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CHAPTER Ⅰ 

 

OBJECTIVES AND SPECIFIC AIMS 

 

1.1. Objectives 

 The overall purpose of this study is to characterize and improve methods for 

imaging brain white matter using diffusion weighted magnetic resonance imaging (DW-

MRI). DW-MRI can provide a measure of local tissue microstructure based on the 

molecular diffusion of water. Recently, however, the major limitations of this imaging 

technique have been identified. In diffusion tensor MRI (DT-MRI), image noise produces 

both noise and bias in the estimated tensor, and leads to errors in estimated fiber paths. 

Moreover the single-tensor model is inappropriate in regions with complicated (e.g., non-

parallel) fiber structure. High angular resolution diffusion imaging (HARDI) methods, 

e.g., Gaussian mixture, q-ball imaging (QBI), diffusion spectrum imaging (DSI), 

spherical deconvolution (SD) etc., have been proposed as alternative tools for resolving 

multiple fiber structure within a voxel. At low SNR, however, fiber information from 

HARDI becomes unreliable. Also, none of the methods can provide estimates of the 

intrinsic diffusion properties of more than one fiber.  
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 This dissertation presents experimental and theoretical studies of uncertainty in 

fiber orientation using DT-MRI. It also proposes methods for estimation of intrinsic 

diffusion properties, as well as reliable fiber orientation distribution (FOD) functions 

using HARDI. These methods are then applied to the environment with ultra high B0 

field strength for improved imaging of brain white matter for human and/or non-human 

primates. Following specific aims describe this study in detail. 

 

1.2. Specific Aims 

 

1.2.1. Specific aim 1: Characterization of fiber directional uncertainty 

 The directional uncertainty of a local fiber is analyzed by constructing the cone 

of uncertainty (CU) using bootstrap analysis and perturbation theory. The amount of 

uncertainty, which defines the cone angle, is quantified as a function of image SNR, 

tensor anisotropy and eigenvalue contrast. Also the effect of gradient encoding scheme is 

studied, focusing on the coherence angle which describes the angular difference between 

the second (third) eigenvector of a diffusion tensor and the major (minor) axis of fiber 

directional dispersion. 
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1.2.2. Specific aim 2: Characterization of the properties of multiple fibers 

1.2.2.1. Robust estimation of multiple fiber orientation distributions 

 In the presence of noise, conventional pseudoinverse calculation often produces 

inaccurate fiber orientations with spurious or smeared peaks in the FOD function. This 

problem can be described as ill-posed, and the use of regularization can provide robust 

and reliable solutions. In this study, various regularization methods have been studied 

using singular value decomposition (SVD) under various conditions, such as number of 

fibers, SNR, expansion order, diffusion weighting gradient direction, b-value, separation 

angle between fibers and side constraints to determine optimal methods for accurate FOD 

representation. 

 

1.2.2.2. Estimation of multiple fiber intrinsic diffusion properties 

 The requirements for accurate determination of the diffusion properties of 

multiple fibers are established. Various imaging parameters are simulated to determine 

the optimal imaging conditions, and the diffusion properties are found by searching over 

the property space (volume fraction and radial diffusivity). Individual fiber FODs are 

compared in the regions of known fiber structures using simulation and experiment. 
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1.2.3. Specific aim 3: Application to high field imaging 

 At ultra high field strength, e.g., 7 Tesla, there is a significant B0 inhomogeneity 

artifact which spatially distorts DW and non-DW echo planar images. The correction for 

the B0 inhomogeneity is done by acquiring a ΔB0 fieldmap and then calculating the 

voxel displacement map. The feasibility of DW-MRI in a human 7 Tesla scanner is 

verified by forming FA and FOD maps, using the optimized methods studied in specific 

aim 2. 
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CHAPTER Ⅱ 

 

BACKGROUND AND SIGNIFICANCE 

 

2.1. Diffusion weighted magnetic resonance imaging 

 In 1828, Robert Brown observed the random, thermal motion of microscopic 

particles in a fluid medium. Molecular diffusion, a manifestation of what is now known 

as Brownian motion, is described by Fick’s first law, relating the spatial gradient of the 

concentration of a particle to a flux J [1], 

 ' ( | ', )D P t= − ∇J r r . (2.1) 

Here, the diffusion propagator ( | ', )P tr r  gives the probability of a spin moving from 

position r  to 'r  during the diffusion time t [2,3] and D is the molecular self-diffusion 

coefficient. With the application of the continuity theorem, 

 ' P
t

∂
∇ ⋅ = −

∂
J , (2.2) 

 2'P D P
t

∂
= ∇

∂
, (2.3) 

one finds Equation (2.3) known as Fick’s second law. The self-diffusion coefficient is 

defined as the diffusion coefficient of a species when there is no chemical potential 

gradient [4]. Fick’s law describes the likelihood of finding a particle in a specific place at 
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a certain time.  

If there are no barriers to diffusion (i.e., diffusion is not restricted or hindered), 

the diffusion process is said to be free and the solution of (2.3) has a Gaussian 

dependence on displacement, 

 ( ) { }3/2 2( , ) 4 exp / 4P t Dt Dtπ −= −R R , (2.4) 

here ( ' )= −R r r , is the dynamic displacement [2]. The function P provides the average 

probability for any particle to have a dynamic displacement R over a time t and is defined 

as the ‘propagator’ averaged over all initial positions, 

 ( , ) ( | ', ) ( )P t P t dρ= ∫R r r r r . (2.5) 

For the case of free self-diffusion, ( | ', )P tr r  is only a function of R, and the average 

propagator in (2.5) is common to all molecules in the environment. The average 

propagator allows us to infer the underlying microgeometry of a structure [5]. 

 In the nuclear magnetic resonance (NMR) experiment we can measure the 

movement of water molecules by applying a spatial label to the nuclei at one instant of 

time, and then measure the shift of the label at a later time in order to deduce the 

molecules’ movement. One simple labeling scheme is to apply a pair of bipolar gradient 

pulses (one positive and one negative) to dephase then rephase spins as in Figure 2.1. 
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Figure 2.1. An example of a dephase-rephase experiment using bipolar gradient pulses. 
Three circles and an arrow inside each circle indicate the phase of the NMR signal at 
different positions over a sample. 

 

In this experiment, however, the spin motion due to diffusion and flow generates different 

outcomes. Coherent motions such as flow or bulk motions of the subject provide a perfect 

rephasing with no loss of the NMR signal but a shift of the signal phase. If spins move by 

incoherent motion, say, diffusion, between the first and the second gradients, then the 

phase of the spin doesn’t return to the original orientation giving loss of the signal. 

Therefore, basically the coherent and incoherent motion can be distinguished in the NMR 

diffusion experiment. However, coherent motion can lead to signal loss and interfere with 

the diffusion measurement when the flow occurs in multiple orientations (e.g., network 

structure of capillaries) within a voxel. In most in vivo experiments, however, water 

molecular movement by blood flow is much faster than that by diffusion, and the signal 

from blood water (which composes 5% of water in the brain) dephases almost completely 
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[6].  

 One drawback of using bipolar gradient pulses is the significant signal loss due 

to T2* decay between the two gradient pulses. Therefore it is more common to use spin-

echo sequences in which the signal decays by T2 (in here T2≥T2*) during diffusion 

weighting. The spin-echo experiment including the effects of diffusion on the echo has 

been described by Hahn [7] and Carr et al. [8]. The pulsed gradient spin-echo (PGSE) 

shown in Figure 2.2 was pioneered by Stejskal and Tanner [9] and it is now the classical 

method for the measurement of diffusion using NMR.  

 

 
Figure 2.2. A PGSE sequence diagram. The pulse sequence excites the spin system with 
a π/2 pulse, encodes the spin position with a constant magnetic field gradient of duration 
δ, inverts the phase of spins with a π pulse, applies the same gradient with the same 
duration at the time Δ after the first gradient pulse, and then the echo signal is acquired at 
the time TE. 
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In their study, Stejskal and Tanner used the Bloch-Torrey equation [10], i.e., Bloch 

equation [11] including diffusion terms (2.6) to relate the spin echo amplitude, A(TE), to 

the diffusion coefficient: 

 

[ ]22

0

2 2 2

( )ln ( ) ( 1)
(0)

3

TEA TE D t dt
A

G D

b D

γ ξ

δγ δ

⎛ ⎞
= − ⋅ + −⎜ ⎟

⎝ ⎠
⎛ ⎞= − Δ − ⋅⎜ ⎟
⎝ ⎠

= − ⋅

∫ F f

, (2.6) 

here ( )
0

( ) ' '
t

t t dt= ∫F G , 
2

TE⎛ ⎞= ⎜ ⎟
⎝ ⎠

f F , ξ = 1 (0 < t < TE/2) and ξ = -1 (t > TE/2) and A(t) 

is the echo amplitude at time t after a 90 degree excitation pulse.  

 Considering that the NMR signal depends on the spin phase distribution, we can 

write the signal using (2.4), e.g., along one dimension [6], 

 
2

0

/4
0

( , ) ( )

1
4

x

x Dt i G x

x

S S P x t x dx

S e e dx
Dt

γ δ

π
−

= Φ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∫

∫
, (2.7) 

here Φ(x) is the phase term for spins displaced by x and P(x,t) is the population of water 

at position x and diffusion time t. Solving (2.7) becomes, 

 ( )

2

2 2

2 2 2

/40

/4 /40

0

4

cos( ) sin( )
4

x Dt i G x

x

x Dt x Dt

x x

G Dt

S e e dx
Dt
S e G x dx i e G x dx

Dt
S e

γ δ

γ δ

π

γ δ γ δ
π

−

− −

−

= +

=

∫

∫ ∫ . (2.8) 

However (2.8) is not valid when the diffusion gradient G is a function of time. Let’s 

consider a simple diffusion weighting sequence as shown in Figure 2.1, and then (2.8) is, 
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 ( )4

1

2
2

0
0

ln ( ') '
t t

t

S D G t dt dt
S

γ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

∫ ∫ . (2.9) 

In this sequence, the time period t1-t4 is divided into discrete time segments and 

0
( ') '

t
G t dt∫  in (2.9) becomes 

 
1 2

2 30

3 3 4

,
( ') ' ,

( ),

t
Gt t t t

G t dt G t t t
G G t t t t t

δ
δ

≤ ≤⎧
⎪= ≤ ≤⎨
⎪ − − ≤ ≤⎩

∫ . 

Hence (2.9) is, 

 [ ]{ }2 3 4

1 2 3

22 2 2 2 2
3

0

ln ( )
t t t

t t t

S D G t dt G dt G G t t dt
S

γ δ δ
⎛ ⎞

= − + + − −⎜ ⎟
⎝ ⎠

∫ ∫ ∫ . (2.10) 

Letting t1 = 0, t2 = δ, t3 = Δ and t4 = δ+Δ as shown in Figure 2.1 and solving (2.10) gives, 

 2 2 2

0

ln
3

S G D
S

δγ δ
⎛ ⎞ ⎛ ⎞= − Δ − ⋅⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
. (2.11) 

The signal attenuation due to diffusion in (2.11) is the same as in (2.6). This expression 

explicitly relates NMR signal attenuation and the self-diffusion coefficient in the case of 

Gaussian diffusion. The final result in (2.6) or (2.11) is also based on the assumption 

that there is no diffusion barrier or hindrance - an assumption which is easily violated in 

most of the in vivo diffusion measurements of ‘restricted’ or ‘anisotropic’ diffusion [12-

15]. The primary sources of apparent anisotropic diffusion are susceptibility variations 

[15] and ordered cellular structures [16-18], otherwise they are restricted mostly due to 
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cellular membranes. 

 Assuming that the effect of susceptibility-induced gradients can be ignored 

(because it is negligible or can be canceled by appropriate experimental setup), the water 

molecular diffusion measured in vivo reflects the presence of spatially ordered 

macromolecular, membranous, or cellular structures which can be heterogeneous on 

microscopic length scales but homogeneous and anisotropic on a macroscopic scale (i.e., 

in a voxel) [19,20]. To this end the effective self-diffusion tensor (or simply the diffusion 

tensor) has been introduced to generalize (2.6) [19-22] leading to a simple expression as 

in (2.12) 

 ( )
( )

3 3

1 1
ln :

0 ij ij
i j

A TE
b D

A = =

⎛ ⎞
= − = −⎜ ⎟⎜ ⎟

⎝ ⎠
∑∑ b D , (2.12) 

here : is the generalized dot product and b and D are symmetric matrices. Equation 

(2.12) suggests that we can estimate the signal attenuation mediated by each of the 

diagonal and off-diagonal components of D by applying the diffusion weighting gradient 

in various directions. To fully construct the diffusion tensor with diagonal as well as off-

diagonal terms, at least six non-colinear diffusion weighting directions are required [23] 

using optimized imaging parameters [24] or fitting algorithms [25] when necessary. 

 The diagonal and off-diagonal elements are essential in determining the 
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orientation, shape and size of the diffusion ellipsoid which characterizes the molecular 

diffusion in anisotropic media. By diagonalizing the diffusion tensor we can get three 

mutually perpendicular directions (principal directions) and diffusivities along the 

preferred directions (principal diffusivities).  

 The most powerful and useful information that can be extracted from the 

diffusion tensor is the dimensionless diffusion anisotropy, i.e., fractional anisotropy (FA) 

and relative anisotropy (RA) [26] and axonal fiber tract trajectory [27-30]. The ability to 

make these measurements opened a new window on many issues of brain connectivity in 

normal subjects [31], various brain dysfunctions such as cancer, multiple sclerosis and 

schizophrenia [32] and even outside of the brain such as heart [33], skeletal muscle 

[34,35], kidney [36] and the whole body [37]. 

 

2.2. Uncertainty in the diffusion tensor model 

 Diffusion tensor MRI (DT-MRI or DTI) can provide microstructural information 

on a tissue based on water molecular diffusion in vivo [19,20,23,26]. This directional 

information can be used to estimate the local direction of brain fiber bundles in order to 

infer axonal connectivity [29]. The principal eigenvector of a diffusion tensor, 1v , is 

considered to be parallel to the local fiber direction. However, image noise produces 
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perturbations in the tensor field and causes errors in the estimated diffusion anisotropy 

[38-40] and fiber path [41,42].  

 The dependence of 1v  on tensor errors has been found from first order 

perturbation theory [41,43-45] or simple error analysis [46]. With this approach the 1v  

error ( 1δ v ) in the 2v  (second eigenvector) and 3v  (third eigenvector) directions can be 

expressed as, 

 2 1
2 1

1 2

δδ
λ λ
⋅ ⋅

⋅ =
−

T
T v D vv v , (2.13) 

 3 1
3 1

1 3

δδ
λ λ
⋅ ⋅

⋅ =
−

T
T v D vv v , (2.14) 

corresponding to a given tensor error, δ D . This error in 1v  can be more easily 

understood in the { }2 3,v v  plane. The covariance matrix, 
1vΣ  as in (2.15), for 1v  in 

the { }2 3,v v  plane gives the variance of 1δ v  along 2v  and 3v  on the diagonal and the 

covariance of these components in the off-diagonal elements:  
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⎢ ⎥

⋅ ⋅⋅ ⋅ ⋅ ⋅⎢ ⎥
⎢ ⎥

− − −⎢ ⎥⎣ ⎦

T T T

v
TT T

v D v v D v v D v

Σ
v D vv D v v D v

. (2.15) 

using (2.13) and (2.14).  

 Diagonalizing this covariance matrix provides the principal components of 1v  

variation, i.e., the directional uncertainty, on the plane perpendicular to the local direction 
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of fiber propagation [47], and this has been characterized by the ‘cone of uncertainty’ 

[43,48]. Lazar et al. [49,50], Koay et al. [45] and Jeong et al. [47] showed that errors in 

MR tractography typically have an elliptical distribution, and noted that an elliptical CU 

is expected in voxels that lack axially symmetric diffusion. Figure 2.3 demonstrates the 

construction scheme of the CU as in [47].  

 

 
Figure 2.3. An example of a construction scheme of the CU. The variation of 1v  is 
projected onto the perpendicular plane. The major and minor axes of the CU are 
represented with the error (σj) in the principal direction (ej), where j = 1,2. The size of 
cone is scaled by FA. 

 

 Lazar et al. [49,50] measured the dispersion of fiber paths in a plane 

perpendicular to the local fiber axis at some distance from the seed points using the 
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bootstrap method [51]. By randomly selecting individual diffusion weighted images with 

replacement from a set of measurements, the bootstrap estimates of a given statistic can 

be used to obtain a measure of uncertainty [48,52]. With this technique, they noted a 

strong correlation between the direction of the greatest dispersion of fiber tracks and the 

second eigenvector of the tensor. However there has been no general explanation for this 

observation, and few experimental and theoretical studies on the properties of the CU. 

 The characterization of the CU is critical for understanding and improving fiber 

tractography. Some of the key properties are fiber directional uncertainty, symmetry and 

multivariate normality of principal eigenvector errors and the dependence of the CU on 

image noise, diffusion anisotropy and eigenvalue contrast. Only a few studies have been 

published on the properties of the CU and the reduction of image noise, using methods 

such as time domain signal averaging [40,41] or anisotropic smoothing [53-55]. 

 

2.3. Beyond the diffusion tensor 

 

2.3.1. Pitfalls in the diffusion tensor model 

 Although DTI has been remarkably successful in detecting subtle changes in 

white matter tissue structure, the tensor model based on the assumption of Gaussian 
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diffusion is inappropriate within complex human tissues [20,56-58]. The presence of 

multiple fiber directions within a single imaging voxel, i.e., a partial volume effect, 

cannot be characterized by a single tensor because a tensor possesses only a single 

orientational maximum, i.e., it describes a single fiber diffusion [28-30,59-67]. This is 

particularly true for DT-MRI studies that use EPI techniques with relatively large voxels, 

about 1.5-5.0 mm on a side [59].  

 

2.3.2. High angular resolution diffusion imaging (HARDI) with Gaussian mixtures 

 A new approach proposed by Tuch et al. [64,65] uses high angular resolution 

diffusion imaging (HARDI) with large b-values in order to detect more accurately 

variations in diffusion along different directions. At the lower b-values conventionally 

employed by DT-MRI, the signal contrast is insufficient between the fast diffusion 

component of one fiber and slow diffusion component of another fiber to effectively 

resolve the two fibers [59,64,65]. To resolve multiple fiber orientations in the presence of 

intravoxel orientational heterogeneity (IVOH), the diffusion signal was modeled as 

arising from a discrete mixture of Gaussian diffusion processes as follows [64]. 

 The signal from a single compartment, assuming Gaussian diffusion, is given by 

(2.16) 
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 ( ) T
k k

kE e τ−= q Dqq , (2.16) 

where ( )kE q  is the normalized diffusion signal magnitude for the diffusion gradient 

wave vector k kγδ=q g , γ  is the gyromagnetic ratio, δ  is the diffusion gradient 

duration, kg  is the kth diffusion gradient, τ  is the effective diffusion time and D  is the 

diffusion tensor. The Gaussian mixture model is based on the following assumptions: 1) 

the region with IVOH consists of discrete homogeneous compartments; 2) each 

compartment has Gaussian diffusion described by a tensor; 3) exchange between the 

compartments is very slow [64]. Then the diffusion weighted signal can be expressed as a 

finite mixture of Gaussians as in (2.17), 

 ( ) T
k i k

k i
i

E f e τ−= ∑ q D qq . (2.17) 

However, a priori information about the number of diffusion compartments and intrinsic 

diffusion properties, e.g., eigenvalues for each compartment, is critical in this mixture 

model, which has been impossible to obtain using other methods.  

 

2.3.3. Diffusion spectrum imaging (DSI) 

 This high angular resolution sampling scheme was extended by Wedeen et al. 

[66,68] to the central volume of 3D q-space. This method, referred to as diffusion 

spectrum imaging (DSI), can be used to infer the distribution of fiber orientations. 
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However the DSI technique requires long acquisition times and strong magnetic field 

gradients using, for example, 515 q-encoding steps [68]. 

