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CHAPTERI

INTRODUCTION

Robots today have advanced and complex sensors that can detect activity in the
environment and in their own bodies. These robots aso have an array of complex processing
routines that can transform the detected sensory activity into useful information. From
locdization of a sound source to recognition of faces, these processing routines can create avast
assortment of sensory information for arobot to use. In most robots, however, the outputs of
these sensory processors are more useful to robot devel opers than to the robots themsalves. Such
robots lack the basic cognitive skills that interpret the meanings of these stimuli. The processes
of finding appropriate sensory stimuli, understanding what these stimuli sgnify and enabling a
robot to use the stimuli appropriately so asto learn from its surroundings are il in thelr
beginning phases.

This dissertation presents a solution to some of the problems associated with the
processing and analysis of sensory information by robots. In particuar, it describes a software
mechaniam for sensory event binding, a process whereby the responses of different sensorsto a
sngle event (externd or internal) are recognized as such. It dso describes software for
attentional processing, a process that selects among dl available sensory information thet
which ismost important at the current time. These procedures are defined with respect to a
Sensory Ego-Sphere (SES), a software structure for arobot that serves, among other things, asa

short-term memory for arobot [Peters et al., 2001].



Robotic sensing requires sensors, physical devices that transduce energy into numerica
sgnads, which can be grouped into two categories. Exter oceptive sensors respond to stimuli in
the robot’ s externa environment while proprioceptive sensors measure some aspect of the
current internal state of the robot. The former category includes cameras, microphones and laser
range sensors while the latter includes force-torque sensors and strain gauges. Sensors and their
responses alone provide no fundamenta value for arobot. The sensory signals must be processed
by extracting specific information relevant to the robot’ s existence so asto structure the
individua sgnds gppropriady. Thus, the output Sgnas of individud sensors serve asinput to
various sensory processing modules (SPM) that detect specific patternsin the signas and/or
filter out irrdevant information.

‘Event’ is used frequently in thiswork to describe severd different phenomena. When
used with respect to the robot’ s environment, it refers to a single object or to the beginning,
ending, or momentary pause of atemporaly extended incident that generates or dters the energy
transduced by one or more of the robot’s sensors. *Event’ is used smilarly with respect to the
robot’s internal workings. The robot’s SPMs are typicaly designed to detect sgnal patterns or
dynamicsin the more narrowly focused streams of information that they extract from raw sensor
output. Sensory event denotes the structured sensory output of an SPM. A sour ce isthe physica
event that generates the stimuli leading to these sensory events. For example, aperson can be a
source that generates stimuli detected as sensory events by motion processors, face detectors and

sound locdizers.



Problem Area

A centrd problem addressed by this dissartation is that of relating the numerica time-
series outputs of the various SPMs to each other and to their proper sources. That is, which
events detected by the SPM's belong together by virtue of having been produced by the same
source? Which should be bound together because they occurred in response to an action of the
robot? Which should be ignored as irrelevant or spurious? How can the robot ignore these
irrdlevant or spurious stimuli without missing those that indicate danger or opportunity? The first
two questions are answered through event binding which detects spatio-temporal coincidence
of dimuli. Spatio-tempord coincident stimuli are those that contact the robot’ s sensors at about
the same time and/or originate those from gpproximately the same region of space. The second
two questions are answered through attentional processing which operates as afunction of
sensory events and the robot’ s tasks. Both attention and event binding rely on short-term
memory (STM). Different SPMs have different latencies, which are the timesrequired for a
SPM to produce an output fromitsinput. Thus, the tempora binding of different sensory events
requires temporary storage of events which are detected more quickly than others. Moreover, the
detection of a source may involve an accumulation of different sensory events over time, leading
to an attentional focus. A Sensory Ego-Sphere that provides STM indexed by space and timeis
therefore used as the supporting structure for the goals of thiswork. The proposed system is
unique in that it provides a single structure for event-binding and directing attention over
egocentric space in a manner appropriate for the sensory systems of fixed-base humanoid robots.
Figure 1 shows the architecture of the syster which seeks to answer the questions presented

above.
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Figure 1: Sysem Architecture

In this system, egocentric mapping (ECM) generates a spatial map of the robot’s
environment. ECM is used to represent sensory events from the robot’ s perspective so that
events that occur in the same direction, as observed by the robot, are mapped to the same SES
location. STM stores these events with their tempord properties (e.g. time of occurrence,
processing latency). Attention selects the spatia location that is most important to the robot a
the current time while event binding selects spatio-temporal coincidental events and sendsthem

to skill acquisition areas of the robot.

Objectives
The objectives of thiswork can be stated as the development and testing of computational
Structures for spatio-tempora coincidence detection in sensory information and for salience-
driven focus of attention.
A salient location isthat in which events that are of high importance to the robot at the
current time are detected. Events related to a current task are sdient because they may help a

robot to complete this task. An accumulation of eventsis sdient because multiple activitiesin



one areamay indicate an immediate Stuation which the robot needs to resolve. For example, if
the robot’ s current task isto locate adrill for grasping, then any event that relatesto adrill (eg.
object recognition of the drill) is sdient. At the sametime, if agroup of people are waving and
talking to the robot, the detection of many faces, sounds and movementsin one areais sdient.
The attention network presented in this dissertation determines which of these and other areasis
the mogt sdlient. The event binding mechanism decides which events co-occurred to create this
sdience, that is which events are patialy and temporaly coincident.

The robots used to test the work presented in this dissertation are ISAC, Vanderhbilt
University’ s humanoid, and Robonaut, the DARPA/NASA humanoid. For both of these robots,
sensors exigt to transform energy from activity in the environment (exteroceptive) or in the
robot’s body (proprioceptive) into signals. The sensors send their signalsto SPMs. If a SPM
detects an event, the event is sent to the SES where it is mapped egocentrically and tempordly.
The attention system determines the most sdlient location in the robot’ s environment and the
event binding mechanism sdects which sensory events from this area are atialy and
temporaly coincident.

ISAC and Robonaut should be able to direct their attention to areasin their environments
which are the most sdient. The assumption made in thiswork is that areas of high sdience may
require immediate action or further ingpection. The location of the most sdient areais important
because the robots have limited physica resources that cannot be distributed among different
gimuli. For example, the cameras cannot certer on two objects at once, therefore the robot needs
to know which object isthe mogt salient to perform further inspection or take action upon the
object. A hand cannot grasp more than one object at atime. The robot should be able to

determine which object ismost sdient so that the hand may grasp the important object.



A location may be sdient due to activity detected Smultaneoudy by severd different
sensory modalities. Therefore, the attention network that operates on the environmental
information should be multi-modal. Moreover, the robot should associate sensory events that co-
occur and originate from the same source. For example, if the robot wants to place a screwdriver
inatool box, the attention network should guide the robot initidly to the screwdriver and to the
tool box. However, if the robot cannot reach the screwdriver because its arm is blocked by a
table, the robot will never attainits god. In this case, the most sdient area of the environment is
that where the table is blocking the robot’s arm. The robot will have detected that the arm is not
moving, a heavy force is acting upon the arm and atable exigts in thislocation. If these events
are bound together, they can be associated. With severd such instances, the robot could learn
that these co-occurrences indicate the presence of an obstacle.

Before this work, neither ISAC nor Robonaut had the ability to determine the most
important sensory events or to group a collection of events that emanated from a single source.
This ahility was needed to support other research in skill acquisition. Therefore, the ultimate god
of thiswork isto creste alink from the detection of eventsto the use of that information by later

processing stages in the robots.

Sanificance of Work

Rather than dlocating a separate attention network to each sensing modadity, the sensor
outputs from different modadlities are combined together in one data Structure, the Sensory Ego-
Sphere (SES). The significance of this gpproach liesin using the SES as the certrd location for
mapping and storing events, assgning sdience to the events and sdlecting coincident events. The

SES, described in Chapter 3, functions as a short-term memory that maps sensory eventsin an



egocentric manner. It can store events from sensors with different resolutions. The atention
network assgns salience to events stored in the SES. Sdlience is based on the incidence and
task-relevance of an event as well as whether or not the event is habitual. The SES was
origindly designed to be a short-term memory. The sdlience of an event registered onto the SES
decays over time. Due to resolution differences between sensors and sensor error, the salience
assigned to a sensory event is spread around the point where the event was registered onto the
SES. The spreading causes sdlience to build up in areas on the SES that contain many events.
This means that an area.on the SES might not house an event, but may ill have high sdience
due to the spreading of sdience from nearby events. After the attention network sdlects the area
with the most sdlience, the event binder determines which events co-occurred spatialy and
temporaly, the former by associating nearby events within the salient region and the latter by
sdecting those from the region that occurred within a short time interval. Other computational
modules within the robot can obtain from the SES the data associated with the sensory events so
bound.

The attention and event-binding mechanisms of this system both perform at levels thet
are essentidly equivaent or better than those exhibited by common and/or dternative
gpproaches. The atention network successfully locates the aress of high sdience as determined
by incidence, task-relevance and habituation of sensory and motor events when sensors report
events within their resolutions. The event binder aso successfully selects events that did occur
together in the case of Sngle event sources and multiple event sources. It is shown later in this
dissertation that when compared to others methods for finding sdient events (e.g. focus of

atention [Lang et d., 2003; Déniz et ., 2003)]), the system described here performs aswell as or



better. The binding of co-occurring events performs well when compared to probabilistic

measures used to determine co-occurrence.

Paper Organization

Chapter 2 presents a brief description of the Sensory Ego-Sphere and previous robotic
methods developed in ECM, STM, sensor integration and attention. Chapter 3 presents the
robotic platforms on which the methods in this dissertation are tested. This chapter dso presents
afunctional description of the SES. Chapter 4 presents the methods used to devel op the attention
and event binding software structures and the motivations behind these methods. Chapter 5
presents the experiments designed to test the software structures and their results. This chapter
aso contains evaluations of the structures’ performances. Conclusions and future work are
detailed in Chapter 6. The Appendix provides a detailed explanation of the Sensory Ego-Sphere

dtructure.



CHAPTERI I

BACKGROUND MATERIAL AND PREVIOUS WORK

This chapter briefly revigts the problems undertaken in this dissertation, provides a
succinct description of the Sensory Ego-Sphere and evauates previous work in related areas. The
related areas described are egocentric mapping, short-term memory, sensor integration and
attention. Evauations of methods used in each area on robotics systems are made. The results of

these evauations are contrasted againgt the methods presented in this dissertation (Chapter 4).

Problem Statement

The problems that this dissertation seeks to solve are that of spatio-tempora coincidence
detection of sensory events and of attending to salient sensory events, both by a humanoid robot.
The solution presented in this dissertation uses egocentric mapping and short-term memory to
facilitate the event binding and attention system. The Sensory Ego-Sphereis the unified

mechanism upon which the preceding systems are applied.

Sensory Ego-Sphere: A Brief Overview

The Sensory Ego- Sphere (SES) is a software object that serves as amediator between the
sensing and cognition of arobot [Peters et d., 2003]. The SES can function as a short-term
memory and can facilitate attention as well as detection of co-occurring sensory events. It
operates asynchronoudy as a data structure in apardld, distributed control system that includes

independent, pardlel SPMs. The SES was inspired by Albus's egosphere [Albus, 1991].



Idedlly, the SES can be visudized as a sphericd shell centered on the coordinate origin of
the robot. This Situation provides an egocentric representation for the robot, thereby facilitating
egocentric mapping. Each point on the shell isalocdly connected memory unit with atemporad
decay to provide short-term memory. A SPM sends an event to the SES to be attached to a point
on the shell. The detected location of the event is projected onto the shell to find the attachment
point. The SES attaches the event &t the point closest to this projection, aong with the time of
registration and any other information the SPM may collect about the event. Specificdly, the
digance to the event is only stored if the SPM computes the 3-dimensiona postion of the event.
However, the actua eevation and azimuth angles a which the event is detected are stored so
that the robot may return to the event’s exact location. In the case of visud events, the verge
angles are dso stored so that the depth may be calculated at alater date if needed. System
components of the robot that use sensory data may read from the SES. Therefore, information

can flow to and from the SES.

Structure of the SES

In its actud implementation on a robot, the SES is a database with associated
computationa routines. The records in the database are connected as nodes in agraph
isomorphic to aregular tessellation of a sphere centered on the coordinate frame of the robot. In
particular, the topologica structure of the SES isthat of a geodesic dome, defined asthe
“triangulation of a Platonic solid or other polyhedron to produce a close gpproximetion to a
sphere or hemisphere” [Weisstein, 1999]. Each vertex on the dome contains a pointer to a
digtinct data record. Thus, the SESis a sparse map of the world that contains pointers to events

that have been detected recently by the robot’s SPMs. Asthe robot operates within its

10



environment, externd and internal events stimulate the robot’ s sensors. Upon detection of an
event, the associated SPM writes its output to the SES. The event is stored at the node thet is
closest to the direction in which the event occurred.

Since the robot’ s SPM s are independent and concurrent, multiple sensors stimulated by
the same source will register their events onto the SES within atime interval determined by SPM
latencies. If the sourceis directiond, the different modules will register their events a the same
location on the SES. Hence, given pardld, independent processing modules, events from
different sensory moddities coming from smilar directions a amilar times will register closeto
each other on the SES.

The dructure of the SES exigts in both a theoretical geometric form and in a practica
implementation form. The idedlized geometric sructure is presented in the Appendix. The
practica structure of the SES exists as a geodesic dome interface, a database and communication

managers, dl of which are described in the Sensory Ego- Sphere section of Chapter 3.

Previous Work

This section presents previous methods devel oped for egocentric mapping, short-term
memory, Sensor integration and attention in robots. The god in reviewing these methodsisto
determine what other methods exist and if any of these methods address the problems presented
in this dissertation. Do any other methods of ECM use a unified structure? Do any other methods
combine the use of ECM with a STM? Do any other methods use ECM and STM to facilitate
sensor integration and attention?

It will be shown that, although mechanisms and methods exist for ECM and STM, none

combines al of the functionality needed for further event binding and attention. Along with a

11



method to egocentrically map sensory events, the mechanism needs to have atopologicad manner
of linking spatidly co-occurring events. The mechanism should also store sensory events
individudly in a short-term fashion so that the attention network can operate on these events.
Findly, the mechanism should be able to handle sensory information from multiple moddities

and at multiple resolutions.

Egocentric Mapping

An egocentric reference frame represents the environment in the perspective of the
observer looking out into the world [Klatzky, 1997]. Egocentric frames are thought by some
scientists as being input to allocentric reference frames, which represent locations externa to an
observer and are independent of the observer’s position [Klatzky, 1997]. Typicaly, egocentric
representations use polar coordinates to index |ocations with respect to an origin at the center of
the observer’ sbody [Klatzky, 1997].

