items
vu_usr_info 0.003 0.001 View User Info
vu_bid_hst 0.004 0.004 View Bid History

Table 19: CPU Service Demand for Each Component

in the middle (Business) tier and one in the Database Tier. Each component has its own

resource requirements or Service Demands.

IX.3.3 Customer Behavior Modeling Graph

For the initial experiment, the workload was composed of visitor type of clients. A

typical user is expected to browse across the set of services and visit different sections of

the auction site. A transition probability is assumed for a typical user to move from one

service to the other.

The various transition probabilities are given in Table 20.

Here element pi, j (at row i and column j) represents the probability of the ith ser-

vice being invoked after the jth service is invoked. For example, a user in the web page

“browse_cat”(browsing categories) has a 0.0025% chance of going to the “home” page and

a 99% chance for moving on to "Search_it_cat"(searching for an item in a category).

146

home browse browse_cat browse_reg br_cat_reg Srch_it_cat Srch_it_reg view_items vu_usr_info vu_bid_hst view_items_reg vu_usr_info_reg vu_bid_hst_reg Probabilities
home 0 0.01 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0026

browse 1 0 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0100
browse_cat 0 0.7 0 0 0 0 0 0 0 0 0 0 0 0.0070
browse_reg 0 0.29 0 0 0 0 0 0 0 0 0 0 0 0.0029
br_cat_reg 0 0 0 0.99 0 0 0 0 0 0 0 0 0 0.0029
Srch_it_cat 0 0 0.99 0 0 0.44 0 0.74 0 0 0 0 0 0.3343
Srch_it_reg 0 0 0 0 0.99 0 0.44 0 0 0 0.74 0 0 0.1371
view_items 0 0 0 0 0 0.55 0 0 0.8 0 0 0 0 0.2436
vu_usr_info 0 0 0 0 0 0 0 0.15 0 0.99 0 0 0 0.0747
vu_bid_hst 0 0 0 0 0 0 0 0.1 0.19 0 0 0 0 0.0386

view_items_reg 0 0 0 0 0 0 0.55 0 0 0 0 0.8 0 0.0999
vu_usr_info_reg 0 0 0 0 0 0 0 0 0 0 0.15 0 0.99 0.0306
vu_bid_hst_reg 0 0 0 0 0 0 0 0 0 0 0.1 0.19 0 0.0158

Table 20: Transition Probabilities Between Various Services

The steady state probability (percentage of user sessions) for each service type is de-

noted by the vector π . The value of πi denotes the percentage of user requests that invoke

the the ith service. The vector π can be obtained by using a technique is similar to the one

in [83]. Once computed, the amount of load on each service type can be calculated from

the total number of user sessions. The rightmost column in Table 20 gives the steady state

probabilities of each service.

IX.3.4 Analytical Modeling of RUBiS Servlets

The analytical model of the RUBiS application is developed as described in detail

in V.0.1. It is then used in the CAFe Algorithm as described below.

IX.3.5 Application Component Placement

It is now described how CAFe iteratively places components onto hardware nodes. The

SLA is assumed to have set an upper bound of 1 sec on the response time of all services.

Algorithm 4 is used from Section IX.2, which considers CPU as the only resource since

both memory and disk usage is minor compared to CPU usage, as described in Section IX.3.

The first iteration of Algorithm 4 uses the initial Service Demands for each application

component. The Service Demands are given in Table 19. The set of all Service Demands

and the available nodes (in this case 2) are used by the Allocate Algorithm 2. This algo-

rithm in turn invokes the worst_ f it_bin_packing described in Algorithm 3, which places

components on the two nodes.

147

As mentioned in Section IX.3, there are two nodes used for RUBiS benchmark: Busi-

ness Tier Server (BT_SRV) and the Database Server (DB_SRV). The name of the nodes are

given since the default deployment of RUBiS uses the BT_SRV to deploy all the business

layer components and DB_SRV to deploy the database. In fact, such a tiered deployment

is an industry standard [22].

Table 21a shows the placement of the components after the first iteration of Algorithm 4

in CAFe. The mapping of the components to the nodes, the total number of clients (100),

BT_SRV DB_SRV
Component CPU Util Component CPU Util

DB_SC 0.02783 DB_SR 0.02690
BT_VI 0.00405 BT_SC 0.00417
DB_BH 0.00400 BT_BH 0.00400
BT_UI 0.00300 BT_BCR 0.00325
BT_BC 0.00245 BT_BR 0.00253
BT_H 0.00200 BT_SR 0.00210
DB_UI 0.00100 BT_B 0.00200
DB_VI 0.00095 DB_BCR 0.00075
DB_BC 0.00055 DB_BR 0.00047

(a) Component Placement

Service Business Tier DB Server Response
Component% Component% Time

home 0.007 0.000 0.002
browse 0.029 0.000 0.002

browse_cat 0.025 0.005 0.004
browse_reg 0.010 0.002 0.004
br_cat_reg 0.014 0.003 0.005
Srch_it_cat 1.980 13.190 0.049
Srch_it_reg 0.380 5.260 0.041
view_items 1.940 0.490 0.006
vu_usr_info 0.480 0.120 0.005
vu_bid_hst 0.310 0.310 0.009

(b) Utilization and Response Time

Table 21: Component Placement and RUBiS Performance After Iteration 1

and the Service Demands of the components are used to build the analytical model. It

is then used to find the response time and processor utilization of the two servers, given

in Table 21b. The response time of all the services is well below the SLA specified 1

sec. CAFe iterates and the processor utilization of each component found in the previous

iteration is used in the Allocate routine.

In the second iteration, the Allocate Algorithm 2 produces the placement shown in

Table 22.

In the third iteration, the number of clients, M is increase to 300. The placement com-

puted by CAFe remains the same, however, and the response times of the two services

148

BT_SRV DB_SRV
Component CPU Util Component CPU Util Component CPU Util

DB_SC 13.19 DB_SR 5.26 BT_B 0.029
BT_SC 1.97 BT_BC 0.025
BT_VI 1.94 BT_BCR 0.014
DB_VI 0.49 BT_BR 0.010
BT_UI 0.48 BT_H 0.007
BT_SR 0.39 DB_BC 0.005
BT_BH 0.31 DB_BCR 0.003
DB_BH 0.31 DB_BR 0.002
DB_UI 0.12

Table 22: Iteration 2:Component Placement by Allocation Routine

“Search By Category” and “Search by Region” increase with each iteration as shown in

Table 23.

Iteration Clients home broBTe broBTe_cat broBTe_reg br_cat_reg Srch_it_cat Srch_it_reg view_items vu_usr_info vu_bid_hst
1 100 0.002 0.002 0.004 0.004 0.005 0.049 0.041 0.006 0.005 0.009
2 200 0.002 0.002 0.004 0.004 0.005 0.050 0.041 0.006 0.005 0.009
5 500 0.002 0.002 0.004 0.004 0.005 0.058 0.044 0.007 0.005 0.010
10 1000 0.002 0.002 0.005 0.005 0.006 0.088 0.049 0.007 0.006 0.011
15 1500 0.002 0.002 0.005 0.005 0.007 0.689 0.055 0.008 0.007 0.012
16 1600 0.003 0.003 0.006 0.006 0.007 1.119 0.057 0.008 0.007 0.012
17 1550 0.003 0.003 0.006 0.006 0.007 0.899 0.056 0.008 0.007 0.012
18 1575 0.003 0.003 0.006 0.006 0.007 1.011 0.057 0.008 0.007 0.012
19 1563 0.003 0.003 0.006 0.006 0.007 0.956 0.056 0.008 0.007 0.012

Table 23: Successive Iterations:Response Time of Each Service

At the value of M = 1600, the response time of the service “Search by Category” crosses

the SLA limit of 1 sec as shown in iteration 16 in Table 23. At that point incr variable in

Algorithm 4 is reduced by half to 50 and M is reduced to the previous value of 1500. The

algorithm continues from that point. Thus in iteration 17, value of M is 1550 In a similar

way, for M equal to 1563, the response time of “Search by Category” is just below 1 sec

(iteration 19). This response time is the maximum capacity of the application under a SLA

response time of 1 sec. Figure 58 shows the comparison in the response time of the service

“Search By Category,” which is the bottleneck service.

149

Response Time of "Search by category"

0

0.5

1

1.5

2

2.5

100 200 250 500 750 1000 1100 1250 1500 1550 1563 1575 1600

Time (secs)

C
lie

nt
s

café
Original

SLA Limit of 1 sec

Figure 58: Response Time with Increasing Clients

IX.3.6 Implementation of the CAFe Deployment Plan

It is now described how RUBiS uses the new deployment plan recommended by CAFe

and empirically evaluate the performance improvement compared with the default tiered

architecture used by RUBiS. This plan assigns all the Business Tier components in the

BT_SRV and the entire database in the DB_SRV. The deployment suggested by CAFe is

shown in Table 22, where component DB_SC is contained in one node and all the others

are kept in the other node. The component DB_SC is the database component of the service

“Search By Category,” which is a read-only component that invokes a select query on the

database.

One way to implement this assignment is to run a master instance of the database along

with all the other components and run a slave instance of the database in the machine where

DB_SC is run. The corresponding deployment is shown in Figure 59. In this figure there

are two instances of the Database: the master instance is run in the machine BT_SRV and a

150

Workstation

Workstation

Workstation

Workstation

RestRest

Master
DB

Rest DB_SC

Slave
DB

BT_SRV DB_SRV
Client Terminals

Figure 59: Deployment of CAFe Suggested Assignment

slave instance is run in DB_SRV. All Business Tier components and the web server run in

BT_SRV. These components make the database call on the master instance in BT_SRV.

Only component DB_SC (which belongs to service “Search By Category”) makes the

database call to the slave instance (in DB_SRV). The component DB_SC is thus moved

to DB_SRV, while all other components run in the BT_SRV.

Figure 60a shows the response times of the most loaded service “Search By Category”

for the CAFe deployment. By comparison, the original response time with the 3-Tier de-

Response Time for "Search by Category"

0

500

1000

1500

2000

2500

3000

3500

4000

4500

250 500 750 1000 1250 1300
Clients

Ti
m

e
(s

ec
s)

café
3-Tier

1 sec SLA
limit

(a) Response Time

Processor Utilization

0

10

20

30

40

50

60

70

80

90

250 500 750 1000 1250

Clients

%
 U

til
iz

at
io

n

café DB_SRV
3-Tier DB_SRV
cafe BT_SRV
3-Tier BT_SRV

CAFe DB_SRV

3- Tier DB_SRV

3- Tier BT_SRV

CAFe BT_SRV

(b) CPU Util

Figure 60: Performance of CAFe Installation

151

ployment is also provided. The comparison shows that the CAFe deployment increases the

capacity of the application. The solid line (Time = 1.0) parallel to the Client axis signifies

the SLA limit of 1 sec. The response times for the 3-Tier deployment crosses the line just

above 1,000 clients. In contrast, the CAFe deployment the response time graph crosses

the line at just over 1250 clients, which provides an improvement of ∼25% in application

capacity.