 

2.3.4. q-Ball imaging (QBI) 

 An alternative method by Tuch et al. [69] requires samples only on a spherical 

shell in q space. The method, named q-ball imaging (QBI), characterizes the angular 

structure of tissue with a diffusion orientation distribution function (ODF), which is 

defined as the spherical Radon transform of diffusion weighted signal [69,70]. The ODF 

gives the probability for a spin to diffuse any distance in the direction u  at the 

experimental diffusion time τ  [69]. The ODF, ψ , can be simply represented using the 

spherical Radon transform of the diffusion weighted signal, known as the Funk-Radon 

transform [69,70], as in (2.18) 

 ( ) ( )E dψ
⊥

= ∫
q u

u q q , (2.18) 

where u  is the diffusion direction of interest. In this study, relatively low b-value (4000 

s/mm2) and 252 gradient samples were used to reconstruct the ODF. Crossing fiber 

structures, e.g., Meyer’s loop, which were impossible to represent using DT-MRI, were 

clearly resolved [70]. 
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2.3.5. Spherical harmonic decomposition (SHD) 

 Frank [57,62] and Alexander [71] used spherical harmonic decomposition (SHD) 

to represent the measured apparent diffusion coefficient (ADC) as a function of 

orientation. Considering the general case of HARD measurements for a voxel with 

unknown fiber structure, the measured ADC, ( ),D θ φ , is a (symmetric) real function and 

the spherical harmonics form a complete orthonormal basis on a sphere. Hence, the 

function can be expanded by Laplace series [57] as in (2.19) 

 
0

( , ) ( , )θ φ θ φ
∞

= =−

= ∑ ∑
l

lm lm
l m l

D d Y , (2.19) 

and the coefficient m
ld  is determined using the orthogonality condition as 

 
2 *

' ' ' '0 0
( , ) ( , )sin( )

π π
θ φ θ φ θ θ φ δ δ=∫ ∫ lm l m ll mmY Y d d . (2.20) 

The coefficients m
ld , which are the spherical harmonic transform (SHT) of ( ),D θ φ , are 

given by 

 
2 *

0 0
( , ) ( , )sin( )

π π
θ φ θ φ θ θ φ= ∫ ∫lm lmd D Y d d . (2.21) 

Using the SHT, the ADC profile can be represented using SHD as shown in (2.19). The 

SHD calculates ADC components up to a user-defined order l (maximum expansion order, 

lmax), for all the 2l+1 values of the degree m associated with each l (m = - l, - l +1, ... 0, ... 

l -1, l) [57,71]. However, the local diffusion, in general, including the magnitude and 

orientation can be described by a sum of spherical harmonics of even order, i.e. l = 0, 2, 
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4, ... . The order lmax required to characterize the diffusion in a voxel with multiple fibers 

depends on the relative orientation of the fibers [57]. This means that for more closely 

aligned fibers, higher order l will be required. Figure 2.4 shows the results of a simulation 

of the contributions to ADC from the different orders l of the SHD as shown in [57]. It 

shows that the SHD of ADC contains contributions from the spherical harmonic 

components at various orders of l depending on the fiber architecture. 

 

 
Figure 2.4. The single fiber ADC contains contributions from l = 0 (sphere) and l = 2 
spherical harmonic components (upper row). The two fiber ADC in 90 degrees has an l = 
4 component as well as l = 0 and l = 2 (lower row). The fiber directional colormap onto a 
unit sphere is shown in the upper right corner with coordinate axes. 

 

2.3.5.1. Maximum expansion order using SHD 

 Alexander et al. [71] showed typical ADC profiles from each of three regions, 

e.g., pons, optic radiation and corona radiata, with the order lmax = 0, 2, 4, 6 and 8. Each 
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region has crossing or clusters of fibers, e.g., right-left and inferior-superior in the pons, 

anterior-posterior and right-left in the optic radiation and large mixing fiber clusters in the 

corona radiata. They demonstrated that there was a significant difference between the lmax 

= 2 and lmax = 4 models indicating significant non-Gaussian diffusion. At order lmax 

greater than 4, the overall ADC profile does not change significantly, and just the effect 

of noise is increased [71]. This observation illustrates the importance of choosing an 

appropriate value for lmax.  

 More elaborate simulations related to this subject were done by Hess et al. [72] 

for QBI reconstruction using spherical harmonics. In this simulation, a large number of 

measurements (n = 282) and 1000 uniformly distributed random orientations for each 

fiber (up to three fibers) were used to show the contribution of lmax by calculating the 

fractional power spectrum using spherical harmonic coefficients of HARDI signal with 

orders up to lmax = 10 [72]. In the results, the fractional spectral energy was concentrated 

at lower angular frequencies, and hence accurate reconstruction of the ODF was possible 

using relatively small values of lmax. With b-value of 3000 s/mm2, the harmonics up to 

order lmax = 4 represent greater than 99.3 % of the spectral energy of the series for all 

three synthetic fiber architectures [72]. As higher b-values are used, such as 5000 and 

7000 s/mm2, the fractional total energy contributed by harmonic orders up to lmax = 4 
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decreases to 96.9 % and 92.9 %, respectively [72]. Although the order up to 4 contains 

most of the energy for up to three fiber structures, higher order is required for more 

closely aligned fibers, in general [57].  

 

2.3.6. Spherical deconvolution (SD) method 

 It is generally assumed that the peak in the spin displacement profile corresponds 

to the direction of a fiber population, but the relationship between spin displacement and 

fiber orientation has not yet been fully explored [73]. Anderson and Ding [60] and 

Tournier et al. [73] suggested a method that is able to estimate directly the distribution of 

fiber orientations within a voxel from the HARDI signal using the spherical 

deconvolution (SD) technique. This is based on the assumptions that there is negligible 

exchange between distinct fiber bundles and the diffusion characteristics of all fiber 

populations in the brain [73] or within a voxel [60] are identical. The diffusion weighted 

signal can be expressed as the convolution over the unit sphere of the response function 

( )R θ  with a fiber orientation distribution (FOD) function ( ),F θ φ  as in (2.22) 

 ( , ) ( ) ( , )S R Fθ φ θ θ φ= ⊗ . (2.22) 

Figure 2.5 shows a simple 2-D illustration of the deconvolution method for a voxel with 

two fiber bundles with distinct orientations and volume fractions as shown in [73].  
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Figure 2.5. The measured DW signal S(θ,φ) is the sum of the individual fiber’s (dotted 
line) attenuation profile (continuous line) weighted by its volume fraction, fj Sj(θ,φ), j=1,2. 
This can be expressed as a convolution over a unit sphere of an axially symmetric 
response function R(θ), giving the signal attenuation for a single fiber population with a 
fiber orientation distribution function F(θ,φ), here F(θ,φ) is the sum of two delta 
functions. 

 

The measured DW signal is the sum of each fiber population’s characteristic attenuation 

profile weighted by its respective volume fraction. This can be represented as a 

convolution of a single fiber response function with the FOD function as shown in Figure 

2.5 [73]. Using spherical harmonics, the measured DW signal can be expressed as (2.23) 

 =lm l lms r f , (2.23) 

here, lms , lr  and lmf  are spherical harmonic coefficients of the DW signal, response 

function and FOD function, respectively. In this method, the response function was found 

directly from data by measuring the DW signal profile in regions likely to contain a 

single and coherently oriented fiber population, i.e., where diffusion anisotropy is high. 
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2.3.7. Fiber orientation estimated using continuous axially symmetric tensors method 

 The SD method proposed by Anderson and Ding [60] and Anderson [74] 

provides more information on fiber structure than the other SD techniques. The new 

method, named fiber orientation estimated using continuous axially symmetric tensors 

(FORECAST), provides an analytic expression for the response function using the 

assumption that each fiber bundle has axially symmetric diffusion and shared mean and 

radial diffusivity within a voxel. This model uses a spherical harmonic expansion of the 

DW signal and FOD as in (2.24) and (2.25) 

 
0

( , ) ( , )θ φ θ φ
∞

= =−

= ∑ ∑
l

lm lm
l m l

S s Y , (2.24) 

 
0

( , ) ( , )θ φ θ φ
∞

= =−

= ∑ ∑
l

lm lm
l m l

P p Y . (2.25) 

Spherical harmonic coefficients for the above functions can be obtained using the 

relationship in (2.21). The relationship between the DW signal and FOD can be 

expressed similarly to (2.23) as in (2.26)-(2.28) 

 0= ⋅ ⋅lm l lms S c p , (2.26) 

here 

 4
2 1
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In (2.26)-(2.28), S0 is the non-DW signal, λ⊥  is the radial diffusivity and α is the 

measurement angle relative to a fiber axis. This method successfully demonstrated that 

the FOD measurement was possible at relatively low b-value (1480 s/mm2) with much 

lower angular resolution (92 directions) for the FOD than other methods. In this study, 

two representative voxels were chosen, one in the corpus callosum and the other at the 

junction of fronto-occipital fasciculus and lateral fibers, and the FORECAST FOD 

function, FORECAST ODF, QBI ODF, SHD of ADC and single tensor model were 

displayed using the b-value of 1480 s/mm2, 92 diffusion encoding directions and 4th order 

expansion [74]. It clearly showed that the FORECAST FOD generated higher angular 

resolution for the fibers than the other methods. The FORECAST, QBI, and DSI produce 

very similar ODFs, although they are not identical [74,75]. 

 

2.4. Optimal representation of complex fiber structures 

 The SD method [73] has been widely used to characterize multiple fiber 

orientations within a single voxel, whereas the diffusion tensor imaging method cannot. 

However, the reliable estimation of the FOD function is difficult in the presence of noise 

in the DW-MRI data. Noise results in spurious peaks or lower angular resolution in the 

FOD. Recently, low-pass filtering [73], minimum entropy [76], minimizing the 



 26

magnitude of negative peaks [77] and super-resolved spherical deconvolution [78] have 

been suggested for more reliable estimation of the FOD. However, those methods require 

a priori information about the filter factors [73], regularization parameter [77,78] or a 

nonlinear optimization [76] which may take relatively large amounts of time. Sakaie et al. 

[79] recently presented the combined use of the generalized cross validation (GCV) with 

damped generalized singular value decomposition (DGSVD) for the objective 

determination of the regularization parameter and robust estimation of the FOD without a 

priori information or user interaction. In their study, two voxels in gray and white matter 

with crossing fibers were chosen, and FODs were compared using regularization and 

low-pass filtering. The FOD plot with the regularization shows a nearly uniform sphere 

representing isotropic diffusion in the gray matter, but that from the low-pass filtering 

shows an isotropic arrangement of many sharp peaks for the same voxel. For the voxel 

with crossing fibers, the two results show similar FOD shape.  

 However, comparisons of various regularization methods and combined side 

constraints are still required for optimized and robust representation of the FOD. Hansen 

[80] reviewed a large class of regularization methods and provided a software package 

which is readily available in MATLAB (Mathworks, Natick, MA). 
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2.5. Measurement of fiber intrinsic diffusion properties 

 Although HARDI methods can identify multiple fiber directions, they do not 

generally provide information about the intrinsic diffusion properties of any of the fibers, 

and estimates of those properties (such as radial and parallel diffusivities and/or volume 

fraction) within a single voxel have not been studied extensively. Alternative models 

have been suggested using multi-component models [81-85], such as two (fast and slow) 

diffusion compartments, and two-tensor models using six [86,87] or higher [64] non-

collinear diffusion gradient directions. However those methods provide only limited 

information among many diffusion properties.  

 Tournier et al [73] showed the possibility of estimating volume fraction of a 

known number of fiber compartments, e.g., two compartments using the SD method 

within a voxel from HARDI data. Jeong et al. [88] suggested a method for estimating the 

radial diffusivity and volume fraction of individual fiber bundles in voxels with known 

two crossing fiber structures, e.g., the cingulum and corpus callosum. Though there have 

not been many studies of the fiber-specific method, this approach will be helpful in 

explaining microscopic changes of fiber bundles within a single voxel. 
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2.6. Application to high field MRI data 

 Seven Tesla imaging systems have been recently used to demonstrate the 

feasibility of high field DT-MRI and HARDI for improved visualization of white matter 

anatomy [89-92]. In a QBI experiment performed at 7 Tesla with higher order shimming 

and parallel imaging, typical echo planar imaging (EPI) distortions in the anterior and 

posterior regions of the supratentorial brain were not severe generally and were negligible 

in the center [92]. However, it is well known that there are increased artifacts from B0 

and B1 inhomogeneity and susceptibility at high field strengths. No other reconstruction 

methods, e.g., FORECAST, have been published or optimized for use at high field, nor 

have these studies fully addressed the correction of artifacts. 

 

2.6.1. B0 field inhomogeneity correction 

 The correction of B0 inhomogeneity artifact using the reverse gradient method 

was suggested by Chang et al. [93] using spin-warp images and applied to EPI data 

[94,95] and EPI DTI data [96]. This method adopts two separate acquisitions of MRI data 

using forward and reverse gradients (e.g., using anterior-posterior and posterior-anterior 

phase encoding directions for brain EPI acquisition). When voxel dimensions are similar 

in all imaging axes, the slice selective gradient (Gz) is usually several times larger than 
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either the frequency encoding (Gx) or phase encoding (Gy) gradient in a 2D spin-warp 

MRI acquisition [95]. Hence, the spatial distortion along the slice selective axis is 

significantly smaller than in-plane, and its effect can be ignored [93]. In addition, for a 

2D EPI acquisition with N phase encoding lines, the time taken to span k-space in the 

phase encoding direction is at least N times larger than the time taken in the frequency 

encoding direction, resulting in the bandwidth per point in the phase encoding direction 

being 1/N of that in frequency encoding direction [95]. Therefore, the spatial distortion 

along the phase encoding direction will be the dominant effect in an EPI acquisition [95]. 

However, the forward-reverse correction algorithm requires accurate edge detection to 

segment the imaged object from the background. This can be difficult, especially for DW 

images whose SNR is typically much lower than other, e.g., T1 or T2 weighted images, 

or images containing ghosts or regions with relatively large susceptibility artifacts. Also 

this method is sensitive to noise if the imaged object has regions of low SNR, since errors 

accumulate along each line integral affecting the correction of all points along the 

particular line [95]. 

 Jezzard et al. [97] suggested the use of a field map to correct geometric distortion 

caused by inhomogeneous B0 fields, especially for EPI acquisitions. It calculates the 

phase map from each of two gradient echo images acquired with slightly different echo 
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times (ΔTE), and the field inhomogeneity map is then calculated. The field map is 

converted into a voxel shift map which is simply the ratio between field inhomogeneity 

(Hz) and effective bandwidth per voxel in phase-encode direction. In their study, large 

field inhomogeneities observed around the frontal lobe, temporal lobe and cerebellum 

were reduced after field inhomogeneity correction using the field map. Like the forward-

reverse method, low SNR also affects each voxel in a field map correction, but the error 

is not accumulated from one voxel to another. Other sources of artifacts, B1 

inhomogeneity [98] or gradient nonlinearity, may be reduced by using multi-channel 

excitation [99] or estimating a gradient coil tensor [100], but these are not addressed in 

this work. 
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CHAPTER Ⅲ 

 

CHARACTERIZING FIBER DIRECTIONAL UNCERTAINTY IN DT-MRI 

 

3.1. Overview 

 Image noise in diffusion tensor MRI (DT-MRI) causes errors in the measured 

tensor, and hence variance in the estimated fiber orientation. Uncertainty in fiber 

orientation has been described using a circular "cone of uncertainty” (CU) around the 

principal eigenvector of the diffusion tensor. The cone of uncertainty has proved to be a 

useful construct for quantifying and visualizing the variability of DT-MRI parameters and 

fiber tractography. The assumption of circularity of the CU has not been tested directly, 

however. In this work, bootstrap analysis and simple theoretical arguments were used to 

show that the cone of uncertainty is elliptical and multivariate normal in the vast majority 

of white matter voxels for typical measurement conditions. The dependence of the cone 

angle on signal-to-noise ratio and eigenvalue contrast was established. The major and 

minor cone axes are shown to be coincident with the second and third eigenvectors of the 

tensor, respectively, in the limit of many uniformly spaced diffusion encoding directions. 

The deviation between the major cone axis and the second eigenvector was quantified for 
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typical sets of diffusion weighting directions. The elliptical cone of uncertainty provides 

more realistic error information for fiber tracking algorithms and a quantitative basis for 

selecting diffusion tensor imaging acquisition protocols. 

 

3.2. Introduction 

 Diffusion tensor MRI (DT-MRI) provides information on water molecular 

diffusion based on a series of images with diffusion weighting applied in at least six non-

collinear directions [19,20]. Given the effective diffusion tensor, it is possible to 

characterize tissue microstructure using the directional dependence of diffusion in vivo 

[26,58]. In addition, this directional information has been exploited to estimate the paths 

of fiber bundles in the brain in order to infer axonal connectivity [29]. In this case, the 

principal eigenvector (i.e., the estimated direction of maximum diffusivity), 1v , is taken 

to be parallel to the local fiber bundle. In the presence of image noise, however, 

perturbations of the diffusion tensor field introduce errors in the estimated diffusion 

anisotropy [38-40] and fiber direction [41,42]. 

 The directional uncertainty in 1v  has been characterized by the ‘cone of 

uncertainty’ [43,48]. This was defined as a circular cone with axis along the expectation 

value of 1v  and cone angle equal to the uncertainty (i.e., confidence interval) in the 
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orientation of 1v . The cone of uncertainty (CU) is particularly useful for visualizing the 

uncertainty in fiber orientation and predicting error in MR fiber tractography. However, 

Lazar and Alexander [49,50] showed that errors in MR tractography typically have an 

elliptical distribution, and noted that an elliptical CU is expected in voxels that lack 

axially symmetric diffusion. They measured the dispersion of fiber tracking errors in a 

plane perpendicular to the fiber axis at some distance from the seed points. They noted a 

strong correlation between the direction of the greatest dispersion of tracking errors and 

the second eigenvector of the tensor (corresponding to the second largest diffusivity). The 

same relationship existed between the direction of the smallest dispersion of tracking 

errors and the third eigenvector of the tensor (corresponding to the smallest diffusivity). 

 In this chapter, we provide a general explanation for this observation, and present 

results of experimental and theoretical studies of the properties of the CU. In particular, 

we tested the symmetry and multivariate normality of principal eigenvector errors, and 

characterized the dependence of the associated CU on image noise, diffusion anisotropy 

and eigenvalue contrast. In addition, we investigated the coincidence between the tensor 

eigenvectors and the axes of the elliptical cone, and how this correspondence depends on 

the diffusion gradient encoding scheme. Some of this work has appeared previously in 

abstract form [47]. Koay et al have recently proposed a similar construction of the 
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elliptical cone of uncertainty [45]. 

 

3.3. Theory 

 The dependence of the major eigenvector (i.e., the eigenvector corresponding to 

the largest eigenvalue), 1v , on tensor errors can be found from first order perturbation 

theory [41,43,44] or simple error analysis [46]. The major eigenvector of the diffusion 

tensor satisfies the eigenvalue equation 

 1 1 1Dv vλ= , (3.1) 

where D  and 1λ  are the true tensor and major eigenvalue (i.e., 1 2 3λ λ λ> ≥ ), 

respectively. Taking the differential of both sides of (3.1) gives a relation among the 

errors in these quantities: 

 1 1 1 1 1 1D v D v v vδ δ δλ λ δ⋅ + ⋅ = ⋅ + ⋅ . (3.2) 

The tensor is represented by a 3 × 3 symmetric matrix and the principal eigenvector is a 3 

× 1 column vector. Multiplying (3.2) by the transpose of the middle eigenvector 2v , 

denoted by T
2v , yields 

 T T T T
2 1 2 1 1 2 1 1 2 1v D v v D v v v v vδ δ δλ λ δ⋅ ⋅ + ⋅ = ⋅ + ⋅ . (3.3) 

Since the eigenvectors are orthogonal, 

 T
2 1 0v v = . (3.4) 
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The eigenvalue equation for 2v  is 

 2 2 2λ=Dv v , 

and the transpose of this relation is 

 T T
2 2 2λ=v D v , 

since D is symmetric. Multiplying on the right by 1δ v , the error in 1v , gives 

 T T
2 1 2 2 1v D v v vδ λ δ⋅ = ⋅ . (3.5) 

Substituting (3.4) and (3.5) into (3.3) gives 

 T T T
2 1 2 2 1 1 2 1δ λ δ λ δ⋅ ⋅ + ⋅ = ⋅v D v v v v v . 

The component of the 1v  error ( 1δ v ) in the 2v  direction is therefore 

 
T

T 2 1
2 1

1 2

v D vv v δδ
λ λ
⋅ ⋅

⋅ =
−

. (3.6) 

Replacing 2v  by 3v  in (3.3) leads to an analogous expression for the component of the 

1v  error in the 3v  direction: 

 
T

T 3 1
3 1

1 3

v D vv v δδ
λ λ
⋅ ⋅

⋅ =
−

. (3.7) 

The eigenvectors have unit length, so for example, 

 T
1 1 1v v⋅ = . 

Differentiating both sides of this equation yields 

 T T
1 1 1 1 0v v v vδ δ⋅ + ⋅ = . 

Since the two terms on the left are scalars and each is the transpose of the other, they 
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must be equal. Hence,  

 T
1 1 0δ⋅ =v v . (3.8) 

The 1v  error, 1δ v , is perpendicular to the 1v  direction. Taken together, (3.6), (3.7) 

and (3.8) specify the three orthogonal components of the error in the major eigenvector 

corresponding to a given tensor error, δ D .  