The main objective for using egocentric mapping in dl of the methods reviewed below is
to represent sensory information that the robot detected in a manner that was innate to the robot’s
sensory systems. Mogt of the systems use only visua sensory information in their representations
or have multiple sensory systems that report in the same coordinate frame. Active vison sysems
exis in spherica coordinatesfor dl of these robots. The sameistrue for both ISAC and
Robonaut — the naturd coordinate frame in which both of these robots operate is spherica.
Therefore, egocentric mapping of detected eventsis preferred because it can be easily used in a

spherica coordinate system.

1 A human’ sbody center is taken to be a collection of the head and torso [Arbibet al., 1998]. A humanoid’ s body
center can be defined anywhere, with the most efficient centers being centered at the head, torso, or base (depending
on what type of movement the humanoid is capable of).

12



Most egocentric mapping methods used in the robotics field are for navigation and
localization of mobile robots or as away of maintaining local representations of arobot’s
environment. The latter method is how ECM is used in this dissertation. A representation of the
robot’s loca environment is needed o that the robot can attend to sensory events within its
workspace and o that the robot can detect which local sensory events are spatialy coincident.
Since the robots used in this dissertation are Sationary (i.e. cannot move their bodies from one
point in 3D space to another), only locd representations of the environment are needed.

The Ulm Sparrows Robo- Cup team used atwo-layer spatid representation for adaptive
modeling of a soccer-playing robot’ s environment [Sablatntg et d., 1999]. The lower layer isan
egocentric representation maps the robot’ s loca environment, considering data found in both the
robot’s current field of view and datathat no longer gppearsin the robot’ sfield of view. The
representation congsts of multiple maps of features of the environment (e.g. distance of soccer
ball, fidd landmarks, position of other robots). This method alows arobot to know where
sensory simuli are that cannot be seen at a given moment <o thet later processing can be
performed on these stimuli. The objective of this gpproach isto provide arobot with immediate
and adaptive mapping abilities for quick sdection of low-leve behaviors. Initidly, the approach
in this sysem islike that used in the SES in that al known objects (not just those in the field of
view) are mapped egocentricaly. However, no topologica links are supplied between featuresin
the maps. Topology in the ECM isrequired for event binding and helpsto facilitate attention.
Without the topology, coincident features cannot be integrated. Also, salience cannot be applied
to areas without topology.

Kraetzschmar et a. adapt the reference system described in [Sablatnog et d., 1999] to

create a hybrid approach for spatia representation in their gpplications to service robots

13



[Kraetzschmar et d. 2000]. They use egocentric, alocentric, region and topologica mapsto
represent their robot’ s work environment. The authors use occupancy grids to denote locationsin
which objects are located. The topologica map denotes each occupied area and links adjacent
areas for path-planning and navigation. This representation uses the egocentric view to make a
loca map while the topological linking of objects discovered in the egocentric view isdonein a
2D planar space while the overal objective of the system isthat of path-planning and navigation.
Unlike that of Sablatndg et d., this system includes the topology of features detected in the
environment and can link features together in two dimensions. However, the occupancy grid
gpproach in this system must be sampled to generate a map of the robot’sloca space. This
approach requires computations to creste amap of the area as opposed to the immediate
availability of aloca areamap intringic to the SES.

One method that has a structure similar to that of the SES is the bubble modd developed
by Soyer et d. [Soyer et d., 2000]. The authors describe their bubble model as an egocentric
gpatio-tempord visuad memory. The objective of ths memory isto integrate different visud
features of the robot’ s environment in a spatio-tempora manner, athough no further processing
is done with thisinformation. Mathemeticaly, the bubble is a 3-dimensiond sructure with a
deformable surface. Contral points on the bubble coincide with potentia fixation points of the
robot, both of which are Smply pairs of pan and tilt angles from the robot’ s visud system. When
avisud feature is detected, the strength of the feature relative to its processing routine is used to
deform the surface of the bubble at the specific fixation point. For example, edge detection is
used to find bars on awindow. The strength of a detected edge is used to deform the bubble
surface at the robot’ s different fixation points, or in the direction of the detected edge. The

‘bubble function’ represents the deformed surface. This function uses the image produced by the
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robot’s camera and the strength measure to produce a surface output. By applying the bubble
function at a given fixation point, the surface of the bubble is inflated relative to the strength of
the detected visud features. This gpproach, while computationaly and temporaly very
expendve, can integrate different visua features. Deformations formed by a specific set of visud
features can define the co-occurrence of those festures. The bubble model adso seems useful in
that multiple resolutions of sensory information can be used to deform the bubble. However, the
information about visud features is sored in an array in mathematica form. No method existsto
select information about one specific feature that may exist in adeformation of severd features.
Also, no topological connections exist to spread attentive measures across the bubble, dthough a
measure of salience could be included in the deformation.

Brill et d. use markers to represent arobot’sloca space in adynamic 3D environment
[Brill et &., 1995]. The markers store task-relevant objects found in arobot’ s surroundingsin
egocentric space. The objective of the marker modd is to maintain a representation of the robot’s
3D environment. The markers are data Structures that store what an object isand whereit is
located in the robot’ s environment. A main advantage of usng the marker system is that once an
object has been detected, the robot aways knows where the object is even if it is occluded or not
in the robot’ s field of view. However, when the robot moves, all markers must be updated. The
new locations that the markers store must be estimated by transforming the previous locationsin
the new coordinate frame. This method is computationaly wasteful in that every marker is
updated upon every new position of the robot, rather than updating only as needed. Also, no
topology is built into this modd. Therefore, markers cannot link objects together without many

computations due to the 3D coordinates in which the markers reside.
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Fitzgerald developed the EgoMap to maintain an egocentric short-term memory for
visud attention and tracking on MIT’s humanoid, Cog [Fitzgerald, 2003]. Smilar to the SES, the
EgoMap is a spherica shell centered at the robot’ s head. It Stores, however, only directiona
information about detected objects. On the shell, there exists atwo-dimensond grid thet is
composed of bins. These bins are indexed spatidly in dimensonsthat are Smilar to longitude
and latitude, but the exact mathematics of the system is not described. The purpose of the
EgoMap isto alow Cog to redirect its gaze to objects that are not in its current fild of view.
While the exact method of egocentric registration is not described in the paper, the representation
does provide at least directiona STM like the SES. The EgoMap does not have any topology and
is not used for purposes other than storing short-term sensory informeation in an egocentric
manner. No cognitive abilities of Cog are enhanced by the EgoMap.

The egocentric representation most smilar to the SESis Albus' s egosphere [Albus, 1991,
Albus and Meystd, 2001]. The egosphereis defined as *a spherica coordinate system with the
sf (ego) a the origin.” Albus adopts Klatzky’ s definition of egocentric space [Klatzky, 1997)
and transforms it into the egosphere. In the egosphere, each location in the world occurs a a
specific azimuth and devation, i.e. polar coordinates. Albus proposes using several egospheresto
represent different aspects of the world. For example, he describes a sensor egosphere which sits

at the origin of any sensor dlocated to arobot (e.g. camera, sonar). Other examples are the head

egosphere and the body egosphere.

Short-Term Memory

Short-term memory (STM) is needed for storage of sensory data and the integration of

sensory data over time for further processing [Albus and Meystd, 2001]. Such amemory is
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considered “short-term” because the time interva over which datais stored is gpproximately
equal to the planning scope at which tasks are implemented [Albus and Meystel, 2001]. That is,
the robot should not hold al sensory information it detects for arbitrarily long periods of time.
Therobot's STM should retain information relevant to the current task Situation. For the work in
this dissertation, the sensory data need only reside in memory for aslong asit is useful to the
current task or is transcribed by some other computational process (e.g. alearning mechanism).

The main reason that STM is consdered in thiswork is that measures the attention
network associates with events in short term memory need to decay over time. If the vaues of
sensory events are not decreased over time, the robot has amuch higher chance of atending to
information that may no longer be true. The lesstime an irrdevant item Stsin memory, the less
chance it has for becoming afocus of atention.

STM plays arolein both attention and event binding in thiswork. In binding sensory
events, STM must store and track the events. Events that occur together may not be detected at
the same time due to different latencies of the SPMs (i.e. each SPM has its own processing
latency, some longer than others). Thistime discrepancy can be resolved in STM. STM is needed
for attention to monitor events involved in the focus of atention and to keep those events a hand
for further processing. Below are descriptions of STMs used in other robotic systems.

Artificid neurd networks (ANN) are used in many learning and navigation tasks for
mobile robots. ANNSs function as short-term stores since past sensory data are stored into the
network. ANNSs function to partition the sensor space so that sensor inputs correlate with specific
regions of the sensor gpace, that is the network can predict future sensory measurements by using
past sensory measurements. Thisis useful for robots that operate in a constant and/or static

environment. However, for attention, salience needs to be assigned to sensory datawhich in turn
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isranked by its sdiency. The SESis a short-term repository for sensor input that can perform
this saliency rank. Other computational modules in the robot can access the data structured by
the SES. These other modules may well include ANNS. Moreover, non-SPM routines can
interpret data on the SES. The SES is more appropriate for the work developed in this
dissertation than ANNSs because the SES can act as an interface between the robot’ s cognition
and sensing. ANNSs provide cognition, not an interface. Examples of ANNs used as STM in
robotic systems are Hidden state or Hidden Markov models [Baldi and Chauvin, 1993;
McCallum, 1996; Drescher, 1991, Littman, 1993; Chrisman, 1992] and recurrent neura
networks [Floreano and Mondada, 1996; Meeden, 1996; Nolfi and Floreano, 2000; Ziemke,
1999; Ziemke and Thieme, 2002].

Kayamaet a. describe their implementation of avisua short-term memory for arobot
[Kayamaet a., 1998]. The purpose of the STM on the robot isto recall objects the robot has
discovered in its environment. The authors create a panoramic mosaic of visud descriptions
taken from images of the robot’s environment. Asimages of the environment are snapped, color
segmentation is performed and segmented areas are labeled asregions. Each known region is
tagged with spatia and tempord information. Thistag information is stored in a database. The
gpatid information characterizes the regions (i.e. ssgment’s size, shape, color) while the
tempora information describes the history and variation of aregion. A network isformed to
describe the topology of regionsin adjacent images. The information produced by the STM is
solely used for memorization of the environment, though. No other kills of the robot use the
information provided by the STM. The authors demongrate their STM with the humanoid robot
Saika In the demongrations, the robot is alowed to make a panoramic mosaic of its

environment. The authors then moved, removed or occluded an object in the environment. Saika
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was then asked to find the origina object. In the cases where the object was not removed from
the environment, Saika found the object. When the object was removed, Saika began to scan the
environment again. This sysem is very smilar to the SES - it is a topographica map that stores
short-term sensory informetion about the environment in an egocentric manner. An advantage
that the SES does have over this system isthat the topology between objects dready existsin the
structure of the SES; no mathematical computations need to be formed to link objects together
because the nodes which store events are aready linked. This type of topology isimportant for
future attention and event binding caculations.

Soyer et al. use their bubble model, described in the egocentric representation section, as
a short-term memory, aso. If arobot detects a visua fegture, a bubble isformed at the current
fixation point of the robot and the quantitative measurement of the festure is used to deform the
bubble in the direction of the festure. When the robot returns to the location at alater time, it can
reca| the stored sensory information. The information in the fixation point islogisticaly stored
asa2D array in computer memory. Once again, the computational complexity of this method is
much greater than that of the SES, whether it isin the ECM or the STM.

The egocentric markers developed by Brill et a. and described in the ECM background
serve as a short-term memory, dso [Brill et al., 1995]. The markers are egocentric memory data
dructures that are capable of maintaining sensory information thet is either occluded or not in the
robot’s current field of view. The markers sore the sensory information’s relevance to the
current task and the location of the stimuli in the robot’ s egocentric frame. The locations of the
markers are updated in short-term memory by either dead-reckoning, measurement of
acceleration or optica flow methods. The advantage of this system is notably in the ability of the

robot to have access to occluded or unseen information and in the methods of updating STM for
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mobile robots. Again, though, the markers have no direct method of linking objects to each other
30 asto bind sensory information, which is a necessity in this dissertation’ swork for attention
and event binding.

Canas and Garcia- Alegre describe their use of occupancy grids to generate and maintain
arepresentation of the robot’ s loca environment [Cafias and Garcia-Alegre, 1999). As the robot
navigates through its environment, a decision function integrates sonar readings and determines
whether or not grid cells are occupied. Grid cells are segmented according to whether or not they
are occupied. The main purpose of this STM is to represent obstacles to the robot in amore
abstract manner than that of actua sensor data readings. For stationary robots, the occupancy
grid method is areasonable aternative to the SES, athough it is not shown if the occupancy grid
would be useful in binding coincident sensory events and in performing saliency-based attention.
That isnot to say that these functions could not be gpplied on an occupancy grid. Indeed, the
SES can be viewed as akind of occupancy grid, only one that isindexed by directiond

coordinates rather than Cartesian coordinates.

Sensor Integration
Sensor integration is the combining of sensory information detected at roughly the same
time from different sensors to form a percept [Masumoto et d., 1994; Dudal, 2002]. It isaso
described as the combining of simuli that emanate from different sensory modalities in multiple
gpatid locations [Maravitaet d., 2002]. Most sensor integration work in the robotics field has
focused on mobile robots and how to navigate or localize robots by fusing the few sensor signals
available to the robots. Kam et d. group methods into low-level fusonand high-level [Kam et

a., 1997].
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Low-leve fusion processes usualy send their output to a map-making agorithm or a
path-planner. Kaman filters are widely used for low-level sensor fusion when the satidtics of the
system and sensors are known, with the objective of fusion being to create an environment model
for the robot. In centraized architectures, Kalman filters are gpplied to arange of sensory data
for use as environment models and position monitors for robots. Cox used Kaman filtersin his
robot Blanche to fuse incoming sensory data [Cox, 1991]. Hong and Wang used Kaman filters
to fuse noisy and fuzzy sensory data[Hong and Wang, 1994]. Others have used Kaman filters
for visud mapping and automatic guided vehicles [Ayache and Faugeras, 1988; Borthwick et d.,
1994].

In systems that process different sensory modaities with different techniques or that
depend on patterns found in maps, Kaman filters prove to be very difficult to apply [Kam et dl.
1997]. Instead, some devel opers use rule-based methods to fuse sensory data [Flynn, 1988].
Rule-based methods are smple to implement but do not generdize to different environments
very well [Kam et a., 1997]. Geometric and topologica maps have become a popular method of
fusing sensory data from many different modalities. Blanche, Cox’ s robot, uses egocentric,
topologica maps in combination with Kaman filtering techniques [Cox et d, 1991]. The SESis
an example of atopologica map that o has an ideadized geometric structure. However, the
purpose of event binding in the context of this dissertation is to integrate co-occurring sensory
events for arobot’s higher-level processes.