Figure 61 shows the processor utilization for the two cases. In the CAFe installation

the DB_SRV is less loaded than in the 3-Tier deployment. The BT_SRV utilization also

shows the CAFe installation uses more CPU time than in the 3-Tier installation. This result

is expected since CAFe tends to balance out the component utilizations across the given

machines.

CAFe’s balancing is not perfect,however, since DB_SC (the database component of the

“Search By Category” service) consumes more processor time than all other components.

This result indicates that load balancing the DB_SRV on multiple components and moving

the components to different machines may be advantageous.

IX.3.7 Algorithm for Component Replication and Placement

Its shown in the previous section how some components take up more resources that

others. It depends upon the amount of user hits on it. Accordingly it may become necessary

to deploy multiple instances of the software components that implement the highly loaded

services so that the total load can be balanced between different instances. An important

question stems from determining which components need to be replicated for load. balanc-

ing and how many resources are needed to map these components on to the resources.

Manifestation in RUBiS: Figure 61 shows the previous figure with the lines corresponding

to 3-tier processor usage removed. The processor utilization of the two servers in RUBiS

are shown. In DB_SRV there is only one component SearchItemsByCat which takes

up 70% of processor time when the number of clients reach around 1,300.

152

30
40
50
60
70
80

U
 U

til
iz

at
io

n
DB_SRV

0
10
20

250 500 750 1000 1250

%
 C

PU

Clients

BT_SRV

Figure 61: CPU Utilization

At the same time, it is observed that the other machine is loaded only upto 40%.

Thus, there is an imbalance in resource usage. Allocation algorithms developed in prior

research [30, 34] cannot improve this situation since the single instance of component

SearchItemsByCat takes up significant CPU. To improve this situation, there should

be another instance of SearchItemsByCat component and the load could be distributed

between the two. One of the components could then be placed onto BT_SRV, so that the

overall load (70+40 = 110) is balanced between the two servers (55 each). This will make

it possible to handle more clients since now the utilization of both servers can be increased

to around 70.

Thus by component replication and controlling the amount of load on a component,

the number of resources required can be controlled and utilized by the component. The

resource required by a component is referred to as the size of the component. The challenge

now is to figure out the size of each component instance that will help in balancing the

load. This is a non-trivial problem. The problem is more acute when trying to determine

153

component placement at design-time. Here accurate models which estimate the component

resource requirements as well as performance for a particular placement are needed.

MAQ-PROWESS Solution: The solutions are presented for determining the replication

requirements and placement decisions for software components that implement the differ-

ent services offered by the web portal. The lower bound on the total number of machines

required for a web portal can be calculated from the expected processing power required in

the following way:

dLde/m, (IX.1)

where Ld is the total processing power required (sum of the cpu requirement of all the

components) and m is the capacity of a single machine

The problem of allocating the different components onto the nodes is similar to a bin-

packing problem [15]. The machines are assumed to be bins while the components are

items, where the items need to be placed onto the bins. It is well-known that the bin-

packing problem is NP hard [74]. Thus, popular heuristics like first-fit, best-fit or worst-

fit [15] packing algorithms need to be used to come up with the allocation.

It has been shown that these algorithms provide solutions which are around 2 times

poorer than the optimal solution in the worst case. Thus the number of bins required could

go up to d2×Lde/m. This would obviously mean that significant slack or idle processing

power will remain in the machines.

Chapter VIII presented an extensive study on the performance of the different bin-

packing heuristics under various environments. It was found that the average size of items

affected the heuristics results. This is shown in Table 24. Here all quantities are mentioned

in terms of percents. The percents are percentage of a single bin size. So an item size of

20% means that the resource requirement of a component is 20% of the total CPU time.

The table shows the probability of finding an allocation of the given items onto the bins

with different values of slack (difference between total bin capacity and total item sizes)

and different item sizes.

154

Item Size % Slack
0 - 5 5 - 10 10 - 15 15 - 20

0 - 30 34.84 97.96 99.97 100
0 - 50 10.57 65.49 96.14 99.67
0 - 70 26.44 65.68 93.02 99.14
0 - 100 100 94.93 99.34 99.64

Table 24: Success Rate of Heuristics on Solvable Problems:Courtesy Chapter VIII

For example, the entry of the second column and first row is 97.96%. This means that if

there are items with average size of 30% (row value) of bin size and slack between 5 to 10

% (column) of bin size, then the chance of finding an allocation is 97.96%. This also means

that if the item sizes are around 30% then the heuristics can find an allocation using up to

around 10% more space than the total item sizes. Thus the expected number of machines

required would be d1.1×Lde/m which is much less than the worst case of 2 times the total

item sizes.

This insight is used in the component replication and allocation algorithm developed

in this chapter. Thus, the component sizes are kept around 30% which means the compo-

nent resource requirement is kept around 30% of total processor time. This can be done

by figuring out the number of clients that drive the utilization of the processor to 30% due

to that component and allowing only this many clients to make calls on a single compo-

nent instance. This can easily be implemented by a sentry at the web server level which

monitors the incoming user requests. Algorithm 5 describes the component replication and

placement algorithm. It performs a number of functions as follows:

• Capacity Planning: It computes the number of machines required for a target num-

ber of customers. It also minimizes the number of machines.

• Replication & Load Balancing: It computes the number of replicas for each com-

ponent and how the load on a component is to be distributed to the individual replicas

• Component Placement: It computes the mapping of the different components onto

the nodes.

155

Algorithm 5 uses two subroutines, Placement and MVA. Placement places the com-

ponents onto the machines by using a bin packing heuristic. In this work a worst-fit heuris-

tic has been used. MVA is the Mean Value Analysis algorithm that uses the enhanced

analytical models that are developed to compute performance characteristics of a closed

queuing network. It returns the response time of the different transaction classes along

with the utilization of each component and each machine.

Algorithm 5: Replication & Allocation
begin

// Initially, use 2 machines in a tiered deployment
;
// All business logic components in first machine
;
// Database in second machine, Default Deployment Plan DP
;
N = init_clients
(RT,SU,U) = MVA (DP, N) // Compute Initial Component Utilizations
(DP) = Placement (SU, P) // Find a placement of the components
;
while N < Target do

(RT,SU,U) = MVA (DP, N)
if ∃i : SUi > 30 then

Replicate (i); // Create New instance of Component i
;
// Place new component on same machine as i
(RT, SU, U) = MVA (DP) // Calculate new response time
(DP) = Placement (SU, P) // Update Deployment Plan

end
if ∃i : RTi > RTSLA then

// add new machine
P = P + 1
(DP) = Placement (SU, P) // find new placement

end
N += incr // Increase Clients for next iteration

end
end

Initially, the algorithm starts with a default set of components needed for each service,

uses a tiered deployment, and assumes a low number of clients, say, 100 (Line 5). A 3-

tiered deployment will traditionally use a machine per tier. The components of each type

are placed in the respective machines. The algorithm starts by estimating the performance

characteristics of the application and placing the different components onto the given ma-

chines (Lines 5 & 5).

Next, the algorithm enters an iterative loop 5increasing clients with each iteration until

156

the target number of clients is reached. At every iteration MVA is used to estimate the

performance requirement (Line 5). If any component reaches 30% utilization (Line 5),

then another instance of the component is created and initially placed in the same machine

as the original. Then MVA is invoked to estimate performance and the components are

again placed onto the nodes. Similarly, if at any point the response time of any transaction

reaches the SLA bound (Line 5), then another machine is added to the available machine

and the placement heuristic is invoked.

This iterative process continues until the target number of clients is reached. Since the

heuristic is one of the popular bin packing heuristics and the components are kept within a

maximum of 30% resource utilization, it is ensured that near-minimum resources are used.

IX.4 Evaluating The Replication And Placement Algorithm

This section presents results that empirically evaluate the two properties, i.e., mini-

mizing resources and supporting increased number of clients, of the deployment plan for

RUBiS web portal produced by Algorithm 5.

Recall that Algorithm 5 requires an analytical model of the system to compute the

component placement. Using the process described in Chapter V, a multi-class closed

queuing model shown in Figure 62 was developed for a scenario comprising two machines.

One machine acts as the joint web server and business tier server while the other operates

as the database server. A queue is modeled for each of the resources in the machines, i.e.,

CPU and disk. Each service is modeled as a job class.

MVA is used to solve the closed queuing model. It uses the load dependent service

demand functions (see Equations V.2 and V.3). Since multiple processors are used, the

MVA algorithm is enhanced with the adjusted value of the service rate of waiting jobs on

the CPU using the correction factor explained in Section V.1.4.2.

An extra queue for the database server is modeled to account for the software contention

or locking that occurs due to overlapping queries being executed concurrently as discussed

157

.

.

.

Client

Terminals

CPU

Disk Disk

Web Server/

Business Tier
DB Server

CPU

Figure 62: Queuing Model of RUBiS Scenario

in Section V.1.4.2. Thus, only the overlapping queries will visit this queue and will suffer

some additional delay, which simulates the delay due to waiting on a software lock.

1. Minimizing and Efficiently Utilizing Resources:

In a traditional tiered deployment, each tier is considered atomic and hence all its func-

tionality must be deployed together. In contrast, for a component-based system where

services are implemented by assembling and deploying software components, it is possible

to replicate and distribute individual components over the available resources. It is argued

that this flexibility can make better usage of resources compared to a traditional tiered ar-

chitecture.

Figure 63 compares the number of machines required to support a given number of

clients for a range of client populations. For every value of client population that was exper-

imented with, the response time of the client requests remained within the SLA-prescribed

bound. It can be seen that for a majority of the cases our algorithm finds an allocation of

the components that uses a reduced number of machines compared to the traditional tiered

deployment.1

Table 25 shows the response times and the utilizations of the different processors for a

total client population of 2,000. A tiered deployment requires 4 machines to serve 2,000

1The experiments were conducted in our ISISLab http://www.isislab.vanderbilt.edu/

158

2

3

4

5

6

7

er
 o

f N
od

es

0

1

N
um

b

ClientsMAQ 3-Tier

Figure 63: Node Usage of Tiered and MAQ-PROWESS

clients, while MAQ-PROWESS requires only 3 machines – an improvement of 25%. The

table clearly shows that in the tiered deployment Node 3 is mostly idle(17.47%utilized).

MAQ-PROWESS identifies idle resources and intelligently places components resulting in

a minimum of idle resources.

