

CIRANO Centre interuniversitaire de recherche

Centre interuniversitaire de recherche en analyse des organisations

Série Scientifique Scientific Series

96s-24

Nonparametric Estimation of American Options Exercise Boundaries and Call Prices

Mark Broadie, Jérôme Detemple, Eric Ghysels, Olivier Torrès

> Montréal Septembre 1996

CIRANO

Le CIRANO est une corporation privée à but non lucratif constituée en vertu de la Loi des compagnies du Québec. Le financement de son infrastructure et de ses activités de recherche provient des cotisations de ses organisations-membres, d'une subvention d'infrastructure du ministère de l'Industrie, du Commerce, de la Science et de la Technologie, de même que des subventions et mandats obtenus par ses équipes de recherche. La *Série Scientifique* est la réalisation d'une des missions que s'est données le CIRANO, soit de développer l'analyse scientifique des organisations et des comportements stratégiques.

CIRANO is a private non-profit organization incorporated under the Québec Companies Act. Its infrastructure and research activities are funded through fees paid by member organizations, an infrastructure grant from the Ministère de l'Industrie, du Commerce, de la Science et de la Technologie, and grants and research mandates obtained by its research teams. The Scientific Series fulfils one of the missions of CIRANO: to develop the scientific analysis of organizations and strategic behaviour.

Les organisations-partenaires / The Partner Organizations

- •École des Hautes Études Commerciales. •École Polytechnique. •McGill University. •Université de Montréal. •Université du Québec à Montréal. •Université Laval. •MEQ. •MICST •Avenor •Banque Nationale du Canada •Bell Québec •Fédération des caisses populaires de Montréal et de l'Ouest-du-Québec. •Hydro-Québec •La Caisse de dépôt et de placement du Québec •Raymond, Chabot, Martin, Paré •Société d'électrolyse et de chimie Alcan Ltée •Téléglobe Canada.
- •Ville de Montréal.

Ce document est publié dans l'intention de rendre accessibles les résultats préliminaires de la recherche effectuée au CIRANO, afin de susciter des échanges et des suggestions. Les idées et les opinions émises sont sous l'unique responsabilité des auteurs, et ne représentent pas nécessairement les positions du CIRANO ou de ses partenaires.

This paper presents preliminary research carried out at CIRANO and aims to encourage discussion and comment. The observations and viewpoints expressed are the sole responsibility of the authors. They do not necessarily represent positions of CIRANO or its partners.

ISSN 1198-8177

Nonparametric Estimation of American Options Exercise Boundaries and Call Prices^{*}

Mark Broadie[†], *Jérôme Detemple*[‡], *Eric Ghysels*[§], *Olivier Torrès*[¶]

Résumé / Abstract

Contrairement à ce qu'il est possible d'obtenir dans un contexte d'évaluation de titres dérivés de type européen, il n'existe pas de formule analytique simple pour évaluer les options américaines, même si la volatilité de l'actif sous-jacent est supposée constante. La possibilité d'exercice prématuré qu'offre ce type de contrat complique considérablement son évaluation. La démarche adoptée dans cette étude consiste à dériver les prix d'option et les frontières d'exercice à partir de données financières, utilisées dans un cadre d'analyse statistique non-paramétrique. Plus particulièrement, l'étude utilise les observations sur l'exercice de ce contrat. Les résultats sont comparés à ceux obtenus à l'aide de techniques paramétriques dans un modèle où la volatilité est supposée constante. La conclusion est qu'il existe des différences stratégiques entre les prédictions des deux modèles, aussi bien en ce qui concerne le prix de l'option que la politique d'exercice qui lui est associée.

Unlike European-type derivative securities, there are no simple analytic valuation formulas for American options, even when the underlying

¹ C O R E , Université Catholique de Louvain

[•] Correspondence Address: Eric Ghysels, CIRANO, 2020 University Street, 25th floor, Montréal, Qe, Canada H3A 2A5 Tel: (514) 985-4025 Fax: (514) 985-4039 e-mail: ghyselse@cirano.umontreal.ca We would like to thank Tim Hankes from the OCC and Tom Finucane from Syracuse University for supplying us OEX exercise data. This paper is an extended version of section 2 of Broadie *et al.* (1995) which was presented at CIRANO, the Fields Institute, Ohio State University, UC San Diego, Université de Cergy, the LIFE/METEOR Third Workshop on Financial Modelling and Econometric Analysis, Maastricht, the Cornell-Queen's Derivative Securities Conference, the Journées de l'Optimisation in Montréal and at the University of Aarhus. We thank Bent Jesper Christensen, Rob Engle, Lars Muus, Theo Nijman, Joshua Rosenberg, and many of the participants for helpful comments and suggestions. Part of this work was funded by the Social Sciences and Humanities Research Council of Canada under Strategic Grant 804-96-0027.

¹ Columbia University

¹ McGill University and CIRANO

⁸ Pennsylvania State University and CIRANO

asset price has constant volatility. The early exercise feature considerably complicates the valuation of American contracts. The strategy taken in this paper is to rely on nonparametric statistical methods using market data to estimate the call prices and the exercise boundaries. The paper focuses on the daily market option prices and exercise data on the S&P100 contract. A comparison is made with parametric constant volatility model-based prices and exercise boundaries. We find large discrepancies between the parametric and nonparametric call prices and exercise boundaries.

- Mots Clés : Prix d'options, titres dérivés, contrat OEX, estimation par méthode de noyau
- Keywords: Option Pricing, Derivative Securities, OEX Contract, Kernel Estimation

JEL : C14, C51, D52, G13

1 Introduction

American option contracts figure prominently among the wide range of derivative securities which are traded. An American call option not only provides the possibility of buying the underlying asset at a particular strike price, but it also allows the owner to exercise his right at any point in time before maturity. This early exercise feature of the contract considerably complicates its evaluation. Indeed, the option price critically depends on the optimal exercise policy which must be determined in the evaluation process. The earliest analysis of the subject by McKean (1965) formulates the valuation of the derivative security as a free boundary problem. Additional insights about the properties of the optimal exercise boundary are provided by Van Moerbeke (1976) and more recently in Barles, Burdeau, Romano, and Samsœn (1995). Bensoussan (1984) and Karatzas (1988) provide a formal financial argument for the valuation of an American contingent claim in the context of a general market model, in which the price of the underlying asset follows an Itô process. It should not come as a surprise that the distributional properties of the underlying asset price determine those of the exercise boundary. However, in such a general context, analytical closed-form solutions are typically not available and the computations of the optimal exercise boundary and the contract price can be achieved only via numerical methods. The standard approach consists of specifying a process for the underlying asset price, generally a geometric Brownian motion process (GBM), and uses a numerically efficient algorithm to compute the price and the exercise boundary. A whole range of numerical procedures have been proposed, including binomial or lattice methods, methods based on solving partial differential equations, integral equations, or variational inequalities, and other approximation and extrapolation schemes.¹

The purpose of this paper is to suggest a new and different strategy for dealing with the pricing of American options and the characterization of the exercise boundary. The paper does *not* come up with a new twist that boosts numerical efficiency or a major innovation in algorithm design. Instead, it suggests a different approach which consists of using *market* data, both on exercise decisions and option prices, and relies on *nonparametric* statistical techniques. Let us illustrate this intuitively using the case of the exercise boundary. Suppose that we have observations on the exercise decisions of investors who own American options,

¹A partial list of contributions to this area includes Brennan and Schwartz (1977), Cox, Ross and Rubinstein (1979), Geske (1979), Whaley (1981), Geske and Johnson (1984), Barone-Adesi and Whaley (1987), Boyle (1988), Breen (1991), Yu (1993), Broadie and Detemple (1996) and Carr and Faguet (1994), among others. For a review and comparison of these procedures, see Broadie and Detemple (1996).

along with the features of the contracts being exercised. Such data are available for instance for the S&P100 Index option or OEX contract, as they are collected by the Option Clearing Corporation (OCC).² The idea is that with enough data, such as ten years of daily observations, we should be able to gather information about how market participants perceive the exercise boundary. Our approach can be seen as a way to characterize the exercise boundary for American options using observations on exercises.³ It can also be applied to the pricing of the option, again assuming that we have data on call and put contracts and their attributes. Unlike exercise data, option price data are quite common and figure prominently in several financial data bases.

The idea of applying nonparametric methods to option pricing has been suggested recently in a number of paper, *e.g.*, Aït-Sahalia (1996), Aït-Sahalia and Lo (1995), Gouriéroux, Monfort and Tenreiro (1994), Hutchinson, Lo and Poggio (1994) and Stutzer (1995). As there are a multitude of nonparametric methods it is no surprise that the aforementioned papers use different methods. Moreover, they do not address the same topics either. Indeed, some aim for nonparametric corrections of standard (say Black-Scholes) option pricing formula, others estimate risk-neutral densities, etc. So far this literature has focused exclusively on European type options. By studying American options, our paper models both pricing and exercise strategies via nonparametric methods.⁴ It is worth noting that the approach taken in this paper is somewhat similar to that of Hutchinson, Lo and Poggio (1995), except that we use kernel-based estimation methods instead of neural networks.

The empirical application reported in the paper involves three types of data, namely: (1) time series data on the asset or index underlying the option contract, (2) data on call and put prices obtained from the CBOE, and (3) data on exercise decisions recorded by the OCC.

Section 2 is devoted to a brief review of the literature on American option pricing. Section 3 covers parametric and nonparametric estimation of exercise boundaries while Section 4 handles estimation of option prices

²Option exercise data have been used in a number of studies, including Ingersoll (1977), Bodurtha and Courtadon (1986), Overdahl (1988), Dunn and Eades (1989), Gay, Kolb and Yung (1989), Zivney(1991), French and Maberly (1992) and Diz and Finucane (1993).

³Questions as to whether market participants exercise "optimally," regardless of what the model or assumptions might be, will not be the main focus of our paper although several procedures that we suggest would create a natural framework to address some of these issues. For the most recent work on testing market rationality using option exercise data and for a review of the related literature, see Diz and Finucane (1993).

