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CHAPTER I

INTRODUCTION

Bayesian networks have become a popular tool in biomedical research (Friedman, 2004; Lucas
et al., 2004). Researchers utilize them for tasks such as reasoning with uncertainty, classification,
and causal discovery in areas ranging from clinical applications to basic science research. Examples
of clinical uses include decision support systems and medical diagnosis. Specific tasks include aiding
in tumor classification (Antal et al., 2003) or radiology (Burnside et al., 2004). In basic science
research, Bayesian networks are widely used in the study of gene regulatory networks (Friedman
et al., 2000; Pe’er et al., 2001; Helman et al., 2004) and other applications such as protein secondary
structure prediction (Robles et al., 2004). Furthermore, Bayesian networks are capable of suggesting
manipulation experiments in the study of gene networks (Yoo and Cooper, 2004; Pournara and
Wernisch, 2004) as well as detecting disease outbreak (Cooper et al., 2004). Learning the Bayesian
network structure of a system or environment gives researchers useful information about the causal
relationships among variables.

Despite the diverse applicability of Bayesian networks, the fact that most Bayesian network
structure learning algorithms require discrete data is a limitation since biomedical and biological
data routinely are continuous. There are three general approaches to learning network structure

with continuous data.

e Prediscretization methods: the data is discretized prior to application of the learning algorithm.
Due to the pertinence of these methods to most machine learning algorithms, a great deal of
research has focused on this area (Liu et al., 2002). Unfortunately, many of these methods focus
on supervised classification and are not applicable to Bayesian network structure learning, but

we can still use those that are not tailored to classification.

e Integrated methods: the learning of the variable discretization and structure can be integrated
(Friedman and Goldszmidt, 1996; Monti, 1999; Steck and Jaakkola, 2003). These methods

follow greedy, iterative procedures by starting with an initial discretization, learning a model



based on the discretized data, and re-discretizing given the learned model. These steps repeat
until a termination condition is met. The approaches output a discretization of the input

variables.

e Direct methods: learning can be done directly with continuous data without committing to a
specific discretization of the variables (Bach and Jordan, 2003; Margaritis, 2005; Imoto et al.,

2003).

Typically, studies use prediscretization techniques, such as frequency-based partitions. The main
advantage of this approach is efficiency. Discretization is performed initially before applying a
discrete learning algorithm. Another advantage is the easy interpretation of data (Dougherty et al.,
1995). For example, if a researcher deems that the most sensible discretization of a gene expression
measurement is three levels, this could be interpreted as three states: low, average, and elevated
expression level. Also, if it is believed that the variables naturally are discrete but the data is
continuous due to noisy observations, then discretization appears justified (Hartemink, 2001).

On the other hand, discretization unavoidably results in loss of information (Friedman et al.,
2000). All variation within an interval is discarded. Poor decisions about the size or number of
discretization levels can disadvantage the learning algorithm since dependencies between variables

may become undetectable. Margaritis (Margaritis, 2005) provides an example shown in Figure I-1.
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Figure I-1: An example of how discretization can obscure the dependencies and independencies
between variables (Margaritis, 2005). The top row shows two dependent variables on the left and
two independent variables on the right. When they are discretized into three values, the histograms
look similar.

In the first row, the left box depicts two dependent variables with each axis representing a vari-
able. The right box depicts two independent variables. The second row displays the results of
discretizing each variable into three equally sized intervals. Darkly shaded boxes signify highly pop-
ulated cells. The histograms are similar despite the inital fact that one case was strongly dependent
while the other was independent. A learning algorithm with access only to the discretized data will
have difficulties as a result of discretization. Thus, by neglecting to adequately address the ramifica-
tions of discretization, researchers can lose vital information such as interactions and dependencies
between variables and hinder structure learning.

The alternative methods pose other strengths and weaknesses. Integrated methods do not neces-
sarily commit to a poor initial discretization. If the initial discretization is poor, it will be modified
in a subsequent iteration. Also, integrated methods are tailored to Bayesian network learning. They
consider the interaction among variables during discretization while the structure is fixed. Their
main disadvantage is that they are computationally intensive compared to the prediscretization
methods which only perform discretization and structure learning once. The integrated methods
perform them multiple times and consequently require more time. As for the direct methods, they
have the advantage of not discarding any information. On the other hand, they can be computa-
tionally intensive. Some methods must make distributional assumptions to ensure computational

feasibility.



This research compared the three approaches to ascertain the relative strengths and weaknesses
of each and to quantify the impact on network learning. The focus was Bayesian network structure
learning from continuous data. For the remainder of this thesis, learning will refer specifically to
this task. While there has been a comparison of prediscretization techniques (Liu et al., 2002), there
has not yet been an evaluation of all approaches in one unified study. For example, studies of the
integrated methods usually make comparisons to prediscretization techniques. However, there has
not been an evaluation of all integrated methods. The same holds true for the approaches learning
directly with continuous data.

The evaluation involved a representative sample of methods from the three classes. Their per-
formances were compared on two types of data. The first type was continuous data simulated from
discrete Bayesian networks. These data sets were noisy observations of originally discrete vari-
ables. The second type was real data without known structures. For large simulated data sets, the
discretization-based methods yielded the highest quality structures. With small simulated data sets
or real data, a direct method was best. In terms of efficiency, methods from the prediscretization
and direct categories were best depending on the metric used. The integrated methods required the
most computational time.

Another goal of the evaluation was to determine if the integrated methods provided improve-
ments in quality over the prediscretization approaches to justify the decreased efficiency. When
considering edge orientation errors, the integrated methods did not induce more accurate struc-
tures. However, when only undirected edges were considered, the integrated methods yielded more
accurate structures.

The rest of the thesis is organized as follows. Chapter II provides background information
necessary for the remaining discussion. Chapter III explains the specific algorithms evaluated.
Chapter IV reviews previous relevant work that is not included in our evaluation. Chapter V

outlines the experimental results, and Chapter VI presents conclusions.



CHAPTER II

BACKGROUND

This chapter provides background information necessary for subsequent discussion. A brief review

of Bayesian networks precedes a formal definition of discretization.

II.1 DBayesian Networks

A simple directed graph is a pair (V, E). V is a set of nodes or vertices, and E is the set of all
directed edges or arcs connecting the elements of V. Self edges or multiple edges are not allowed.
If there is a directed edge from node X to node Y, X is the parent of Y. Conversely, Y is the
child or descendant of X. A directed acyclic graph (DAG) is a directed graph where there does not
exist a path from any node to itself. A partially directed acyclic graph (PDAG) is a simple graph
containing directed and undirected edges without cycles.

Let P be a joint probability distribution of the random variables in some set V, and G = (V,
E) be a DAG. (G, P) is a Bayesian network if it satisfies the Markov condition (Spirtes et al., 2001;
Neapolitan, 2003). The Markov condition holds if for each variable X € V| X is conditionally inde-
pendent of its nondescendants given the set of its parents. Two variables X and Y are conditionally
independent if P(X|Y) = P(X) when P(Y) > 0. Moreover, a Bayesian network is a graphical
structure modelling the probabilistic relationships between variables.

The two major approaches to Bayesian network structure learning from data are search-and-
score methods and constraint-based learning. Search-and-score methods search the space of possible
networks with a scoring metric that measures the fit of the structure to the data. The final structure
is the one with the highest score. Typically, heuristic search techniques make the search feasible.
Constraint-based methods determine conditional independencies between variables from the proba-

bility distributions of the data. The final structure is consistent with the independencies.



I1.2  Discretization Policy
The discretization sequence of a variable is a vector of thresholds dividing the range of values into
a set of mutually exclusive and exhaustive intervals. A discretization policy is the set of discretization

sequences for all variables. Suppose we have a data set D with N instances and n variables denoted

@

as X = (X1,...,X,). Let us represent the value of variable X; in the [ instance as z;’ and
the set of instances (xgl), .. ,xgl)) as xgl’l) . Then, the discretization sequence of a variable X; is
A, ={ti1,...,tir,—1} or an increasing set of real-valued thresholds (i.e. t;1 < t;2 < ... < t;r,—1)

where r; is the number of intervals in variable X;. As a result, function fa, performs the mapping

fa; + Xi — Y, where Y; is the vector of discretized variables defined as follows:

0 if xz; < ti,l
fa(x) = kif tjp<a; <tjpyr for 1<k<r
ri if tp—1 <y

Y = (1,...,Y,) is the resulting vector of discretized variables, and the discretization policy A is

(A1, ..., A,). If variable X; is initially discrete, no discretization is needed and Y; = Xj.



