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Résumé / Abstract

Cette recherche propose une approche unificatrice pour l'estimation des
paramètres de modèles de structure de taux d'intérêt de la classe exponentielle-
affine. Cette famille de modèles, caractérisée par Duffie et Kan (1993), contient
entre autres les modèles de Vasicek (1977), Cox, Ingersoll et Ross (1985) et Chen
et Scott (1992). La méthode proposée utilise un filtre de Kalman approximatif qui
requiert la spécification de l'espérance et de la variance conditionnelle du système.
La méthode utilise simultanément plusieurs séries de rendements et permet l'ajout
d'erreurs de mesure pour chaque serie. Une étude de simulation indique que la
méthode proposée est fiable pour des échantillons de taille modérée. Une étude
empirique utilisant trois modèles différents de la classe exponentielle-affine est
présentée.

This paper proposes a unified state-space formulation for parameter
estimation of exponential-affine term structure models. This class of models,
charaterized by Duffie and Kan (1993), contains models such as Vasicek (1977),
Cox, Ingersoll and Ross (1985) and Chen and Scott (1992), among others. The
proposed method uses an approximate linear Kalman filter which only requires
specifying the conditional mean and variance of the system in an approximate
sense. The method allows for measurement errors in the observed yields to
maturitiy, and can simultaneously deal with many yields on bonds with different
maturities. A Monte Carlo study indicates thet the proposed method is a reliable
procedure for moderate sample sizes. An empirical analysis of three existing
exponential-affine term structure models is carried out using monthly U.S.
Treasury yield data with four different maturities. Our test results indicate a
strong rejection of all three models.

Mots Clé : Structure à Terme, Filtre de Kalman, Exponentielle-affine, Modèle State-
Space, Quasi-maximum de vraisemblance, Test du Multiplicateur de Lagrange

Key Words : Term Structure, Kalman Filter, Exponential-Affine, State-Space Model,
Quasi-Maximum Likelihood, Lagrange Multiplier Test



1. Introduction

The term structure of interest rates describes the relationship between the yield on a default{

free debt security and its maturity. Given the high correlation among bond yields of di®erent

maturities, many theoretical models attempt to use a small number of factors to explain

these joint movements. The typical macro{econometric approach is to specify a time{series

model for the short{term interest rate and then employ the expectation hypothesis to derive

a structural time series model for bond yields of di®erent maturities. Examples of this

approach, such as Hamilton (1987) and Hall, Anderson and Granger (1992), are abundant

in the literature.

A di®erent modelling approach, popular in the ¯nance literature and pioneered by Vasicek

(1977) and Dothan (1978), starts out by assuming a di®usion process for the instantaneous

spot interest rate. Arbitrage arguments are then used to facilitate the derivation of a bond

pricing formula. According to these models, the bond price is a function of the unobserved

instantaneous spot interest rate and the model's parameters. A more general approach is

to assume a set of unobserved state variables and proceed to derive the bond price as a

function of these state variables by arbitrage and/or equilibrium arguments. Cox, Ingersoll

and Ross (1985) (hereafter CIR), Richard (1978), Longsta® and Schwartz (1992), and Chen

and Scott (1992) are some examples. Recently, Du±e and Kan (1993) have provided a

characterization for the class of exponential{a±ne term structure models, which contains

most of the aforementioned term structure models as special cases. Among the existing term

structure models, Vasicek (1977) and CIR (1985) have gained prominence in the literature of

derivative contract pricing; for example, CIR (1985), Jamshidian (1989), Rabinovitch (1989),

Hull and White (1990) and Duan, Moreau and Sealey (1995).

The empirical research focussing on some particular models of the exponential{a±ne

family is extensive. The existent literature can be loosely classi¯ed into four categories. The

¯rst approach uses proxies for the unobserved factors; for example, Marsh and Rosenfeld

(1983), Chan, et al. (1992) and Daves and Ehrhardt (1993). The second approach uses a

cross-sectional restriction implied by a term structure model to yield a reduced-form model.
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Examples of this approach are Brown and Dybvig (1986), Titman and Torous (1989), and

De Munnik and Schotman (1994). The third category, such as Gibbons and Ramaswamy

(1993), involves the derivation of conditional moment restrictions and the application of the

generalized method of moments for estimation. The fourth category is the application of the

transformed data maximum likelihood method proposed in Duan (1994). Particular cases

of this approach are found in Pearson and Sun (1994) and Chen and Scott (1993a). The

method proposed in this paper can be regarded as a generalization of the transformed data

method. The transformed data method uses a term structure model to de¯ne a one-to-

one data transformation from the unobserved state variables to the observed bond yields.

This method breaks down when the number of yield series is greater than the number of

state variables, unless one is willing to impose ad hoc restrictions on the structure of the

measurement errors.

The purpose of this study is to develop a uni¯ed framework in which all exponential{

a±ne term structure models can be estimated with the simultaneous use of many bond

yield series. We utilize a result of Du±e and Kan (1993) which establishes the su±cient

and necessary conditions for the obtention of an exponential{a±ne term structure model.

These conditions simply require the drift and variance functions of the underlying di®usion

process to be a±ne in state variables. In this paper, we establish that the conditional mean

and variance function of the state variables, over any discrete{time interval, must also be

a±ne in state variables. This result for the discrete{time interval makes it possible to use

the Kalman ¯lter and the prediction{error decomposition to obtain an approximate quasi{

maximum likelihood solution to the estimation problem for the entire class of exponential

a±ne term structure models.

Special cases of our approach exist in the literature. To our knowledge, Pennacchi (1991)

is the ¯rst study that uses a state-space formulation for estimating a term structure model of

Gaussian nature. Chen and Scott (1993b) and Lund (1994) also propose the use of a Kalman

¯lter-based method to estimate term structure model. When our method is applied to a

Gaussian model, if measurement errors are also normally distributed, our method becomes

a maximum likelihood estimation.
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The proposed method is implemented for the yields on the U.S. Treasury debt securities

with maturities: 1, 3, 6, and 9 months. The empirical study is carried out using monthly

data for the period from July, 1964 to February, 1992. Three term structure models of the

exponential a±ne family { Vasicek (1977), CIR (1985), and Chen and Scott (1992) { are

analyzed. For the Vasicek (1977) and CIR (1985) models, the parameter estimates in most

cases are statistically signi¯cant. Using an approximate robust Lagrange multiplier test, we

¯nd that all three models are strongly rejected.

To examine the statistical properties of the proposed method, a Monte Carlo study is

carried out. The simulation study suggests that the method is reasonably reliable even for

a sample size as small as 150.

2. A State-Space formulation for the exponential{a±ne Term Struc-

ture Models

Vasicek (1977) and CIR (1985) bond pricing models have been widely used in the term struc-

ture literature. Both models involve specifying a stochastic process for the unobserved in-

stantaneous spot interest rate. While Vasicek speci¯es a continuous time Ornstein-Uhlenbeck

process, CIR use a mean-reverting square root process. Multi{factor generalizations of the

CIR model have been proposed by Chen and Scott (1992) and Longsta® and Schwartz (1992).

Recently Du±e and Kan (1993) have provided a characterization for the class of exponential{

a±ne term structure model which contains, amongst others, the aforementioned models as

special cases.

