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CHAPTER I 

 

INTRODUCTION 

 

Hyperspectral spectrometry of the kind proposed by Okamoto et al.[33] and 

demonstrated by Descour et al. [9,10] presents some unique challenges and key benefits.  

Spectral images contain three dimensional information of which two are spatial and the 

third is wavelength.  For some applications, the problem remains in how to collect and 

process this information.  Present methods that employ scanning and sequential filtering 

techniques are time consuming for observing fast dynamic events such as those 

encountered in microphysiology.  Therefore, a system employing simultaneous detection 

of both spatial and spectral data is beneficial.  The method of Okamoto captures the entire 

spectral information and spatial distribution of an object source.  The only limitation is 

the number of projections and the degree of pattern overlap.  Okamoto [33] provides the 

following schematic to clarify this concept: 

 

 

Figure 1: Relationship between the projections and the diffracted pattern. 
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The three dimensional object image-cube is reconstructed from individual 2-D 

projections by a computer program.  When applied in the recovery of both spectral and 

imaging information, the process is termed Computed Tomography Imaging 

Spectroscopy (CTIS).  In practical terms, deconvolving this intensity distribution data 

does require more computational resources which scales with the increasing number of 

projections.  As such, this information processing bottleneck has restricted the snapshot 

hyperspectral imaging camera system of Descour from real time applications.  The 

reconstructed data that was presented by Ford et al. [16] required six minutes of 

computation time for a single iteration.  Eight passes of their implemented algorithm on a 

single computer required forty-eight minutes.  This performance is rather far from being 

useful for real time experiments.  There are two methods of resolving this problem; one is 

to devise new mathematical tools; this approach is evident by the many sophisticated 

reconstruction algorithms that have been created for hyperspectral imaging problems and 

those of similar complexity[1,2,3,4,5,6,7,8,11,13].  Vose and Horton have devised a 

different technique for the CTIS reconstruction employing a near explicit solution based 

on the circulant properties of the defining system matrix[14].  Other variations have 

incorporated optical polarizations; these devices and methods are referred to as 

Computed-Tomography Imaging Spectral Polarimetry (CTISP).  Novel methods of 

scattering the spectra in order to introduce orthogonality conditions have also been tried 

[14, 15].  These methods only work when there is sufficient separation of the basis 

projections i.e. reduced overlap in the streaks.  They do not readily allow for narrow band 

sectioning.  The remaining techniques of note are those employing wavelet transforms, 

but these also become computationally intensive for large format applications.  To be of 
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any use, the imaging spectrometer must be able to resolve a large number of closely 

spaced spectral bands; as observed earlier, a single iteration can take significant time.  

The second option is brute force:  Specifically, the user can leverage the power of parallel 

computing for real time through put.  When the goal is to literally see features in an 

optical specimen, the system matrix becomes extremely large.  Even if the system itself is 

sparse, the inversion matrix itself will still be considerably denser.  A compromise 

between an exact solution and another that may bias the problem to make it more easily 

solvable is characterized as preconditioning.  It is this option that appears to be more 

practical and is demonstrated in this work.   

Image reconstruction algorithms for emission tomography have not changed 

significantly over the previous thirty-six years.  In 1970, the iterative algebraic 

reconstruction technique (ART) was initially conceived as an alternative to general 

Fourier methods by Gordon et al. [26] for X-ray photography and multiprojection 

electron micrographs.  Today, medical positron emission tomography finds the greatest 

application of programs using this approach.  Kaczmarz [29] had provided the theoretical 

underpinnings in 1937.  The chief advantage of an ART is a significant reduction in 

required computational resources and quick results.  Furthermore, the basic method is 

applicable to any linear forward projection problem defined by the following relation: 

 

 Hfg =           (1) 

 

Here, g is the projection formed by a system characterized by the matrix H with an object 

source defined by f .  When H is small and rectangular, a direct inverse is always 



 4 

feasible for a least squares solution; a unique solution is only possible for a square matrix 

with full rank.  Hence, the method of deriving the source image is trivial for systems 

where the dimensionality of H is much less than a million.  Also, it is straight forward 

enough to generate the Moore-Penrose inverse for these “small” problems even when the 

problem is rank deficient.  With today's computational resources, the challenge is to 

generate solutions for problems on the order of 10
12

 in near real time.  These significantly 

larger problems require iterative solutions.  A best case approximate inverse scheme will 

be presented for comparison to a few parallelized Kaczmarz derived methods.  At the 

time of this writing, the Vose-Horton heuristic technique was just recently published and 

achieved much in performance.  The current implementation of this algorithm still 

requires six minutes for convergence.  It must be rewritten for a multiprocessor system in 

order to achieve real time performance as previously described.  Regardless, I will 

continue with the problem at hand, which is to investigate the reconstruction properties of 

the ART-like techniques with and without preconditioning initializers, and seek to 

achieve a useful convergent solution in approximately ten seconds utilizing resources 

within the means of a modest researcher.  Achieving these goals will require a 

compromise between the necessities of the hardware and software implementation 

weighed against the coarseness of the solution set within the bounds of an arbitrary 

acceptance metric. 

Before his death following the invasion of Poland in 1939 at the hands of the 

Soviet secret police, the mathematician Stefan Kaczmarz devised a paper and pencil 

technique for finding an approximate solution to non orthogonal linear systems.  Today, 

this algebraic approach is the basis for many image reconstruction methods in medical 
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imaging. 

 

The basic Kaczmarz method is: 
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Where g
0
 is the observed projected image and f

k
 is the k

th
 iterated solution to the object 

data. 

 

The principal advantage of these derived routines is their conciseness.  In general, ART-

like algorithms are maximum entropy methods employing additive refinement.  The other 

algorithms of interest are classifiable as expectation maximization routines by employing 

multiplicative refinement.  These routines are sometimes called MART (Multiplicative-

ART).  Both of these approaches are particularly suited for different problems and can be 

used in image reconstruction from projections.  In either case, fine grained detail is not 

possible.  Rather, the detection of discernible “targets” is more feasible.  Over numerous 

iterations, ART routines have a tendency to experience noise and edge effects along with 

streaking [24].   
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1.1 CTIS Central Concepts 

The spectral-spatial transformation is an inherently lossy process.  The amount of 

detected light is limited by the size of the local plane array, the lens aperture, 

transmission efficiency of the diffractor/disperser, and near neighbor 2-D projections.  