Hightlevel fusion processes usudly integrate their output directly into the control
processes of the robot architecture. These types of fusion processes are similar to the event
binding process described in this dissertation. The integration of co-occurring events on the SES

for kill acquigition, as described in this dissertation, can be described as a high-leve fuson

21



process. Masumoto et a. describe their hierarchical modd that uses high-level sensory-motor
fuson for intentiona sensing [Masumoto et a, 2003]. The modd uses ‘ processing units to
provide autonomous control to the robot. A processing unit congsts of arecognition module, a
motor module, and a sensory-motor fuson module. The recognition module receives low-leve
sensory sgnds from multiple sensors, converts the sgnd into an event and sends the event to a
“higher layer” and to the sensory-motor fuson module. The sensory-motor fuson module
receives input from the “higher layer” in the form of sensory goals and from the recognition
module. The role of the sensory-motor fusion module isto predict changes in the sensory
environment that are produced from actions the robot takes in its surroundings. The sensory-
motor fuson module sends its predictions to the recognition module while motor commands
from the “higher layer” are sent to the motor module. The motor module then converts these
“higher layer” motor commands to low-level commands for the robot. Basically, this system
contains SPMsthat convert sensory stimuli into events. These events are fused with gods of the
system to determine what motor commands to perform next and to predict the changes that might
result from the motor actions. The system developed by Masumoto et d. is sSmilar to the
attention and event binding developed in this dissertation in that sensory events are combined
with information about the robot’ s goas to create an output. However, this system does not seek
to drive motor commands and predict the changes the motor actions might have on the robot’s
surroundings. The objective of the system is to provide output for skill acquisition processes.
This gpproach is useful in detecting co-occurring sensory events with respect to the robot’ s task.
It isaso useful in predicting the environmenta changes caused by the robot’ s actions. The
method does not afford for storage of sensory events or for mapping of these events. The events

detected can only occur within the robot’ s field of view.
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Tremblay and Cutkosky describe their sensor fusion approach for dexterous manipulation
[Tremblay and Cutkosky, 1995]. The goa of their work is to use sensors and context to reliably
detect eventsin the dexterous manipulation of objects. The task in this research is decomposed
into phases or episodes, each of which is associated with possible events. Each of these events
has a set of sensor-based and context-based features associated with it. The sensor-based features
congs of fingertip postion error and filtered force. The context-based features consist of desired
acceleration, force-velocity dot product and desired fingertip velocity. Events consst of fingertip
contact, finger acceleration and unknown disturbances. As features are detected by the tactile
sensors, they are given a confidence vaue assigned by a confidence digtribution function. The
overdl confidence for an event is the weighted sum of its associated festures confidences, with
the weights being assigned a priori. The objective of Tremblay’s and Cutkosky’ s fuson, though,
is event detection for dexterous manipulation. The processng of the system is hard-wired for the
gpecific sensors on arobotic hand.

Lang et al. described their adaptation of the anchoring process to fuse together coincident
sensory events [Lang et al., 2003; Coradeschi and Saffioti, 2001]. The authors devel oped what
they cal ‘multi-moda anchoring’ to identify and track people in the environment. The authors
define multi-moda anchoring as the process of linking symboalic representations of objectsin the
world (i.e. “person”) with the sensory representations of these objects (e.g. detected face). These
representations are bound together to create an anchor. The connections are dynamic so asto
alow tracking of multiple objects. Every time new sensory dataisfound, it is anchored to a new
symboal. (Although this system is devel oped on a mobile robot, the robot does not move during
any of the experiments used to test the multi-moda anchoring so that multiple views of asngle

object do not need to be consdered.) Once asymboal is established, the sensory events that
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describe that symbol are bound with the symbol until the events no longer exigt. In this system,
the only symbol that the robot can anchor to representations is ‘ person’. The only representations
avallable for the robot are face detection, leg detection usng sonar and sound source localization.
The multi-moda anchoring system was shown to be highly successful at tracking multiple

people both in alaboratory stuation and in a crowded conference hal. The anchoring processis
skillful a binding together co-occurring sensory events, athough only three types of sensory
events are detectable for the specific robot and there is only one possible type of anchor. The
main drawback of this system is that the symbol and events must be known to be bound. An
anchor cannat be created for an unknown symbol or using unknown/unexpected events. Thisis
crucia to the system developed in this dissertation because the events that co-occur are not

presumed to be known or to co-occur from a known source.

Attention
Themain purpose of attention in thisthesisis ‘ selection-for-action’ as described by
Bakenius [Bakenius, 2001] with the *action’” being skill acquisition. The salection process
locates sensory events (selection) that provide input for skill acquisition (action) on both
Robonaut and ISAC. The attention systems reviewed below include uni-modd atention systems
and multi-modd attention systems. Some of these systems include goa-driven control while

others use only bottom-up salience to drive the direction of attention.

Uni-Moda Attention Sysems

Cave developed FeatureGate, amodel of top-down and bottom-up influences on visud

attention [Cave, 1999]. FeatureGate uses visua images as input to the system and selects the
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region that is mos different from its neighbors (“ pops-out”) and most closdy matches the target.
FeatureGate was developed for use on ISAC by Driscoll [Driscoll et d, 1998]. Wolfe's Guided
Search modd aso used top-down and bottom-up influencesin visud attention [Wolfe, 1994].
Both FeatureGate and Guided Search compute a focus of attention in images by selecting
features that stland out from neighboring features (bottom+-up) and by sdecting features that
match avisud target (top-down). The image pixd that is mogt different from its neighbors and
most closaly matches the target wins the focus of attention. Both of these visua attention
systems have influenced the attention network developed in this dissertation. The attention
network uses both bottom-up and top-down information to drive the focus of atention; however,
in this attention network, the attention network seeks areas whose salience values pop-out (i.e.
multiple events appearing in one areq) and areas whose events are relevant to agod. While the
systems developed by Cave and Wolfe are gpplicable only to visud images, they aso serve as
background for attention systems presented later in this section.

Itti et d. model sdiencein visua scenes aso to direct attention to pop-out regions [Itti et
al., 1998]. Themodd issmilar to FeatureGate and Guided Search; however, this verson of the
attention systemn only searches for pop-out areas. God or target information is not used in this
system. It has, however, been adapted to perform goal-directed visud attention, both by the
authors and by others. Nava pakkam and Itti developed a god-oriented attention mode for
extraction of task-relevant objectsin a scene [Nava pakkam and Itti, 2002]. The authors
expanded the origind visud attention system with a topographic task-relevance map that
encodes the relevance of every visud location to arobot’s current task. The authors motivation
isto save computational complexity by tracking only events/objects that have an expected

relevance to the current task. Their architecture consists of four parts: avisud brain, working
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memory, long term memory and an agent. The visua brain maintains a sdience map, a task-
relevance map and an attention guidance map. The salience map contains a saience vaue for
each point in the input scene. The sdience vaues are determined by Itti’svisud attention system
described above [Itti, et a., 1998]. The task-reevance map holds the relevance of each point in
the input scene. The task-relevance is determined when one of these image points becomes the
fixation point of the robot, which is the location to which the robot is attending. The relevance of
that point is compared to the contents of the working memory and assigned a relevance value.
The attention guidance map is Smply the product of the salience map and the task-relevance
map. The working memory maintains what visua objects are expected to be rdevant to the
current task. The long term memory holds knowledge about the real world and about abstract
objects. The agent dispatches information between the visud brain, working memory and long-
term memory. The authors are adamant that the agent is not a homunculus; it issmply an
information relay. The main advantage of this system isthat the search space is pruned before
relevance is determined. Thisis efficient compared to systems that scan the entire visua space
and then assign relevance to aress. Also, the use of separate salience and task-relevance
measures is comparable to the design of this dissertation’ s attention network. The disadvantage
of the system isthat directed shifts of attention cannot be made — salienceis based on what is
known about the task and how visua fegtures in the environment relate to the task. Therefore, if
the system were to be adapted to include multiple sensor modalities, only task-relevant events
could drive focus of atention.

Breazed presents her attention system for Kismet using context to focus attention in a
visua space [Breazed, 1999; Breazed, 2002]. The objective of this attentional system isto

direct the limited computationa resources of the robot and to select among the appropriate
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behaviorsto dlow Kismet to act in a complex socid manner. The bottom-up component of the
attention system is modeled after Wolfe' s visud atention mode and uses salience-based maps
likeItti et a. [Wolfe, 1994; Itti et d., 1998]. The top-down influences are controlled by Kismet's
motivation and behavior system. The bottom-up features enhance areas in the visud spacein
which people could be. The top-down motivations drive the socid desires of the robot. These
two sets of influences are combined with a habituation map to determine the most salient
location in Kismet' s environment. The system does not provide for items outside of the robot’s
field of view to drive attention, athough with the use of both foved cameras and wide-angle
cameras this ability may not be needed. The author does note that an ego-centered salience map
would alow the robot to attend to areas not in itsfield of view. This could be rectified by a
gructure like the Sensory Ego-Sphere. Also, the author does not use multiple sensory modaities
to drive attention. In the next section, though, a multi-modal system is described that adapts
Breazed’ s attention network to include outputs from two sensory modalities.

Bakenius and Hulth developed an attention system as sdlection-for-action by controlling
attention with bottom-up and top-down processing methods [Bakenius and Hulth, 1999]. Their
atention sysem is afilter that decides how incoming sensory stimuli should be processed, with
the sysem’sgod being to exclusively let through stimuli thet are currently relevant to the robot
or to atarget source. The attention system filters sensory input based on the features of atarget
source or on the spatid location of atarget source. In this way, feature or patia cues can direct
attention to a desired object. The output location of the attention system is then used as input for
the robot’ s next action. This system is smilar to that described by Albus and Meystel [Albus and
Meystd, 2001] in that the most relevant areais that which is near the focus of attention. This

creates quick response times. While this system could be useful in solving the problem of
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directing arobot’s attention to important areas while ignoring irrdlevant information, the system
does not function on a structure. Without a structure to hold sensory informetion, sdient events
cannot be bound together. The system provides no method for integrating spatio-tempora

coincident events once afocus of attention is found.

Multi-Modal Attention Systems

Albus and Meyste describe attention as *“a mechanism for alocating sensors and
focusing computational resources on particular regions of time and space’ [Albus and Meystd,
2001]. The authors explain it as part of their hierarchica control system developed for intelligent
systems. Red-time Control System (RCS) [Albus and Meystd, 2001]. They clam that a
hierarchicd architecture can facilitate the focus of attention by alowing the higher levelsto
decide what sensory datais important while the lower levels use the information passed down to
actudly focus atention. To determine which information is important, the authors use a top-
down and bottom-up approach. Behaviora goals produced by the higher levels of the RCStdll
the system what isimportant. This accounts for the top-down influences in the system.
Unexpected, unexplained and unusua events detected by sensory processors let the system know
that the world modd isincomplete or needs to be updated. This accounts for the bottom-up
influencesin the system. Asin other systems, top-down influences are reveded in behaviora
goas while bottom+up influences present themsalves in salient aspects of the environment. In
relation to the egosphere, the relevance of data on the egosphere isinversay proportiond to both
their spatia distance from the origin of the sphere and their tempora distance form the current
time of the egosphere. However, some information that is far away is aso very important.

Behavior godss influence the focus of atention on events that may not seem relevant in a goatio-
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tempord distance relaion but are rlevant for that particular god. The amilarities of the
gpproach of this system to that developed in this dissertation are that 1) both bottom-up and top-
down influences are used to direct attention, 2) the sensory information used in directing

attention lies on the egosphere and 3) events closest to the current time have the most relevance.
However, appropriating relevance to sensory information based on spatia distance from the
origin of the egosphereis not entirely gppropriate for this system. For example, the closing of a
lab door should be asdlient event because it may indicate a person has entered the room. Using
the egosphere, the events sgnifying the closing of the door would receive less sdience than the
detection of atoal lying in front of the robot.

Two other systems described below include the possibility of using multiple sensory
modadlities to drive attention without actudly usng multiple sensors. The firgt is an overt visud
attention system developed by Vijayakumar et d. [Vijayakumar et a., 2001]. The objective of
this sysem issmilar to the overdl am of this dissertation in that the atention system provides
input to control systems of a humanoid robot. The visud atention is driven by a bottom-up
sdiency map and suppresses aress which contain irrelevant inputs. The authors aso suggest that
the system can be made multi-moda by weighting the inputs from different sensorsin the
sdliency map. However, no atempt at this was made for comparison to the attention network in
this dissertation. Gongalves dso developed an attention system that can be controlled in a
bottom-up or top-down manner [Goncalves, 2001]. The system is only tested using task-relevant
features and does not actually include any bottom-up information, though. These two attention
systems could be adapted to include sensory events from multiple moddities. The disadvantage

with these two systems is that neither system retains the sensory information for separate event
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binding. The sensory events are not stored for easy recal so that determining which events co-
occurred both spatidly and temporaly isnot possible.

Déniz et d. adapt Breazed'’ s atention system to include sound information and to be
guided by high-level modules[Déniz et d, 2003]. The types of high-level modules are not
specified, but the authors note that the modules represent task-driven process. Therefore, it is
assumed that attention can be shifted to areas of high task-relevance away from high sdience due
to other sensory stimuli. The authors admit, though, that the high-level modules are only part of
the design and have not yet been implemented in the system. Since no top-down influence can be
provided, the only difference between this syssem and Breazed’ s system is that sound
information can modulate attention. In an experiment described in Chapter 4, the sound datais
provided as a cue for the robot to attend to the visual object closest to the sound. The system
does illudtrate that sensory events canillicit a cueing effect for other events (e.g. a sound can
direct attention to anearby object). Thisis abeneficid function when visud events that the robot
should attend to are out of the robot’ sfield of view. The system developed in this dissertationis
tested in an experiment smilar to that described by Déniz et d. If a data Sructure like the SES
was included in this system, it would be very useful in solving the problems presented in this
dissartation. The system did not influence the attention network in this dissertation, though,
because the firgt publication of the system occurred after the proposa of the SES-based system.

Findly, the mogt intriguing attention system reviewed was developed by Lang et d.

[Lang et a., 2003]. The authors developed a multi-moda attention system for a mobile robot that
isonly used to attend to people. The authors use amulti-moda anchoring process to anchor face
detection, leg-detection and sound localization outputs together. Attention is focused on the

person that the robot decides is addressing it. Attention remains focused on that person until he
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or she has stopped talking for more than two seconds or until the anchor for that person can no
longer be sustained. Multiple people can be tracked in Lang’' s system and attention is shown to
be quite accurate, asis discussed in Chapter 5. The results show that Lang's systemis quite
successtul in attending to a person who is speaking. But, the purpose of Lang's atention system
isto identify persons-of-interest (POI) and maintain attention on the POl until another POI is
found. The purpose of the research in this dissertation is to identify areas of interest in the robot’s
environment and pass on the sensory events that contributed to the interest. Lang’s system can
currently only attend to a known object usng the anchoring method. The system in this
dissertation does not assume that an event source is a known object. The SES-based system
needs to bind together any events that may have occurred as aresult of a sensory source. Lang's
system is dependent on knowing the events that sensory sources produce and binding these

sources before attention is dlocated.

