
A COMPARISON OF STATE-OF-THE-ART ALGORITHMS

FOR LEARNING BAYESIAN NETWORK STRUCTURE

FROM CONTINUOUS DATA

By

Lawrence D. Fu

Masters Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Biomedical Informatics

December, 2005

Nashville, Tennessee

Approved: Date:

Dr. Ioannis Tsamardinos 12/2/2005

Dr. Constantin Aliferis 11/30/2005

Dr. Douglas Hardin 12/1/2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Vanderbilt Electronic Thesis and Dissertation Archive

https://core.ac.uk/display/46926267?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ACKNOWLEDGEMENTS

I would like to thank the members of my committee for their guidance, patience, and enthusiasm

throughout the course of this work. I also thank Alex Statnikov and Laura Brown for their assistance

with general questions. I am grateful to Francis Bach, Alexander Hartemink, Stefano Monti, and

Harald Steck for providing helpful feedback concerning their algorithms and methods. Finally, this

work was supported by a training grant from the National Library of Medicine (T15 LM 007450-03).

ii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . ii

LIST OF TABLES . v

LIST OF FIGURES . vi

Chapter

I INTRODUCTION . 1

II BACKGROUND . 5

II.1 Bayesian Networks . 5
II.2 Discretization Policy . 6

III DESCRIPTION OF ALGORITHMS INCLUDED IN THE STUDY 7

III.1 Prediscretization methods . 7
III.1.1 Equal-frequency and equal-width binning 7
III.1.2 Method by Hartemink . 7

III.2 Integrated Methods . 8
III.2.1 Method by Friedman . 9
III.2.2 Method by Monti . 11
III.2.3 Method by Steck . 13

III.3 Direct Methods . 14
III.3.1 Method by Bach . 15
III.3.2 Constraint-based method . 16

IV RELATED WORK . 17

IV.1 Prediscretization . 17
IV.2 Direct Methods . 18

V EXPERIMENTAL EVALUATION . 20

V.1 Simulated Data . 22
V.1.1 Data Sets . 22
V.1.2 Metrics for Comparison . 25
V.1.3 Results . 26
V.1.4 Supplemental Results . 33

V.2 Real Data . 36
V.2.1 Data Sets . 36
V.2.2 Metrics of Comparison . 37
V.2.3 Results . 37

V.3 Summary of Results . 40

iii

VI DISCUSSION . 41

VI.1 Limitations . 42
VI.2 Future Work . 42

BIBLIOGRAPHY . 43

iv

LIST OF TABLES

Table Page

V-1 Bayesian Networks Used to Simulate Data. 22

V-2 Conditional Probability Table of Child Network for Variable 17 Given Its Parent. 24

V-3 Conditional Probability Table of Alarm Network for Variable 25 Given Its Parent. 24

V-4 Average Normalized Structural Hamming Distance Results on Simulated Data. . . 26

V-5 Average Normalized Time Results on Simulated Data. 28

V-6 Average Normalized Number of Statistical Calls During Structure Learning on Sim-
ulated Data. 29

V-7 Average Normalized Number of Scoring Function Calls During Discretization for
the Integrated Methods on Simulated Data. 30

V-8 Average Normalized Time for the Integrated Methods on Simulated Data. 30

V-9 Average Percentage of Extraneous and Missing Edges on Simulated Data. 33

V-10 Real Data Sets Used in the Evaluation. 36

V-11 Results for Average Normalized Bach Score, Time, and Number of Statistical Calls
on Real Data. 37

V-12 Average Normalized Number of Scoring Function Calls During Discretization and
Average Normalized Time for the Integrated Methods on Real Data. 39

v

LIST OF FIGURES

Figure Page

I-1 Example of Discretization Obscuring the Dependencies between Variables. 3

V-1 Example Distribution of Variable from Simulated Data Set of Child Network . . . 23

V-2 Example Distribution of Variable from Simulated Data Set of Alarm Network . . . 23

V-3 Marginal Distributions of Variables from the Child and Alarm Networks. 24

V-4 Normalized Time vs. Normalized SHD for Sample Size 500 with Simulated Data. . 32

V-5 Normalized Time vs. Normalized SHD for Sample Size 1000 with Simulated Data. 32

V-6 Normalized Time vs. Normalized SHD for Sample Size 5000 with Simulated Data. 32

V-7 SHD with Multiple Sigma Values for Simulated Data of Sample Size 500. 35

V-8 SHD with Multiple Sigma Values for Simulated Data of Sample Size 1000. 35

V-9 SHD with Multiple Sigma Values for Simulated Data of Sample Size 5000. 35

V-10 Example Distribution of Target Variable from a Real Data Set. 36

V-11 Normalized Time vs. Normalized Score on Real Data. 39

vi

CHAPTER I

INTRODUCTION

Bayesian networks have become a popular tool in biomedical research (Friedman, 2004; Lucas

et al., 2004). Researchers utilize them for tasks such as reasoning with uncertainty, classification,

and causal discovery in areas ranging from clinical applications to basic science research. Examples

of clinical uses include decision support systems and medical diagnosis. Specific tasks include aiding

in tumor classification (Antal et al., 2003) or radiology (Burnside et al., 2004). In basic science

research, Bayesian networks are widely used in the study of gene regulatory networks (Friedman

et al., 2000; Pe’er et al., 2001; Helman et al., 2004) and other applications such as protein secondary

structure prediction (Robles et al., 2004). Furthermore, Bayesian networks are capable of suggesting

manipulation experiments in the study of gene networks (Yoo and Cooper, 2004; Pournara and

Wernisch, 2004) as well as detecting disease outbreak (Cooper et al., 2004). Learning the Bayesian

network structure of a system or environment gives researchers useful information about the causal

relationships among variables.

Despite the diverse applicability of Bayesian networks, the fact that most Bayesian network

structure learning algorithms require discrete data is a limitation since biomedical and biological

data routinely are continuous. There are three general approaches to learning network structure

with continuous data.

• Prediscretization methods: the data is discretized prior to application of the learning algorithm.

Due to the pertinence of these methods to most machine learning algorithms, a great deal of

research has focused on this area (Liu et al., 2002). Unfortunately, many of these methods focus

on supervised classification and are not applicable to Bayesian network structure learning, but

we can still use those that are not tailored to classification.

• Integrated methods: the learning of the variable discretization and structure can be integrated

(Friedman and Goldszmidt, 1996; Monti, 1999; Steck and Jaakkola, 2003). These methods

follow greedy, iterative procedures by starting with an initial discretization, learning a model

1

based on the discretized data, and re-discretizing given the learned model. These steps repeat

until a termination condition is met. The approaches output a discretization of the input

variables.

• Direct methods: learning can be done directly with continuous data without committing to a

specific discretization of the variables (Bach and Jordan, 2003; Margaritis, 2005; Imoto et al.,

2003).

Typically, studies use prediscretization techniques, such as frequency-based partitions. The main

advantage of this approach is efficiency. Discretization is performed initially before applying a

discrete learning algorithm. Another advantage is the easy interpretation of data (Dougherty et al.,

1995). For example, if a researcher deems that the most sensible discretization of a gene expression

measurement is three levels, this could be interpreted as three states: low, average, and elevated

expression level. Also, if it is believed that the variables naturally are discrete but the data is

continuous due to noisy observations, then discretization appears justified (Hartemink, 2001).

On the other hand, discretization unavoidably results in loss of information (Friedman et al.,

2000). All variation within an interval is discarded. Poor decisions about the size or number of

discretization levels can disadvantage the learning algorithm since dependencies between variables

may become undetectable. Margaritis (Margaritis, 2005) provides an example shown in Figure I-1.

2

Figure I-1: An example of how discretization can obscure the dependencies and independencies
between variables (Margaritis, 2005). The top row shows two dependent variables on the left and
two independent variables on the right. When they are discretized into three values, the histograms
look similar.

In the first row, the left box depicts two dependent variables with each axis representing a vari-

able. The right box depicts two independent variables. The second row displays the results of

discretizing each variable into three equally sized intervals. Darkly shaded boxes signify highly pop-

ulated cells. The histograms are similar despite the inital fact that one case was strongly dependent

while the other was independent. A learning algorithm with access only to the discretized data will

have difficulties as a result of discretization. Thus, by neglecting to adequately address the ramifica-

tions of discretization, researchers can lose vital information such as interactions and dependencies

between variables and hinder structure learning.

The alternative methods pose other strengths and weaknesses. Integrated methods do not neces-

sarily commit to a poor initial discretization. If the initial discretization is poor, it will be modified

in a subsequent iteration. Also, integrated methods are tailored to Bayesian network learning. They

consider the interaction among variables during discretization while the structure is fixed. Their

main disadvantage is that they are computationally intensive compared to the prediscretization

methods which only perform discretization and structure learning once. The integrated methods

perform them multiple times and consequently require more time. As for the direct methods, they

have the advantage of not discarding any information. On the other hand, they can be computa-

tionally intensive. Some methods must make distributional assumptions to ensure computational

feasibility.

3

This research compared the three approaches to ascertain the relative strengths and weaknesses

of each and to quantify the impact on network learning. The focus was Bayesian network structure

learning from continuous data. For the remainder of this thesis, learning will refer specifically to

this task. While there has been a comparison of prediscretization techniques (Liu et al., 2002), there

has not yet been an evaluation of all approaches in one unified study. For example, studies of the

integrated methods usually make comparisons to prediscretization techniques. However, there has

not been an evaluation of all integrated methods. The same holds true for the approaches learning

directly with continuous data.

The evaluation involved a representative sample of methods from the three classes. Their per-

formances were compared on two types of data. The first type was continuous data simulated from

discrete Bayesian networks. These data sets were noisy observations of originally discrete vari-

ables. The second type was real data without known structures. For large simulated data sets, the

discretization-based methods yielded the highest quality structures. With small simulated data sets

or real data, a direct method was best. In terms of efficiency, methods from the prediscretization

and direct categories were best depending on the metric used. The integrated methods required the

most computational time.

Another goal of the evaluation was to determine if the integrated methods provided improve-

ments in quality over the prediscretization approaches to justify the decreased efficiency. When

considering edge orientation errors, the integrated methods did not induce more accurate struc-

tures. However, when only undirected edges were considered, the integrated methods yielded more

accurate structures.

The rest of the thesis is organized as follows. Chapter II provides background information

necessary for the remaining discussion. Chapter III explains the specific algorithms evaluated.

Chapter IV reviews previous relevant work that is not included in our evaluation. Chapter V

outlines the experimental results, and Chapter VI presents conclusions.

4

CHAPTER II

BACKGROUND

This chapter provides background information necessary for subsequent discussion. A brief review

of Bayesian networks precedes a formal definition of discretization.