Whether the encoding is performed by either a diffractor, CGH, or some other means, the 

aim is to discretize the object image based upon the wavelength of light.  In this manner, 

one may construct a basis set of voxels, volumetric pixel, defined by a set of intensity 

distributions over an area, I(x,y,λ) [9,10,15].  These intensity distributions result from 

mutual interference effects caused by the grooves of a holographic disperser or the fine 

gratings of a diffractor.  The local spot intensity for each point is calibrated to be as 

uniform as reasonably possible. Ideally, the diffraction efficiency should be the 

approximately the same for each bandwidth of interest.   

 

Figure 2: Voxel Cube 

A voxel cube whose component spectra is dispersed over a detection area.  Short (blue-

green) wavelengths diffract less than longer wavelengths (red). 
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Figure 3: Basis Projection 

Representative example of a basis projection (intensity distributions I(x,y,λ)) which make 

up the system matrix.  Shorter wavelengths have more closely spaced intensity 

distributions. 

 

The degree of dispersion and spot intensity are characterized by the following 

relations: 

 d(sinα ± sinβ)=mλ,         (4) 

 

α : the angle of incidence 

β : the angle of diffraction 

m : is the order number which takes integral values  

λ : is the wavelength of the incident beam 

 

The response of the system to a particular bandwidth of light defines the imaging 

system.  The wave number spacing between successive basis vectors may be arbitrarily 

small or large based on the construction of the dispersing element.  Thusly, by proceeding 

to record the effective unit response of a series of basis projections for a single location 

and then shifting (∆x, ∆y) for every pixel position, one constructs the system matrix, H.  

With every characterized system, there remains a non-ideality: noise. 
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21 nnHfg ++=         (5) 

 

In general, the noise contribution, n2, is ignored for this treatment, and n1 will not be 

addressed.  The noise contribution n2 is the zero mean post detection Gaussian noise.  

Poisson distributed photon noise is the source for n1 [36].  For problems needing both 

fine resolution and large format, the system matrix H can be scaled up and remain 

reasonably sparse.  Unfortunately, the inverse matrix is considerably denser.  H itself is 

compact as being represented by its sparse basis projections.  Because the pseudoinverse 

matrix, H†, is not, it must be computed and stored for each unique system.  Only recently, 

has computing technology reached a level of performance sufficient to manipulate large 

data sets in real time.  For problems of this scale, there are three approaches: relaxation 

methods, “rapid” methods (i.e. Fourier), and direct matrix methods.  The approach with 

the highest resolution but most requirements is the direct method.  Modern systems, even 

those with extensive resources, still rely upon relaxation methods.  For well defined and 

regularized problems, Fourier methods are preferred since they introduce exploitable 

orthogonality conditions.  This approach is an attempt to arrive somewhere in between a 

reductive solution and a direct one.  The reductive solution has typically involved the 

Singular Value Decomposition (SVD) which is a least squares approach to the matrix 

inverse.  A combination of the approaches would, then, seem more prudent.  For a given 

solution, it is necessary to weigh the contributions from the decomposed direct sum.  An 

intuitive approach would be to formulate the inverse problem from this perspective:  The 

system matrix itself is an approximately shift invariant representation of the basis 

projections.  Real physical systems always introduce non-idealities.  If those 

imperfections are reasonably small, they can be ignored to obtain satisfactory results.  In 
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this work, I attempt to use a semi explicit solution to generate a useful approximate 

inverse preconditioning matrix similar to the methods employed by many others [1-6,8].  

This preconditioning matrix will be used to calculate an initializer, 
0f , for each of the 

iterative routines aforementioned. 

In dense problems, iterative reconstruction offers a practical compromise between 

precision, storage, and computation time [6].  Direct methods typically involve O(m3) 

steps [17].  This time requirement is in addition to any physical resource requirements.  

For comparison, the basic algorithms were run without a preconditioned initializer.   

 

1.2 Experimental Data 

In a typical laboratory set up, the imaging spectrometer is a stationary assembly 

that receives collimated light from a source such as a confocal laser microscope.  The key 

component is the dispersive element, this component may be a grating diffracter, a 

polarimetric disperser, a prism, a holographic disperser etc. [16].  At the very end of the 

device, is the CCD detector.  The University of Arizona imaging system that generated 

the experimental data [Figure 5] resulted from a computer designed holographic disperser 

that created a 5x5 radial scene of diffraction orders in the range of -3,-2,-1, 0, 1, 2, and 3.  

The result is an image of dispersed spectra similar to figure 3.  The data set is limited to 3 

diffraction orders with the central area being the zeroth order.  Orders higher than 3 are 

extremely dim; they are unnecessary when the basis projections generated are likely to be 

independent.  The basis projections are comprised of 280 wavelengths with 1 nanometer 

separation between bands; the span of spectra is from 421nm to 700nm.  The theoretical 

source image dimension is 80 by 89 pixels with the origin pixel located at x, y 
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coordinates [37, 36].  The focal plane array dimension is 2k by 2k pixels.  The calibration 

images along with two experimental images, one of a narrow fiber and another of a much 

larger fiber, were provided courtesy of Dr. Mark Descour from the University of Arizona.   

 

 

Figure 4: Example of a raw image from a CTIS system 

 

Figure 5: Actual experimental data image to be reconstructed 

 

1.3 Application and Significance 

Hyperspectral imaging has many uses including remote sensing, littoral 

subsurface mapping, astrophysical instrumentation, and in any problem where recovering 

spectral information is paramount.  The vast majority of imaging spectrometers are used 

in defense applications for missile guidance and detecting man made objects hidden in 
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terrain [16].  However, these systems rarely need more than a few bands to perform their 

stated functions.  In biological imaging, the need for finely detailed information is more 

pressing.  An adaptable fine reconstruction technique would allow for simpler 

instrumentation and faster acquisition to avoid laser induced photochemistry.  The onus is 

then diverted to the computational technique and resources to make the system robust, 

produce consistent results, and remain efficient for real time applications.   

Quantitative imaging within biology has emerged as a powerful tool for 

characterizing protein functional dynamics and protein-protein interactions.  The ability 

to observe individual species of proteins under biologically relevant conditions is 

significantly more useful than in vitro methods [32].   The experimentalist is able to 

obtain characterizing metrics like concentration, velocity, interaction-lifetimes, and levels 

of relative activity quickly and accurately.  Traditional gel methods such as blotting, 

expression profiling via antibody staining etc. would still be used to confirm the imaging 

information.  Currently, fluorescent protein markers are the only genetically encodable 

optical tags.  They are ideal for in-vivo studies of gene expression and single molecule 

tracking.  The only problem with these tags is that they are dim in the more useful far red 

and near-infrared wavelengths where the optical window measuring from about 700nm to 

1100nm of biological tissue allows for better signal to noise measurements [31].  