Summary

Some of the reviewed methods for ECM and STM have suitable festures for facilitating
event binding and attention. However, most methods exclude topology between detected features
or events. Thisisarequired dement of the SES. Without the topologica links between sensory
events, those that co-occurred cannot be bound together spatidly. Also, the attention network
needs topologica links so that salience spread in an areamay accumulate due to multiple events
detected in thet area. Asfor handling multiple sensory modalities and multiple resolutions, none
of the mechanisams explicitly handle both of these issues. However, some may be extended to
have these capabilities. Since the SES previoudy existed on both ISAC and Robonaut and it has

al of the functiondity needed for binding spatio-tempord coincident events and for sdiency-
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based direction of attention, the SES remains the unified mechanism upon which these processes
are devel oped.

Mogt of the methods of sensor integration that exist have the objective of combing
streams of sensory data for path-planning and navigation of mobile robots. The few methods
found that serve a purpose Smilar to that described in this dissertation were not sufficient for the
objectivesin thiswork. Lang' s multi-moda anchoring operates very well when the objects
receiving anchors are known. However, none of the methods store al detected sensory events
originating from (possibly) unknown objects for the detection of spatia and tempora
coincidence. Some of the attention systems could have been gpplied in this dissertation.

However, those that could function on the SES or any single data structure were not documented
until after the SES-based system was designed and implement.

In summary, no unified mechanism has been found that can implement ECM and STM as
desired for the purpose of facilitating attention and event binding. No sensor integration method
has been found that can select spatialy and temporally coincident sensory events from unknown
sources. No attention system was clearly developed before the proposal of the SES-based system
that could operate on a data structure and select afocus of attention based on both the appearance
of sensory events and their relation to arobot’ s tasks. Therefore, the system introduced in
Chapter 1 and described in Chapter 4 serves as the solution to the following questions.

Which events detected by arobot’s SPMs belong together by virtue of having been produced by
the same source or in response to a single action of the robot? Which events should be ignored as

irrelevant or ourious without missing those that indicate danger or opportunity?
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CHAPTER I

SYSTEM PLATFORM

This chapter presents the platforms on which the methods in this dissertation are
developed and evauated. The two robots used to test the methods for attention and event binding
are ISAC, Vanderbilt University’ s cognitive humanoid, and Robonaut, the DARPA/NASA
humanoid. These two robotic platforms are presented first. A functiond description of the

Sensory Ego- Sphere and its implementation on both ISAC and Robonaut are then given.

Robatic Platforms

ISAC (Intdligent Soft Arm Control) is a research-oriented humanoid robot developed at
Vanderbilt University [Kawamura et d., 2002, 2001]. ISAC has two 6 degrees-of-freedom
(DOF) arms that are controlled pneumaticaly by McKibben artificid muscles[Kiute et .,
1999]. ISAC has two hands that operate under a hybrid pneumatic-eectric power system
[Christopher, 1999]. ISAC adso has an active vison system operating on two 2-DOF pan-tilt
units [Srikaew, 2000]. Microphones on either Sde of the robot enable sound localization [Liu,
2001]. An array of fiveinfrared motion sensors under the panttilt units enables infrared detection
of motion [Sekmen, 2001]. All of ISAC’s software modules use the Intelligent Machine
Architecture (IMA) [Pack, 1997]. IMA provides distributed computing across multiple
processors. IMA permits multiple SPMs to operate in parald so that sensory events from

different modalities can be detected smultaneoudy. ISAC's controllers, SPMs and the SES
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operate on four Pentium XEON processors and two Pentium 4 processors. Figure 2 showsthe

humanoid ISAC.

Figure 2: The Humanoid Robot, ISAC

Robonaut isNASA’s humanoid robot that will eventudly serve as an astronaut assgtant
and perform extravehicular activity duties on the International Space Station [Ambrose et d.,
2001]. The humanoid is currently attached to afixed point for research purposes. It can perform
articulated motion within its frame and has over 50 DOF to do s0. Robonaut has two five-finger
hands that are used for dexterous manipulation, with each of the hands having 19 DOF [Diftler et
d., 2003]. A range of image processing routines serve Robonaut’ s visud system; however, only

visua object recognition and tracking are used in this dissertation [ Bluethmann, 2003].
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Figure 3: Robonaut

Sensory Eqgo-Sphere

Geodesic Dome Topology

A geodesic dome serves as an implicit structure for the SES sinceiit is a quasi-uniform

triangular tessdllation of a sphereinto a polyhedron [Edmonson, 1986; Urner, 1991]. Stewart

definesit as “the optima solution to the problem of how to cover a sphere with the least number

of partidly overlgpping circles of the sameradius’ [Stewart, 1991]. The triangles connect at

vertices forming twelve pentagons and a variable number of hexagons. The pentagons are evenly

digtributed so that the node at the center of one is connected to the centers of five othersby N

vertices, where N is the frequency of the dome. The number of vertices, V, in the polyhedron asa

function of the frequency is given in Equation 1.
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V =10* N?+2 (3.1)
To form a sphere, the vertices of the polyhedron are equdized from the center. Figure 4
illugtrates the progression of a polyhedron from afrequency of 1 to a geodesic dome with a

frequency of 4.

Figure 4: Tessdlated Polyhedrons and a Geodesic Dome

A dome with frequency of one is an icosahedron which has 12 vertices, each of which
connects with 5 neighbors. A dome with frequency of two is constructed from the icosahedron
by placing a new vertex at the midpoint of each edge and connecting each new vertex with the
four nearest neighbors to which it is not aready connected. This subdivides each triangular face
into four new triangles. Globally, the process adds a set of hexagons to the construction; of the
42 vertices in the result, the 30 new ones are connected to Six neighbors while the twelve origind
vertices remain connected to five. For the SES, a vertex neighborhood is defined as the five or
sx neighboring vertices around the centra vertex. A neighborhood of one around a vertex results

in5or 6 vertices. A neighborhood of two resultsin the origina neighbor vertices and al of their
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neighbor vertices. The neighborhood definition hel ps to facilitate attention and event binding
methods described in Chapter 4. To be useful as a sensory data structure, the tessdllation

frequency must be determined by the resolution of the various sensors on the robot.

Database

From an information processing standpoint, the SES is a multiply-linked table of pointers
to data structures. Idedlly, there are 6 or 7 pointers for each vertex on the dome, one to each of its
5 or 6 nearest neighbors and one to a variable length list, which can be contained within multiple
database tables. The non-neighbor list items are pointers to tagged-format data structures, each of
which is a database record that contains an a phanumeric tag followed by atime stamp, the
event’s spatia location and aterminated list of other pointers. The pointers and the list residein
memory for fast access whereas the data structures exist in a standard database. Each tag
indicates the modadity and type of the event. The corresponding time stamp indicates when the
data was registered onto the SES. The spatid location indicates the actua direction of the source
of the detected event. The pointers associated with the tag hold the locations of other records
pertinent to the data type such as the sensory dataitself or any function specifications associated
with it that may be provided by the SPMs (e.g. the name of a recognized face, the confidence
with which an object recognizer detected its target). The number of tags and their types on any
vertex of the dome are completely variable.

For both ISAC and Robonaut, aMySQL server provides the database. The actua
database for ISAC's SES contains tables. one for nodes on the geodesic sphere, one for
registered event and their information, one for the last events registered by each SPM (used for

habituation), one for the robot’ s tasks (used for assigning task-relevance to events), one for
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current saience of each event per node and one for current salience per node (to determine the
focus of attention). Table 1 lists the database tables for ISAC and brief descriptions of the

information these tables hold.

Table 1: SES Database Tables and Descriptions

Table Name Table Contents
Indices, angles, neighbors
Nodes for each node
SES Regigtered events and their tags
History Last registered event from each SPM
Incidence, task-relevance,
Activation habituation per node contributed by
each registered event
Task-Relevance Current tasks and their descriptions
Attention Totd sdience per node

The actud database for Robonaut contains the above tables and two extra tables: atable for the
robot’s actua position at time of registration, and atable for extra data attributes. These last two
tables in Robonaut’ s database were requested by Robonaut developers at NASA’ s Johnson Space
Center; they are not pertinent to the work in this dissertation.

The node positions table contains the (azimuth, elevation) angle pairs for each vertex on

the sphere, an associated integer index pair per vertex, anode identification number, and all
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neighbor node identification numbers. The integer index pair assigns an i-index to anode to
identify its eevation location and aj-index to identify its azimuth location. This pair fecilitates
efficent neighbor-node finding while the node identification number dlows for smpler queries.
The table for regigtration data contains the following tags about registered data asfieldsin the
table: name, type, identifier, actua azimuth and devation angles, time of regidration, age of the

event and an age limit. Figure 5 shows a sample of records from the registered data table.

] name type identifier decay age timeztamp actual_pan actual_tilk
1 1231 motion IR a0 05333(2004-03-0815:23:56 -15.0000 [0.0000
1343 face wisLial kimn B0l 0.0833(2004-03-08 15:24:07 -2R.0000 120000
1123 object wisLal areen B0 0f 2004-03-0315:24:12 25,0000 -14.0000

Figure 5: SES Database Sample

In Figure 5, the nameis the SPM that detected the event while the type is the sensor that
sends input to the associated SPM. This separates events that report smilar information from
different sensors (e.g. visua motion from infrared motion) and that report different information
from the same sensor (e.g. visua green object detection from visua face recognition). The
identifier serves as an extra descriptor of the event. These three tags are established by the SPM
that sends the event to the SES. The actud angles refer to the origind direction at which the
event was detected, so that the robot can return to the original location of the event. The time of
registration serves as the event’ s timestamp while the age denotes how old the data is, respective
to itstimestamp and decay. The decay vaue is the amount of time in seconds that the event
should remain on the SES. The dl data tables are linked to the nodes' table by the node
identification number of the node that recelves data registration. Each fidd may or may not be

assigned avaue.
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Communication Managers

SPMs write information to the SES through a software agent cdled the SES Manager
which in turn interfaces to the database. For ISAC, this manager isa Visua Basic 6.0 gpplication
that communicates to ISAC's other components as an IMA software module. The SES Manager
on Robonaut isa Visua C++ 6.0 application that communicates with other system components
viaan information stream controlled by NDDS software.

The SES Manager provides dl current functiondity of the SES, with the exception of
purging and decaying of records which is handled by a Decay Manager. Requests are sent to the
SES Manager which in turn either registers events onto the SES or retrieves events from the
SES. When an SPM requests registration of an event, the SES Manager collects dl provided
information about the event, creetes arecord in the database and marks it with atime slamp. The
direction of the event, in relation to the SES coordinate frame, is used to locate the closest vertex
for storage of data. To determine the vertex closest to the origind direction, distances between
the azimuth and elevation of the event’ s detected location and vertex angles are computed. The
maximum distance between vertices is used as a bound for this maximum disance. The
maximum distance? between vertices is dependent on the tessellation (e.g. for atessdllation of
14, the maximum distance between verticesis ~5.92°. In this Stuation, dl vertices whose angles
are within about 6° of the event’ s detected location are selected and a difference is taken for each
vertex angle pair. ) The vertex with the smallest distance measurement is selected as the
regidtration node. If the registering sensor isin a different coordinate frame than the robot’ s SES,

articulated motion transformetions are performed between coordinate systems. (This

2 The distance is computed as Euclidean distance in azimuth-elevation space. Spherical distance was not considered
before testing of this system; spherical distance is mentioned in future work and will be applied to future versions of
the SES.
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transformetion is described in the Appendix.) Once the transformed angle pair is computed, the
closest vertex on the SESis found and the datais registered at that node. Figure 6 illugtraies the
projection of an object onto the SES and the vertex onto which the object is projected. In this

figure, the sensor that detected the event and the SES exist in the same coordinate frame.

*-Q‘.L__ __-_\_

Figure 6: Projection of an Object onto the SES

A system component can requests retrieval of data using any datateg in the database
tables (e.g. data name, datalocation, data age, etc.) The SES Manager queries the database using
the specified tag. All retrieved datais returned to the requesting agent. If the request isof a
location, the SES Manager finds the vertex closest to the desired location. If the requesting agent
specifies aneighborhood size of oneto include in the search, dl data registered at the central
node and its neighbor nodes is returned to the agent. If no neighborhood is specified, dl data at
the closest node is returned to the agent. Since the vertices on the geodesic dome serve as nodes
in agraph, the fixed number of nodes keeps the search time fixed as the amount of data on the

sphere increases.
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A decay manager exists to purge old data from the database. The decay manager uses the
datal stempora decay limit to determine when an event has expired. The decay manager also
decays the sdlience of events as those events age. When the decay manager finds that the
timestamp of an event has expired, the record and dl information (including that contributed by
the attention network) concerning that event is purged from the SES database.

If arobot moves with respect to its fixed frame, a set of equations must be gpplied to
transform sensory events from their sensors coordinate frames to the coordinate frame of the
SES, if it isdifferent. Although Robonaut isfixed to aframe, it can move its body so that the
coordinate frames of the sensors and joints move in space, also. ISAC, however, cannot dter the
coordinate frames of its sensors. The camera coordinate system defines the SES coordinate
system; dl other sensors (i.e. hand sensors, arm sensors, |R sensors and sound sensors) report
their events within the camera coordinate frame. For Robonaut, the SES coordinate frameis
centered at the robot’ s base while sensory events are detected in the head coordinate frame, the
hand coordinate frames and the arm coordinate frames.

Figure 7 shows the different coordinate frames. The mathematical solutions to this problem are

a0 givenin the Appendix.
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Figure 7: Coordinate Frames of Robonaut's SES and Active Vison System



CHAPTER IV

METHODS AND MOTIVATIONS

This chapter presents the methods used to develop the attention network and event
binding mechanism and the mativations behind these methods. The aims of the methods
described in this chapter are to locate the most sdlient arealin a humanoid robot’ s environment
and to trandform sensory events that produce this sdience into a collection of co-occurring
events. Sdience may be caused by stimuli coincidence (e.g. loud noise combined with sudden
movement) or by stimuli relating to a current task or goa (e.g. detection of aface when the goa
isto greet people). The purpose isfulfilled by combining an atention network with an event
binding mechanism. Both of these components are detailed in this section.

Firgt, the approach and reasoning for the attention network are presented. The attention
network section describes methods of applying salience to SES nodes based on incidence, task-
relevance and habitualness of events. Then, the event binding mechanism is detailed. The chapter
concludes with a description of the information flow from SPMs to the output of the event

binding mechaniam.

Information Flow

Theflow of informetion in this sysem isillustrated in Figure 8.



v

Attention

Event Binding

Figure 8: Information Flow from SPM's to Event Binding

Sensory information begins as imuli in the robot’ s environment. Sensors detect these
gtimuli and send their sgnds through SPM s attached to the sensors. SPM s structure the sensory
ggndsto indicate if an evert has occurred. When an event is detected, the SPM sends this event
to an attached pre-filter (PF). The PF examines the event to determineiif it is relevant to the
current task or is habitua. An event is denoted as habitual by the PF if it occurs with aregular
time period and in the same location. Examples of habitua events are motion or sound detected
continuoudy in the same area. The pre-filter then sends the event detected, with its associated
task-relevance or habituation information, to the SES for registration. When the SES registers the
event, sdlience is spread to neighboring nodes. This salience is a combination of event incidence,
task relevance and habituation values. While the robot functionsin its workspace, the attention
network scans the SESto find the location of highest sdlience. If the highest sdlience valueis
zero, then the robot istold that no sdlient areaexists. This could occur if no people arein the

robot’ s environment, the robot is not interacting with its surroundings or few SPM s are running.
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Otherwise, the location with the highest salience is sent to the event binder where co-occurring

events are bound and sent out to higher-level processing aress of the robot.