The exponential{a±ne term structure model is a class of models in which the yields to

maturity are a±ne functions in some abstract state variable vector Xt, which is assumed to

obey the following dynamic:

dXt = U(Xt;ª)dt+ §(Xt; ª)dWt; (2.1)

where Wt is a n £ 1 vector of independent Wiener processes; ª denotes a p £ 1 vector

containing the model parameters; U (:) and §(:) are n£1 and n£n functions regular enough

so that equation (1) has a unique solution. The bond pricing formula for this class of model
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can be generically expressed as:

Dt(Xt; ª; ¿ ) = A(ª; ¿)e¡B(ª;¿)Xt; (2.2)

whereDt(Xt; ª; ¿ ) is the price at time t of a default{free discount bond with time to maturity

¿ ; A(ª; ¿ ) is a scalar function and B(ª; ¿ ) is a 1 £ n vector function. The instantaneous

interest rate is, as usual, de¯ned as

rt(Xt; ª) = ¡ lim
¿!0

lnDt(Xt; ª; ¿ )

¿
: (2.3)

Du±e and Kan (1993) have shown that D(:) is generically exponential{a±ne, i.e. in the form

of equation (2), if and only if U (:), §(:)§(:)0 and rt(:) are a±ne in Xt. Moreover A(:) and

B(:) in equation (2) can be obtained as the solutions to some ordinary di®erential equations

(see Appendix A).

Let Rt(Xt; ª; ¿) denote the time-t continuously compounded yield on a zero-coupon bond

of maturity ¿ . The yield-to-maturity of this bond is given by:

Rt(Xt; ª; ¿ ) = ¡1

¿
ln(Dt(Xt; ª; ¿ )): (2.4)

To deal with the estimation problem, it is reasonable to assume that the yields for di®erent

maturities are observed with errors of unknown magnitudes. Using the bond pricing formula

in (2), the yield to maturity can be written, after the addition of a measurement error, as:

Rt(Xt; ª; ¿ ) = ¡1

¿
ln(A(ª; ¿ )) +

1

¿
B(ª; ¿ )Xt + ²t; (2.5)

where ²t is an error term with zero mean and standard deviation ¾². Note that ²t need not

be normally distributed.

Given that N bonds with di®erent maturities are observed, the N corresponding yields

can be stacked to obtain the following representation:

2
66664
Rt(Xt; ª; ¿1)
Rt(Xt; ª; ¿2)

...
Rt(Xt; ª; ¿N)

3
77775 =

2
66664
¡ ln(A(ª; ¿1))=¿1
¡ ln(A(ª; ¿2))=¿2

...
¡ ln(A(ª; ¿N ))=¿N

3
77775+

2
66664
(1=¿1)B(ª; ¿1)
(1=¿2)B(ª; ¿2)

...
(1=¿N)B(ª; ¿N )

3
77775Xt +

2
66664
²t;1
²t;2
...

²t;N

3
77775 : (2.6)
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In terms of the state-space model, this equation is referred to as the measurement equation.

To obtain the transition equation for the state-space model, we need to derive expressions

for the conditional mean and variance of the unobserved state variables process over a discrete

time interval of length h. De¯ne m(Xt; ª; h) ´ E(Xt+hjXt) and ©(Xt; ª; h) ´ Var(Xt+hjXt).

The transition equation over a discrete time interval, with length equal to h units of time,

can be written as:

Xt+1 = m(Xt;ª; h) + ©(Xt; ª; h)
1=2´t+1 (2.7)

where ´t+1 is a n £ 1 vector of zero mean and unit variance error terms with ©(Xt; ª; h)
1=2

denoting the Cholesky decomposition of ©(Xt; ª; h).

For a Gaussian state-space model, the Kalman ¯lter provides an optimal solution to pre-

diction, updating and evaluating the likelihood function. The Kalman ¯lter recursion is a

set of equations which allows an estimator to be updated once a new observation becomes

available. The Kalman ¯lter ¯rst forms an optimal predictor of the unobserved state variable

vector given its previously estimated value. This prediction is obtained using the distribu-

tion of the unobserved state variables, conditional on the previous estimated values. These

estimates for the unobserved state variables are then updated using the information provided

by the observed variables. Prediction errors, obtained as a by-product of the Kalman ¯lter,

can then be used to evaluate the likelihood function.

When the state-space model is non-Gaussian, the Kalman ¯lter can still be applied to

obtain approximate ¯rst and second moments of the model and the resulting ¯lter is quasi-

optimal. The use of this quasi{optimal ¯lter yields an approximate quasi{likelihood function

with which parameter estimation can be carried out.

Given that U (:) and §(:)§(:)0 are a±ne functions ofXt, m(Xt; ª; h) and ©(Xt; ª; h) must

be a±ne in Xt (see Appendix B). Let Ft be the information set generated by the observations

up to and including time t. That is, Ft is a ¯ltration generated by fRs(Xs; ª; ¿1); ¢ ¢ ¢ ;
Rs(Xs; ª; ¿N ); fors · tg. The conditional mean and variance are functions of the lagged

unobserved state variables. This implies thatm(Xt; ª; h) and ©(Xt; ª; h) are not measurable

with respect to Ft. However, their expected values conditional on Ft can easily be expressed.
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De¯ne Pt+1jt ´ Var(Xt+1jFt) and Pt ´ Var(XtjFt). Because m(:) is a±ne in Xt we have:

m(X̂t; ª; h) = a(ª; h) + b(ª; h)X̂t; (2.8)

where a(:) and b(:) are n £ 1 and n £ n matrices and X̂t ´ E(XtjFt). To implement

the quasi{optimal Kalman ¯lter, one must derive a relationship between Pt+1jt and Pt.

By the law of iterated expectations and recognizing that ©(Xt; ª; h) is a±ne in Xt and

Cov(Xt;©(Xt; ª;h)
1=2´t+1jFt) = 0 one can derive:

Pt+1jt = b(ª; h)Ptb(ª; h)
0 + ©(X̂t; ª; h): (2.9)

If it were possible to compute X̂t, the conditional mean and variance of the system could

be correctly speci¯ed. Using the measurement and transition equations described in (6) and

(7), the standard Kalman ¯lter recursion 1 could then be used to obtain a prediction-error

decomposition to evaluate the quasi-likelihood function. The estimates obtained with this

quasi{likelihood function would, according to Bollerslev and Wooldridge (1992), are consis-

tent and asymptotically normal. Unfortunately, the linear Kalman ¯lter cannot produce X̂t;

rather it yields ¹Xt, that is the linear projection of Xt on the linear sub{space generated by

the observed yields. The conditional mean and variance computed with the estimate ¹Xt

should thus be di®erent from the true conditional mean and variance of the system. Never-

theless, this approximation can be expected to work well because it is linearly optimal. This

approximation is needed because of the non{Gaussian nature of the problem, which can be

likened to linearizing a non{linear function in the typical Kalman ¯ltering applications.

Since ¹Xt is computable, we use it to approximate X̂t which yields a quasi-likelihood

function in an approximate sense. This approximate quasi{likelihood function is used as if it

were the correct quasi-likelihood function. Since the statistical properties of this procedure

are theoretically unknown, Monte Carlo experiments are conducted in Section 4 to assess

the quality of this procedure.