⁴Bossaerts (1988) and de Matos (1994) are to our knowledge the only papers discussing some of the theoretical issues of estimating American option exercise boundaries. We do not know of any empirical work attempting to estimate such boundaries.

using similar methods. In both cases a comparison between model-based and data-based approaches is presented.

2 American option pricing: a brief review

Let us consider an American call option on an underlying asset whose price S follows an Itô process. The option is issued in $t_0 = 0$ and matures at date T > 0 with strike price K > 0. We adopt the standard specification in the literature and assume that the dividend rate is constant and proportional to the stock price. Consider the policy of exercising the option at time $\tau \in [0, T]$. A call option with automatic exercise at time τ has a payoff $(S_{\tau} - K)^+$. In the absence of arbitrage opportunities, the price at time $t \in [0, \tau)$ of this contingent claim, $V_t(\tau)$, is given by the expected value of the discounted payoff, where the expectation is taken relative to the equivalent martingale probability measure Q, *i.e.*

$$V_t(\tau) = E^Q \left[\exp\left(-\int_t^\tau r_s \mathrm{d}s\right) (S_\tau - K)^+ |\mathcal{F}_t] \right] , \qquad (2.1)$$

where r_s denotes the time s risk-free interest rate in the economy, E^Q denotes the expectation taken with respect to Q [see Harrison and Kreps (1979)] and $\mathcal{F}_{(\cdot)} \equiv \{\mathcal{F}_t : t \geq 0\}$ is a filtration on (Ω, \mathcal{F}) the measurable space on which the price process S is defined. Since an American option can be exercised at any time in the interval (0, T], an option holder will choose the policy (*i.e.* the exercise time) which maximizes the value of the claim in (2.1). This stopping time solves

$$\max_{\tau \in \mathcal{T}_{[0,T]}} V_0(\tau) \tag{2.2}$$

and at any date t the price of the American call is given by

$$C_t = \sup_{\tau \in \mathcal{T}_{[t,T]}} E^Q \left[\exp\left(-\int_t^\tau r_s \mathrm{d}s\right) (S_\tau - K)^+ |\mathcal{F}_t \right]$$
(2.3)

where $\mathcal{T}_{[u,v]}$ is the set of stopping times (w.r.t. $\mathcal{F}_{(\cdot)}$) with values in [u, v]. The existence of a τ^* solving (2.2) has been proved by Karatzas (1988) under some regularity conditions on S. Furthermore, the optimal exercise time is the first time at which the option price equals the exercise payoff, *i.e.*,

$$\tau^* \equiv \inf\{t \in [0,T] : C_t = (S_t - K)^+\}$$
(2.4)

This characterization, however, is of limited interest from an empirical point of view since the option price which determines the optimal exercise policy is an unknown endogenous function. A more precise characterization of the optimal exercise policy is obtained if we restrict our attention to the Black-Scholes economy. In this model, the underlying asset price follows the geometric Brownian motion process, 5

$$dS_t = S_t[(r-\delta) dt + \sigma dW_t^*], \quad t \in [0,T], \quad S_0 \text{ given},$$
(2.5)

where δ is the constant dividend rate, r the constant interest rate and σ the constant volatility of the underlying asset price. The price process (2.5) is expressed in its risk-neutral form, *i.e.*, in terms of the equivalent martingale measure. Under these assumptions, the American call option value is given by

$$C_t(S_t, B) = C_t^E(S_t) + \int_t^T \left[\delta S_t \, e^{-\delta(s-t)} N[d_1(S_t, B_s, s-t)] - rK e^{-r(s-t)} N[d_2(S_t, B_s, s-t)] \right] \mathrm{d}s$$
(2.6)

where $C_t^E(S_t)$ denotes the price of the corresponding European option, $d_1(S_t, B_s, s - t) \equiv (\sigma \sqrt{s-t})^{-1} \times [\log(S_t/B_s) + (r - \delta + \sigma^2/2)(s - t)]$ and $d_2(S_t, B_s, s - t) \equiv d_1(S_t, B_s, s - t) - \sigma \sqrt{s-t}$. In (2.6) the exercise boundary *B* solves the recursive integral equation,

$$B_t - K = C_t(B_t, B), \quad t \in [0, T),$$
 (2.7)

$$\lim_{t\uparrow T} B_t = \max\{K, \frac{r}{\delta}K\}.$$
(2.8)

This characterization of the option value and its associated exercise boundary is the early exercise premium representation of the option. It was originally demonstrated by Kim (1990), Jacka (1991) and Carr, Jarrow and Myneni (1992).⁶ The early exercise representation (2.6)– (2.8) of the American call option price is useful since it can be used as a starting point for the design of computational algorithms. In this paper, we implement a fast and accurate procedure proposed by Broadie and

⁵These assumptions, combined with the possibility of continuous trading, imply that the market is complete. Moreover, in this economy there is absence of arbitrage opportunities. This is the setting underlying the analysis of Kim (1990), Jacka (1991) and Myneni (1992).

⁶This representation is in fact the Riesz decomposition of the value function which arises in stopping time problems. The Riesz decomposition was initially proved by El Karoui and Karatzas (1991) for a class of stopping time problems involving Brownian motion processes. This decomposition is also applied to American put options by Myneni (1992); it has been extended by Rutkowsky (1994) to more general payoff processes.

Detemple (1996), henceforth BD, for the parametric pricing of American options and the estimation of the optimal exercise boundary.⁷

We now turn our attention to the parametric and nonparametric analysis of exercise boundaries. Thereafter, option prices will be covered in the same way.

3 Parametric and nonparametric analysis of exercise boundaries

Probably the only study that addresses the issue of finding an estimate of the optimal exercise boundary is the work by de Matos (1994), which is an extension of Bossaerts (1988). It proposes an estimation procedure which is based on orthogonality conditions which characterize the optimal exercise time for the contract. However, although no particular dynamic equation for S is postulated, de Matos (1994) assumes that the optimal exercise boundary is deterministic and continuous, and approximates it by a finite order polynomial in time, whose parameters are estimated from the moment conditions. In this paper, we use nonparametric cubic splines estimators [see *e.g.* Eubank (1988) and Whaba (1990)] to extract an exercise boundary from the data. Our approach readily extends to more general models with additional state variables such as models with random dividend payments or with stochastic volatility (see Broadie *et al.* (1996)). The procedure of de Matos is more restrictive and does not generalize easily.

We describe the exercise data for the S&P100 Stock Index American option contract in Section 3.1 and report summary statistics, plots and finally the nonparametric estimates of the exercise boundary using market data. Details regarding the nonparametric methods appear in the Appendix. Next in Section 3.2 we use S&P100 Stock Index data to estimate the GBM diffusion and invoke the BD algorithm to produce a parametric boundary. Finally, in Section 3.3 we discuss comparisons of the parametric and nonparametric boundaries.

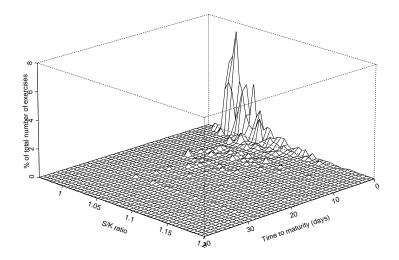


Figure 1: Distribution of the number of call contracts exercised, conditional on S/K and τ

Table 1: Summary statistics of exercise data

Var.	\bar{X}	min	5%	25%	50%	75%	95%	max
N_{call}	2697	1	3	24	202	1357	16946	72590
S	236.9	146.5	154.495	181.8	238.5	280.9	322.838	336.1
δ	0.05254	0	0	0	0.00788	0.06046	0.26044	0.79783

3.1 Description of the exercise data and nonparametric boundary estimates

The data on the characteristics of S&P100 Index American contracts (maturity, strike price, number of exercises) is the same as in Diz and Finucane (1993) and we refer to their paper for a description of the sources. These are end-of-the-trading-day daily data on S&P100 Index American put and call contracts which are traded on the Chicago Board Options Exchange. The contract is described in OEX–S&P100 Index Option (1995). To this data we added the corresponding series of observed S&P100 Index daily closure prices obtained from Standard and Poors.⁸ The sample we consider runs from January 3rd 1984 to March 30^{th} 1990. Figure 1 shows the sample distribution of the number of exercises of call and put contracts, conditional on the current S&P100 Index to strike price ratio (S/K), and on the time to maturity (τ) .⁹

Table 1 provides summary statistics of the data. N_{call} is the number of exercises of call options, S is the S&P100 Index and δ is the dividend rate on S. The latter is derived from the S&P100 Index dividend series constructed by Harvey and Whaley (1992).¹⁰ \bar{X} denotes the sample mean of the series and x% represents the x% quantile of the empirical

 $^{^{7}}$ For the boundary estimation, the BD algorithm provides a lower bound on the boundary. We checked that the difference between the bound and the true boundary was small by comparing the results with the recursive integral procedure (using a fine discretization) suggested in Kim (1990) and detailed in Huang, Subrahmanyam, and Yu (1996).

⁸The wildcard feature of the OEX contract, described in detail in Diz and Finucane (1993) for instance, results in some nonsynchronous effects in the exercise and index data which will be ignored (at least explicitly). Any systematic nonsynchronous effect will (implicitly) be captured, however, in our nonparametric analysis.

⁹Figure 1 present truncated data, since we left aside observations corresponding to high values of τ . The purpose was to obtain a better visualization of what happens when the number of exercises is significant. However, the complete sample was used at the estimation stage.

¹⁰The series derived by Harvey and Whaley (1992) gives D_t , the amount in \$ of the dividend paid on the S&P100 Index at date t. In order to be consistent with equation 2.5, we need *annualized* dividend *rates*. The series δ whose empirical mean and quantiles are reported in Table 1 has been computed as $\delta_t \equiv \frac{D_t}{S_t}/dt$, where S_t is the S&P100 Index and dt = 1/360.

distributions, *i.e.*, the value $X_0 \in \{X_i : i = 1, 2, ..., n_X\}$ such that $n_X^{-1} \sum_{i=1}^{n_X} I\!\!I_{(-\infty, X_0]}(X_i) = x/100$. Here n_X is the number of observations for the variable X and $I\!\!I_A$ is the indicator function of the set A.