Attention Network

The purpose of the attention network is to determine the most salient area of the robot’s
environment, whether it is related to the robot’ s task or is unexpected. The attention network
scans the SESto find areas high in both incidence and in task-relevance and sdlects the area that
meets this goa. The attention network only considers SES nodes that have ether incidence or
task-relevance; therefore, if no events are occurring in the robot’ s environment or only habitud
events are occurring, then the attention network does not find salience and no winner is selected.
Incidence, task-relevance and habituation of events are assigned upon SES regigtration.

The attention network in this sysem evauates incoming events on three criteria: 1)
incidence in the environment, 2) relation to current tasks and 3) habitual occurrence. The
incidence measure awards salience to events smply for occurring. The purpose of this measure
isto inform the attention network that an event has occurred at a specific location. Without this
measure, unexpected events do not receive any salience. For example, the robot may want to find
ared object for grasping but cannot reach the object because itsarm is blocked by atable. In this
case, sensors on the arm report events to the SES (e.g. arm movement stopped, hand proximity
sensors high, hand tactile sensors high) but if these events are not related to the god, they would
not recelve salience. Therefore, the incidence measure assgns salience to any event. Also, if
multiple events are registered onto the same SES nodes, the incidence vaues of each of these
events will accumulate thereby increasing salience in the area. The task-relevance measure

awards sdlience to events that are relevant to the robot’ s current tasks. This measure brings to the
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forefront events that aid the robot in completing desired tasks or reaching desired gods. The
habituation messure decreases salience of events that occur in the same location at regular time
intervals. This measure keegps habitua events from achieving the highest sdlience continuously.
The resulting sdienceisthefind vaue for the areaa which the event is registered.

The robots used to test this work have some sensors with low resolutions and some
sensors that occasiondly or frequently report errors. Therefore, the salience assigned to eventsis
not relegated to only the SES regidtration nodes. Sdlience is Sporead from an event’ s registration
node to neighboring nodes. This spread compensates for both sensor error and low-resolution
sensors. Radid basis functions are used to spread incidence and task-rel evance from the node at
which an event is registered to neighboring nodes. Habituation is gpplied equaly to al nodes
receiving sdience from an event. Habituation is not spread; ingtead, it is factored into the

activation at dl nodes receiving sdience form an event.

Incidence
An incidence value is awarded to events upon registration onto the SES. The incidence of
an event grants sdience to activity in the environment. The incidence vaue is necessary to adjust
direction of attention to unexpected events that do not relate to any of the robot’s current tasks
but may help the robot to discover new skills or avoid danger.

When a SPM registers an event onto the SES, thenode N; that is closest to the event’s

angular location (f ;,q;) receivesthe event. Incidence is then spread aong a fixed number of

edges to neighboring nodes. The number of edges is determined through experiments for spatia
binding in Chapter 4. Equations 1 and 2 show the calculations used to determine incidence of a

neighbor node (k) with respect to its central node (j) & the time of registration (t, ).
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(5 k) =—exp(- D) @)

ik |

Dy, =4/(f - T)° +(@; - 9,7 (4.2)
In Equation 2, E; , represents the number of edgesin the shortest path between the
registration node, N, , and the node receiving incidence, N, ; a, istheincidence factor while
D, , isthe Euclidean distance between the angular locations of the nodes on the SES, givenin
Equation 3. The incidence factor remains fixed for each sensor and mainly existsto inflate the
vaues When j=k, D;, =0 and (] k.t,) =1. Therefore, the incidence factor is chosen to

normélize the values from zero to one and to increase the values spread to immediate neighbor
nodes.

Some SPM s used in testing on | SAC report their events in only the azimuth direction, f .

Therefore, no eevation angle q isavailable for these events. To dlow for overlgp of one-

dimensiond events with two-dimensiond events that may co-occur, incidence is assigned along
arangeof q vaues. When aone-dimensiona SPM pogts an event to the SES, the SESfinds dl
nodes N; that areclosestto (f ,q;) for- 45° £q, £ 10° . These particular values are chosen
because of the height of the robot and the functiona range of the robot’ s pan-tilt units controlling
the cameras. Incidence is then spread from each of these nodes N; according to Equation 2.
Because of this multiple-node spread, a single 1-dimensiond event can contribute incidence
multiple timesto asingle node. To account for this, the incidence factors for 1-dimendond
events are set to be equd to hdf of the incidence factor for 2-dimensiond events. It should be

noted that the event is only registered onto the SES once, atq; = 0°.
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Asregigered data age, their incidence values are decayed. Only the incidence is decayed,
rather than the entire salience, because multiple factors affect the sdlience. While incidence may
decay with time, task-relevance only changes with the shifting of tasks or goa's by the robot.

Two methods of decaying incidence are tested on the system. The first method is alinear
decrease shown in Equation 4. The second method uses an exponentia decay, shown in Equation

5. Both depend on the age of the data as given in Equation 6.

I(e,j,t)=1(e,j,t,)*(1- Age(et)) 4.3)
I(e,j,t)=1(e],t)*exp(- Age(et)) (4.4)
Age(e,t) = ! Lto (4.5)

e

In Equations 4 and 5, the incidence for event e at node N; for timet is decayed using the

incidence of that node at timet,, , which isthe time of registration for event e. When an event has

reached full maturity on the SES, its age is one. Using the linear decrease in Equetion 4, the
incidence from the event is zero by the time the data has expired. However, the exponentid
decay in Equation 5 dlows the event to contribute incidence up to the time the event expires.
When an event expires, the event and al sdience it contributed to the SES are purged from the

database. Both methods are tested to determine which produces more accurate results.

Task-relevance
A task-relevance value is awarded to events upon regigtration onto the SES or at thetime
atask is established. The task-relevance measure grants salience to events that may aid the robot
in completing current tasks or gods. Like incidence, task-relevanceis assgned using aradid

basis function, shown in Equetion 7.
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Equation 7 issmilar to Equation 2 except that the task-relevance factor a is used. The task-

relevance factor is determined through experiments to find what vaue alows task-related events
to overcome other events as the most sdient.

Task-relevance is determined upon regidtration of data onto the SES. The pre-filter
attached to the SPM s reporting data determines if the output event is relevant to any current
tasks. An event is deemed relevant to atask if any of its data tags match tasks or goals as
described by the robot. Data tags are defined by the PF that sends events to the SES. The data
tags are defined by their modality types and their SPMs. Examples of data tags for an unknown
human face are ‘face’, ‘person’ and ‘ stranger’. The face detection and recognition SPMs
establish these data tags [Qiu, 1997]. Examples of data tags for a blue Duplo block are ‘ object’
and ‘blue’, which are established by the color segmenting SPM [Srikaew, 2000]. Currently,
neither ISAC nor Robonaut have methods of determining their own tasks autonomoudy;
therefore, the tasks and goals described by the robot are user-defined. Examples of these tasks
are'grasp drill’, *look a person’ and ‘find green object’. In these examples, if any of the events
posted on the SES match drill, person or green object, then the event is denoted as task-relevant.
For example, if the robot islooking for green objects, al output from a green color-segmenter is
given task-relevance. Once this relevance is determined, the data is sent through the pre-filter to
the SES with its task-relevance factor. This factor is then applied to Equation 6 and task-
relevance and incidence are spread to neighboring nodes. The range of values the task-relevance
factor can takeis empiricaly determined.

Task-relevance may dso be determined when anew task is established. In this case, dll

data that match on any of the task-related indices receive relevance. When atask is established in
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the robat, it is retained in the SES database forever. The only attribute of the task that changesis
itsvaue. Therefore, when an event is registered, it may match atask that is not current but
resdesin the database. The event is denoted as being task-relevant for that particular task but
receives zero task-relevance. If the task becomes current and receives avaue, then dl eventsin
the SES that match the new current task are tagged as such. The nodes to which task-relevance

should be spread are dready tagged o that only a vaue has to be assigned.

Habituation
Any eventsthat are registered onto the SES a the same node location on aregular time
interval are habituated in the attention network. In thiswork, the time interva is determined by
the developer; however, in future work, it is desired thet the attention network learns what timing
makes an event habitua. The habituation mechanism uses atime decay to cdculate the

hebituation value for anevent ea timestep S . Thetime step § isincremented every time the

event isregistered at the same node within the same time period. Theformulaisgivenin
Equation 8.

H(et) =exp(- b, §) (4.7)
In thisequetion, b, isthe habituation rate and is determined through experimental testing. The
sdience from ahabitua event is multiplied by this habituation value. A habituation vaue of one
indicates that al sdience remains while a habituation vaue close to zero indicates that amost no
sdienceremains.

The following rules govern when an event ceases to be habitua [Bakenius, 2000).

Some dimension of the event has changed (e.g. location, confidence vaue, name of recognized

face).
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A period of time has passed in which the habitud event did not occur (thistime period isthat
within which the event is considered habitud).
The event isnovd (eg. IR motion is habitua but motion detected by vison is new).

The pre-filter attached to a sensor’'s SPM determines an event’ s habituation vaue. If an
event re-occurs within a certain amount of time, the time step for that event isincremented
(§ =S +1) and the habituation value for that event is caculated. This factor is gpplied to the
find sdience of each node that received incidence from event e. An event’ stime step can be
reset to zero if the event does not reoccur within the specified time frame, the event matches a
new task or god or the event occurs a a new location. If a habitual event does not occur for one
time step, then it is may not be habitua and should recelve more sdience (e.g. if theevent is
habitual motion and motion is not detected for afew seconds, this area may require atention). In
the testing of this work, the habituation can be turned on or off thereby alowing the developer to
determine when habitual events can or cannot be detected. However, in future work, habituation

should not be applied to an event until it has repeated a specified number of times.

Attention Winner
The atention network scans the SES on aregular time interva to find the node with the
highest sdlience. Equations 9 and 10 show the formulas used to caculate the total sdlience of all

nodes for dl events.
j.e)=(0(.e)+TR(j,&))*H( .e,) (4.8)
S())=3(j.e) +S(.&) +...+ (] .&) (4.9)

Fird, the salience for node | due to event e, is caculated from the incidence, task-relevance and

habituation of that event (Equation 9). Then, the sdlience a node | dueto dl events contributing

52



sdience at that node is calculated (Equation 10). The node j that receives the highest sdience
vaueis selected as the winner or focus of attention (FOA). This node is then sent to the event

binding mechaniam.

Event binding

The objective of event binding isto group co-occurring events that originated from the
same source. Event binding occurs spatidly and tempordly. Two assumptions are made in the
method of event binding presented: 1) events that originate from the same source are more likely
to occur in the same location (e.g. abat hitting abal produces a sound, motion and detection of a
bal and a bat in the same location) and 2) events originating from the same source are likely to
be detected at about the same time.

The incidence measurement used in the attention network serves to determine spatidly-
connected events. Whenever awinning node is chosen by the attention network, the event
binding mechanism sdlects dl events that contributed incidence vaues to that node. This process
isreferred to in the rest of this document as spatia binding. The timestamps of these events are
then compared againgt each other; this process is denoted as tempora binding.

During tempord binding, the timestamps are inserted into an array in descending order. The
differences between successive timestamps are taken. If dl of these timestamp differences are
smaller than alimit, the differences between every other timestamp are taken. If dl of these
timestamps are smdler than alimit, the differences between every third timestamp are taken.
This continues until either only one difference isless than the time limit or none of the
differencesislessthan the time limit. If one difference issmadler, it is selected as the winning

difference. If no differences are smdler, then the smdlest difference from the previous
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difference aray is sdected asthe winner. All events whose timestamps are included in the
winning difference are selected and bound together as co-occurring. The time limit for co-
occurring events is determined by the latency of both the attention algorithm and the rate at
which the dgorithm scans the SES. The latency of the attention agorithm is assumed to be
negligible so that the frequency with which the attention network seeks high salience can be
adjusted as desired by developers for the different robots.

Although other methods of determining temporally co-occurring events were examined,
this method proved to be the most efficient in the software used. Other methods performed the
same functions but they generated longer processing times and were computationdly inefficient.

Bdow isan example of the time-matching agorithm.
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Figure 9: Tempord Binding example

TS isthe aray of timestampsin descending order. D1 isthe array of differences between

successve timestamps. In this example, the time limit between co-occurring eventsisthree
seconds. Since three valuesin D1 are less than this limit, a second difference array is calculated.

D2 isthe difference between every other timestamp in TS. Snce only onevdueislessthan the

limit of three, that value is chosen as the winner. The location of thisvdue (1) isthe third

component of D2. This corresponds to the difference between the third, fourth and fifth
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components of TS. Therefore, the events that correspond to these timestamps are bound together

and sent out as co-occurring events. Winning times and differences are highlighted.
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CHAPTERV

SYSTEM PERFORMANCE AND EVALUATION

This chapter describes experiments designed to test the methods described in Chapter 4,
the performance of the methods within these experiments and a discussion of the overdl system
performance. Firgt, sensor and SES specifications are presented. Information concerning the
sensors' resolutions and SES tessdllation is needed to specify many of the variablesin the
equations given in Chapter 4. Results from event binding and attention experiments on ISAC are

presented next. Results from experiments on Robonaut conclude the chapter.

|SAC: Sensors, Sensory Processing Modules and Sensory Ego-Sphere

On the ISAC platform, some sensors report to only one SPM while others report to

multiple SPMs. Table 2 ligts the sensors used throughout testing and their resolutions.

Table 2: ISAC — Sensors and their Resolutions

Sensor Resolution (degrees)
Infrared 15
Microphones 15
Cameras 0.3
Hand Proximity/Tactile 5

Table 3 lists the SPM s used, the time latencies of their processing routines and the stlandard SES

agelimits L, associated with each SPM.
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Short-Term Memory Varigbles

Next, the time latencies and the time limits for the types of events posted onto the SES

were determined. The time latency for an event is the time from detection of the simulus a a

sensor to the regigtration of the event onto the SES. This measurement is used to adjust the

timestamps of events when they are posted onto the SES. If a SPM expends two seconds

processing data, the event from the SPM will not be registered onto the SES at the sametime

other co-occurring events are registered. Therefore, the time latency from that SPM is subtracted

from the time of regidration for the event. The time limit for an evet, Le, isthetime that it

remains on the SES. The time latencies are specific to SPMs (i.e. face detection, IR motion

detection, and color segmentation) while the time limits are specific to data types (i.e. person,

object, motion). Table 2 in Chapter 4 ligs these varidbles.