CHAPTER IIT

DESCRIPTION OF ALGORITHMS INCLUDED IN THE STUDY

This chapter provides detailed explanations of the methods included in the experimental evalu-
ation, which contains a representative sample of approaches from the three general categories. The

discussion is organized as follows: prediscretization methods, integrated, and direct methods.

III.1 Prediscretization methods
These methods discretize data prior to structure learning. They are considered unsupervised
techniques since they do not consider class labels of instances during discretization. Thus, any

unsupervised technique is suitable.

1I1.1.1 Equal-frequency and equal-width binning

Equal-width binning divides the range of values for each variable into k equally sized intervals,
where k is pre-defined. Arbitrary values of k are usually chosen, but Margaritis (Margaritis, 2005)
discusses other methods for determining values of k. Fqual-frequency binning assigns an equal
number of data instances to each of the k intervals. For example, assume that we are discretizing
height within a data set of 20 patients where the maximum height is 6 feet and the minimum is
5 feet. If k = 2, equal-width binning assigns patients shorter than 5.5 feet to one interval while
assigning the rest to another interval. On the other hand, equal-frequency binning assigns the 10

shortest patients (i.e. the shortest 50%) to one level while assigning the rest to another level.

II1.1.2  Method by Hartemink

Hartemink’s approach (Hartemink, 2001) initially discretizes all variables such that each value
is in a separate level. The method iterates two loops. First, the outer loop counts down from
the initial number of intervals to one as levels merge. For each variable, the inner loop merges the

neighboring intervals resulting in the smallest decrease in total mutual information. The total mutual



information score, TMI(n), is defined for n discretization levels as the sum of the pairwise mutual
information between all pairs of variables when each has been discretized into n discretization levels.
The algorithm terminates when a single level remains for all variables. As n decreases, TMI(n)
remains at approximately the same level until decreasing rapidly as n approaches one. The final
number of levels is manually selected by trading off a relatively high value for mutual information

with a relatively low number of levels. Values such as 3 or 4 are typically chosen.

III.2 Integrated Methods
The integrated approaches (Friedman and Goldszmidt, 1996; Monti, 1999; Steck and Jaakkola,
2003) employ a greedy iterative search by alternating between structure learning and discretization.

Monti (Monti, 1999) contains pseudo-code for the framework:

Algorithm 1 Learn Hybrid BN

1: procedure LEARNHYBRIDBN(D, A?)
Input: data D; initial discretization A°
Output: structure G™*%; discretization policy A
A— A
G"*" — LearnDiscrete BN (D, A)
repeat
Gold — Gnew
A « LearnDP(D, G A)
G «— LearnDiscrete BN (D, A)
until termination criteria met
9: return G™*" andA
10: end procedure

The methods require an initial discretization, and equal-frequency binning is typically used. They
hold the discretization fixed while learning the structure and then hold the structure fixed while re-
discretizing. The two learning procedures repeat until a termination condition is met, which is
different for each method. A final discretization policy is output along with the structure. The
function LearnDiscrete BN can be any learning algorithm intended for discrete data (Heckerman

et al., 1995). The function LearnDP discretizes with a fixed structure as follows:



Algorithm 2 Learn Discretization Policy

1: procedure LEARNDP(G, A% D)
Input: structure G initial discretization AY; data D;
Output: new discretization policy A
A—A°
Push all continuous variables onto queue @
while @ is not empty do
X; « Pop(Queue)
AP — LearnVariableDP(X;,G, A, D)
if S(AT*";A,D,G) > S(A;; A, D,G) then
Afi] «— Arew
Q < Push(MarkovBlanket(X;))
end if
11: end while
12: return A
13: end procedure

© P NPT
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=

Changing the discretization of a variable affects the discretization of all variables within its
markov blanket, i.e. its parents, children, and all parents of its children. A queue, which initially
contains all continuous variables, is maintained to ensure that variables affected by the new dis-
cretization are re-discretized. When a variable is popped from the queue, it is discretized in the
function LearnV ariable D P according to a scoring function that ranks thresholds, and the resulting
discretizations may be scored by another scoring function. The methods differ in their implemen-
tations of the scoring functions and termination criteria, and the specifics will be discussed in the

following sections I11.2.1, I11.2.2, and III.2.3.

I11.2.1 Method by Friedman

Friedman’s algorithm (Friedman and Goldszmidt, 1996) is motivated by the Minimal Description
Length (MDL) principle (Lam and Bacchus, 1994), which balances the complexity of a network with
how well it models the data. Friedman adapts the score to include the description length of the infor-
mation required to recover the original data from the discretized data. Within the Learn Variable DP
function, discretization of a variable uses a greedy search starting with an empty threshold list and
considers all midpoints. Since different discretizations only affect certain terms of the description
length, computing a local score, D Lj,cq;, rather than the full score reduces calculations. The choice

of thresholds affects the local score terms related to mutual information. Consequently, thresholds



are scored by maximizing the information gain of a candidate threshold ¢ by considering variable 4,

current set of thresholds A;, structure G, and data D:

Gain(t,i,A,G, D) = I(fa,+(Xi);Yn,) + 2jecn, L(Y5: fae(Yn,))

—I(fa,(Xa); Yi) = Xjecn, (Y55 fa(Y,))

where fa,.+(X;) is variable ¢ discretized with the thresholds of A; and candidate threshold ¢. The
parent set of variable ¢ is denoted by II;, and Y; and Yy, are respectively the previously discretized
variable i and parents of variable i. The term I(fa,.+(X;);Y1m,) is the mutual information between
Ja;-+(X;) and Y1, Also, Ch; is the set of children for variable i, and the term fj.;(Yr,) represents
the set of discretized parents for variable j, which includes variable ¢ discretized according to the
thresholds of A; and threshold ¢. After adding a threshold, the gain terms from the same interval
as the chosen threshold need to be recomputed. Thresholds are added until the local score, D Ljscqi,
increases.

After a variable discretization is output from Learn VariableDP, the LearnDP function accepts it
if the description length score, DL, is less than the previous score with the old discretization. The

score of a policy A with structure G and data D is:

DL(A,G,D) = DLyet(Y,G) + DLA(A) = N Y " I(Yi; Yi,)

where Y is the set of variables X discretized by A, and Yy, is the discretized set of variable i’s

parents. The description length of a network, DL,,, for discretized variables Y and structure G:

(il = 1)

log N
DLue(Y.G) = 3 (log|[Yill + (1 + [¥ir[) logn) + =5~ 37 |,

?

where ||Y;|| and || Y, || are the cardinalities of Y; and Yri,, and |Y1, | is the number of parents of Y;.

10



The description length of a discretization policy, DLa(A) is

ki—1

DLMA)ZE:WXN—lﬂHEEWjT)

7

where || X;|| is the cardinality of X;, k; is the number of intervals in Y;, and H(p) = —plogp — (1 —
p)log(1 — p).

After the LearnDP function stops when the queue of variables is empty, the algorithm proceeds
from the discretization phase of learning to structure learning. The algorithm iterates between the

two phases until terminating when the score increases.

111.2.2 Method by Monti

Instead of using an MDL-motivated scoring function as Friedman does, Monti’s method (Monti,
1999) utilizes a Bayesian-based metric. Monti augments the traditional Bayesian scoring metric
to score a discretization policy with respect to a given data set and structure. The same scoring
function is used for thresholds and the discretization policy.