Node Utilization
Deployment Response Time (msec) Node 1 Node 2 Node 3 Node 4

Tiered 270 51.06 79.08 17.47 78.86
MAQ-PROWESS 353.5 87.32 57.41 65.04

Table 25: Response Time and Utilization

Figure 64 shows the resulting allocation of the different components in the deployment

of RUBis web portal. Using multiple instances of components and distributing them in an

intelligent way helps in effective utilization of available resources.

159

Search By
Category

Business Tier
Components

Search By Region

Node 1 Node 2 Node 3

Figure 64: Allocation of Components for 2,000 Client

Figure 65 presents the coefficient of variance (CV) of the CPU usages for the three ma-

chines used in this experiment. It can be seen that the CV for the tiered deployment is much

higher than the MAQ-PROWESS deployment. This signifies that the MAQ-PROWESS de-

ployment uses the processors in a more balanced manner than the tiered deployment rein-

forcing our claim that MAQ-PROWESS effectively utilizes resources. The outcome is the

ability of MAQ-PROWESS to handle more incoming load while preventing a single Node

to become the bottleneck as long as possible.

2. Handling Increasing Number of Clients:

Our MAQ-PROWESS algorithm also enables increasing the number of clients handled

using the same fixed number of machines compared to a tiered architecture. This can

be achieved with a slight variation of Algorithm 5 where the number of nodes are fixed

initially to some value. The algorithm terminates as soon as the response time reaches the

SLA bound.

Using the result of three nodes obtained in the previous result, additional experiments

were conducted. The allocation decisions made by MAQ-PROWESS are used to place

the components on the machines and the number of clients is gradually increased till their

response times reach a SLA bound of 1 sec. In comparison, the tiered deployment is also

used to host the same number of clients.

160

0 1
0.15
0.2

0.25
0.3

0.35
0.4

0.45

ffi
ci

en
t o

f
at

io
n

-C
PU

ili

za
tio

n
0

0.05
0.1

500 1000 1500 2000

C
oe

Va
ria U

t

ClientsTiered MAQ

Figure 65: Coefficent of Variation of Node Usage

Figure 66 shows the response time for both the tiered deployment and the MAQ-

PROWESS deployment. It can be seen that the tiered deployment reaches a response time

of 1 sec at around 1,800 clients while the MAQ-PROWESS deployment reaches a response

time of 1 sec at around 2,150 clients. This result shows an improvement of 350 clients or

around 20%.

IX.5 Conclusion

This chapter presented a framework composed of a profile based analytical model and

component replication and allocation algorithm of a web portal. The framework advocates

a profiling method by which typical queuing models of web portals can be made more

accurate with the use of load-dependant service demands of individual services on the

processor, correction factor for easily estimating multi-processor activity and additional

queues to model software contention causing blocking effect for concurrently running

inter-dependent queries. It also develops a component replication and allocation algorithm

161

400
600
800

1000
1200
1400
1600
1800
2000

R
es

po
ns

e
Ti

m
e(

m
se

c)
Tiered

MAQ‐PRO

0
200
400

500 1000 1500 2000 2300

T

Clients
Figure 66: Response Time for Tiered and MAQ-PROWESS

which makes use of the above analytical model in coming up with proper deployment strat-

egy that specifies replication count for each component and placement of the same onto

the machines such that performance such as response time is dependable and within SLA

bounds while resources used are minimized and client population is maximized. It has been

shown that by keeping the resource utilization of each component within a certain threshold

such as 30% of processor time, the resources can be utilized better. The framework helps

in coming up with a deployment plan that uses lesser machines for the same number of

clients compared to a tiered deployment for most situations. It also can accommodate more

number of clients for a given set of hardware. The framework, result data and algorithm is

available at http://www.dre.vanderbilt.edu/ nilabjar/MAQ

162

CHAPTER X

MODERN DAY DATA CENTER

The previous parts of the dissertation detailed a method to place components in the

various nodes of the given deployment in such a way that the performance of the application

can be enhanced. This chapter looks at modern day data center features and looks at how

the techniques presented in the earlier chapters can be applied to solve certain problems.

X.1 Introduction

Emerging Trends and Challenges. In todays scenario, data center management has to

spend a majority of their budget on maintenance of their ongoing operations. The reason

for it is mainly due to factors such as

• Dedicated server for each application: Each application requires its own set of sys-

tem configuration. Moreover it also needs its own version of third party libraries and

tools which conflicts with other applications.

• Design for peak load: Each application gets a server that is designed to handle its

peak load. Even though the frequency of that peak load can be really low, no one

wants to take a risk. This is because it is not so easy to migrate applications from one

resource to another.

• Fault Tolerance: Most of todays applications are not fault tolerant. So standby

servers need to be kept which perform little or no work but incur cost.

• Application Scaling: Scaling up or down an application in response to load fluctu-

ation is also not easy. Its not possible to sell off a part of a machine while scaling

down when workload reduces. Thus when workload is less, most of the resources

163

are kept idle. When workload increases, the application needs to scale up and new

machine need to be bought.

Most of the above factors contribute heavily to low utilization of the machines and also

inflexibility in the face of changing demand.

Solution Approach: Judicious use of Virtualization and Cloud Computing. Using

recent technologies such as cloud computing and virtualization can help in a long way to

solve some of the above problems. Virtualization provides the following

• Virtualization permits a single physical machine to run multiple instances of a virtual

machine(VM). These instances are isolated from each other.

• Automated management tools allow for the provisioning of resources across the dif-

ferent virtual machines. Thus it helps to scale up and down depending upon require-

ments.

• The entire operating system and the environment can be stored on a virtual disk. This

helps in duplicating the VM.

Thus virtualization helps to eliminate most of the shortcomings mentioned above. Each

virtual machine can be assigned to a separate application with its own environment and

configuration and tools/libraries. In this way they can be run on the same machine and

average utilization will also be better. In case of peak load, it will be necessary to allocate

more resources to the loaded application while the others can still run on less resources.

Virtualization helps in segregating applications and allocating required resources to

each application. However, virtualization alone cannot take care of the situation when

workload of the applications in an physical host changes with time. For example, if multiple

applications face peak load at the same time and the total resource requirement is beyond

the capacity of the entire machine, nothing can be done. The other option is to allocate

resources to the application such that the peak workload of the applications are always

164

handled. In this case however, the machine resources will be mostly left unused when

the workload is less than the peak. Berkley researchers [47] state that real world server

utilization in data centers range only between 5% to 20%. And for most services, peak

workload exceeds the average load by factors of 2 to 10. This data clearly indicates that

if resources are provisioned based on peak workload there is a large amount of resources

which are left idle. Whereas if resources are provisioned based on average workload, there

will be large amount of performance degradation at peak workload. So, what is needed

is an on-demand resource provisioning system which can help in allocation and releasing

resources on the fly whenever workload increases or decreases.

Recently developed, cloud computing has the potential to help provide resources on

demand. Cloud computing is basically internet computing where computers, software and

information can be leased over the internet. Users can lease a computer when requried,

load software, perform computation and then return when done. All of this can also be

automated by running scripts and invoking APIs. A computer leased by an user is essen-

tially a virtual machine which is hosted is an actual physical machine. Thus virtualization

is essential to cloud computing. Thus an application which wants to scale up resources to

cater to an increase in client population can lease the required number of machines for a

specific time and release them when the workload lessens.

X.2 Related Research

This section discusses related research in view of the challenges described in the above

section. The related work is broadly categorized into three sets. Each of the sets is analyzed

individually.

Virtual Machine Placement and Migration Using Heuristics: There have been a lot of

work which proposes heuristics to come up with placement decisions of virtual machines

165

onto physical server. Urgaonkar et. al. [78] has used virtual machines to implement dy-

namic provisioning of multi-tiered applications. In their work, they define a flexible queu-

ing model to determine how much resources are required to be assigned to each tier. At

runtime the actual arrival rate is measured and adjustments are made by increasing or de-

creasing the provisioned machines to each tier. Each tier of the application is assigned to a

VM and they are loaded in every machine. For each physical host only a single VM can be

run. Wood et. al. [82] use a similar infrastructure to Urgaonkar et. al. as described above.

They mainly concentrate on dynamic migration of virtual machines to apply dynamic pro-

visioning. Here they identify a server which has a hotspot due to overloading. Then they

identify the VM which needs more resource. This VM needs to be relocated to some other

physical host which is under-loaded. They define a unique metric based on the consump-

tion data of the three resources, cpu, network and memory. This is termed as the volume of

a physical server or virtual machine.Cunha et. al. [16] develops a comprehensive queuing

model to model virtual servers. They assign each class of jobs in an application onto a

virtual machine. They introduce a pricing model which gives rewards for throughput to be

within SLA limits and penalty for throughput going above. A constraint on response time

with a probabilistic guarantee is imposed. The main system model is built out of a queuing

model and non-linear optimization is used to solve the placement problem. Menasce et.

al. [43] also comes up with a similar system model comprising of multiple classes. An

analytical model which is based on a queuing model has been developed but they modify

it to handle prioritized customers. In their work, a beam search technique is used to find

the optimal placement of the virtual machines in the different physical hosts which is a

combinatorial search technique [68].

[78] and [82] do not relate the placement mechanism to an overall utility value to

the data center. They attempt at increasing the throughput of the application only. The

applications considered do not have multiple classes which is unrealistic. In the real world,

there is the need to do service differentiation by which certain classes of jobs get more

166

resources. [43] also does not have a nice utility model. The placement search technique

may also become complicated. Using heuristics to come up with the placement could be

a better option. [16] has a nice utility model of the data center. They also use multiple

classes which is realistic. They assume to assign every class onto a single virtual machine.

This may not be cost-effective in a situation where an application has numerous classes.

The search technique also could be improved.

All of the work above do not account for power usage. This is very important in the

recent scenario of large scale data centers. The main motivation is in minimizing the power

used and also the number of machines required. The related work in the next section deals

with power aware solutions.

Power aware management of virtualized environment: Cardosa et. al. [13] comes up

with a heuristic algorithm which minimizes the number of machines in a data center. They

propose a utilization function which maps resource allocation to the utility of an applica-

tion. In the virtualized environment each virtual machine can be set to a minimum, maxi-

mum and a fraction of the total cpu percentage that it can use. This is used in this work. It

is claimed that this will enable them to come up with better placement which will minimize

the number of machines required. Verma et. al. [79] comes up with detailed power cost of

running applications on different machines. They consider heterogeneous machines which

will have different power efficiency. A simple heuristic is developed based on the power

consumption models which will reduce the amount of power used in a data center. They

also extend it to the run-time domain where they compute the migration cost of virtual

machines and try to migrate virtual machines by minimizing cost.