Furthermore, prolonged exposure to radiation leads to photodamage and photobleaching 

of the fluorophores along with the formation of reactive oxygen species in the biological 

sample.  A fast responding CTIS system reduces the likelihood of inducing these 

unwanted effects by minimizing the required signal acquisition time. 
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CHAPTER II 

 

GENERAL PRINCIPLES AND BASIC MATHEMATICAL CONCEPTS 

 

2.1 Basis Construction 

 The experimental calibration images comprise the basis vectors which form a 

submatrix that covers a single pixel in the imaginary source image.  Shifting this 

submatrix across the reconstruction region forms the system matrix.  Ideally, the zeroth 

order spot should only illuminate a single point.  It is impossible to avoid illuminating 

adjacent pixels due to optical distortion.  A corrective measure was performed to bring 

the zero order pixels into alignment.  Each respective column was normalized such that 

the geometric mean became unity.  The columns were stored in reduced storage format 

with a delimiter between successive columns.   

 

2.2 Algebraic Linear Methods 

 

2.2.1 Ill Posed Inverse Problems 

Ill-posed problems arise in many subjects such as inverse electromagnetic scattering and 

seismology.  A problem that performs the mapping operation A: X→Y is well-posed if it 

satisfies the following relations: 

1. a solution exists for each y∈Y, ∃x∈X such that Ax = y 

2. the solution is unique i.e. Ax1 = Ax2 iff x1 = x2 

3. the solution is stable i.e. A
-1

 is continuous 
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A problem is ill-posed if it does not satisfy these criteria.  Numerical methods developed 

to approach these problems arose in the 1970s with regularization techniques first 

introduced by Tikhonov.  As defined, regularization “imposes stability on an ill-posed 

problem in a manner that yields accurate approximate solutions, often by incorporating 

prior information.”  The solutions comprise a parametric family of approximate inverse 

operators Rα : Y → X such that if yη =A xapprox + ηη, and as ηη →0 there exist parameters 

αη such that xαη  = Rαη y → xapprox.  The method involves solving the following problem: 

 

xα = min║Ax –y║ + α║x║        (6) 

  = (A
*
A – αI)

-1
A

*
y, where Rα is taken to be (A

*
A – αI)

-1
A

*
 

 

The scalar α > 0 is taken to be the regularization parameter.  Obtaining Rα is typically 

performed with residual gradient methods.  This approach is feasible for a vast population 

of problems.  For significantly large problems with sensitive solutions, it may not be 

feasible to perform residual gradient methods.  Approximation methods, then, come into 

consideration.  Essentially, it is a guess of what the inverse “should” look like.  There are 

various techniques on achieving useful inverses.  These “inverses” are sometimes 

referred to as preconditioners when they are used to aid iterative refinement for x = My of 

y=Ax and M is similar to A
-1

.  The approach taken in this work is direct construction 

since the structure of the system matrix facilitates it as will be discussed later.  Methods 

pertaining to direct inversion and least squares approaches that were either used or 

considered for the direct construction approach follow.    
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2.2.2 Pseudoinverse 

 For square matrices with linearly independent columns and full rank, the unique 

inverse is easily found through many methods such.  For an arbitrary matrix, A, of 

dimension mxn, the Moore-Penrose generalized matrix inverse exists as a unique nxm 

pseudoinverse, A
†
.  Every rectangular matrix with linearly independent columns will 

have a pseudoinverse with the following properties.   

 

Given a matrix A∈R
mxn

, and it's pseudo-inverse A
†
where A

†
A = I 

Satisfying the following relations: 

 

 AA
†
A =A 

 A
†
AA

†
 = A

† 

 
(A A

†
) x = A (A

†
 x)  

 (A
†
A) x = A

†
(A x) 

 

Figure 6: Basic Relations 

 

For most imaging problems, the system matrix is rank deficient which excludes the use of 

simpler routines to arrive at a solution.  Many approaches exist to obtain the 

pseudoinverse of a rank deficient system, a few of the more successful strategies are 

singular value decomposition, Greville's generalized method, general methods with 

special positive definite matrices, and approximate inverses using minimum residual 

schemes.  An exploration was made into each of these methods with the goal of 

developing routines suitable and efficiently implementable in a parallel computing 

environment.   

 

2.2.3 Singular Value Decomposition (SVD) 
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By far, this method is the most popular and well proven for generating inverse matrices 

where any matrix, A, may defined as a three term product of the following form: 

 

Vnn Dnm U
T

mm  = Anm         (7) 

 

V and U are unitary square matrices and D is a square diagonal matrix of singular values 

where d0 ≥ d1 ≥ ... ≥ dn-1 > 0.  For positive definite matrices, the SVD provides many 

exploitable identities.  Most importantly, it simplifies computation of the inverse matrix.    

 

A
-1

 = U { 1/dii..}V
T 

        (8) 

 

For matrices that are singular, this relation does not hold, and one must resort to the 

Moore-Penrose pseudoinverse.  Murgia et al explain this case in more detail [16].  The 

algorithm that generates the SVD is iterative and arbitrarily stops for a preset 

convergence tolerance.  A more direct method would be inherently faster.   

 

2.2.4 Cholesky Factorization and General Inversion 

 The decomposition of a symmetric positive definite matrix can be simplified to 

being a product of a lower triangular matrix and an upper triangular matrix of the 

following form: 

 

M = (LL
T
) , where M ε Rnxn         

(9) 

 

From Courrieu [11], The inverse is thusly 
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M
-†

 = (LL
T 

)
†
 =  L(L

T
 L)

-1
 (L

T
 L)

-1
 L

T 
     (10) 

 

Rank deficient systems do not have a true inverse.  Therefore, one must resort to the 

Pseudoinverse which can be shown to be the least squares solution just like the SVD.  For 

a rank deficient matrix, the pseudoinverse may be found by the following relation: 

 

A
†
 = (A

T
A)

-1
A

T
  where = (A

T
A)

-1
 = (L

-1
)

T 
L

-1
 and A∈  C

nxm
       (11) 

  

One may construct a symmetric positive definite matrix by multiplying by the transpose 

(A
T
A) and performing the Cholesky factorization.  The cost of performing this method is 

~ mn
2
 + 1/3 n

3
 flops as opposed to the SVD which takes on the order of ~ 2mn

2
 + 11n

3
 

flops [17].   