Discretization of a variable starts with an empty threshold list. Thresholds are added in a greedy
fashion until the scoring function does not increase with a new threshold. To derive the function,
Monti assumes an underlying discrete mechanism governing the behavior of the observed continuous
variables. In this case, each continuous variable X; is independent of all other variables given the
value of its corresponding discrete variable Y;. This problem formulation results in searching for the
discretization policy that maximizes the posterior probability p (A|D). Assuming a uniform prior
p(A) means that maximizing the likelihood of the data given the discretization, p (D|A), will find

the discretization we want. For a given variable, p (z;|A) factors into:

p (xi|A) = p (2ilyi, A)p (yilym,, A)

where a lower case variable represents the vector of values for the variable, and y; is the discretized
version of z;. By computing the log-likelihood, the score for the discretization becomes a sum of

the discrete component, log p (y;|ym;,, A), and continuous component, log p (x;|y;, A). The traditional

11



Bayesian scoring metric for discrete data can be used to calculate the discrete component for variable

1 with discretization policy A and data D:

Sd(i7A7D) = Ing(yl|yHLaA)

_ & I(oij) < C(aije+Nijk)
= 2 loem i T 2 108 T a0

where ¢; is the number of values that the discretized parents of variable ¢ can take, r; is the number
of values that the discretized variable ¢ can take, IVj;; is the number of cases in the data where
variable i takes the value k while its parents take the joint value j, N;; = >, Nyji, I'() is the
Gamma function, ayji is a hyperparameter of the Dirichlet distribution, and a;; = >, aji.

The continuous component is the conditional density of the continuous data given the discrete

@

data. The computation is simplified since the distribution of variable i in the I** instance, x,;’, only

®

depends on ;. By assuming it is a uniform distribution, we get:

Sc(i,A, D) =logp (x;i|y;, A)

= Y logp (g, (MY 417N

N

= lE logp ("] 4", A)
=1

= Z Ny, log Ai
k=1

where xEl’l_l) is the first [ — 1 cases of x;, r; is the number of intervals, Ay is the width of the k-th
interval, and Ny is the number of instances where the variable takes value k in the data.

Since the discrete component is affected by the discretization of the parent variables, the algo-

rithm maximizes the score:

SA(iaAaDaG) :SP(ZvAlaD)+Sd(ZaAaD)

+ Z Sd(ja A7D)
j€Ch;

where Ch; is the set of variable i’s children. The last term derives from the fact that changing the

discretization of a variable requires re-computing the discretization of all of the variable’s children.

12



This scoring function is used within the LearnVariableDP and LearnDP functions. The algorithm

terminates when the learned graph does not change between iterations.

111.2.3 Method by Steck

Similarly to Monti’s algorithm, Steck’s method (Steck and Jaakkola, 2003) derives a scoring
function for the marginal likelihood p (D|A,G) of the data given the discretization policy A and
structure G. Steck’s approach considers the data in a sequential manner with steps and transforms
the likelihood into

N

p(DIA,G) =[]p VDM, A,G)
=1

where () is the instantiation of X at step [ and D=1 = (sc(l), . ,x(l_Q),x(l_l)) represents
the data points encountered prior to step [ along the sequence®. Since each continuous value only

discretizes to a single value, each term factors into
p(@V[DU A, G) = p(@W]yD, A)p (v DY, G ).

Assuming that any two continuous variables are independent conditioned on their corresponding

discrete variables, the term p (z(|y(), A) can be additionally factored into

n

p@y®,0) = [Tp @ 1y, A0).

i=1

The conditional densities p (J;El) ly®, A;) are implicitly estimated by using the finest grid implied by
the data, = (Qq,...,Q,). The grid discretizes each variable i by a set of thresholds (w; 1, ...,wi N—1)
such that each value is in a separate interval. The policy €2 defines a mapping from the original
continuous variables to a new vector of discrete variables called Z (i.e. fq : X +— Z). The algorithm
requires the final discretization policy A to be a subset of the thresholds from the finest grid, which
is not really a strict restriction since the thresholds of §2 can be any value between points. Also,

the finest grid defines hypercubes for the n-dimensional vector X with volumes determined by the

ISteck originally used variable Y to designate the continuous variables. I have continued to use X to represent
them for consistency with the previous sections.

13



widths of the intervals for each ;.

Now, the densities p (a:l(l)|y(l), A;) can be factored efficiently via the finest grid:

p Py A, 2) = p ("2, Q)p PO, AL )

Combining the previous equations yields:

N n
p(DIA,G.Q) = p(D4|G) - <HHp ”|z§”,ﬂi>>~(HHp<z§”y<l>,Ai,Qi>>

l=11i=1 1=11i=1

The first term is the likelihood of structure G with data D, discretized by A and is easily
computed for discrete Bayesian networks with the traditional Bayesian scoring metric(Heckerman
et al., 1995). The second term can be ignored since it is independent of A and G. The third
term simplifies by assuming that the probability mass predicted for y® is divided evenly among all
hypercubes and that at least one hypercube is mapped to each y. Thus, the final version of the

predictive scoring function is

n

Lp(A,G) =logp(DA|G) — Z logI‘ (Nk,)

i=1 k=1

where r; is the number of discretization intervals for X;, and Ny, is the number of instances where X;
takes the value k in the discretized data. This scoring function is used within the Learn Variable DP

and LearnDP functions, and the algorithm terminates when the score decreases.

III.3 Direct Methods
The following approaches learn from continuous data without committing to a final discretization
policy. They adapt the structure learning approaches, search-and-score and constraint-based meth-
ods, to handle continuous data. For the search-and-score strategy, the scoring metric is modified to
score continuous data. For constraint-based methods, a conditional independence test suitable for

continuous data is required.

14



1I1.3.1 Method by Bach

Bach’s method (Bach and Jordan, 2003) uses a local greedy search with a new scoring function
based on the MDL/BIC score (Lam and Bacchus, 1994), which penalizes the likelihood of a structure
by %logN times the number of parameters. The maximum likelihood Jys;, can be decomposed as
Jur =Y, Jmr(i,m;) where Jyrr (4, m;) = —NI(2;,2x,). The term 7; is the set of parents of node i
in the structure, and I(z;, z,,) is the mutual information of node i and its parents. Bach’s scoring
function maps the data into high-dimensional feature spaces, calculates the mutual information of
the feature variables, and uses this approximation to rank models during structure learning.

The mapping of the data uses Mercer kernels and treats all data as Gaussian in feature space.
A Mercer kernel on a space X is a function k(x,%y) from X2 to R such that for any set of points
{z® 2NV in X, the N x N matrix K, defined by K;; = k(z;,z;), is positive semidefinite
(Bach and Jordan, 2003). A Mercer kernel determines a space F and a map ® from X to F such
that k(x,y) is the dot product in F of ®(z) and ®(y).

If there are n random variables Xi,...,X,, with spaces Xj,...,X),, then assigning a Mercer
kernel k; to each X leads to a feature space F; and feature map ®;. The vector of feature images
= (d1,...,0n) 2 (®1(x1),. .., Pn(z,)) has a covariance matrix C' where block Cj; is the covariance
matrix between ¢; and ¢;. Let ¢ = (¢%,...,6%) be a jointly Gaussian vector with the same mean
and covariance as ¢. The sample covariance matrix of ¢ can be calculated using the kernel trick,
and the correlation matrix R of qbiG is approximated with an incomplete Cholesky decomposition.

The vector ¢ is used to calculate the KGV-mutual information?, which is the mutual information

between ¢§, ..., ¢S:

1 |R1n|

Iz, ... 2,) = —=log — 1ol
(1‘17 , L ) 9 og |R11‘|Rnn|

where |R| is the determinant of the specified correlation matrix , and the subscripts of R denote

the submatrix indexed by the values shown. Bach’s scoring function incorporates KGV into the

2KGV stands for kernel generalized variance.
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MDL/BIC score by defining the objective function J for a structure G as J(G) = >, J(i,7;) where

dr.d

2

N Rz i, {i}Um; 4
J(i,m):—NI(a:i,mm):—10g| {pom fijum] log N.

2 | Ry i || R

In the equation, d; is the dimension of the Gaussian variable, and d,, = Y (@) dj- The KGV of

JET;
the feature variables indirectly approximates the mutual information of the original variables. Since

the likelihood of a structure can be decomposed into terms based on the mutual information of the

original variables, KGV is used to rank models during structure learning.

I11.3.2 Constraint-based method

This approach involves a conditional independence test for continuous data to be used with a
constraint-based learning algorithm. In this case, the PC algorithm (Spirtes et al., 2001), which
is the most popular constraint-based learning algorithm, will be used with Fisher’s Z test. The
PC algorithm starts with a complete undirected graph over the set of all variables. All zero order
independence tests are performed, and edges are removed when independence is concluded. Inde-
pendence tests of increasing order are performed to further remove edges. Once no more edges can
be removed, the algorithm orients the edges. Collider nodes are oriented first, and then several other
orientation steps are followed (Spirtes et al., 2001).