The utilization model given in [13] is mapping resource utilization with application

utility. Finding such mapping is difficult [32]. Instead it is more straightforward to relate

throughput with utility and then map resource allocation with throughput. This will need a

robust analytical model for relating throughput with resource allocation. [79] provides nice

power models which can be used in any algorithm for virtual machine placement. But their

167

solution need to be used with analytical performance models which will relate resource

allocation to throughput and to overall utility. It is also important to consider multiple

classes of jobs within an application.

Autonomic management of virtual computing environment using control theoretic ap-

proaches: Padala et. al. [53] provide a control theoretic solution. They run each tier of

the application on each virtual machine and carry out extensive black box profiling of the

applications and builds a approximated model which relates performance attributes such as

response time with the fraction of processor allocated to the virtual machine running the

application. The controller is a two level controller comprising of a utilization controller

for every virtual machine and a arbiter controller for overall control. The controller handles

proper cpu allocation upon workload change on the application. They also implement QoS

differentiation between applications under overload conditions. Wang et. al. [80] also has

a two-level control architecture for virtualized environment. The load balancing controller

ensures that the virtual machines are all load-balanced and the response time of the appli-

cations in all the virtual machines are the same. The response time controller then controls

the cpu frequency of the machines to minimize it so that power is saved. The response time

controller also ensures that the SLA bound for the response time is met. They assume that

an application will only have a single job class. This is unrealistic in a real world situation

where every application provides a number of services. The presence of multiple classes

will influence the models of the application which are used to implement the controller.

This will bring in inaccuracies in the controller behavior.

The above sets mostly discusses related work which use virtualization. Such work is

mostly useful for cloud computing infrastructure providers. Providers of cloud infrastruc-

ture need to migrate and allocate various virtual machine instances over the actual physical

hosts present. But from an user perspective, its more important to allocate and release ma-

chines on the fly. Thus judicious ways to use the auto-scaling features of cloud computing

is important.

168

Moreno et. al. [49] recommends a nice architecture for elastic manegement of cluster

based services. It consists of virtualized infrastructure layer that works with a VM manager

and a cloud service provider. This extra virtual layer abstracts away the user from the low

level details of the actual cloud provider. This helps in autoscaling resources with the least

amount of disturbance to the user.

Waheed et. al. [26] proposes a reactive algorithm to allocate extra resources to a

cluster farm when workload increases. This work monitors the response time of the various

clusters and as soon as response time is violated in any of the clusters extra machines are

allocated to the cluster.

Yang et. al [29] propose a profile based approach to the problem of just-in-time scal-

ability in a cloud environment. In this approach, profiles capture expertsŠ knowledge on

scaling applications dynamically. A profile consists of the different components of the soft-

ware and how they should scale when workload changes. Guided by profiles, profile driver

automates the setup and scaling of execution environments, which ensure just-in-time scal-

ability of cloud applications.

None of the above work concentrates on figuring out the right amount of resources that

are required over time for a given workload. In a cloud environment, with inherent ability

to increase and decrease the resources available to the application, it is important to figure

out the right amount of resources to provision and to increase the utility of the application

in terms of SLA conformance and resource usage. It is also important to consider the

relative cost of SLA violation, machine costs and costs of reallocation or reconfiguration

of application in a cloud environment.

X.3 Solution Approach: On Demand Resource Provisioning Using Look-Ahead

Optimization

A simple way to allocate resources in response to the workload pattern described in

Figure 67 would be in a reactive manner. For example, the incoming workload rate may be

169

monitored at all times and whenever the rate changes, the resource requirement is computed

from the new value of workload using a performance model. The required resources are

then allocated/released from the cloud infrastructure. A problem with the above strategy is

that there is some amount of finite time in setting up a new server, deploy the application

component instances and redirect client invocations. In many cases, this can take up min-

utes. The performance of the system will then suffer for that entire length of time. What is

more desirable is that the workload changes be predicted from before and servers and com-

puters be allocated before time such that when the actual workload increases, the system is

ready to handle it.

To carry out this strategy, this dissertation leverages the work done by Sherif. et.

al. [1, 2] in developing a predictive control approach to design self-managing comput-

ing systems. In such a strategy, the actions are selected by optimizing the system behavior

over a limited prediction horizon. The workload to the application is forecasted for the

future periods and also the system behavior is estimated from the predicted workload using

a performance model. The optimization of the system behavior is carried on by minimizing

the cost incurred to the application. The cost of the application will be a combination of

various factors such as cost of SLA violations, leasing cost of resource and a cost associ-

ated with the changes to the configuration. The advantage to such a method is that it can

be applied to various performance management problems from systems with simple linear

dynamics to complex ones. The performance model can also be varied and corrected with

system dynamics as conditions in the environment change like workload variation or faults

in the system. The rest of the section gives details of the solution in terms of a web portal

like Ebay or Amazon and uses the case study of RUBiS like in previous chapters.

Typical workload to large on-line systems such as Amazon or Ebay is highly varying

in nature. Figure 67 shows the number of client arrivals each hour to the website for soccer

world cup 1998. The figure clearly shows that the number of clients is highly variable with

a cyclical trend in it which is affected by the time of the day. Resource allocation for such

170

systems is highly challenging. There will be different amount of resources required for

handling the various values of the client population. If resources are allocated for the peak

workload, then most of the time the resources will remain idle. Again, if resources are al-

located for the average workload, then performance such as response time will suffer when

there is peak workload. The ideal situation is when resources can be allocated when there

is high load and released in times of low load. Cloud computing provides an infrastructure

for implementing such a policy. As discussed above, the challenges to the development of

such a policy are discussed below:

1000

1500

2000

2500

of
 C
lie
nt
s

0

500

1 16 31 46 61 76 91 10
6

12
1

13
6

15
1

16
6

18
1

19
6

21
1

22
6

24
1

25
6

27
1

28
6

30
1

31
6

33
1

34
6

36
1

37
6

39
1

40
6

42
1

43
6

45
1

46
6

48
1

49
6

Hours

Figure 67: Client Population With Time

• Workload Prediction is an important step for on demand resource scaling. The in-

stallation of new resources and bringing them on-line will require some amount of

171

time and effort. It is not instantaneous. Thus its important that workload is predicted

for some time in the future. If it can be done with some amount of correctness, it will

help in anticipating the incoming load and allocate enough resources for that. Work-

load prediction can be implemented using previous historical data and identifying

patterns within that.

• Identifying resource requirement from given workload. Required resources to

handle a particular number of client population with desired response time needs to

be figured out. Proper identification of resource requirements is important since re-

sources need to be provisioned for a successful handling of incoming workload. This

entire identification needs to be done statically. Previous chapters in this dissertation

discusses how an accurate performance model can estimate the response time of an

application given the amount of resources, the application specific profile data and

the workload. Such a model can be used to extract the amount of resources required

for given response time and workload.

• Optimizing resource provisioning. To optimize resource usage or minimize idle

resources, the best way would be define an time interval and change resources as

many times as possible as workload changes. In the limit this interval could be made

infinitesimally small and resources are changed continuously. This will obviously

ensure that the optimum amount of resources are always used. Obviously this is

not possible since, changing resources is not spontaneous. It involves a number of

action steps such as booting up new machines, redirecting clients to new servers,

state updates, component connections, etc. All of these will take time and may cause

performance degradation. Thus scaling up or down resources also involves cost and

needs to be optimized.

The next section goes in detail into each of the challenges identified above.

172

X.4 Solution Details

This section goes into the solution for each of the challenges discussed above and comes

up with potential solution for each.

X.4.1 Workload Prediction

Workload prediction needs to estimate the incoming workload of the application for

future time periods. In this work, the idea presented in [2] is leveraged to estimate the

future workload. In [2], an autoregressive moving average method (ARMA) has been

proposed which is expressed in the following way:

λ̂ (k+1) = βλ̄ +(1−β)λ (k) (X.1)

The equation X.1 represents a first order equation with a single constant β . For the

workload shown in Figure 67 a second order ARMA filter gives good result as shown

in [42]. The equation for the filter used is given by

λ (t +1) = β ×λ (t)+ γ×λ (t−1)+(1− (β + γ))(λ (t−2)) (X.2)

The value for the variables β and γ are given by the values 0.8 and 0.15 respectively as

mentioned in [42]

X.4.2 Identifying resource requirement

Given the workload incoming to the application, there is the need to find the resources

required to handle the workload such that the SLA bounds are maintained. In the above

look-ahead framework, there is the need to find out the response time of the application

under various hardware configurations. For this, the analytical models discussed in the

previous chapters need to be used. Here an algorithm is presented which makes use of the

analytical algorithms presented in 6. The algorithm accepts the amount of workload given

173

Algorithm 6: Response Time Analysis
Input:

Ld Workload
Hw Total Machines
SD Service Demand for the job classes
Z Think Time

Output:
Response Time R← Vector of response times for all job classes

begin
// Use 2 machines with each tier in each machine
M = 2;
while M <= Hw do

// Get response time and server utilization by running MVA
[R, U] = MVA (SD, Ld, Z);
i = maxUtil (U); // Get bottleneck tier number
// Add a machine and replicate tier i on it
M = M + 1
M← i

end
end

by a vector of client populations, each member representing the number of clients in each

job class. The number of machines provided ,the service demand of the components and

the think time for clients is also given as input. Algorithm 6 initially creates a default

placement strategy whereby it places each tier of the application onto a particular machine

and then enters into an iterative stage. On each iteration, the algorithm makes a call onto the

MVA algorithm which is the analytical model described in Chapter V. The MVA returns the

utilization of each tier which can be used to find the bottleneck machine (the machine with

the highest utilization). The tier present in that machine is then replicated and placed in a

new machine which is introduced in that iteration. In this manner, the iteration continues

until the total number of machines equal the given maximum machines.

X.4.3 Optimizing Resource Provisioning

This section details the resource provisioning method employed in this dissertation.

This essentially works on the principles of look-ahead optimization detailed in Sherif et.

174

al. [2]. For this method to work, there is the need for a finite number if configurations

available at all times. In the problem of just in time resource provisioning the number of

machines can be increased, decreased or kept the same. If the number of machines that can

be increased/decreased is kept within a particular finite value then the whole set of available

configurations become finite.

Another factor is the choice of the look-ahead period. Having a too small look-ahead

period may not get the optimum result, while a very large period will increase complexity.

A very large look-ahead period also does not make much sense since the future estimations

will have more errors and thus formulating a decision based on such data will make things

more erroneous. Thus the number of look-ahead periods need to balance out the various

trade-offs.

Algorithm 7 describes the algorithm for look ahead optimization. This algorithm is

invoked at every time step to make a decision about the resource allocation in the next step.

It accepts the number of look ahead steps, K as input and workload and application data.

The workload data contains the number of client population in the previous time steps. The

application data includes service demands for various classes of jobs and think times of

clients. The algorithm also accepts the set of configurations that needs to be checked. This

will typically include the number of machines that can be increased or decreased.