 

The Cholesky factorization is used to construct the approximate inverse preconditioners 

because of the ease of parallel implementation as compared to the SVD algorithm [12, 

19].  The CTIS problem is severely rank deficient and results in large dimensionality for 

large format images.  Another other issue is that computational calculations always 

introduce quantization error.  Unconstrained iterative methods, and sometimes even 

constrained ones, have a high tendency to accumulate errors that prevent convergence.  

The Courrieu method of obtaining a fast general inverse is more elegant than the standard 

SVD algorithm.  These calculations are straightforward and devoid of the many 

determination steps in the form of comparative statements.   
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2.3Preconditioners 

 

 For large problems, where the dimensionality, n, is very large, a computational 

limitation exists in both time and space i.e. processing and storing unique coefficients.  

One therefore must provide a system matrix that behaves similar to the real matrix but 

would be easier to solve.  For a linear system, Ax=y, it may be easier to solve M.Ax=My, 

where M is similar to A
-1

.  This method is called peconditioning.  Many methods exist to 

get a satisfactory M.  The most popular have involved residual minimization, i.e. 

reducing the objective function ||MA-I ||, such as MINRES, GMRES, SPAI, CGLS, etc.  

For matrices that are sensitive to small perturbations, the favored algorithm has been 

MINRES [21].  After extensive testing, the MINRES algorithm did not yield an efficient 

approximation.  The number of coefficients exceeded what could reasonably be used for 

fast and efficient computation even given the sparsity pattern desired.  The time for 

convergence proved to be excessive.  The matrix-matrix multiplication step necessary for 

non-square matrices with preconditioning was a formidable hindrance given the 

constraints of the problem.  Hence, large dimensionality problems needing a fixed density 

requirement for a problem like CTIS are not appropriate.  Exploiting the features of the 

CTIS system matrix proved the more practical toward constructing a robust approximate 

inverse.   

 

2.4 Constructing a Dense Approximate Inverse 

 

The proposed approach relies on the recent advances in computational power and 
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exploits the structure of the shift invariant imaging system.  All work was performed 

using the shared resources of the ACCRE computing cluster.   

Real time image deconvolution is difficult when the frequency bands of interest 

increase in number.  The actual spectral data may be approximately 20 bands deep for a 

given separation in the range of nanometers.  The principle obstacle to overcome is size 

which in turn lengthens computational time.  Even with some reductive assumptions, the 

generated data set involved may still size into the multi-gigabyte range.  They key factor 

recognized by previous and similar problems have been constructing a system matrix that 

is either easily invertible or possess close approximate inverses [8,11,13,16] .  Some 

methods have consisted of wavelet transforms, using polarimetry, using separate 

detectors, and limited bandwidths.  Descour et al. employ an inversion followed with an 

iterative backward forward multiplicative algebraic reconstruction provides a feasible 

means of retrieving the object data [9,10].  While the basis construction by Descour 

establishes a compact representation system, this method still leaves the problem of 

resolving a good inversion matrix.  The basis column vectors are linearly independent but 

not orthogonal.  An ill-posed problem such as this may be suitable for SVD if the 

singular values cluster near zero (Jensen 2003).  Hence, the system matrix may be 

described by the following direct sum of shifted basis projections hλ: 

λλλλ
hRDhRDhRDhH

xyx
⊕⊕⊕⊕= ...010

    (12) 

 

Where x and y represent the dimensions of the source image in pixels.  D and R are 

unitary shift matrices which move the basis projection down and right one pixel 

respectively.  The overlap matrix H'H will show the degree of overlap between voxels as 
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a scalar dot product hi'hj.  One method is to treat an individual object pixel as resulting 

from a characterizable distribution on the focal plane array.  Therefore, one can be certain 

that there is no significant overlap for widely separated voxels.  All voxels will have the 

same overlap dot products with voxel groups at discrete pixel separations.  The overlap 

correlation decays exponentially with increasing distance.  The zeroth order spot sizes of 

the basis voxel projections on the focal plane array govern the distance at which the 

overlap products between voxels may be arbitrarily neglected.  This approach is also used 

to control for the sparsity of the resultant approximate inverse as governed by the overlap 

product term. 

 

Figure 7: Depiction of overlapping chromatic projections 

This figure depicts the overlapping projections resulting from spectra of different 

wavelengths.  The intensity distribution profile for each pixel is duplicated in the 

system matrix and used to generate the a correlation matrix which is just the 

product of the system matrix transpose with itself as shown in the figure below. 
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Figure 8: Separation of voxel groups. 

This figure represents the separation of  voxel groups as arranged by relative 

pixel spacing on the source image and the resultant overlap onto the projection 

space.  The h i,j symbol represents the voxel basis projections for a given pixel at 

location i,j. 

 

The dot product 〈 h i,j , h i+n, j+m
〉  1<<→ σ  as n and m increase in magnitude.   

Hence, the threshold value for ignoring σ may be arbitrarily chosen in order to construct 

an approximate inverse, A, to the system matrix H.  This observation allows us to 

construct various approximate inverses with arbitrary densities rather than relying solely 

on the non-zero index mapping of the original system matrix.  The sparsity pattern of the 

system matrix is used for the basic preconditioner.  The following properties and 

structure of the system matrix is shown in figure 9:   
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Figure 9: Matrix Structure and Vanishing Off-Diagonal Terms 

Here, h
+

b represents the basis Moore Penrose inverse.  The matrices R and D are 

unitary and represent a single pixel shift right and down respectively.  The 

residual error of the off-diagonal products vanish with sufficient separation i.e. ρ 

> σ > ε. 

 

Reduction of the residual sub-matrices, represented in descending magnitude by ρ, σ, and 

ε, can be achieved by incorporating the set of voxel groups that have a determined 

overlap on the object image up to a given distance measured in pixels for a given 

position.  This method amounts to computing a localized inverse and retaining only the 

entries for the central voxel group of origin.  This scheme may involve different source 

image pattern groups graphically shown below.  Essentially, the overlap terms of interest 

are those nearest the principal pixel source which is shown in red.  The sub matrix is 

constructed from the image pattern group and explicitly inverted such that only terms 

meeting a threshold value and the row indices of the central voxel group are retained.  

The central voxel group matrix has a dimension of 280x 4194304.   
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Figure 10: Source Patterns for the constructing the preconditioner 

The red pixel represents the central voxel group of origin. It is used to construct 

the submatrices of the approximate inverse A such that A(H’H) ~ I + ε, where ε is 

very small. 