II.1 Bayesian Networks

A simple directed graph is a pair (V , E). V is a set of nodes or vertices, and E is the set of all

directed edges or arcs connecting the elements of V . Self edges or multiple edges are not allowed.

If there is a directed edge from node X to node Y , X is the parent of Y . Conversely, Y is the

child or descendant of X. A directed acyclic graph (DAG) is a directed graph where there does not

exist a path from any node to itself. A partially directed acyclic graph (PDAG) is a simple graph

containing directed and undirected edges without cycles.

Let P be a joint probability distribution of the random variables in some set V , and G = (V ,

E) be a DAG. (G, P) is a Bayesian network if it satisfies the Markov condition (Spirtes et al., 2001;

Neapolitan, 2003). The Markov condition holds if for each variable X ∈ V , X is conditionally inde-

pendent of its nondescendants given the set of its parents. Two variables X and Y are conditionally

independent if P (X|Y) = P (X) when P (Y) > 0. Moreover, a Bayesian network is a graphical

structure modelling the probabilistic relationships between variables.

The two major approaches to Bayesian network structure learning from data are search-and-

score methods and constraint-based learning. Search-and-score methods search the space of possible

networks with a scoring metric that measures the fit of the structure to the data. The final structure

is the one with the highest score. Typically, heuristic search techniques make the search feasible.

Constraint-based methods determine conditional independencies between variables from the proba-

bility distributions of the data. The final structure is consistent with the independencies.

5

II.2 Discretization Policy

The discretization sequence of a variable is a vector of thresholds dividing the range of values into

a set of mutually exclusive and exhaustive intervals. A discretization policy is the set of discretization

sequences for all variables. Suppose we have a data set D with N instances and n variables denoted

as X = (X1, . . . , Xn). Let us represent the value of variable Xi in the lth instance as x
(l)
i and

the set of instances (x(1)
i , . . . , x

(l)
i) as x

(1,l)
i . Then, the discretization sequence of a variable Xi is

Λi = {ti,1, . . . , ti,ri−1} or an increasing set of real-valued thresholds (i.e. ti,1 < ti,2 < ... < ti,ri−1)

where ri is the number of intervals in variable Xi. As a result, function fΛi
performs the mapping

fΛi : Xi 7→ Yi where Yi is the vector of discretized variables defined as follows:

fΛi
(xi) =

0 if xi < ti,1
k if ti,k ≤ xi < ti,k+1 for 1 ≤ k < ri

ri if ti,ri−1 ≤ xi

Y = (Y1, . . . , Yn) is the resulting vector of discretized variables, and the discretization policy Λ is

(Λ1, ..., Λn). If variable Xi is initially discrete, no discretization is needed and Yi = Xi.

6

CHAPTER III

DESCRIPTION OF ALGORITHMS INCLUDED IN THE STUDY

This chapter provides detailed explanations of the methods included in the experimental evalu-

ation, which contains a representative sample of approaches from the three general categories. The

discussion is organized as follows: prediscretization methods, integrated, and direct methods.

III.1 Prediscretization methods

These methods discretize data prior to structure learning. They are considered unsupervised

techniques since they do not consider class labels of instances during discretization. Thus, any

unsupervised technique is suitable.

III.1.1 Equal-frequency and equal-width binning

Equal-width binning divides the range of values for each variable into k equally sized intervals,

where k is pre-defined. Arbitrary values of k are usually chosen, but Margaritis (Margaritis, 2005)

discusses other methods for determining values of k. Equal-frequency binning assigns an equal

number of data instances to each of the k intervals. For example, assume that we are discretizing

height within a data set of 20 patients where the maximum height is 6 feet and the minimum is

5 feet. If k = 2, equal-width binning assigns patients shorter than 5.5 feet to one interval while

assigning the rest to another interval. On the other hand, equal-frequency binning assigns the 10

shortest patients (i.e. the shortest 50%) to one level while assigning the rest to another level.

III.1.2 Method by Hartemink

Hartemink’s approach (Hartemink, 2001) initially discretizes all variables such that each value

is in a separate level. The method iterates two loops. First, the outer loop counts down from

the initial number of intervals to one as levels merge. For each variable, the inner loop merges the

neighboring intervals resulting in the smallest decrease in total mutual information. The total mutual

7

information score, TMI(n), is defined for n discretization levels as the sum of the pairwise mutual

information between all pairs of variables when each has been discretized into n discretization levels.

The algorithm terminates when a single level remains for all variables. As n decreases, TMI(n)

remains at approximately the same level until decreasing rapidly as n approaches one. The final

number of levels is manually selected by trading off a relatively high value for mutual information

with a relatively low number of levels. Values such as 3 or 4 are typically chosen.

III.2 Integrated Methods

The integrated approaches (Friedman and Goldszmidt, 1996; Monti, 1999; Steck and Jaakkola,

2003) employ a greedy iterative search by alternating between structure learning and discretization.

Monti (Monti, 1999) contains pseudo-code for the framework:

Algorithm 1 Learn Hybrid BN
1: procedure LearnHybridBN(D, Λ0)

Input: data D; initial discretization Λ0

Output: structure Gnew; discretization policy Λ
2: Λ ← Λ0

3: Gnew ← LearnDiscreteBN(D,Λ)
4: repeat
5: Gold ← Gnew

6: Λ ← LearnDP (D,Gold, Λ)
7: Gnew ← LearnDiscreteBN(D,Λ)
8: until termination criteria met
9: return Gnew andΛ

10: end procedure

The methods require an initial discretization, and equal-frequency binning is typically used. They

hold the discretization fixed while learning the structure and then hold the structure fixed while re-

discretizing. The two learning procedures repeat until a termination condition is met, which is

different for each method. A final discretization policy is output along with the structure. The

function LearnDiscreteBN can be any learning algorithm intended for discrete data (Heckerman

et al., 1995). The function LearnDP discretizes with a fixed structure as follows:

8

Algorithm 2 Learn Discretization Policy
1: procedure LearnDP(G, Λ0,D)

Input: structure G; initial discretization Λ0; data D;
Output: new discretization policy Λ

2: Λ ← Λ0

3: Push all continuous variables onto queue Q
4: while Q is not empty do
5: Xi ← Pop(Queue)
6: Λnew

i ← LearnV ariableDP (Xi, G, Λ, D)
7: if S(Λnew

i ; Λ, D, G) > S(Λi; Λ, D, G) then
8: Λ[i] ← Λnew

i

9: Q ← Push(MarkovBlanket(Xi))
10: end if
11: end while
12: return Λ
13: end procedure

Changing the discretization of a variable affects the discretization of all variables within its

markov blanket, i.e. its parents, children, and all parents of its children. A queue, which initially

contains all continuous variables, is maintained to ensure that variables affected by the new dis-

cretization are re-discretized. When a variable is popped from the queue, it is discretized in the

function LearnV ariableDP according to a scoring function that ranks thresholds, and the resulting

discretizations may be scored by another scoring function. The methods differ in their implemen-

tations of the scoring functions and termination criteria, and the specifics will be discussed in the

following sections III.2.1, III.2.2, and III.2.3.

III.2.1 Method by Friedman

Friedman’s algorithm (Friedman and Goldszmidt, 1996) is motivated by the Minimal Description

Length (MDL) principle (Lam and Bacchus, 1994), which balances the complexity of a network with

how well it models the data. Friedman adapts the score to include the description length of the infor-

mation required to recover the original data from the discretized data. Within the LearnVariableDP

function, discretization of a variable uses a greedy search starting with an empty threshold list and

considers all midpoints. Since different discretizations only affect certain terms of the description

length, computing a local score, DLlocal, rather than the full score reduces calculations. The choice

of thresholds affects the local score terms related to mutual information. Consequently, thresholds

9

are scored by maximizing the information gain of a candidate threshold t by considering variable i,

current set of thresholds Λi, structure G, and data D:

Gain(t, i, Λ, G, D) = I(fΛi·t(Xi); YΠi
) +

∑
j∈Chi

I(Yj ; fΛ·t(YΠj
))

−I(fΛi(Xi); YΠi) − ∑
j∈Chi

I(Yj ; fΛ(YΠj))

where fΛi·t(Xi) is variable i discretized with the thresholds of Λi and candidate threshold t. The

parent set of variable i is denoted by Πi, and Yi and YΠi
are respectively the previously discretized

variable i and parents of variable i. The term I(fΛi·t(Xi); YΠi
) is the mutual information between

fΛi·t(Xi) and YΠi . Also, Chi is the set of children for variable i, and the term fΛ·t(YΠj) represents

the set of discretized parents for variable j, which includes variable i discretized according to the

thresholds of Λi and threshold t. After adding a threshold, the gain terms from the same interval

as the chosen threshold need to be recomputed. Thresholds are added until the local score, DLlocal,

increases.

After a variable discretization is output from LearnVariableDP, the LearnDP function accepts it

if the description length score, DL, is less than the previous score with the old discretization. The

score of a policy Λ with structure G and data D is:

DL(Λ, G, D) = DLnet(Y, G) + DLΛ(Λ)−N
∑

i

I(Yi;YΠi)

where Y is the set of variables X discretized by Λ, and YΠi is the discretized set of variable i’s

parents. The description length of a network, DLnet, for discretized variables Y and structure G:

DLnet(Y, G) =
∑

i

(log ‖Yi‖+ (1 + |YΠi |) log n) +
log N

2

∑

i

‖YΠi‖(‖Yi‖ − 1)

where ‖Yi‖ and ‖YΠi‖ are the cardinalities of Yi and YΠi , and |YΠi | is the number of parents of Yi.

10

The description length of a discretization policy, DLΛ(Λ) is

DLΛ(Λ) =
∑

i

(‖Xi‖ − 1)H(
ki − 1
‖Xi‖ − 1

)

where ‖Xi‖ is the cardinality of Xi, ki is the number of intervals in Yi, and H(p) = −p log p− (1−

p) log(1− p).

After the LearnDP function stops when the queue of variables is empty, the algorithm proceeds

from the discretization phase of learning to structure learning. The algorithm iterates between the

two phases until terminating when the score increases.

III.2.2 Method by Monti

Instead of using an MDL-motivated scoring function as Friedman does, Monti’s method (Monti,

1999) utilizes a Bayesian-based metric. Monti augments the traditional Bayesian scoring metric

to score a discretization policy with respect to a given data set and structure. The same scoring

function is used for thresholds and the discretization policy.