Figure 1 shows that most of the exercises occur during the last week prior to expiration. Except for a period of one or two days to maturity, exercise decisions are taken when the ratio S/K is close to one. During this period, the ratio is never below one. However, in the last days before maturity, although most exercise decisions take place at S/K close to one, the dispersion of the observed ratio is highly increased towards values close one.¹¹

The objective here is to estimate a boundary by fitting a curve through a scatterplot in the space $(\tau, S/K)$ appearing in Figure 2. We proceed as follows. Over the entire observation period, consider the set of observed values for the time to maturity variable $\mathcal{T} \equiv \{0, 1, \ldots, \tau_{\max}\}$. Over the same period, we observe a total of N call options indexed by $i \in \mathcal{I} \equiv \{1, 2, \ldots, N\}$. Each of these options is characterized by the date of its issue, t_0^i , the date at which it matures, $t_0^i + T^i$, and its strike price, K^i . In addition to these variables, for $\tau \in \mathcal{T}$, we observe $S_{\tau}^i \equiv S_{t_0^i + T^i - \tau}$ and $n_{\tau}^i \equiv n_{t_0^i + T^i - \tau}^i$ which are respectively the price of the S&P100 Index and the number of exercises of option i at date $t_0^i + T^i - \tau$, $i \in \mathcal{I}_{\tau} \equiv \{j \in \mathcal{I} : n_{\tau}^j \neq 0\}$. Observations can be represented as in Figure 2.

The idea underlying the estimation procedure is that observed S_{τ}^i/K^i ratios result from an exercise policy and can therefore be considered as realizations of the bound $B(\theta, \tau)$, which, besides τ , is a function of the parameter vector $\theta = (r, \delta, \sigma)'$ defined in equation (2.5). With such an interpretation of the data, to each τ corresponds only one optimal exercise policy, and we should observe only one S_{τ}^i/K^i ratio. However, as Figure 2 reveals, we observe several realizations of S_{τ}^i/K^i for a single τ . ¹² A natural way to summarize the information is to give more weight to S_{τ}^i/K^i ratios associated with high numbers of exercises n_{τ}^i . In other words, we consider the weighted averages

$$\left(\frac{S}{K}\right)_{\tau} \equiv \frac{1}{\sum_{i \in \mathcal{I}_{\tau}} n_{\tau}^{i}} \sum_{i \in \mathcal{I}_{\tau}} n_{\tau}^{i} \frac{S_{\tau}^{i}}{K^{i}}$$
(3.9)

¹¹ These stylized facts do not contradict the predictions of the option pricing model when the underlying asset price is assumed to be a log-normal diffusion. As shown in Kim (1990, Proposition 2, p. 558) $\lim_{\tau \downarrow 0} \frac{B_{\tau}}{K} = \max\{\frac{r}{\delta}, 1\}$, for call contracts, while for puts $\lim_{\tau \downarrow 0} \frac{B_{\tau}}{K} = \min\{\frac{r}{\delta}, 1\}$. Here τ denotes time to maturity.

 $^{^{12}}$ The fact that we observe a dispersion in exercise decisions may be viewed as sufficient evidence to reject the parametric model in equation (2.5) and suggests more complex models (see *e.g.*, Broadie *et al.* (1995)).

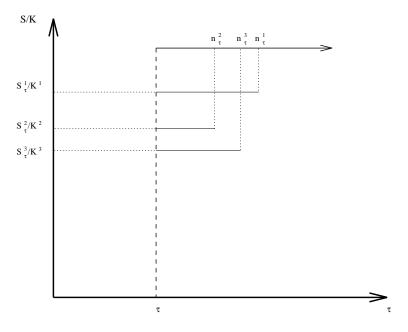


Figure 2: Representation of the data.

as our realizations of $B(\theta,\tau)$.¹³ A nonparametric estimator of B is a cubic spline estimator for the model

$$\left(\frac{S}{K}\right)_{\tau} = g(\tau) + \varepsilon$$
 (3.10)

For the details of this estimation procedure, see Eubank (1988, p.200–207, and Section 5.3.2). Intuitively, a curve is fitted to the points $(\tau, (S/K)_{\tau}), \tau \in \mathcal{T}$. It involves a *smoothing parameter* λ which is selected by Generalized Cross Validation (GCV). This is the default procedure of the function smooth.spline in the S-Plus statistical package. The value of λ computed from observations of the S/K ratio is $\hat{\lambda} = 0.009058884$, which gives a GCV criterion $GCV(\hat{\lambda}) = 0.0005911787$. Details of the choice of the smoothing parameter are discussed in the Appendix; see also Eubank (1988, p.225–227) and Wahba (1990, Sections 4.4 and 4.9).

¹³Hastie and Tibshirani (1990, p.74) give a justification to the intuitive solution of averaging the response variable when we observe ties in the predictor.

3.2 Parametric estimation of the exercise boundary

We now exploit the information provided by the dynamics of the underlying asset price and consistently estimate its trend and volatility parameters. Up to this point, we did not explicitly introduce the distinction between the process which generates the data on S, *i.e.*, the probability distribution P from which the observations are "drawn," referred to as the "objective" probability, and the risk-neutral representation of the process described by (2.5). The data generating process (DGP) which is to be estimated is

$$\mathrm{d}S_t = S_t \left[\mu \mathrm{d}t + \sigma \, \mathrm{d}W_t \right], \quad t \ge 0, \tag{3.11}$$

where W is a standard Brownian motion on $(\Omega, \mathcal{F}, \mathcal{F}_{(.)}, P)$.

Quite a few well known procedures exist for estimating the parameters of a general diffusion. Most of them are based on simulations of the DGP; examples are the simulated method of moments [see Duffie and Singleton (1993)], the simulated (pseudo) maximum likelihood [see Gouriéroux and Monfort (1995)] and indirect inference or moment matching [see Gouriéroux, Monfort and Renault (1993) and Gallant and Tauchen (1994)]. Recently another approach has been proposed by Pedersen (1995a, b) based on a convergent approximation of the likelihood. In the case of a simple geometric Brownian motion, however, we take advantage of the existence of an exact discretization. Application of Itô's lemma to (3.11) gives

$$\ln S_t = \ln S_0 + \int_0^t (\mu - \frac{1}{2}\sigma^2) ds + \int_0^t \sigma dW_s, \quad t \ge 0.$$

Therefore the process $\ln S$ has an AR(1) representation:

$$\ln S_t = \ln S_{t-1} + (\mu - \frac{1}{2}\sigma^2) + \sigma\varepsilon_t, \quad t \ge 1,$$
 (3.12)

where $\{\varepsilon_t \equiv W_t - W_{t-1}\} \stackrel{\text{ind.}}{\sim} N(0,1)$. The vector $\beta \equiv (\mu, \sigma)$ can be estimated by maximum likelihood (ML). The ML estimate (MLE) of β is solution of

$$\min_{\beta \in \mathcal{B}} \frac{T}{2} \ln \sigma^2 + \frac{1}{2\sigma^2} \sum_{t=2}^T \left(\ln \frac{S_t}{S_{t-1}} - \mu + \frac{\sigma^2}{2} \right)^2,$$

and denoted $\hat{\beta}_T$. Here T is the sample size and \mathcal{B} is the set of admissible values for β .

However, what is required for the implementation of the BD algorithm are values for r, δ and σ . Obviously $\hat{\sigma}_T$, the MLE of σ , will be

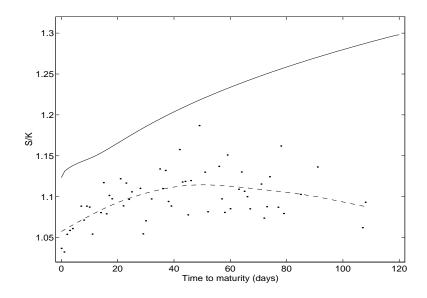


Figure 3: Parametric (—) and nonparametric (- -) estimates of the exercise boundary.

selected as the required value for the volatility parameter. But the estimation of (3.11) does not provide us with values for the risk-free interest rate and the dividend rate. These parameters are extracted from historical series. An estimate of the nominal interest rate is the average daily rate of return on 1 month *T*-bills, expressed in % *per annum*, and the constant dividend rate on the S&P100 Index is the sample average of the dividend series described in Section 3.1 (see also Table 1). A parametric estimate of the exercise boundary is then derived by implementing the BD algorithm with $\hat{\theta}_T \equiv (\hat{r}_T, \hat{\delta}_T, \hat{\sigma}_T)'$ as the true parameter value, where $\hat{r}_T = 0.05915$, $\hat{\delta}_T = 0.05254$ and $\hat{\sigma}_T = 0.01244$.

The parametric and nonparametric estimates of the exercise boundary are shown in Figure 3. As can be seen, the two estimated exercise boundaries appear quite different in shape. First, the parametric estimate of the boundary lies well above the nonparametric one. This is mainly due to the difference of the two estimates at maturity ($\tau = 0$). Since the (unbiased) estimate of $r-\delta$ is positive, the parametric estimate of the (normalized) boundary is equal to $\hat{r}_T/\hat{\delta}_T = 1.12325$ at $\tau = 0$. However, if we admit that the result of footnote 11 holds, the nonparametric estimate of the exercise boundary suggests that this ratio is substantially lower. Second, it is interesting to note that the parametric estimate of the exercise boundary lies *above* the pairs $(\tau, S/K)$ obtained from the exercise data. It is clear that the two estimates predict very different exercise strategies in the few days before expiration, where most of the exercise decisions take place (see Figure 1). Ideally, we would like to make a formal statistical comparison between the two curves appearing in Figure 3. Unfortunately, there are several reasons, explained in the next section, why such a comparison is not straightforward.