Fisher’s Z concludes the independence of two variables X; and X5 given a set of variables S if

the partial correlation coefficient p is zero. Fisher’s Z (Neapolitan, 2003) is calculated by
1 1
Z =~ yN-15] =3 ("
2 1-p

where N is the sample size, |S| is the number of variables in the conditioning set S, and p is the
partial correlation coefficient of X; and X5 given S. To determine if p is zero, we substitute zero
for p in the equation and calculate Z. Using a table for the standard normal distribution, we can
determine the probability that the standard normal is greater than our calculated Z value. If the
probability is less than our significance level (i.e. .05), then we reject the hypothesis of conditional

independence. In other words, we would say that X; and X» are conditionally dependent given S.
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CHAPTER IV

RELATED WORK

This chapter reviews previous work in learning Bayesian network structure with continuous data
that is not included in the evaluation. It is organized by the two categories: prediscretization

methods and direct methods. All known integrated methods were included in the evaluation.

IV.1 Prediscretization

Research in discretization has spanned many fields including statistics (Scott, 1992), machine
learning (Liu et al., 2002), and information theory (Gray and Neuhoff, 1998). Kozlov (Kozlov and
Koller, 1997) discussed discretization tailored to Bayesian networks but focused on inference rather
than structure learning. Since discretization techniques are independent of the learning algorithm,
they have been used widely in tasks such as decision tree learning (Catlett, 1991; de Merckt, 1993;
Kohavi and Sahami, 1996) and feature selection (Liu and Setiono, 1997). They are used as pre-
processing steps prior to the induction algorithm and usually perform either merging or splitting of
thresholds. Merging approaches (Kerber, 1992; Tay and Shen, 2002) initially set the discretization
of each variable to all the midpoints of the data. In other words, each data point is in a separate
interval. During each step, thresholds are removed to merge neighboring intervals and decrease the
number of intervals. Splitting approaches start with an empty set of thresholds and all data points
in a single interval. During each step, thresholds are added to split existing intervals and increase
the number of intervals.

The methods can be also categorized as supervised or unsupervised. Supervised methods utilize
class labels associated with data instances (Kerber, 1992; Tay and Shen, 2002; Fayyad and Irani,
1993; Ho and Scott, 1997; Kohavi and Sahami, 1996). They can be characterized further by the
type of measure used to rank candidate thresholds. One possibility is using an information theoretic
measure such as entropy. Entropy methods choose cut-points minimizing entropy in some manner.

For example, Fayyad and Irani’s method (Fayyad and Irani, 1993) starts with one interval and
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recursively creates binary partitions at each step. For each of the midpoints within the data, it
calculates a quantity called class information entropy of the partition. This weights the entropy of
each potential partition by its relative size. The boundary minimizing the sum of weighted entropies
of the two new intervals is selected. Another possibility is measuring the association between the
variable and class. Examples include zeta (Ho and Scott, 1997) and chi-square (Kerber, 1992; Tay
and Shen, 2002).

Unfortunately, supervised techniques cannot be applied to the structure learning task since they
require a discrete target. Even if we somehow used each variable as a target and discretized accord-
ingly, each variable would be discretized differently with the various targets. It is not clear how to
resolve or merge the different discretizations. Thus, methods are needed that specialize in Bayesian
network structure learning.

The discretization techniques discussed so far have been univariate approaches since they consider
a variable in isolation or in relationship to the class variable. Multivariate discretization approaches
consider the interactions among variables (Kwedlo and Kretowski, 1999; Bay, 2001; Muhlenbach and
Rakotomalala, 2002; Monti and Cooper, 1999). Another possible improvement, in terms of efficiency,

has been work on discarding unpromising thresholds (Elomaa and Rousu, 2004).

IV.2 Direct Methods

Gaussian Bayesian networks (Geiger and Heckerman, 1994) are a search-and-score approach that
assumes continuous data are sampled from a multivariate normal distribution. A limitation is that
only linear dependencies can be learned from data. Imoto’s method (Imoto et al., 2002) overcomes
this restriction by using nonparametric regression models to detect nonlinear relationships among
variables. This approach derives a scoring criterion called BNRC, which stands for Bayesian network
and nonparametric regression criterion. Structure learning performs a greedy search that minimizes
BNRC. The BNRC score uses B-splines as basis functions to model the conditional densities of a
variable given its parents. The BNRC method was excluded from the study because it requires

significant running time, which was mentioned by its authors as a limitation (Imoto et al., 2003).
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Another type of Bayesian network for continuous data is a Conditional Gaussian network (Lau-
ritzen and Wermuth, 1989), which has the restriction that continuous variables cannot have discrete
descendants. Other approaches use complex conditional distributions (Friedman and Nachman,
2000; Hofmann and Tresp, 1996) or avoid the same distributional assumptions (Nachman et al.,
2004).

Davies’ method (Davies, 2002) is a greedy structure learning algorithm using tree-based density
estimators to score potential network structures. The algorithm inputs an initial network structure
and ranks all single arc additions and deletions with a relatively fast scoring function. Then it
performs the changes in decreasing order of score and estimates the effects of the changes with
a more accurate scoring function. If the new score is greater than the old score, it changes the
parent set of the variable. The scoring functions grow tree structures that represent the conditional
distribution of a variable given its parents and measure how well the tree models the data.

Margaritis (Margaritis, 2005) developed another conditional independence test for constraint-
based methods. To determine if two variables are conditionally independent given a set of variables,
it temporarily discretizes the variables by maximizing the posterior probability of dependence given
the data. If the probability is greater than a certain value, the test concludes dependence. The test
determines the probability of dependence by calculating the likelihoods of modelling the data as
dependent with a joint multinomial distribution or as independent with two marginal multinomial
distributions. Margaritis’ method was not included in they study because of computational restric-
tions. Preliminary experiments with the method revealed that it would require considerable time.
The time needed to compute a single conditional independence test was too long considering the

number of tests needed to learn a full network with multiple variables and a large sample size.
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CHAPTER V

EXPERIMENTAL EVALUATION

This work performed a comprehensive evaluation of algorithms for Bayesian network structure
learning with continuous data. Comparisons metrics were based on the quality of the learned struc-
tures and the efficiency of the learning process. This study is unique in the range of algorithms ex-
amined. Most studies typically compare fewer methods without including all classes of approaches.
The evaluation aimed to determine if a single method or class of methods would consistently out-
perform other methods over multiple data sets. If a superior method did not emerge, the study
hoped to identify the data characteristics that would favor certain methods. For example, some
methods may be better suited to learn with small sample sizes. Another consideration was whether
the integrated methods provided sufficient performance benefits over binning methods to merit the
additional computational costs.

The following eight algorithms were included in the study:

e Prediscretization methods
— equal-width binning (k = 2, 3)
— equal-frequency binning (k = 2, 3)
— Hartemink’s method
e Integrated methods
— Monti’s method (k = 2, 3)
— Friedman’s method (k = 2, 3)
— Steck’s method (k = 2, 3)
e Direct methods

— Bach’s method

— Constraint-based method with independence test for continuous data

The parameter k specifies the initial number of discretization intervals. The methods requiring this
parameter were run once for each value, and results are presented separately.

All methods required a Bayesian network structure learning algorithm. For the search-and-score
approaches, a standard greedy search was used. After starting with an empty graph, greedy search
performs one of the following three operations: add an edge, delete an edge, or re-orient an edge.

It chooses the action that results in the greatest improvement according to a scoring function. The
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prediscretization and integrated methods maximized the BDeu score to guide the search during
structure learning phases. Bach’s method utilized a greedy search minimizing its scoring function.
For the constraint-based approach, PC (Spirtes et al., 2001) was used since it is the most popular
constraint-based learning algorithm.

The specifics of the algorithms were discussed in depth in Chapter III. When possible, the au-
thor’s original Matlab code was used, which was the case with Hartemink and Bach’s methods. For
the constraint-based method, we used two different implementations of the PC algorithm: Tetrad
4.3.1 ! and our lab’s Matlab implementation. Tetrad implements a version of PC in Java along with
significant modifications from the original PC algorithm. The details of the changes are unpublished.
The rest of the algorithms were re-implemented in Matlab. In order to ensure that our implementa-
tions were equivalent to the original implementations, we replicated experimental results from the
original papers. All experiments were run in Matlab on Pentium Xeons with 2.4 GHz processors
and 2 GB RAM.