Discretization of a variable starts with an empty threshold list. Thresholds are added in a greedy

fashion until the scoring function does not increase with a new threshold. To derive the function,

Monti assumes an underlying discrete mechanism governing the behavior of the observed continuous

variables. In this case, each continuous variable Xi is independent of all other variables given the

value of its corresponding discrete variable Yi. This problem formulation results in searching for the

discretization policy that maximizes the posterior probability p (Λ|D). Assuming a uniform prior

p(Λ) means that maximizing the likelihood of the data given the discretization, p (D|Λ), will find

the discretization we want. For a given variable, p (xi|Λ) factors into:

p (xi|Λ) = p (xi|yi, Λ)p (yi|yΠi ,Λ)

where a lower case variable represents the vector of values for the variable, and yi is the discretized

version of xi. By computing the log-likelihood, the score for the discretization becomes a sum of

the discrete component, log p (yi|yΠi , Λ), and continuous component, log p (xi|yi,Λ). The traditional

11

Bayesian scoring metric for discrete data can be used to calculate the discrete component for variable

i with discretization policy Λ and data D:

Sd(i, Λ, D) ≡ log p (yi|yΠi
, Λ)

=
qi∑

j=1

log Γ(αij)
Γ(αij+Nij)

+
ri∑

k=1

log Γ(αijk+Nijk)
Γ(αijk)

where qi is the number of values that the discretized parents of variable i can take, ri is the number

of values that the discretized variable i can take, Nijk is the number of cases in the data where

variable i takes the value k while its parents take the joint value j, Nij =
∑

k Nijk, Γ(·) is the

Gamma function, αijk is a hyperparameter of the Dirichlet distribution, and αij =
∑

k αijk.

The continuous component is the conditional density of the continuous data given the discrete

data. The computation is simplified since the distribution of variable i in the lth instance, x
(l)
i , only

depends on y
(l)
i . By assuming it is a uniform distribution, we get:

Sc(i,Λ, D) ≡ log p (xi|yi,Λ)

=
N∑

l=1

log p (x(l)
i | y(l)

i , x
(1, l−1)
i , y

(1, l−1)
i Λ)

=
N∑

l=1

log p (x(l)
i | y(l)

i , Λ)

=
ri∑

k=1

Nk log 1
∆k

where x
(1, l−1)
i is the first l− 1 cases of xi, ri is the number of intervals, ∆k is the width of the k-th

interval, and Nk is the number of instances where the variable takes value k in the data.

Since the discrete component is affected by the discretization of the parent variables, the algo-

rithm maximizes the score:

SΛ(i, Λ, D, G) = Sc(i, Λi, D) + Sd(i, Λ, D)

+
∑

j∈Chi

Sd(j, Λ, D).

where Chi is the set of variable i’s children. The last term derives from the fact that changing the

discretization of a variable requires re-computing the discretization of all of the variable’s children.

12

This scoring function is used within the LearnVariableDP and LearnDP functions. The algorithm

terminates when the learned graph does not change between iterations.

III.2.3 Method by Steck

Similarly to Monti’s algorithm, Steck’s method (Steck and Jaakkola, 2003) derives a scoring

function for the marginal likelihood p (D|Λ, G) of the data given the discretization policy Λ and

structure G. Steck’s approach considers the data in a sequential manner with steps and transforms

the likelihood into

p (D|Λ, G) =
N∏

l=1

p (x(l)|D(1, l−1),Λ, G)

where x(l) is the instantiation of X at step l and D(1, l−1) = (x(1), . . . , x(l−2), x(l−1)) represents

the data points encountered prior to step l along the sequence1. Since each continuous value only

discretizes to a single value, each term factors into

p (x(l)|D(l−1),Λ, G) = p (x(l)|y(l), Λ) p (y(l)|D(l−1), G, Λ).

Assuming that any two continuous variables are independent conditioned on their corresponding

discrete variables, the term p (x(l)|y(l),Λ) can be additionally factored into

p (x(l)|y(l), Λ) =
n∏

i=1

p (x(l)
i |y(l),Λi).

The conditional densities p (x(l)
i |y(l), Λi) are implicitly estimated by using the finest grid implied by

the data, Ω = (Ω1, . . . , Ωn). The grid discretizes each variable i by a set of thresholds (ωi,1, . . . , ωi,N−1)

such that each value is in a separate interval. The policy Ω defines a mapping from the original

continuous variables to a new vector of discrete variables called Z (i.e. fΩ : X 7→ Z). The algorithm

requires the final discretization policy Λ to be a subset of the thresholds from the finest grid, which

is not really a strict restriction since the thresholds of Ω can be any value between points. Also,

the finest grid defines hypercubes for the n-dimensional vector X with volumes determined by the
1Steck originally used variable Y to designate the continuous variables. I have continued to use X to represent

them for consistency with the previous sections.

13

widths of the intervals for each Ωi.

Now, the densities p (x(l)
i |y(l),Λi) can be factored efficiently via the finest grid:

p (x(l)
i |y(l),Λi,Ωi) = p (x(l)

i |z(l)
i , Ωi)p (z(l)

i |y(l), Λi, Ωi)

Combining the previous equations yields:

p (D|Λ, G, Ω) = p (DΛ|G) ·
(

N∏

l=1

n∏

i=1

p (x(l)
i |z(l)

i ,Ωi)

)
·
(

N∏

l=1

n∏

i=1

p (z(l)
i |y(l), Λi, Ωi)

)

The first term is the likelihood of structure G with data DΛ discretized by Λ and is easily

computed for discrete Bayesian networks with the traditional Bayesian scoring metric(Heckerman

et al., 1995). The second term can be ignored since it is independent of Λ and G. The third

term simplifies by assuming that the probability mass predicted for y(l) is divided evenly among all

hypercubes and that at least one hypercube is mapped to each y. Thus, the final version of the

predictive scoring function is

LP (Λ, G) = log p (DΛ|G)−
n∑

i=1

ri∑

k=1

log Γ(Nki)

where ri is the number of discretization intervals for Xi, and Nki is the number of instances where Xi

takes the value k in the discretized data. This scoring function is used within the LearnVariableDP

and LearnDP functions, and the algorithm terminates when the score decreases.

III.3 Direct Methods

The following approaches learn from continuous data without committing to a final discretization

policy. They adapt the structure learning approaches, search-and-score and constraint-based meth-

ods, to handle continuous data. For the search-and-score strategy, the scoring metric is modified to

score continuous data. For constraint-based methods, a conditional independence test suitable for

continuous data is required.

14

III.3.1 Method by Bach

Bach’s method (Bach and Jordan, 2003) uses a local greedy search with a new scoring function

based on the MDL/BIC score (Lam and Bacchus, 1994), which penalizes the likelihood of a structure

by 1
2 log N times the number of parameters. The maximum likelihood JML can be decomposed as

JML =
∑

i JML(i, πi) where JML(i, πi) = −NI(xi, xπi
). The term πi is the set of parents of node i

in the structure, and I(xi, xπi
) is the mutual information of node i and its parents. Bach’s scoring

function maps the data into high-dimensional feature spaces, calculates the mutual information of

the feature variables, and uses this approximation to rank models during structure learning.

The mapping of the data uses Mercer kernels and treats all data as Gaussian in feature space.

A Mercer kernel on a space X is a function k(x, y) from X 2 to R such that for any set of points

{x(1), . . . , x(N)} in X , the N × N matrix K, defined by Kij = k(xi, xj), is positive semidefinite

(Bach and Jordan, 2003). A Mercer kernel determines a space F and a map Φ from X to F such

that k(x, y) is the dot product in F of Φ(x) and Φ(y).

If there are n random variables X1, . . . , Xn with spaces X1, . . . ,Xn, then assigning a Mercer

kernel ki to each Xi leads to a feature space Fi and feature map Φi. The vector of feature images

φ = (φ1, . . . , φn)
4
= (Φ1(x1), . . . , Φn(xn)) has a covariance matrix C where block Cij is the covariance

matrix between φi and φj . Let φG = (φG
1 , . . . , φG

n) be a jointly Gaussian vector with the same mean

and covariance as φ. The sample covariance matrix of φ can be calculated using the kernel trick,

and the correlation matrix R of φG
i is approximated with an incomplete Cholesky decomposition.

The vector φG is used to calculate the KGV-mutual information2, which is the mutual information

between φG
1 , . . . , φG

n :

IK(x1, . . . , xn) = −1
2

log
|R1n|

|R11| · · · |Rnn|

where |R| is the determinant of the specified correlation matrix , and the subscripts of R denote

the submatrix indexed by the values shown. Bach’s scoring function incorporates KGV into the
2KGV stands for kernel generalized variance.

15

MDL/BIC score by defining the objective function J for a structure G as J(G) =
∑

i J(i, πi) where

J(i, πi) = −NI(xi, xπi
) =

N

2
log

|R{i}∪πi,{i}∪πi
|

|Rπi,πi
||Ri,i| +

dπi
di

2
log N.

In the equation, di is the dimension of the Gaussian variable, and dπi
=

∑
j∈πi(G) dj . The KGV of

the feature variables indirectly approximates the mutual information of the original variables. Since

the likelihood of a structure can be decomposed into terms based on the mutual information of the

original variables, KGV is used to rank models during structure learning.

III.3.2 Constraint-based method

This approach involves a conditional independence test for continuous data to be used with a

constraint-based learning algorithm. In this case, the PC algorithm (Spirtes et al., 2001), which

is the most popular constraint-based learning algorithm, will be used with Fisher’s Z test. The

PC algorithm starts with a complete undirected graph over the set of all variables. All zero order

independence tests are performed, and edges are removed when independence is concluded. Inde-

pendence tests of increasing order are performed to further remove edges. Once no more edges can

be removed, the algorithm orients the edges. Collider nodes are oriented first, and then several other

orientation steps are followed (Spirtes et al., 2001).

Fisher’s Z concludes the independence of two variables X1 and X2 given a set of variables S if

the partial correlation coefficient ρ is zero. Fisher’s Z (Neapolitan, 2003) is calculated by

Z =
1
2

√
N − |S| − 3

(
ln

1 + ρ

1− ρ

)

where N is the sample size, |S| is the number of variables in the conditioning set S, and ρ is the

partial correlation coefficient of X1 and X2 given S. To determine if ρ is zero, we substitute zero

for ρ in the equation and calculate Z. Using a table for the standard normal distribution, we can

determine the probability that the standard normal is greater than our calculated Z value. If the

probability is less than our significance level (i.e. .05), then we reject the hypothesis of conditional

independence. In other words, we would say that X1 and X2 are conditionally dependent given S.

16

CHAPTER IV

RELATED WORK

This chapter reviews previous work in learning Bayesian network structure with continuous data

that is not included in the evaluation. It is organized by the two categories: prediscretization

methods and direct methods. All known integrated methods were included in the evaluation.