3.3 Nonparametric and parametric boundaries

So far, we engaged only in casual comparison of the two estimated exercise boundaries drawn in Figure 3. On the parametric side, there is uncertainty about the position of the curve because the parameters fed in the BD algorithm are estimates of unknown parameters. Likewise, there is uncertainty regarding the position of the nonparametric curve as well. Indeed, the S/K ratios obtained via (3.10) may not directly reflect the exercise boundary because: (1) there is in fact a dispersion of exercise decisions which was summarized by a single ratio per time to maturity (see Figure 1) and (2) the index S in the ratio is the index at the closure which may not exactly coincide with the value of the index when the exercise decision was actually made. Even if we ignore these effects, it is clear that the kernel estimation is also subject to sampling error which we can characterize at least asymptotically.

There are essentially two ways to tackle the comparison between the parametric and nonparametric boundaries. Given what we know about the statistical properties of the nonparametric boundary, we could entertain the possibility of formulating a confidence region which, if it does not contain the entire parametric boundary, suggests rejecting the model. Such (uniform) confidence regions were discussed in Härdle (1990), Horowitz (1993) and Aït-Sahalia (1993, 1996). The former two deal exclusively with i.i.d. data, while the latter considers temporally dependent data. Only the latter would be appropriate since the exercise data described in Section 3.1 are not i.i.d. There are essentially two approaches to compute confidence regions with temporally depend data: (1) using asymptotic distribution theory combined with the socalled delta method applied to distribution functions of the data (see Aït-Sahalia (1993) or (2) applying bootstrap techniques. The former can implemented provided that the derivatives of the distribution functions are not too complicated to compute. Since this is typically not the case it is more common to rely on bootstrap techniques. Since the data are temporally dependent one applies bootstrapping by blocks (see for instance Künsch (1989)). Unfortunately, our data are not straightforwardly interpretable as time series since the exercise boundary is obtained from observations at fixed time to maturity. This scheme does not amount to a simple sequential temporal sampling procedure. Moreover at each point in time one records exercise decisions on different contracts simultaneously which have very different coordinates in the time-to-maturity and boundary two-dimensional plane. The conditions on the temporal dependence in calendar time (such as the usual mixing conditions) do not easily translate into dependence conditions in the relevant plane where the empirical nonparametric boundary is defined (see the Appendix for more details). Because of these unresolved complications, we opted for another strategy similar to the one just described, but concentrated instead on the parametric specification. Indeed, we can use the asymptotic distribution, namely

$$\sqrt{T} \left(\hat{\theta}_T - \theta \right) \stackrel{A}{\sim} N(0, \Omega) \Rightarrow \sqrt{T} \left(B(\hat{\theta}_T, \tau) - B(\theta, \tau) \right)$$
$$\stackrel{A}{\sim} N[0, (\partial B/\partial \theta')\Omega(\partial B/\partial \theta)],$$

(which holds under standard regularity assumptions, e.g., see Lehmann (1983, Theorem 1.9, p.344). The estimate of θ is denoted $\hat{\theta}_T$ and $B(\theta, \tau)$ stands for the value of the optimal exercise bound when the vector of parameters is equal to θ and the time to maturity is τ . However, in our situation the vector $\hat{\theta}_T$ is obtained by stacking estimates of its components, namely $\hat{r}_T, \hat{\delta}_T$ and $\hat{\sigma}_T$, which were computed from separate series, with unknown joint distribution. Hence, the asymptotic normality of $\hat{\theta}$ may be questionable, while the covariance matrix Ω would remain unknown.¹⁴

Clearly, we need to make some compromises to be able to assess the effect of parameter uncertainty on the boundary. We should note first and foremost that \hat{r}_T and $\hat{\delta}_T$ play a role different from $\hat{\sigma}_T$. The former two are estimates which determine the drift under the risk neutral measure. They are sample averages of observed series and computed from a relatively large number of observations. In contrast, $\hat{\sigma}_T$ is estimated from a GBM specification. It is typically more difficult to estimate yet at the same time plays a much more important and key role in the pricing (and exercising) of options. Indeed, \hat{r}_T and $\hat{\delta}_T$ primarily determine the intercept (see footnote 11), while $\hat{\sigma}_T$ affects essentially the curvature of the exercise boundary. For these reasons, we will ignore uncertainty

¹⁴A slightly different approach would consist of using Monte Carlo simulations to approximate the distribution of $B(\hat{\theta}_T, \tau)$, or at least its variance if we wish to rely on a normal approximation. For this, we need to simulate \hat{r}_T , which cannot be done without making any further assumptions on the economy.

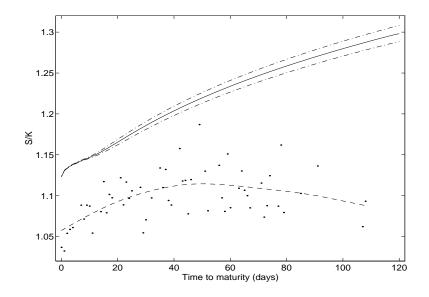


Figure 4: Parametric (—) and nonparametric (- -) estimates of the exercise boundary with 95% confidence bounds on the parametric boundary ($-\cdot$ –).

regarding \hat{r}_T and $\hat{\delta}_T$ and focus exclusively one the role played by $\hat{\sigma}_T$ in the location of $B(\hat{\theta}_T, \tau)$. The confidence bounds appearing in figure 4 were obtained through a Monte Carlo simulation of the GBM volatility parameter empirical distribution and its impact on that of $B(\hat{\theta}_T, \tau)$.

For the reasons explained above, the simulations are performed considering \hat{r}_T and $\hat{\delta}_T$ as fixed. The parametric estimator of the exercise boundary at maturity τ is denoted $B(\hat{\sigma}_{\text{MLE}}, \tau)$ since the volatility coefficient is obtained by maximum likelihood estimation. We simulate R = 10,000 samples $((S_t^{\gamma}, t = 1, \ldots T), \gamma = 1 \ldots R)$ of the S&P100 Index using $\hat{\beta}_T$ in (3.12). We then estimate β by $\hat{\beta}_T^{\gamma} \equiv (\hat{\mu}_T^{\gamma}, \hat{\sigma}_T^{\gamma})'$, its MLE computed from the γ -th sample, and derive $B^{\gamma}(\hat{\sigma}_{\text{MLE}}, \tau)$ using the BD algorithm with $\theta = \hat{\theta}_T^{\gamma} \equiv (\hat{r}_T, \hat{\delta}_T, \hat{\sigma}_T^{\gamma})', \tau \in \mathcal{T}$. For \hat{r}_T and $\hat{\delta}_T$ fixed and R large, the sample variance

$$\hat{V}^{R}(\hat{r}_{T},\hat{\delta}_{T},\hat{\beta}_{T},\tau) = \frac{1}{R} \sum_{\gamma=1}^{R} \left[B^{\gamma}(\hat{\sigma}_{\mathrm{MLE}},\tau) - \frac{1}{R} \sum_{\zeta=1}^{R} B^{\zeta}(\hat{\sigma}_{\mathrm{MLE}},\tau) \right]^{2}, \tau \in \mathcal{T},$$

is close to $V_{\hat{\sigma}_T} \left[B(\hat{\sigma}_{\text{MLE}}, \tau) \right]$, the variance of $B(\hat{\sigma}_{\text{MLE}}, \tau)$ when \hat{r}_T and $\hat{\delta}_T$ are fixed and $\hat{\sigma}_T$ is assumed to be the true value of the volatility coefficient. When T is large, this can be expected to be a good approximation of $V_{\sigma_0} \left[B(\hat{\sigma}_{\text{MLE}}, \tau) \right]$, where σ_0 denotes the true value of σ .

If we further assume that for each $\tau \in \mathcal{T} B(\hat{\sigma}_{\text{MLE}}, \tau)$ is approximately normally distributed (recall that $\hat{\sigma}$ is a MLE), we can build a confidence interval for $B(\theta, \tau)$ at level $1 - \alpha$, whose limits are given by $B(\hat{\theta}_T, \tau) \pm c_{\alpha} \hat{V}^R(\hat{r}_T, \hat{\delta}_T, \hat{\sigma}_T, \tau)^{1/2}, \ \tau \in \mathcal{T}$, where c_{α} satisfies $\Phi(c_{\alpha}) = 1 - \frac{\alpha}{2}, \Phi$ being the cumulative distribution function of N(0, 1).

The confidence bands obtained in this way show clearly that, provided that \hat{r}_T and $\hat{\delta}_T$ are not too far from their true values and that the normal approximation is good enough, the two boundaries are significantly different from each other. Indeed, the nonparametric curve and the data points appearing in Figure 4 lie outside the parametric curve confidence region. Before we turn to call price estimation, it is worth noting that the uncertainty on the volatility parameter is of less importance for the exercise policy when the contract approaches its maturity. This is expected since the volatility of the underlying asset becomes less important in the decision of exercising the call contract, or in other words $\partial B(\theta, \tau)/\partial \sigma \approx 0$, for $\tau \approx 0$, and for any θ .

4 Parametric and nonparametric analysis of call prices

We now turn to the estimation of call option prices. As in Sections 3.1 and 3.2, we consider two types of estimators: (1) a nonparametric estimator entirely based on the data and (2) a model-based (or parametric) estimator. Along the same lines, we first describe the data and then present the estimation results.

4.1 The data

We now use data sets (1) and (2) mentioned in the introduction. The period of observation and the data on the S&P100 Stock Index are the same as for the boundary estimation (see Section 3.1). For the same period, we observed the characteristics (price, strike price and time to maturity) of the call option contracts on the S&P100 Index, described in OEX (1995). They represent daily closure prices obtained from the CBOE was already defined.

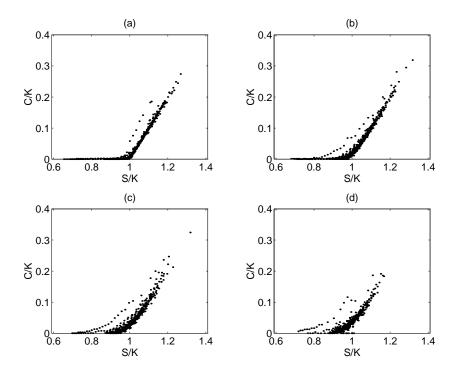


Figure 5: Observed couples $((C/K)_t, (S/K)_t)$ at different times to maturity. $\tau = 7$ days: (a), $\tau = 28$ days: (b), $\tau = 56$ days: (c), $\tau = 84$ days: (d).