 The covariance matrix, 
1vΣ , for 1v  in the { }2 3,v v  plane gives the variance of 

1δ v  along 2v  and 3v  on the diagonal and the covariance of these components in the 

off-diagonal elements:  

 

( ) ( ) ( )

( ) ( ) ( )

( )
( )

( )( )
( )( )

( )( )
( )( )

( )
( )

1

2T T T
2 1 2 1 3 1

2T T
2 1 3 1 3 1

2T T T
2 1 2 1 3 1

2
1 2 1 31 2

2TT T
3 12 1 3 1

2
1 2 1 3 1 3

= 

v
T

v v v v v v
Σ

v v v v v v

v D v v D v v D v

v D vv D v v D v

δ δ δ

δ δ δ

δ δ δ

λ λ λ λλ λ

δδ δ

λ λ λ λ λ λ

⎡ ⎤⋅ ⋅ ⋅ ⋅⎢ ⎥
= ⎢ ⎥

⎢ ⎥⋅ ⋅ ⋅ ⋅
⎣ ⎦
⎡ ⎤⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎢ ⎥
⎢ ⎥− −−⎢ ⎥
⎢ ⎥

⋅ ⋅⋅ ⋅ ⋅ ⋅⎢ ⎥
⎢ ⎥

− − −⎢ ⎥⎣ ⎦

, (3.9) 

using (3.6) and (3.7). Diagonalizing the covariance matrix identifies the principal 

components of 1v  variation. To be explicit, suppose the z axis is chosen to be parallel to 

1v . For convenience we choose the x and y axes to be parallel to 2v  and 3v , 

respectively. Because of measurement errors in D, the estimated principal eigenvector 

will have components in the x and y directions. Let the coordinates of 1δ v  be ( ),x y . In 
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this case, (3.9) can be written as 
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D D D

DD D

, (3.10) 

where T
xy x yDδ δ≡ ⋅ ⋅e D e , T

xz x zDδ δ≡ ⋅ ⋅e D e , T
yz y zDδ δ≡ ⋅ ⋅e D e  and xe , ye , and ze  

are unit vectors along the coordinate axes. If the errors 1δ v  have a multivariate normal 

distribution then they can be characterized concisely using the eigenvalues 1σ  and 

( )2 1 2 σ σ σ≥  and corresponding eigenvectors 1e  and 2e  of the covariance matrix. In 

this case, the probability density function for 1δ v  is 

 ( )
1

1

T 1
1 1 11 2

1 1exp
22

v

v

v v Σ v
Σ

δ δ δ
π

−⎛ ⎞= ⋅ − ⋅ ⋅⎜ ⎟
⎝ ⎠

P , (3.11) 

assuming the mean value of 1δ v  is zero. A contour of constant probability density is 

defined by the set of coordinates ( ),x y  that satisfies the relation 

 [ ]
1

1 2
vΣ
− ⎡ ⎤

⋅ ⋅ =⎢ ⎥
⎣ ⎦

x
x y c

y
, (3.12) 

with constant c. The solution to this equation is an ellipse with semi-major axis of length 

1c σ  parallel to 1e  and semi-minor axis of length 2c σ  parallel to 2e  [101]. If the 

eigenvalues of the covariance matrix are not equal, then the errors are not circularly 
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symmetric in the ( ),x y  plane. In the general multivariate normal case, the errors have 

an ellipsoidal distribution, the major and minor axes of the ellipse given by the 

eigenvectors of the covariance matrix. In the limit of many uniformly distributed 

diffusion measurement directions, the off-diagonal terms go to zero, 0xz yzD Dδ δ⋅ = , 

so 
1vΣ  is diagonal in the eigenframe of the tensor (see Appendix). Further, it is shown 

that if 2 3λ > λ  then 2 2
xz yzD Dδ > δ . This implies that the upper-left element in (3.10) 

is the largest eigenvalue of 
1vΣ , and hence the major axis of the ellipsoidal distribution is 

parallel to 2v . To test whether this relation holds for practical (i.e., finite) diffusion 

encoding schemes, we performed the experiments described below. Before leaving this 

topic, however, we should note that if the tensor eigenvalues are equal ( 1 2λ λ=  or 

1 2 3λ λ λ= = ), then (3.6) and (3.7) fail. In this case, degenerate perturbation theory must 

be used to evaluate the 1δ v  errors [41]. However, the exactly degenerate situation is 

unlikely to arise in routine white matter tractography. 

 

3.4. Methods 

 

3.4.1. DT-MRI acquisition 

 The study protocol was approved by Vanderbilt University's institutional review 
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board. Diffusion weighted images were acquired in a healthy adult using a 3 Tesla whole 

body GE scanner (40 mT/m maximum gradient strength, 150 mT/m/ms maximum slew 

rate). A dual spin echo EPI pulse sequence was used to acquire images with diffusion 

weighting (1000 s/mm2), applied in six non-collinear directions [23] as well as a set of 

images with no diffusion weighting. All images (7 images in each of 30 slice locations) 

had an 89 ms echo time, 9 s repetition time, 128×128 acquisition reconstructed to a 

256×256 image matrix, and 2×2×4 mm3 voxel size. A total of 37 identical scans were 

acquired in one imaging session. Image alignment was assessed by visual inspection of 

the difference between the first and the last images of each slice during the session (this 

revealed no significant differences in head position). All of the image data were averaged 

in order to estimate the ‘true’ diffusion tensor, and ‘true’ orientation of the principal 

eigenvector, 1v , in each voxel with high precision. Smaller sets of the image data were 

also averaged to investigate the dependence of 1v  errors on net image SNR. 

 

3.4.2. Generation of principal components and CU 

 Bootstrap resampling [51] was used to select NA acquisitions to average (NA ≤ 

37). Each set of NA acquisitions is one sample. We formed 100, 200, 500 and 1000 

samples with replacement, then calculated the diffusion tensor and major eigenvector for 
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each sample in each voxel. The eigenvalue-eigenvector pairs were sorted according to 

their similarity with the estimated ‘true’ values using a tensor overlap measure [42]. Each 

estimate, 1v̂ , of the major eigenvector was projected onto the plane perpendicular to the 

‘true’ 1v  (i.e., the plane defined by the best estimates of the two other eigenvectors, 2v  

and 3v ): 

 ( ) ( )T
1 1ˆ ˆPr oj ,         2,3v v v v v= =

j j j j . (3.13) 

 A principal component (PC) analysis was used to analyze the distribution of 1v̂  

projections on the { }2 3,v v  plane and hence determine the major and minor axes of the 

CU. The covariance matrix of projection coordinates was diagonalized. The eigenvalues, 

1σ  and 2σ , and corresponding (normalized) eigenvectors, 1e  and 2e , of the covariance 

matrix were used to construct an ellipse parallel to the { }2 3,v v  plane and centered on 

1v : 

 ( ) 1 1 1 2 2cos  sin  r v e eϕ σ ϕ σ ϕ= + +K . (3.14) 

The eigenvectors, 1e  and 2e , define the major and minor axes of the ellipse. The CU 

was then defined as the set of line segments from the origin to the ellipse, which is the 

directrix of the conical surface (3.14). For display purposes, all dimensions were scaled 

by the tensor’s fractional anisotropy (FA) [26] (see Figure 3.1a). 
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Figure 3.1. Construction of the cone of uncertainty (a) based on the projection of 1v̂  

(circles) onto the { }2 3,v v  plane (b) for a representative white matter voxel with 6 scans 

averaged (FA = 0.73, 200 bootstrap samples). The size of the cone (i.e., its height and 
major and minor axes) is scaled by FA, and the directions of the major and minor cone 
axes (denoted by 1e  and 2e , respectively) are given by the principal components ( 1 1σ ⋅e  
and 2 2σ ⋅e ) of the 1v  error distribution shown as circles in (b). The coincidence angle 

(∠) between 1e  and 2v  is also shown (b). 

 

3.4.3. Symmetry, normality and cone angles of the CU 

 The equality of the major and minor axes of the ellipse (i.e., the standard 

deviations of the PCs’) was tested using the method by Bartlett [102]. The multivariate 

normality of the distribution of 1v̂  projections was tested using the method of Mardia 

[103,104] for multivariate skewness and kurtosis and mapped for 200 bootstrap samples 

with two levels of image SNR (i.e., NA). We define the cone angles as ( )1tani iθ σ−≡ , 
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1,2i = . In the limit of many uniformly distributed gradients, the cone angle can be 

approximated using (3.9) as 

 
( )

1 22T
1 1

1 1

,   1, 2
i

i
i

i
δ

θ
λ λ

+

+

⎡ ⎤⋅ ⋅⎢ ⎥⎣ ⎦≈ =
−

v D v
. (3.15) 

Bootstrap estimates of the cone angles were compared to this expression to verify the 

simple theoretical model of fiber directional uncertainty. The cone angles were also 

compared in voxels with different levels of FA and image SNR. 

 

3.4.4. Coincidence between the CU and tensor principal axes 

 To quantify the alignment of the major cone axis with the tensor eigenvectors, we 

defined the coincidence angle to be the angle between 1e  and 2v  (see Figure 3.1b). 

Because we used the same 6 direction gradient vector set [23] during the entire 

experiment, simulations were used to study how the coincidence angle depends on the 

choice of gradient vector set. Several gradient sets were used, these were labeled ‘original 

#’ (# is the number of gradient vectors) and included ‘original 6’ [23], ‘original 12’ [105], 

‘original 21’ (second order icosahedral tessellation of the unit sphere), ‘original 92’ (46 

directions, given by third order icosahedral tessellation, and their opposites). The 

‘original #’ scheme is the set of gradient vectors originally described in the corresponding 
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references or determined numerically [106]. The ‘rotated #’ scheme is labeled similarly, 

e.g., ‘rotated 6’, after 45 degrees rotation of the ‘original’ scheme around the Z axis in the 

gradient coordinate system. For the simulation, we used the measured noise standard 

deviation and ‘true’ diffusion tensor (obtained by averaging the entire data set) to 

generate diffusion weighted and non-weighted signals, including simulated random noise, 

for each gradient vector scheme listed above. This simulation was repeated 200 times, 

and the simulated data were then analyzed to determine the coincidence angle between 

the major axis of the CU and the second eigenvector of the ‘true’ tensor. Hence, for this 

part of the study, the axes of the CU were estimated via Monte Carlo simulation for each 

gradient vector set.  

 The dependence of the coincidence angle on the choice of gradient vector 

scheme can be understood in terms of the 1v̂  covariance matrix elements, as in (3.9) in 

the tensor eigenvector frame. We selected a representative voxel in the splenium of 

corpus callosum and simulated diffusion weighted signals (as described above) in the 

tensor eigenframe based on the gradient schemes listed above. In the simulation, we used 

the coordinate naming convention of the Appendix: 2ˆ ˆ||x v , 3ˆ ˆ||y v , and 1ˆˆ ||z v  and 

simulated the effect of noise using Monte Carlo simulations. In each trial, the errors ijDδ  

of the diffusion tensor elements were calculated. The covariance matrix elements of (3.9) 
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were then plotted to show the dependence of the matrix elements on the choice of 

gradient scheme. 

 

3.5. Results 

 

3.5.1. Comparison of bootstrap and theoretical results 

 Bootstrap estimates of the projection of 1v̂  onto the { }2 3,v v  plane (i.e., the 1v  

error) are shown schematically for a representative white matter voxel in the splenium of 

the corpus callosum in Figure 3.1b. The principal components of the distribution are also 

shown. The principal components of 1v  errors can be estimated from this distribution or 

from (3.9). These two estimates were compared in order to test the accuracy of the 

simple theoretical model applied to in vivo data. The standard deviation of 1v  errors for 

the minor principal component calculated using perturbation theory ( PTσ , the square root 

of the smaller eigenvalue of the covariance matrix in (3.9)) was correlated with the 

bootstrap estimate ( BSσ ). The correlation was calculated for those voxels whose linearity 

index [107] Cl > 0.3, to exclude voxels with nearly isotropic diffusion, for example in the 

CSF (NA = 6 and 200 bootstrap samples were used). The correlation was excellent (R2 = 

0.998 and slope = 0.99 with offset ≈ 0). Results were similar for the major principal 
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component (R2 = 0.994 and slope = 0.98 with offset ≈ 0). The agreement between the 

two estimates of 1v  errors is excellent (for Cl > 0.3), with the R2 and slope of the fit 

nearly equal to one. 

 

3.5.2. Test for symmetry and multivariate normality of CU 

 The directional uncertainty in 1v̂  is represented by the cone of uncertainty 

centered on 1v  as shown in Figure 3.2. The CUs for voxels in the outlined region of 

Figures 3.2a and 3.2b are shown in Figure 3.2c for NA = 6 and 200 bootstrap samples. 

The CUs for voxels in the outlined region of Figure 2c are redrawn (inset in the lower 

right corner) as viewed along the local 1v  axis to show the cones’ eccentricity clearly. 

Each cone is color coded according to base 10 logarithm of the p-value from the test of 

the circular symmetry of 1v̂  errors in the { }2 3,v v  plane (i.e., the test of equality of the 

principal component variances). Hence, color indicates the statistical significance of CU 

eccentricity. As the color varies from red to blue, the cones of uncertainty change from 

nearly circular (for p > 0.05, log10(p) = log10(0.05) > -1.3) to highly eccentric. Most of the 

voxels in the ROI exhibit non-circular CUs (Table 3.1) based on bootstrap comparisons 

of major and minor cone axes. 
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Figure 3.2. A T2-weighted image (a) showing an ROI and its FA map (b). The white 
dotted area in (b) is used in (c) for CU visualization. The CUs (using 6 averages, 200 
bootstrap samples) are color coded according to base 10 logarithm of the p-value from 
the test for zero eccentricity. Low probability of circularity (zero eccentricity) is shown as 
dark blue, while high probability is shown as red (c). The base of each cone in the 
rectangular region in (c) is shown in the local 2v  (horizontal in the inset) - 3v  (vertical) 
plane at the lower right corner in (c). Those cones are uniformly scaled for clear 
visualization. 
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Table 3.1. Percentage of voxels in the ROI (Figure 3.2a) with eccentric cones of 
uncertainty (p-value ≤ 0.05) from bootstrap results. 

Number of bootstrap samples Number of 
acquisitions 

averaged 100 200 500 1000 

2 67.9 81.1 90.5 94.8 

4 76.0 84.8 93.6 96.2 

6 77.4 86.3 93.6 96.3 

12 79.1 88.0 95.0 97.0 

24 81.5 88.4 94.4 97.3 

 

In the second analysis, every voxel in the ROI was tested for multivariate normality of 

1v̂  errors using the test of multivariate skewness and kurtosis [103,104]. Figure 3.3 

shows that most white matter voxels exhibit multivariate normality of the error 

distribution based on this test.  

 

 
Figure 3.3. Mapped results of the test of multivariate normality (skewness and kurtosis) 
for the ROI (Figure 3.2a) superimposed on the FA map. Dots indicate multivariate 
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(Figure 3.3. Continued.) 
normality in fiber directional error with 4 (a) and 12 (b) averaged scans and 200 bootstrap 
samples for p-value of 0.05. The fractional number of voxels with multivariate normal 
error over the whole ROI is approximately 47 % (a) and 64 % (b), and increases as NA 
increases. 

 

According to the circular symmetry test, the estimated fraction of cones with significant 

eccentricity increases as the number of bootstrap samples and NA increase (Table 3.1) and 

the fraction of voxels with normally distributed error increases with increasing NA (Figure 

3.3). 

 

3.5.3. Characterization of fiber directional uncertainty as a cone angle 

 The cone angle, θ , was defined for both the major and minor axes of the cone 

base ( 1θ  and 2θ , respectively). The cone angle is the arc tangent of the standard 

deviation of the 1v̂  error in the corresponding principal component direction (see Figure 

3.1a). The dependence of the cone angle on image SNR is shown for a representative 

voxel in the splenium of the corpus callosum in Figure 3.4.  
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Figure 3.4. Cone angle of the major ( 1θ ) and minor ( 2θ ) axes fit to a linear function of 
SNR-1 (SNR = 1 2

AN ·SNR0) for a typical white matter voxel (FA = 0.71 and 200 
bootstrap samples). SNR0 is measured using the non-weighted image. The equation of the 
line is shown as a function of x = SNR-1. As SNR decreases, the cone angle increases in 
proportion to SNR-1. 

 

Here the cone angle is plotted as a function of 1/SNR, where SNR = 1 2
AN ·SNR0, and 

SNR0 is measured on a single non-weighted image (SNR0 = 31.3). As expected, the cone 

angle is proportional to the standard deviation of image noise (i.e., to SNR-1). All voxels 

tested showed similar dependence on SNR (data not shown). 

 The dependence of the cone angle on the eigenvalue contrast and tensor error is 

shown in Figure 3.5. 
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Figure 3.5. The major (a and b) and minor (c and d) cone angles ( 1θ  and 2θ ) are 
calculated over the ROI (Figure 3.2a) and plotted as a function of the reciprocal of the 
eigenvalue contrast (with fixed tensor error, 31ε  for (a) and 21ε  for (c)) and as a function 
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(Figure 3.5. Continued.) 
of the tensor error 31ε  for (b) and 21ε  for (d) (with fixed eigenvalue contrast). The slope 
for the linear fit is 0.46 (a), 0.07 (b), 0.5 (c) and 0.04 (d) with R2 values close to one. The 
95 % confidence interval for the slope is (0.31, 0.61) (a), (0.062, 0.073) (b), (0.41, 0.59) 
(c) and (0.035, 0.054) (d). These intervals include the nearly constant values of 

31 0.50ε ≅  (a) and 21 0.42ε ≅  (c), and 1 31 ( ) 0.064λ λ− ≅  (b) and 1 21 ( ) 0.054λ λ− ≅  
(d). Hence, the data are consistent with the relations 1 31 1 3( )θ ε λ λ≅ −  and 

2 21 1 2( )θ ε λ λ≅ − . 

 

To isolate the effect of eigenvalue contrast, we fixed other relevant parameters within 

narrow ranges. Under the conditions of our experiment, the coincidence angle between 

the major cone axis and the second principal eigenvector is near 90 degrees for the most 

of the white matter voxels in the ROI (Figure 3.2a) as shown in Figure 3.6a (this means 

that the upper-left element of the covariance matrix, ( )
11v1

Σ , in (3.9) is generally 

smaller than the lower-right element, ( )
22v1

Σ ). 
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Figure 3.6. Simulated coincidence angles are shown for the whole brain slice with 
gradient schemes ‘original 6’ (a), ‘original 12’ (b), ‘original 21’ (c) and ‘original 92’ (d). 
The simulation is repeated 200 times by generating DW signals using the ‘true’ diffusion 
tensor with simulated random noise. The coincidence angle measures the difference in 
orientation between the major cone axis and the second eigenvector of the diffusion 
tensor (see Figure 3.1b). As the number of gradient directions (i.e., angular resolution) 
increases, the directional coincidence increases (i.e., the coincidence angle decreases). 

 

Therefore, we selected voxels with similar CU orientation (i.e., ( ) ( )111 22
<v v1

Σ Σ ) and Cl 

> 0.3 (to exclude nearly isotropic voxels). For the selected voxels, a histogram of 

( )
1/22T

31 3 1ε δ⎡ ⎤≡ ⋅ ⋅⎢ ⎥⎣ ⎦
v D v , the root-mean-square (RMS) error in the 31D  tensor element, 

was constructed (using NA = 6 with 200 bootstrap samples). The peak of the histogram 

(i.e., the most likely value) was identified, and all voxels with 31ε  within 5% of this 
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value were selected. A plot of the major cone angle ( 1θ ) versus ( ) 1
1 3λ λ −−  for nearly 

constant 31ε  is shown in Figure 3.5a. Similarly, a histogram was constructed for the 

eigenvalue contrast, 1 3λ λ− . The peak of the histogram was identified and voxels with 

eigenvalue contrast within 5% of this value were selected. A plot of 1θ  versus 31ε  for 

nearly constant eigenvalue contrast is shown in Figure 3.5b. 

 The two plots taken together verify the dependence of the major cone angle 

predicted by (3.15), i.e., the major cone angle should be proportional to 31ε  and 

inversely proportional to 1 3λ λ− . Furthermore, the slope of the line for 1θ  versus 

( ) 1
1 3λ λ −−  should be nearly equal to the value at the peak of the 31ε  histogram. 