Let

LT (ª;R) =
TX
t=1

lt(ª;Rt); (2.10)

1A complete description of the Kalman ¯lter recursion can be found in Harvey (1990).
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where lt(ª;Rt) denotes the quasi-likelihood function at time t obtained from the approxi-

mate prediction-error decomposition with Rt = fRt(Xt; ª; ¿1); : : : ;Rt(Xt; ª; ¿N)g0 and R =

(R1; : : : ;RT). Following Bollerslev and Wooldridge (1992), it is reasonable to expect the pa-

rameter vector ª̂T maximizing LT (ª;R) to be approximately consistent and asymptotically

normal. This approximately consistent parameter should have the following approximate

asymptotic distribution:

p
T (ª̂T ¡ª0) » N(0; F̂¡1

T ĜT F̂
¡1
T ); (2.11)

where

F̂T =
1

T

TX
t=1

ft(ª̂T ;Rt); (2.12)

ĜT =
1

T

TX
t=1

@ ln lt(ª̂T ;Rt)

@ª

0
@ ln lt(ª̂T ;Rt)

@ª
; (2.13)

with

ft(ª̂;Rt) =
@¹0t
@ª

¡1
t

@¹t

@ª
+
1

2

@0
t

@ª
[¡1

t  ¡1
t ]

@t

@ª
;

where ¹t and t are the conditional mean and variance functions obtained from the linear

Kalman ¯lter and @ ln lt(ª̂T ;Rt)

@ª
, @¹t

@ª
and @t

@ª
are of dimension 1 £ p, N £ p and N 2 £ p

respectively

The asymptotic covariance matrix of the quasi-maximum likelihood estimator, commonly

referred to as the robust covariance matrix, is in general not equal to the inverse of Fisher's

information matrix, ¡ limT!1 F̂T . For Gaussian exponential{a±ne term structure models,

the approximate quasi-likelihood function becomes the exact likelihood function if the mea-

surement errors are normally distributed. This then implies that the asymptotic variance is

(¡ limT!1 F̂T )¡1 or (limT!1 ĜT )¡1, a standard result.

To test the over{identi¯cation restrictions imposed by the theoretical model, an ap-

proximate robust Lagrange multiplier test can be constructed. Denote the unconstrained
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measurement equation to be:

2
66664
Rt(Xt; ª; ¿1)
Rt(Xt; ª; ¿2)

...
Rt(Xt; ª; ¿N )

3
77775 =

2
66664
¡ ln(A(ª; ¿1))=¿1 + ®1

¡ ln(A(ª; ¿2))=¿2 + ®2

...
¡ ln(A(ª; ¿N ))=¿N + ®N

3
77775+

2
66664

(1=¿1)B(ª; ¿1) + ¯1
(1=¿2)B(ª; ¿2) + ¯2

...
(1=¿N)B(ª; ¿N) + ¯N

3
77775Xt +

2
66664
²t;1
²t;2
...

²t;N

3
77775 :

(2.14)

where ®1 to ®N are scalar parameters; ¯1 to ¯N are parameter vectors of dimension 1£ n.

This speci¯cation for the unconstrained measurement equation is over{parameterized.

First, the exponential{a±ne term structure model contains risk premium parameters that

do not appear in the transition equation. Speci¯cally, risk premium parameters appear in

functions A(:) and/or B(:) of the measurement equation. These risk premium parameters

complicate the matter because the unconstrained model cannot be expressed solely in terms

of the parameters ®i, ¯i and those in the transition equation. Second, since Xt is an unob-

served process, its location and scale parameters are indeterminate. This speci¯cation under

the alternative hypothesis in equation (14) is thus under{identi¯ed.

To perform a Lagrange multiplier test of the null hypothesis, H0: ®i = 0; ¯i = 0 for all

i, one must deal with the over{parameterization problem by appropriately removing some

parameters from the parameter space. More speci¯cally, n parameters must be removed to

account for the risk premia, and 1
2
n(n+1)+n parameters removed for the alternative model

identi¯cation (see Harvey (1990), section 8.5.1). The decision about which parameters can

be conveniently removed turns out to be model{speci¯c. We thus address this issue when

the speci¯c bond pricing models are discussed in Section 3.

The approximate robust Lagrange multiplier test proceeds as follows. Denote by µ the

parameter vector under the alternative, that is let µ0 = fª0; Á0g where Á is a parameter vector

of dimension N (n+1)¡ 1
2
n(n+1)¡2n. The parameter vector ª is a subset of f®i; ¯ig after

removing an appropriate number of parameters. The null hypothesis can be stated as:

H0 : Á = 0:

A result from White (1982) and Domowitz and White (1982) can be used to construct the
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approximate robust LM test statistic as follows:

"LM = Ŝ1T F̂
11
T Ĉ¡1

11 F̂
11
T Ŝ 01T ! Â2

fN(n+1)¡ 1
2
n(n+1)¡2ng; (2.15)

where F̂ 11
T is the partitioned inverse corresponding to Á; Ĉ = F̂¡1

T ĜT F̂
¡1
T ; and Ĉ11 is the sub-

matrix of Ĉ corresponding to Á; ŜT = @LT (µ;R)

@µ
and Ŝ1T is the subvector of ŜT corresponding

to Á.

3. Empirical results

The data set used in this study consists of four monthly yield series for the U.S. Treasury

debt securities with maturities: 1, 3, 6 and 9 months taken from the Fama{Bliss data ¯le.

All interest rates are expressed on an annualized continuously compounded basis. These

data series cover the period from July, 1964 to February, 1992, totalling 332 time series

observations each. Table 1 reports summary statistics for these data series. Many empirical

studies, for example, Hamilton (1988) and Spindt and Tarhan (1987), have found that the

shift in the Federal Reserve monetary policy from October, 1979 to October, 1982, caused

a structural break in the interest rate process. We thus report the results for the entire

sample period as well as for two subperiods: July, 1964 to October, 1979 and October, 1982

to February, 1992.

The basic unit of time in this study is set equal to one year so that the maturities

for all yields are stated in terms of the number of years and the parameter estimates can

be interpreted as annualized values. Since the data frequency is monthly, the length of

the discrete sampling interval, h, equals 1=12. The numerical optimization routine used in

this study is the quadratic hill-climbing algorithm of Goldfeld, Quandt and Trotter (1966).

The convergence criterion, based on the maximum absolute di®erence in both parameter

and functional values between two successive iterations, is set to 0.0001. For each model

examined below, the approximate Kalman ¯lter recursion is initialized with the stationary

mean and variance of the unobserved state{variable(s).
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3.1. The Gaussian case: Vasicek model

For the Vasicek (1977) model, the unobserved state variable is the instantaneous interest

rate which has the following speci¯cation:

drt = ·(µ ¡ rt)dt+ ¾dzt; (3.1)

where zt is a Wiener process; µ is the long{run average of the instantaneous spot interest

rate; · ¸ 0 is the mean{reverting intensity at which the process returns to its long{run

mean; and ¾ > 0 is the volatility parameter of the process.

In terms of this model, the functional forms for A(:), B(:); a(:); b(:) and ©(:) are given

by:

A(ª; ¿ ) = e[°(B(ª;¿)¡¿)¡
¾2B2(ª;¿)

4·
]; (3.2)

B(ª; ¿ ) =
1

·

h
1 ¡ e¡·¿

i
; (3.3)

° = µ +
¾¸

·
¡ ¾2

2·2
; (3.4)

a(ª; h) = µ(1¡ e¡·h); (3.5)

b(ª; h) = e¡·h; (3.6)

©(Xt; ª; h) =
¾2

2·
(1¡ e¡2·h); (3.7)

where ¸ is the risk premium parameter. In this model, ¸ > 0 implies a positive premium for

bond prices.