 

A full seven by seven spot size proved too large for the shared computing resource to 

calculate given individual user constraints.  Also, the seven by seven spot size was too 

large to be efficiently used for the approximate inverse construction.  The full five by five 

spot size was more manageable and could be controlled to provide a data set less than 

half a gigabyte in storage for 51 million indexes with an absolute threshold of 1x10
-5

.  

The full 3x3 pattern resulted in an 81 megabyte file for a threshold of 1x10
-5

.  The single 

pixel group produced 128 mega bytes at a threshold of 1x10
-6

.  The results of utilizing 

these constructors will be discussed after a brief review of the algebraic reconstruction 

techniques. 

 

The basic scheme for creating the various approximate inverses is summarized below: 

 

1.Construct a sub-matrix pseudo inverse for a set of adjacent voxel groups that form a 

pattern governed by significant overlap products in the projection space 
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2.Retain only the entries for the center voxel group 

3.Adjust the threshold for accepting entries in order to reduce retained indexes 

4.The approximate inverse is then formed by shifting this dense inverse into all 

positions covered by the dimension of the source image. 

5.Use this block matrix to provide the initial guess for the back projection used in 

algebraic reconstruction 

 

Since there was not an exact inverse that was explicitly provided, the result from 

applying the approximation to the raw data will have a noise contribution.  Some voxel 

contributions may be overestimated.  Therefore, it may be necessary to correct for these 

errors.  

The second approximate inverse is not as complex and less dense.  It essentially 

consists of taking the direct inverse of the submatrix for a single pixel source and shifting 

it to cover the span of the full system matrix.   

The third approximate inverse consists of eliminating the overlap terms of this 

matrix to match the sparsity pattern of the system matrix.  An attempt to optimize the 

third approximate inverse by the minimal residual algorithm (MINRES) failed to 

converge within a reasonable period of time and required storage resources beyond what 

is allocable in the shared computing environment.  Once these preconditioners were 

constructed, they were applied for each of the iterative techniques previously mentioned, 

SART, Cimmino-CAV, EM-ML, and MART. 
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CHAPTER III 

 

RECONSTRUCTION TECHNIQUES 

 

3.1 Iterative Reconstruction Techniques 

 Numerical methods are employed whenever the exact solution is either difficult to get 

or the cost in hardware exceeds the resources of the researcher.  It trades the expense of 

solving a problem exactly in finite time for a good approximation arrived after infinite 

time [18, 23].  The underlying assumption is that stable iterative methods should 

converge to the inverse solution after infinite time.  With the emergence of parallel 

computing, infinite time has become cheap.  Iterative methods are classifiable by their 

optimization criteria and correction steps.  The major classifiable techniques can be 

called Maximum Likelihood Expectation Maximization (MLEM) which is a variation of 

the Multiplicative Algebraic Reconstruction Technique (MART).  MART is the least 

squares approach in a Gaussian noise environment.  MLEM is Csiszar's information-

divergence approach for a Poisson environment.  Succinctly , MLEM methods employ 

corrections by the use of scaling whereas true ART-like methods use the arithmetic 

difference of the image space.  Hence, MART is not really an ART, but an MLEM by 

another name.  These methods have persisted and gained wide acceptance due to their 

ease of implementation and fast convergence [23].  Less popular variations have been the 

Additive Simultaneous Iterative Reconstruction (ASIRT) and Multiplicative 

Simultaneous Iterative Reconstruction (MSIRT) [1].  Yokoi et al. compared three of these 

methods, MLEM, ASIRT, and MSIRT.  MLEM was shown to converge within 30 
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iterations.  Algebraic reconstruction in astronomy and positron emission tomography 

provides the most variants on the EM-like family of routines.  For the purposes of this 

investigation, four basic techniques will be explored with intializers, 
0f , as published in 

literature [9,10,24] and the three preconditioned intializers previously described.   

 

Maximum Likelihood Expectation Maximization (MLEM/MART) 

One formula that exploits the characteristics of the CTIS system matrix is: 
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This was the formula used by Wilson et al. [24]. 

 

kpredicted Hfg =         (14) 

 

The following formula was used by Ford et al. [17]. 
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        (15) 

 

For ART like algorithms, the main concern is the weighting of subsequent guesses.   

 

The Simultaneous Algebraic Reconstruction Technique (SART) has proven robust for 

some applications in PET and results in a smoothing of the image.  It is evaluated against 
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the previously described MART routines.   

 

SART in generalized form is: 
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The initializer for SART is typically a null vector.  H+,j is the column sum for column j.  

Likewise, Hi,+ is the row sum for row i.   

 

The last ART-like routine for consideration is Component Averaging (CAV) which is an 

improvement on the Cimmino algorithm.  The method takes advantage of system matrix 

sparsity and averages the column coefficients by the number of non-zero elements si 

Censor et al.[37].  The major criticism of the Cimmino algorithm is the slow convergence 

due to a large denominator, M, in the original formulation: 
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CAV restructures this formulation to the following: 
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 where sj is the number of non zero elements in column j.   

 

Initial guesses of the following types will be used to gauge the effectiveness of this 

approximate inverse with the following. 

 

1.  f
0
 = [11...1....1n]

T
, naïve guess for the “Wilson” type MART utilizing the ratioed 

back projection of the experimental and predicted object images. 

2. f
0
 = H

T
 * g

observed
, basic back projection no preconditioner method 

3. f
0
= Ainv * g

observed
, approximate inverse preconditioner, of varying sparsity, equal 

sparsity to the system matrix, less sparse than the system matrix, and the dense 

approximate inverse.   

 

A null vector initialization for the MART type is not feasible since that would freeze the 

iterations at zero.  The comparative results are presented in section V.  The relaxation 

parameter, λ, is left at unity. 

 

3.2 Practical Reductive Assumptions 

Ultimately, the criteria for what constitutes an optimum reconstruction algorithm 

are arbitrary.  There is a trade off between precision, time, and complexity.  Given 

infinite time, an ideal iterative construction should converge to the direct inverse solution.  