Similarly, the slope of the line for 1θ  versus 31ε  should be nearly equal to ( ) 1
1 3λ λ −−  

for the peak of the eigenvalue contrast histogram. In fact, the 95% confidence interval for 

the slope contains the predicted value in both cases. Hence, the data are consistent with 

the relation ( )1 31 1 3θ ε λ λ= − . Analogous results were obtained for the minor cone angle 

using ( )
1/22T

21 2 1ε δ⎡ ⎤≡ ⋅ ⋅⎢ ⎥⎣ ⎦
v D v  and ( ) 1

1 2λ λ −−  (Figures 3.5c and d). The predictions 

of first order perturbation theory and bootstrap analysis are in good agreement. However, 

for the conditions of this experiment both methods make the opposite assignment of 

major and minor cone axes relative to the case of uniform angular sampling, (3.15). This 

is elaborated on below. 
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 Figure 3.7 shows the dependence of the cone angles on FA and the number of 

averages (NA). For all bootstrap samples, the maximum cone angles (NA = 2, low FA) lie 

between 24 and 25 degrees and 20 to 22 degrees for the major and minor axes, 

respectively. With increasing numbers of averaged diffusion weighted signals (NA = 2, 6 

and 24) and FA, the directional uncertainty is reduced significantly as shown in Figure 

3.7. 

 

 
Figure 3.7. Fiber directional uncertainty quantified as cone angles for the major ( 1θ , a) 
and minor axis ( 2θ , b) and NA = 2 (green), 6 (red) and 24 (blue) acquisitions with 200 
bootstrap samples are shown over the ROI (Figure 3.2a). The cone angle decreases with 
increasing NA (i.e., SNR) and FA for both axes. 
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3.5.4. Coincidence of the tensor and 1v  covariance matrix eigenvectors 

 The coincidence angle is defined as the angle between the major cone axis and 

the second eigenvector of the ‘true’ diffusion tensor. The simulation results for all voxels 

in the slice are shown in Figure 3.6 for four different gradient sets, ‘original 6’, ‘original 

12’, ‘original 21’ and ’original 92’. Because the major and minor cone axes are 

orthogonal to each other and lie in the { }2 3,v v   plane, only the angle between the major 

cone axis and the second eigenvector is presented. In Figure 3.6(a-d), most of the white 

matter regions have small coincidence angles, which means the direction of the major 

cone axis is closer to the second than the third eigenvector of ‘true’ diffusion tensor. 

Especially large coincidence angles (near 90 degrees) are observed in the genu and 

splenium of corpus callosum in Figure 3.6a using the ‘original 6’ scheme, however these 

also become small as the number of gradient vector directions increases, as shown in 

Figure 3.6(b-d).  

 Figure 3.8 shows the map of the coincidence angle in the ROI calculated using 

bootstrap and simulated data. Simulation results (Figure 3.8b) based on the same gradient 

vector set used to acquire the image data agree closely with the bootstrap results 

(‘original 6’ with 200 sample and 6 averages; Figure 3.8a). 
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Figure 3.8. Bootstrap and simulation results for the ROI are shown. The coincidence 
angle map from the bootstrap analysis (200 samples and 6 averages) of actual data using 
the gradient scheme ‘original 6’ (a) is in good agreement with simulation results for the 
same scheme (b). Simulations show the maps of coincidence angle for other gradient 
schemes: ‘rotated 6’ (c), ‘original 12’ (d), ‘original 21’ (e) and ‘original 92’ (f). 
Coincidence angles vary as low-resolution gradient vector sets are rotated (compare b and 
c). As angular resolution improves, however, coincidence angles converge (d-f). 

 

Both bootstrap (with actual noise) and Monte Carlo simulation (with modeled noise) 

results indicate nearly 90 degree coincidence angles in the splenium of the corpus 

callosum. The angular maps with the other sets (Figure 3.8(c-f)), including the ‘rotated 6’ 

scheme, show much higher directional coincidence (small angles) across the ROI, 

including the same regions of the corpus callosum. This implies that coincidence angles 

are dependent on the number of gradient vectors (angular resolution) as well as the 

direction of each of the gradient vectors relative to the tensor eigenvectors.  

 Figure 3.9 shows this relationship in the tensor eigenframe. The variances of the 
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off-diagonal tensor elements (i.e., the elements that produce 1v̂  errors) in the tensor 

eigenvector frame are shown for a representative voxel in the splenium of the corpus 

callosum in Figure 3.9. 

 

 

Figure 3.9. Variance of the off-diagonal tensor elements (σ2(D12) and σ2(D13), scaled by 
λavg

2) shown for a representative voxel (10th row and 23rd column in the ROI) in the 
corpus callosum for ‘original’ (a) and ‘rotated’ (b) ‘6’, ‘12’, ‘21’ and ‘92’ gradient vector 
schemes. These variances, along with eigenvalue contrast, determine the CU cone angles. 
The variances, and hence cone angles, are dependent on the gradient vector directions at 
low angular resolution, but converge at high angular resolution. 

 

As expected, the tensor element variances are different for the ‘original’ and ‘rotated’ 

gradient vector schemes at low angular resolution (hence the variation shown in Figure 

3.8(b-c)), but converge for high angular resolution gradient sets (as shown in Figure 

3.8(d-f)). The limit of infinitely many gradient directions is evaluated in the Appendix A. 
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3.6. Discussion and Conclusion 

 In this study, we evaluated the fiber directional uncertainty using bootstrap and 

perturbation calculations and verified its dependence on diffusion anisotropy and SNR 

via time domain signal averaging. The notion of time domain averaging for measuring 

diffusion parameters was suggested by Skare et al. [40] as an alternative to spatial 

averaging schemes, as used in the Lattice Index (LI) [39,58]. Time domain averaging has 

the obvious disadvantage of requiring more scanning time, but makes relatively few 

assumptions as long as a good alignment between diffusion weighted images is 

guaranteed. Similar improvements in fiber uncertainty are probably achievable using 

edge-preserving anisotropic spatial smoothing routines developed for DT-MRI [53-55]. 

 The perturbation calculation is in good agreement with the non-parametric 

bootstrap analysis in estimating fiber directional uncertainty. The slope of the linear fit 

function and the coefficient of determination are both very close to unity regardless of 

image SNR. Figures 3.5 and 3.7 show that increasing either image SNR or eigenvalue 

contrast decreases the fiber directional error in both the major and minor axes, as theory 

predicts. 

 We tested the symmetry and normality of the CU as shown in Figures 3.2c and 

3.3. Although most of the tested CUs are significantly non-circular (Table 3.1 and Figure 
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3.2c), some appeared to be nearly symmetric. Most of these near-circular cones, colored 

dark red in Figure 3.2c, lie in the CSF or regions of likely partial volume averaging of 

non-parallel fibers. However, in coherent white matter voxels, the cone of uncertainty is 

generally non-circular. The test for multivariate normal distributions of fiber directional 

uncertainty is done using the multivariate skewness and kurtosis test [103,104]. When we 

increased the number of averages from 4 to 12, the number of voxels in the ROI with 

normal distributions increased from 47 % to 64 % for 200 bootstrap samples. Hence, as 

SNR increases, the fraction of voxels with multivariate normal error increases. Most of 

the white matter voxels, however, have normal distributions of 1v  error regardless of the 

number of averages as shown in Figure 3.3. 

 The uncertainty in the principal eigenvector is characterized by the major and 

minor cone angles. As shown in Figures 3.4 and 3.7, the cone angle decreases (i.e., 

principal eigenvector orientation errors decrease) with increasing voxel SNR and FA. We 

compared the local fiber orientation when averaging NA = 2, 6 and 24 acquisitions and 

using different bootstrap resampling schemes (100, 200, 500 and 1000) over a wide range 

of FA values (results are shown only for 200 samples). The uncertainties for both the 

major and minor cone axes decreased with increasing NA and FA. However, there were no 

significant changes for any of the bootstrap schemes over 200 samples. The dependence 
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on NA in our bootstrap analysis agrees with the Monte Carlo simulations by Chang et al. 

[44]. 

 Figure 3.5 shows the expected dependence of the cone angles on eigenvalue 

contrast and tensor error. The major and minor cone angles are closely predicted by the 

eigenvalues of the 1v̂  covariance matrix, 
1v

Σ , defined in (3.9). For the conditions of 

our experiment, the covariance matrix is nearly diagonal, so the diagonal values are very 

nearly equal to the eigenvalues. Which of the two diagonal values is larger is determined 

by the orientation of the gradient vector set relative to the tensor eigenframe for low 

angular resolution measurements. To understand this phenomenon, consider the case of 

low angular resolution where one diffusion weighting direction is nearly parallel to 3v , 

but no measurement direction is correspondingly close to 2v . In this case, the signal is 

lower for the measurement close to 3v , so the log signal is noisier than that for 2v  (see  

(A.2) in Appendix A). The increased noise for the log signal produces larger variance in 

the estimated 13D  tensor element (see (A.7) and (A.10)). As the number of (uniformly 

distributed) gradient directions increases, however, directions close to the two 

eigenvectors, 2v  and 3v , are more equally sampled. In the limit of infinitely high 

angular resolution, the diagonal values of the 1v  covariance matrix satisfy the relation 

( ) ( )1 111 22v v≥Σ Σ , independent of gradient set rotation (see Appendix A). In fact this 
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relation seems to hold for very modest angular resolution measurements. For the gradient 

schemes tested here, variance of the principal eigenvector in the 2v  direction was larger 

than the variance in the 3v  direction for all schemes with at least 12 directions (see 

Figure 3.9). Ignoring very low angular resolution experiments for the moment, the 

general implication is that fiber tracking errors are always at least as large in the 2v  

direction as they are in 3v . Stated differently, the major cone axis is nearly coincident 

with the major axis of diffusion in the plane perpendicular to 1v . 

 Lazar and Alexander [49,50] described fiber tract dispersion in the plane 

perpendicular to the mean fiber axis using the bootstrap method. They quantified tracking 

errors as a function of distance from the seed point and image SNR. Their analysis 

showed that the distribution of tract dispersion was typically elliptical rather than circular, 

and there was high correlation between the direction of the major axis of the ellipse and 

the second eigenvector of the diffusion tensor. We verified this observation using 

numerical simulations (Figures 3.6, 8 and 9) and provided a theoretical explanation for 

the case of many diffusion weighting directions (see the Appendix A). The major axis of 

the ellipse is not always coincident with the second eigenvector of the tensor at very low 

angular resolution, for example when one of the gradient vectors is nearly parallel to the 

third eigenvector of the tensor. This points to an advantage of high angular resolution 
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measurements of the tensor: the orientation of the CU is invariant under rotations of the 

gradient set. Taken together, the work of Lazar et al. and this study show that the 

statistical properties of tracking errors can be understood in terms of the cone of 

uncertainty. This connection has also been made recently by Koay et al. [45].  

 The CU serves as a convenient conceptual link between local diffusion properties 

and the reliability of extended fiber paths. In addition, the statistical information 

contained in the CU can be used to make more realistic probabilistic algorithms for fiber 

tractography [108] and to evaluate the benefits of diffusion weighted image acquisition 

and gradient vector schemes for improving fiber path accuracy. 
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CHAPTER Ⅳ 

 

ROBUST ESTIMATION OF COMPLEX FIBER STRUCTURES 

 

4.1. Overview 

 Spherical deconvolution has been successful in delineating multiple fiber 

structures within a voxel in brain white matter in vivo. However, in the presence of image 

noise the estimated fiber orientation distribution (FOD) typically suffers from spurious 

peaks or lower angular resolution, and hence can be unreliable for further analyses. Given 

that the deconvolution problem is ill-posed, one method to acquire stabilized solutions is 

to use numerical regularization. Although there have been several studies of 

regularization methods for estimation of the FOD, those methods require empirical 

information, and there is no consensus on the selection of regularization methods for 

various imaging parameters. In this study, we verified a diverse set of regularization 

methods for the robust estimation of the FOD using FORECAST. The candidate 

regularization methods, Tikhonov, truncated and damped singular value decomposition 

(SVD), are tested with various imaging parameters, constraints, expansion orders and 

fiber structures with objective determination of the regularization parameter using Monte 
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Carlo simulation. This study presents robust methods and limitations of estimating the 

FOD and fiber directions. This may suggest minimum requirements for HARDI studies 

aimed at the accurate representation of the FOD and fiber tractography over 

heterogeneous fiber regions. 

 

4.2. Introduction 

 Diffusion tensor magnetic resonance imaging (DT-MRI) provides information 

about tissue microstructure in vivo based on water molecular diffusion [19-

21,26,58,82,109]. However, it is also well known that the diffusion tensor is inaccurate in 

regions with multiple or heterogeneous fibers, because the diffusion tensor is a voxel-

averaged quantity and indicates only a single direction of maximal diffusion [28,29,59-

63,65-67]. Many other approaches using high angular resolution diffusion (HARD) 

encoding, e.g., diffusion spectrum imaging (DSI) [66,68] and q-ball imaging (QBI) [69] 

etc., can identify multiple fiber directions. Spherical deconvolution (SD) [73] also has 

been successfully used to characterize multiple fiber orientations within a single voxel 

[76-79]. Another SD method, named FORECAST (Fiber ORientation Estimated using 

Continuous Axially Symmetric Tensors), has shown better performance than many of the 

other methods in representing multiple fibers with relatively higher angular resolution at 
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lower b-value [74,75]. However, the reliable estimation of the fiber orientation 

distribution (FOD) function is difficult in the presence of noise in the diffusion weighted 

imaging data [76-78]. Noise results in spurious peaks (or alternatively lower angular 

resolution) in the FOD and hence makes it unreliable for further analyses. Given that the 

deconvolution problem is typically ill-posed, one way to obtain stabilized solutions is to 

use numerical regularization [80,110]. There have been many regularization approaches 

proposed for the reliable estimation of the FOD function [73,76-78]. But those methods 

require empirical information about filter factors or regularization parameters. Recently, 

an objective determination of the regularization parameter, i.e., generalized cross 

validation, has been suggested with use of singular value decomposition [79,89]. Though 

this method has successfully demonstrated robust estimation of the FOD function, there 

has not been any consensus on the best selection of regularization method. In this 

simulation study, we use FORECAST to compare diverse regularization methods used 

with various imaging parameters, expansion orders and fiber structures with an objective 

determination of the regularization parameter. 
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4.3. Methods 

 

4.3.1. Regularization method 

 The formalism for regularizing FORECAST in this study is given in (4.1) 
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and g is the diffusion weighted (DW) signal, Y is a matrix of spherical harmonics up to 

maximum order lmax evaluated at m diffusion gradient orientations, S0 is the non-DW 

signal, Cl is the kernel function as in (2.27), x gives the spherical harmonic coefficients 

of the FOD, L is a side constraint matrix such as a function of the FOD curvature, 
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gradient, 1st or 2nd order derivative operator or the identity matrix I, and α is the 

regularization parameter. Because toolboxes are readily available for use with real 

matrices (see [80]), we generated real spherical harmonics based on Ritchie et al. [111]. 

The solution for this problem can be categorized according to whether L=I or L≠I and 

the use of singular value decomposition (SVD) (without constraint) or generalized 

singular value decomposition (GSVD) (with constraint). The SVD of A is, 

 = ⋅ ⋅A U S VT , (4.6) 

where S is diagonal with singular values σi (i = 1, ..., n). 

The GSVD of A and L are 

 1−⎡ ⎤
= ⋅ ⋅⎢ ⎥

⎣ ⎦

Σ 0
A U X

0 I
, (4.7) 

 [ ] 1−= ⋅ ⋅L V M 0 X , (4.8) 

here, Σ and M are diagonal matrices with singular values σi and μi (i = 1, ..., n), 

respectively. The matrices U and V and singular values σi in (4.6) and (4.7)-(4.8) are 

different. With these approaches it is possible to calculate several regularized solutions, 

xreg, for physically meaningful estimates of the FOD as follows.  

1. Tikhonov (TIKH) solution:  
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 here, p is the rank of matrix A. 

2. Truncated SVD (TSVD) (4.11) or Truncated generalized SVD (TGSVD) (4.12) 

solution: 
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 here, k < p is truncation order. 

3. Damped SVD (DSVD) (4.13) or Damped generalized SVD (DGSVD) (4.14) 

solution:  

 same as (4.9) with i
i

i

f σ
σ α

=
+

, (4.13) 

 same as (4.10) with i
i

i

f γ
γ α

=
+

, (4.14) 

 with generalized singular value γi = σi / μi, σi
2 + μi

2 = 1. 

The candidate methods used in this study are listed below and compared with the 

standard least square method of calculating x, 

1. Least-square (LS), 

2. TIKH without and with constraint, 

3. TSVD without and with (TGSVD) constraint, 

4. DSVD without and with (DGSVD) constraint. 

Other than these, there were published methods using TIKH [77] and Super-resolution 
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[78], both with constraint. 

 

4.3.2. Constraint and parameter determination 

 The constraints for regularization are integration of the square of the Laplacian of 

the FOD (sqLap) (4.15), integration of the square of the gradient of the FOD (sqGrad) 

(4.16), or the magnitude of the negative part of the FOD function (negFOD):  
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Equations (4.15) and (4.16) can be generalized as, 

 ( ) ( ) ( )
2

2 21
ss

lm
l mS

f d l l fω ω = +⎡ ⎤⎣ ⎦∑∑∫ , (4.17) 

as shown in [112], and each of the constraint functions has been used for sqLap [113,114] 

and sqGrad [79]. All the methods, except least-square, can be used with generalized cross 

validation (GCV) or the L-curve method to determine the regularization parameter 

without user-interaction or a prior knowledge [80,110].  

 

4.3.3. Simulation 

 Because there are too many combinations of methods for regularization, 
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constraints, parameter determination and imaging parameters, e.g., number of fibers, 

SNR, expansion order, diffusion encoding direction, etc., two levels of simulations were 

performed to determine the best methods. The first simulation is done to determine the 

constraint (sqLap, sqGrad and negFOD) and regularization parameter (GCV and L-curve) 

with imaging parameters as follows: unit magnitude of non-DW signal, mean diffusivity 

= 0.7×10-3 mm2/s, b-value = 2000 s/mm2, radial diffusivity normalized by mean 

diffusivity = (0.5, 0.5) for each of two fibers, volume fraction = (0.5, 0.5), maximum 

spherical harmonic expansion order of 6 with real and even spherical harmonics used, 

SNR = 33, 92 diffusion gradient directions, and fiber separation angle of 64 degrees. The 

simulation is performed 1000 times as shown in Figure 4.1-4.2. 

 Provided the best constraint and method for determining the regularization 

parameter from the first simulation, the second simulation is performed with the chosen 

methods applied to each of the imaging parameters. The following imaging parameters 

were considered using Monte Carlo simulation; number of fibers = 2 and 3, SNR = 30, 60 

and 90, maximum spherical harmonic expansion order for the analysis = 4 and 6 (DW 

signal is generated at higher order, i.e., 12th order for the approximation of an 

experimental signal), number of diffusion weighting gradient directions = 92 and 162, b-

value = 1000, 2000 and 3000 and fiber separation angle = 30, 50 and 70 degrees (between 
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fiber 1-2 and fiber 1-3 for three fiber case) with 200 trials. To apply the negFOD 

constraint, the negative FOD values were found over 752 directions (5th order tessellation 

of Dodecahedron with symmetric 376 directions on a unit sphere) at the same order of 

expansion. Then the estimates of the fiber directions were obtained by searching for local 

maxima over the FOD in each trial. The search started at the true fiber direction 

corresponding to each fiber bundle in the simulation.  

 

4.4. Results 

 

4.4.1. Determination of constraint and method for regularization 

 Simulations were performed with three constraints (sqLap, sqGrad and negFOD) 

using the methods for estimating the regularization parameter (GCV and L-curve) as 

shown in Figure 4.1 and 4.2. The regularizations were applied using Hansen’s Matlab 

regularization toolbox [80]. The TSVD method is not included in Figure 4.1 and 4.2 

because the primary purpose in this simulation is to evaluate the usefulness of the 

constraints using GCV and L-curve, but TSVD discards some of the singular values in 

the regularization making it difficult to fully evaluate the performance due to the 

combination of the constraint and the method for the determination of a regularization 
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parameter.  

 Figure 4.1 shows the simulation results using TIKH and DSVD with GCV and 

constraints. As shown in Figure 4.1a-b, TIKH and DSVD provide FOD functions aligned 

along the true fiber directions (red and blue bar) with small to intermediate noise around 

the origin. 

 

 
Figure 4.1. Simulation results for FOD plot are shown with and without various 
constraints using GCV. The true fiber directions are shown in blue and red sticks in each 
subplot. The regularization methods are TIKH-GCV (a), DSVD-GCV (b), TIKH-GCV-
sqLap (c), TIKH-GCV-sqGrad (d), TIKH-GCV-negFOD (e), DSVD-GCV-sqLap (f), 
DSVD-GCV-sqGrad (g) and DSVD-GCV-negFOD (h). The mean FOD over all trials is 
shown in color, the mean + one standard deviation is shown as a partially transparent, 
gray surface. λavg values are the mean regularization parameters over 1000 trials. Using 
sqLap and sqGrad constraints FOD shape is over-regularized as there are no noticeable 
peaks along the true fiber directions as shown in (c)-(d) and (f)-(g) for both of the TIKH 
and DSVD methods. 
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However, with sqLap and sqGrad constraints as shown in Figure 4.1c-d and f-g the shape 

of FOD function is over-regularized and there is no noticeable peak around the true fiber 

directions. Figure 4.1e and 4.1h are with the negFOD constraint and they reveal sharper 

FOD peaks and reduced noise around the origin and along the true fiber directions. 