Table 3: ISAC - Sensory Processing Modules

Sensory processing module

Time latency (sec)

SES Agelimit, L, (sec)

Infrared motion detection 0.2 30
Sound localization 0.2 30
Face detection/recognition 0.8 60
Visud motion detection 0.5 30
Color segmentation 0.5 60
End effector locdlization 0.5 60

The time limits for some of the SPMs may seem too large for the type of information

they output. For example, motion can be very quick and fleeting. By thefirst pass of the decay

manager, the motion may indeed be gone. If the motion remains on the SES for asmdl interval
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of time (e.g. 1 second), the event contributes very little sdience to itsdf or its neighboring nodes.
Thiswill occur because after the decay manager makes one pass to decrease data ages and
sdience vaues, the sdlience vaue of the event will be very low. In this case, motion would not
be a focus of attention for the robot.

Since the cameras' resolutions are very fine yet the IR and sound sensors' resolutions are
very coarse, atessdlation of N =14 was selected for ISAC's SES. Thisvalue gives a4.092° to
5.92° difference between vertices on the SES. With this tessdllation, the resolutions of the IR and
sound sensors are each about three edges of the SES.

Table 4 lists the sources used in experiments to test attention and event binding on ISAC.
The table a0 lists the events that can be detected by ISAC from the sources. Not al sources
events are detected dl of the time. However, al source events can be rdliably detected under
controlled conditions. Presentation of sources refers to when the source appears to the robot as
opposed to detection of sources. Therefore, S multaneous presentation of multiple sources does
not mean Smultaneous detection of those sources. It should be noted that any object can produce
end-effector sensory events either when placed in ISAC' s hand or when ISAC reaches for the

object.
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Table 4: ISAC - Sources and their Sensory Events

Source Possible sensor events

Rettle l\I/_\ifugurr?(?tion, color segmentetion,
Person Face detection, IR, sound
Colored block Color segmentation

Colored ball Color segmentation

Taking Bamey doll ICF(;’Ig:rJ ljz;u]?jmentation, visua motion,
Door to room Visud motion, IR, sound

ISAC: Event binding

Event binding was tested to determine if the methods described in Chapter 4 could select
events that actudly originated from the same source. Experiments were divided into two phases.
gpatid binding and tempora binding. Event binding experiments were done first because spatid
binding is dependent on the incidence measure and its variables. The spatid binding experiments
determine an appropriate neighborhood size for spreading incidence for each sensory modality.

The robotic platform for the experiments in this section was ISAC.

Spatid Binding
Spatial binding usng the incidence formulain Equation 2 was performed to determine if
events emanating from a single source can be detected as co-occurring in the spatiad domain.
Spatia binding was tested firgt to determine the maximum number of edges dong which

incidence and task-relevance should be spread for each sensor. Two experiments were run; one
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to collect the number of tridsin which dl events originating from a sngle source were correctly
bound and one to collect the number of tridsin which events dl originating from separate
sources were falsely bound as co-occurring. The first set of trids conssted of presenting asingle
source (the rattle) to the robot in a controlled environment®. The source produced three sensory
events detected by IR motion detection, sound localization and orange color ssgmentation. The
regidtration locations of each event were collected in 57 trids. In every trid, dl three events were

detected by the robot. Only 8 of these 57 trids contained events from sensors that reported

correctly within their resolutions. (The sensor errors occurred in the azimuth direction (f ;) .The
elevation direction, q; , was not considered because the IR and sound sensors do not report

output in that direction.) In 19 other trids, two sensors reported correctly within their resolutions
while athird sensor reported within twice its resolution (this sensor was either the IR or sound
sensor). For usein evauations of the spatial binding, the angle of the detected event reported
incorrectly was dtered by 15° to mimic what would have been a correct result. This group
conssted of 8 trids. Therefore, 16 trials were used to test if sensory events that co-occur were
bound correctly in the spatia domain (Group A).

The second set of trids conssted of presenting three separate sources (the réttle, three
separate presentations at different locations) to the robot in a controlled environment. The
difference between sources ranged from 15° to 30°. This ensures that some events from tridsin
this group are detected as co-occurring, Snce 15° is the resolution for both IR and sound sensors.
The rattle was used in the second set of trids so that the types of events produced in both
experiments were the same. Each source produced a sensory event detected by IR motion

detection, sound localization or orange color segmentation. The registration locations of each

3 In acontrolled environment, no spurious events can be detected. The only activity that can be detected by the robot
are events from test sources.

60



event were collected in 16 trias (Group B). In every trid, dl three events were detected by the
robot.

Intrid Group A, the visud event was taken as the actud location of the object, due to the
fine resolutions of the cameras. The events from this group were then smulated in the spatia
binding system so that different values could be used in the incidence equation (Equation 4.2).

The events were registered onto the SES and incidence was spread from the events' registration

nodes. For thisand al other experiments, the incidence factor used was set to a, =200. The

maximum number of edges aong which incidence was spread was varied from max(E,; ) =1 to

max(E; ) = 3. When dl three events were registered onto the SES, the node with the highest

sdience was selected. All eventsthat contributed to this salience were sdected as co-occurring.
For Group A, the trid was successful if dl three events were selected as co-occurring. For Group
B, thetrid was successful if only one event was sdlected from the winning node (i.e. no events
were selected as co-occurring). Table 5 shows the results from the spatia binding trids. The
numbers represent the percentage of each groups 16 trids in which the events listed were bound
as co-occurring. Group A conggts of tridsin which the events actudly co-occurred while Group
B conggs of tridsin which the events did not co-occur. Therefore, for Group A, the percentages

show correct hits and for Group B, they show fdse darms.
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Table 5: Spatid Binding Results

Group A Group B
IR, Vision | 2und. IR, Sound 1o i, | Sound, ) IR, Sound
Vision Vision Vison Vison
max(E; ) =1 | 75% 62.5% 375 6.25% 12.5% 18.75%
max(E;,) =2 | 100% 93.75% 93.75% 31.25% 25% 50%
max(E; ) =3 | 100% 100% 100% 25% 12.5% 37.5%

A dight anomay does exigt in that the flse darm rates for Group B are lower when

more incidence is spread. For trids in which the incidence was spread to max(E; ) = 2, thefdse

darm rateis higher than those having max(E; , ) = 3. This may be due to the extra distance
factor used in the incidence spread (Equation 4.1). If thisisthe case, it can be resolved by
removing thefactor of E;, from the computation. Thisis a suggestion discussed in the Future
Work section of Chapter 6.

A datigticd andyss of the experimentd results was performed to evduate the
successfulness of spatia binding. The probability that, given the locations of the detected events,
the events dl originated from the same source is used in the andyss. Thisandyssdlowsa ROC
curve to be created using the probability that the co-occurring events actualy co-occurred (true
positives) and the probability that events that did not actualy co-occur are found to be co-
occurring (false postives). Since the visud events have the lowest resolution, their azimuth

locations (f ) are taken as the actual locations of the sources for Group A; therefore, the visua

sensors produced a 0% error. Means and standard deviations of sensor errors were taken from
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the entire group of data used in this experiment. The error of the IR sensors has mean

m = 6.658° and standard deviation s ; = 3.996° whilethe error of the sound sensors has mean
m, = 7.894° and standard deviation s , = 4.63° . Because the sensors always have some error,

the probabilities used in this analys's are the probability that, given the locations of the detected
events for Group A, the IR and sound events occurred within adistance e of the visud event
(Equation 5.2).

Let p(f r If s, fy,) betheprobability that given the detected locations of the IR and

IRiec?
visud events, f | istheactud location of the IR event. Since the location of the detected visua
event is assumed to be the location of the actual event &t dl times, p(f _ If z_.f, ) becomes

p(f . If s, ) adisdefinedin Equation 4.1.

f f f
00 o, If ) = | )P )
Oj(f | R |f |Rﬂ)p(f IRacx)df IRut

(5.1)

With uninformed priors, Equation 4.1 becomes p(f \ _ |fz_) Whichisthe probability density
function (PDF) of the IR sensor error. Since the mean and standard deviation were calculated for
the IR sensor, the PDF is known and normd. The probability that the IR event actudly occurred
withinarange e of the visud event can bedefineda P(-e £f ;- fvm Eelf g .f, ).Sncethe
IR sensor PDF is assumed to be normdl, the mean and standard deviation for this difference
probability are m,; = mg- Ny ands 4, =Sz +S, . Sncethe visud sensor error isan impulse,
the mean and standard deviation for the probability become that for the IR sensor PDF. If the
samemathisgppliedto p(f ¢_|fs_,f,, ) for thesound event, then the probability that both the

detected IR event and the detected sound event co-occurred with the visua event can be found.
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Thisbecomes P(-e£f - f, .fq

act

-f, £elfg s .fy, ) and, assuming thet dl sensorsare

independent, can be found from Equation 5.2.

P-e£f, - fu fs. - fu, Eelfig, fq fu)=

5.2
P(-e£f, -f, Eelf . f, ) PCe£Efg -f, Eelf,.f,) (5.2)

Using the vaues of these probabilities for both Group A and for Group B, a ROC curve
can be created to compare the actua results from both groups of data. In these curves, the
probabilities from Equation 5.2 were taken using arangeof O£ e £ 62 (after 62, dl probability
vaues equaed one). Figure 10 shows the ROC curve for the co-occurrence of the visud and IR
sensor events. The x-axisisthe probability thet the IR and visua events from Group B were
fasdy bound as co-occurring while the y-axis is the probability that the IR and visud events
from Group A were correctly bound as co-occurring. On this graph, the actua results from the
gpatia binding are shown as red blocks. The line represents the ROC curve while the blocks
show the results from spatia binding using a maximum edge for spreading incidence of

maX(EJ’k) :1, maX(E]’k) :2 and maX(E]’k) :3

max(E ) =2 max(E ) =3

Correct Hits

T T T
0 0.2 0.4 0.6 0.8 1

False Alarms

Figure 10: ROC Curve and Spatid Binding resultsfor Visud and IR Events
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For the spatid binding results, the points on the graph each represent the number of correctly
bound events from Group A versus the number of incorrectly bound eventsin Group B. The
gpatid binding results fall dmost exactly on the ROC curve, implicating thet the spatia binding
results perform as well as the probabilistic method. The dight deviations of the blocks from the
ROC curve isdo to the smal number of samples usad in the patia binding and the numerical
round-off that the Satistics incur.

Figure 11 shows the ROC curve for the co-occurrence of the visual and sound sensor
events while Figure 12 shows the ROC curve for the co-occurrence of the visud, IR and sound

Sensor events.

max(E ) =3
12}
=
B
o]
O
0.2 1
0 T T T T
0 0.2 04 0.6 0.8 1

False Alarms

Figure 11: ROC Curve and Spatia Binding results for Visud and Sound Events
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Figure 12: ROC Curve and Spatia Binding results for Visud, IR and Sound Events

For both Figure 11 and Figure 12, one point (max(E; , ) =1) falswell below the ROC curve on

both plots. (Since the co-occurrence of al three eventsis based on the co-occurrence of the
visud and IR events and the co-occurrence of the visud and sound events, Figure 12 is affected
by dl perturbationsin Figure 11.) The anomaly in Figure 11 may be explained by the poor
performance of the sound sensors. The false darms caused by the sound sensors and by the IR
sensorsin Group B were on separate trids, so that the combination of the two false darms
cregtes an even larger deviation on Figure 12. Once again, the dight deviations of the other two

results from spatid binding max(E; ) =2 and max(E; ,) = 3) aredo to the small number of

samples used in the spatid binding and the numerica round- off that the Statisticsincur.

With the exception of the points discussed above due to the sound sensor, each of these
graphs shows that the spatia binding mechanism produces results that are quite Smilar to those
found through the probakilistic method. To use the probabilistic method for spatid binding in
redl time, the PDFs of the sensors must be known and updated and the area under these curves

must be computed. While this may not be more computationaly expensive than the spatia
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binding method put forth in this dissertation, the spatia binding affords more benefitsin thelong
term: the atention network uses the same incidence measure for its computations. Therefore,
gpatid binding is sdected as the method for determining spatia coincidence of sensory events.

Since the resolutions of two of the three often used sensors in thiswork are 15°, amaximum

neighborhood of max(E; , ) = 2 is sdlected asthe defaullt for the system. This dlows a spread of

about 10° on ether Sde of an event, resulting in better performance of spatia binding. Also, the
results show that datisticaly, co-occurring events are bound 93.75% of the time usng this

neighborhood vaue.

Tempord Binding

Next, tempora binding was tested to determine if events emanating from a single source
can be detected as co-occurring in the spatia and tempora domains. This experiment was also
performed to test if the event binding process would determine as co-occurring events that
emanated from a different source (false positives). The experiment consisted of presenting two
sources (Person A and Person B) to the robot in a controlled environment. Each source produced
three sensory events detected by IR motion detection, sound localization and face recognition.
The regigtration locations of each event and the time between presentations of the sources were
collected during 12 trids. In every trid, al Sx events were detected by the robot.

Inthefirgt four trids, the spatid distance between the two sources was 5° while the
tempord difference between presentations of the sources varied from 1 to 4 seconds. In the next
four trids, the spatid distance between the two sources was 10° while the tempord difference

between presentations of the sources varied from 1 to 4 seconds. In the last four trids, the spatia
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distance between the two sources was 15° while the tempora difference between presentations

of the sources varied from 1 to 4 seconds.

The events collected from these three groups of data were then run through the entire

event binding system. The events were registered onto the SES and incidence was spread from

the events' regigtration nodes. The maximum number of edges aong which incidence was spread

was set a max(E, ,) = 2. When all three events were registered onto the SES, the node with the

highest sdlience was selected. All events that contributed to this salience were selected and

passed onto the tempora binding process. The tempora binding process then determined if any

events were co-occurring. The time limit between co-occurring sources (T, ) was varied ong

thetrids. Person A was dways detected after Person B so that Person A aways had the highest

sdience. (This occurs because newer events have their salience values decreased |less than ol der

events)) If dl three events from Person A were selected as co-occurring without selecting events

from Person B, then the trial was denoted as successful. If one event from Person B was sdlected

as co-occurring aong with the events from Person A, the trid was denoted as having fasdy

bound events. Table 6 shows the resuits from the 12 trids in which thetime limit T, wasless

than the difference between source detection times.

Table 6: Tempora Binding Results (T, < temporal difference between source detections)

Trialswith falsdy bound

Distance between sour ces Successful trials
events
5° 50% 50%
10° 75% 25%
15° 100% 0%
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These results show that the closer that sources occur in space, the more likely it isthat
events originating from separate sources will be bound as co-occurring. For trids in which the
time limit between co-occurring events was equal to or greater than the tempord difference
between source detections, events from separate sources were aways bound as co-occurring.
These reaults indicate poor performance of the event binding mechanism when the spatid and
temporad limits are pushed. However, the visua SPMs of ISAC cannot actudly detect two
separate sources a identical times due to the control architecture of the robot. The pan-tilt units
contralling the direction of the cameras can only be directed by one SPM at atime. Although two
visua SPMs may detect events smultaneoudy, the time to shift control of the pan-tilt unitsfrom
one SPM to another is ~2 seconds. On ISAC, for avisua event to be detected, the SPM must
have control of the head so that it can center the target. Otherwise, avisual SPM cannot detect an
event. This setsatime limit for tempora binding at two seconds for visud events. The IR and
sound localization SPM's can report two separate events nearly Smultaneoudy (see Table 2).
However, the sensors reporting to these SPM s each have resolutions of 15°. Thislow resolution
does not alow the binding mechanism to differentiate between two separate events less than 15°
apart.