The standard reconstruction methods explored here are imperfect and be prone to local 

minima trapping.  Applying an adaptive reconstruction algorithm may surmount this 

problem, but this may be a later effort.  Wilson et al. have stopped their reconstructions 
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between 10 and 30 iterations from an initial guess of all 1's for the object.  This type of 

guess is useful when the system matrix is constructed with the columns unnormalized to 

the total voxel intensity.  The weighting is performed after the back projection of the ratio 

of observed versus estimated object image.  The system matrix constructed for much of 

this investigation is scaled such that all the columns sum to unity.  Every non-zero 

element then represents the joint probability of detection of a voxel i source by pixel j, 

succinctly, P(i|j).  All of these reconstruction algorithms were characterized for 50 

iterations. 
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CHAPTER IV 

 

COMPUTATIONAL IMPLEMENTATION 

 

4.1 Message Passing Interface Bindings (MPI) 

Parallel computation requires a distinct set of protocols and hardware interfaces 

compared to a standalone processing environment.  The Message Passing Interface (MPI) 

is a parallel computing protocol that allows intercommunication between multiple 

processors. The routines used in this effort are few, and use only the minimal number of 

built in functions to accomplish the operation.  Each MPI command invocation requires a 

source and destination identifier, amount and type of data being sent/received [38].  The 

FORTRAN-MPI language extension was used for all the ACCRE resident programs 

created.  Upon subroutine call, the master task distributes data to the subtasks.  These 

parceled operations are identified by subroutines beginning with the label 

“CORE_XXX.”  Thusly, the computing model follows a common data, multiple 

processor architecture.  At execution time, the main program determines the number of 

available processors and assigns each a priority of 0 to n-1.  Task 0, is typically given the 

designation as the Master Task.   

 

4.2 ACCRE: Advanced Computing Cluster Resource 

The Vanderbilt University Advanced Computing Center for Research and 

Education (ACCRE) provides a high perform UNIX cluster.  It grew out of an effort by 

Dr. Paul Sheldon in Physics and Astronomy and Dr. Jason Moore in Human Genetics to 
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build the Vanderbilt Multiprocessor Integrated Research Engine (VAMPIRE).  The first 

cluster was a 55-node Linux based system.  Presently, the cluster is composed of over 

1500 processors spanning four generations of hardware.   

Testing and verification of the developed reconstruction algorithms used a 

dedicated set of 10 processors.  Compiled programs were submitted for execution in the 

ACCRE resource via the portable batch system (PBS) service.   

 

4.3 Artificial Test Vector Generation 

 A student PC version of MatLab was used to develop the initial program structure 

and investigate simple routines for a virtual CGH simulator.  The MatLab code was 

created to use a sparse vector format, and aide in characterizing the behavior of a model 

system.  After the system concepts were formalized and established, development and 

testing was entirely performed in the ACCRE computing environment.  Some test images 

and files are provided in the accompanying DVDs.   

 

4.4 Data Structure and Storage Format 

 The data stored for the system matrix and source data is in a reduced row and 

column format as appropriate.  In this scheme the index is saved for a non-zero element 

in either a row or column.  These reduced column and row elements are ordered in 

successive column and rows.  The last element in a given column and row is given a 

negative index to delimit it from the subsequent column or row.  For some data, the first 

entry is reserved to give the dimensionality of the full expanded matrix as is the case for 

the basis representation data.  The data sets are saved in the FORTRAN binary storage 



 31 

format for compactness.  A 24 bit, bitmap writer was coded to create various image files 

such as collages of the source image spectral bands and projection images that are shown 

in the appendices. 

  

4.5 FORTRAN Coding style for ART and MART reconstruction techniques 

 The reconstruction program for the CTIS reconstruction algorithm relies on 

subroutines that consist of two parts: a tasking subroutine and an execution subroutine.  

The master tasking subroutine provides data distribution and collation from all the child 

tasks.  The bound execution routine performs the arithmetic operation and returns the 

completed data subset to the tasking subroutine.  In this manner, all subroutines are stand 

alone parallelized routines.  The structure of the routines facilitates ordering of matrix 

operations and the construction of different reconstruction techniques as necessary.  A 

subset of shared operations for calculating pixel location, indexers, and parameters are 

stored in a common file.  The dense matrix preconditioners require multiple tasks to read 

the large data files.  The routine that handles this operation is somewhat specialized for 

this very purpose.  The dense preconditioner constructor program uses the processed data 

from the parallelized Cholesky factorization program which also generates a sizeable data 

set a little larger than 1GB for the five by five overlap pattern.  The stored dense 

approximate inverse files range from ~128MB to 370MB.  Index files are equal in size 

principally because they store the delimitation indices separating successive columns and 

rows.  For these larger files, it was more feasible to open the files and use FORTRAN’s 

direct addressing capability in order to avoid memory access delays and improve 

computational performance.  Legacy solver programs were not readily adaptable to the 
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sparse methods developed and employed for this thesis research. 

 Constructing the code that performs the Cholesky factorization and the inverses 

proved to be uncomplicated.  However, executing the code proved cumbersome due to 

the sheer size of the generated data.  The execution time was in excess of 20 hours due to 

queuing on ACCRE.  The inversion step had to be performed with a second executable 

since it required more time than the factorization step. 

 Many iteration cycles of the routines were performed with different object pixel 

saturation limits.  Ultimately, the unconstrained operation proved optimum.  Attention 

was given to numerical overflow when values become greater than machine precision.  

Numerical limits were set to handle only 32 bit integers, but this does not constrain the 

reconstruction program for future expansion.   
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CHAPTER V 

 

COMPUTATIONAL RESULTS ON EXPERIMENTAL DATA 

 

5.1 Experimental Data 

 

The Zeroth order image of the white light source data is provided below and will 

be compared to the reconstructions of each iterative reconstruction technique. 

 

 

        (a)                                                                 (b) 

Figure 11: Zero Order Image 

 

 The original zeroth order image is (a).  In the labeled (b) picture, the source image 

shows the fiber bundle with a centroid dark disk shape(4) and a small white spot in the 

bottom left hand section(5).  It also shows noticeable bulges on the left and right 

sides(1,3). There is also a minor dark pocket (2).  These are the qualitative features of 

interest in the reconstructed images. 
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5.2 Results from SART 

 

The reconstructed images from the SART iteration technique result from 50 

refinement iterations.  Proceeding from left to right, the first image is the zeroth order 

source image, the reconstructed zeroth order without a preconditioned initializer, the 

basic  preconditioned initializer, the sparse preconditioned initializer, and the dense 

preconditioned initializer. 

 

Figure 12: 0th Order Images from SART 

 

From left to right: 

 
Zeroth order image without preconditioning initializer 

RMS ||g-Hf
50

||/||g||= 0.7222555 

 

Zeroth order image with basic preconditioning initializer 

RMS ||g-Hf
50

||/||g||=0.8990488 

 

Zeroth order image with sparse preconditioning initializer 

RMS ||g-Hf
50

||/||g||= 0.7583353 

 

Zeroth order image with dense preconditioning initializer: 

RMS ||g-Hf
50

||/||g||= 189.0144 

Reconstructed spectra of the center pixel: 
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SART
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Figure 13:  Spectral profile of SART based methods 

The spectra are normalized to the highest voxel band for a given initializer. 