4.2 Estimation of call option prices

Since the call option price C depends on the underlying stock price S, we may have some problems in estimating C, due to the possible nonstationarity of S. To avoid this, we use the homogeneity of degree one of the pricing formula with respect to the pair (S, K) [see equations (2.6)-(2.8)] and focus on the ratio $C(S, K, \tau)/K = C(S/K, 1, \tau)$, which expresses the normalized call option price as a function of the moneyness and time to maturity.¹⁵ Figure 5 shows the pairs ((C/K), (S/K))observed at different times to maturity, $\tau = 7, 28, 56, 84$ days.

Again, we consider two types of estimators depending on our as-

¹⁵The homogeneity property holds for the GBM as well as for a large class of other processes featuring stochastic volatility. See Broadie *et al.* (1995) and Garcia and (1996) for further discussion.

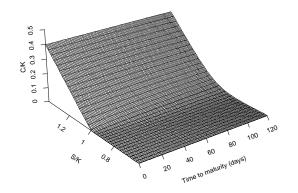


Figure 6: Parametric estimate of call option price surfaces.

sumptions about the underlying economic model. The first estimator is entirely based on the Black-Scholes specification of the economy introduced in Section 2. It is derived in two steps. First, we estimate the parameters of (3.12) by maximum likelihood (see Section 3.2), and second, we use these estimates in the BD routine to compute $C(S/K, 1, \tau)$. We implemented the BD algorithm with $\theta = \hat{\theta}_T$, with S/K running from 0.6 to 1.4 and τ from 0 to 120 days. These values match the range of the observed values of S/K and τ . The resulting surface is shown in Figure 6.

Similarly, we derive a second estimator of the same surface. This estimator requires no particular assumptions on the economy. We simply express the normalized call price as a function of time to maturity and

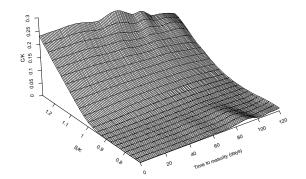


Figure 7: Nonparametric estimate of call option price surfaces.

of the moneyness ratio S/K:

$$C/K = C(S/K, 1, \tau) + \varepsilon = V(S/K, \tau) + \varepsilon, \qquad (4.13)$$

where ε is an error term. The unknown function V is estimated by fitting a surface through the observations $((C/K)_t, (S/K)_t, \tau_t)$ using kernel smoothing.¹⁶ The surface appears in Figure 7.

The parametric and nonparametric estimates of the relation between C/K and $(S/K, \tau)$ are very similar in shape, and it is not easy to appraise the differences that may exist between the two estimates by a

 $^{^{16}}$ For a discussion on multivariate nonparametric estimation, we refer to Hastie and Tibshirani (1990) and Scott (1992). We used here a product of Gaussian kernels with bandwidths $h_{\tau} = 5$ in the time to maturity direction and $h_{SK} = .4$ in the S/K direction.

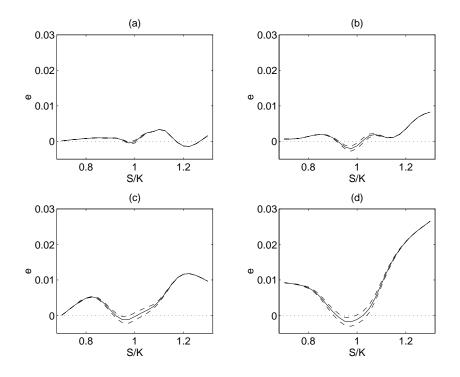


Figure 8: Difference between the nonparametric and parametric fits of call prices (solid line —) and 95% confidence bounds (dash lines - -). $\tau = 7$ days: (a); $\tau = 28$ days: (b); $\tau = 56$ days: (c); $\tau = 84$ days: (d).

direct comparison of Figures 6 and 7. Instead, we could select different times to maturity ($\tau = 7, 28, 56$ and 84 days) and extract the relation between C/K and S/K from the estimated surfaces in Figures 6 and 7 for these given τ . It is more appropriate however to re-estimate the relation between C/K and S/K only, for $\tau \in \{7, 28, 56, 84\}$. Obviously this will produce no change in the parametric estimate. However, for nonparametric estimation, we avoid some difficulties inherent to multivariate kernel estimation [see Silverman (1986), Hastie and Tibshirani (1990) and Scott (1992)]. We used a smoothing spline where the smoothing parameter is chosen according to the GCV criterion. The resulting difference $e(S/K, \tau) \equiv \hat{C}_{NP}(S/K, 1, \tau) - \hat{C}_P(S/K, 1, \tau)$, ($\tau = 7, 28, 56, 84$ days), between the nonparametric and parametric fits of the call price is shown on Figure 8.

Several remarks emerge from these figures. We note from Figure 7 that the nonparametric estimate captures the dependence of option prices on time to maturity, *i.e.*, as we move away from the maturity date, the normalized call option price increases as time to maturity gets larger, for any fixed moneyness ratio S/K. However, this dependence dampens out as this ratio moves away from unity. The largest differences occur for "near-the-money" or at-the-money contracts.

The plots of the differences $e(S/K, \tau)$ [see Figures 8(a)-(d)] reveal some interesting features. First, we see that the parametric estimates tend to underprice the call option contract, when the nonparametric estimated relation is taken to be the true one. Although this holds for all the times to maturity we considered ($\tau = 7, 28, 56, 84$), it is remarkable that the discrepancy between the two price predictors diminishes as we approach to maturity. One possible explanation for this is the following. Suppose the observed underpricing of the parametric estimator can be attributed to a misspecification in the dynamics of the underlying asset price process, S. Then we see that the effects of this misspecification on option pricing disappears as $\tau \downarrow 0$. Indeed, as the option approaches its maturity, the degree of uncertainty on its normalized price C/K vanishes and C/K tends to be more and more directly related to the observed difference between S/K and 1 (when $\tau = 0$, $C/K = (S/K - 1)^+$). This is always true in option pricing models, irrespective of the specification of the dynamics of S. In particular, this is true for the GBM specification we adpoted here. A second remark about the estimation results is that, for a fixed time to maturity, the two estimates of C/K seem to agree for S/K close to 1. This is in accordance with the stylized facts compiled in the literature on option pricing [see Ghysels, Harvey and Renault (1995) and Renault (1996)]. The usual practice of evaluating "near-the-money" options not far from maturity according to models as simple as those of Section 2 seems to be well founded in light of the results reported in this section.

To assess statistically the significance of e, we derived some confidence bounds like in Section 3.3, measuring the effect of the uncertainty in the estimation of σ on the parametrically estimated call prices. Considering $\hat{C}_{NP}(S/K, 1, \tau)$ as fixed and equal to the true pricing formula, and for a fixed τ , we say that $e(S/K, \tau)$ is not significantly different from 0 for a given moneyness ratio S/K, if 0 lies in the confidence interval for $e(S/K, \tau)$. These intervals, derived in a similar way as in Section 3.3, are reported in Figure 8. The results confirm the previous remark that the two estimates of call prices agree only for S/K close to 1.

5 Conclusion

In this paper we proposed nonparametric estimation procedures to deal with the computational complications typically encountered in American option contracts. We focused on the most active market in terms of trading volume and open interest. It provided us with a wealth of data on the exercise and pricing decisions under different circumstances, i.e. differences in time-to-maturity and strike prices, and enabled us to estimate the functionals nonparametrically. In principle our methods apply to any type of contract, as complicated as it may be, provided the data is available and the suitable regularity conditions to apply nonparametric methods are applicable. We also reported a comparison of the nonparametric estimates with the nowadays standard parametric model involving a GBM for the underlying asset. While the comparison of the nonparametric and parametric estimated functionals raised several unresolved issues our results suggest large discrepancies between the two. It obviously raises questions about the parametric models. Of course typically practitioners will "calibrate" their parameters to the market data instead of estimating the unknown parameters via statistical techniques as we did. This may improve the fit, yet it remains limited to the constant volatility framework modified through time-varying (implied) volatilities. The advantage of the framework we propose is that it can be extended to deal with state variables such as random dividends etc. (see Broadie *et al.* (1996)). One remaining drawback of the approach we suggested in this paper is that it does not lend itself easily to imposing absence of arbitrage conditions. However, the advantage in terms of computing exercise boundaries and call pricing overshadow at least in the single asset case this disadvantage.

Appendix on nonparametric estimation

In this appendix, we briefly present the nonparametric estimation techniques used in the paper. We also provide references with more details on the subject.

In this paper, we mainly used two kinds of nonparametric estimators, namely kernel and spline smoothing. Since the issues related to these estimation techniques are similar, we present the kernel estimator first and then digress on the smoothing spline estimator.

Nonparametric estimation deals with the estimation of relations such as

$$Y_i = f(Z_i) + u_i, \quad i = 1, \dots, n,$$
 (A.1)

where, in the simplest case, $((Y_i, Z_i), i = 1, ..., n)$ is a family of i.i.d. pairs of random variables, and E(u|Z) = 0, so that f(z) = E(Y|Z = z). The error terms $u_i, i = 1, ..., n$, are also assumed to be independent, while f is a function with smoothness properties which have to be estimated from the data on the pair (Y, Z). Kernel smoothers produce an estimate of f at Z = z by giving more weight to observations (Y_i, Z_i) with Z_i "close" to z. More precisely, the technique introduces a kernel function, K, which acts as a weighing scheme (it is usually a probability density function, see Silverman (1986, p.38)) and a smoothing parameter λ which defines the degree of "closeness" or neighborhood. The most widely used kernel estimator of f in (A.1) is the Nadaraya-Watson estimator defined by

$$\hat{f}_{\lambda}(z) = \frac{\sum_{i=1}^{n} K\left(\frac{Z_{i}-z}{\lambda}\right) Y_{i}}{\sum_{i=1}^{n} K\left(\frac{Z_{i}-z}{\lambda}\right)},\tag{A.2}$$

so that $(\hat{f}_{\lambda}(Z_1), \ldots, \hat{f}_{\lambda}(Z_n))' = W_n^K(\lambda)Y$, where $Y = (Y_1, \ldots, Y_n)'$ and $W_{n_j}^K$ is a $n \times n$ matrix with its (i, j)-th element equal to $K\left(\frac{Z_j-Z_i}{\lambda}\right) / \sum_{k=1}^n K\left(\frac{Z_k-Z_i}{\lambda}\right).$ W_n^K is called the *influence matrix* associated with the kernel K.