We assume a diagonal covariance structure for the measurement errors. Its elements

are denoted by ¾2
²1
, ¾2²3, ¾

2
²6
, ¾2²9. The second column of Tables 2A, B and C, present the

empirical results for the Vasicek model. Parameter estimates are reported along with their

robust standard errors in parentheses. In Table 2A, the results for the entire sample period

are reported. The long{run average interest rate, µ, the mean-reverting parameter · and ¾²6

are not signi¯cantly di®erent from zero at the usual signi¯cance level. All other parameters

are signi¯cantly di®erent from zero. For the two sub{periods, reported in Tables 2B and

2C, all parameters are statistically signi¯cant except for · and ¾²6 in the ¯rst and second

sub{period.
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When compared to the full sample estimates, the estimates for the pre{October, 1979

period as well as those for the post{October, 1982 period indicate a smaller instantaneous

volatility, ¾. This result supports the ¯nding in the literature that the shift in the Federal

Reserve monetary policy from October, 1979 to October, 1982 caused a structural break in

the interest rate process.

The Lagrange multiplier test for the restrictions imposed by the Vasicek model on the

coe±cients of the measurement equation is performed using the speci¯cation described at

the end of Section 2. In order to make the factor model under the alternative hypothesis

identi¯ed, ®1 and ¯1 are conveniently removed from the unconstrained parameter space. For

the Vasicek model, only A(:) are functions of the risk premium parameter ¸. The parameter

®2 can be conveniently regarded as an extra parameter. It is thus also discarded from the

unconstrained model parameter space. As a result the degrees of freedom for this test on

four yield series equals ¯ve. For the whole as well as sub-samples, the null hypothesis is

strongly rejected as indicated at the bottom portion of Tables 2A, B and C.

3.2. The non-Gaussian case: Chen and Scott and CIR models

The Chen and Scott (1992) model allows for several independent state variables with the

following dynamic:

dxi;t = ·i(µi ¡ xi;t)dt+ ¾i
p
xi;tdzi;t; (3.8)

for i = 1; :::; k and zi;t are independent Wiener processes.

In this section, the one and two{factor version of their model are analyzed. The one{

factor version of their model correspond to CIR (1985) model, where the unobserved factor

is interpreted as the instantaneous interest rate.

For the two{factor model, the functional forms for A(:) and B(:) are given by:

A(ª; ¿ ) = A1(ª; ¿ )A2(ª; ¿); (3.9)

B(ª; ¿ ) = [B1(ª; ¿ ) ; B2(ª; ¿) ] ; (3.10)
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where Ai(ª; ¿ ) and Bi(ª; ¿ ) for i = 1 and 2 have the following speci¯cation:

Ai(ª; ¿ ) =

"
2°ie[(·i+¸i+°i)¿ ]=2

(·i + ¸i + °i)(e°i¿ ¡ 1) + 2°i

#2·iµi=¾2i
; (3.11)

Bi(ª; ¿ ) =
2(e°i¿ ¡ 1)

(·i + ¸i + °i)(e°i¿ ¡ 1) + 2°i
; (3.12)

with

°i =
q
(·i + ¸i)2 + 2¾2

i : (3.13)

The functional forms for a(:); b(:) and ©(:) are given by:

a(ª; h) =
·
µ1(1 ¡ e¡·1h)
µ2(1 ¡ e¡·2h)

¸
; (3.14)

b(ª; h) =
·
e¡·1h 0
0 e¡·2h;

¸
; (3.15)

©(Xt;ª; h) =
·
©1(x1;t; ª; h) 0

0 ©2(x2;t; ª; h)

¸
; (3.16)

with

©i(xt; ª; h) = xt
¾2i
·i
(e¡·ih ¡ e¡2·ih) + µi

¾2
i

2·i
(1¡ e¡·ih)2 (3.17)

where ¸1 and ¸2 are the risk premia parameters. In this model, ¸i < 0 implies a positive

premium in bond prices for factor i. The CIR (1985) model is a special case of this model,

and is obtained by using the top left elements of the matrices de¯ned above.

The estimation results for the CIR (1985) model are reported in the third column of

Tables 2A, B and C. These tables contain parameter estimates along with their corresponding

robust standard errors in parentheses. Except for · in the second sub{sample and some

measurement errors standard deviation, all estimates are signi¯cantly di®erent from zero at

the 5% level in all samples. In all cases, the unobserved instantaneous interest rate is found

to exhibit mean-reverting behavior, i.e., · > 0. The magnitude of the measurement errors

are generally small but signi¯cantly di®erent from zero in many cases.

Comparing the estimates for the entire sample with the ones for the pre{October, 1979

and the post{October, 1982 periods reveals that a smaller volatility scale parameter, ¾,

prevails for these two subperiods. These results are consistent with the previous ¯ndings
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that the shift in the Federal Reserve monetary policy from October, 1979 to October, 1982

caused a structural break in the interest rate process. The mean-reverting property of the

interest rate process again prevails for these two subperiods.

The Lagrange multiplier test of the restrictions imposed by the CIR model on the coef-

¯cients of the measurement equation is performed using the speci¯cation described at the

end of Section 2. For the CIR model, both A(:) and B(:) are functions of the risk premium

parameter ¸. As with the Vasicek model, we remove ®1, ®2 and ¯1 from the unconstrained

parameter space to make the model identi¯ed under the alternative speci¯cation. As a re-

sult, the degrees of freedom for this test equals ¯ve. The null hypothesis is strongly rejected

in the three samples as shown by the P-values of the Chi-square tests.

The estimation results for the Chen and Scott (1992) model are reported in the fourth

column of Tables 2A, B and C. These tables contain parameter estimates along with their

corresponding robust standard errors in parentheses. For the entire sample period and the

¯rst sub{sample, all parameters are signi¯cantly di®erent from zero except for µ2, ·2 and ¸2.

For the second sub-samples only µ2 and ·2 are not signi¯cantly di®erent from zero.

The most striking feature of these estimates are the small values for µ2 and ·2. With

these values, ¾22 > 2·2µ2 and the second factor can reach zero with a positive probability

(see CIR (1985)). A small value for ·2 also suggest that the second factor is close to being

non stationary. The resulting test statistics might therefore di®er from the approximate

asymptotic normal distribution and should be interpreted with care.

Comparing the estimates for the entire sample with the ones for the pre{October, 1979

and post{October, 1982 periods still points to a structural instability even when the two{

factor model is used. This result is once again consistent with the previous ¯ndings that the

shift in the Federal Reserve monetary policy from October, 1979 to October, 1982 caused a

structural break in the interest rate process.

Chen and Scott (1993b) report the estimation results for the Chen and Scott (1992)

two-factor model. Their estimates are consistent with our ¯ndings. More speci¯cally, the

estimates for the long{run mean and mean reversion parameters of the second factor are

small, suggesting a nearly integrated second factor.
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In the Chen and Scott (1992) model, both A(:) and B(:) are functions of the risk premium

parameters. To perform the robust Lagrange multiplier test described at the end of Section

2, ¯N , which is a 1 £ n vector, can be conveniently removed from the parameter space

to account for the risk premium parameters. To ensure that the factor model under the

alternative speci¯cation is identi¯ed, ®1, ®2, ¯1 and the second entry of ¯2 are removed from

the unconstraint parameter space. The resulting degrees of freedom for this Chi{square test

also equals ¯ve. In all samples the null hypothesis is strongly rejected as indicated by the

P-values of the Chi-square tests.