IV.1 Prediscretization

Research in discretization has spanned many fields including statistics (Scott, 1992), machine

learning (Liu et al., 2002), and information theory (Gray and Neuhoff, 1998). Kozlov (Kozlov and

Koller, 1997) discussed discretization tailored to Bayesian networks but focused on inference rather

than structure learning. Since discretization techniques are independent of the learning algorithm,

they have been used widely in tasks such as decision tree learning (Catlett, 1991; de Merckt, 1993;

Kohavi and Sahami, 1996) and feature selection (Liu and Setiono, 1997). They are used as pre-

processing steps prior to the induction algorithm and usually perform either merging or splitting of

thresholds. Merging approaches (Kerber, 1992; Tay and Shen, 2002) initially set the discretization

of each variable to all the midpoints of the data. In other words, each data point is in a separate

interval. During each step, thresholds are removed to merge neighboring intervals and decrease the

number of intervals. Splitting approaches start with an empty set of thresholds and all data points

in a single interval. During each step, thresholds are added to split existing intervals and increase

the number of intervals.

The methods can be also categorized as supervised or unsupervised. Supervised methods utilize

class labels associated with data instances (Kerber, 1992; Tay and Shen, 2002; Fayyad and Irani,

1993; Ho and Scott, 1997; Kohavi and Sahami, 1996). They can be characterized further by the

type of measure used to rank candidate thresholds. One possibility is using an information theoretic

measure such as entropy. Entropy methods choose cut-points minimizing entropy in some manner.

For example, Fayyad and Irani’s method (Fayyad and Irani, 1993) starts with one interval and

17

recursively creates binary partitions at each step. For each of the midpoints within the data, it

calculates a quantity called class information entropy of the partition. This weights the entropy of

each potential partition by its relative size. The boundary minimizing the sum of weighted entropies

of the two new intervals is selected. Another possibility is measuring the association between the

variable and class. Examples include zeta (Ho and Scott, 1997) and chi-square (Kerber, 1992; Tay

and Shen, 2002).

Unfortunately, supervised techniques cannot be applied to the structure learning task since they

require a discrete target. Even if we somehow used each variable as a target and discretized accord-

ingly, each variable would be discretized differently with the various targets. It is not clear how to

resolve or merge the different discretizations. Thus, methods are needed that specialize in Bayesian

network structure learning.

The discretization techniques discussed so far have been univariate approaches since they consider

a variable in isolation or in relationship to the class variable. Multivariate discretization approaches

consider the interactions among variables (Kwedlo and Kretowski, 1999; Bay, 2001; Muhlenbach and

Rakotomalala, 2002; Monti and Cooper, 1999). Another possible improvement, in terms of efficiency,

has been work on discarding unpromising thresholds (Elomaa and Rousu, 2004).

IV.2 Direct Methods

Gaussian Bayesian networks (Geiger and Heckerman, 1994) are a search-and-score approach that

assumes continuous data are sampled from a multivariate normal distribution. A limitation is that

only linear dependencies can be learned from data. Imoto’s method (Imoto et al., 2002) overcomes

this restriction by using nonparametric regression models to detect nonlinear relationships among

variables. This approach derives a scoring criterion called BNRC, which stands for Bayesian network

and nonparametric regression criterion. Structure learning performs a greedy search that minimizes

BNRC. The BNRC score uses B-splines as basis functions to model the conditional densities of a

variable given its parents. The BNRC method was excluded from the study because it requires

significant running time, which was mentioned by its authors as a limitation (Imoto et al., 2003).

18

Another type of Bayesian network for continuous data is a Conditional Gaussian network (Lau-

ritzen and Wermuth, 1989), which has the restriction that continuous variables cannot have discrete

descendants. Other approaches use complex conditional distributions (Friedman and Nachman,

2000; Hofmann and Tresp, 1996) or avoid the same distributional assumptions (Nachman et al.,

2004).

Davies’ method (Davies, 2002) is a greedy structure learning algorithm using tree-based density

estimators to score potential network structures. The algorithm inputs an initial network structure

and ranks all single arc additions and deletions with a relatively fast scoring function. Then it

performs the changes in decreasing order of score and estimates the effects of the changes with

a more accurate scoring function. If the new score is greater than the old score, it changes the

parent set of the variable. The scoring functions grow tree structures that represent the conditional

distribution of a variable given its parents and measure how well the tree models the data.

Margaritis (Margaritis, 2005) developed another conditional independence test for constraint-

based methods. To determine if two variables are conditionally independent given a set of variables,

it temporarily discretizes the variables by maximizing the posterior probability of dependence given

the data. If the probability is greater than a certain value, the test concludes dependence. The test

determines the probability of dependence by calculating the likelihoods of modelling the data as

dependent with a joint multinomial distribution or as independent with two marginal multinomial

distributions. Margaritis’ method was not included in they study because of computational restric-

tions. Preliminary experiments with the method revealed that it would require considerable time.

The time needed to compute a single conditional independence test was too long considering the

number of tests needed to learn a full network with multiple variables and a large sample size.

19

CHAPTER V

EXPERIMENTAL EVALUATION

This work performed a comprehensive evaluation of algorithms for Bayesian network structure

learning with continuous data. Comparisons metrics were based on the quality of the learned struc-

tures and the efficiency of the learning process. This study is unique in the range of algorithms ex-

amined. Most studies typically compare fewer methods without including all classes of approaches.

The evaluation aimed to determine if a single method or class of methods would consistently out-

perform other methods over multiple data sets. If a superior method did not emerge, the study

hoped to identify the data characteristics that would favor certain methods. For example, some

methods may be better suited to learn with small sample sizes. Another consideration was whether

the integrated methods provided sufficient performance benefits over binning methods to merit the

additional computational costs.

The following eight algorithms were included in the study:

• Prediscretization methods

– equal-width binning (k = 2, 3)

– equal-frequency binning (k = 2, 3)

– Hartemink’s method

• Integrated methods

– Monti’s method (k = 2, 3)

– Friedman’s method (k = 2, 3)

– Steck’s method (k = 2, 3)

• Direct methods

– Bach’s method

– Constraint-based method with independence test for continuous data

The parameter k specifies the initial number of discretization intervals. The methods requiring this

parameter were run once for each value, and results are presented separately.

All methods required a Bayesian network structure learning algorithm. For the search-and-score

approaches, a standard greedy search was used. After starting with an empty graph, greedy search

performs one of the following three operations: add an edge, delete an edge, or re-orient an edge.

It chooses the action that results in the greatest improvement according to a scoring function. The

20

prediscretization and integrated methods maximized the BDeu score to guide the search during

structure learning phases. Bach’s method utilized a greedy search minimizing its scoring function.

For the constraint-based approach, PC (Spirtes et al., 2001) was used since it is the most popular

constraint-based learning algorithm.

The specifics of the algorithms were discussed in depth in Chapter III. When possible, the au-

thor’s original Matlab code was used, which was the case with Hartemink and Bach’s methods. For

the constraint-based method, we used two different implementations of the PC algorithm: Tetrad

4.3.1 1 and our lab’s Matlab implementation. Tetrad implements a version of PC in Java along with

significant modifications from the original PC algorithm. The details of the changes are unpublished.

The rest of the algorithms were re-implemented in Matlab. In order to ensure that our implementa-

tions were equivalent to the original implementations, we replicated experimental results from the

original papers. All experiments were run in Matlab on Pentium Xeons with 2.4 GHz processors

and 2 GB RAM.

Since we wanted to compare the algorithms on equal footing, some algorithm modifications were

made. Monti’s method used a modified version of K2 (Cooper and Herskovits, 1992), which required

a node ordering, to learn structure. In our implementation, we substituted greedy search since a node

ordering is not always available and to maintain consistency with the other methods. Furthermore,

in Monti’s method, a new variable discretization is accepted if its score is greater than the score of

the previous discretization. However, in our experiments, the discretization learning phase would

not terminate unless we required the new discretization to increase the sum of discretization scores

for all variables. We replicated Monti’s experimental results to verify that the method was not

severely handicapped by the change. These two changes resulted in our implementation varying

slightly from Monti’s original version, but it maintained the essence of the algorithm by interleaving

discretization and structure learning.

Ideally, we would have preferred to use known Bayesian networks with continuous variables.

Since these do no exist, we used simulated data from known discrete networks and real data. The

experimental results are separated by the type of data used for learning.

1Tetrad 4.3.1 is available at http://www.phil.cmu.edu/projects/tetrad/.

21

V.1 Simulated Data

V.1.1 Data Sets

The simulated data used the following networks: Alarm (Beinlich et al., 1989), Child (Cowell

et al., 1999), Hailfinder (Abramson et al., 1996), and Insurance (Binder et al., 1997). They were

derived from real world decision support systems 2:

Table V-1: Bayesian networks used to simulate data.

Num. of Num. of Max In- Max Out- Domain
Network

Variables Edges Degree Degree Range
Alarm 37 46 4 5 2 - 4
Child 20 25 2 7 2 - 6
Hailfinder 56 66 4 16 2 - 11
Insurance 27 52 3 7 2 - 5

Networks with more variables were considered, but preliminary experiments demonstrated that some

methods would require a prohibitive amount of running time.

Continuous data was simulated according to Monti’s technique (Monti, 1999). First, discrete

data was sampled from the known distributions of the networks. Then, each discrete value was

converted into a continuous value by treating it as the mean to a Gaussian distribution with a

pre-specified standard deviation. The value used for the standard deviation was .35, as selected by

Monti. Section V.1.4 includes studies using alternate values for standard deviation. For each of the

networks, five data sets of sizes 500, 1000, and 5000 were generated, and results were averaged over

the five runs.

2Networks available at http://www.cs.huji.ac.il/labs/compbio/Repository

22

−2
0

2
4

6

−2
0

2
4

6
8
0

10

20

30

40

50

60

70

80

90

100

Variable 17Parent (Variable 17)

N
um

be
r

of
 O

cc
ur

en
ce

s

1

2

3

4

0

2

4

6
0

0.1

0.2

0.3

0.4

Variable 17Parent (Variable 17)

W
ei

gh
te

d
C

on
di

tio
na

l P
ro

ba
bi

lit
y

Figure V-1: Left: In the Child network, the data distribution of variable 17 and its parent is a
mixture of Gaussians with heights proportional to the probability of a value given its parent times
the probability that its parent takes that value. Right: For the original discrete values, the heights
of the lines depict the probability of a value given its parent times the probability that its parent
takes that value.

0
1

2
3

4
5

0

1

2

3

4
0

20

40

60

80

100

120

140

Variable 25

N
um

be
r

of
 O

cc
ur

en
ce

s

Parent (Variable 25) 1
1.5

2
2.5

3
3.5

4

1

2

3
0

0.2

0.4

0.6

0.8

1

Variable 25Parent (Variable 25)

W
ei

gh
te

d
C

on
di

tio
na

l P
ro

ba
bi

lit
y

Figure V-2: Left: In the Alarm network, the data distribution of variable 25 and its parent is a
mixture of Gaussians with heights proportional to the probability of a value given its parent times
the probability that its parent takes that value. Right: For the original discrete values, the heights
of the lines depict the probability of a value given its parent times the probability that its parent
takes that value.