 

 
Figure 4.2. Simulation results for FOD plot are shown with and without various 
constraints using L-curve (Lcur). The true fiber directions are shown in blue and red 
sticks in each figure. The regularization methods are TIKH-Lcur (a), DSVD-Lcur (b), 
TIKH-Lcur-sqLap (c), TIKH-Lcur-sqGrad (d), TIKH-Lcur-negFOD (e), DSVD-Lcur-
sqLap (f), DSVD-Lcur-sqGrad (g) and DSVD-Lcur-negFOD (h). The mean FOD over all 
trials is shown in color, the mean + one standard deviation is shown as a partially 
transparent, gray surface. λavg values are the mean regularization parameters over 1000 
trials. Using sqLap and sqGrad constraints FOD shape is over-regularized as there are no 
noticeable peaks along the true fiber directions as shown in (c)-(d) and (f)-(g) for both of 
the TIKH and DSVD methods. 

 

Figure 4.2 shows the simulation results as done in Figure 4.1. Figure 4.2a-b show TIKH 
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and DSVD results using the L-curve method without constraint. They show FOD 

functions aligned along the true fiber directions with reduced noise at the center but also 

with decreased resolution for each fiber bundle compared with Figure 4.1a-b. Figure 

4.2c-d and f-g with sqLap and sqGrad constraints also show the over-regularized FOD 

function without any significant fiber peak around the true fiber directions. In Figure 4.2e 

and 4.2h using the negFOD constraint provides FOD peaks along the true directions and 

reduced noise as shown in Figure 4.1e and 4.1h. 

 From Figures 4.1 and 4.2 the FOD shapes using GCV generally have smaller 

regularization parameters and narrower FOD peaks than those using L-curve when 

negFOD and no constraints are used. However, with constraints such as sqLap and 

sqGrad, GCV generates much larger regularization parameter than that using L-curve. In 

both cases of using GCV and L-curve with sqLap and sqGrad constraint, the FODs are 

over-regularized and there are no noticeable peaks for the true fiber directions. Therefore, 

in this study only the negFOD and no constraints cases are considered with the 

regularizations using TIKH, TSVD and DSVD. Although the L-curve method generates 

comparable regularization parameters to those of GCV theoretically [80], the simulation 

results using L-curve generate much smoother FOD functions with relatively lower 

angular resolution than those using GCV which have negligible spikes around the origin, 
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in general. Considering the fiber tractography, however, having sharper peaks for each 

fiber bundle with negligible spikes around the origin may be more beneficial than having 

wider peaks for each bundle with commensurate noise at the origin. Also because the 

primary purpose of this study is to represent the FOD and fiber direction reliably in the 

presence of noise, the use of L-curve may suppress possible small fiber bundles due to its 

characteristic over-regularization relative to GCV. Then in this study, GCV is used for the 

objective estimation of regularization parameter for all the candidate methods with and 

without negFOD constraint. Removing the low amplitude bundles around the origin of 

the FOD function can be done by applying a threshold, e.g., 10 % of the mean FOD 

amplitude as done in Tournier et al. [78].  

 

4.4.2. Estimation of FOD 

 Using the most promising methods identified in §4.4.1, more detailed 

simulations are performed based on the parameters mentioned below. 

 

4.4.2.1. Fiber separation angle 

 Figure 4.3 shows the simulation results using various regularization methods 

with varying separation angles (30, 50 and 70 degrees from left, middle and right within 
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each subplot). The simulation is done with the following parameters: two fibers, SNR = 

60, 6th order expansion, 92 diffusion encoding directions, and b-value = 2000 s/mm2.  

 

 
Figure 4.3. The FOD function is shown for each separation angle (30, 50 and 70 degrees 
in the left, middle and right side in each subplot) using 6th order for each regularization 
method, i.e., TIKH (a), TSVD (b), DSVD (c), TIKH-negFOD (d), TSVD-negFOD (e), 
DSVD-negFOD (f) and LS (g). The color of the FOD and fiber is a mixture of red, blue 
and green based on their direction. The FOD functions for the mean (mixed color) and 
the mean plus twice the standard deviation (gray) are plotted using 6th order together with 
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(Figure 4.3. Continued.) 
the true fiber direction (colored stick). 

 

In Figure 4.3 each plot represents the mean and twice the standard deviation added to the 

mean FOD from all the trials with the true fiber directions shown as sticks. The color in 

the plot varies according to the direction of the mean FOD and true fibers as a mixture of 

red, blue and green. The mean plus twice the standard deviation of the FOD is shown in 

gray. Each of the regularization results listed above is plotted in Figure 4.3, i.e., TIKH (a), 

TSVD (b), DSVD (c), TIKH-negFOD (d), TSVD-negFOD (e), DSVD-negFOD (f) and 

LS (g). Considering the LS result in Figure 4.3g as a reference, all the other results using 

regularization show significantly reduced standard deviation for all the separation angles. 

Though Figure 4.3g shows more FOD noise around the origin than the others, the mean 

FOD is along the true fiber direction as are the other FODs. All the peaks of the mean 

FOD indicate the true fiber directions at the angle of 70 degrees as shown in the right side 

of each subplot, but there are small deviations at 50 degrees in the middle and no 

distinguishable fiber bundles at 30 degrees in the left side of each subplot (see Figures 

4.10 and 4.11 for the estimation of the true fiber directions using LS, TIKH and DSVD 

with and without constraint).  

 Figure 4.4 shows FOD plots using the same parameters except the expansion 
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order (using 4th). In Figure 4.4 the LS (Figure 4.4a) and TIKH (Figure 4.4b) results show 

smaller standard deviation than those shown in Figure 4.3g and 4.3a, respectively. 

However, the angular resolution represented by the FOD shown in Figure 4.4a and b is 

much lower than that in Figure 4.3g and a, especially for 50 degrees separation as shown 

in the middle of each subplot.  

 

 

Figure 4.4. The FOD function shows the results for each separation angle (30, 50 and 70 
degrees in the left, middle and right side in each subplot) using 4th order expansion for the 
LS (a) and TIKH (b) regularization methods. The color for the FOD and fiber is a mixture 
of red, blue and green based on their direction. The FOD functions for the mean (mixed 
color) and the mean plus twice the standard deviation (gray) are plotted together with the 
true fiber directions (colored sticks). 
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Also the direction of the FOD corresponding to each fiber appears to be significantly 

biased compared to the true fiber directions even at 70 degrees separation using 4th order 

expansion. Therefore, for the accurate representation of fiber distributions the minimum 

angular separation between fibers must be greater approximately than 30~50 degrees 

using 6th order expansion.  

 

4.4.2.2. Expansion order 

 Figure 4.5 shows the effect of expansion order using 4th and 6th order and two 

fibers, SNR = 60, 92 diffusion encoding directions, b-value = 2000 s/mm2, and separation 

angle of 50 degrees. As the expansion order increases, the susceptibility of FOD to image 

noise increases as shown in each result. Using 4th order, FOD has relatively small 

standard deviation compared the 6th order function. However, the fiber bundles are poorly 

(or not at all) distinguished in the FOD. As the expansion order increases from 4 to 6, the 

mean FOD has discernable fiber peaks along each of the true fiber directions. However, 

the effect of noise is also amplified as the standard deviation of the FOD increases around 

the mean FOD. Using the negFOD constraint with 6th order expansion as in Figure 4.5d-f 

all three FODs show similar and improved shapes. 
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Figure 4.5. The FOD function for each expansion order, 4th and 6th order in the left and 
the right side in each subplot, for each regularization method: TIKH (a), TSVD (b), 
DSVD (c), TIKH-negFOD (d), TSVD-negFOD (e), DSVD-negFOD (f) and LS (g). The 
color for the FOD and fiber is a mixture of red, blue and green based on their direction. 
The FOD functions for the mean (mixed color) and the mean plus twice the standard 
deviation (gray) are plotted with the true fiber directions (colored sticks). 

 

4.4.2.3. b-value  

 Figure 4.6 shows the FOD plots for b-values of 1000, 2000 and 3000 s/mm2 with 

two fibers, SNR = 60, 6th order expansion, 92 diffusion encoding directions and 
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separation angle of 50 degrees.  

 

 
Figure 4.6. The FOD function shows the result for each b-value (1000, 2000 and 3000 
s/mm2 in the left, middle and right side in each subplot) using 6th order expansion for 
each regularization method: TIKH (a), TSVD (b), DSVD (c), TIKH-negFOD (d), TSVD-
negFOD (e), DSVD-negFOD (f) and LS (g). The color for the FOD and fiber is a mixture 
of red, blue and green based on their direction. The FOD functions for the mean (mixed 
color) and the mean plus twice the standard deviation (gray) are plotted with the true 
fiber directions (colored sticks). The mean diffusivity of each fiber is 0.7×10-3 mm2/s and 
the radial diffusivity is 0.5 times the mean. 
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Most of the results show reduced standard deviation of the FOD as b-value increases 

from 1000 to 3000 s/mm2. The angular resolution between fibers also increases with 

increasing b-value and with the use of regularization. DSVD and LS as in Figure 4.6c, f 

and g show relatively higher angular resolution than the other results at b-value of 1000 

s/mm2, but they show especially large standard deviations.  

 

 
Figure 4.7. The FOD is plotted with 4th order using TIKH-negFOD with varying b-value 
(1000 (a), 2000 (b) and 3000 s/mm2 (c)). The color for the FOD and fiber is a mixture of 
red, blue and green based on their direction. The FOD functions for the mean (mixed 
color) and the mean plus twice the standard deviation (gray) are plotted with the true 
fiber directions (colored sticks). 

 

Though TSVD results with negFOD (Figure 4.6e) appear to be comparable to the other 

results, the FOD without the constraint (Figure 4.6b) shows large variations on the 

function even at b-value of 3000 s/mm2. Using lower expansion order (order 4) does not 

guarantee any improvements in FOD function. Figure 4.7 shows an example using TIKH-
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negFOD, and there are no recognizable fiber peaks in the FOD along the true fiber 

directions. All the other results are similar at the same order (not shown). 

 

4.4.2.4. Diffusion encoding directions 

 Figure 4.8 shows the results for diffusion encoding directions (92 and 162) with 

two fibers, SNR = 60, 6th order expansion, b-value = 2000 s/mm2, and separation angle of 

50 degrees. TIKH (Figure 4.8a and d) and TSVD (Figure 4.8b and e) show much 

improved angular resolution and increased standard deviation around the origin with a 

larger number of diffusion encoding directions and constraint. However, the 

improvements in DSVD (Figure 4.8c and f) are less marked. The same simulation 

analyzed at 4th order does not generate any major differences in FOD shape, nor are there 

noticeable fiber peaks along the true fiber directions (results not shown). 
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Figure 4.8. The FOD function for 92 and 162 diffusion encoding directions in the left 
and right side in each subplot, respectively, using 6th order for each regularization 
method: TIKH (a), TSVD (b), DSVD (c), TIKH-negFOD (d), TSVD-negFOD (e), 
DSVD-negFOD (f) and LS (g). The color of the FOD and fiber is a mixture of red, blue 
and green based on their direction. The FOD functions for the mean (mixed color) and 
the mean plus twice the standard deviation (gray) are plotted with the true fiber directions 
(colored sticks). 

 

4.4.2.5. Number of fibers 

 Figure 4.9 represents the results for the number of fibers (2 and 3) with SNR = 

60, 6th order expansion, 92 directions, b-value = 2000 s/mm2, and separation angle of 50 
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degrees. Though there are noticeable differences in FOD between regularization results 

for two fiber case (e.g., Figure 4.5), no significant differences are observed for three fiber 

case.  

 

 

Figure 4.9. The FOD function for 2 and 3 fibers in the left and right side in each subplot, 
respectively, using 6th order for each regularization method: TIKH (a), TSVD (b), DSVD 
(c), TIKH-negFOD (d), TSVD-negFOD (e), DSVD-negFOD (f) and LS (g). The color for 
the FOD and fiber is a mixture of red, blue and green based on their direction. The FOD 
functions for the mean (mixed color) and the mean plus twice the standard deviation 
(gray) are plotted with the true fiber directions (colored sticks). 
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TIKH (Figure 4.9a and d) and DSVD (Figure 4.9c and f) show almost identical FODs for 

three fibers, and TSVD (Figure 4.8e) and LS (Figure 4.8g) also have three comparable 

fiber FODs. TSVD (Figure 4.8b) shows even larger standard deviation than that of LS 

(Figure 4.9g), but the use of constraint (Figure 4.9e) generates a comparable three-fiber 

FOD as TIKH and DSVD with relatively larger error perpendicular to the third (red) fiber. 

 

4.4.3. Estimation of fiber direction 

 The true fiber directions are estimated for each regularization result. However, as 

shown in §4.4.2, TSVD has relatively lower angular resolution and larger standard 

deviation of the FOD than the other regularization results. Therefore, only the TIKH and 

DSVD methods are compared on the basis of the accuracy of fiber direction estimates.  

 

4.4.3.1. Fiber separation angle 

 Figure 4.10 shows the estimation of fiber directions using LS for the two fiber 

case for varying separation angle for 200 trials. The simulation is done with SNR = 60, 

6th order expansion, 92 diffusion encoding directions, and b-value = 2000 s/mm2 as used 

in §4.4.2.1. Estimates for fiber 1 are in red (*) and fiber 2 in blue (o) with true fiber 
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directions marked in black (×).  

 

 

Figure 4.10. Estimates of fiber direction using LS are plotted for each separation angle: 
30 degrees (a), 50 degrees (b) and 70 degrees (c). Results for 200 trials are shown for 
fiber 1 in red (+) and fiber 2 in blue (o) with the true fiber directions (×) with θ (vertical) 
and φ (horizontal) axes in degrees. 

 

Figure 4.11 shows the regularization results with TIKH (a), TIKH-negFOD (b), DSVD 

(c) and DSVD-negFOD (d). For the separation angle of 30 degrees, the LS result (Figure 

4.10a) shows large dispersion of estimations over the true fiber directions. With increased 

separation angle to 50 degrees, estimations for each fiber direction are crowded around 

the true directions (Figure 4.10b). At the largest angle (70 degrees) the estimates are 

concentrated at each fiber direction as presented in Figure 4.3g. At 30 degrees in Figure 

4.11, most of the estimations of fiber directions are between the true directions. With 
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increased angles, however, the estimations become more concentrated about each of the 

true fiber directions as shown in the middle and bottom plots in Figure 4.11. 

 

 

Figure 4.11. Estimates of fiber direction using TIKH (a), TIKH-negFOD (b), DSVD (c) 
and DSVD-negFOD (d) are plotted for each separation angle: 30 degrees (top), 50 
degrees (middle) and 70 degrees (bottom) in each subplot. Results for 200 trials are 
shown for fiber 1 in red (+) and fiber 2 in blue (o) with the true fiber directions in black 
(×) on θ (vertical) and φ (horizontal) axes in degrees. 

 

Using 4th order expansion with TIKH-negFOD (Figure 4.12), the directional estimates are 
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less scattered than those at 6th order.  

 

 

Figure 4.12. Estimates of fiber direction using TIKH-negFOD and 4th order expansion 
are plotted for each separation angle: 30 degrees (a), 50 degrees (b) and 70 degrees (c). 
Results are shown for 200 trials for fiber 1 in red (+) and fiber 2 in blue (o) with the true 
fiber directions (×). Angles are in degrees. 

 

However, the true fiber directions cannot be distinguished even at 50 degrees (Figure 

4.12b), and the center of each distribution seems to be biased at 70 degrees (Figure 4.12c). 

These characteristics (small dispersion and bias around the true fiber direction) are 

common to all the other regularization results as well as LS result (not shown) when 4th 

order is used as can be seen from the FOD function in Figure 4.4. 
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Figure 4.13. Estimates of fiber direction using TIKH (a), TIKH-negFOD (b), DSVD (c) 
and DSVD-negFOD (d) are plotted for each b-value: 1000 (top), 2000 (middle) and 3000 
(bottom) s/mm2. Results for 200 trials are shown for fiber 1 in red (+) and fiber 2 in blue 
(o) with the true fiber directions in black (×) on θ (vertical) and φ (horizontal) axes in 
degrees. 

 

4.4.3.2. b-value 

 For 50 degrees separation angle, Figure 4.13 shows the estimates of fiber 

directions with b-values of 1000 (top), 2000 (middle) and 3000 (bottom) s/mm2 in each 

subplot with two fibers, SNR = 60, 6th order expansion and 92 diffusion encoding 
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directions for TIKH (a), TIKH-negFOD (b), DSVD (c) and DSVD-negFOD (d). As b-

value increases from 1000 to 3000 s/mm2, the distribution of estimates for each fiber 

direction becomes less dispersed and more concentrated about the true fiber directions as 

seen in Figure 4.6. 

 

4.4.3.3. Diffusion encoding directions 

 Figure 4.14 represents fiber orientation estimates for different numbers of 

diffusion encoding directions and SNR = 60, 6th order expansion, b-value = 2000 s/mm2 

and 50 degrees separation angle. With increasing number of diffusion encoding directions 

(from top to bottom in each subplot), the estimates for each fiber are more concentrated 

around the true fiber directions for all the regularization methods, as seen in Figure 4.8. 

There is no significant difference between TIKH (a and b) and DSVD (c and d), and 

similar estimates are observed for TSVD and LS results (not shown). For 4th order 

expansion, the estimates of fiber directions are dispersed widely and the two fibers cannot 

be distinguished in this case (not shown). 

 



 92

 

Figure 4.14. Estimates of fiber direction using TIKH (a), TIKH-negFOD (b), DSVD (c) 
and DSVD-negFOD (d) are plotted for 92 (top) and 162 (bottom) diffusion encoding 
directions. Results for 200 trials are shown for fiber 1 in red (+) and fiber 2 in blue (o) 
with the true fiber directions in black (×) on θ (vertical) and φ (horizontal) axes in 
degrees. 

 

4.4.3.4. Number of fibers 

 Figure 4.15 represents the estimated fiber orientation for two (top) and three 

(bottom) fibers within a voxel with SNR = 60, 6th order expansion, 92 directions, b-value 

= 2000 s/mm2 and 50 degrees of separation angle (fiber 1-fiber 2 and fiber 1-fiber 3 for 

three fiber case). The two fiber estimations are crowded around the true fiber directions 

with moderate dispersion regardless of the use of constraint as shown in Figure 4.15. For 

three fibers, estimates for each of the fibers are relatively more concentrated around the 
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true fiber directions than those for two fiber case.  

 

 

Figure 4.15. Estimates of fiber direction using TIKH (a), TIKH-negFOD (b), DSVD (c) 
and DSVD-negFOD (d) are plotted for the number of fibers: 2 (top) and 3 (bottom). 
Results are shown for 200 trials for fiber 1 in red (+), fiber 2 in blue (o) and fiber 3 in 
green (*) with the true fiber directions in black (×) on θ (vertical) and φ (horizontal) axes 
in degrees. 

 

However, the center of estimates for fiber 1 and fiber 2 appears to be biased from the true 

fiber direction. Simulations using TSVD and LS show similar results (not shown). 

 

4.4.4. Effect of SNR on FOD and fiber direction 

 Figure 4.16 shows a comparison between TIKH and DSVD with negFOD results 
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for both the FOD and fiber direction estimates over varying SNR (30, 60 and 90) with 6th 

order expansion, 92 directions, b-value = 2000 s/mm2
, two fibers and 50 degrees of 

separation angle. TIKH shows less noise at the origin of the FOD and smaller dispersion 

in the estimates of fiber directions than DSVD at SNR of 30. However, TIKH and DSVD 

show similar FOD and estimations of fiber directions over the SNR of 60. 

 

 
Figure 4.16. The FOD functions for the mean (mixed color) and the mean plus twice the 
standard deviation (gray) are presented with estimates of fiber direction using TIKH-
negFOD (a and c) and DSVD-negFOD (b and d) for the SNR of 30 (left (a,b) and top 
(c,d), 60 (middle in a-d) and 90 (right (a,b) and bottom (c,d). 

 

4.5. Discussion and Conclusion 

 The spherical deconvolution method has been widely used to represent FOD 
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functions within a voxel, but the accurate estimation of the function is very difficult as 

most deconvolution problems are ill-posed and hence susceptible to image noise. In this 

simulation study, we tested various classes of regularization methods, i.e., TIKH, TSVD 

and DSVD with and without regularization constraint using objective determinations of 

the regularization parameter for improved estimates of the FOD and the true fiber 

directions.  