4. A Monte Carlo analysis

To assess the statistical properties of the proposed method, we conduct Monte Carlo exper-

iments for the sample size of 150, 350 time-series observations with the simultaneous use

of 1-, 3-, 6- and 9-month maturities. These sample sizes are chosen because they roughly

correspond to the sub and whole sample size of the data sets analyzed in the preceding

section.

To perform Monte Carlo experiments, the unobserved state variables of a given model

must ¯rst be simulated. For the Vasicek (1977) model, the state variable follows an Ornstein{

Uhlenbeck process which can be obtained using the exact conditional distribution. More

formally, denote r¤t to be the simulated value of the process at time t. Using the transition

density of this process, r¤t is obtained by:

r¤t ¡ r¤t¡h = µ + (r¤t¡h ¡ µ) e¡·h +
q
Á²t;

where ²t is N(0; 1) with r¤0 = µ and Á = ¾2

2·
(1¡ e¡2·h) and h set to 1=12.

For the square{root process in CIR (1985), the exact conditional distribution is also used

to obtain the simulated values. Let xt denote the value of an unobserved state variable

following a square{root process. The conditional distribution function for xt is the non{

central chi{square, Â2[ 2cxt; 2d + 2; 2w], with 2d + 2 degrees of freedom and parameter of

non{centrality 2w where

c =
2·

¾2(1 ¡ e¡·h)
;
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d =
2·µ

¾2
¡ 1;

w = cxt¡he
¡·h:

As discussed in Johnson and Kotz (1970), the non{central Chi-square distribution can be

expressed as a mixture of central Chi-squares with degrees of freedom proportional to random

variates from a Poisson distribution. This property is used to simulate the process. More

precisely, x¤t , the simulated value of the process at time t, is obtained by the following steps:

1. Simulate the degrees of freedom of the central chi{square using

df = 2d + 2 + 2j;

where j is a Poisson random variate 2 with mean w = cx¤t¡he
¡·h. The time interval h

is set to 1=12 and x¤0 = µ.

2. Let g denote the random variate drawn from the central chi{square with df degrees

of freedom. This random variate is obtained from a gamma (df
2
; 2) random variate 3

where df

2
is the shape parameter and 2 is the scale parameter.

3. Compute x¤t =
g

2c
.

Using the simulated time series for either the Ornstein{Uhlenbeck or the square-root

process, equation (5) is then used to compute the simulated yields with independent normally

distributed measurement errors. The Monte Carlo simulation results for discretely sampled

time-series are reported for the Gaussian case (Vasicek (1977)) and the non{Gaussian case

(CIR (1985)). The results are obtained using 500 repetitions.

Rows one, two, three and four of Tables 3 and 4 report the true parameter values, the

medians, the means and the standard deviations of the parameter estimates. The remaining

four rows report the probability that the true parameter lies in the ®% con¯dence interval.

This probability is referred to as the ®% coverage rate. For example, to obtain 95% cov-

erage rate, Probfjªi ¡ ª̂iTj < 1:96 s:e:(ª̂iT)g is to be computed, where ªi denotes the ith

2The algorithm used to simulate the Poisson random variate is taken from Devroye (1981).
3The algorithm used to simulate the gamma random variate is taken from Devroye (1986).
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parameter of the model and s:e:(ª̂iT) represents the estimated standard error for the ith

parameter estimator. The bottom row of each panel reports the 95% coverage rate for the

over{identi¯cation test statistic. This value indicates whether the test is biased or not.

The Monte Carlo simulation results for the Gaussian case (Vasicek (1977) model) are pre-

sented in Table 3A. The true parameter values are taken from the estimates, after rounding,

in the empirical section. The estimated values are exceedingly close to their correspond-

ing true values for all parameters except µ and ·. The magnitude of the bias for these

two parameters is small as a percentage of their corresponding true values. The coverage

rates of the parameters indicate some departure from the asymptotic distribution, especially

when a smaller sample size is used. A possible explanation for this departure is the small

value given to ·. As · approaches zero, the unobserved factor and the yield series become

non{stationary.

To investigate further, additional Monte Carlo experiments with 350 observations and

di®erent parameter values are are reported in the third panel of Table 3B. The top panel

of this table reports the results for the case of a larger value for ·, the mean{reverting

parameter. When · = :5, the biases nearly vanish, and the asymptotic distribution becomes

a better approximation to the small sample distribution. The bottom panel of this table

reports the results for the case of a smaller mean{reverting parameter value. When its value

is set to 0.01, the coverage rates become similar to those reported in the second panel of

Table 3A. This result suggests that the magnitude of the mean reversion parameter plays an

important role in determining the quality of the estimator when using a ¯nite sample size.

This result is not surprising. The mean{reverting parameter · is a transformation of the

¯rst order autoregressive parameter. It is well known in the time{series literature that the

standard asymptotic properties of the estimators do not hold in the presence of a unit root.

The 95% coverage rate of the Lagrange multiplier test indicates a slight departure from

the asymptotic distribution for all Monte Carlo experiments in Table 3. The test appears

more conservative, meaning that the null hypothesis is rejected slightly more than 5% of the

time.

The Monte Carlo simulation results for the non{Gaussian CIR (1985) model are presented

17



in Table 4A. The true parameter values are taken from the estimates, after rounding, in the

preceding empirical section. The estimates are close to their corresponding true values for

all parameters. As with the Vasicek (1977) model, µ and · are slightly biased. However,

the magnitude of the bias is small as a percentage of the true parameter value. Overall

the coverage rates of the parameters indicate that the asymptotic distribution to the quasi{

maximum likelihood estimator is a good approximation of the small sample distribution. In

order to assess the impact of a nearly integrated factor, additional Monte{Carlo experiments

with 350 observations and di®erent parameter values are reported in Table 4B. The top

portion of this table reports the results for a larger value of ·. As in the Gaussian case

with · = :5, the biases nearly vanish, and the approximate asymptotic distribution becomes

a better approximation to the small sample distribution. The bottom panel of this table

reports the results for the same parameter values with the exception of ·, which is now set

to 0.01, a value closer to zero. With these parameter values, the estimates for µ and · are

biased and their coverage rates are poorly approximated by the asymptotic distribution.

Again, as with the Gaussian case, the 95% coverage rate of the Lagrange multiplier test

also indicates some departure from the asymptotic distribution in all Monte Carlo experi-

ments in Table 4A. The test is typically more conservative, meaning that the null hypothesis

is rejected more than 5% of the time. Interestingly, the case with a smaller value for · in the

bottom panel of Table 4B actually yields a better result for the Lagrange multiplier test.

Overall, these results suggest that the approximate quasi{maximum likelihood estimator,

the CIR case, and the maximum likelihood estimator, the Vasicek case, tend to behave in

a similar fashion. Both estimators are sensitive to a nearly integrated factor, and both

estimators tend to slightly over{reject the null hypothesis in the Lagrange multiplier test.

By and large, the ¯nite sample properties of the approximate quasi{maximum likelihood

estimator are reasonably described by their asymptotic equivalents.
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5. Conclusion

In this article, a uni¯ed state-space formulation is developed for estimating term structure

models of the exponential{a±ne family. The method allows for measurement errors in the ob-

served yields to maturity, and is therefore useful for simultaneous estimation using yields on

many bonds with di®erent maturities. The quasi-optimal Kalman ¯ltering approach can be

useful for implementing derivative asset pricing models that are based on these exponential{

a±ne term structure models. This estimation method is able to produce parameter estimates

as well as a linearly ¯ltered estimate of the unobserved state variables. Since the parameter

estimates and the ¯ltered state variables can be obtained by using a set of yields that cover

a desirable maturity spectrum, its application to derivative asset pricing is likely to be less

in°uenced by the measurement error in any given yield series.