The left portions of figures V-1 and V-2 show distributions of variables given their parent from

simulated data sets used in the evaluation. Darkly shaded regions represent frequent occurrences of

data. The distributions are a mixture of Gaussians with heights proportional to the probability of

a value given its parent times the probability that its parent takes that value. The right portions of

the figures display the corresponding probabilities for the original discrete values. The conditional

probability tables are included in Tables V-2 and V-3.

23

Table V-2: Conditional probability table of Child network for variable 17 given its parent.

Parent of X17

X17 1 2 3 4 5 6
1 0.40 0.02 0.02 0.01 0.01 0.40
2 0.43 0.09 0.16 0.02 0.03 0.53
3 0.15 0.09 0.80 0.95 0.95 0.05
4 0.02 0.80 0.02 0.02 0.01 0.02

Table V-3: Conditional probability table of Alarm network for variable 25 given its parent.

Parent of X25

X25 1 2 3
1 0.01 0.01 0.01
2 0.97 0.01 0.01
3 0.01 0.97 0.01
4 0.01 0.01 0.97

This simulation technique favors the binning methods, which univariately discretize variables in

isolation, since the Gaussian behavior is still evident in the marginal distributions of variables, as

shown by Figure V-3. As a result, the binning methods can detect the original discrete values with-

out considering other variables. The simulation technique was used in order to make comparisons

with Monti’s work.

−1 0 1 2 3 4 5 6
0

100

200

300

400

500

600

700

Variable 17

N
um

be
r

of
 O

cc
ur

re
nc

es

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

100

200

300

400

500

600

700

800

900

Variable 25

N
um

be
r

of
 O

cc
ur

re
nc

es

Figure V-3: Left: The marginal distribution of variable 17 from the Child network is Gaussian,
which favors the binning . Right: The marginal distribution of variable 17 from the Alarm network.

24

V.1.2 Metrics for Comparison

Performance was measured as the quality of the learned structure and the efficiency of the learn-

ing procedure. For simulated data, the accuracy metric was Structural Hamming Distance (SHD)

(Tsamardinos et al., 2004). Prior to scoring, the learned graph and true graph are converted into

their equivalent PDAGs (Chickering, 1995) to avoid penalizing statistically indistinguishable struc-

tures. The SHD score penalizes a learned structure for every added, missing, and incorrectly oriented

edge relative to the true structure. For example, if the learned graph has an undirected edge where

the true graph has no edge, the SHD score is increased by 1 point. If the learned graph has an

undirected edge where the true graph has a directed edge, the score is increased by 1 point. If

the learned graph has an extra or missing directed edge, the score is increased by 2 points. The

extra or missing unoriented edge counts for 1 point while the orientation error counts for another

point. The best structure will have the lowest SHD score. For clarity, pseudo-code is included below.

Algorithm 3 SHD Algorithm
1: procedure SHD(Learned DAG pattern H, True DAG pattern G)
2: shd = 0
3: for every edge E different in H from G do
4: if E is missing in H then
5: shd = shd + 1
6: end if
7: if E is extra in H then
8: shd = shd + 1
9: end if

10: if E is incorrectly oriented in H then
% This includes reversed edges and edges that are undirected in one graph and directed
in the other.

11: shd = shd + 1
12: end if
13: end for
14: end procedure

Algorithm efficiency was measured in two ways. The first metric was computational running

time. The second metric was the number of statistical calls made during structure learning. These

calls corresponded to calculations of a scoring function or a conditional independence test. For the

discretization methods, the calls were calculations of the BDeu score. The number of calls was

summed over all iterations of structure learning for the integrated methods. For Bach’s method, the

calls were calculations of Bach’s scoring metric. For PC, the calls were conditional independence

tests.

25

The number of calls provided an efficiency metric since each type of call required roughly the

same amount of time. Furthermore, during structure learning, the algorithms spent most of their

time performing these calls. Unlike running time, this metric is independent of the implementation

or the hardware performing the experiments.

V.1.3 Results

The results were normalized to make a direct comparison of the relative performances of the

algorithms. First, results were averaged over the number of runs for a given network and sample

size. Then, the averaged results were divided by the averaged results of Bach’s method for the same

network and sample size. As a last step, the normalized results were averaged over all networks.

Without normalization, the average would be skewed by large values from the difficult networks.

Bach’s method served as the basis of comparison since it had the best overall performance. Of the

twelve combinations of networks and sample sizes, Bach’s method yielded the lowest SHD four times,

more than any other method. Furthermore, there was only one case (Child network with sample size

of 500) where another method (equal-width binning with k = 3) outperformed it simultaneously on

both metrics.

Table V-4: Average Normalized SHD Results: SHD results were normalized by results of Bach’s
method on the same network and sample size. Results were averaged over all networks. Values
less than one indicate an algorithm learned more accurate networks than Bach’s method for a given
sample size. The numbers at the end of an algorithm denotes k, the number of initial discretization
intervals.

General Average Normalized SHD Average
Category

Algorithm
SS=500 SS=1000 SS=5000 over SS

Eqfreq2 1.40 1.61 1.62 1.55
Eqfreq3 1.12 1.21 1.07 1.13

Preprocessing
Eqwidth2 1.29 1.43 1.46 1.39

Discretization
Eqwidth3 1.04 1.09 0.87 1.00
Hartemink 1.77 2.08 1.60 1.82
Friedman2 1.08 1.15 1.01 1.08

Integrated Friedman3 1.03 1.11 0.91 1.02
Discretization Monti2 1.26 1.41 1.18 1.28
and Structure Monti3 1.06 0.98 0.83 .95

Learning Steck2 1.00 1.04 0.82 .96
Steck3 1.04 1.10 0.78 .97
Bach 1 1 1 1

Direct
PC-Matlab 1.38 1.59 1.70 1.56

Methods
Tetrad4 1.27 1.44 1.23 1.31

26

Quality Results The SHD results are shown in Table V-4 and are separated by sample size.

Averages over sample sizes are also included. An algorithm with a value greater than one produced

more structural errors than Bach’s method on average, and an algorithm with a value less than one

is considered more accurate than Bach’s method.

At the smallest sample size, Bach’s method and Steck’s method (k=2) performed best while

equal-width binning (k=3) was the best pre-discretization method. With sample size 1000, Monti’s

method (k=3) was slightly more accurate than Bach’s method. Once again, equal-width binning

(k=3) was the best pre-discretization method. At the largest sample size, a number of methods

outperformed Bach’s method, specifically equal-width binning (k=3), Friedman’s method (k=3),

Monti’s method (k=3), and Steck’s method (k=2, 3). Overall, equal-width binning (k=3), Monti’s

method (k=3), Steck’s method, and Bach’s method were the most accurate methods from their

respective categories.

For the discretization approaches, the user must specify a parameter for the initial number of

intervals. It is interesting to note the effect this choice had on results. If the initial number of levels

affects accuracy so drastically, it is important for researchers to use the best value. However, there

is no theoretically justified manner for selecting it, and this can be viewed as a weakness for the

class of approaches since researchers can only guess or try a number of values.

Another interesting result is that the binning techniques performed comparably to the integrated

methods. The integrated approaches potentially avoid poor initial discretizations. However, the

theoretical benefits do not appear to warrant the additional computation. Further investigation is

presented in section V.1.4. Specific running time results are detailed in the next section.

27

Table V-5: Average Normalized Time Results: Time results were normalized by results of Bach’s
method on the same network and sample size. Results were averaged over all networks. Values less
than one indicate an algorithm requires less time than Bach’s method for a given sample size. The
numbers at the end of an algorithm denotes k, the number of initial discretization intervals.

General Average Normalized Time Average
Category

Algorithm
SS=500 SS=1000 SS=5000 over SS

Eqfreq2 1.58 1.90 3.24 2.24
Eqfreq3 1.15 1.84 2.69 1.89

Preprocessing
Eqwidth2 1.36 2.01 3.39 2.25

Discretization
Eqwidth3 1.16 1.85 2.50 1.84
Hartemink 179.46 245.24 576.91 333.87
Friedman2 62.92 165.18 1375.24 534.45

Integrated Friedman3 50.53 138.10 1001.61 396.75
Discretization Monti2 139.83 274.30 1327.84 580.65
and Structure Monti3 153.94 388.61 1183.26 575.27

Learning Steck2 244.48 553.39 2464.61 1087.49
Steck3 286.09 536.81 2557.84 1126.91
Bach 1 1 1 1

Direct
PC-Matlab 3.77 7.61 59.94 23.77

Methods
Tetrad4 0.23 0.22 0.22 0.23

Efficiency Results The timing results are shown in Table V-5, and they were normalized in the

same fashion as the SHD results. A value less than one signifies that a method required less time

than Bach’s method on average. Comparisons between Tetrad4 and the other methods should not

be made since the Tetrad implementation was in Java while the others were in Matlab. Tetrad4 has

been excluded from subsequent timing discussion.

As shown in the table, the integrated methods required considerably more time than the other

categories. These methods considered all midpoints in the data, and as sample size increased, the

number of candidate thresholds increased quadratically. Also, the relatively slow performance of

Hartemink’s method demonstrated that discretization methods are not necessarily the fastest since

the discretization process may still require much time.

The fastest methods were the binning approaches and Bach’s method. There were cases where

binning methods required less time than Bach’s method, but when results were averaged over all

networks, Bach’s method was the fastest method. Even though the binning methods are the simplest

techniques, they were not the most efficient, and this finding was explained by using another efficiency

metric.

28

In addition to running time, we analyzed the number of statistical calls made during structure

learning. For the discretization methods, the calls were calculations of the BDeu score. For Bach’s

method, the calls were calculations of Bach’s scoring metric, and for PC, the calls were conditional

independence tests. Table V-6 shows the average normalized number of calls for all algorithms.

Results for Tetrad4 were not reported since Tetrad did not output this information. The binning

methods made fewer calls than Bach’s method for all sample sizes. However, Bach’s method was

faster despite requiring more calls since it pre-computes the correlation matrix, or all the sufficient

statistics, before structure learning. During structure learning, it only needs to compute determi-

nants of the correlation matrix without the data. The binning methods consider the data each time

they calculate a BDeu score to compute the number of instances, which takes more time and is

linear to sample size.

Table V-6: Average Normalized Number of Statistical Calls During Structure Learning: The number
of statistical calls (i.e. calls to a scoring function or conditional independence test) was normalized
by the number of calls performed by Bach’s method on the same network and sample size. Values
less than one indicate an algorithm make fewer calls than Bach’s method for a given sample size.
Results were averaged over all networks. The numbers at the end of an algorithm denotes k, the
number of initial discretization intervals.