These results do indicate, though, that the method for binding co-occurring events should
include different measures, for instance a contextua evauation or asaience threshold. A
contextua evauation would compare the spatialy bound events to determine if those events
could originate from the same source. For example, if the spatialy coincident eventsare IR
motion and a recognized sationary table, the two events could not have originated from the same
source. For the salience threshold, a minimum sdlience value that an event could contribute to

coincidence would be established. Any spatialy coincident events whose contributing sdience
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vaues fal below the threshold would not be bound. These issues are further considered in the

Future Work section of Chapter 5.

ISAC: Attention

Attention experiments were performed to determine if the network could locate the most
sdient areain the robot’ s environment under many different conditions. The most salient
location was determined by the developer and the success of the attention network was
contingent on whether a pre-determined |ocation was selected as the most sdient. Five separate
experiments were run to test the network and to determine standard variable vaues. The first
experiment established the task-relevance factor value a which task-relevant events overtake
incidenta events. The second experiment evauated the effect different habituation factor vaues
have on the total salience of habitud events. The last three experiments compare the
performance of the attention network to three other methods of finding sdlient aress. In dl

experiments, the presentations of sources to the robot were controlled.

Task relevance versus Incidence
In the experiment to establish a task-relevance factor (a ) vaue, 5 trids were executed

in which two sources were presented to the robot at the same time. Each source produced from
one to three detectable events. The spatia distance between sources was always at least 15°

while the temporal differences between presentations varied. When assigning both incidence and

task-relevance to events, the maximum neighborhood edge distance was max(E, ,) = 2. These

trials were performed to find the values a which areas containing task-relevant events become
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the most sdlient areas. For each trid, the task-relevance factor began ata,; =1. Task-relevance

factors were gpplied per event.

Table 7: Task-Rdevance vs. Incidence Results

Task-relevant event(s) Other event(s) a (per event)
IR Visud 14
Visud IR, Sound 1.4
Visual (color) Visud (face), IR, Sound 2.2
IR, Sound Visud, Hand 13
IR, Sound (right) Viaud, IR, Sound (l€ft) 14

Table 7 shows the results from the 5 trids. The task-relevant events came from one
source and the other events came from the second source. In each tria, several episodes were
executed. The task-relevance factor was dtered for each episode by increasing or decreasing the
vaue by 0.1 until adefined boundary was established. This boundary isthe vaue a which the
task-relevant event(s) overtook the other event(s) and islisted in the last column of Table 7. As
the number of incidental events increased relative to the number of task-relevant events, the task-
relevance factor increased. From these results, it is determined that for any task of minor
importance, the task-relevance factor should be set to a,, = 2 0 that areasin which multiple
non-task-related events occur around the same time could till be the most sdlient aress. For any
task of grester importance, the task-relevance factor should be set to a ., = 3. For any task that
always takes precedence over any other events, the task-relevance factor should be st to

a;r=5.
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Habituation
Experiments were performed to determine gppropriate habituation factor (b, ) valuesfor

use in the atention network. In these experiments, the habitud event was a hand waving a a

congtant rate in the same place.
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Figure 13: Decay of Sdience due to Habituation

Figure 13 shows the decay of sdience for ahabitua IR event using different rates of decay. The
graph shows that as the rate of decay increases, the salience of the habitual event decreases
rapidly. For ahabitual event to become the focus of attention at dl, the rate of decay should be
setto b, =1. Otherwise, the event may have completely habituated by the next pass of the

atention network.

Focus of Attention
The next three experiments compared the attention network’ s success in sdlecting the
most sdient location againgt the successes of other methods of focusing attention. The first

experiment compares the network in this dissertation against a smple search of the SES
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database. The second experiment compares this network’ s performance againgt the multi-modal

attention network developed by Sebagtian Lang [Lang et d., 2003]. The third experiment

compares the performance to the multi-moda attention network developed by Déniz et d. [Déniz

et d., 2003]. In each experiment, the objective of both sysemsisto find the most sdient location

of the robot’ s environment given the provided information (i.e. the current tasks). In the last two

experiments, experimental conditions are set up to match those described by the compared

methods authors.

Attention Network versus Database Search

In this experiment, 8 different sources were presented to the robot a separate times.

Table 8 shows the sources used and the sensory events each source produced.

Table 8: FOA vs. Database Search: Sensory Sources Used

Source Events produced
Green block Green color recognition
Red block Red color recognition
Blue block Blue color recognition
Face A Face detection
Person B Face detection, IR motion detection,
sound locdlization
Ratle Visud motion detection, IR motion
detection, sound localization
Door closng IR motion detection, sound locdlization
Gr Hand proximity sensor high, arm velocity
&P stopped, hand closed
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The objective of this experiment isto determine if the atention network can correctly sdect the
most sdient location. The results of this experiment are then compared to a database search for
sdlience to determineif the network performs better, the same or worse than the database search.
For this experiment, the sources were presented successvely at intervals of four seconds. The
most sdient area should be where the most recent event occurred, where event(s) related to the

current task occurred or where a high number of incidenta tasks occurred. For the atention

network, the maximum number of edges used was max(E; ,) = 2 for dl SPMs.

Figure 14 shows the shifts of attention (black line) for both the attention network in this
work (A) and for the database search (B). In A, the method used to decay incidence of events
was the linear decrease shown in Equation 3. The results from using the exponentia decay from
Equation 4 showed no difference from those in Figure 2. The linear decrease method was

selected as the method used to decrease incidence because it required dightly less computational

processing.
Green Block Red Block Blue Block Face A Person B Rattle Door Closing Grasp
Green block
Red block
Blue block
A Face A
Person A I_‘——

Rattle
Distraction

Grasp —
Green block
Red block
Blue block
B Face A
Person A
Rattle
Distraction
Grasp

t=0 t=4 t=8 t=12 t=16 t=20 t=24 t=28 =32 t=36
Task = “Look at i Person Green Block Red Block

Figure 14: FOA using Attention Network (A) vs. FOA using Database Search (B)
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The current task begins as“Look at person” and shiftsto “Look at green block” at time
t =28 seconds. The current task then shiftsto “Look at red block” at time t =34 seconds. The
sources to the lft of the table list the areas that are the focus of attention while the sources above
the table designate the source being presented to the robot. The task-relevance factor is set to

a.r =3 forthe‘Look at person’ task and to a,, = 2 for the‘Look at green block’ and *Look at

red block’ tasks. The different values of task relevance were assigned to mimic Situations when
the robot has multiple tasks with one task having more priority than the others. In this
experiment, looking at the person was given the highest priority over looking at the blocks. For

event binding, the time limit for detecting co-occurring eventswas T, =3 seconds.

In Figure 14, the shifts of attention for A follow the most recent source presented to the
robot until events are detected that match a person (i.e. face detection and IR motion detection).
Thisisadesired result because until person features are detected, there is no area matching the
current task. (As areminder, Table 4 shows the events that can be produced by a person.) Also,
the sources up to this point produce only one event each; therefore, no area exigts that has
gathered multiple events. The next shift of attention occurs when a person is detected. In addition
to face detection and IR motion detection, this source aso produced sound. Since this source
matches the current task and produced the most events, it became the focus of attention. The next
shift of attention was caused by the rattle, which produced two events that are features of a
person — IR mation detection and sound locdization. The incidence vaues of the three events
produced by the rattle overtook the sdience of the person until the next pass of the attention
network. The person then became the focus of attention, again. The next source was a door

closing. Although this source produced two events that are features of a person, the incidence
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vaues generated by these two events were not enough to override the sdience of the task-rel ated
events. The next shift of attention occurred with the changein current task from *Look at person’
to ‘Look at green block’. The focus of atention maintained at the green block, which wasthe
object of the current task, until the current task was again atered to *Look at red block’. The red
block then became the focus of attention until agrasp of the robot’ s hand occurred. The
incidence vaues from the three events produced by the grasp were enough to surmount the
sdience of the task-related event. Thisis adesred result for the system, however, because the
grasp should require further action by the robot whereas the red block was not an immediate
concern. In this Stuation, the robot is not sengtive to the grasp through task-relevance but, as per
the robot’ s devel opers, the robot should be sensitive to the grasp over other events. Ladtly, dl
events from each focus of attention were bound together as co-occurring.

The database search could only use the information from the current task to determine
what the focus of attention should have been. In the search, the current task with the highest
vaue determines what is searched for in the SES database. When an event that matches any part
of thistask appears, it is selected as the focus of attention. Thisfocus is sustained until either the
event is purged from the database by the decay manager or until a different task becomesthe
highest priority. During the first current task (*Look at person”), the database search yielded no
shift of attention until Face A appeared. Since features of a person were found, the search was
completed even though Person B gppeared. When the task changed the next two times, the
database search found the correct focus of attention given the information that the search had
(i.e. only task informetion).

The results from the attention network are compared to the database search results to

show whether or not the task-relevance of attention is needed. The assumptionisthat if the robot
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knows what the current task is, then it can smply search its SES database to find the task-
relevant events. When compared againg the search method, the attention network performs no
better or worse. Both methods found their foci of attention in negligible time; however, the
database search did dightly less computationa processing. Basicdly, the task-relevance measure
in attention has no advantage over a database query for task-relevant events. However, the
attention network method is preferred for the obvious reason: the attention network can find non-
task-related foci of attention.

Parameters of the attention network were modified to fit the experiment in this section.

Thetime period for detecting co-occurring events T, was et to three seconds because it was

known that the sources were being presented to the robot in congtant intervas. Since the god of
this experiment was to eva uate the atention network’ s ahility to find the most sdient area, the
event binding parameters were not a concern. However, in future use on the robot, the time
period will have to be set a one vaue for constant use of the event binder. Solutionsto this
problem are discussed in the Future Work section of Chapter 5.

Also, the values of the task-relevance factors a ; differed as afunction of the current

task. Thiswas done because the robot can have multiple gods at one time with some goals being
more important than others. Thisimportance was reflected in the task-relevance factor; therefore,
this modification was kept as a part of the system.

During this experiment, it was discovered that there was no need to spread incidence
from one-dimensiona sensors dong alongitudina axis. All motion and sound occurred around
the 0° elevation of the SES; therefore, spreading incidence from these events along two edges
from the 0° eevation point was sufficient. In the remainder of the experimentsin this

dissertation, dl one-dimensiona sensors are trested as two-dimensond sensors. That is, the
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SPM s processing data from one dimensiond sensors report events using two angles rather than

one.

Attention Network versus Lang’' s Multi-Modal Attention System

In this experiment, conditions were set up to roughly match an experiment used to test
Lang's multi-moda attention system for amobile robot [Lang et d., 2003]. The objective of this
experiment was to compare the success of the attention network in locating the most sdlient area
with the results of Lang’s attention system. Lang used his attention system to shift the focus of
attention between different people. In this experiment, four people stood around the robot.
Person 1 was at 45°, person 2 was at 0°, person 3 was at -30° and person 4 was at -60°. For that
specific robot, 0° was straight aheed, asit isfor ISAC. The experiment was set up for ISAC
amilarly. However, the data was collected from one person a atime and later smulated through
the network asif the four people were present smultaneoudy. This was done because ISAC does
not have the ability to continuoudy track multiple people but it was desired to have the
experiment match the conditions of Lang's experiment.

Each person was detected at the given angular locations and at an eevation angle of
g =0°. Each person spoke for 10 seconds individualy so that the most sdlient location should be
where the person currently spesking is. The maximum number of edges to which sdience was

spread was max(E; , ) =1. Figure 15 shows the shifts of attention (black line) for both the

attention network in thiswork (A) and Lang's attention system (B). The results of Lang’' s system

are reproduced from [Lang et a., 2003].
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Figure 15: FOA using Attention Network (A) vs. Lang's Attention System (B)

Lang's system sought to anchor each person as a separate entity and to focus its attention on the
person currently spesking. The figure shows that for al but one of the spesking intervalsLang's
system focused attention on the gppropriate person and maintained that focus. The first time P4
spoke, the robot attended to P4, but then lost its anchor on P4 and attended to P2, who was the
person standing directly in front of the robot. P4 eventually became the focus before he/she
finished speaking. The authors state that the undesired shift of attention was due to the
digtraction of the person standing in front of the robot.

The SES-based attention network did not encounter any problemsin detecting the person
who was speaking as the most sdlient area. In each trid, the desired location was detected as
being sdient and the face detection event and the sound localization event were bound as co-
occurring events. The SES-based attention system did not fall like Lang's system because
multiple sensory events dway's create a higher salience than that of a single event. Therefore, the
detection of a person cannot override the detection of a person and detection of sound, unlessthe

specific person relates to the current task. This experiment shows that using only incidence
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measures from detected sensory events and no task information, the desired focus of attention
can dill be found. The time limit between co-occurring events was set to alarge amount of time
(i.e. 180 minutes) because the faces were detected much earlier than the sounds were detected.
This has proven to be a problem: the event binding mechanism cannot bind two events as co-
occurring that were detected far gpart temporaly, even if the two events originated from the

same source. The Future Work section of Chapter 5 discusses how this problem may be solved.

Attention network versus the Multi-Modal Attention System of Déniz et 4.

In this experiment, conditions were set up to roughly match an experiment used to test the
multi-moda attention system developed by Déniz et d. [Déniz et d., 2003]. The objective of this
experiment was to compare the success of this dissertation’ s attention network in locating the
most sdient areato the performance of the system developed by Déniz. The experimenta setup
conssted of two objects, a person and a coat-rack. For ISAC, a person and arandom object were
used. Each object was detected visudly. The objective of the Déniz experiment was to determine
if sound events could cue the robot to look at the closest visua event. Therefore, the desired
sdient areafor the attention network was the location of the sound and visud events. Figure 16

shows the shift of attention for both systems.
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Figure 16: FOA using Attention Network (A) vs. the Attention System of Déniz et d. (B)

When the sound event is detected, both systems shifted attention to the person, which was the
visud event closest to the sound event. This experiment shows that the attention system can
perform aswell as the Déniz system in cuing events from one modality using eventsfrom a

different moddity.

Robonaut: Attention and Event Binding

The atention network and event binding on Robonaut function like those devel oped on
ISAC. SPMsexig to detect events and pre-filters serve to determine whether those events are
task-relevant. Data was collected over severd trias of reaching for and grasping adrill or
wrench. One SPM detected objects via object recognition. Another reported the detection of an
expected force on the arm viatorque signals. A third SPM reported detection of the opening of
the robot’s hand. The SES for Robonaut also uses atessdllation of N = 14.