A Monte Carlo study indicates that the proposed method is an adequate procedure.

The ¯nite sample properties of the approximate quasi{maximum likelihood estimator are

reasonably approximated by the asymptotic distribution presented in this paper.

Three special cases of the exponential{a±ne family are used to examine the estimation

method. The empirical results are, in some instances, supportive of the properties typical

of the exponential{a±ne term structure models; for example, the mean-reverting property

of the interest rate process. This, however, does not suggest that the three exponential{

a±ne term structure models analyzed in this paper are good descriptions of the bond yield

behaviour. In fact the results from using four di®erent maturities cast doubts as to whether

these models can be applied to yields covering a large maturity spectrum. Using a robust

Lagrange multiplier test, the three exponential a±ne models are strongly rejected. These

results suggest that future research is needed in order to ¯nd a better speci¯cation within

or beyond the exponential{a±ne family.
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Appendix A

Di®erential equations for A(:) and B(:) functions.

As shown in Du±e and Kan (1993), the solutions for the A(:) and B(:) functions can be

found by solving the following di®erential equations:

¡@B(ª; ¿ )
@t

+ B(B(ª; ¿ )) = 0; B(ª; 0) = 0;

¡@A(ª; ¿ )
@t

+A(B(ª; ¿ )) = 0; A(ª; 0) = 0;

with ¡@Bi(ª;¿)

@t
+ Bi(B(ª; ¿)) denoting the coe±cients of Xi;t and ¡@A(ª;¿)

@t
+ B(B(ª; ¿ ))

denoting the term not involving Xt in the following equation:

rt(Xt; ª) = ¡@A(ª; ¿ )
@t

¡ @B(ª; ¿ )

@t
Xt +B(ª; ¿ )U(Xt; ª)

+
1

2

nX
i=1

nX
j=1

Bi(ª; ¿)Bj(ª; ¿ )§i(Xt; ª)§j(Xt; ª)
0;

where §i(:) is the ith line of matrix §(:).

Appendix B

Theorem: Assume that the n£ 1 vector Xt obeys the following dynamic:

dXt = U(Xt;ª)dt+ §(Xt; ª)dWt:

Suppose that U(Xt; ª) and §(Xt; ª)§(Xt; ª)0 are a±ne functions of Xt so that U(Xt; ª)

can be written as G+KXt with G and K being matrices of dimension n£1 and n£n. The

mean and variance of Xt+h, conditional on Xt, are a±ne functions of Xt if K is diagonable.

Remark: A matrix is diagonable if all of its eigenvalues are distinct. The assumption of

diagonability does not involve an appreciable loss of generality. Since the eigenvalues of a
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matrix are continuous functions of its elements, if the matrix K has multiple eigenvalues,

a slight alteration to any element produces a neighbouring system with distinct roots that,

for all practical purposes, is the same as the original system. Therefore the statement of the

theorem is a generic result.

Proof:

For notational convenience, let §(Xt; ª) = §t. The integral representation for Xt+h can

be written as:

Xt+h = Xt +
Z t+h

t
[G+KXs]ds+

Z t+h

t
§sdWs:

Denote the eigenvalue decomposition of K, usually a non{symmetric matrix, by QkQ¡1

where Q¡1Q = I and k a square diagonal matrix. Premultiplying the above equation by

Q¡1 yields:

Yt+h = Yt +
Z t+h

t
[g + kYs]ds+

Z t+h

t
¾sdWs;

where Yt = Q¡1Xt, g = Q¡1G, and ¾t = Q¡1§t. Taking conditional expectation gives rise

to:

E(Yt+hjYt) = Yt +
Z t+h

t
[g + kE(YsjYt)]ds:

The solution to this integral equation is:

E(Yt+hjYt) = ekhYt ¡ (ekh ¡ I)k¡1g:

The solution for E(Xt+hjXt) can be recovered from the above solution which is an a±ne

function of Xt.

The conditional variance of Yt can be computed using:

Var(Yt+hjYt) = E(Yt+hY
0
t+hjYt)¡ E(Yt+hjYt)E(Yt+hjYt)0:

The elements of E(Yt+hY 0
t+hjYt) can be computed as follows. A [(n+1)n

2
]£1 vector ft is formed
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by stacking the individual elements of the upper triangle of Yt+hY
0
t+h. That is let:

ft =

2
666666666666664

Y1;tY1;t
Y1;tY2;t

...
Y1;tYn;t
Y2;tY2;t
Y2;tY3;t

...
Yn;tYn;t

3
777777777777775

=

2
666666666666664

f
1;1
t

f
1;2
t
...

f
1;n
t

f
2;2
t

f2;3t
...

f
n;n
t

3
777777777777775

:

Using Ito's lemma on ft yields:

ft+h = ft +
Z t+h

t

"
@fs

@Ys
us +Dsds

#
+
Z t+h

t
¾s
@fs

@Ys
dWs;

where ut = g + kYt with k being the diagonal matrix de¯ned earlier. Moreover,

@ft

@Yt
=

2
6664

@f
1;1
t

@Y1;t

@f
1;1
t

@Y2;t
: : :

@f
1;1
t

@Yn;t

...
...

. . .
...

@f
n;n
t

@Y1;t

@f
n;n
t

@Y2;t
: : :

@f
n;n
t

@Yn;t

3
7775 ;

Dt =
1

2

2
6664
tr(¾t¾

0
t

@2f
1;1
t

@Yt@Y
0

t

)
...

tr(¾t¾
0
t

@2f
n;n
t

@Yt@Y
0

t

)

3
7775 ;

and

@2f
i;j
t

@Yt@Y
0
t

=

2
6664

@2f
i;j
t

@Y1;t@Y1;t
: : :

@2f
i;j
t

@Y1;t@Yn;t

...
. . .

...
@2f

i;j
t

@Yn;t@Y1;t
: : :

@2f
i;j
t

@Yn;t@Yn;t

3
7775 :

Since ut is a±ne in Yt, we can write:

@ft

@Yt
ut = pYt + qft;

where p is a matrix of dimension [ (n+1)n

2
]£n and q a diagonal matrix of dimension [(n+1)n

2
]£

25



[ (n+1)n

2
] given by:

q =

2
66664
k1;1 + k1;1 0 : : : 0

0 k1;1 + k2;2 : : : 0
...

...
. . .

...
0 0 : : : kn;n + kn;n

3
77775 ;

where ki;j is element i; j of matrix k. Since ¾t¾
0
t is a±ne in Yt, it follows that:

Dt = w + vYt;

where w and v are matrices of dimension [ (n+1)n

2
] £ 1 and [ (n+1)n

2
] £ n, respectively. The

stochastic integral equation can thus be rewritten as:

ft+h = ft +
Z t+h

t
[pYs + qfs + w + vYs]ds+

Z t+h

t
¾s
@fs

@Ys
dWs:

Taking conditional expectation yields:

E(ft+hjYt) = ft +
Z t+h

t
[zs + qE(fsjYt)]ds;

where zs = w + (p+ v)E(YsjYt). Clearly, zs is a function of s and is an a±ne function of Yt.