The parameter λ controls the level of neighboring in the following way. For a given kernel function K and a fixed z, observations (Y_i, Z_i) with Z_i far from z are given more weight as λ increases; this implies that the larger we choose λ , the less $\hat{f}_{\lambda}(z)$ is changing with z. In other words, the degree of smoothness of \hat{f}_{λ} increases with λ . As in parametric estimation techniques, the issue here is to choose K and λ in order to obtain the best possible fit. A natural measure of the goodness of fit at Z = z is the mean squared error $(MSE(\lambda, z) = E\left[\left(\hat{f}_{\lambda}(z) - f(z)\right)^{2}\right]),$ which has a bias/variance decomposition similar to parametric estimation. Of course both K and λ have an effect on $MSE(\lambda, z)$, but it is

generally agreed in the literature that the most important issue is the choice of the smoothing parameter.¹⁷ Indeed, λ controls the relative contribution of bias and variance to the mean squared error; high λ s produce smooth estimates with a low variance but a high bias, and conversely. It is then crucial to have a good rule for selecting λ . Several criteria have been proposed, and most of them are transformations of $MSE(\lambda, z)$. We may simply consider $MSE(\lambda, z)$, but this criterion is local in the sense that it concentrates on the properties of the estimate at point z. We would generally prefer a global measure such as the mean integrated squared error defined by $\operatorname{MISE}(\lambda) = E\left[\int \left(\hat{f}_{\lambda}(z) - f(z)\right)^2 \mathrm{d}z\right],$ or the sup mean squared error equal to $\sup_{z} MSE(\lambda, z)$, etc... The most frequently used measure of deviation is the sample mean squared error $M_n(\lambda) = (1/n) \sum_{i=1}^n \left[\hat{f}_{\lambda}(Z_i) - f(Z_i) \right]^2 \omega(Z_i)$, where $\omega(\cdot)$ is some known weighing function. This criterion only considers the distances between the fit and the actual function f at the sample points Z_i . Obviously, choosing $\lambda = \tilde{\lambda}_n \equiv \arg min M_n(\lambda)$ is impossible to implement since f is unknown. The strategy consists of finding some function $m_n(\cdot)$ of λ (and of $((Y_i, Z_i), i = 1, ..., n)$) whose argmin is denoted $\hat{\lambda}_n$, such that $|\tilde{\lambda}_n - \hat{\lambda}_n| \longrightarrow 0$ a.s. as $n \to \infty$. For a review of such functions m_n , see Härdle and Linton (1994, Section 4.2).¹⁸ The most widely used m_n function is the cross-validation function

$$m_n(\lambda) = CV_n(\lambda) \equiv \frac{1}{n} \sum_{i=1}^n \left[Y_i - \hat{f}_{\lambda}^{(-i)}(Z_i) \right]^2,$$

where $\hat{f}_{\lambda}^{(-i)}(z)$ is a Nadaraya-Watson estimate of f(z) obtained according to (A.2) but with the *i*-th observation left aside. Craven and Wahba (1979) proposed the generalized cross-validation function with

$$m_n(\lambda) = GCV_n(\lambda) \equiv \frac{n^{-1} \sum_{i=1}^n \left[Y_i - \hat{f}_{\lambda}(Z_i) \right]^2}{\left[1 - n^{-1} \mathrm{tr} \left(W_n(\lambda) \right) \right]^2}$$

where W_n is the influence matrix.¹⁹

 $^{^{17}}$ For a given λ , the most commonly used kernel functions produce more or less the same fit. Some measures of relative efficiency of these kernel functions have been proposed and derived, see Härdle and Linton (1994, p.2303) and Silverman (1986, Section 3.3.2).

¹⁸See also Silverman (1986, Section 3.4) and Andrews (1991).

¹⁹This criterion generalizes CV_n since GCV_n can be written as $n^{-1} \sum_{i=1}^n \left[Y_i - \frac{(-i)}{2} (Z_i)\right]^2 a_{i,i}$, where the $a_{i,i}$ s are weights related to the influence matrix. Moreover,

 $[\]hat{f}_{\lambda}^{(-i)}(Z_i) \Big]^2 a_{ii}$, where the a_{ii} s are weights related to the influence matrix. Moreover, GCV_n is invariant to orthogonal transformations of the observations.

Another important issue is the convergence of the estimator $f_{\hat{\lambda}_n}(z)$. Concerning the Nadaraya-Watson estimate (A.2), Schuster (1972) proved that under some regularity conditions, $\hat{f}_{\hat{\lambda}_n}(z)$ is a consistent estimator of f(z) and is asymptotically normally distributed.²⁰ Therefore when the argmin $\hat{\lambda}_n$ of $m_n(\lambda)$ is found in the set Λ_n (see footnote 20), we obtain a consistent and asymptotically normal kernel estimator $\hat{f}_{\hat{\lambda}_n}(z)$ of f(z), which is optimal in the class of the consistent and asymptotically Gaussian kernel estimators for the criterion $M_n(\lambda)$.²¹

While kernel estimators of regression functions (or conditional expectation functions) are based on kernel estimates of density functions (see for instance Härdle and Linton (1994, Section 3.1)), spline estimators are derived from a least square approach to the problem. One could think of solving the following problem

$$\min_{g \in \mathcal{M}} \sum_{i=1}^{n} [Y_i - g(Z_i)]^2,$$
(A.3)

where \mathcal{M} is a class of functions satisfying a number of desirable properties (e.g., continuity, smoothness, etc). Obviously, any $\tilde{g} \in \mathcal{M}$ restricted to satisfy $\tilde{g}(Z_i) = Y_i, i = 1, \ldots, n$, is a candidate to be a solution of the minimization problem, which would merely consists in interpolating the data. Even if we restrict g to have a certain degree of smoothness (by imposing continuity conditions on its derivatives), functions g such that $g(Z_i) = Y_i, i = 1, \ldots, n$, may be too wiggly to be a good approximation of f. To avoid this, the solution of the problem is chosen so that functions not smooth enough are "penalized." A criterion to obtain such solutions is

$$\min_{g \in \mathcal{M}} \sum_{i=1}^{n} \left[Y_i - g(Z_i) \right]^2 + \lambda \int_{I} \left[g^{(2)}(x) \right]^2 \mathrm{d}x \;. \tag{A.4}$$

I is an interval [a, b] such that $a < \min\{Z_i : i = 1, ..., n\} \le \max\{Z_i : i = 1, ..., n\} < b$, and $g^{(k)}$ denotes the k-th derivative of g. The integral in the second term of (A.4) is a measure of the degree of smoothness of the function g since it can be interpreted as the total variation of the slope of g. Then for λ high, we penalize functions which are too wiggly and we move away from solutions that tend to interpolate the data. If λ becomes too high, we decrease the goodness of the fit. In the

²⁰ The regularity conditions bear on the smoothness and continuity of f, the properties of the kernel function K, the conditional distribution of Y given Z, the marginal distribution of Z, and the limiting behavior of $\hat{\lambda}_n$. The class of $\hat{\lambda}_n$ s which satisfy these regularity conditions is denoted Λ_n .

²¹By definition, the choice $\lambda = \lambda_n^*$ is optimal for the criterion $D(\lambda)$ if $D(\lambda_n^*)/\inf_{\lambda \in \Lambda_n} D(\lambda) \xrightarrow[n \to \infty]{n \to \infty} 1$.

limit, if $\lambda \to \infty$, the problem tends to minimizing the second term of (A.4), whose solution is a function that is "infinitely smooth." Such a function is a straight line which has a zero second derivative everywhere. Conversely, if $\lambda \to 0$, the solution of (A.4) tends to the solution of (A.3) which is the interpolant. Therefore, the parameter λ plays exactly the same role as in kernel estimation.

When \mathcal{M} is taken as the class of continuously differentiable functions on I, with square integrable second derivative on I, the solution of (A.4) is unique and is a natural cubic spline, which we denote by \hat{f}_{λ} [see Wahba (1990, p.13–14) and Eubank (1988, p.200–207)]. By natural cubic spline, it is meant that, given the mesh on I defined by the order statistic $Z_{(1)} \leq Z_{(2)} \leq \cdots \leq Z_{(n)}, \hat{f}_{\lambda}$ is a polynomial of order three on $[Z_{(i)}, Z_{(i+1)}], i =$ $1, \ldots, n-1$, with second derivatives continuous everywhere, and such that $\hat{f}_{\lambda}^{(2)}(Z_{(1)}) = \hat{f}_{\lambda}^{(2)}(Z_{(n)}) = 0$. It can be shown [see Härdle (1990, p.58–59)] that the spline \hat{f}_{λ} is a linear transformation of the vector of observations Y, i.e.,

$$\hat{f}_{\lambda}(z) = \sum_{i=1}^{n} w_i^{\lambda}(z) Y_i.$$
(A.5)

A result of Silverman (1984) proves that the weight functions w_i^{λ} behave asymptotically like kernels. If we write (A.5) for observations points Z_1, \ldots, Z_n , we have $(\hat{f}_{\lambda}(Z_1), \ldots, \hat{f}_{\lambda}(Z_n))' = W_n^S(\lambda) Y$ where the influence matrix $W_n^S(\lambda)$, has its (i, j)-th entry equal to $w_j^{\lambda}(Z_i)$ [see Wahba (1990), p.13]. This matrix is explicitly derived in Eubank (1988, Section 5.3.2) and is shown to be symmetric, positive definite.