General Avg. Norm. Num. of Calls Average
Category

Algorithm
SS=500 SS=1000 SS=5000 over SS

Eqfreq2 0.88 0.73 0.76 0.79
Eqfreq3 0.74 0.73 0.73 0.73

Preprocessing
Eqwidth2 0.89 0.79 0.78 0.82

Discretization
Eqwidth3 0.73 0.69 0.69 0.70
Hartemink 0.69 0.60 0.58 0.62
Friedman2 20.12 20.14 18.63 19.63

Integrated Friedman3 17.08 18.30 15.81 17.06
Discretization Monti2 14.83 14.49 17.66 15.66
and Structure Monti3 12.93 13.59 10.50 12.34

Learning Steck2 19.05 18.88 17.07 18.33
Steck3 19.18 16.70 16.02 17.30
Bach 1 1 1 1

Direct
PC-Matlab 7.40 15.45 76.04 32.96

Methods
Tetrad4 n/a n/a n/a n/a

29

For the integrated methods, we analyzed the number of scoring function calls during the dis-

cretization phases. Results were summed over all iterations and normalized by the results for Fried-

man’s method (k=3) since it performed the fewest number of calls. Table V-7 displays the results.

For comparison purposes, table V-8 shows the timing results for the integrated methods. Fried-

man’s method made the fewest number of calls, while Steck’s method made the most number of

calls. These findings were consistent with the timing results where Friedman’s method was the

fastest, while Steck’s method was the slowest.

Table V-7: Average Normalized Number of Scoring Function Calls During Discretization for the
Integrated Methods: The number of calls to discretization scoring functions was normalized by
the number of calls performed by Friedman’s method (k=3) on the same network and sample size.
Results were averaged over all networks. Values less than one indicate an algorithm made fewer calls
than Friedman’s method (k=3) for a given sample size. The numbers at the end of an algorithm
denotes k, the number of initial discretization intervals.

Avg. Norm. Num. of Calls Average
Algorithm

SS=500 SS=1000 SS=5000 over SS
Friedman2 1.13 1.09 1.15 1.12
Friedman3 1 1 1 1

Monti2 1.29 1.06 1.04 1.13
Monti3 1.41 1.41 0.91 1.25
Steck2 1.87 1.69 1.58 1.71
Steck3 1.90 1.47 1.44 1.60

Table V-8: Average Normalized Time for the Integrated Methods: Time results were normalized by
results of Bach’s method on same network and sample size. Results were averaged over all networks.
Values less than one indicate an algorithm requires less time than Bach’s method for a given sample
size. The numbers at the end of an algorithm denotes k, the number of initial discretization intervals.

Avg. Norm. Time Average
Algorithm

SS=500 SS=1000 SS=5000 over SS
Friedman2 62.92 165.18 1375.24 534.45
Friedman3 50.53 138.10 1001.61 396.75

Monti2 139.83 274.30 1327.84 580.65
Monti3 153.94 388.61 1183.26 575.27
Steck2 244.48 553.39 2464.61 1087.49
Steck3 286.09 536.81 2557.84 1126.91

30

Comparison of SHD and Time Results By graphing SHD and time on the same graph, we

can analyze the tradeoffs between quality and efficiency. For example, if a method provided slight

quality gains but required much more time, then the improvement in accuracy might not be worth

the additional computation. Figures V-4, V-5, and V-6 display the data previously reported in

Tables V-4 and V-5. The x-axis depicts average normalized time, while the y-axis depicts average

normalized SHD. Each point represents the performance of an algorithm for both metrics. If a point

is left of another point, then it is faster than the other algorithm. If a point is below another point,

then it is more accurate than the other algorithm. Point (1,1) denotes Bach’s method since it is

used for normalization.

With sample size 500, Bach’s method was the faster of the two most accurate methods. With

sample size 1000, Monti’s method (k=3) was slightly more accurate than Bach’s method but required

much more time. With a sample size of 5000, a number of algorithms yielded better accuracy results

than Bach’s method, but all of them required more time. In all cases, there was no method that

simultaneously outperformed Bach’s method in accuracy and efficiency.

31

10
−1

10
0

10
1

10
2

10
3

10
4

10
−0.1

10
0

10
0.1

10
0.2

#

Better Quality

Faster

Faster &
Better

Log Normalized Time

Lo
g

N
or

m
al

iz
ed

 S
H

D

Eqfreq2
Eqfreq3
Eqwidth2
Eqwidth3
Hartemink
Friedman2
Friedman3
Monti2
Monti3
Steck2
Steck3
Bach
PC−Matlab
Tetrad4#

Figure V-4: Normalized Time vs. Normalized SHD for Sample Size 500.

10
−1

10
0

10
1

10
2

10
3

10
4

#

Better Quality

Faster

Faster &

Better

Log Normalized Time

Lo
g

N
or

m
al

iz
ed

 S
H

D

Eq−freq2
Eq−freq3
Eq−width2
Eq−width3
Hartemink
Friedman2
Friedman3
Monti2
Monti3
Steck2
Steck3
Bach
PC−Matlab
Tetrad4100

100.1

100.2

100.3

Figure V-5: Normalized Time vs. Normalized SHD for Sample Size 1000.

10
−1

10
0

10
1

10
2

10
3

10
4

10
−0.1

10
0

10
0.1

10
0.2

#

Better Quality

Faster

Faster &

Better

Log Normalized Time

Lo
g

N
or

m
al

iz
ed

 S
H

D

Eqfreq2
Eqfreq3
Eqwidth2
Eqwidth3
Hartemink
Friedman2
Friedman3
Monti2
Monti3
Steck2
Steck3
Bach
PC−Matlab
Tetrad4#

Figure V-6: Normalized Time vs. Normalized SHD for Sample Size 5000.

32

V.1.4 Supplemental Results

Comparison of Binning Methods to Integrated Methods

Using SHD as the quality metric, the integrated methods did not learn better structures than

the binning methods. These results do not necessarily contradict Friedman’s results (Friedman and

Goldszmidt, 1996) since that evaluation focused on classification. Furthermore, Steck’s evaluation

(Steck and Jaakkola, 2003) did not perform a quantitative analysis. However, our results contra-

dicted Monti’s conclusion that his method yielded more accurate structures than equal-frequency

binning (Monti, 1999). His findings employed a different quality metric, the percentage of extrane-

ous and missing edges relative to the true structure. These values were calculated as the number of

extraneous or missing edges divided by the total number of edges in the true graph. Results were

averaged over all sample sizes and all values for k. Performing a similar analysis of our data results

in Table V-9.

Monti’s evaluation used the same values for k but consisted of sample sizes 1000, 2000, and

3000. The only common network between both evaluations is Alarm. The remaining networks were

included for completeness along with the results for the other methods.

Table V-9: Average Percentage of Extraneous and Missing Edges: E is the average percentage of
extraneous edges for the structures learned by an algorithm for a given network. M is the average
percentage of missing edges for the structures learned by an algorithm for a given network. These
values were calculated as the number of extraneous or missing edges divided by the total number of
edges in the true graph. Results were averaged over all sample sizes and all values for k, the number
of initial intervals.

Alarm Child Hailfinder Insurance
Algorithm E M E M E M E M
Eqfreq 0.31 0.60 0.29 0.36 0.68 0.41 0.21 0.51
Eqwidth 0.37 0.42 0.24 0.33 0.56 0.43 0.18 0.46

Hartemink 0.76 0.73 0.63 0.73 0.74 0.88 0.43 0.78
Friedman 0.41 0.51 0.13 0.27 0.46 0.41 0.16 0.39

Monti 0.18 0.45 0.18 0.35 0.48 0.49 0.14 0.50
Steck 0.20 0.53 0.08 0.29 0.43 0.45 0.10 0.42
Bach 0.24 0.41 0.10 0.32 0.46 0.44 0.11 0.50

PC-Matlab 0.69 0.30 0.46 0.20 0.86 0.47 0.30 0.39
Tetrad4 0.21 0.69 0.23 0.49 0.17 0.71 0.06 0.75

For Alarm, Monti and Steck’s methods produced a lower proportion of extraneous and missing

edges than equal-frequency binning. Monti did not include results for equal-width binning. These

findings are consistent with Monti’s evaluation. For the remaining networks, all integrated methods

output less extraneous edges while showing mixed results with respect to missing edges.

33

The edge identification results imply that the integrated methods are better than the binning

methods for detecting dependencies and independencies among variables. However, the discrepancy

with the SHD results suggests that the integrated methods may make relatively more errors when

orienting edges or identifying the directionality of the relationship between dependent variables.

This observation would explain why performance gains in edge identification did not translate to

results based on SHD.

Simulated Data with Different Values of Sigma

An additional experiment explored the effect of using different standard deviation values during

simulation. The purpose was to determine if algorithm performance varied depending on noise. From

each category, the method with lowest average SHD over all networks and sample sizes was selected:

equal width binning (k=3), Monti’s method (k=3), and Bach’s method. Data was simulated for all

networks with sigma values of .30 and .40 to contrast the original value of .35. The results were

not normalized to observe absolute changes in SHD. The graphs of SHD for each sigma value are in

figures V-7, V-8, and V-9. For sample sizes 500 and 1000, SHD increased with larger sigma values.

For sample size 5000, SHD did not fluctuate as much as it did with smaller sizes. The slight dip at

0.35 was probably an artifact of the SHD metric. With large sample size, more orientation errors

likely occurred since an algorithm is more confident with additional data instances. This claim was

supported by considering the extraneous and missing edge errors. For sample sizes 500 and 1000,

SHD values increased with larger sigma values due to more missing edges. For sample size 5000,

the number of missing edges similarly increased. The reason that SHD did not exhibit the same

increasing behavior with large sample size was probably due to more orientation errors for sigma

values 0.30 and 0.40.

34

0.3 0.35 0.4
58

60

62

64

66

68

70

Sigma Value

S
H

D

Eqwidth3
Monti3
Bach

Figure V-7: SHD with Multiple Sigma Values for Simulated Data of Sample Size 500.

0.3 0.35 0.4
58

60

62

64

66

68

70

Sigma Value

S
H

D Eqwidth3
Monti3
Bach

Figure V-8: SHD with Multiple Sigma Values for Simulated Data of Sample Size 1000.

0.3 0.35 0.4
58

60

62

64

66

68

70

72

74

76

78

80

Sigma Value

S
H

D

Eqwidth3
Monti3
Bach

Figure V-9: SHD with Multiple Sigma Values for Simulated Data of Sample Size 5000.

35

V.2 Real Data

V.2.1 Data Sets

Real data sets were used from the UCI Machine Learning Repository3. Also, Hartemink’s yeast

data set (Hartemink et al., 2002) was used. The data sets ranged in size from 270 to 4000 cases as

well as from 8 to 19 variables. Table V-10 lists the data sets used in the evaluation.