The solution to this integral equation is

E(ft+hjYt) = eqhft +
Z t+h

t
eq(t+h¡s)zsds:

As this solution shows, the only non{a±ne element, in terms of Yt, for E(Yt+hY 0
t+hjYt) is

given by

eqhft:

Straightforward computations for E(Yt+hjYt)E(Yt+hjYt)0, shows that the only non{a±ne ele-

ment is given by

ekhYtY
0
t e

kh:

The upper triangular elements of this matrix, when properly staked up, are precisely the

elements of eqhft. Therefore Var(Yt+hjYt) is a±ne in Yt. Converting Yt back to Xt gives rise

to the result that Var(Xt+hjXt) is a±ne in Xt.
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Table 1

Summary statistics

July 1964 to February 1992

maturity mean std. dev. auto.

1 month .0666 .0260 .9483
3 months .0702 .0266 .9637
6 months .0725 .0265 .9656
9 months .0740 .0262 .9652

July 1964 to October 1979

maturity mean std. dev. auto.

1 month .0547 .0167 .9276
3 months .0574 .0165 .9329
6 months .0600 .0164 .9380
9 months .0617 .0164 .9391

October 1982 to February 1992

maturity mean std. dev. auto.

1 month .0695 .0155 .9033
3 months .0734 .0152 .9468
6 months .0754 .0156 .9443
9 months .0768 .0158 .9449
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Table 2A

Estimation results for the Vasicek (1977),

CIR (1985) and Chen and Scott (1992) models

with monthly observations on 1, 3, 6 and 9

months yield series

July 1964 to February 1992

Parameters Model
Vasicek CIR Chen and Scott

µ1 0.0486 0.0633 0.0285
(0.0350) (0.0111) (0.0015)

·1 0.0561 0.3189 5.5699
(0.0351) (0.0665) (0.6103)

¾1 0.0225 0.0750 0.1481
(0.0022) (0.0052) (0.0183)

¸1 0.8039 -0.2715 -1.5747
(0.0979) (0.0572) (0.2232)

µ2 { { 1.2e-7
{ { (2.4e-6)

·2 { { 0.0006
{ { (0.1146)

¾2 { { 0.1052
{ { (0.0074)

¸2 { { -0.0449
{ { (0.1307)

¾²1 0.0058 0.0058 0.0041
(0.0004) (0.0004) (0.0003)

¾²3 0.0025 0.0025 0.0013
(0.0002) (0.0002) (0.0001)

¾²6 4.23e-8 3.8e-9 0.0004
(1.0662) (15.010) (0.0002)

¾²9 0.0018 0.0018 0.0013
(0.0001) (0.0001) (0.0001)

Chi-square 115.21 146.98 48.756
P-value 0.0000 0.0000 0.0000

df 5 5 5

28



Table 2B

Estimation results for the Vasicek (1977),

CIR (1985) and Chen and Scott (1992) models

with monthly observations on 1, 3, 6 and 9

months yield series

July 1964 to October 1979

Parameters Model
Vasicek CIR Chen and Scott

µ1 0.0626 0.0602 0.0265
(0.0316) (0.0106) (0.0024)

·1 0.0591 0.3628 5.3813
(0.0428) (0.0737) (0.6536)

¾1 0.0153 0.0637 0.1068
(0.0013) (0.0045) (0.0160)

¸1 1.2520 -0.3205 -1.4781
(0.1449) (0.0650) (0.2339)

µ2 { { 1.3e-7
{ { (0.0002)

·2 { { 0.0001
{ { (0.1408)

¾2 { { 0.0926
{ { (0.0074)

¸2 { { -0.1567
{ { (0.1556)

¾²1 0.0034 0.0034 0.0019
(0.0002) (0.0002) (0.0002)

¾²3 0.0020 0.0020 0.0012
(0.0002) (0.0002) (0.0002)

¾²6 0.0003 0.0002 0.0006
(0.0004) (0.0004) (0.0001)

¾²9 0.0018 0.0018 0.0014
(0.0001) (0.0001) (0.0001)

Chi-square 65.123 91.616 25.433
P-value 0.0000 0.0000 0.0001

df 5 5 5
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Table 2C

Estimation results for the Vasicek (1977),

CIR (1985) and Chen and Scott (1992) models

with monthly observations on 1, 3, 6 and 9

months yield series

October 1983 to February 1992

Parameters Model
Vasicek CIR Chen and Scott

µ1 0.0609 0.0606 0.0352
(0.0302) (0.0181) (0.0015)

·1 0.0094 0.0791 5.0808
(0.0096) (0.0637) (0.8336)

¾1 0.0131 0.0467 0.1152
(0.0010) (0.0036) (0.0196)

¸1 1.0812 -0.1998 -0.8669
(0.0955) (0.0243) (0.2226)

µ2 { { 1.6e-5
{ { (0.0015)

·2 { { 2.2e-5
{ { (0.0020)

¾2 { { 0.0764
{ { (0.0081)

¸2 { { -0.1338
{ { (0.0463)

¾²1 0.0059 0.0059 0.0042
(0.0007) (0.0007) (0.0006)

¾²3 0.0021 0.0021 0.0006
(0.0003) (0.0003) (0.0002)

¾²6 7.3e-8 2.2e-8 0.0005
(0.7372) (5.1004) (0.0001)

¾²9 0.0013 0.0013 0.0005
(0.0001) (0.0002) (0.0001)

Chi-square 48.020 98.839 41.666
P-value 0.0000 0.0000 0.0000

df 5 5 5
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Table 3A

Monte-Carlo experiment results for the maximum likelihood

parameter estimator of the Vasicek model for 1, 3, 6 and 9-month yields

(500 replications)

T=150 observations

µ · ¾ ¸ ¾²1 ¾²3 ¾²6 ¾²9

true value 0.0500 0.0600 0.0200 0.8000 0.0010 0.0010 0.0010 0.0010
median 0.0524 0.0601 0.0199 0.8003 0.0010 0.0010 0.0010 0.0010
mean 0.0521 0.0625 0.0199 0.8022 0.0010 0.0010 0.0010 0.0010
std. dev. 0.0254 0.0173 0.0012 0.0920 0.0001 0.0001 0.0001 0.0001
cov. rate
25% cov. rate 0.2740 0.2040 0.2340 0.2540 0.2360 0.2220 0.2420 0.2200
50% cov. rate 0.4840 0.4220 0.4560 0.5460 0.4800 0.4580 0.4820 0.4280
75% cov. rate 0.9320 0.6600 0.7000 0.8280 0.7520 0.7200 0.7420 0.7160
95% cov. rate 1.0000 0.9080 0.9340 0.9860 0.9620 0.9420 0.9320 0.9260

95% cov. rate for Lagrange multiplier test: 0.9380
T=350 observations

T=350 observations

µ · ¾ ¸ ¾²1 ¾²3 ¾²6 ¾²9

true value 0.0500 0.0600 0.0200 0.8000 0.0010 0.0010 0.0010 0.0010
median 0.0510 0.0612 0.0200 0.7981 0.0010 0.0010 0.0010 0.0010
mean 0.0511 0.0611 0.0200 0.7989 0.0010 0.0010 0.0010 0.0010
std. dev. 0.0295 0.0078 0.0008 0.0942 0.0001 0.0001 0.0000 0.0001
cov. rate
25% cov. rate 0.2220 0.2260 0.2720 0.2300 0.2240 0.2380 0.2500 0.2000
50% cov. rate 0.4760 0.4120 0.4860 0.4660 0.4340 0.4540 0.4860 0.4200
75% cov. rate 0.8120 0.7180 0.7280 0.8040 0.6880 0.7220 0.7540 0.7020
95% cov. rate 1.0000 0.9260 0.9380 0.9980 0.9260 0.9420 0.9520 0.9420