Since we wanted to compare the algorithms on equal footing, some algorithm modifications were
made. Monti’s method used a modified version of K2 (Cooper and Herskovits, 1992), which required
a node ordering, to learn structure. In our implementation, we substituted greedy search since a node
ordering is not always available and to maintain consistency with the other methods. Furthermore,
in Monti’s method, a new variable discretization is accepted if its score is greater than the score of
the previous discretization. However, in our experiments, the discretization learning phase would
not terminate unless we required the new discretization to increase the sum of discretization scores
for all variables. We replicated Monti’s experimental results to verify that the method was not
severely handicapped by the change. These two changes resulted in our implementation varying
slightly from Monti’s original version, but it maintained the essence of the algorithm by interleaving
discretization and structure learning.

Ideally, we would have preferred to use known Bayesian networks with continuous variables.
Since these do no exist, we used simulated data from known discrete networks and real data. The

experimental results are separated by the type of data used for learning.

ITetrad 4.3.1 is available at http://www.phil.cmu.edu/projects/tetrad, .
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V.1 Simulated Data

V.1.1 Data Sets

The simulated data used the following networks: Alarm (Beinlich et al., 1989), Child (Cowell
et al., 1999), Hailfinder (Abramson et al., 1996), and Insurance (Binder et al., 1997). They were

derived from real world decision support systems 2:

Table V-1: Bayesian networks used to simulate data.

Network Num. of | Num. of | Max In- | Max Out- | Domain
Variables Edges Degree Degree Range
ALARM 37 46 4 5 2-4
CHILD 20 25 2 7 2-6
HAILFINDER 56 66 4 16 2-11
INSURANCE 27 52 3 7 2-5

Networks with more variables were considered, but preliminary experiments demonstrated that some
methods would require a prohibitive amount of running time.

Continuous data was simulated according to Monti’s technique (Monti, 1999). First, discrete
data was sampled from the known distributions of the networks. Then, each discrete value was
converted into a continuous value by treating it as the mean to a Gaussian distribution with a
pre-specified standard deviation. The value used for the standard deviation was .35, as selected by
Monti. Section V.1.4 includes studies using alternate values for standard deviation. For each of the
networks, five data sets of sizes 500, 1000, and 5000 were generated, and results were averaged over

the five runs.

2Networks available at http://www.cs.huji.ac.il/labs/compbio/Repository
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Figure V-1: Left: In the Child network, the data distribution of variable 17 and its parent is a
mixture of Gaussians with heights proportional to the probability of a value given its parent times
the probability that its parent takes that value. Right: For the original discrete values, the heights
of the lines depict the probability of a value given its parent times the probability that its parent
takes that value.
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Figure V-2: Left: In the Alarm network, the data distribution of variable 25 and its parent is a
mixture of Gaussians with heights proportional to the probability of a value given its parent times
the probability that its parent takes that value. Right: For the original discrete values, the heights
of the lines depict the probability of a value given its parent times the probability that its parent
takes that value.

The left portions of figures V-1 and V-2 show distributions of variables given their parent from
simulated data sets used in the evaluation. Darkly shaded regions represent frequent occurrences of
data. The distributions are a mixture of Gaussians with heights proportional to the probability of
a value given its parent times the probability that its parent takes that value. The right portions of
the figures display the corresponding probabilities for the original discrete values. The conditional

probability tables are included in Tables V-2 and V-3.
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Table V-2: Conditional probability table of Child network for variable 17 given its parent.

Parent of X7
X7 1 2 3 4 5 6
1 0.40 0.02 0.02 0.01 0.01 0.40
2 0.43 0.09 0.16 0.02 0.03 0.53
3 0.15 0.09 080 0.95 0.95 0.05
4 0.02 0.80 0.02 0.02 0.01 0.02

Table V-3: Conditional probability table of Alarm network for variable 25 given its parent.

Parent of Xo5
Xo5 1 2 3
0.01 0.01 0.01
0.97 0.01 0.01
0.01 0.97 0.01
0.01 0.01 0.97

=W N

This simulation technique favors the binning methods, which univariately discretize variables in
isolation, since the Gaussian behavior is still evident in the marginal distributions of variables, as
shown by Figure V-3. As a result, the binning methods can detect the original discrete values with-
out considering other variables. The simulation technique was used in order to make comparisons

with Monti’s work.

Number of Occurrences
Number of Occurrences

o 05 1 15 2 25 3 35 4 45 5
Variable 17 Variable 25

Figure V-3: Left: The marginal distribution of variable 17 from the Child network is Gaussian,
which favors the binning . Right: The marginal distribution of variable 17 from the Alarm network.
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V.1.2 Metrics for Comparison

Performance was measured as the quality of the learned structure and the efficiency of the learn-
ing procedure. For simulated data, the accuracy metric was Structural Hamming Distance (SHD)
(Tsamardinos et al., 2004). Prior to scoring, the learned graph and true graph are converted into
their equivalent PDAGs (Chickering, 1995) to avoid penalizing statistically indistinguishable struc-
tures. The SHD score penalizes a learned structure for every added, missing, and incorrectly oriented
edge relative to the true structure. For example, if the learned graph has an undirected edge where
the true graph has no edge, the SHD score is increased by 1 point. If the learned graph has an
undirected edge where the true graph has a directed edge, the score is increased by 1 point. If
the learned graph has an extra or missing directed edge, the score is increased by 2 points. The
extra or missing unoriented edge counts for 1 point while the orientation error counts for another

point. The best structure will have the lowest SHD score. For clarity, pseudo-code is included below.

Algorithm 3 SHD Algorithm
1: procedure SHD(Learned DAG pattern H, True DAG pattern G)
2 shd =0

3 for every edge E different in H from G do

4 if F is missing in H then

5: shd = shd + 1
6

7

8

9

end if
if F is extra in H then
shd = shd + 1
: end if
10: if FE is incorrectly oriented in H then
% This includes reversed edges and edges that are undirected in one graph and directed
in the other.

11: shd = shd + 1
12: end if
13: end for

14: end procedure

Algorithm efficiency was measured in two ways. The first metric was computational running
time. The second metric was the number of statistical calls made during structure learning. These
calls corresponded to calculations of a scoring function or a conditional independence test. For the
discretization methods, the calls were calculations of the BDeu score. The number of calls was
summed over all iterations of structure learning for the integrated methods. For Bach’s method, the
calls were calculations of Bach’s scoring metric. For PC, the calls were conditional independence

tests.
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The number of calls provided an efficiency metric since each type of call required roughly the
same amount of time. Furthermore, during structure learning, the algorithms spent most of their
time performing these calls. Unlike running time, this metric is independent of the implementation

or the hardware performing the experiments.

V.1.3 Results

The results were normalized to make a direct comparison of the relative performances of the
algorithms. First, results were averaged over the number of runs for a given network and sample
size. Then, the averaged results were divided by the averaged results of Bach’s method for the same
network and sample size. As a last step, the normalized results were averaged over all networks.
Without normalization, the average would be skewed by large values from the difficult networks.
Bach’s method served as the basis of comparison since it had the best overall performance. Of the
twelve combinations of networks and sample sizes, Bach’s method yielded the lowest SHD four times,
more than any other method. Furthermore, there was only one case (Child network with sample size
of 500) where another method (equal-width binning with k = 3) outperformed it simultaneously on

both metrics.

Table V-4: Average Normalized SHD Results: SHD results were normalized by results of Bach’s
method on the same network and sample size. Results were averaged over all networks. Values
less than one indicate an algorithm learned more accurate networks than Bach’s method for a given
sample size. The numbers at the end of an algorithm denotes k, the number of initial discretization
intervals.

General Algorithm Average Normalized SHD | Average
Category SS=500 | SS=1000 | SS=5000 | over SS
EQFREQ2 1.40 1.61 1.62 1.55
Preprocessing EQFREQ3 1.12 1.21 1.07 1.13
Discretization EQwiDTH2 1.29 1.43 1.46 1.39
EQwiDTH3 1.04 1.09 0.87 1.00
HARTEMINK 1.77 2.08 1.60 1.82
FRIEDMAN2 1.08 1.15 1.01 1.08
Integrated FRIEDMAN3 1.03 1.11 0.91 1.02
Discretization MONTI2 1.26 1.41 1.18 1.28
and Structure MoONTI3 1.06 0.98 0.83 .95
Learning STECK2 1.00 1.04 0.82 .96
STECK3 1.04 1.10 0.78 .97
Direct BacH 1 1 1 1
Methods PC-MATLAB 1.38 1.59 1.70 1.56
TETRAD4 1.27 1.44 1.23 1.31
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Quality Results The SHD results are shown in Table V-4 and are separated by sample size.
Averages over sample sizes are also included. An algorithm with a value greater than one produced
more structural errors than Bach’s method on average, and an algorithm with a value less than one
is considered more accurate than Bach’s method.