It appears that, like kernel estimators, spline function estimators are linear estimators involving a smoothing parameter and are asymptotically kernel estimators. Therefore, the criterions for selecting λ described above also apply for spline estimation (see Wahba (1990, Sections 4.4 and 4.9) and Eubank (1988, p.225–227)).

Things are a little bit more complicated when the errors are not spherical. Under general conditions, the kernel and spline estimators remain convergent and asymptotically normal. Only the asymptotic variance is affected by the correlation of the error terms. However, the objective functions for selecting λ such as CV_n or GCV_n do not provide optimal choices of the smoothing parameters. It is still not clear in the literature what should be done in this case to avoid over- or undersmoothing.²² Two kind of solutions have been proposed. The first one consists in modifying the selection criterion $(CV_n \text{ or } GCV_n)$ in or-

 $^{^{22}}$ Altman (1990) shows that when the sum of the autocorrelations of the error term is negative (positive), then the functions CV_n and GCV_n tend to produce values for λ that are too large (small), yielding oversmoothing (undersmoothing).

der to derive a consistent estimate of M_n , and the second one tries to orthogonalize the error term and apply the usual selection rules for λ . When the autocorrelation function of u is unknown, one has to make the transformation from sample estimates obtained from a first step smooth. In that view, the second alternative seems to be more tractable. Altman (1987, 1990) presents some simulations results which show that in some situations, the whitening method seems to work relatively well. However there is no general result on the efficiency of the procedure. See also Härdle and Linton (1994, Section 5.2) and Andrews (1991, Section 6).

When the observed pairs of (Y, Z) are drawn from a stationary dynamic bivariate process, Robinson (1983) provides conditions under which kernel estimators of regression functions are consistent. He also gives some central limit theorems which ensure the asymptotic normality of the estimators. The conditions under which these results are obtained have been weakened by Singh and Ullah (1985). These are mixing conditions on the bivariate process (Y, Z). For a detailed treatment, see Györfy et al. (1989). This reference (Chap. 6) also discusses the choice of the smoothing parameter in the context of nonparametric estimation from time series observations. In particular, if the error terms are independent, and when $\hat{\lambda}_n = \underset{\lambda \in \Lambda_n}{\operatorname{argmin}} CV_n(\lambda)$, then under regularity conditions $\hat{\lambda}_n$ is an optimal choice for λ according to the *integrated squared error*, $\operatorname{ISE}(\lambda) = \int \left[\hat{f}_{\lambda}(z) - f(z)\right]^2 \mathrm{d}z$ (see Györfy et al. (1989, corollary)

ror, $ISE(\lambda) = \int [f_{\lambda}(z) - f(z)] dz$ (see Gyorfy *et al.* (1989, corollary 6.3.1)). Although the function $CV_n(\lambda)$ can produce an optimal choice of λ for the criterion $M_n(\lambda)$ in some particular cases (such as the pure autoregression, see Härdle and Vieu (1992)), there is no general result for criterions such as $MISE(\lambda)$ or $M_n(\lambda)$.

The most general results concerning the convergence of nonparametric kernel estimators of regression functions seem to be found in Aït-Sahalia (1993). In this work, very general regularity conditions which ensure the convergence and the asymptotic normality of functional estimators, whose argument is the cdf which has generated the observed sample, are given (Aït-Sahalia (1993, Theorem 3, p.33–34). This result is derived from a functional CLT for kernel estimators of cdfs (Aït-Sahalia (1993, Theorem 1, p.23) combined with a generalization of the delta method to nonparametric estimators. Therefore, provided that the asymptotic variances can be approximated, one can apply usual Waldtype tests or confidence regions to make proper statistical inference. When the asymptotic distribution is too complex, a block bootstrapping technique, specially adapted to resampling from dependent data, can be used (see Künsch (1989), Liu and Singh (1992) and Aït-Sahalia (1993)). Although this method is very general, a mixing condition is required when dealing with dependent data. Even though this condition allows for many types of serial dependence, application of these results in the context of Sections 3.1 and 4.2 is not straightforward. Indeed, in the case of nonparametric exercise boundary estimation as well as in call price estimation, the data points from which we derive our estimates are not sampled *via* a simple chronological scheme. In the case of exercise boundary estimation, the data points we use are weighted averages of observations of ordinary time series. In the case of call price estimation, the difficulty comes from the panel structure of option prices and strike prices. In both cases it is not obvious to see how the original dependences characterized in calendar time translate in the dimensions we are looking at. This makes the aforementioned approaches developed for dependent data more difficult to justify and implement.

References

- [1] Aït-Sahalia, Y. (1993) Nonparametric Functional Estimation with Applications to Financial Models, *Ph.D. dissertation*, M.I.T.
- [2] Aït-Sahalia, Y. (1996) Nonparametric Pricing of Interest Rate Derivative Securities, Econometrica, 64, 527–560.
- [3] Aït-Sahalia, Y., and A.W. Lo (1995) Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices, working paper, Sloan School of Management, M.I.T.
- [4] Altman, N. S. (1987) Smoothing Data with Correlated Errors, technical report 280, Department of Statistics, Stanford University.
- [5] Altman, N. S. (1990) Kernel Smoothing of Data with Correlated Errors, Journal of the American Statistical Association, 85, 749– 759.
- [6] Andrews, D. K. (1991) Asymptotic Optimality of generalized C_L, Cross-Validation, and Generalized Cross-Validation in Regression with Heteroskedastic Errors, Journal of Econometrics, 47, 359– 377.
- [7] Barles, G., J. Burdeau, M. Romano, and N. Samsœn (1995) Critical Stock Price Near Expiration, Mathematical Finance, 5, 77–95.
- [8] Barone-Adesi, G., and R. E. Whaley (1987) Efficient Analytic Approximation of American Option Values, *Journal of Finance*, 42, 301–320.
- [9] Bensoussan, A. (1984) On the Theory of Option Pricing, Acta Applicandae Mathematicae, 2, 139–158.
- [10] Bodurtha, J. N., and G. R. Courtadon (1986) Efficiency Tests of the Foreign Currency Options Market, Journal of Finance, 42, 151–162.
- [11] Bossaerts, P. (1988) Simulation Estimators of Optimal Early Exercise, working paper, Graduate School of Industrial Administration, Carnegie Mellon University.
- Boyle, P. (1988) A Lattice Framework for Option Pricing with Two State Variables, Journal of Financial and Quantitative Analysis, 23, 1–12.

- [13] Breen, R. (1991) The Accelerated Binomial Option Pricing Model, Journal of Financial and Quantitative Analysis, 26, 153–164.
- [14] Brennan, M. J., and E. Schwartz (1977) The Valuation of American Put Options, Journal of Finance, 32, 449–462.
- [15] Broadie, M., and J. Detemple (1996) American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods, Review of Financial Studies, 9 (to appear).
- [16] Broadie, M., J. Detemple, E. Ghysels and O. Torrès (1995) American Options with Stochastic Volatility: A Nonparametric Investigation, discussion paper, CIRANO, Montréal.
- [17] Broadie, M., J. Detemple, E. Ghysels and O. Torrès (1996) American Options with Stochastic Dividends and Volatility: A Nonparametric Investigation, discussion paper, CIRANO, Montréal.
- [18] Carr, P., R. Jarrow and R. Myneni (1992) Alternative Characterizations of American Put Options, *Mathematical Finance*, 2, 87–106.
- [19] Carr, P., and D. Faguet (1994) Fast Accurate Valuation of American Options, working paper, Cornell University.
- [20] Cox, J. C., S. A. Ross and M. Rubinstein (1979) Option Pricing: A Simplified Approach, Journal of Financial Economics, 7, 229–263.
- [21] Craven, P., and G. Wahba (1979) Smoothing Noisy Data with Spline Functions, Numerical Mathematics, 31, 377–403.
- [22] de Matos, J. A. (1994) MSM Estimators of American Option Pricing Models, *Ph.D. dissertation*, INSEAD, Fontainebleau.
- [23] Diz, F., and T. J. Finucane (1993) The Rationality of Early Exercise Decisions: Evidence from the S&P 100 Index Options Markets, *Review of Financial Studies*, 6, 765–797.
- [24] Duffie, D., and K. J. Singleton (1993) Simulated Moments Estimation of Markov Models of Asset Prices, Econometrica, 61, 929–952.
- [25] Dunn, K. B., and K. M. Eades (1989) Voluntary Conversion of Convertible Securities and the Optimal Call Strategy, *Journal of Financial Economics*, 23, 273–302.
- [26] El Karoui, N. and I. Karatzas (1991) A New Approach to the Skorohod Problem and its Applications, Stochastics and Stochastics Reports, 34, 57–82.

- [27] Eubank, R. L. (1988) Spline Smoothing and Nonparametric Regression, M. Dekker, Inc., New York.
- [28] French, D. W., and E. D. Maberly (1992) Early Exercise of American Index Options, Journal of Financial Research, 15, 127–137.
- [29] Gallant, R., and G. Tauchen (1994) Which Moments to Match?, mimeo, Duke University, (forthcoming in *Econometric Theory*).
- [30] Garcia, R., and E. Renault (1996) Risk Aversion, Intertemporal Substitution and Option Pricing, discussion paper, CIRANO, Montréal and GREMAQ, Université de Toulouse I.
- [31] Gay, G. D., R. W. Kolb, and K. Yung (1989) Trader Rationality in the Exercise of Futures Options, *Journal of Financial Economics*, 23, 339-361.
- [32] Geske, R. (1979) A Note on an Analytic Formula for Unprotected American Call Options on Stocks with Known Dividends, *Journal* of Financial Economics, 7, 375–380.
- [33] Geske, R., and H. E. Johnson (1984) The American Put Options Valued Analytically, *The Journal of Finance*, **39**, 1511–1524.
- [34] Ghysels, E., A. Harvey, and E. Renault (1995) Stochastic Volatility, in *Handbook of Statistics*, (vol. 14: Statistical Methods in Finance), Maddala *et al.* (ed.), North Holland, Amsterdam (forthcoming).
- [35] Gouriéroux, C., and A. Monfort (1995) Simulation Based Econometric Methods, CORE Lecture Series, Louvain-la-Neuve.
- [36] Gouriéroux, C., A. Monfort and E. Renault (1993) Indirect Inference, Journal of Applied Econometrics, 8, S85–S118.
- [37] Gouriéroux, C., A. Monfort and C. Tenreiro (1994) Kernel M-Estimators: Nonparametric Diagnostics for Structural Models, working paper 9405, CEPREMAP, Paris.
- [38] Györfi, L., W. Härdle, P. Sarda and P. Vieu (1989) Nonparametric Curve Estimation from Time Series, Lecture Notes in Statistics, 60, J. Berger et al., eds., Springer-Verlag, Heidelberg.
- [39] Härdle, W. (1990) Applied Nonparametric Regression, Econometric Society Monographs, Cambridge University Press.
- [40] Härdle, W., and O. Linton (1994) Applied Nonparametric Methods, in *Handbook of Econometrics*, vol. 4, Chap. 38, eds: R.F. Engle and D.L. McFadden, Elsevier Science.