95% cov. rate for Lagrange multiplier test: 0.9260
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Table 3B

Monte-Carlo experiment results for the maximum likelihood

parameter estimator of the Vasicek model for 1, 3, 6 and 9-month yields

(500 replications)

T=350 observations

µ · ¾ ¸ ¾²1 ¾²3 ¾²6 ¾²9

true value 0.1000 0.5000 0.0500 1.0000 0.0010 0.0010 0.0010 0.0010
median 0.1006 0.5000 0.0499 0.9877 0.0010 0.0010 0.0010 0.0010
mean 0.1006 0.5002 0.0499 0.9972 0.0010 0.0010 0.0010 0.0010
std. dev. 0.0167 0.0058 0.0019 0.1713 0.0001 0.0001 0.0000 0.0001
cov. rate
25% cov. rate 0.2220 0.2400 0.2720 0.2260 0.2240 0.2380 0.2460 0.2120
50% cov. rate 0.4460 0.4680 0.5100 0.4360 0.4360 0.4540 0.4740 0.4180
75% cov. rate 0.7060 0.7500 0.7200 0.7200 0.6860 0.7180 0.7560 0.7040
95% cov. rate 0.9440 0.9360 0.9500 0.9440 0.9340 0.9360 0.9480 0.9360

95% cov. rate for Lagrange multiplier test: 0.9320
T=350 observations

T=350 observations

µ · ¾ ¸ ¾²1 ¾²3 ¾²6 ¾²9

true value 0.1000 0.0100 0.0500 1.0000 0.0010 0.0010 0.0010 0.0010
median 0.1003 0.0105 0.0499 1.0007 0.0010 0.0010 0.0010 0.0010
mean 0.1021 0.0105 0.0500 1.0019 0.0010 0.0010 0.0010 0.0010
std. dev. 0.0734 0.0026 0.0019 0.0397 0.0001 0.0001 0.0000 0.0001
cov. rate
25% cov. rate 0.6120 0.2060 0.2760 0.2980 0.2180 0.2300 0.2560 0.2180
50% cov. rate 0.8100 0.3960 0.5160 0.5500 0.4420 0.4540 0.4820 0.4240
75% cov. rate 1.0000 0.6600 0.7160 0.7960 0.6860 0.7160 0.7540 0.7020
95% cov. rate 1.0000 0.8740 0.9480 0.9680 0.9320 0.9400 0.9540 0.9400

95% cov. rate for Lagrange multiplier test: 0.8840
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Table 4A

Monte-Carlo experiment results for the approximate

quasi{maximum likelihood parameter estimator of

the CIR model for 1, 3, 6 and 9-month yields

(500 replications)

T=150 observations

µ · ¾ ¸ ¾²1 ¾²3 ¾²6 ¾²9

true value 0.0600 0.3000 0.0750 -0.3000 0.0010 0.0010 0.0010 0.0010
median 0.0560 0.3215 0.0748 -0.3224 0.0010 0.0010 0.0010 0.0010
mean 0.0580 0.3235 0.0748 -0.3207 0.0010 0.0010 0.0010 0.0010
std. dev. 0.0107 0.0595 0.0045 0.0548 0.0001 0.0001 0.0001 0.0001
cov. rate
25% cov. rate 0.2060 0.2220 0.2400 0.2080 0.2340 0.2400 0.2460 0.2400
50% cov. rate 0.4040 0.4260 0.4420 0.4120 0.4560 0.4780 0.4720 0.4240
75% cov. rate 0.7040 0.7380 0.7280 0.7540 0.7140 0.7500 0.7180 0.6900
95% cov. rate 0.9540 0.9780 0.9400 0.9800 0.9380 0.9480 0.9440 0.9240

95% cov. rate for Lagrange multiplier test: 0.8960
T=350 observations

T=350 observations

µ · ¾ ¸ ¾²1 ¾²3 ¾²6 ¾²9

true value 0.0600 0.3000 0.0750 -0.3000 0.0010 0.0010 0.0010 0.0010
median 0.0577 0.3150 0.0746 -0.3116 0.0010 0.0010 0.0010 0.0010
mean 0.0583 0.3170 0.0748 -0.3153 0.0010 0.0010 0.0010 0.0010
std. dev. 0.0087 0.0480 0.0029 0.0455 0.0001 0.0001 0.0000 0.0000
cov. rate
25% cov. rate 0.2580 0.2340 0.2500 0.2620 0.2500 0.2580 0.2420 0.2200
50% cov. rate 0.4500 0.4600 0.4620 0.4520 0.4240 0.4680 0.4320 0.4340
75% cov. rate 0.6960 0.7320 0.7200 0.7220 0.6940 0.6960 0.7360 0.7380
95% cov. rate 0.9180 0.9500 0.9440 0.9600 0.9160 0.9420 0.9600 0.9440

95% cov. rate for Lagrange multiplier test: 0.9060
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Table 4B

Monte-Carlo experiment results for the approximate

quasi{maximum likelihood parameter estimator of

the CIR model for 1, 3, 6 and 9-month yields

(500 replications)

T=350 observations

µ · ¾ ¸ ¾²1 ¾²3 ¾²6 ¾²9

true value 0.1000 0.5000 0.0500 -1.0000 0.0010 0.0010 0.0010 0.0010
median 0.0999 0.5008 0.0498 -0.9996 0.0010 0.0010 0.0010 0.0010
mean 0.1000 0.5017 0.0498 -1.0012 0.0010 0.0010 0.0010 0.0010
std. dev. 0.0048 0.0282 0.0019 0.0244 0.0001 0.0000 0.0001 0.0001
cov. rate
25% cov. rate 0.2320 0.2160 0.2060 0.2300 0.2420 0.2380 0.2260 0.2520
50% cov. rate 0.4460 0.4800 0.4400 0.4400 0.4380 0.4820 0.4800 0.4680
75% cov. rate 0.7720 0.7560 0.7180 0.7840 0.7060 0.7640 0.7320 0.7360
95% cov. rate 0.9620 0.9660 0.9460 0.9680 0.9280 0.9600 0.9460 0.9380

95% cov. rate for Lagrange multiplier test: 0.8900
T=350 observations

T=350 observations

µ · ¾ ¸ ¾²1 ¾²3 ¾²6 ¾²9

true value 0.1000 0.0100 0.0500 -1.0000 0.0010 0.0010 0.0010 0.0010
median 0.0591 0.0185 0.0501 -1.0069 0.0010 0.0010 0.0010 0.0010
mean 0.0622 0.0188 0.0501 -1.0070 0.0010 0.0010 0.0010 0.0010
std. dev. 0.0188 0.0077 0.0018 0.0041 0.0000 0.0000 0.0001 0.0001
cov. rate
25% cov. rate 0.0580 0.1280 0.2360 0.0780 0.2300 0.2580 0.2320 0.2160
50% cov. rate 0.1080 0.2600 0.4700 0.1680 0.4360 0.4580 0.4320 0.4360
75% cov. rate 0.1920 0.5220 0.7440 0.3900 0.7280 0.7340 0.7220 0.7360
95% cov. rate 0.4820 0.9180 0.9640 0.8680 0.9420 0.9380 0.9580 0.9500

95% cov. rate for Lagrange multiplier test: 0.9560
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