At the smallest sample size, Bach’s method and Steck’s method (k=2) performed best while
equal-width binning (k=3) was the best pre-discretization method. With sample size 1000, Monti’s
method (k=3) was slightly more accurate than Bach’s method. Once again, equal-width binning
(k=3) was the best pre-discretization method. At the largest sample size, a number of methods
outperformed Bach’s method, specifically equal-width binning (k=3), Friedman’s method (k=3),
Monti’s method (k=3), and Steck’s method (k=2, 3). Overall, equal-width binning (k=3), Monti’s
method (k=3), Steck’s method, and Bach’s method were the most accurate methods from their
respective categories.

For the discretization approaches, the user must specify a parameter for the initial number of
intervals. It is interesting to note the effect this choice had on results. If the initial number of levels
affects accuracy so drastically, it is important for researchers to use the best value. However, there
is no theoretically justified manner for selecting it, and this can be viewed as a weakness for the
class of approaches since researchers can only guess or try a number of values.

Another interesting result is that the binning techniques performed comparably to the integrated
methods. The integrated approaches potentially avoid poor initial discretizations. However, the
theoretical benefits do not appear to warrant the additional computation. Further investigation is

presented in section V.1.4. Specific running time results are detailed in the next section.

27



Table V-5: Average Normalized Time Results: Time results were normalized by results of Bach’s
method on the same network and sample size. Results were averaged over all networks. Values less
than one indicate an algorithm requires less time than Bach’s method for a given sample size. The
numbers at the end of an algorithm denotes k, the number of initial discretization intervals.

General Algorithm Average Normalized Time | Average
Category SS=500 | SS=1000 | SS=5000 | over SS
EQFREQ2 1.58 1.90 3.24 2.24
Preprocessing EQFREQ3 1.15 1.84 2.69 1.89
Discretization EQwIDTH2 1.36 2.01 3.39 2.25
EQwiDTH3 1.16 1.85 2.50 1.84
HARTEMINK 179.46 245.24 576.91 333.87
FRIEDMAN2 62.92 165.18 1375.24 534.45
Integrated FRIEDMAN3 50.53 138.10 1001.61 396.75
Discretization MONTI2 139.83 274.30 1327.84 580.65
and Structure MoNTI3 153.94 388.61 1183.26 575.27
Learning STECK?2 244.48 553.39 2464.61 1087.49
STECK3 286.09 536.81 2557.84 1126.91
Direct BacH 1 1 1 1
Methods PC-MATLAB 3.77 7.61 59.94 23.77
TETRAD4 0.23 0.22 0.22 0.23

Efficiency Results The timing results are shown in Table V-5, and they were normalized in the
same fashion as the SHD results. A value less than one signifies that a method required less time
than Bach’s method on average. Comparisons between Tetrad4 and the other methods should not
be made since the Tetrad implementation was in Java while the others were in Matlab. Tetrad4 has
been excluded from subsequent timing discussion.

As shown in the table, the integrated methods required considerably more time than the other
categories. These methods considered all midpoints in the data, and as sample size increased, the
number of candidate thresholds increased quadratically. Also, the relatively slow performance of
Hartemink’s method demonstrated that discretization methods are not necessarily the fastest since
the discretization process may still require much time.

The fastest methods were the binning approaches and Bach’s method. There were cases where
binning methods required less time than Bach’s method, but when results were averaged over all
networks, Bach’s method was the fastest method. Even though the binning methods are the simplest

techniques, they were not the most efficient, and this finding was explained by using another efficiency

metric.
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In addition to running time, we analyzed the number of statistical calls made during structure
learning. For the discretization methods, the calls were calculations of the BDeu score. For Bach’s
method, the calls were calculations of Bach’s scoring metric, and for PC, the calls were conditional
independence tests. Table V-6 shows the average normalized number of calls for all algorithms.
Results for Tetrad4 were not reported since Tetrad did not output this information. The binning
methods made fewer calls than Bach’s method for all sample sizes. However, Bach’s method was
faster despite requiring more calls since it pre-computes the correlation matrix, or all the sufficient
statistics, before structure learning. During structure learning, it only needs to compute determi-
nants of the correlation matrix without the data. The binning methods consider the data each time

they calculate a BDeu score to compute the number of instances, which takes more time and is

linear to sample size.

Table V-6: Average Normalized Number of Statistical Calls During Structure Learning: The number
of statistical calls (i.e. calls to a scoring function or conditional independence test) was normalized
by the number of calls performed by Bach’s method on the same network and sample size. Values
less than one indicate an algorithm make fewer calls than Bach’s method for a given sample size.
Results were averaged over all networks. The numbers at the end of an algorithm denotes k, the
number of initial discretization intervals.

General Algorithm Avg. Norm. Num. of Calls | Average
Category SS=500 | SS=1000 | SS=5000 | over SS
EQFREQ2 0.88 0.73 0.76 0.79
Preprocessing EQFREQ3 0.74 0.73 0.73 0.73
Discretization EQWIDTH2 0.89 0.79 0.78 0.82
EqQwiDTH3 0.73 0.69 0.69 0.70
HARTEMINK 0.69 0.60 0.58 0.62
FRIEDMAN2 20.12 20.14 18.63 19.63
Integrated FRIEDMAN3 17.08 18.30 15.81 17.06
Discretization MONTI2 14.83 14.49 17.66 15.66
and Structure MoONTI3 12.93 13.59 10.50 12.34
Learning STECK?2 19.05 18.88 17.07 18.33
STECK3 19.18 16.70 16.02 17.30
Direct BacH 1 1 1 1
Methods PC-MATLAB 7.40 15.45 76.04 32.96
TETRAD4 n/a n/a n/a n/a
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For the integrated methods, we analyzed the number of scoring function calls during the dis-
cretization phases. Results were summed over all iterations and normalized by the results for Fried-
man’s method (k=3) since it performed the fewest number of calls. Table V-7 displays the results.
For comparison purposes, table V-8 shows the timing results for the integrated methods. Fried-
man’s method made the fewest number of calls, while Steck’s method made the most number of
calls. These findings were consistent with the timing results where Friedman’s method was the

fastest, while Steck’s method was the slowest.

Table V-7: Average Normalized Number of Scoring Function Calls During Discretization for the
Integrated Methods: The number of calls to discretization scoring functions was normalized by
the number of calls performed by Friedman’s method (k=3) on the same network and sample size.
Results were averaged over all networks. Values less than one indicate an algorithm made fewer calls
than Friedman’s method (k=3) for a given sample size. The numbers at the end of an algorithm
denotes k, the number of initial discretization intervals.

Algorithm Avg. Norm. Num. of Calls | Average
SS=500 | SS=1000 | SS=5000 | over SS
FRIEDMAN2 1.13 1.09 1.15 1.12
FRIEDMANS 1 1 1 1
MonNTiI2 1.29 1.06 1.04 1.13
MonNTi13 1.41 1.41 0.91 1.25
STECK2 1.87 1.69 1.58 1.71
STECK3 1.90 1.47 1.44 1.60

Table V-8: Average Normalized Time for the Integrated Methods: Time results were normalized by
results of Bach’s method on same network and sample size. Results were averaged over all networks.
Values less than one indicate an algorithm requires less time than Bach’s method for a given sample
size. The numbers at the end of an algorithm denotes k, the number of initial discretization intervals.