Table V-10: Real data sets: D is the number of discrete variables, and C is the number of continuous
variables. Max Card. is the maximum cardinality for all continuous variables. In other words, it is
the maximum number of unique values. Min Card. and Avg. Card are the minimum and average
cardinalities for all continuous variables.

Sample Max Min Avg
Network

Size
D C

Card. Card. Card.
Abalone 4175 1 8 2429 28 759.25
Australian 690 9 6 350 23 188.50
Breast 683 1 10 10 9 9.89
Cars1 392 1 7 346 13 125.83
Cleve 296 8 6 152 40 74.80
Hartemink 320 0 32 317 301 314.03
Heart 270 9 5 144 39 72.20
Housing 506 1 13 504 9 235.62
Pima 768 1 8 517 17 156.75
Vehicle 846 1 18 424 13 79.4

Real data do not necessarily exhibit the same Gaussian distributions as the simulated data sets.

Figure V-10 shows an example from the Cars data set of the joint distribution of the target variable

and the most associated variable to it as measured by Fisher’s Z-test.

0

10

20

30

40

50

1000

2000

3000

4000

5000

6000
0

1

2

3

4

5

6

7

8

TargetVariable 5

N
um

be
r

of
 O

cc
ur

en
ce

s

Figure V-10: For the Cars data set, the distribution of the target and its most associated variable
does not show the same Gaussian behavior as the simulated data.

3Data sets available at http://www.ics.uci.edu/ mlearn/MLRepository.html

36

V.2.2 Metrics of Comparison

Unlike the simulated data sets, we do not know the true generating structures for the real data

sets. Instead of using SHD to measure quality, Bach’s scoring function was used to rank structures,

and it was explained in detail in section III.3.1. A disadvantage of this metric is that it favors

Bach’s method. Using a Bayesian score such as the BDe score was considered, but this score

requires all methods to output a final discretization of the data. Unfortunately, the direct methods

do not discretize the data, which makes this approach unsuitable. Once again, running time and

the number of statistical calls were used to evaluate the efficiency of the algorithms.

V.2.3 Results

All results were normalized in the same fashion as those from the simulated data.

Table V-11: Results for Average Normalized Bach Score, Time, and Number of Statistical Calls:
Results were normalized by results of Bach’s method on the same data set. Results were averaged
over all data sets. For the score results, values less than one denote that a method learned lower
quality networks than Bach’s method. For the time results, values less than one denote that a
method required less time than Bach’s method. For the number of calls results, values less than
one denote that a method made fewer calls than Bach’s method. The numbers at the end of an
algorithm denotes k, the number of initial discretization intervals.

General Avg. Norm. Avg. Norm. Avg. Norm.
Category

Algorithm
Score Time Num. of Calls

Eqfreq2 0.91 1.14 0.68
Eqfreq3 0.95 1.04 0.63

Preprocessing
Eqwidth2 0.79 0.97 0.60

Discretization
Eqwidth3 0.89 0.92 0.59
Hartemink 0.88 47.14 0.67
Friedman2 0.91 288.25 2.86

Integrated Friedman3 0.91 169.32 2.48
Discretization Monti2 0.71 278.47 2.23
and Structure Monti3 0.84 194.05 2.08

Learning Steck2 0.93 691.65 3.06
Steck3 0.92 502.56 2.62
Bach 1 1 1

Direct
PC-Matlab 1.13 4.69 2.55

Methods
Tetrad4 0.68 0.53 n/a

Quality Results The score results are shown in Table V-11. An algorithm with a value greater

than one produced a greater quality structure than Bach’s method. Bach’s method and PC-Matlab

induced the highest quality structures. For the prediscretization category, equal-frequency binning

37

(k=3) was better than equal-width binning. The simulated data likely favored equal-width binning

since the Gaussian distributions that centered around the original discrete values had equal widths.

Also, Friedman and Steck’s methods were the best integrated methods.

Two direct methods were distinctly better than the discretization methods. This differentiation

did not appear in the simulated data, which suggests an important difference between the approaches

and types of data. Discretization methods assume continuous data are noisy observations of an

underlying discrete mechanism. Direct methods do not make this assumption. The simulated

data sets were generated in a manner consistent with the assumptions made by the discretization

methods, while the real data sets do not. The lack of an underlying discrete mechanism may explain

the difference between performances on the two types of data.

Efficiency Results The timing results are shown in Table V-11. A value less than one signifies

that a method required less time on average than Bach’s method. The timing results for the real

data were consistent with those from the simulated data. Bach’s method required approximately the

same amount of time on average as the binning methods. As with the simulated data, the integrated

methods were much slower than the other methods.

Results for the number of statistical calls made by each algorithm during structure learning are

also shown in Table V-11. A value less than one denotes that a method made fewer calls than Bach’s

method. As with the simulated data, the binning methods made fewer calls than Bach’s method.

For the integrated methods, the results for the number of calls during the discretization phase

are presented along with the timing results in Table V-12. The findings confirm the results from the

simulated data that Friedman’s method was the most efficient while Steck’s method was the least

efficient.

38

Table V-12: Average Normalized Number of Scoring Function Calls During Discretization for the
Integrated Methods: The number of calls to discretization scoring functions was normalized by
the number of calls performed by Friedman’s method (k=3) on the same data set. Values greater
than one indicate an algorithm made more calls than Friedman’s method (k=3). Results were
averaged over all data sets. The numbers at the end of an algorithm denotes k, the number of initial
discretization intervals. The timing results are included for comparison.

Avg. Norm. Avg. Norm.
Algorithm

Num. of Calls Time
Friedman2 1.19 288.25
Friedman3 1 169.32

Monti2 1.37 278.47
Monti3 1.39 194.05
Steck2 2.25 691.65
Steck3 1.73 502.56

10
−1

10
0

10
1

10
2

10
3

10
4

10
−0.1

10
0

#

Better Quality

Faster

Faster &
Better

Log Normalized Time

Lo
g

N
or

m
al

iz
ed

 B
ac

h
S

co
re

Eq−freq2
Eq−freq3
Eq−width2
Eq−width3
Hartemink
Friedman2
Friedman3
Monti2
Monti3
Steck2
Steck3
Bach
PC−Matlab
Tetrad4#

Figure V-11: Normalized Time vs. Normalized Score for Real Data: The y-axis was flipped to
maintain consistency with previous figures.

Comparison of Score with Time Figure V-11 displays the data previously reported in Table V-

11 with the y-axis flipped. The transformation was necessary to maintain consistency with previous

figures. The x-axis depicts average normalized time, while the y-axis depicts average normalized Bach

score. Each point represents algorithm performance for both metrics. If a point is left of another

point, then it is faster than the other algorithm. If a point is below another point, then it output

higher quality structures. Point (1,1) denotes Bach’s method since it is used for normalization.

Bach’s method resulted in higher quality structures compared to the binning methods while

requiring about the same amount of time. PC-Matlab produced better graphs compared to Bach’s

method but required more time. Finally, the integrated methods produced structures comparable

39

to the binning methods in terms of quality but required considerably more time.

V.3 Summary of Results

The empirical evaluation compared the performances of eight algorithms on two types of con-

tinuous data. Performance was measured by the quality of learned structures and efficiency. The

discretization-based approaches yielded the most accurate structures when learning from simulated

data with large sample size. These methods assume that data is generated from an underlying

discrete mechanism, which was true for the simulated data. With small simulated data sets, Steck’s

method (k=2) was as accurate as Bach’s method but required more time. With real data, two

direct methods, Bach’s method and PC-Matlab, learned the highest quality structures. In terms of

efficiency, Bach’s method was fastest with respect to running time. When the number of statistical

calls was measured, the binning methods were most efficient.

Another finding was that the integrated methods did not necessarily learn more accurate struc-

tures than the binning methods. The SHD results demonstrated comparable performances between

the integrated and binning methods. However, the integrated methods learned more accurate struc-

tures when we ignored edge orientation errors.

Overall, Steck’s method and Bach’s method were the best methods from their respective cat-

egories. Equal-width binning (k=3) was the best pre-discretization approach for simulated data,

while equal-frequency binning (k=3) was better with real data.

40

CHAPTER VI

DISCUSSION

Biomedical researchers today often study continuous data sets, and Bayesian network structure

learning algorithms are an increasingly popular tool for learning the relationships among variables.

This work focused on the task of learning Bayesian network structure from continuous data. It

compared the three general approaches of discretization as a preprocessing step, integrating dis-

cretization and structure learning, and learning directly with continuous data.

The conclusions from the study may benefit researchers learning Bayesian network structure

from continuous data. First, of the methods included, Bach’s method demonstrated the best overall

performance across all comparison metrics and data types. This is an important finding since

it showed that a direct method can be as efficient as the binning approaches. Furthermore, the

assumptions made by this direct method did not prohibit it from learning accurate structures.

The work also emphasized the importance of considering the nature of the data. If the data

is fundamentally discrete, a discretization-based approach is appropriate. Discretization techniques

assume that data are noisy observations originating from an underlying discrete mechanism, while

the direct methods do not. Also, the sample size of the data should be factored into the decision of

which approach to utilize since the discretization methods performed best with large sample size.

Another goal of the work was to assess whether the integrated methods provided quality im-

provements over the binning methods. The purpose of the integrated methods is to improve the

accuracy of pre-discretization approaches by avoiding poor initial discretizations. When consider-

ing edge orientation of the induced structures, integrated methods did not provide benefits that

would warrant the additional computation. However, when only factoring in edge identification, the

integrated methods increased accuracy.

41

VI.1 Limitations

While this work performed a comparison of the three approaches in a unified study, there were

some limitations that could be addressed in future work. First, the evaluation would have benefited

from known gold standards for continuous Bayesian networks. In the absence of such networks,

simulated and real data sets without known structures were used. Second, the simulation technique

was relatively simple. Real world data does not necessarily start as discrete data with added Gaussian

noise. However, it still provided useful insights, such as the improved performance of discretization

with large sample sizes, which may generalize. Third, for the real data sets, Bach’s scoring metric

was a biased metric. Although there is no guarantee that the learned structures resembled the true

networks, it still provided some intuition about the quality of the learned structure.

VI.2 Future Work

The results displayed the effect that the number of initial intervals can have on the output of

discretization-based methods. This experimental evaluation only tried two values, but it would be

useful for researchers if studies were conducted to identify scenarios where more or fewer intervals

would yield better results. Also, researchers would benefit if there were some recommendations on

how to select the number of intervals instead of simply guessing or trying multiple values.

Another extension to this work could be comparing algorithm performance on data sets of dif-

ferent characteristics from those presented. One option is studying networks with more variables. A

class of methods may be better suited than the others to handle the additional requirements. An-

other option is studying smaller sample sizes. Real world data sets do not always have thousands of

instances, and small data sets would more closely mimic the situations encountered by researchers.