 

5.3 Results from Cimmino Component Averaging 

 

The reconstructed images from the Cimmino-CAV iteration technique result from 

50 refinement iterations.  Proceeding from left to right, the first image is the zeroth order 

source image, the reconstructed zeroth order without a preconditioned initializer, the 

basic  preconditioned initializer, the sparse preconditioned initializer, and the dense 

preconditioned initializer. 
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Figure 14: 0th Order Images from Cimmino 

 

Zeroth order image without preconditioning initializer 

RMS ||g-Hf
50

||/||g||= 0.9408425 

 

Zeroth order image with basic preconditioning initializer 

RMS ||g-Hf
50

||/||g||= 1.939929 

No convergence at 50 iterations 

 

Zeroth order image with sparse preconditioning initializer 

RMS ||g-Hf
50

||/||g||= 1.063097 

 

Zeroth order image with dense preconditioning initializer 

RMS ||g-Hf
50

||/||g||= 283.7581 
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Reconstructed spectra of the center pixel: 

Cimmino
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Figure 15: Spectral profile for Cimmino based methods. 

The spectra are normalized to the highest voxel band for a given initializer. 

 

5.4 Results from EM-ML 

 

The reconstructed images from the EM-ML iteration technique result from 50 

refinement iterations.  Proceeding from left to right, the first image is the zeroth order 

source image, the reconstructed zeroth order without a preconditioned initializer, the 

basic  preconditioned initializer, the sparse preconditioned initializer, and the dense 

preconditioned initializer. 
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Figure 16: 0th Order Images from EM-ML 

 

Zeroth order image without preconditioning initializer 

RMS ||g-Hf
50

||/||g||= 0.7279173 

50 iterations required 37.08 seconds 

 

Zeroth order image with basic preconditioning initializer 

RMS ||g-Hf
50

||/||g||= 0.7278955 

At 50 iterations 

 

Zeroth order image with sparse preconditioning initializer 

RMS ||g-Hf
50

||/||g||= 0.7279032 

 

Zeroth order image with dense preconditioning initializer 

RMS ||g-Hf
50

||/||g||= 0.7276122 
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Reconstructed spectra of the center pixel: 

 

EM-ML
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Figure 17: Spectral profile for EM-ML based methods. 

The spectra are normalized to the highest voxel band for a given initializer. 

 

 

5.5 Results from MART 

 

The reconstructed images from the MART iteration technique result from 50 

refinement iterations.  Proceeding from left to right, the first image is the zeroth order 

source image, the reconstructed zeroth order without a preconditioned initializer, the 
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basic  preconditioned initializer, the sparse preconditioned initializer, and the dense 

preconditioned initializer. 

 

Figure 18: 0th Order Images from MART 

 

Zeroth order image without preconditioning initializer 

RMS ||g-Hf
50

||/||g||= 0.6856470 

Time for 50 iterations, 40.55 seconds 

 

Zeroth order image with basic preconditioning initializer 

RMS ||g-Hf
50

||/||g||= 0.6856565 

 

Zeroth order image with sparse preconditioning initializer 

RMS ||g-Hf
50

||/||g||= 0.6858085 

 

Zeroth order image with dense preconditioning initializer 

RMS ||g-Hf
50

||/||g||= 0.6854573 

Time for 50 iterations, 62.17 seconds 
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Reconstructed spectra of the center pixel: 

MART
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Figure 19: Spectral profile for MART based methods. 

The spectra are normalized to the highest voxel band for a given initializer. 

 

The MART reconstruction technique was the least affected in terms of projection image 

reconstruction consistency.  It also produced the best fit of the routines examined. 
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5.6 Convergence Performance 

Convergence of ART and EM-ML Routines
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Figure 20: No preconditioned initializer 

 

It is evident that the MART is superior in performance and convergence properties of all 

the routines.  Albeit, a combination of SART and MART do show some qualitative image 

improvement. 
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Dense Preconditioner 

Dense Preconditioner Convergence
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Figure 21: Dense preconditioned initializer macroscopic comparison 

 

Dense Preconditioner Convergence
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Figure 22: Dense preconditioner microscopic comparison of EM-ML and MART 
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Semi Dense Preconditioner Convergence
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Figure 23: Semi Dense Preconditioned initializer 

 

Semi Dense Preconditioner Convergence
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Figure 24: Semi Dense Preconditioned initializer EM-ML and MART 
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Sparse Density Preconditioner 

Sparse Preconditioner Convergence
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Figure 25: Sparse Preconditioned initializer 

 

Sparse Preconditioner Convergence
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Figure 26: Sparse Preconditioned initializer EM-ML and MART 
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Table 1: Total Intensity for MART object source, f, reconstructions: 

  
No 
Preconditioner 

 Basic 
Preconditioner 

Semi-Dense 
Preconditioner  

Dense 
Preconditioner 

Total  Intensity 
Count 1000975.737 1001261.949 1003800.376 1009451.388 

Difference from  N/A -0.03% -0.28% -0.85% 
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Figure 27: Spectral density of the dense conditioner and no preconditioner cases 

 

The “luminosity” stays consistent save for the mid bands where the dense preconditioner 

redistributes the overall intensity.  From table I, the total intensity estimates for all 

algorithms are virtually identical to each other signifying that the source luminosity 

estimate remained consistent.  Essentially, no new information was created amongst the 
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various methods.    

5.7 Discussion 

 

There was no appreciable improvement in the convergence rate.  The spectral 

crowding effect of the progressively denser preconditioners were detrimental for the 

additive ART methods.  The multiplicative routines were unaffected in their convergence 

rates and deviated little from the simple back projection guess.  Both multiplicative 

methods produced more consistent images than the additive ARTs.  The component 

averaging Cimmino algorithm proved to be the worst in quality for successive iterations 

following the sixth reconstruction. 

Since the fiber bundle image is that of a white light source, the resulting spectral 

data should be a broad band profile.  The simple back projection for all routines 

generated similarly looking broad spectral profiles for the center voxel.  However, the 

reconstructed images that result are noticeably different.  Only the MART routine 

conserved the features of the original zeroth order experimental image for all initializers. 