Avg. Norm. Time Average
SS=500 | SS=1000 | SS=5000 | over SS
FRIEDMAN2 62.92 165.18 1375.24 534.45
FRIEDMAN3 50.53 138.10 1001.61 396.75

MONTI2 139.83 274.30 1327.84 580.65
MonNTI3 153.94 388.61 1183.26 575.27
STECK2 244.48 553.39 2464.61 1087.49
STECK3 286.09 536.81 2557.84 1126.91

Algorithm
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Comparison of SHD and Time Results By graphing SHD and time on the same graph, we
can analyze the tradeoffs between quality and efficiency. For example, if a method provided slight
quality gains but required much more time, then the improvement in accuracy might not be worth
the additional computation. Figures V-4, V-5, and V-6 display the data previously reported in
Tables V-4 and V-5. The x-axis depicts average normalized time, while the y-axis depicts average
normalized SHD. Each point represents the performance of an algorithm for both metrics. If a point
is left of another point, then it is faster than the other algorithm. If a point is below another point,
then it is more accurate than the other algorithm. Point (1,1) denotes Bach’s method since it is
used for normalization.

With sample size 500, Bach’s method was the faster of the two most accurate methods. With
sample size 1000, Monti’s method (k=3) was slightly more accurate than Bach’s method but required
much more time. With a sample size of 5000, a number of algorithms yielded better accuracy results
than Bach’s method, but all of them required more time. In all cases, there was no method that

simultaneously outperformed Bach’s method in accuracy and efficiency.
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Figure V-4: Normalized Time vs. Normalized SHD for Sample Size 500.
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Figure V-5: Normalized Time vs. Normalized SHD for Sample Size 1000.
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Figure V-6: Normalized Time vs. Normalized SHD for Sample Size 5000.
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V.1.4 Supplemental Results

Comparison of Binning Methods to Integrated Methods

Using SHD as the quality metric, the integrated methods did not learn better structures than
the binning methods. These results do not necessarily contradict Friedman’s results (Friedman and
Goldszmidt, 1996) since that evaluation focused on classification. Furthermore, Steck’s evaluation
(Steck and Jaakkola, 2003) did not perform a quantitative analysis. However, our results contra-
dicted Monti’s conclusion that his method yielded more accurate structures than equal-frequency
binning (Monti, 1999). His findings employed a different quality metric, the percentage of extrane-
ous and missing edges relative to the true structure. These values were calculated as the number of
extraneous or missing edges divided by the total number of edges in the true graph. Results were
averaged over all sample sizes and all values for k. Performing a similar analysis of our data results
in Table V-9.

Monti’s evaluation used the same values for k but consisted of sample sizes 1000, 2000, and
3000. The only common network between both evaluations is Alarm. The remaining networks were

included for completeness along with the results for the other methods.

Table V-9: Average Percentage of Extrancous and Missing Edges: E is the average percentage of
extraneous edges for the structures learned by an algorithm for a given network. M is the average
percentage of missing edges for the structures learned by an algorithm for a given network. These
values were calculated as the number of extraneous or missing edges divided by the total number of
edges in the true graph. Results were averaged over all sample sizes and all values for k, the number
of initial intervals.

Alarm Child Hailfinder | Insurance
Algorithm E M E M E M E M
EQFREQ 0.31 0.60 | 0.29 0.36 | 0.68 0.41 | 0.21 0.51
EQwiDTH 0.37 042 | 024 033|056 043 | 0.18 0.46
HARTEMINK | 0.76 0.73 | 0.63 0.73 | 0.74 0.88 | 0.43 0.78
FRIEDMAN 0.41 0.51 | 0.13 0.27 | 0.46 0.41 | 0.16 0.39
MONTI 0.18 0.45 | 0.18 0.35 | 0.48 0.49 | 0.14 0.50
STECK 0.20 0.53 | 0.08 0.29 | 0.43 045 | 0.10 0.42
BacH 0.24 041 | 010 0.32 | 0.46 0.44 | 0.11 0.50
PC-MATLAB | 0.69 0.30 | 0.46 0.20 | 0.86 0.47 | 0.30 0.39
TETRAD4 0.21 0.69 | 0.23 049 | 0.17 0.71 | 0.06 0.75

For Alarm, Monti and Steck’s methods produced a lower proportion of extraneous and missing
edges than equal-frequency binning. Monti did not include results for equal-width binning. These
findings are consistent with Monti’s evaluation. For the remaining networks, all integrated methods

output less extraneous edges while showing mixed results with respect to missing edges.
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The edge identification results imply that the integrated methods are better than the binning
methods for detecting dependencies and independencies among variables. However, the discrepancy
with the SHD results suggests that the integrated methods may make relatively more errors when
orienting edges or identifying the directionality of the relationship between dependent variables.
This observation would explain why performance gains in edge identification did not translate to

results based on SHD.

Simulated Data with Different Values of Sigma

An additional experiment explored the effect of using different standard deviation values during
simulation. The purpose was to determine if algorithm performance varied depending on noise. From
each category, the method with lowest average SHD over all networks and sample sizes was selected:
equal width binning (k=3), Monti’s method (k=3), and Bach’s method. Data was simulated for all
networks with sigma values of .30 and .40 to contrast the original value of .35. The results were
not normalized to observe absolute changes in SHD. The graphs of SHD for each sigma value are in
figures V-7, V-8, and V-9. For sample sizes 500 and 1000, SHD increased with larger sigma values.
For sample size 5000, SHD did not fluctuate as much as it did with smaller sizes. The slight dip at
0.35 was probably an artifact of the SHD metric. With large sample size, more orientation errors
likely occurred since an algorithm is more confident with additional data instances. This claim was
supported by considering the extraneous and missing edge errors. For sample sizes 500 and 1000,
SHD values increased with larger sigma values due to more missing edges. For sample size 5000,
the number of missing edges similarly increased. The reason that SHD did not exhibit the same
increasing behavior with large sample size was probably due to more orientation errors for sigma

values 0.30 and 0.40.
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V.2 Real Data

V.2.1 Data Sets

Real data sets were used from the UCI Machine Learning Repository®. Also, Hartemink’s yeast
data set (Hartemink et al., 2002) was used. The data sets ranged in size from 270 to 4000 cases as
well as from 8 to 19 variables. Table V-10 lists the data sets used in the evaluation.

Table V-10: Real data sets: D is the number of discrete variables, and C'is the number of continuous
variables. Max Card. is the maximum cardinality for all continuous variables. In other words, it is

the maximum number of unique values. Min Card. and Avg. Card are the minimum and average
cardinalities for all continuous variables.

Sample Max Min Avg
Network size | 2| €| card. | Card. | Card.
ABALONE 4175 1] 8 2429 28 759.25
AUSTRALIAN 690 9| 6 350 23 188.50
BREAST 683 1110 10 9 9.89
CARsl 392 117 346 13 125.83
CLEVE 296 8 | 6 152 40 74.80
HARTEMINK 320 0 | 32 317 301 314.03
HEART 270 91| 5 144 39 72.20
HousinGg 506 1|13 504 9 235.62
PimA 768 1] 8 517 17 156.75
VEHICLE 846 1 |18 424 13 79.4

Real data do not necessarily exhibit the same Gaussian distributions as the simulated data sets.
Figure V-10 shows an example from the Cars data set of the joint distribution of the target variable

and the most associated variable to it as measured by Fisher’s Z-test.

Number of Occurences
ok v w s G oo N ®

6000

Variable 5 Target

Figure V-10: For the Cars data set, the distribution of the target and its most associated variable
does not show the same Gaussian behavior as the simulated data.

3Data sets available at http://www.ics.uci.edu/ mlearn/MLRepository.html
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V.2.2 Metrics of Comparison

Unlike the simulated data sets, we do not know the true generating structures for the real data
sets. Instead of using SHD to measure quality, Bach’s scoring function was used to rank structures,
and it was explained in detail in section II[.3.1. A disadvantage of this metric is that it favors
Bach’s method. Using a Bayesian score such as the BDe score was considered, but this score
requires all methods to output a final discretization of the data. Unfortunately, the direct methods
do not discretize the data, which makes this approach unsuitable. Once again, running time and

the number of statistical calls were used to evaluate the efficiency of the algorithms.

V.2.3 Results

All results were normalized in the same fashion as those from the simulated data.

Table V-11: Results for Average Normalized Bach Score, Time, and Number of Statistical Calls:
Results were normalized by results of Bach’s method on the same data set. Results were averaged
over all data sets. For the score results, values less than one denote that a method learned lower
quality networks than Bach’s method. For the time results, values less than one denote that a
method required less time than Bach’s method. For the number of calls results, values less than
one denote that a method made fewer calls than Bach’s method. The numbers at the end of an
algorithm denotes k, the number of initial discretization intervals.