- [41] Härdle, W., and P. Vieu (1992) Kernel Regression Smoothing of Time Series, Journal of Time Series Analysis, 13, 209–232.
- [42] Harrison, J. M., and D. M. Kreps (1979) Martingales and Arbitrage in Multiperiod Securities Markets, *Journal of Economic Theory*, 20, 381–408.
- [43] Harvey, C. R., and R. E. Whaley (1992) Dividends and S&P 100 Index Option Valuation, *Journal of Futures Markets*, 12, 123-137.
- [44] Hastie, T. J., and R. J. Tibshirani (1990) Generalized Additive Models, Chapman & Hall.
- [45] Horowitz, J.L. (1993) Semiparametric Estimation of a Work-Trip Mode Choice Model, Journal of Econometrics, 58, 49–70.
- [46] Huang, J., M. Subrahmanyam, and G. Yu (1996) Pricing and Hedging American Options: A Recursive Integration Method, *Re*view of Financial Studies, 9, 277–300.
- [47] Hutchinson, J. M., A. W. Lo, and T. Poggio (1994) A Nonparametric Approach to Pricing and Hedging Derivative Securities Via Learning Networks, *Journal of Finance*, 49, 851–889.
- [48] Ingersoll, J. (1977) An Examination of Corporate Call Policies on Convertible Securities, The Journal of Finance, 32, 463–478.
- [49] Jacka, S. D. (1991) Optimal Stopping and the American Put, Mathematical Finance, 1, 1–14.
- [50] Karatzas, I. (1988) On the Pricing of American Options, Applied Mathematics and Optimization, 17, 37–60.
- [51] Kim, I. J. (1990) The Analytic Valuation of American Options, The Review of Financial Studies, 3, 547–572.
- [52] Künsch, H. R. (1989) The Jacknife and the Bootstrap for General Stationary Observations, Annals of Statistics, 17, 1217–1241.
- [53] Lehmann, E.L. (1983) Theory of Point Estimation, John Wiley & Sons.
- [54] Liu, R. Y., and K. Singh (1992) Moving Blocks Jacknife and Bootstrap Capture of Weak Dependence, in *Exploring the Limits of Bootstrap*, ed. R. Lepage and Y. Billard, Wiley, New York.
- [55] McKean, H. P. (1965) Appendix: A Free Boundary Problem for the Heat Equation Arising from a Problem in Mathematical Economics, *Industrial Management Review*, 6, 32–39.

- [56] Myneni, R. (1992) The Pricing of the American Option, Annals of Applied Probability, 2, 1–23.
- [57] OEX S&P 100 Index Options, Chicago Board Options Exchange, Inc., 1995.
- [58] Overdahl, J. A. (1988) The Early Exercise of Options on Treasury Bond Futures, *Journal of Financial and Quantitative Analysis*, 23, 437–449.
- [59] Pedersen, A. R. (1995a) A New Approach to Maximum Likelihood Estimation for Stochastic Differential Equations Based on Discrete Observations, working paper, Department of Theoretical Statistics, University of Aarhus.
- [60] Pedersen, A. R. (1995b) Consistency and Asymptotic Normality of an Approximate Maximum Likelihood Estimator for Discretely Observed Diffusion Processes, working paper, Department of Theoretical Statistics, University of Aarhus.
- [61] Renault, E. (1996) Econometric Models of Option Pricing Errors, discussion paper, GREMAQ, Université de Toulouse I.
- [62] Robinson, P. M. (1983) Nonparametric Estimators for Time Series, Journal of Time Series Analysis, 4, 185–207.
- [63] Rutkowsky, M. (1994) The Early Exercise Premium Representation of Foreign Market American Options, *Mathematical Finance*, 4, 313–325.
- [64] Schuster, E. F. (1972) Joint Asymptotic Distribution of the Estimated Regression Function at a Finite Number of Distinct Points, Annals of Mathematical Statistics, 43, 84–88.
- [65] Scott, D. W. (1992) Multivariate Density Estimation: Theory, Practice and Visualization, John Wiley & Sons Inc., New York.
- [66] Silverman, B. W. (1984) Spline Smoothing: the Equivalent Variable Kernel Method Annals of Statistics, 12, 898–916.
- [67] Silverman, B. W. (1986) Density Estimation for Statistics and Data Analysis, Chapman & Hall.
- [68] Singh, R. S., and A. Ullah (1985) Nonparametric Time-Series Estimation of Joint DGP, Conditional DGP, and Vector Autoregressions, *Econometric Theory*, 1, 27–52.

- [69] Stutzer, M. (1995) A Simple Nonparametric Approach to Derivative Security Valuation, working paper, Carlson School of Management, University of Minnesota.
- [70] Van Moerbeke, P. (1976) On Optimal Stopping and Free Boundary Problems, Archive for Rational Mechanics and Analysis, 60, 101– 148.
- [71] Wahba, G. (1990): Spline Models For Observational Data, Conference Board of Mathematical Sciences – National Science Foundation (CBMS – NSF) Regional Conference Series, 59, Society for Industrial and Applied Mathematics (SIAM), Philadelphia.
- [72] Whaley, R. E. (1981) On the Valuation of American Call Options on Stocks with Known Dividends, *Journal of Financial Economics*, 9, 207–211.
- [73] Yu, G. (1993) Essays on the Valuation of American Options, Ph.D. dissertation, New York University.
- [74] Zivney, T. L. (1991) The Value of Early Exercise in Option Prices: An Empirical Investigation, Journal of Financial and Quantitative Analysis, 26, 129–138.

Liste des publications au CIRANO ·

Cahiers CIRANO / CIRANO Papers (ISSN 1198-8169)

- 96c-1 Peut-on créer des emplois en réglementant le temps de travail ? / par Robert Lacroix
- 95c-2 Anomalies de marché et sélection des titres au Canada / par Richard Guay, Jean-François L'Her et Jean-Marc Suret
- 95c-1 La réglementation incitative / par Marcel Boyer
- 94c-3 L'importance relative des gouvernements : causes, conséquences et organisations alternative / par Claude Montmarquette
- 94c-2 Commercial Bankruptcy and Financial Reorganization in Canada / par Jocelyn Martel
- 94c-1 Faire ou faire faire : La perspective de l'économie des organisations / par Michel Patry

Série Scientifique / Scientific Series (ISSN 1198-8177)

- 96s-24 Nonparametric Estimation of American Options Exercise Boundaries and Call Prices / Mark Broadie, Jérôme Detemple, Eric Ghysels, Olivier Torrès
- 96s-23 Asymmetry in Cournot Duopoly / Lars-Hendrik Röller, Bernard Sinclair-Desgagné
- 96s-22 Should We Abolish Chapter 11? Evidence from Canada / Timothy C.G. Fisher, Jocelyn Martel
- 96s-21 Environmental Auditing in Management Systems and Public Policy / Bernard Sinclair-Desgagné, H. Landis Gabel
- 96s-20 Arbitrage-Based Pricing When Volatility Is Stochastic / Peter Bossaert, Eric Ghysels, Christian Gouriéroux
- 96s-19 Kernel Autocorrelogram for Time Deformed Processes / Eric Ghysels, Christian Gouriéroux, Joanna Jasiak
- 96s-18 A Semi-Parametric Factor Model for Interest Rates / Eric Ghysels, Serena Ng
- 96s-17 Recent Advances in Numerical Methods for Pricing Derivative Securities / Mark Broadie, Jérôme Detemple
- 96s-16 American Options on Dividend-Paying Assets / Mark Broadie, Jérôme Detemple
- 96s-15 Markov-Perfect Nash Equilibria in a Class of Resource Games / Gerhard Sorger
- 96s-14 Ex Ante Incentives and Ex Post Flexibility / Marcel Boyer et Jacques Robert
- 96s-13 Monitoring New Technological Developments in the Electricity Industry : An International Perspective / Louis A. Lefebvre, Élisabeth Lefebvre et Lise Préfontaine
- 96s-12 Model Error in Contingent Claim Models Dynamic Evaluation / Eric Jacquier et Robert Jarrow
- 96s-11 Mesures de la croissance de la productivité dans un cadre d'équilibre général : L'Économie du Québec entre 1978 et 1984 / Pierre Mohnen, Thijs ten Raa et Gilles Bourque
- 96s-10 The Efficiency of Collective Bargaining in Public Schools / Daniel S. Hosken et David N. Margolis
- 96s-09 Constant Consumption and the Economic Depreciation of Natural Capital : The Non-Autonomous Case / John M. Hartwick et Ngo Van Long
- 96s-08 Upstream-Downstream Specialization by Integrated Firms in a Partially Integrated Industry / Gérard Gaudet, Ngo Van Long et Antoine Soubeyran

Vous pouvez consulter la liste complète des publications du CIRANO et les publications elles-mêmes sur notre site World Wide Web à l'adresse suivante : http://www.cirano.umontreal.ca/publication/page1.html