The algorithm iterates over the number of look ahead steps and calculates the cumu-

lative costs. For every future time step, it computes the cost of selecting each possible

resource allocation. To compute the cost of a particular allocation, it uses the algorithm 6

to compute the estimated response time for the particular machine configuration. Once that

is calculated, it is used to calculate the cost of the allocation which is a combination of

how far the estimated response time is from the SLA bounds, cost of leasing additional ma-

chines and also a cost of re-configuration. The cost of reconfiguration is computed based

on the number of machines that needs to updated. Obviously re-configuration will incur

some costs and thus the algorithm will try to reduce the amount of reconfiguration. Each of

175

Algorithm 7: Look Ahead Optimization
Input:

K look ahead steps
W Workload data
Rstar SLA response time bound
H set of configurations
SD Service Demand for the job classes
Z Think Time

Output:
Deployment Plan DP←Map of each tier onto nodes
Machines M← Number of nodes
Cost← Total cost

begin1

for i← 0 to K do2

// Estimate future workload3

Wi = β ×Wi−1 + γ×Wi−2 +(1−β − γ)×Wi−34

forall H do5

// get the response time from the estimated workload6

R = RspT ime(Wi,SD,Z)7

// compute cost based on response time and machine usage8

Cost(R,Rstar,H)9

end10

end11

end12

these cost components will have weights attached to them which may be varied depending

on the type of application and its requirements.

X.5 Experimental Evaluation

This section presents the results of the look-ahead algorithm. Initially, it is shown how

the algorithm decides on the resources to be allocated in a just-in-time manner so that the

cost is minimized. Next, the effects of various different cost weightage is studied. This is

important since different applications will have different weightage combinations. Such a

study shows interesting resource allocation trends that will be required to provide the best

value for a particular application.

176

X.5.1 Just in time resource allocation

This section shows how the look-ahead algorithm in Algorithm 7 prescribes just-in-time

resource allocation as workload changes. The workload for this experiment is as given in

Figure 67 which is the workload for the 1998 FIFA World Cup website. The cost function

has the three components as discussed above. The weights on each component is the same.

0 100 200 300 400 500 600
0

500

1000

1500

2000

C
lie

nt
 N

um
be

r

Time (Hours)

Machine Allocation With Load

0 100 200 300 400 500 600
0

1

2

3

4

N
um

be
r

of
 M

ac
hi

ne
s

Figure 68: Just in time resource allocation with load

Figure 68 shows how the look-ahead algorithm prescribes the changes in the resources

required as the incoming load changes. The computation is done on the basis of predicted

workload which is done with the help of the ARMA filter which is given in X.2. Figure 68

clearly shows that the base resources required are 2 machines and it increases to 3 or 4

when the load is increased. The prediction of the look-ahead algorithm closely matches

the incoming load. It prescribes resource increase whenever there is high load and less

177

resource when there is less load. Thus Figure 68 shows the effectiveness of the look-

ahead algorithm and how it can save cost while also assuring that the performance of the

application is assured.

X.5.2 Resource usage under various cost priorities

This section looks at the resources required for different priorities in the cost function.

As mentioned before in Algorithm 7 there is a Cost function used to determine the cost

for various configurations. This cost function is actually comprised of three components,

penalty for violation of SLA bounds, cost of lease of machine and cost of reconfiguring the

application when machines are either leased or released. Each of these components has a

weight attached to it and the system can be made to always minimize a certain component

by increasing the attached weight to it to an arbitrary high value.

Cost =Wr× (Rsla−R)+Wc×Mk +Wf ×‖(Mk−Mk−1)‖ (X.3)

Equation X.3 shows a sample cost function which is used in this work. Table 26 de-

scribes the components of the cost function. There are three parameters to the cost which

are the three weights of each component. By varying the various weights the priority of the

application can be expressed.

Component Description Unit
Wr Penalty for SLA violation $/sec
Wc Cost of Leasing a Machine per hour $/machine
Wf Cost of reconfiguring application $/machine
Rsla SLA given response time sec
R Maximum response time of application sec

Mk Number of machines used in the kth interval Numeric
Mk−1 Number of machines used in the k−1th interval Numeric

Table 26: Components of Cost Function

178

0 100 200 300 400 500 600
0

500

1000

1500

2000

C
lie

nt
 N

um
be

r

Time (Hours)

Machine Allocation With Load

0 100 200 300 400 500 600
0

0.5

1

1.5

2

N
um

be
r

of
 M

ac
hi

ne
s

Figure 69: Resource Allocation for Low SLA Violation Cost and High Machine Cost

The resources allocated in the various time intervals will depend upon the weights as-

signed to the various components of the cost function. The rest of the section studies the

different trends of resource allocation and how they are influenced by the varying weights

of the cost function.

X.5.2.1 SLA violation against resource cost

This section studies the effect of SLA violation against cost of resources. In this study,

the ratio of the cost of SLA violation against the cost of machines are varied while the ap-

plication reconfiguration cost is assumed to be zero. Thus it is assumed that the application

can be easily reconfigured with varying machines. The ratio of SLA penalty to machine

cost is varied from 4 : 1 to 1 : 13. It is seen that there is significant difference in resource

allocation between the different configurations. An application with high SLA violation

penalty has stronger performance assurance whereas one with low SLA penalty has lesser

performance assurance.

Figures 69,70 and 71 shows how the resources are allocated every hour over the entire

179

0 100 200 300 400 500 600
0

1000

2000

C
lie

nt
 N

um
be

r

Time (Hours)

Machine Allocation With Load

0 100 200 300 400 500 600
0

2

4

N
um

be
r

of
 M

ac
hi

ne
s

Figure 70: Resource Allocation for Medium SLA Violation Cost

0 100 200 300 400 500 600
0

500

1000

1500

2000

C
lie

nt
 N

um
be

r

Time (Hours)

Machine Allocation With Load

0 100 200 300 400 500 600
0

1

2

3

4

N
um

be
r

of
 M

ac
hi

ne
s

Figure 71: Resource Allocation for High SLA Violation Cost

180

200

300

400

500

600

M
ac
hi
ne

 D
is
tr
ib
ut
io
n

0

100

1:
13

1:
12

1:
11

1:
10 1:
9

1:
8

1:
7

1:
6

1:
5

1:
4

1:
3

1:
2

1:
1

2:
1

3:
1

4:
1

M

Cost Ratio ‐ SLA Violation : Machine

2 Machines 3 Machines 4 Machines

Figure 72: Resource Allocation for variety of systems

time period. The priorities of the application determine the difference in resource alloca-

tion. For a low performance assurance and high machine cost, the number of machines

used is only 2 over the entire time interval. The cost of machines exceeds the cost of SLA

violations and such a configuration will have to tolerate a number of SLA violations. Con-

trary to this configuration, for a medium performance assured system, Figure 70 shows how

there are many intervals in which 3 machines are used. This balances the cost of machines

and cost of SLA violations. For the highly assured application of Figure 71, there is much

variation in resource usages with a number of intervals having 3 machines and also some

having 4 machines. Here the priority is in assuring performance and the cost of machines

is much lower.

Finally, figure 72 shows the distribution of number of machines required for a variety

of systems ranging from highly assured systems (ratio of SLA violation penalty to machine

181

cost being > 4:1) to very weakly assured systems (ratio of SLA violation penalty to machine

cost being > 1:13). In this figure, each point on the x-axis is a ratio of cost of SLA violation

to cost of machine. The y-axis plots the number of intervals in which each type of machine

is used. For example, for the point corresponding to cost ratio of 1:4, 359 intervals use 2

machines and the other 143 intervals use 3 machines. The ratio of SLA violation cost to

machine cost increases as we move further down the x-axis. The figure shows the use of

more 3 machines than 2 machines as we move to the right. This is because the relative cost

of machines decreases to the right and the penalty of SLA violation increases.

The above study nicely shows how such a look-ahead algorithm can nicely compute

resource allocation in a dynamic situation where both the workload into the system as well

as the resources available are highly dynamic.

X.5.2.2 Effect of reconfiguration cost

The previous section did not account for the cost of reconfiguration of resources. Re-

configuring the application is necessary whenever there is a change in the number of ma-

chines used to host the application. It assumed that reconfiguration was easy and spon-

taneous. In a real-world scenario, this is not so. There is always a cost involved with

reconfiguration. As mentioned previously, reconfiguration involves a number of tasks such

as booting up new machines, redirecting clients to new servers, state updates, component

connections, etc. All of this might end up stopping or suspending the application for some

period of time which will cause performance degradation and will cause in penalty for lack

of service to end users. The exact amount of penalty will depend upon what time the re-

configuration is done and on the number of incoming clients coming in. This penalty will

be varying and can be minimized by choosing to do the reconfiguration at a time when

the customer incoming rate is the minimum. Anyway coming up with the actual cost of

reconfiguration is beyond the scope of this work. This work assumes this cost as a ratio to

182

the other costs of SLA violation and machine costs and evaluates the given system under

high, medium and low values for this ratio.

The previous section illustrated results which showed how the resource allocation var-

ied as the ratio of SLA violation cost to the cost of machines changed. In this section,

the same resource allocation trends are studied in the presence of cost of reconfiguration.

Three levels of the cost of reconfiguration is considered, low, medium and high. This cost

is relative to the cost of both SLA violation and machine cost.

X.5.2.3 High SLA violation cost

Figure 71 shows how resource allocation is done when there is high SLA violation cost

compared to machine cost. Here in every interval, the mean response time is below the

SLA bound. And machines are allocated whenever it is needed. It is released again since

there is cost of machine but only making sure that the SLA is maintained. When there

is a cost of reconfiguration introduced, it will resist the changing of resources. It can be

compared somewhat like inertia. Inertia in physical bodies resists changes to its current

physical condition such as a body in rest resists movement while a body in motion resists

slowing down. Thus the cost of reconfiguration will similarly resist the dynamic nature of

resource allocation. Higher this cost, higher will be its resistance to the changes. This cost

is expressed as the third component of Equation X.3. The weight Wf represents the level of

inertia and it is multiplied by the change level which is the number of machines allocated

or released. Initially when a small amount of reconfiguration cost is introduced, it does not

effect much as shown in Figure 73. The resource allocation is similar to figure 71. There

are small deviations, where the spikes in resource changes are a little wider in figure 73 than

in figure 71. This is due to the inertia in change introduced due to some cost associated

with change.