General Algorithm Avg. Norm. | Avg. Norm. Avg. Norm.
Category Score Time Num. of Calls
EQFREQ2 0.91 1.14 0.68
Preprocessing EQFREQ3 0.95 1.04 0.63
Discretization EQwIDTH2 0.79 0.97 0.60
EqQwiDTH3 0.89 0.92 0.59
HARTEMINK 0.88 47.14 0.67
FRIEDMAN2 0.91 288.25 2.86
Integrated FRIEDMAN3 0.91 169.32 2.48
Discretization MONTI2 0.71 278.47 2.23
and Structure MonNTI3 0.84 194.05 2.08
Learning STECK2 0.93 691.65 3.06
STECK3 0.92 502.56 2.62
Direct BacH 1 1 1
Methods PC-MATLAB 1.13 4.69 2.55
TETRAD4 0.68 0.53 n/a

Quality Results The score results are shown in Table V-11. An algorithm with a value greater
than one produced a greater quality structure than Bach’s method. Bach’s method and PC-Matlab

induced the highest quality structures. For the prediscretization category, equal-frequency binning
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(k=3) was better than equal-width binning. The simulated data likely favored equal-width binning
since the Gaussian distributions that centered around the original discrete values had equal widths.
Also, Friedman and Steck’s methods were the best integrated methods.

Two direct methods were distinctly better than the discretization methods. This differentiation
did not appear in the simulated data, which suggests an important difference between the approaches
and types of data. Discretization methods assume continuous data are noisy observations of an
underlying discrete mechanism. Direct methods do not make this assumption. The simulated
data sets were generated in a manner consistent with the assumptions made by the discretization
methods, while the real data sets do not. The lack of an underlying discrete mechanism may explain

the difference between performances on the two types of data.

Efficiency Results The timing results are shown in Table V-11. A value less than one signifies
that a method required less time on average than Bach’s method. The timing results for the real
data were consistent with those from the simulated data. Bach’s method required approximately the
same amount of time on average as the binning methods. As with the simulated data, the integrated
methods were much slower than the other methods.

Results for the number of statistical calls made by each algorithm during structure learning are
also shown in Table V-11. A value less than one denotes that a method made fewer calls than Bach’s
method. As with the simulated data, the binning methods made fewer calls than Bach’s method.

For the integrated methods, the results for the number of calls during the discretization phase
are presented along with the timing results in Table V-12. The findings confirm the results from the
simulated data that Friedman’s method was the most efficient while Steck’s method was the least

efficient.
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Table V-12: Average Normalized Number of Scoring Function Calls During Discretization for the
Integrated Methods: The number of calls to discretization scoring functions was normalized by
the number of calls performed by Friedman’s method (k=3) on the same data set. Values greater
than one indicate an algorithm made more calls than Friedman’s method (k=3). Results were
averaged over all data sets. The numbers at the end of an algorithm denotes k, the number of initial
discretization intervals. The timing results are included for comparison.

) Avg. Norm. Avg. Norm.
Algorithm 8 8 .
Num. of Calls Time
FRIEDMAN2 1.19 288.25
FRIEDMAN3 1 169.32
MoONTI2 1.37 278.47
MonNT13 1.39 194.05
STECK2 2.25 691.65
STECK3 1.73 502.56
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Figure V-11: Normalized Time vs. Normalized Score for Real Data: The y-axis was flipped to
maintain consistency with previous figures.

Comparison of Score with Time Figure V-11 displays the data previously reported in Table V-
11 with the y-axis flipped. The transformation was necessary to maintain consistency with previous
figures. The x-axis depicts average normalized time, while the y-axis depicts average normalized Bach
score. Each point represents algorithm performance for both metrics. If a point is left of another
point, then it is faster than the other algorithm. If a point is below another point, then it output
higher quality structures. Point (1,1) denotes Bach’s method since it is used for normalization.
Bach’s method resulted in higher quality structures compared to the binning methods while
requiring about the same amount of time. PC-Matlab produced better graphs compared to Bach’s

method but required more time. Finally, the integrated methods produced structures comparable
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to the binning methods in terms of quality but required considerably more time.

V.3 Summary of Results

The empirical evaluation compared the performances of eight algorithms on two types of con-
tinuous data. Performance was measured by the quality of learned structures and efficiency. The
discretization-based approaches yielded the most accurate structures when learning from simulated
data with large sample size. These methods assume that data is generated from an underlying
discrete mechanism, which was true for the simulated data. With small simulated data sets, Steck’s
method (k=2) was as accurate as Bach’s method but required more time. With real data, two
direct methods, Bach’s method and PC-Matlab, learned the highest quality structures. In terms of
efficiency, Bach’s method was fastest with respect to running time. When the number of statistical
calls was measured, the binning methods were most efficient.

Another finding was that the integrated methods did not necessarily learn more accurate struc-
tures than the binning methods. The SHD results demonstrated comparable performances between
the integrated and binning methods. However, the integrated methods learned more accurate struc-
tures when we ignored edge orientation errors.

Overall, Steck’s method and Bach’s method were the best methods from their respective cat-
egories. Equal-width binning (k=3) was the best pre-discretization approach for simulated data,

while equal-frequency binning (k=3) was better with real data.
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CHAPTER VI

DISCUSSION

Biomedical researchers today often study continuous data sets, and Bayesian network structure
learning algorithms are an increasingly popular tool for learning the relationships among variables.
This work focused on the task of learning Bayesian network structure from continuous data. It
compared the three general approaches of discretization as a preprocessing step, integrating dis-
cretization and structure learning, and learning directly with continuous data.

The conclusions from the study may benefit researchers learning Bayesian network structure
from continuous data. First, of the methods included, Bach’s method demonstrated the best overall
performance across all comparison metrics and data types. This is an important finding since
it showed that a direct method can be as efficient as the binning approaches. Furthermore, the
assumptions made by this direct method did not prohibit it from learning accurate structures.

The work also emphasized the importance of considering the nature of the data. If the data
is fundamentally discrete, a discretization-based approach is appropriate. Discretization techniques
assume that data are noisy observations originating from an underlying discrete mechanism, while
the direct methods do not. Also, the sample size of the data should be factored into the decision of
which approach to utilize since the discretization methods performed best with large sample size.

Another goal of the work was to assess whether the integrated methods provided quality im-
provements over the binning methods. The purpose of the integrated methods is to improve the
accuracy of pre-discretization approaches by avoiding poor initial discretizations. When consider-
ing edge orientation of the induced structures, integrated methods did not provide benefits that
would warrant the additional computation. However, when only factoring in edge identification, the

integrated methods increased accuracy.
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VI.1 Limitations

While this work performed a comparison of the three approaches in a unified study, there were
some limitations that could be addressed in future work. First, the evaluation would have benefited
from known gold standards for continuous Bayesian networks. In the absence of such networks,
simulated and real data sets without known structures were used. Second, the simulation technique
was relatively simple. Real world data does not necessarily start as discrete data with added Gaussian
noise. However, it still provided useful insights, such as the improved performance of discretization
with large sample sizes, which may generalize. Third, for the real data sets, Bach’s scoring metric
was a biased metric. Although there is no guarantee that the learned structures resembled the true

networks, it still provided some intuition about the quality of the learned structure.

VI.2 Future Work

The results displayed the effect that the number of initial intervals can have on the output of
discretization-based methods. This experimental evaluation only tried two values, but it would be
useful for researchers if studies were conducted to identify scenarios where more or fewer intervals
would yield better results. Also, researchers would benefit if there were some recommendations on
how to select the number of intervals instead of simply guessing or trying multiple values.

Another extension to this work could be comparing algorithm performance on data sets of dif-
ferent characteristics from those presented. One option is studying networks with more variables. A
class of methods may be better suited than the others to handle the additional requirements. An-
other option is studying smaller sample sizes. Real world data sets do not always have thousands of
instances, and small data sets would more closely mimic the situations encountered by researchers.

Bach’s method demonstrated that directly learning with continuous data does not necessarily in-
volve crippling assumptions or excessive computational requirements. This work was not exhaustive,
and there were some methods that were not included due to computational restrictions. These meth-
ods should be investigated further. Also, the development of a novel method for learning directly

with continuous data is another possible direction to continue this work.
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