Bach’s method demonstrated that directly learning with continuous data does not necessarily in-

volve crippling assumptions or excessive computational requirements. This work was not exhaustive,

and there were some methods that were not included due to computational restrictions. These meth-

ods should be investigated further. Also, the development of a novel method for learning directly

with continuous data is another possible direction to continue this work.

42

BIBLIOGRAPHY

Abramson, B., Brown, J., Edwards, W., Murphy, A., and Winkler, R. (1996). Hailfinder: A bayesian
system for forecasting sever weather. International Journal of Forecasting, 12(1):57–71.

Antal, P., Fannes, G., Timmerman, D., Moreau, Y., and De Moor, B. (2003). Bayesian applications of
belief networks and multilayer perceptrons for ovarian tumor classification with rejection. Artificial
Intelligence in Medicine, 29(1-2):39–60.

Bach, F. R. and Jordan, M. I. (2003). Learning graphical models with mercer kernels. In S. Becker,
S. T. and Obermayer, K., editors, Advances in Neural Information Processing Systems 15, pages
1009–1016. MIT Press, Cambridge, MA.

Bay, S. D. (2001). Multivariate discretization for set mining. Knowledge and Information Systems,
3(4):491–512.

Beinlich, I., Suermondt, G., R., C., and Cooper, G. (1989). The alarm monitoring system: A case
study with two probabilistic inference techniques for belief networks. In 2nd European Conference
in Artificial Intelligence in Medicine, pages 247–256.

Binder, J., Koller, D., Russell, S., and Kanazawa, K. (1997). Adaptive probabilistic networks with
hidden variables. Machine Learning, 29(2-3):213–244.

Burnside, E. S., Rubin, D. L., and Shachter, R. D. (2004). Using a bayesian network to predict
the probability and type of breast cancer represented by microcalcifications on mammography. In
Proceedings of the 11th World Congress on Medical Informatics (Medinfo 2004), pages 13–18.

Catlett, J. (1991). On changing continuous attributes into ordered discrete attributes. In Proceedings
of the Fifth European Working Session on Learning.

Chickering, D. M. (1995). A transformational characterization of equivalent bayesian network struc-
tures. In Proceedings of the 11th Annual Conference on Uncertainty in Artificial Intelligence
(UAI-95), pages 87–98. Morgan Kaufmann Publishers.

Cooper, G., Dash, D., Levander, J., Wong, W.-K., Hogan, W., and Wagner, M. (2004). Bayesian
biosurveillance of disease outbreaks. In Proceedings of the 20th Annual Conference on Uncertainty
in Artificial Intelligence (UAI-04), pages 94–103, Arlington, Virginia. AUAI Press.

Cooper, G. F. and Herskovits, E. (1992). A bayesian method for the induction of probabilistic
networks from data. Machine Learning, 9(4):309–347.

Cowell, R., Dawid, A., Lauritzen, S., and Spiegelhalter, D. (1999). Probabilistic Networks and Expert
Systems. Springer.

Davies, S. (2002). Fast Factored Density Estimation and Compression with Bayesian Networks. PhD
thesis, Carnegie Mellon University.

de Merckt, T. V. (1993). Decision trees in numerical attribute spaces. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence (IJCAI-93), pages 1016–1021. Morgan Kauf-

43

mann.

Dougherty, J., Kohavi, R., and Sahami, M. (1995). Supervised and unsupervised discretization of
continuous features. In International Conference on Machine Learning, pages 194–202.

Elomaa, T. and Rousu, J. (2004). Efficient multisplitting revisited: Optima-preserving elimination
of partition candidates. Data Mining and Knowledge Discovery, 8(2):97–126.

Fayyad, U. M. and Irani, K. B. (1993). Multi-interval discretization of continuous-valued attributes
for classification learning. In Proceedings of the International Joint Conference on Artificial In-
telligence (IJCAI-93), pages 1022–1027. Morgan Kaufmann.

Friedman, N. (2004). Inferring cellular networks using probabilistic graphical models. Science,
303(5659):799–805.

Friedman, N. and Goldszmidt, M. (1996). Discretizing continuous attributes while learning bayesian
networks. In Proceedings of the 13th International Conference on Machine Learning (ICML).

Friedman, N., Linial, M., Nachman, I., and Pe’er, D. (2000). Using bayesian networks to analyze
expression data. Journal of Computational Biology, 7(3-4):601–620.

Friedman, N. and Nachman, I. (2000). Gaussian process networks. In Proceedings of the 16th Annual
Conference on Uncertainty in Artificial Intelligence (UAI-00), pages 211–219, San Francisco, CA.
Morgan Kaufmann Publishers.

Geiger, D. and Heckerman, D. (1994). Learning gaussian networks. In Proceedings of the 10th Annual
Conference on Uncertainty in Artificial Intelligence (UAI-94), pages 235–243, San Francisco, CA.
Morgan Kaufmann Publishers.

Gray, R. M. and Neuhoff, D. L. (1998). Quantization. IEEE Transactions on Information Theory,
44(6):1–63.

Hartemink, A. J. (2001). Principled Computational Methods for the Validation and Discovery of
Genetic Regulatory Networks. PhD thesis, Massachusetts Institute Of Technology.

Hartemink, A. J., Gifford, D. K., Jaakkola, T. S., and Young, R. A. (2002). Combining location and
expression data for principled discovery of genetic regulatory network models. In Proceedings of
the Pacific Symposium on Biocomputing, pages 437–449.

Heckerman, D., Geiger, D., and Chickering, D. M. (1995). Learning bayesian networks: The combi-
nation of knowledge and statistical data. Machine Learning, 20(3):197–243.

Helman, P., Veroff, R., Atlas, S. R., and Willman, C. (2004). A bayesian network classification
methodology for gene expression data. Journal of Computational Biology, 11(4):581–615.

Ho, K. and Scott, P. D. (1997). Zeta: A global method for discretization of continuous variables. In
Third International Conference of Knowledge Discovery and Data Mining.

Hofmann, R. and Tresp, V. (1996). Discovering structure in continuous variables using bayesian

44

networks. In Touretzky, D. S., Mozer, M. C., and Hasselmo, M. E., editors, Advances in Neural
Information Processing Systems, volume 8, pages 500–506. The MIT Press.

Imoto, S., Goto, T., and Miyano, S. (2002). Estimation of genetic networks and functional structures
between genes by using bayesian network and nonparametric regression. In Pacific Symposium
On Biocomputing.

Imoto, S., Kim, S., Goto, T., Aburatani, S., Tashiro, K., Kuhara, S., and Miyano, S. (2003). Bayesian
network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network.
Journal of Bioinformatics and Computational Biology, 1(2):231–252.

Kerber, R. (1992). Chimerge: Discretization of numeric attributes. In Proceedings of the Tenth
National Conference on Artificial Intelligence, pages 123–128.

Kohavi, R. and Sahami, M. (1996). Error-based and entropy-based discretization of continuous
features. In Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining, pages 114–119.

Kozlov, A. and Koller, D. (1997). Nonuniform dynamic discretization in hybrid networks. In
Proceedings of the 13th Annual Conference on Uncertainty in Artificial Intelligence (UAI-97),
pages 314–325, San Francisco, CA. Morgan Kaufmann Publishers.

Kwedlo, W. and Kretowski, M. (1999). An evolutionary algorithm using multivariate discretization
for decision rule induction. In Principles of Data Mining and Knowledge Discovery, pages 392–397.

Lam, W. and Bacchus, F. (1994). Learning bayesian belief networks: An approach based on the mdl
principle. Computational Intelligence, 10(4):269–293.

Lauritzen, S. L. and Wermuth, N. (1989). Graphical models for associations between variables, some
of which are qualitative and some quantitative. The Annals of Statistics, 17(1):31–57.

Liu, H., Hussain, F., Tan, C. L., and Dash, M. (2002). Discretization: An enabling technique. Data
Mining and Knowledge Discovery, 6(4):393–423.

Liu, H. and Setiono, R. (1997). Feature selection via discretization. Knowledge and Data Engineering,
IEEE Transactions on, 9(4):642–645.

Lucas, P. J. F., van der Gaag, L. C., and Abu-Hanna, A. (2004). Bayesian networks in biomedicine
and health-care. Artificial Intelligence in Medicine, 30(3):201–214.

Margaritis, D. (2005). Distribution-free learning of bayesian network structure in continuous do-
mains. In Proceedings of The Twentieth National Conference on Artificial Intelligence (AAAI).

Monti, S. (1999). Learning Hybrid Bayesian Networks from Data. PhD thesis, University of Pitts-
burgh.

Monti, S. and Cooper, G. (1999). A latent variable model for multivariate discretization. In Pro-
ceedings of the Seventh International Workshop on AI & Statistics (Uncertainty 99).

45

Muhlenbach, F. and Rakotomalala, R. (2002). Multivariate supervised discretization, a neighborhood
graph approach. In Proceedings of the IEEE International Conference on Data Mining (ICDM),
pages 314–321.

Nachman, I., Elidan, G., and Friedman, N. (2004). ideal parent structure learning for continuous
variable networks. In Proceedings of the 20th Annual Conference on Uncertainty in Artificial
Intelligence (UAI-04), pages 400–409, Arlington, Virginia. AUAI Press.

Neapolitan, R. E. (2003). Learning Bayesian Networks. Prentice Hall.

Pe’er, D., Regev, A., Elidan, G., and Friedman, N. (2001). Inferring subnetworks from perturbed
expression profiles. Bioinformatics, 17(90001):215S–224.

Pournara, I. and Wernisch, L. (2004). Reconstruction of gene networks using bayesian learning and
manipulation experiments. Bioinformatics, 20(17):2934–2942.

Robles, V., Larranaga, P., Pena, J. M., Menasalvas, E., Perez, M. S., Herves, V., and Wasilewska,
A. (2004). Bayesian network multi-classifiers for protein secondary structure prediction. Artificial
Intelligence in Medicine, 31(2):117–136.

Scott, D. W. (1992). Multivariate Density Estimation. John Wiley & Sons, Inc.

Spirtes, P., Glymour, C., and Scheines, R. (2001). Causation, Prediction, and Search. MIT Press.

Steck, H. and Jaakkola, T. (2003). (semi)-predictive discretization during model selection. Technical
report, Massachusetts Institute of Technolody.

Tay, F. and Shen, L. (2002). A modified chi2 algorithm for discretization. Knowledge and Data
Engineering, IEEE Transactions on, 14(3):666–670.

Tsamardinos, I., Brown, L. E., and Aliferis, C. F. (2004). The max-min hill-climbing bayesian
network structure learning algorithm. Technical Report DSL TR-05-01, Vanderbilt University.

Yoo, C. and Cooper, G. F. (2004). An evaluation of a system that recommends microarray ex-
periments to perform to discover gene-regulation pathways. Artificial Intelligence in Medicine,
31(2):169–182.

46