The effect of the cost of reconfiguration is more pronounced when it is made a little

higher. Figure 74 shows a distinct change in resource allocation over the hourly intervals

183

0 100 200 300 400 500 600
0

500

1000

1500

2000

C
lie

nt
 N

um
be

r

Time (Hours)

Machine Allocation With Load

0 100 200 300 400 500 600
0

1

2

3

4

N
um

be
r

of
 M

ac
hi

ne
s

Figure 73: Resource Allocation for High SLA violation with low reconfiguration cost

compared to figures 71 or 73. In Figure 74, the number of machines increases to 3 at

around the 40th hour and remains steady. Somewhere around the 350th hour it increases

to 4 machines since the workload increased at that time. Subsequent to that, the workload

decreased but the machines were never released since the cost of reconfiguration is much

higher compared to the cost of machines. The changes of the machines around 40 and 350

hours was warranted because of the high SLA violation cost and the machines were never

released even though the workload lessened since the cost reconfiguration was higher.

This behavior of resisting change is further pronounced in Figure 75 where there is

even higher cost of reconfiguration. Here again there is an increase of machines to 3 at

around the 40 hour mark and the machine is never released. The change to 4 machines

which was seen in Figure 74 does not occur here because the cost of reconfiguration is

much more higher that the cost of SLA violation. Thus even though there is SLA violation,

it is only of a short duration (the peak workload around 350 hour) and is of lesser cost

than the cost of changing resources. That the SLA violation near 300 hour was of a short

184

0 100 200 300 400 500 600
0

500

1000

1500

2000

C
lie

nt
 N

um
be

r

Time (Hours)

Machine Allocation With Load

0 100 200 300 400 500 600
0

1

2

3

4

N
um

be
r

of
 M

ac
hi

ne
s

Figure 74: Resource Allocation for High SLA violation with medium reconfiguration
cost

duration can be understood from the Figure 73 where there is a very short spike of machine

allocation to 4 around that time. When the cost of reconfiguration becomes high the look

ahead algorithm decides not to expend in the extra cost of reconfiguration to cover up that

short SLA violation.

X.5.2.4 Medium SLA violation cost

In this section the effect of cost of reconfiguration is studied when the cost of SLA vi-

olation and the cost of machine is more or less the same. The figure 76 show the resource

allocation trend when the cost of all three components are similar. The trend of resource

allocation is very similar to Figure 73 with the exception of the short spike of allocating 4

machines around the 100th hour mark. In the configuration of 1_1_1 there is no such allo-

cation. This is because the cost of SLA violation is now lesser and the resistance to change

due to reconfiguration cost does not allow such a short spike of new resource allocation.

185

0 100 200 300 400 500 600
0

1000

2000

C
lie

nt
 N

um
be

r

Time (Hours)

Machine Allocation With Load

0 100 200 300 400 500 600
0

2

4

N
um

be
r

of
 M

ac
hi

ne
s

Figure 75: Resource Allocation for High SLA violation with high reconfiguration
cost

Thus the application loses some money due to SLA violation but makes it up by saving

more by avoiding reconfiguration.

The configuration 1_1_4 and 1_1_10 behave similar to each other but much differently

from configuration 1_1_1. It can be seen in Figures 77 and 78. They are also very similar

to configuration 4_1_10 shown in figure 75. In both these cases, the cost of reconfiguration

is much higher than either of SLA violation or machine leasing cost. Thus the resistance to

change is higher and thus once it reaches 3 machines around the 40 hour mark it does not

release the machine nor does it try to increase it. Here SLA is mostly covered but it loses

some money on machine cost but is offset by avoiding excessive reconfiguration. However

there is a slight difference between the allocation of 1_1_4 and 1_1_10. This is shown in

Figures 77 and 78. The 4th machine is allocated in 1_1_10 a little later than 1_1_4. This

is because the former has even higher reconfiguration cost and waits for the workload to

become even higher to incur higher SLA violation cost.

186

0 100 200 300 400 500 600
0

1000

2000
C

lie
nt

 N
um

be
r

Time (Hours)

Machine Allocation With Load

0 100 200 300 400 500 600
0

2

4

N
um

be
r

of
 M

ac
hi

ne
s

Figure 76: Resource Allocation for Medium SLA violation with low reconfiguration
cost

0 100 200 300 400 500 600
0

1000

2000

C
lie

nt
 N

um
be

r

Time (Hours)

Machine Allocation With Load

0 100 200 300 400 500 600
0

2

4

N
um

be
r

of
 M

ac
hi

ne
s

Figure 77: Resource Allocation for Medium SLA violation with medium reconfigu-
ration cost

187

0 100 200 300 400 500 600
0

1000

2000

C
lie

nt
 N

um
be

r

Time (Hours)

Machine Allocation With Load

0 100 200 300 400 500 600
0

2

4

N
um

be
r

of
 M

ac
hi

ne
s

Figure 78: Resource Allocation for Medium SLA violation with high reconfiguration
cost

X.5.2.5 Low SLA violation cost

Here the effect of reconfiguration cost on a system with low SLA violation cost com-

pared to machine cost is studied. The ratio of SLA violation cost to machine cost con-

sidered is 1:5 i.e. the cost of machines is 5 times the penalty of violating SLA. Thus the

concentration will be more on using lesser machine. The configuration 1_5_15 has very

high reconfiguration cost (3 times machine cost and 15 times SLA violation cost). Thus the

tendency is to resist changes. The resource allocation is seen in Figure 82. It can be seen

that the number of machines remain at 2 throughout even though there are high workload

coming in. Only when the workload reaches very high peak of 2000, the 3rd machines get

allocated. Due to the cost of the machine being 5 times higher than SLA violation, 4 ma-

chines are not allocated which would ensure no SLA is violated. Another point to be noted

is that once it reaches 3, the machine is not released even though the workload decreases

since the cost of reconfiguration is much higher than machine cost.

188

0 100 200 300 400 500 600
0

1000

2000

C
lie

nt
 N

um
be

r

Time (Hours)

Machine Allocation With Load

0 100 200 300 400 500 600
0

2

4

N
um

be
r

of
 M

ac
hi

ne
s

Figure 79: Low SLA violation, Medium Machine Cost and low reconfiguration cost

The other configurations with lesser reconfiguration costs behave similarly with subtle

differences among each other. For example, configuration 1_5_1 and 1_5_4(Figures 79 and

80) are very similar except that due to higher reconfiguration costs, the latter configuration

tends to delay the release of the 3rd machine. Configuration 1_5_10, shown in Figure 81

delays the allocation of the 3rd machine until the 150th hour mark compared to hour 60 in

1_5_1 and 1_5_4. All of the above configurations also do not use 4 machines at all and

endure some amount of SLA violations. This is understandable since the machine cost and

reconfiguration cost are much higher.

X.6 Conclusion

This chapter presented challenges in a modern day data center scenario. The main chal-

lenge is in proper utilization of resource in the face of SLA driven performance assurance.

Recent technologies such as virtualization and cloud computing bring about promises to

189

0 100 200 300 400 500 600
0

1000

2000
C

lie
nt

 N
um

be
r

Time (Hours)

Machine Allocation With Load

0 100 200 300 400 500 600
0

2

4

N
um

be
r

of
 M

ac
hi

ne
s

Figure 80: Low SLA violation, Medium Machine Cost and medium reconfiguration
cost

0 100 200 300 400 500 600
0

1000

2000

C
lie

nt
 N

um
be

r

Time (Hours)

Machine Allocation With Load

0 100 200 300 400 500 600
0

2

4

N
um

be
r

of
 M

ac
hi

ne
s

Figure 81: Low SLA violation, Medium Machine Cost and high reconfiguration cost

190

0 100 200 300 400 500 600
0

1000

2000

C
lie

nt
 N

um
be

r

Time (Hours)

Machine Allocation With Load

0 100 200 300 400 500 600
0

2

4

N
um

be
r

of
 M

ac
hi

ne
s

Figure 82: Low SLA violation, Medium Machine Cost and very high reconfiguration
cost

solve some of the challenges. A look ahead resource allocation algorithm has been pro-

posed in this thesis. This algorithm predicts the incoming workload for certain time steps

in the future and allocates resources based on the optimizing a cost function. It can be seen

that the resource allocation nicely follows the workload pattern. It has also been shown that

the resource allocation trend varies depending upon the nature of the cost function.

191

CHAPTER XI

CONCLUDING REMARKS

This thesis works towards a solution for the problem of QoS assurance in large scale

enterprise distributed component based applications. Such application form the core of

many different types of systems like distributed real time and embedded systems such as

shipboard computing or large scale shared data centers which acts as host to multiple ap-

plications or proprietary multi-tiered internet applications. A common objective across all

such systems is to maximize the utility of the system. The utility of the system is propor-

tional to the throughput of the application or to the amount of clients handled. The cost of

the system is expressed by the procurement cost of the resources/machines and the power

cost of running them. In this thesis, a static allocation strategy has been proposed which

aims at placing the different components of the application in an intelligent way such that

the total resources are minimized. The strategy also takes care that the response time or

Quality of Service is always bounded by SLA limit. The solution proposed consists of a

three-level strategy wherein component resource requirement is profiled in the first step.

In the second step an accurate model of the application is prepared. In the third step a

heuristic algorithm is used which uses the model and the resource profiles to come up with

a component placement strategy that will ensure the use of lesser resource.

In the end a look ahead algorithm for resource allocation in modern day data center

planning has been proposed. This algorithm can be used in conjunction with modern day

technologies such as cloud computing to provide optimized resource allocation. The actual

nature of resource allocation will depend upon a cost function which will give priority to

the different aspects of the application such as SLA violation, machine cost, reconfigu-

ration cost etc. This approach predicts the incoming load for the next time intervals and

depending upon that it searches for the best configuration in the subsequent intervals which

192

Table 27: Summary Of Research Contributions

Category Contributions
Component Resource Requirement
Identification

TargetManager: design and implementation of (1) distributed profiling framework, (2)
implementation of profiling techniques for component resource profiling, and (3)
customer behavior modeling for overall component resource requirement

Performance Estimation of Software
Components

(1) Queuing theoretic models for large scale multi-tiered internet applications, (2) more
accurate analytic models for high utilization, software contention and multiple
processors/cores, (3) simulation modeling of multi-threaded application with software
contentions and (4) markov chain modeling of soft real time systems

Application Component Placement (1) Detailed comparative study of muliple bin-packing heuristics, (2) design and
development of component placement heuristic based on worst-fit bin packing and (3)
development of component replication and placement heuristic based on worst fit bin
packing.

will minimize the cost for the application. The configuration for the first interval is then

used and applied and the rest are ignored. In the next interval, again the search is made and

the best solution is chosen.