 Figures 4.1 and 4.2 show a comparison of the regularization methods as well as 

various constraints and parameter determination methods. Using sqLap and sqGrad with 

GCV and L-curve usually generates much lower angular resolution in the FOD than using 

negFOD or no constraint, effectively smearing all fiber peaks. Because the constraints are 

related to the curvature or gradient of the FOD function, the regularization parameter 

tends to decrease the curvature or gradient of the function resulting in an FOD with much 

lower angular resolution. When the regularization is done without any side constraint and 

with negative FOD constraint, the regularization parameter from L-curve is much larger 

than that from GCV generating wider peaks for each fiber bundle relative to those using 

GCV. However, this may suppress any possible small fibers. Therefore, considering the 

primary purpose of this study, GCV and negFOD are used as the parameter determination 

method and constraint as explained previously. 
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 Figure 4.3 shows mean and the mean plus twice the standard deviation for the 

estimation of the FOD function. For TIKH (Figure 4.3a) and TSVD (Figure 4.3b) results, 

improved angular resolution and reduced standard deviation of the FOD are observed 

with use of negFOD as shown in Figure 4.3d and e, respectively. Figure 4.3c shows that 

the DSVD result provides no significant improvement in angular resolution compared to 

when the constraint is used (Figure 4.3f). But there is noticeable reduction of standard 

deviation in small lobes around the origin of the FOD function with use of the constraint. 

Comparing both cases (with and without constraint) DSVD generates relatively robust 

FODs compared to the others. At lower expansion order (order 4), FODs usually have 

smaller errors than those at 6th order. But they also appear to have much lower angular 

resolution with no noticeable fiber bundles along the true direction, even at 50 degrees 

fiber separation. This shows that we need higher expansion order to separate the fiber 

bundles crossing at smaller angles (e.g., 6th order for 50 degrees separation, at least) at the 

expense of a larger contribution of noise in the FOD as shown in Figures 4.3-4.5. 

Estimations of the true fiber directions based on the separation angle are shown using LS 

(Figure 4.10) and TIKH and DSVD (Figures 4.11). As expected, increasing separation 

angle represents better definition of each fiber direction regardless of the use of constraint. 

At 4th order, estimations seem to be robust as they are less dispersed (Figure 4.12), but 
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they have large errors (Figure 4.12a-b) or biased cluster centers (Figure 4.12c). Therefore 

the use of higher expansion order is preferable for identification of multiple fibers with 

unknown separation angles (possibly a small angle). However, when we analyze the 

voxels with fibers of known (large) separation angle, e.g., corpus callosum and cingulum 

bundle crossing at about 90 degrees to each other, using the 4th order may be enough. 

 Increasing b-value improves the FOD as shown in Figure 4.6, in general. Also 

using the constraint in regularization increases angular resolution, especially at lower b-

value (1000 s/mm2). Using lower expansion order (4th) is not helpful resolving multiple 

fiber structures even at b-value of 3000 s/mm2 (Figure 4.7c). Using larger b-value also 

has better definition for estimating multiple fiber directions as in Figure 4.13. Other 

simulations show similar results for fiber directions with varying b-values including the 

LS result (now shown). Therefore it is helpful using intermediate (2000 s/mm2) to 

relatively large (3000 s/mm2) b-value with regularization (TIKH or DSVD with or 

without constraint). However, at relatively low b-value (e.g., 1000 s/mm2) we suggest 

that using regularization with constraint will better estimate the FOD and fiber directions. 

 The use of larger (more than 92) numbers of diffusion encoding directions seems 

to be helpful for improving angular resolution for TIKH (Figure 4.8a, d) and TSVD 

(Figure 4.8b and e) results, but it appears that there is negligible improvement for DSVD. 
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Figure 4.14 shows that it reduces scatters in fiber directional estimates. However, 

increasing the number of directions requires the expense of imaging time, e.g., increasing 

from 92 to 162 requires 1.76 times more imaging time and hence possibly becomes more 

susceptible to motion artifact. Therefore we suggest that using larger b-value (with the 

same or moderate increase of echo time) will be more beneficial than using larger angular 

sampling. 

 Most of the regularization results generate similar FOD functions for three fiber 

FODs regardless of the use of constraint (Figure 4.9) except for TSVD (Figure 4.9b). On 

the contrary to the two fiber directional estimates with moderate dispersion (tops in 

Figure 4.15), the estimates for three fibers appear to be less dispersed but the center of the 

estimates is significantly biased (bottoms in Figure 4.15). Also, three fiber FODs show 

much larger erroneous fiber peaks around their origin (Figure 4.9) than two fiber FODs, 

and those peaks can easily be mistaken for true fibers. When this is the case in specific 

imaging studies, acquiring high SNR may be the most important factor to reduce the 

magnitude of erroneous fiber bundles.  

 The effect of SNR on the estimates of the FOD and fiber directions is shown in 

Figure 4.16 for both TIKH and DSVD with negFOD. At SNR of 30, TIKH shows less 

noise and dispersion on the FOD and estimates of fiber direction than DSVD. However, 
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they show similar FOD and fiber directional estimates over the SNR of 60. 

 In this study we investigated various methods for the robust and reliable 

estimation of the FOD function which is critical for comparison across groups for fiber 

tractography. With regularization, more reliable FODs can be calculated with reduced 

standard deviation for all the cases of imaging and simulation parameters tested here, and 

hence more accurate fiber tracking may be expected. The use of higher expansion order 

and b-value are recommended for better estimation of the FOD and fiber directions, 

considering the minimum resolvable fiber separation angle, SNR and imaging time in the 

experiment. The use of constraint has a small to moderate effect over the regularization 

results (TIKH and DSVD), but it does not require any additional expense, such as 

imaging time, and can be performed in post-processing. Therefore, it is recommended to 

use constraint with regularization for estimating FODs and fiber directions. TSVD shows 

large variations, especially without constraint, in FOD and fiber direction (not shown) 

over various parameters tested in this study. TIKH and DSVD outperform TSVD in both 

FOD reproducibility and estimates of fiber direction. Considering the simulation results 

with imaging parameters, TIKH may be more preferable at relatively low SNR, but both 

of the TIKH and DSVD generate comparable results with negFOD for the estimates of 

the FOD and fiber directions as shown through this study. 
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CHAPTER Ⅴ 

 

MEASUREMENT OF INTRINSIC FIBER DIFFUSION PROPERTIES USING 

SPHERICAL DECONVOLUTION OF HARD IMAGING DATA 

 

5.1. Overview 

 Many approaches using the HARD encoding scheme have been successful in 

delineating complex fiber architecture within a single voxel of brain white matter. 

However, they are unable to provide intrinsic diffusion properties of any of the included 

fibers, and the estimation of those properties within a single voxel has not been studied 

rigorously. In this study we evaluate a method to estimate fiber-specific diffusion 

properties within a voxel using FORECAST, a spherical deconvolution method. The 

simulation results show that our method can estimate radial diffusivity and volume 

fraction for individual fibers at modest to high SNR level. In in vivo studies, individual 

fiber FODs can be separated and plotted based on an estimate of radial diffusivity and 

volume fraction for each fiber bundle. The diffusivity for each fiber in single- and 

crossing-fiber regions is compared to demonstrate that individual fibers’ diffusion 

properties are preserved in the crossing region. However, diffusion properties may be 
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variable between fiber bundles. These studies lay a groundwork for more accurate 

measurements of white matter fiber properties on a subvoxel level. 

 

5.2. Introduction 

 Diffusion tensor MR imaging (DT-MRI) has been successful in detecting subtle 

changes in water molecular diffusion using a series of diffusion weighted images applied 

in at least six non-collinear directions [19,20,22,26,58]. Although it has been useful in 

delineating white matter tissue structure, the tensor model is based on the assumption of 

Gaussian diffusion which is inappropriate within many regions of complex fiber structure 

[19,56,65,66]. The presence of multiple fiber directions within a single imaging voxel, 

i.e., a partial volume effect, cannot be characterized accurately by a single tensor because 

a tensor possesses only a single orientational maximum (shared by opposing directions), 

i.e., a tensor describes single fiber diffusion [28,56,57,59,60,64,71]. This situation is 

common for most DT-MRI studies using EPI techniques in which relatively large voxels 

are used [59]. Alternative models were suggested using multi-component analysis [81-85], 

such as two (fast and slow) diffusion compartments, and two-tensor models using six 

[86,87,115] or more [64] non-collinear diffusion gradient directions. However those 

methods are limited to two components and cannot accurately characterize diffusion with 
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more than two fiber directions, for example.  

 Many approaches using high angular resolution diffusion (HARD) encoding 

schemes, e.g., diffusion spectrum imaging (DSI) [66,68] and q-ball imaging (QBI) [69] 

etc., can identify multiple fiber directions. However, they do not provide any information 

about the intrinsic diffusion properties of any of the fibers other than a diffusion 

orientation distribution function (ODF), and the estimates of the properties for each fiber 

within a voxel have not been studied extensively. Tournier et al. [73] suggested a method 

that is able to estimate directly the distribution of fiber orientations within a voxel from 

the HARDI signal using spherical deconvolution (SD) with the following assumptions: 

there is negligible exchange between distinct fiber bundles and the diffusion 

characteristics of all fibers in the brain are identical except for fiber orientation. Though 

there are no extensive studies about the latter assumption, the Tournier study showed the 

possibility of estimating the volume fraction of each of a known number of fiber 

compartments, e.g., two fiber compartments. In this method, the response function was 

found directly from data by measuring the diffusion weighted (DW) signal profile in 

regions likely to contain a single and coherently oriented fiber population, i.e., regions 

with high diffusion anisotropy. Another SD method was suggested by Anderson [74,75]. 

This method, named Fiber ORientation Estimated using Continuous Axially Symmetric 
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Tensors (FORECAST), provides an analytic expression for the signal response function 

using the assumptions that each fiber bundle has axially symmetric diffusion and 

common mean and radial diffusivity within a voxel. This method successfully 

demonstrated that the fiber orientation distribution (FOD) measurement was possible at 

relatively low b-value (1480 s/mm2) and diffusion weighting directions (92 directions) 

with higher angular resolution for the FOD than other methods [74].  

 Provided an FOD with higher resolution and an analytic kernel function, we may 

estimate intrinsic diffusion properties for individual fiber bundles within each voxel in 

brain white matter. In this study we propose and evaluate a method to estimate the 

intrinsic diffusion properties, i.e., radial diffusivity and volume fraction, for individual 

fibers within a voxel using the FORECAST model with HARDI. 

 

5.3. Methods 

 

5.3.1. FORECAST for multiple fibers and b-values 

 FORECAST uses a spherical harmonic expansion of the DW signal, ( , )S θ φ , 

and FOD function, ( , )P θ φ , as in (5.1) and (5.2), 
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Spherical harmonic coefficients for an arbitrary function ( , )f θ φ  can be obtained using 

(5.3), 
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The relationship between the DW signal and FOD in FORECAST can be expressed 

similarly as SD methods as in (5.4)-(5.6) 

 0lm l lms S c p= ⋅ ⋅ , (5.4) 
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here 0S  is the non-DW signal, b is the diffusion weighting b-value, avgλ  is the mean 

diffusivity, λ⊥  is the radial diffusivity, lP  is the Legendre polynomial of order l and α  

is the measurement angle relative to a fiber axis [74]. Taking advantage of the analytical 

response function from this model, (5.4) can be extended to the case of multiple fibers 

to provide estimates of radial diffusivity and volume fraction of each fiber. We can 

expand (5.4) to a system with nb b-values and nf fibers as shown in Appendix B. In this 

preliminary study, we primarily focused on two fiber (nf = 2) diffusion as below, 
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here avgS  is the mean DW signal with 00 4 avgs Sπ= , ib  is the ith b-value and jf  and 

jλ⊥  are the jth fiber volume fraction and radial diffusivity, respectively, using 

00 1 4j jp fπ= . Since we have interest in finding the radial diffusivities of 1λ⊥ , 2λ⊥  and 

volume fraction ( 1f ) with  1 2λ λ⊥ ⊥<  by assumption, we try to search over the 3D grid 

space of ( 1λ⊥ , 2λ⊥ , 1f ) using the following cost function, 
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which is the sum of the squared error between the measured and estimated ( †
avgS , using 

(5.7)) mean DW signal. The search range for each of the radial diffusivity is determined 

using the kernel function from a single fiber estimate ( sλ⊥ ) and avgλ  as in (5.9) and 

(5.10), 

 10 sλ λ⊥ ⊥≤ < , (5.9) 

 2s avgλ λ λ⊥ ⊥< ≤ , (5.10) 

as shown in Appendix C. With the assumptions of axially symmetric diffusion and shared 

mean diffusivity between fibers, the parallel diffusivity ( λ& ) can be represented simply as  

 3 2j avg jλ λ λ⊥= −& , j=1, ... , nf. 
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5.3.2. Simulation 

 We simulated the DW signal from a voxel containing two fibers using (5.1) and 

(5.4) with known fiber orientation, λ⊥  and f for each fiber using a typical avgλ  for brain 

white matter [58] with varying SNR level equal to 50, 80, 110 and 140. Trial values of  

j avgλ λ⊥  and jf  were used to simulate the signal at each point in a 3D grid in which 

the variables ranged between 0 to 1. The estimated values of j avgλ λ⊥  and 1f  (for the 

two fiber case, 2 11f f= − , so only one volume fraction enters the search) are those that 

produce the lowest error in (5.8). The histogram of search errors of each of the jλ⊥  and 

1f  was plotted for each SNR level to investigate the minimum SNR required for robust 

estimation. Because the non-DW signal ( 0S ) was critical in the search as shown in (5.8), 

the simulations were performed assuming known 0S . 

 

5.3.3. Data acquisition and processing 

 We used a Philips Achieva 3 Tesla scanner with b-values of 1500 and 3000 

s/mm2, TE 65 ms and TR 3000 ms, 3 × 3 × 3 mm3 voxel size, 96 × 96 image matrix with 

13 axial slices and 92 diffusion gradient directions defined by the 3rd order icosahedral 

tessellation of the unit sphere. In total, seven acquisitions were performed and each 
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acquisition was done within 10 minutes. Every data set was registered using a 3D affine 

transform, and then averaged to increase the signal to noise ratio (SNR). We selected 

ROIs on the brain white matter known to include crossing fibers, i.e., the cingulum and 

corpus callosum fibers. Individual fiber bundle’s radial diffusivity and volume fraction 

were estimated based on the two fiber model for each voxel in the ROI. The kernel 

function (5.5) is calculated for individual fibers using estimates of each λ⊥ . The fiber 

specific FOD was calculated using regularization [77], and each fiber’s FOD was 

compared with the FOD from the single fiber solution (with single kernel function using 

sλ⊥ ) and with the principal eigenvector from a single diffusion tensor model for each 

voxel. All the study protocols were approved by Vanderbilt University’s institutional 

review board. 

 

5.4. Results 

 Figure 5.1 shows the histogram of the simulation results for the SNR dependence 

of the search errors (5.8) for radial diffusivity of fiber 1, fiber 2 and volume fraction of 

fiber 1 with varying SNR of 50, 80, 110 and 140. In the simulation the search errors were 

significantly decreased between the SNR of 50 and 80 as shown in Figure 5.1a-b. 

However, it seems that there are no noticeable reductions of error over the SNR of 110 as 
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shown in Figure 5.1c-d.  

 

 
Figure 5.1. The histogram of search errors for the radial diffusivity of fiber 1 (red) and 
fiber 2 (blue) both normalized by mean diffusivity and volume fraction of fiber 1 (green) 
as shown in the legend on the upper right side of (b) for SNR of 50 (a), 80 (b), 110 (c) 
and 140 (d). Over the SNR of 80 the search errors are significantly decreased. 

 

In Figure 5.2a, an ROI is drawn over an FA colormap which contains a mixture of two 

crossing fibers. The crossing fibers can be seen clearly (on the right in Figure 5.2a) in the 

FOD using a single kernel function (response function from single fiber estimation) for 

each voxel. The principal eigenvector (blue line) from the diffusion tensor model is also 
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shown in Figure 5.2a-b. 

 

 
Figure 5.2. An ROI is drawn over an FA colormap on the left in (a). FODs are 
represented using a single fiber kernel function with the tensor principal eigenvector on 
the right in (a). The FODs in (a) are separated into individual fibers with smaller (left side 
in (b)) and larger (right side in (b)) radial diffusivities using estimated individual kernel 
functions. FODs for the single and crossing fibers are shown in (b) for a voxel marked † 
(single fiber 1), ¶ (single fiber 2), ‡ (crossing fiber 1) and § (crossing fiber 2). The radial 
diffusivities are very similar in the case of single and crossing fibers (†:0.5, ‡:0.45 for 
fiber 1 and ¶:0.62, §: 0.63 for fiber 2 in 10-5 cm2/s unit). Each FOD is normalized to unit 
sum and then weighted by the corresponding volume fraction. 

 

The orientation of the principal eigenvector is along one fiber (top four and bottom three 

voxels) or between fibers (5th and 6th voxels from the top). Figure 5.2b shows the FOD 

for the individual fibers: the fiber with smaller λ⊥  (on the left) and with larger λ⊥  (on 

the right) weighted by the estimation of each fiber’s volume fraction. In comparison with 
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the FA colormap in Figure 5.2a and each fiber’s FOD in Figure 5.2b, the representation of  

each individual FOD weighted by its volume fraction seems to match the known 

anatomical fiber structures. To demonstrate that the estimates of individual fiber 

diffusivity are accurate in the crossing regions, the radial diffusivities were compared 

inside and outside the crossing region along the same fiber. An assumption in this test is 

that radial diffusivity varies slowly with position along a fiber. In Figure 5.2b, the FODs 

marked as † and ¶ represent the single fibers designated fiber 1 and fiber 2, respectively, 

since the volume fraction of the other fiber in those voxels appears very small. The FODs 

marked ‡ and § represent the two crossing fibers, but in this case they appear to have 

comparable volume fractions as both of the FODs can be clearly seen with similar size. 

Because we expect a fiber to have nearly uniform radial diffusivity (over small distances 

at least), regardless of partial volume averaging, we compared the diffusivity of each 

fiber between voxels with single and crossing fibers. For fiber 1, the radial diffusivities 

for the single fiber (marked †) and crossing fiber (marked ‡) are 0.5 and 0.45, 

respectively, and for the fiber 2, they are 0.62 (marked ¶) and 0.63 (marked §) (all in 

units of 10-5 cm2/s). Those radial diffusivities were well matched between single and 

crossing fibers for each case. Figure 5.3 shows another ROI at the crossing of the 

cingulum and corpus callosum fiber bundles. Although there is a small crossing fiber 
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bundle appearing with fiber 2 in the voxel marked ¶, most of the volume of the voxel is 

taken up by the single fiber 2. The radial diffusivities for the single and crossing fibers 

are 0.62 (†) and 0.55 (‡) for fiber 1, and 0.62 (¶) and 0.65 (§) for fiber 2. Note that the 

near equality of radial diffusivity of the two fibers makes the designations ‘fiber 1’ and 

‘fiber 2’ somewhat arbitrary. 

 

 
Figure 5.3. An ROI is drawn over an FA colormap on the left in (a). FODs are 
represented using a single fiber kernel function with the principal eigenvector on the right 
in (a). The FODs in (a) are separated into individual fibers with smaller (left side in (b)) 
and larger (right side in (b)) radial diffusivities using estimated individual kernel 
functions. FODs for the single and crossing fibers are shown in (b) for a voxel marked † 
(single fiber 1), ¶ (single fiber 2), ‡ (crossing fiber 1) and § (crossing fiber 2). The radial 
diffusivities are very similar in the case of the single and crossing fibers (†:0.62, ‡:0.55 
for fiber 1 and ¶:0.62, §: 0.65 for fiber 2 in 10-5 cm2/s unit). Each FOD is normalized to 
unit sum and then weighted by the corresponding volume fraction. 
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From the simulation (Figure 5.1) and in vivo results shown in Figures 5.2 and 5.3, our 

model can find radial diffusivities and volume fractions for crossing fibers with the 

assumptions of axially symmetric diffusion, negligible water exchange, uniform T2 

relaxation time and mean diffusivity between fiber bundles and measured 0S  with 

reasonably good accuracy. 

 

5.5. Discussion and Conclusion 

 In this study we developed a method for finding fiber-specific diffusion 

information such as radial diffusivity and volume fraction within a single voxel assuming 

axially symmetric diffusion, shared mean diffusivity and slow or no exchange between 

fibers considering the typical diffusion time scale. These assumptions are reasonable in 

our experiments and have been used in other HARD imaging studies [64,73]. In addition 

to these assumptions, Tournier et al. [73] assumed that all the fiber populations have the 

same diffusion properties except orientations, measuring DW signal attenuation from a 

single fiber population to estimate a global response function. In our study, however, we 

omitted the identical diffusivity assumption by estimating each fiber bundle’s radial 

diffusivity to estimate fiber-specific response functions. 