 Interestingly, the basic preconditioner that was constructed with the same sparsity 

pattern as the system matrix produced a spectral profile very similar to the simple back 

projection for the multiplicative ARTs.  The forward and back projection step used to 

calculate the denominator behaves as a smoothing filter.  The additive ART routines are 

more likely to generate noise effects with each iteration.  This result is most evident in 

the Cimmino-CAV routine.  The RMS error plateaus to approximately 0.94 after 

experiencing an immediate rise following iteration 6.  The simple additive SART routine 

experiences a similar degradation in reconstruction but does not reach such a large 
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divergence while converging to a lower RMS error than the ratioed MART.  The quality 

of the resulting image is still much less than the forward backward routine used by 

Descour et al [9].   

 The amount of time to process 50 iterations was not significantly different for all 

routines investigated.  The set number of iterations was arbitrary.  A time penalty was 

incurred averaging approximately 21.62 seconds (from 40.55 seconds to 62.17 seconds) 

when using the densest preconditioning initializer.  The penalty becomes less significant 

for much larger dimensionality problem.  The data set provided did not provide a large 

enough system to show this case.  Overall, the performance of the parallelized MART 

routine is significantly faster than what has been reported for a single CPU 

implementation with the IDL programming language [17].  Historically, compiled 

FORTRAN code executes more efficiently than higher level languages such as C, IDL, 

and JAVA etc.  Principally, the few numbers of reserved words and inherent functions 

economize FORTRAN.  Hence, all coding was performed in FORTRAN with the MPI 

extension.   

Real time processing of large format CTIS spectral data is now a function of 

processor number and data transfer rates.  More complex reconstruction routines can 

make use of the parallelized linear algebra operations that were developed in the course 

of this thesis research.   
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CHAPTER VI 

 

CONCLUSION AND FUTURE DIRECTIONS 

 

The main purpose of this work has been to develop a feasible real time 

reconstruction program for a CTIS system and generated data like the kind from Descour 

et. al [9,10].  In the course of this project, it was hoped that a new algorithm could be 

developed along either an approximate inverse scheme, or a conjugate gradient scheme 

with preconditioning similar to MINRES and other numerical techniques [26, 27, 28, 29, 

30].  The Vose-Horton algorithm provides such a scheme with improved convergence 

characteristics and accuracy.  Regardless, its current implementation in a single processor 

program limits real time operation.  It is feasible to parallelize this algorithm in the future 

and apply it toward the CTIS problem.   

Fluorescent proteins are the only genetically encodable optical molecular tags that 

a living cell can make.  It is easy to produce protein based fluorescent tags with modest 

spectral separation such as the cerulean and yellow fluorescent proteins for FRET.  

Despite the noticeable overlap, but their separation is comparatively more trivial with a 

mathematical technique rather than band pass filtering.  This is especially important when 

long term light exposure may lead to unwanted photochemistry and the generation of 

oxidative free radicals that damage native proteins.  The fast acquisition of the CTIS 

system avoids long term exposure and rapid data collection that offers the promise of 

seeing fast biochemical reactions in real time.   

There remains a need to produce longer wavelength fluorescent species with large 
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spectral separation.  With this real time deconvolution cluster-resident program, the 

emphasis should now shift toward reducing distortion from scattering and enabling deep 

penetration into turbid media by developing brighter far red fluorescent proteins.  There 

also remains a need to develop ancillary programs and functions that can analyze the 

spectral data, compile the images into interactive animations and generate useful metrics.   
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APPENDIX A.  OBJECT IMAGES 

 

Image A.1 

 

 

Raw data of a white light fiber bundle used in the reconstruction algorithms. 
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Image A.2 

 

 

 

Forward projection of predicted object image, in this case, the dense preconditioner for the regular MART. 
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APPENDIX B.  RECONSTRUCTED SOURCE IMAGE COLLAGES 

 

 The subsequent images are arranged with the top left hand corner being the shortest frequency and 

progressing longer to the right and bottom such that the bottom right hand corner is the longest wavelength.  

The image files proceed to the subsequent image in 1nm increments from 481nm to 700nm. 

 

 

Image B.1:  

 

SART without Preconditioned initializer, 50 iterations.  Image scaled to fit 8 bit intensity mapping of 0 to 

255.  
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Image B.2 

 

 

SART with Preconditioned Initializer equal in sparsity as the system matrix, 50 iterations.  Image scaled to 

fit 8 bit intensity mapping of 0 to 255.  
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Image B.3 

 

 

SART with a preconditoner less sparse than the system matrix, 50 iterations.  Image scaled to fit 8 bit 

intensity mapping of 0 to 255.  
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Image B.4 

 

 

SART with a Preconditioned Initializer of very low sparsity, 50 iterations.   Image scaled to fit 8 bit 

intensity mapping of 0 to 255.  
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Image B.5 

 

 

Cimmino with no Preconditioned Initializer, 50 iterations.  Image scaled to fit 8 bit intensity mapping of 0 

to 255.  
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Image B.6 

 

 

Cimmino with Preconditioned Initializer equal in sparsity as the system matrix, 50 iterations.  Image scaled 

to fit 8 bit intensity mapping of 0 to 255.  
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Image B.7 

 

 

Cimmino-CAV with Preconditioned Initializer with sparsity less than the system matrix, 50 iterations.   

Image scaled to fit 8 bit intensity mapping of 0 to 255.  
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Image B.8 

 

 

Cimmino-CAV with a Preconditioned Initializer of very low sparsity, 50 iterations.  Image scaled to fit 8 

bit intensity mapping of 0 to 255.  
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Image B.9 

 

 

EM-ML with “all one's” as the initializer shown without scaling to fit the intensity range of 0 to 255.  50 

iterations.  Saturated pixels correspond to intensity values greater than 255.   
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Image B.10 

 

 

EM-ML with basic preconditioned initializer, 50 iterations.  Image scaled to fit 8 bit intensity mapping of 0 

to 255.  
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Image B.11 

 

 

EM-ML with Preconditioned Initializer with sparsity less than the system matrix, 50 iterations.  Intensity 

scaled to 8 bit range of 0 to 255. 
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Image B.12 

 

 

EM-ML with a dense preconditioned initializer, 50 iterations. Intensity scaled to 8 bit range of 0 to 255. 
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Image B.13 

 

 

MART without preconditioned initializer, 50 iterations.  Intensity scaled to 8 bit range of 0 to 255. 
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Image B.14 

 

 

MART with basic preconditioned initializer, 50 iterations. Intensity scaled to 8 bit range of 0 to 255. 
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Image B.15 

 

 

MART with sparse preconditioned initializer, 50 iterations. Intensity scaled to 8 bit range of 0 to 255. 
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Image B.16 

 

 

MART with dense preconditioned initializer, 50 iterations. Intensity scaled to 8 bit range of 0 to 255. 
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