193

Table 28: Summary of Publications

Category Publications
Profile Driven Identification of Component Resource
Requirement

1. Bulls-Eye: A Resource Provisioning Service for Enterprise
Distributed Real-time and Embedded Systems , Proceedings of the
International Symposium on Distributed Objects and Applications
(DOA), Montpellier, France, Oct 30th - Nov 1st, 2006.
2. Dynamic Analysis and Profiling of Multi-threaded Systems,
Designing Software-Intensive Systems: Methods and Principles,
Edited by Dr. Pierre F. Tiako, Langston University, OK, April, 2008.
3. Design and Performance Evaluation of an Adaptive Resource
Management Framework for Distributed Real-time and Embedded
Systems, EURASIP Journal on Embedded Systems (EURASIP JES):
Special issue on Operating System Support for Embedded Real-Time
Applications, Edited by Alfons Crespo, Ismael Ripoll, Michael
Gonzalez Harbour, and Giuseppe Lipari, 2008, pgs. 47-66.

Performance Estimation of Component Based Software
Applications and application placement

4. A Component Assignment Framework for Improved Capacity and
Assured Performance in Web Portals, Proceedings of the 11th
International Symposium on Distributed Objects, Middleware, and
Applications (DOA’09) Vilamoura, Algarve-Portugal, Nov 01 - 03,
2009.
5. Modeling Software Contention using Colored Petri Nets,
Proceedings of the 16th Annual Meeting of the IEEE International
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), September 8-10,
Baltimore, MD.
6. The Impact of Variability on Soft Real-Time System Scheduling,
Proceedings of the 15th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications (RTCSA 2009),
Beijing, China, August 24-26, 2009.
7. A Capacity Planning Process for Performance Assurance of
Component-Based Distributed Systems, Proceedings of the
International Conference on Performance Engineering to be held in
March 2011, Karlsruhe, Germany.
8 Impediments to Analytical Modeling of Multi-Tiered Web
Applications, Poster paper in the 18th Annual Meeting of the IEEE
International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS), August
17-19, Miami, FL.
9. Model-Driven Performance Evaluation of Web Application Portals,
Model-Driven Domain Analysis and Software Development:
Architectures and Functions, a book edited by Janis Osis and Erika
Asnina, In submission.
10. Toward Effective Multi-capacity Resource Allocation in
Distributed Real-time and Embedded Systems, Proceedings of the
11th IEEE International Symposium on
Object/Component/Service-oriented Real-time Distributed Computing
(ISORC 08), Orlando, Florida, May 5-7, 2008.

194

REFERENCES

[1] S. Abdelwahed, Jia Bai, Rong Su, and N. Kandasamy. On the application of predic-

tive control techniques for adaptive performance management of computing systems.

Network and Service Management, IEEE Transactions on, 6(4):212 –225, dec. 2009.

[2] Sherif Abdelwahed, Nagarajan Kandasamy, and Sandeep Neema. A control-based

framework for self-managing distributed computing systems. In WOSS ’04: Proceed-

ings of the 1st ACM SIGSOFT workshop on Self-managed systems, pages 3–7, New

York, NY, USA, 2004. ACM.

[3] C. Amza, A. Ch, A.L. Cox, S. Elnikety, R. Gil, K. Rajamani, and W. Zwaenepoel.

Specification and Implementation of Dynamic Web Site Benchmarks. In 5th IEEE

Workshop on Workload Characterization, pages 3–13, 2002.

[4] Ronald E. Barkley and T. Paul Lee. A Heap-based Callout Implementation to Meet

Real-time Needs. In Proceedings of the USENIX Summer Conference, pages 213–

222. USENIX Association, June 1988.

[5] W. Binder and J. Hulaas. A portable CPU-management framework for Java. IEEE

Internet Computing, pages 74–83, 2004.

[6] W. Binder, J.G. Hulaas, and A. Villazón. Portable resource control in Java. In Pro-

ceedings of the 16th ACM SIGPLAN conference on Object-oriented programming,

systems, languages, and applications, pages 139–155. ACM New York, NY, USA,

2001.

[7] Walter Binder. Portable, Efficient, and Accurate Sampling Profiling for Java-based

Middleware. In Proceedings of the 5th International Workshop on Software Engi-

neering and Middleware (SEM ’05), pages 46–53, 2005.

195

[8] J. Bonér. AspectwerkzŮdynamic AOP for java. In Invited talk at 3rd International

Conference on Aspect-Oriented Software Development (AOSD). Citeseer, 2004.

[9] M. Broberg, L. Lundberg, and H. Grahn. Visualization and performance prediction of

multithreaded Solaris programs by tracing kernel threads. In Proceedings of the 13th

International Parallel Processing Symposium, pages 407–413, 1999.

[10] G. Brose. Jacorb: Implementation and design of a java orb. In Distributed applica-

tions and interoperable systems: IFIP TC6 WG6. 1 International Working Conference

on Distributed Applications and Interoperable Systems (DAIS’97), 30th September-

2nd October 1997, Cottbus, Germany, page 143. Chapman & Hall, 1997.

[11] A. Budhiraja and A.P. Ghosh. A large deviations approach to asymptotically opti-

mal control of crisscross network in heavy traffic. Annals of Applied Probability,

15(3):1887–1935, 2005.

[12] BM Cantrill, TW Doeppner Jr, S.S. Inc, and M. View. Threadmon: a tool for mon-

itoring multithreaded program performance. In System Sciences, 1997, Proceedings

of the Thirtieth Hawaii International Conference on, volume 1, 1997.

[13] Michael Cardosa, Madhukar R. Korupolu, and Aameek Singh. Shares and utilities

based power consolidation in virtualized server environments. In IM’09: Proceedings

of the 11th IFIP/IEEE international conference on Symposium on Integrated Network

Management, pages 327–334, Piscataway, NJ, USA, 2009. IEEE Press.

[14] D. Carrera, M. Steinder, I. Whalley, J. Torres, and E. Ayguade. Utility-based place-

ment of dynamic web applications with fairness goals. In Network Operations and

Management Symposium, 2008. NOMS 2008. IEEE, pages 9–16, April 2008.

[15] EG Coffman Jr, MR Garey, and DS Johnson. Approximation algorithms for bin pack-

ing: a survey. 1996.

196

[16] S. Cunha, Jussara M. Almeida, Virgilio Almeida, and Marcos Santos. Self-adaptive

capacity management for multi-tier virtualized environments. In Integrated Network

Management, pages 129–138, 2007.

[17] J. Davies, N. Huismans, R. Slaney, S. Whiting, M. Webster, and R. Berry. An aspect

oriented performance analysis environment. In International Conference on Aspect

Oriented Software Development. Citeseer, 2003.

[18] José Luis Díaz, Daniel F. García, Kanghee Kim, Chang-Gun Lee, Lucia Lo Bello,

José María López, Sang Lyul Min, and Orazio Mirabella. Stochastic analysis of pe-

riodic real-time systems. In RTSS ’02: Proceedings of the 23rd IEEE Real-Time Sys-

tems Symposium (RTSS’02), page 289, Washington, DC, USA, 2002. IEEE Computer

Society.

[19] M. Dmitriev. Application of the hotswap technology to advanced profiling. In Pro-

ceedings of the First Workshop on Unanticipated Software Evolution, held at ECOOP

2002 International Conference. Citeseer.

[20] M. Dmitriev. Safe Class and Data Evolution in Large and Long-Lived Java [tm]

Applications, Sun Microsystems. Inc., Mountain View, CA, 2001.

[21] M. Dmitriev. Profiling Java applications using code hotswapping and dynamic call

graph revelation. In Proceedings of the 4th international workshop on Software and

performance, pages 139–150. ACM New York, NY, USA, 2004.

[22] W.W. Eckerson et al. Three Tier Client/Server Architecture: Achieving Scalability,

Performance and Efficiency in Client Server Applications. Open Information Systems,

10(1), 1995.

[23] D. Schmidt et al. Pattern-Oriented Software Architecture: Patterns for Concurrent

and Networked Objects, Volume 2. Wiley & Sons, New York, 2000.

197

[24] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA,

1995.

[25] J. Gosling. Java intermediate bytecodes. ACM Sigplan Notices, 30(3):111–118, 1993.

[26] Waheed Iqbal, Matthew Dailey, and David Carrera. Sla-driven adaptive resource man-

agement for web applications on a heterogeneous compute cloud. In Martin Jaatun,

Gansen Zhao, and Chunming Rong, editors, Cloud Computing, volume 5931 of Lec-

ture Notes in Computer Science, pages 243–253. Springer Berlin / Heidelberg, 2009.

[27] K. Jensen. Coloured Petri nets: basic concepts, analysis methods and practical use:

volume 1. Springer-Verlag London, UK, 1996.

[28] Kurt Jensen, Lars Michael Kristensen, and Lisa Wells. Coloured petri nets and cpn

tools for modelling and validation of concurrent systems. Int. J. Softw. Tools Technol.

Transf., 9(3):213–254, 2007.

[29] Yang Jie, Qiu Jie, and Li Ying. A profile-based approach to just-in-time scalability

for cloud applications. pages 9 –16, sep. 2009.

[30] A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer, M. Steinder, M. Sviridenko, and

A. Tantawi. Dynamic placement for clustered web applications. In Proceedings of

the 15th international conference on World Wide Web, pages 595–604. ACM New

York, NY, USA, 2006.

[31] Krishna M. Kavi, Alireza Moshtaghi, and Deng-Jyi Chen. Modeling multithreaded

applications using petri nets. Int. J. Parallel Program., 30(5):353–371, 2002.

[32] G. Khanna, K. Beaty, G. Kar, and A. Kochut. Application performance management

198

in virtualized server environments. In 10th IEEE/IFIP Network Operations and Man-

agement Symposium, 2006 (NOMS 2006), pages 373–381, 2006.

[33] Kanghee Kim, Jose Luis Diaz, and Jose Maria Lopez. An exact stochastic analysis

of priority-driven periodic real-time systems and its approximations. IEEE Trans.

Comput., 54(11):1460–1466, 2005. Member-Lucia Lo Bello and Member-Chang-

Gun Lee and Member-Sang Lyul Min.

[34] T. Kimbrel, M. Steinder, M. Sviridenko, and A. Tantawi. Dynamic Application Place-

ment Under Service and Memory Constraints. In Experimental And Efficient Algo-

rithms: 4th International Workshop, WEA 2005, Santorini Island, Greece, May 10-13,

2005: Proceedings, page 391. Springer, 2005.

[35] Fabio Kon, Tomonori Yamane, Christopher K. Hess, Roy H. Campbell, and M. Den-

nis Mickunas. Dynamic resource management and automatic configuration of dis-

tributed component systems. In COOTS’01: Proceedings of the 6th conference

on USENIX Conference on Object-Oriented Technologies and Systems, pages 2–2,

Berkeley, CA, USA, 2001. USENIX Association.

[36] Samuel Kounev. Performance Modeling and Evaluation of Distributed Component-

Based Systems Using Queueing Petri Nets. IEEE Transactions on Software Engi-

neering, 32(7):486–502, 2006.

[37] W.T.C. Kramer and C. Ryan. Performance variability of highly parallel architectures.