 The simulation results showed that the minimum requirement of SNR is about 80 
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for the robust estimation of radial diffusivities and volume fraction. In our experiment, 

the SNR for each acquisition measured in non-DW data was 40 to 50 and we averaged 

seven acquisitions to meet the minimum SNR requirement. We selected different ROIs 

based on known crossing fiber structure with easily separable angles (about 90 degree), 

i.e., the corpus callosum and cingulum fiber bundles, using moderate angular sampling 

(92 directions in our experiment). Figure 5.2 and 5.3 show FODs calculated using a 

single kernel (same radial diffusivity for all fibers) and multiple kernels (individual radial 

diffusivity for each fiber) with the estimated radial diffusivity and volume fraction for 

each fiber within each voxel in the ROI. To assure that the diffusion coefficient of a fiber 

is preserved in crossing regions, we compared the radial diffusivity of each fiber bundle 

in the single-fiber and crossing regions. In Figure 5.2, the diffusivities between the 

single- and crossing-fiber voxels are very close, and there is a relatively large difference 

between fibers. In Figure 5.3, the diffusivity is also quite similar between single and 

crossing fibers; however it is even closer between single fibers. This case suggests that 

there may be variations of diffusivity along as well as between fiber bundles. Those 

characteristics may be validated by segmenting individual fiber bundles and then 

comparing the radial diffusivity along and between those bundles. 

 The orientation of the principal eigenvector (blue stick in each voxel in Figures 
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5.2 and 5.3) from a single diffusion tensor model is closer to the orientation of the fiber 

bundle whose volume fraction or anisotropy (in the case of comparable volume fraction) 

is larger than that of the other fiber. In this study, the direction of the principal 

eigenvector is closer to the right-left direction (top four voxels in red in Figure 5.2b, 

where the volume fraction of fiber 1 is larger than the other fiber). Also the directions are 

closer along the anterior-posterior direction (bottom three voxels in Figure 5.2b and two 

voxels in Figure 5.3b where the volume fractions of the anterior-posterior fibers are much 

larger than the other fiber bundle). In Figure 5.3b, the top three voxels seem to have 

comparable volume fractions between fibers, but the principal eigenvectors are aligned in 

the anterior-posterior direction which is along fiber 1 (in green) whose anisotropy is 

larger than that of the fiber 2. This observation supports the need of ODF or FOD 

construction, rather than a single tensor, for reliable fiber tracking through a crossing 

region. 

 High angular resolution diffusion imaging has been successful in providing ODF 

or FOD estimates for the identification of multiple fiber bundles within a single voxel. 

Though the representations of diffusion orientation along fibers, e.g., the ODF or FOD 

from QBI, DSI or FORECAST, are not identical, they produce quite similar fiber 

orientations [74]. Recently these methods have been successfully used as a basis for in 
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vivo fiber tractography, for example with DSI [116], q-ball [117] and SD [118]. Therefore, 

our method may be extended to estimate diffusion properties for voxels with more than 

two fiber bundles. 

 Although our method depends on the identification of the number of fiber 

bundles within a voxel, this has not been rigorously studied yet. Hess et al. [72] showed 

simulation results quantifying the power spectrum of each of the even harmonic orders. 

Frank [57] used group theory to determine the sufficient spherical harmonic order for 

representing multiple fibers. In both studies, the maximum order of 4 seemed enough for 

multiple fibers, but the need for higher order also depends on the separation angle 

between the fibers with more angular sampling and larger b-value required for small 

angles as described in [57].   

 With the use of higher order or larger b-value, however, the effect of noise 

increases, and may result in spurious peaks in the FOD or ODF. Recently, low-pass 

filtering [73], minimum entropy [76] and regularization by minimizing the magnitude of 

negative peaks [77] have been suggested for more reliable estimation of the FOD. But 

those methods require a priori information about the filter factors [73] and/or 

regularization parameter [77], or a nonlinear optimization [76] which may take relatively 

long calculation times. Sakaie et al. [79] recently presented the combined use of the 
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generalized cross validation (GCV) with damped generalized singular value 

decomposition (DGSVD) for the objective determination of the regularization parameter 

and the robust estimation of the FOD without a priori information or user interaction for 

the determination of the parameter. With the use of these methods a more reliable 

identification of multiple fiber bundles may be provided even with higher expansion 

order to distinguish fibers whose angular separation is relatively small. In this case, more 

accurate estimations of diffusion properties can be expected. 
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CHAPTER Ⅵ 

 

ULTRA HIGH FIELD DIFFUSION WEIGHTED MR IMAGING 

 

6.1. Overview 

 Recently ultra high field in vivo data have been used to demonstrate DTI and q-

Ball imaging methods for improved visualization of white matter anatomy with parallel 

imaging and higher order shimming. However, increased B0 inhomogeneity at high field, 

due to magnetic susceptibility variations in the head, complicates accurate analysis of 

diffusion weighted images by causing geometric image distortions. Up to this point, there 

have not been any studies demonstrating the feasibility of the field inhomogeneity 

correction at 7 Tesla using DTI or HARDI data acquired with the EPI sequence. In this 

study, the efficacy of the field inhomogeneity correction using a static field map is 

investigated with in vivo HARDI data acquired on a 7 Tesla human scanner. The spatial 

accuracy of the correction is assessed using normalized mutual information and visual 

inspection of the FA map and fiber orientation distribution functions for corresponding 

white matter structures. This study suggests that, after the inhomogeneity correction, 

more accurate delineation of white matter and corresponding fiber structures can be 
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provided. These methods may be useful for constructing the atlases of human white 

matter and for accurate fiber tracking in the ultra high field imaging environment. 

 

6.2. Introduction 

 Diffusion weighted MRI (DW-MRI) has been successfully used for studying 

human brain white matter based on water molecular diffusion [19-21,26,58]. Most studies 

have used diffusion tensor MRI (DT-MRI) or high angular resolution diffusion imaging 

(HARDI) to probe axonal connectivity using fiber tractography techniques 

[28,29,31,119,120] or detecting the presence of non-parallel fibers within a single voxel 

[60,65,66,73]. Conventional DW-MRI acquisition uses the EPI sequence to reduce the 

acquisition time. However, EPI is very sensitive to geometric distortions due to magnetic 

field inhomogeneity caused by magnetic susceptibility variations in the imaged object 

and eddy currents due to fast switching gradients. In the affected regions image intensity 

moves from its original position, causing an apparent stretching, compression or shearing 

of the image [97,121,122]. Several methods have been suggested for the correction of 

eddy current effects using an interleaved navigated sequence [122], twice-refocused 

gradient [123] or image registration [124]. Corrections of the field inhomogeneity effects 

have been suggested using forward and reverse phase encoding gradients [94] or a field 
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map [97] for EPI data. The field map method has proved quite useful for the correction of 

fMRI and DW-MRI data [121,125,126]. However to the best knowledge of the authors, 

most of these studies have been done at moderate field strengths, i.e., much less than 7 

Tesla, and no human DW-MRI studies, e.g., DT-MRI or HARDI, have been presented 

with inhomogeneity correction at ultra high fields such as 7 Tesla. Recently DT-MRI and 

q-ball imaging [69] studies have been published using 7 Tesla human scanners [89-92] 

with a transmit head coil and receive coil array with 8 channels [91,92] and 16 channels 

[90]. However, the effects of increased field inhomogeneity due to high field strength are 

not compensated in those studies. In this study, therefore, we present the feasibility of  

human DT-MRI and HARDI at 7 Tesla with corrections for image distortions due to field 

inhomogeneity and eddy currents using field map and image registration methods. Other 

sources of artifacts, such as B1 inhomogeneity or gradient nonlinearity effects, which 

generate intensity variations in an imaged object [98] or errors in interpreting diffusion 

information [100], may be reduced by using multi-channel excitation [99] or estimating 

the gradient coil tensor [100], and the effect of correcting these artifacts may be 

addressed in future studies. 
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6.3. Methods 

 

6.3.1. Data acquisition 

 DW-MRI data were acquired on a 7 Tesla Philips Achieva whole body scanner 

(Philips Medical System, Cleveland, USA) with a 16 channel receive SENSE head coil. 

Diffusion weighted SE-EPI images were acquired using two protocols, 1). FOV 240×240 

mm 96×96 image matrix, 2.75 mm slice thickness, TR/TE = 5500/72 ms, axial 

orientation and 2). FOV 192×192 mm, 80×80 image matrix, 2.4 mm slice thickness, 

TR/TE = 5500/69 ms in coronal orientation with SENSE factor 2 and 3, respectively. For 

both studies the diffusion weighting b-value of 0 and 2000 s/mm2 with 32 diffusion 

weighting directions and one T2 weighted image were used. The acquisition was repeated 

for total of three scans for each protocol. In each experiment, field map images were 

acquired with the same FOV and image matrix using a 3D gradient echo sequence with 

echo spacing (ΔTE) of 1 ms and 0.5 ms for the scans with axial and coronal orientation, 

respectively. Also, the high resolution anatomical T1 weighted images were acquired with 

a 240×240 image matrix in corresponding orientation from each protocol to verify the 

locations of anatomical white matter structures for fractional anisotropy (FA) maps [26] 

and fiber orientation distribution (FOD) functions [74]. All the study protocols were 
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approved by Vanderbilt University’s institutional review board. 

 

6.3.2. Data processing 

 Diffusion and T2 weighted images were coregistered using 3D affine 

transformation in order to correct distortion due to eddy currents. The geometric 

distortions due to field inhomogeneities were also corrected using a voxel displacement 

map calculated from the field map [97] for both the diffusion and T2 weighted human 

brain data. Then all the processed data sets were averaged to increase the SNR for all the 

in vivo data sets. To verify the effects of the correction, the spatial distribution of the 

voxel intensities was compared using the normalized mutual information (NMI) criterion 

[127] for images without and with the inhomogeneity correction after image 

coregistration. Also the anatomical positions of white matter structures and fiber bundles 

were compared by visually inspecting the FA and FOD maps by overlaying them on the 

high resolution T1 anatomical image for both the data without and with the correction. 

Before overlapping the two data sets, the size of the FA map (96×96 and 80×80 matrix) is 

linearly interpolated (to a 240×240 matrix) to match the size of the anatomical image. 

The FOD was calculated for each voxel using the FORECAST (Fiber ORientation 

Estimated using Continuous Axially Symmetric Tensors) model [74] with Tikhonov 
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regularization penalizing negative values in the FOD [77] with an objective 

determination of regularization parameter [79,80] using 4th order spherical harmonic 

expansion. 

 

6.4. Results 

 Figure 6.1 shows the b = 0 image, FA, and the FA overlaid on the T1 weighted 

image for one slice acquired with anterior fat shift direction (from bottom to top of the 

image) phase encoding in the axial orientation.  

 

 
Figure 6.1. The original images with anterior phase encoding direction are shown for b = 
0 (a), FA map (b) and FA map overlaid on the T1 weighted anatomical image (c). The 
correction images are shown for b = 0 (d), FA map (e) and FA map overlaid on the T1 
weighted anatomical image (f). White dotted grid lines are shown on each image to verify 
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(Figure 6.1. Continued.) 
the anatomical positions of white matter structures from FA map. 

 

The images after the distortion correction are also shown. Figure 6.2 shows the b = 0 

image, FA and the FA over T1 weighted image acquired with posterior fat shift direction 

(from top to bottom of the image) phase encoding in the same slice orientation of the 

same subject as in Figure 6.1. Each of the images after the distortion correction is shown 

in Figure 6.2d-f. 

 

 
Figure 6.2. The original images with posterior phase encoding direction are shown for b 
= 0 (a), FA map (b) and FA map overlaid on the T1 weighted anatomical image (c). The 
correction images are shown for b = 0 (d), FA map (e) and FA map overlaid on the T1 
weighted anatomical image (f). White dotted grid lines are shown on each image to verify 
the anatomical positions of white matter structures from FA map. 
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Figure 6.3 shows the magnified FA maps before and after the distortion correction taken 

from Figures 6.1and 6.2. Comparison of the corrected images shows that the outline of 

the brain is nearly the same, indicating that spatial distortions have largely been corrected. 

 

 
Figure 6.3. The magnified FA maps taken from Figure 6.1b and 6.1e (anterior fat shift 
direction) are shown in (a) and (b), and those from Figure 6.2b and 6.2e (posterior fat 
shift) in (c) and (d), respectively. Although the subject’s head has moved slightly in the 
through-plane direction between scans, the anterior and posterior edges of the brain are in 
good agreement. 
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A shown in Figure 6.3, the magnified FA maps clearly show the image distortion due to 

the effect of field inhomogeneity and its correction for both data with anterior and 

posterior fat shift direction phase encoding. Figure 6.4 shows the FA map of an image 

slice overlaid on the anatomical T1 weighted image without (Figure 6.4a) and with 

(Figure 6.4b) the field inhomogeneity correction in the coronal orientation. The FA map 

is calculated from the DW data set with the phase encoding in the left fat shift direction 

for the subject. 

 

 

Figure 6.4. The FA maps overlaid on the T1 weighted anatomical image are shown 
without (a) and with the distortion correction (b). The FA map is calculated from the DW 
data set with the phase encoding in the left direction for the subject. An ROI and its 
magnification are drawn in each figure to verify the correction of the distortion. White 
grid dotted lines are also shown in each figure to compare the anatomical position of 
white matter structures shown in both of the FA maps. 
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The two ROIs and their magnification in each of Figure 6.4a and 6.4b show that the 

anatomical location of the white matter structures are corrected after the inhomogeneity 

correction. 

 The position of white matter structures before and after the correction can be 

more easily verified using an FOD map. Figure 6.5 shows the map of FOD function for 

the same image slice as used in Figure 6.4. FODs are color coded according to their 

orientation, represented in red (left-right), blue (inferior-superior) and green (anterior-

posterior) for the subject. 

 

 

Figure 6.5. The FOD maps overlaid on the T1 weighted anatomical image are shown 
without (a) and with the distortion correction (b). The FOD map is calculated from the 
DW data set with the phase encoding in the left direction for the subject. An ROI and its 
magnification are drawn in each figure to verify the correction of the distortion. White 



 127

(Figure 6.5. Continued.) 
grid dotted lines are also shown in each figure to compare the anatomical position of 
white matter structures shown in both of the FOD maps. 

 

After the correction of the field inhomogeneity effect as shown in Figure 6.5b, the FOD 

map represents more accurate alignment of the anatomical structures of the white matter 

fibers than those without the correction (Figure 6.5a) as shown on the T1 weighted image. 

 

6.5. Discussion and Conclusion 

 This study demonstrates the feasibility and usefulness of field maps for the 

correction of image distortions due to magnetic field inhomogeneity at 7 Tesla. As shown 

in Figures 6.1a and 6.2a, there are especially large geometric distortions due to field 

inhomogeneity effects. However, most of the distortions are corrected with the use of  

the fieldmap (Figures 6.1d and 6.2d) for both the anterior and posterior phase encoding, 

and more accurate delineation of white matter anatomical structures can be achieved as 

seen from the FA maps (Figures 6.1e, 6.2e, 6.3b, 6.3d and 6.4b) as well as the FOD map 

(Figure 6.5b). After correction, the NMI index is increased from 1.11 to 1.15 for the 

whole image volume between T1 weighted and FA map indicating an increase in the 

accuracy of image registration.  
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 We conclude that using the fieldmap is very helpful in DW-MRI for more 

accurate representation of FA and FOD maps and may also be beneficial for constructing 

atlases of human white matter [128] as well as fiber tractography. With the correction of 

other sources of artifacts, such as gradient nonlinearity or B1 inhomogeneity, further 

improvements in structural and functional imaging may be possible at 7 Tesla. 
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CHAPTER Ⅶ 

 

CONCLUSION 

 

 In this thesis we have developed the methods for improved imaging of brain 

white matter using diffusion tensor imaging (DTI) and high angular resolution diffusion 

imaging (HARDI), which provide information on the microstructure of a tissue based on 

water molecular diffusion. We characterized the effect of image noise on the estimation 

of local fiber direction in terms of the ‘cone of uncertainty’ (CU) using DTI. The CU is 

especially useful for understanding the uncertainty of the observed fiber path 

characterized by the major and minor cone angles. We showed that the uncertainty in the 

fiber path or the cone angle is dependent on the image SNR, eigenvalue contrast, tensor 

error, and FA. We also demonstrated that the angular coincidence between the CU and 

tensor is determined by the diffusion weighting gradient vector set relative to the tensor 

eigenframe with simulation and in vivo results.  

 We studied the presence of multiple fibers in a single voxel using HARDI with a 

spherical deconvolution (SD) method. Because the tensor model is a voxel-averaged 

quantity and it has only a single directional maximum, it is inaccurate in regions with 
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multiple or nonparallel fibers. We investigated the optimum method for representing 

multiple fibers by means of the fiber orientation distribution function (FOD) using the SD 

method, especially the FORECAST (Fiber ORientation Estimated using Continuous 

Axially Symmetric Tensors) model, using several regularization methods and constraint 

functions. Because the use of each of the regularization methods in the FOD 

reconstruction has not been studied extensively yet, we demonstrated that the FOD can be 

represented more robustly and reliably over diverse imaging parameters, i.e., SNR, the 

number of diffusion weighting directions, b-value, fiber separation angle, maximum 

spherical harmonic expansion order, and number of fibers.  

 The main benefits of using the FORECAST model are that the FOD can be 

represented with higher angular resolution at relatively lower b-value, it is less 

computationally demanding and provides an analytic expression for the signal response 

or kernel function for a single fiber. Using the analytic kernel expression, we showed that 

the diffusion properties, e.g., volume fraction and radial diffusivity, for an individual fiber 

bundle could be estimated within a voxel. In addition, the FOD and diffusion properties 

for each fiber bundle could be isolated in voxels containing two crossing fiber bundles, 

i.e., the cingulum and corpus callosum. Moreover, in a region containing two fiber 

bundles, the orientation of a principal eigenvector of a diffusion tensor is closer to the 
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orientation of the fiber whose volume fraction is larger and diffusion anisotropy is higher 

(in the case of comparable volume fraction). We assumed, however, that the accurate 

measurement of non-DW signal ( 0S ) and relatively high SNR (above 80) could be 

achieved in our experiments. In a future study we may relax those assumptions with an 

improved model, e.g., Bayesian estimation.  

 Although there is a boost of SNR in ultra high field MR data, there are increased 

RF power requirements and artifacts due to nonuniform B0 and B1. These artifacts 

become more significant with the use of the EPI sequence. In this study, however, we 

demonstrated the feasibility of DTI and HARDI in a 7 Tesla human scanner with 

corrections of geometric distortions due to eddy currents and B0 field inhomogeneities. 

The field inhomogeneity artifact was corrected using a field map, and then the correction 

was verified using data acquired with two opposite phase encoding directions. Also the 

corrections in FA and FOD maps were verified by overlaying those maps on the high 

resolution T1 weighted anatomical image in both the axial and coronal orientations. With 

the field map correction, more accurate delineation of anatomical white matter structures 

could be achieved. The corrections of other sources of artifacts, e.g., B1 inhomogeneity 

or gradient nonlinearity, may provide improved structural and functional information 

performed from ultra high field MR scanners. 
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 We have investigated improved human brain white matter imaging methods 

using DTI and HARDI in 3 Tesla and 7 Tesla. The study about the CU provides more 

accurate information on the estimation of fiber tracking using DTI, and the HARDI study 

provides complementary information that DTI cannot. If analyzed together, more 

accurate fiber tracking in the region of crossing fibers and fiber specific information can 

be provided, their combination may enable us to better infer the changes of structure and 

connectivity due to certain brain dysfunctions, development or aging. 
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APPENDICES 

 

A. EIGENVECTOR COVARIANCE IN THE LIMIT OF HIGH ANGULAR 

RESOLUTION 

 

 We assume that the measured DTI signal in a voxel in the brain is 
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where 0S  is the non-diffusion weighted signal, b is the scalar diffusion weighting factor, 

and in  is the ith component of a unit vector along the diffusion weighting direction ( 1n , 

2n , and 3n  are the x, y, and z components, respectively). The ijD  are elements of the 

diffusion tensor and ε  a random sample of normally distributed (mean zero, variance 

2σ ) noise. Assuming the signal-to-noise ratio in the diffusion weighted images is 1>> , 

this relation can be linearized as follows 
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where S  is the expectation value of the signal. Suppose N measurements are made 

using the same diffusion weighting factor, b, but different directions. Writing (A.2) 

explicitly for the kth measurement,  
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where k k kSη ε≡  is a random variable equal to the image noise scaled by the mean 

signal for that measurement direction. Since the variance of kη  will generally depend on 

direction, a weighted least squares calculation should be used to estimate the ijD . Let y 

be a column vector of elements ln( )k ky S=  and η  be a column vector of values kη . 