Experiments were run on two data sets. The first data set contained visua, arm and hand
data taken directly from the robot during 6 different teleoperation trids. In these trids, the robot
was teleoperated to grasp awrench. The data was played back through Robol mitate which

smulates the data stream output of Robonaut [Campbell, 2003]. Robolmitate is a software
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smulation that alows data to be collected during experiments and then played back later asif the
data was originating from Robonaut. The first data set was played back through Robol mitate
while the described SPM's processed the data stream to find sensory events. When shifts of
attention were recorded aong with the events bound as co-occurring. In each trid, Robonaut was
teleoperated to perform five grasps. During these trids, Robonaut’ s right arm was teleoperated to
reach for awrench suspended in front of the robot. When the arm reached the wrench, Robonaut
was teleoperated to grasp the wrench. Once the grasp was completed, the robot was teleoperated
to open the hand and to move the arm back to a starting pogition. In dl trids, the wrench did not
move and the object tracker continuoudy reported the location of the wrench. Because of this, no
habituation was used in these experiments.

Since the visua event was continuoudy reported, the FOA aways occurred at the visua
event which was the desired location. When the expected force SPM detected an event, the FOA
again was at the desired location (location of the visud and force events) and the visud event
and the force event were bound as co-occurring. When the hand SPM detected an event, the FOA
was at the desired |ocation (location of the visud event and the hand event) and the visud and
hand events were bound as co-occurring.

The second data set contained data Smilar to the first set with an extra visud target.
Before the data stream was played through Robolmitate, a drill was inserted into the stream to
mimic Robonaut finding multiple visua objects. The location of the drill was more than 15°
away from the wrench and did not occlude any sensory stimuli in the robot’ s workspace. This
data set was used to determine the boundary of the task-relevance factor, as in the task-relevance

experiments performed on 1SAC. When the object tracking SPM detected the second visua

event, the FOA shifted to thisevent when a; 2 1.4.
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The results from these experiments show promise for directing Robonaut to locationsin
its environment that need resources, whether for skill acquigtion or for further processing. More
experiments will be performed in the future to determine if the attention network and event
binding mechanism are robust enough to operate on a humanoid robot having articulated motion

with respect to afixed frame.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

Conclusons

This chapter provides a conclusion to the work presented in this dissertation and ideas on
future work involving attention and event binding. The problems which this dissertation sought
to solve were presented as.
Which events detected by the SPMs belong together by virtue of having been produced by the
Same source or occurring in response to an action of the robot?
How can the robot ignore irrdlevant or spurious stimuli without missing those that indicate
danger or opportunity?
These questions were answered by combining egocentric mapping and short-term memory to
facilitete atention and event binding. The sgnificance of this solution is that a unified
mechanism, the Sensory Ego- Sphere, was used to as the structure upon which these four
processes could function. The two robotic platforms on which the methods devel oped were
tested were described. Other methods used for ECM and STM were presented and then the
Sensory Ego- Sphere was detailed.

The attention network showed that it can reliably detect the most sdient location of the
robot’ s environment, whether the salience is produced by multiple unexpected events or by task-
relevant events. When compared to other methods of finding an attentiona focus, the network

performed as well as or better than the other methods. The attention network as applied on the



SES has shown to be agood function for alowing arobot to alocate its limited physica
resources to the most important areain its location.

The event binding mechanism showed that it can perform smilarly to probabilistic
methods devel oped. The results and evauation show that spatia binding is accurate relative to
the sampling of sensors used in this dissertation. Since probabilistic methods require large
amounts of computation compared to the spread of incidence, the spatid binding iskept asa
method of detecting spatidly coincident events. The tempora aspect of event binding is senstive
to the time period within which co-occurring events can occur. Thistime period is a pre-defined
interva that was modified for different experiments. The results of the tempora binding
experiments demonstrate that the temporal aspect of the event binding may not be appropriate.
Not only does the method rely on specificaly pre-defined values, but it dso does not alow for
events that occurred far gpart temporally to be detected as co-occurring (e.g. aface is detected at
t =0 seconds but the person beginstalking a t = 24 seconds; these two events would not be
detected as co-occurring even though they originate from the same source). Since it was assumed
that events that originate from the same source are likely to be detected at the same time, this
Stuation was not considered during testing. However, it gppears that the tempord binding should
be discarded in favor of another method thet eval uates salience values or contextua €ements of
CO-0ccurring events.

Ovedl, the system solved the problems put forth in this dissertation sufficiently well for
the current research direction of both ISAC and Robonaut. However, the tempord binding
agorithm should be atered or replaced entirely with another means of determining temporally
coincident events. The spatid binding and the attention network performed well on both

platforms, demongtrating that it can detect the most sdlient location of the robot’ s environment
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(i.e. it can disregard task-irrelevant events without ignoring those that indicate an opportunity or
danger). In summary, the SES has provided a solid platform for detecting spatidly coincident
sensory events and for directing arobot’ s attention based on sdient areas in the environment.
This sdlience was generated from random events in the robots environments, from task-relevant
events and from habitua events. The agorithms used for spatid binding and for atention will be
permanently applied to the robots with possible further modifications that are mentioned in the

next section.

Future Work

Severd suggestions can be made for adaptations to the attention network and event
binding mechanism so as to provide more accurate performance. Some of these suggestions are
the result of poor system performance while others are inspired by afterthoughts on how to
incorporate more functiondity into the system.

Fird, the radia basis functions used to spread both incidence and task-relevance should
be updated. The maximum number of edges to which sdience is spread should be left out of the
equation since the distance ca culation handles assigning relaive amounts of sdienceto
neighboring nodes. Also, the distance measurement should change from Euclidean distance to
sphericad distance since the distance between vertices differs on different parts of the sphere. On
ISAC, the Euclidean measurement does not affect the results; dl activity on the SES occurs
between about 10° and -40° and the salience is not spread beyond twice the maximum distance
between vertices (~12°). However, the measurement should be atered for Robonaut since

activity occurs dl over the sphere. The new incidence equation would look like that shownin
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Equation 1 while the distance between nodes would be a chord rather than agtraight linein

Euclidean space.

(]2 1) = exp(- ai D,,?) (6.1)

Next, the method of determining salience per node for a given event should be dtered.
Currently, if atask-relevant event is habitud, it will eventudly lose dl sdience. Therefore, it is
suggested that the habituation value only decreases the incidence at a node rather than both
incidence and task-relevance. Equation 2 presents the new caculation.

S(j.g)=0(j.6)*H(.e))+TR(j.€) (6.2)
Also, habitua events may be important for the robot to attend to — if the robot is congtantly
running into awall and producing multiple habitua events, then the robot needs to direct its
resources to the area of the events. Therefore, it is suggested that the salience of co-occurring
habitual eventsis not decreased but increased. The habituation value would Smply be inverted in
this case, as shown in Equation 2.

S(i.e)=(1(i.e)/ H(j,&)+TR(j &) (6.3)
Equation 5.2 should be used in the case of asingle habitud event. If multiple habitud events
have been found to be co-occurring by the event binding mechanism, then Equation 5.3 should
be usad instead. Another suggestion involving habitual eventsis to have the ending of a habitua
event be a detected event itsdlf. Thiswould alow the cessation of a constant noise or congtant
motion to be detected as an event.

The most necessary adaptation to the system is to threshold the amount of saience that an
event can contribute to the FOA and be considered co-occurring, as discussed in the Conclusons

above. If an non-coincident event occurs close enough to other coincident events, it may ill

87



gpread incidence to the node receiving the focus of atention. The salience contributed by this
event may be very low, though (e.g. sdience of 0.05) compared to the other coincident events
(e.g. sdience of 0.75 or greater). Further testing would need to be done to determine the
gppropriate vaue a which to threshold salience. In this Situation, any event whose contributed
sdience fals below the threshold is not consdered in event binding. Another suggestion isto
add a context evauator to the event binding mechanism. This evauator would determineif co-
occurring events could actualy be co-occurring. For instance, if agreen block and aface are
detected in the same place around the same time, they could currently be bound as co-occurring.
However, it is highly unlikely that a green block and a face would originate from the same
source. A context evauator could examine this and conclude that the events are not co-occurring.

Anther consideration is to assgn SES age limits to events that are dependent on which
events have been found to be co-occurring. A green ball detected with co-occurring motion
would necessitate asmdl SES age limit (e.g. 30 seconds). A green ball detected without co-
occurring movement would most likely be ationary, which suggests alarger SES age limit (e.g.
10 minutes). Also, when a current task is determined, events that are found to be task-relevant
may be assigned alonger SES age limit than the standard limits. This would alow the robot
more time in atending to task-relevant aress.

Findly, the data used to test Robonaut was cdibrated due to errors from the visual object
recognition SPM. To determine if event binding can overcome the cdibration error from the
visua stream, the attention network and event binding mechanism should be tested using the

uncaibrated data.
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APPENDIX

|dedlized Geometric Structure of the Sensory Ego-Sphere

The idedlized geometric structure was designed and developed by Peters [Peterset d.,
2003]. Consider abinary set W defined on a4-dimensond, Euclidean, space-time manifold
M=R®" R and an associated indicator function,
wW:M ® {0,1} (7.1)
such that for any space-time point pi M ,

_ilifpl w

{p} _’:‘O if p.l. W (7.2)

W comprisesthe “world” — a set of geometrica objects within avoid over time.

LetM, =(j ), 3-space at timet, and consider W, to be the “ state of the world” at timet.
W, {} isthe object indicator restricted to timet.
At any given time, t, we designate one point in 3-space as the “ ego-center”, p.

p=[x v z]'TMm, (7.3)

The ego- center lies on a continuous curve
l%{%)|-¥ <X <¥} (7.4)
in gpace-time, M , where
Bo=gx Y z ?j- (7.5)

For all t, thereis an identity between py and §5:

&7 Ity =po (7.6)
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That is, the egocenter moves through space over time S0 that a any given time, t, the egocenter

liesat point p,1 M, . Over dl time, the egocenter isthe curve g6 M, .

Let F, " represent a 3-D rectangular coordinate frame that follows p, the trgjectory of the
egocenter. Let B, {p,} be adepleted ball (aspherical shell) of radius € >0 centered at p; it
likewise follows the trgectory (e isarbitrary, only f and g have meaning in SES context).

Let 1 ”(r g f ) represent theray originating at pr having polar and azimuthal angles
(@.,f) withrespectto F,” . The distance dong the ray from its origin is represented by r.

Findly, let d,”(q,f ) represent the particular distance, r, along the ray from the egocenter to the
first object pointin M,. Thatisd,’(q,f) =r suchthat W{I P(rogf )} =0 fordl r <d @.f)
andW {1°(d’@.f).q.f)} =1.

A Sensory Ego-Sphere, S is defined as the instantaneous projection of 3-space onto the

sphericd shell centered at p,

S :B{p}® i (7.7)

such that
§(@f)=d’(.f) (7.8)
for - ¥ <t<¥,forql [Op],andfor f T [0,20]. Thus we define the SES mathematicaly as
the set of radia distances from a designated point to the first encountered object pointsin space.

Figure 17 shows the projection of an object onto the spherica shell, S°.
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Figure 17. Projection of an Object onto the Sphere

Practicaly, we cannot define the SES with Euclidean density. Also, the geometric
definition above implies that the structure is memoryless, whereas in fact it can be used asa
memory structure. Moreover, we store on it much more than the distance to the first object in

space.

SES for a Robot having Articulated M otion with respect to a Fixed-Base Frame

An articulated robot such as a humanoid has gppendages and end- effectors that move
with respect to its base frame. The proprioception of a dynamic body configuration isa spatialy
distributed sensory process that is a function of the robot kinematics. The physica contact of the
robot’ s body with a surface can dicit a Smultaneous response from its various sensors (e.g.

force, torque, strain, tactile). The sensory events that result from any of these can be registered
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by projecting the ingtantaneous locations of the sensors and the joints on the SES. The projection
is traightforward; the position, p;, with respect to the base frame of a given sensor iswrittenin
spherical coordinates as

ér U

é

P = &l 3 (7.9)

gt
Digtance r,° iswritten at SES location (g °,f °) with atime stamp of t. Whereas sensory events
that occur on the robot’ s body are easily projected to the SES through its kinematics, remote

events detected by adirectional sensor, such as camera platform are more problematic.

Consider astationary object imaged at time t =0 by a camerahead whose frame, F ,°, is
rotated by AS with respect to the base frame, F ®, and displaced fromitby T¢.

If the displacement, r?, of an object point from the camera frame is known, then the coordinates
of that point with respect to the base frame are gven by

e =Fe{r}= ASp + T2, (7.10)
However, asis often the casg, if the distance from the camera head to the object is unknown then

al that isknown isthat the object lies on the ray

éru
e su
°(r®) = & (7.11)

ot
from the cameraframein direction (g f ;) . Scalar r® isthe distance dong the ray from the

origin of cameraframe.
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Letr®=¢"° q fOSEIT beany point onray | ° written as a vector with respect to the
cameraframe, F,°. Vector r®, thelocation of r® with respect to the base frame, is given by
(3.24). Let 1 B(r®) betheline segment from the origin of the base franeto thepointon 1° a
distance r® from the origin of the cameraframe. If welet r° vary fromOto ¥ , then | 8(r®)
traces an arc of agrest circle on the SES. The arc extends from the intersection of the SESwith
the ray through 'f'go (the unit vector & F ® inthedirection of F,®) to theintersection of the
SESwith theray fromthe originof F ® with direction (g, ,f ) (i.e theray from F ® paralé

to | °).
To find the direction to the object from the base frame when the distance to the object is

unknown, either a second camera must image it, or the first camera must be moved to a second
position (that isnot in the plane of ry and fgfo). The ray from the second camerain the direction

of the object projects to an arc on a second grest circle on the SES. The projection of the object
on the SESis at the point of intersection of the two arcs. In fact, to compute the direction of the
object with respect to the base frame, it is not necessary to compute the great circles and to find
their point of intersection. A greet circle is defined as the intersection of a sphericd surface with

aplane through its center. The arc traced by camera O is defined by the plane that contains unit
vectors FSand TSO . Similarly, the arc traced by camera 1 isthe intersection of the plane
containing unit vectors iSand TS, Ray 1 8(r®) from the origin of the base framein the direction
of the object isthe intersection of these two planes. Now, the vector cross product

8, =F> TS (7.12)

is perpendicular to the first plane and
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a,=f TS (7.13)
is perpendicular to the second. Thisimplies 1 ®(r,”) is perpendicular to both &, and 3, .
Therefore, ®, the unit vector at the base frame in the direction of the object, is given by

r® =3, a. (7.14)
The articulated motion transformations were developed and designed by Peters [Peters et al.,

2003]. Figure 18 illudgtrates the transformed projection of an object from Robonaut’s camera

coordinate frame to its base SES frame.

Figure 18. Transformation of an Object from Robonaut's Head Coordinate Frame to its SES
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