Proceedings of the International Conference on Computational Science (ICCS 2003,

2659:560–569.

[38] S. Kumar and PR Kumar. Closed Queueing Networks in Heavy Traffic: Fluid Limits

and Efficiency. Stochastic networks: stability and rare events, page 41, 1996.

199

[39] G. Latouche and V. Ramaswami. Introduction to Matrix Analytic Methods in Stochas-

tic Modeling. Society for Industrial Mathematics, 1999.

[40] J. Li and H.P.L.P. Alto. Monitoring of component-based systems. HP Tech Reports,

2003.

[41] Sorin Manolache, Petru Eles, and Zebo Peng. Schedulability analysis of applications

with stochastic task execution times. Trans. on Embedded Computing Sys., 3(4):706–

735, 2004.

[42] Rajat Mehrotra, Abhishek Dubey, Sherif Abdelwahed, and Asser Tantawi. Integrated

monitoring and control for performance management of distributed enterprise sys-

tems. Modeling, Analysis, and Simulation of Computer Systems, International Sym-

posium on, 0:424–426, 2010.

[43] D.A. Menasce and M.N. Bennani. Autonomic virtualized environments. In Pro-

ceedings of the International Conference on Autonomic and Autonomous Systems,

volume 28. Citeseer, 2006.

[44] Daniel A Menasce and V. A. F. Almeida. Capacity Planning for Web Services. Pren-

tice Hall, Upper Saddle, NJ, 2002.

[45] Daniel A. Menascé and Mohamed N. Bennani. Analytic performance models for sin-

gle class and multiple class multithreaded software servers. In Int. CMG Conference,

pages 475–482. Computer Measurement Group, 2006.

[46] Daniel A. Menasce, Lawrence W. Dowdy, and Virgilio A. F. Almeida. Performance

by Design: Computer Capacity Planning By Example. Prentice Hall PTR, Upper

Saddle River, NJ, USA, 2004.

[47] A. Michael, F. Armando, G. Rean, DJ Anthony, K. Randy, K. Andy, L. Gunho,

200

P. David, R. Ariel, S. Ion, et al. Above the clouds: A berkeley view of cloud comput-

ing. EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-

2009-28, 2009.

[48] Robin Milner, Mads Tofte, and Robert Harper. The definition of Standard ML. MIT

Press, Cambridge, MA, USA, 1990.

[49] Rafael Moreno-Vozmediano, Ruben S. Montero, and Ignacio M. Llorente. Elastic

management of cluster-based services in the cloud. In ACDC ’09: Proceedings of the

1st workshop on Automated control for datacenters and clouds, pages 19–24, New

York, NY, USA, 2009. ACM.

[50] J. Murayama. Performance profiling using TNF. Sun Developer Network, July 2001,

2001.

[51] Object Management Group. Deployment and Configuration Adopted Submission,

OMG Document mars/03-05-08 edition, July 2003.

[52] G. Pacifici, W. Segmuller, M. Spreitzer, M. Steinder, A. Tantawi, and A. Youssef.

Managing the response time for multi-tiered web applications. IBM TJ Watson Re-

search Center, Yorktown, NY, Tech. Rep. RC23651, 2005.

[53] P. Padala, K.G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant, and

K. Salem. Adaptive control of virtualized resources in utility computing environ-

ments. ACM SIGOPS Operating Systems Review, 41(3):302, 2007.

[54] E.A. Pek

"oz and J. Blanchet. Heavy Traffic Limits Via Brownian Embeddings. Probability in

the Engineering and Informational Sciences, 20(04):595–598, 2006.

201

[55] Fabrizio Petrini, Darren J. Kerbyson, and Scott Pakin. The case of the missing super-

computer performance: Achieving optimal performance on the 8,192 processors of

asci q. In SC ’03: Proceedings of the 2003 ACM/IEEE conference on Supercomput-

ing, page 55, Washington, DC, USA, 2003. IEEE Computer Society.

[56] M.L. Puterman. Markov decision processes: discrete stochastic dynamic program-

ming. John Wiley & Sons, Inc. New York, NY, USA, 1994.

[57] S.P. Reiss. Visualizing Java in action. In Proceedings of the 2003 ACM symposium

on Software visualization. ACM, 2003.

[58] S.P. Reiss. Efficient monitoring and display of thread state in Java. IWPC 2005, pages

247–256, 2005.

[59] Christian P. Robert and George Casella. Monte Carlo Statistical Methods (Springer

Texts in Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[60] Nilabja Roy, Nathan Hamm, Manish Madhukar, Douglas C. Schmidt, and Larry

Dowdy. A Uniform Modeling Methodology for Soft Real-time Systems. Technical

Report ISIS-09-104, Institute For Software Integrated Systems, Vanderbilt University,

April 2009.

[61] Nilabja Roy, Yuan Xue, Aniruddha Gokhale, Larry Dowdy, and Douglas C. Schmidt.

A Component Assignment Framework for Improved Capacity and Assured Perfor-

mance in Web Portals. In Proceedings of the 11th International Symposium on Dis-

tributed Objects, Middleware, and Applications (DOA’09), pages 671–689, Novem-

ber 2009.

[62] Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. Efficient and extensible

algorithms for multi query optimization. SIGMOD Rec., 29(2):249–260, 2000.

202

[63] A.A. Safaeei, M. Kamali, MS Haghjoo, and K. Izadi. Caching Intermediate Results

for Multiple-Query Optimization. In IEEE/ACS International Conference on Com-

puter Systems and Applications, 2007. AICCSA’07, pages 412–415, 2007.

[64] Douglas C. Schmidt, Bala Natarajan, Aniruddha Gokhale, Nanbor Wang, and Christo-

pher Gill. TAO: A Pattern-Oriented Object Request Broker for Distributed Real-time

and Embedded Systems. IEEE Distributed Systems Online, 3(2), February 2002.

[65] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-

Oriented Software Architecture: Patterns for Concurrent and Networked Objects, Vol-

ume 2. Wiley & Sons, New York, 2000.

[66] A. Schrijver. Theory of linear and integer programming. Wiley, 1986.

[67] C. Smith and D. Henry. High-performance Linux cluster monitoring using Java. In

Proceedings of the 3rd Linux Cluster International Conference, 2002.

[68] R. Smith, IH Osman, CR Reeves, and GD Smith. Modern heuristic search methods.

Ed. John Wiley & Sons Ltd, 1996.

[69] Anand Srivastav and Peter Stangier. Tight approximations for resource constrained

scheduling and bin packing. In Proceedings of the 4th Twente Workshop on Graphs

and Combinatorial Optimization, pages 223–245, New York, NY, USA, 1997. Else-

vier North-Holland, Inc.

[70] C. Stewart and K. Shen. Performance modeling and system management for multi-

component online services. In Proceedings of the 2nd conference on Symposium on

Networked Systems Design & Implementation-Volume 2 table of contents, pages 71–

84. USENIX Association Berkeley, CA, USA, 2005.

[71] K. Subramaniam and M. Thazhuthaveetil. Effectiveness of sampling based software

203

profilers. In 1st International Conference on Reliability and Quality Assurance, pages

1–5. Citeseer, 1994.

[72] R. Suri, S. Sahu, and M. Vernon. Approximate Mean Value Analysis for Closed Queu-

ing Networks with Multiple-Server Stations. In Proceedings of the 2007 Industrial

Engineering Research Conference. Citeseer, 2007.

[73] H. Sutter. The free lunch is over: A fundamental turn towards concurrency in soft-

ware. Dr. Dobbs Journal, 30(3), 2005.

[74] B. Urgaonkar, A.L. Rosenberg, P. Shenoy, and A. Zomaya. Application Placement

on a Cluster of Servers. International Journal of Foundations of Computer Science,

18(5):1023–1041, 2007.

[75] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal. Dynamic provisioning of multi-

tier internet applications. In Autonomic Computing, 2005. ICAC 2005. Proceedings.

Second International Conference on, pages 217–228, 2005.

[76] B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource overbooking and application profil-

ing in a shared Internet hosting platform. ACM Transactions on Internet Technologies

(TOIT), 9(1):1–45, 2009.

[77] Bhuvan Urgaonkar, Giovanni Pacifici, Prashant Shenoy, Mike Spreitzer, and Asser

Tantawi. An Analytical Model for Multi-tier Internet Services and its Applications.

SIGMETRICS Perform. Eval. Rev., 33(1):291–302, 2005.

[78] Bhuvan Urgaonkar, Prashant Shenoy, Abhishek Chandra, Pawan Goyal, and Timothy

Wood. Agile dynamic provisioning of multi-tier internet applications. ACM Trans.

Auton. Adapt. Syst., 3(1):1–39, 2008.

[79] Akshat Verma, Puneet Ahuja, and Anindya Neogi. pmapper: power and migration

204

cost aware application placement in virtualized systems. In Middleware ’08: Proceed-

ings of the 9th ACM/IFIP/USENIX International Conference on Middleware, pages

243–264, New York, NY, USA, 2008. Springer-Verlag New York, Inc.

[80] Yefu Wang, Xiaorui Wang, Ming Chen, and Xiaoyun Zhu. Power-efficient response

time guarantees for virtualized enterprise servers. In RTSS ’08: Proceedings of the

2008 Real-Time Systems Symposium, pages 303–312, Washington, DC, USA, 2008.

IEEE Computer Society.

[81] Lisa Wells, S"ren Christensen, Lars M. Kristensen, and Kjeld H. Mortensen. Sim-

ulation based performance analysis of web servers. In PNPM ’01: Proceedings of

the 9th international Workshop on Petri Nets and Performance Models (PNPM’01),

page 59, Washington, DC, USA, 2001. IEEE Computer Society.

[82] Timothy Wood, Prashant J. Shenoy, Arun Venkataramani, and Mazin S. Yousif.

Black-box and gray-box strategies for virtual machine migration. In NSDI, 2007.

[83] Q. Zhang, L. Cherkasova, and E. Smirni. A regression-based analytic model for

dynamic resource provisioning of multi-tier applications. In Proceedings of the ICAC,

volume 7. Citeseer, 2007.

[84] Qi Zhang, Ludmila Cherkasova, Guy Mathews, Wayne Greene, and Evgenia Smirni.

R-capriccio: a capacity planning and anomaly detection tool for enterprise services

with live workloads. In Middleware ’07: Proceedings of the ACM/IFIP/USENIX 2007

International Conference on Middleware, pages 244–265, New York, NY, USA, 2007.

Springer-Verlag New York, Inc.

[85] Qi Zhang, Ludmila Cherkasova, Ningfang Mi, and Evgenia Smirni. A regression-

based analytic model for capacity planning of multi-tier applications. Cluster Com-

puting, 11(3):197–211, 2008.

205