The variables we wish to estimate can be placed in a column vector β with elements 

 ( )Τ
0ln( )= xx yy zz xy xz yzS bD bD bD bD bD bDβ . (A.4) 

Finally, the design matrix, �A , relates β  to y . The kth row of �A  is  

 ( )2 2 2
: 1 2 2 2k k k k k k k k k kA x y z x y x z y z= − − − − − − . (A.5) 

So (A.3) can be written simultaneously for all k as [20]  

 ⋅ +�y = A β η . (A.6) 

Defining a diagonal matrix �V  with nonzero elements equal to the signal-to-noise ratio 

(SNR) of the kth measurement, 
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where 2σ  is the variance of the kε , we can multiply (A.6) by �V  from the left: 

 ⋅ +�� � �Vy =VA Vβ η . (A.8) 

The last term on the right is a random vector, each element of which has zero mean and 

unit variance. The linear least-squares solution to this uniform-variance problem is 

 ( )� � �� �−1
β = Τ 2 T 2Α V Α A V y . (A.9) 

The covariance matrix for β  is 

 ( ) 1

β

−
= � ���Σ T 2A V A . (A.10) 

 We can use the approach of Batchelor et al. [129] to evaluate elements of the 

covariance matrix in the limit of many diffusion encoding directions. Let the number of 

diffusion weighting directions, N, approach infinity and the directions be uniformly 

distributed in space. In this case, the labeling of the coordinate axes is arbitrary, so we are 

free to make ẑ  (the unit vector in the Z direction) parallel to the major eigenvector, 1v , 

of the tensor. Similarly, we take x̂  and ŷ  in the 2v  and 3v  directions, respectively. In 

this coordinate system, 
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The first term on the right hand side is the SNR in an unweighted image. Consider the 

matrix  
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the matrix elements of which are 
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since �V  is diagonal. The sum is over diffusion weighting directions, each of which 

corresponds to a point ( ), ,k k kx y z  on the unit sphere. The rows of �A  correspond to 

different directions and the columns to different functions of those directions. We can 

write 

 ( ), ,ki i k k kA a x y z= , (A.14) 

where 
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Hence, 
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As N → ∞ , we can define 4ds Nπ=  as the area on the unit sphere surrounding each 
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measurement direction ( ), ,k k kx y z , and replace the summation in (A.16) with an 

integral over the unit sphere: 

 
2

2 2 20
2 3 1( , , ) ( , , ) exp[ 2 ( )]ij i j

SM a x y z a x y z b x y z dsλ λ λ
σ

⎛ ⎞= ⋅ − + +⎜ ⎟
⎝ ⎠ ∫∫ , (A.17) 

where (A.11) was used to substitute for kkV . Note that the ia  for 1,2,3,4i =  and the 

exponential term are even functions in x, y, and z. On the other hand, the ia  for 

5,6,7i =  are odd in two of the three coordinates. This implies that 

 0ijM =  for { }1,2,3,4i ∈  and { }5,6,7j ∈ , (A.18) 

or vice versa. Hence �M  is block diagonal and can written as 

 4 x 3

3x 4

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

0
0

���
� �
P

M
Q

, (A.19) 

where �P  is 4×4, �Q  is 3×3 and x n m0�  is an n×m matrix of zeros. Furthermore, �Q  is 

diagonal, since the product of any two of the functions xy, xz, and yz is also odd in two of 

the coordinates. The diagonal elements of �Q  are 

 ( )
2

2 2 2 2 20
11 2 3 1

2 exp 2SQ x y b x y z dsλ λ λ
σ

⎛ ⎞ ⎡ ⎤= ⋅ − + +⎜ ⎟ ⎣ ⎦⎝ ⎠ ∫∫ , (A.20) 

 ( )
2

2 2 2 2 20
22 2 3 1

2 exp 2SQ x z b x y z dsλ λ λ
σ

⎛ ⎞ ⎡ ⎤= ⋅ − + +⎜ ⎟ ⎣ ⎦⎝ ⎠ ∫∫ , (A.21) 

 ( )
2

2 2 2 2 20
33 2 3 1

2 exp 2SQ y z b x y z dsλ λ λ
σ

⎛ ⎞ ⎡ ⎤= ⋅ − + +⎜ ⎟ ⎣ ⎦⎝ ⎠ ∫∫ . (A.22) 
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Next, we show that 33 22Q Q≥ . We can rewrite the iiQ  explicitly in terms of the polar and 

azimuthal angles, θ  and φ , describing each diffusion weighting direction. First, note 

that 

 ( ) ( )
( ) ( )

2 2 2 2 2 2 2 2
2 3 1 2 3 1

2 2 2 2 2
2 3 1

2 2
1 2 3 1 3

cos sin sin sin cos

cos sin 1 cos sin 1 sin

sin cos

x y zλ λ λ λ φ θ λ φ θ λ θ

λ φ θ λ φ θ λ θ

λ θ λ λ φ λ λ

+ + = + +

= + − + −

⎡ ⎤= + − − −⎣ ⎦

. (A.23) 

Hence the lower two diagonal elements are 

 
( ){ }

( ){ }

2 2
2 2 20

22 2 3
0 0

3 2 2
1 1 3

2 cos exp 2 sin cos

               sin cos exp 2 sin

SQ b d

b d

π π

φ θ φ λ λ φ
σ

θ θ λ θ λ λ θ

⎡ ⎤⎛ ⎞= ⋅ − − ⋅⎢ ⎥⎜ ⎟
⎝ ⎠ ⎣ ⎦

⎡ ⎤− − −⎣ ⎦

∫ ∫
, (A.24) 

 
( ){ }

( ){ }

2 2
2 2 20

33 2 3
0 0

3 2 2
1 1 3

2 sin exp 2 sin cos

               sin cos exp 2 sin

SQ b d

b d

π π

φ θ φ λ λ φ
σ

θ θ λ θ λ λ θ

⎡ ⎤⎛ ⎞= ⋅ − − ⋅⎢ ⎥⎜ ⎟
⎝ ⎠ ⎣ ⎦

⎡ ⎤− − −⎣ ⎦

∫ ∫
. (A.25) 

These differ only in the φ  integrals. The φ  integrals for 22Q  and 33Q  are 

 ( ) 2
2

2 cos
22

0

cosH e d
π

α φα φ φ− ⋅≡ ⋅∫ , (A.26) 

 ( ) 2
2

2 cos
33

0

sinH e d
π

α φα φ φ− ⋅≡ ⋅∫ , (A.27) 

respectively, with ( ) 2
2 32 sin 0bα λ λ θ= − ≥ . These integrals can be expressed as 

modified Bessel functions using the relation 

 ( ) cos
0

0

1 zI z e d
π

φ φ
π

′± ⋅ ′= ∫ , (A.28) 
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( )0I z  is the modified Bessel function of order zero. Making the change of variables to 

2φ φ′=  and using the half angle relation ( ) 2cos 2 2cos 1φ φ= −  we have 

 
( ) 2

2

2
2 cos

0
0

2
2 cos

0

2

2

z
z

z
z

eI z e d

e e d

π
φ

π
φ

φ
π

φ
π

−

−

= ⋅

= ⋅

∫

∫
. (A.29) 

Hence 

 ( ) 2
22

cos
0

0

2
2

z
zeI z e d

π
φ φ

π
− ⋅= ⋅ ∫ . (A.30) 

Differentiating both sides of this relation with respect to z gives 

 ( ) 2 2
2 22 2

cos 2 cos
0

0 0

2 cos
4 2

z z
z zd e eI z e d e d

dz

π π
φ φφ φ φ

π π
− ⋅ − ⋅= ⋅ − ⋅ ⋅∫ ∫ . (A.31) 

The zero order modified Bessel function obeys the relation 

 ( ) ( )0 1
d I z I z
dz

= , (A.32) 

where ( )1I z  is the first order modified Bessel function. Using this relation and (A.30) 

in (A.31), we have 

 ( ) ( ) 2
22

2 cos
1 0

0

1 12 2 cos
2 2 2

z
zeI z I z e d

π
φφ φ

π
− ⋅= − ⋅ ⋅∫ , (A.33) 

or  

 ( ) ( )2
2

2 cos 2
0 1

0

cos 2 2z ze d e I z I z
π

φφ φ π− ⋅ −⋅ = −⎡ ⎤⎣ ⎦∫ . (A.34) 
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Similarly, 

 

( )

( ) ( ) ( )
( ) ( )

2 2

2 2

2 2
2 cos 2 cos

0 0
2 2

cos 2 cos

0 0

2 2
0 0 1

2
0 1

sin 1 cos

cos

2 2 2 2

2 2

z z

z z

z z

z

e d e d

e d e d

e I z e I z I z

e I z I z

π π
φ φ

π π
φ φ

φ φ φ φ

φ φ φ

π π

π

− ⋅ − ⋅

− ⋅ − ⋅

− −

−

⋅ = − ⋅

= − ⋅

= − −⎡ ⎤⎣ ⎦
= +⎡ ⎤⎣ ⎦

∫ ∫

∫ ∫ , (A.35) 

using (A.30) and (A.34) on the second line. Substituting (A.34) and (A.35) in 

(A.26) and (A.27), respectively, 

 ( ) ( ) ( )2
22 0 12 2H e I Iαα π α α−≡ −⎡ ⎤⎣ ⎦ , (A.36) 

 ( ) ( ) ( )2
33 0 12 2H e I Iαα π α α−≡ +⎡ ⎤⎣ ⎦ . (A.37) 

Since the modified Bessel functions are real and positive for 0α ≥ , we have 

 ( ) ( )33 22H Hα α≥ . (A.38) 

The equality holds if and only if 0α =  (since ( )1 0 0I = ). Because these terms are the 

only difference between the integrands of 22Q  and 33Q  (and the integrands are non-

negative), we have 

 33 22Q Q≥ . (A.39) 

For the case of interest ( 0b > ) the equality holds only when 2 3λ λ= . 

Since the matrix �M  is block diagonal ((A.19)), its inverse is also block diagonal: 

 4 x 3

3x 4

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

0
0

���
� �
-1

-1
-1

P
M

Q
, (A.40) 
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and since �Q  is diagonal, 

 

11

22

33

1 0 0

10 0

10 0

Q

Q

Q

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

� -1Q . (A.41) 

Substituting (A.40) and (A.41) into (A.12) and solving for the covariance matrix, we 

find 

 

1

11
1

22

33

1 0 0
4 4

10 0

10 0

β
π π

−

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⋅ = ⋅⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

4x3

3x4

0

0

��

��
�

P

Q
M

N N
Q

Q

Σ , (A.42) 

where 

 
22 33

1 1
Q Q

≥ . (A.43) 

Referring to the order of tensor elements in (A.4), this shows that the variance of xzD  is 

greater than or equal to the variance of yzD . In terms of the principal axis indices, we 

have 

 ( ) ( )2 2
12 13D Dσ σ≥ . (A.44) 

The equality holds only when 2 3λ λ= . Further, since the lower-right block of β
�Σ  is 

diagonal, the errors in 12D  are uncorrelated with errors in 13D . A similar calculation 
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shows that the same results hold if the tensor is calculated using standard (unweighted) 

linear least squares estimation. To summarize, in the case of many, uniformly distributed 

measurement directions and 2 3λ λ> , the errors in 12D  are larger than the errors in 13D , 

and the two are uncorrelated.  

 

B. REPRESENTATION OF SPHERICAL HARMONIC COEFFICIENTS OF FOD 

IN MATRIX FORM 

 

 In the case of two λ⊥  values in a voxel, the FORECAST model relating signal 

to FOD coefficients is 

 [ ]0 1 1 2 2( ) ( , ) ( , )lm l lm l lms b S c b p c b pλ λ⊥ ⊥= + . (B.1) 

If measurements are made at two b-values, we have 

 1 11 1 1 2
0

2 1 2 22 2

( ) ( , ) ( , )
( , ) ( , )( )

lm lml l

l llm lm

s b pc b c b
S

c b c bs b p
λ λ
λ λ

⊥ ⊥

⊥ ⊥

⎡ ⎤ ⎡ ⎤⎡ ⎤
= ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦
. (B.2) 

Defining 

 1 1 1 2

2 1 2 2

( , ) ( , )
( , ) ( , )

l l
l

l l

c b c b
c b c b

λ λ
λ λ

⊥ ⊥

⊥ ⊥

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
c� , (B.3) 

we have 

 1 1
0

2 2

( )
( )

lm lm
l

lm lm

s b p
S

s b p
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

c� . (B.4) 
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 The spherical harmonic coefficients of the FOD can be represented as, 

 
0

1
lm S

= ⋅ ⋅p E C H�� �� , (B.5) 

here E� , C�  and H�  are nf × (nf · nt), (nf · nt) × (nb · nt) and (nb · nt) × nt dimensional 

matrices, respectively, with nt the number of all spherical harmonic expansion terms, nf 

the number of fibers (i.e., λ⊥  values) to be estimated and nb the number of b-values. 

 lmp�  is nf × nt. H�  is a matrix of signal coefficients, ( )lms b , for each of two b-

values,  

 

( )
( )

( )
( )

( )
( )

( )
( )

0,0 1

0,0 2

1, 1 1

1, 1 2

1,0 1

1,0 2

1,1 1

1,1 2

0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

s b
s b

s b
s b

s b
s b

s b
s b

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

H

"
"
"
"

� "
"
"
"

# # # # "

, (B.6) 

and this can be written as 
1

tn

k
k

h
=

=H� ∩ , here ∩ is matrix concatenation operator and kh  

is (nb × nt) dimensional matrix whose kth column is 
T

' 1 ' 2 ' 3 '( ), ( ), ( ),..., ( )
blm lm lm lm ns b s b s b s b⎡ ⎤⎣ ⎦  

for corresponding l, 'm , and b-values and is otherwise zero. In case of two b-values, the 

kth column only contains [ ]T
' 1 ' 2( ), ( )lm lms b s b . Here { }| 1l k k∈ − ≤ <] ] , 

{ }|m l l∈ − ≤ ≤] ] , and 'm  is the (k - l2)th element in m, where ]  is an integer in both 

cases.  
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 The matrix C�  includes the elements of ( ) 1T T
l l l l

−+ =c c c c� � � �  as below, 

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

0 1 1 0 2 1

0 1 2 0 2 2

1 1 1 1 2 1

1 1 2 1 2 2

1 1 1 1 2 1

1 1 2 1 2 2

, , 0 0 0 0

, , 0 0 0 0

0 0 , , 0 0

0 0 , , 0 0

0 0 0 0 , ,

0 0 0 0 , ,

c b c b

c b c b

c b c b

c b c b

c b c b

c b c b

λ λ

λ λ

λ λ

λ λ

λ λ

λ λ

+ +
⊥ ⊥

+ +
⊥ ⊥

+ +
⊥ ⊥

+ +
⊥ ⊥

+ +
⊥ ⊥

+ +
⊥ ⊥

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

C

"
"
"

� "
"
"

# # # # # # %

. (B.7) 

This can be written 0 1 2, , ,..., Ldiag ⎡ ⎤= ⎣ ⎦C M M M M� � � � �  where 2 1l l l
+

+= ⊗M I c� � �  with ( ),l i jc b λ+
⊥ , 

i=1, ..., nb and j=1, ..., nf, is a matrix element of l
+c� . Here 2 1l+I�  is the (2l+1) × (2l+1) 

identity matrix and ⊗  is Kronecker tensor (i.e., outer) product. 

 E�  is a rearrangement matrix multiplying the left side of ⋅C H� �  as below, 

 

( )
( )

( )
( )

( )
( )

( )
( )

0

0,0 1

0,0 2

1, 1 1

1, 1 2

1,0 1

1,0 2

1,1 1

1,1 2

0 0 0
0 0 0

0 0 0
0 0 0

1 0 1 0 1 0 1 0
0 0 0

0 1 0 1 0 1 0 1
0 0 0
0 0 0
0 0 0

S

p
p

p
p

p
p

p
p

λ
λ

λ
λ

λ
λ

λ
λ

⊥

⊥

− ⊥

− ⊥

⊥

⊥

⊥

⊥

⋅

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤ ⎢ ⎥⋅ ⋅ = ⋅⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

E

C H

E C H

�

� �

"
"
"
"

"�� � "
"�������	������
 "

"
"

# # # # "
�����������	���� 
������

, (B.8) 

here T
t f fn n n×= ⊗E 1 I
K� �  and T

tn1
K

 is a column vector of nt ones, as shown on the left side of 

above matrix multiplication. 

 Then the FOD function for all fibers, ( ),θ φP� , which is (ng × nf) dimensional 

matrix is, 
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( ) ( )

( )

T

T

0

,
1

lm

S

θ φ = ⋅

= ⋅ ⋅ ⋅

P Y p

Y E C H

� � �

�� � � , (B.9) 

here Y�  is the ng directional (ng × nt) spherical harmonic matrix. 

 

C. RANGE OF RADIAL DIFFUSIVITY FOR INDIVIDUAL FIBERS 

 

 For voxels containing fibers with two different λ⊥  values, the zeroth order 

expansion term from (5.4) is 

 
0,0 0 0 0,0

0 0 ,1 0,0,1 0 ,2 0,0,2

0 0 ,1 0,0,1 0 ,2 0,0,1

( ) ( )

1( ) ( )
4

s S c p

S c p c p

S c p c p

λ λ

λ λ
π

⊥ ⊥

⊥ ⊥

= ⋅ ⋅

⎡ ⎤= +⎣ ⎦
⎡ ⎤⎛ ⎞

= + −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

, (C.1) 

here , ,l m jp  is the FOD spherical harmonic coefficient for order l, m and the jth fiber. We 

have used the fact that the combined volume fraction of the two fibers equals one, so 

0,0,1 0,0,2
1
4

p p
π

+ = . Rearranging (C.1) for 0,0,1p  gives, 

 

0,0 0 ,2

0
0,0,1

0 ,1 0 ,2

( )
4

( ) ( )

s c
Sp

c c

λ
π

λ λ

⊥

⊥ ⊥

−
=

−
. (C.2) 

Because the mean DW signal is 

 

( , )sin( )

sin( )

1 ( , )sin( )
4

d d

d d

d d

θ φ θ θ φ

θ θ φ

θ φ θ θ φ
π

=

=

∫ ∫
∫ ∫
∫ ∫

S
S

S

, (C.3) 
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and considering * ( , ) ( , )sin( )lm lms Y d dθ φ θ φ θ θ φ= ∫ ∫ S , we have 0,0 4s π= S . Therefore,  

(C.2) becomes, 

 

0 ,2

0
0,0,1

0 ,1 0 ,2

0 ,2
0

0 ,1 0 ,2

( )4
4

( ) ( )

4 ( )
1

( ) ( )4

c
Sp

c c

c
S

c c

λπ
π

λ λ

π λ

λ λπ

⊥

⊥ ⊥

⊥

⊥ ⊥

−
=

−

⎛ ⎞
−⎜ ⎟

⎜ ⎟=
⎜ ⎟−
⎜ ⎟
⎝ ⎠

S

S . (C.4) 

Because 0,0,1
10
4

p
π

< < , (C.4) can be expressed as 

 
0 ,2

0

0 ,1 0 ,2

4 ( )
0 1

( ) ( )

c
S

c c

π λ

λ λ

⊥

⊥ ⊥

⎛ ⎞
−⎜ ⎟

⎜ ⎟< <
⎜ ⎟−
⎜ ⎟
⎝ ⎠

S

. (C.5) 

Now 0 ( )c λ⊥  is a monotonically decreasing function of λ⊥ . If we assume ,1 ,2λ λ⊥ ⊥< , 

then 0 ,2
0

4( )c
S
πλ⊥ <

S  from above. This places a lower bound on ,2λ⊥ . Similarly, 

0 ,1
0

4 ( )c
S
π λ⊥<

S , which gives an upper bound for ,1λ⊥ .  

 Using (C.1) for the single λ⊥  case,  

 ( )0 ,
0

4
sc

S
π λ⊥=

S . (C.6) 

Hence, ( ) ( )0 ,2 0 ,sc cλ λ⊥ ⊥<  and ( ) ( )0 , 0 ,1sc cλ λ⊥ ⊥< . Using (C.6), Equation (C.5) 

becomes, 

 ( ) ( )
( ) ( )

0 , 0 ,2

0 ,1 0 ,2

0 1sc c

c c

λ λ

λ λ
⊥ ⊥

⊥ ⊥

⎛ ⎞−
⎜ ⎟< <
⎜ ⎟−⎝ ⎠

. (C.7) 

Again considering that ( )0c λ⊥  is a decreasing function, the possible range for each 
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radial diffusivity is 

 ,1 ,0 sλ λ⊥ ⊥≤ < , (C.8) 

 , ,2sλ λ λ⊥ ⊥< ≤ , (C.9) 

for the case of two fiber diffusion. 
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