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American Options: Symmetry Properties*

Jérôme DetempleH

Résumé / Abstract

Une propriété utile des options européennes et américaines, dans le cadre
du modèle standard de Black-Scholes, est la « symétrie ». Celle-ci énonce que la
valeur d'une option d'achat au prix d'exercice K et à date d'échéance T est
identique à la valeur d'une option de vente au prix d'exercice S, date d'échéance T
dans un marché financier auxiliaire où le taux d'intérêt est  et où le titre support
paye des dividendes au taux r et est valorisé à K. Cet article fait une synthèse des
généralisations récentes de cette propriété et établit certains résultats
complémentaires. La validité de la propriété de symétrie est établie pour une
classe générale de modèles des marchés financiers qui comprend des
spécifications nonmarkoviennes à coefficients stochastiques du sous-jacent. En
effet, la symétrie se généralise de manière naturelle aux actifs contingents
nonstandards de style américain, tels que (i) les options à échéance aléatoires
(options à barrières et options plafonnées), (ii) les produits dérivés sur titres
supports multiples, (iii) les produits dérivés sur temps d'occupation et (iv) les
titres dont les valeurs d'échéance sont homogènes de degré  �����/D�PpWKRGH�GH
changement de numéraire, qui est essentielle pour la démonstration de ces
résultats, est également passée en revue.

A useful feature of European and American options in the standard
financial market model with constant coefficients is the property of put-call
symmetry. This property states that the value of a put option with strike price K
and maturity date T is the same as the value of a call option with strike price S,
maturity date T in an auxiliary financial market with interest rate  and in which
the underlying asset price pays dividends at the rate r and has initial value K. In
this paper we review recent generalizations of this property and provide
complementary results. We show taht put-call symmetry is a general property
which holds in a large class of financial market models including nonmarkovian
models with stochastic coefficients. The property extends naturally to nonstandard
American claims such as (i) options with random maturity which include barrier
options and capped options, (ii) multiasset derivatives, (iii) occupation time
derivatives and (iv) claims whose payoffs are homogeneous of degree � �� 1.
Changes of numeraire which are instrumental in establishing symmetry properties
are also reviewed and discussed.
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1 Introduction.

Put-call symmetry (PCS) holds when the price of a put option can be deduced from the price of a

call option by relabelling its arguments. For instance, in the context of the standard �nancial market

model with constant coe�cients the value of an American put equals the value of an American call

with strike price S, maturity date T , in a �nancial market with interest rate � and in which the

underlying asset price pays dividends at the rate r. This result was originally demonstrated by

McDonald and Schroder (1990, 1998) using a binomial approximation of the lognormal model and

by Bjerksund and Stensland (1993) in the continuous time model using PDE methods; it is a version

of the international put-call equivalence (Grabbe (1983)).

Put-call symmetry is a useful property of options since it reduces the computational burden in

implementations of the model. Indeed, a consequence of the property is that the same numerical

algorithm can be used to price put and call options and to determine their associated optimal exercise

policy. Another bene�t is that it reduces the dimensionality of the pricing problem for some payo�

functions. Examples include exchange options or quanto options. PCS also provides useful insights

about the economic relationship between contracts. Puts and calls, forward prices and discount

bonds, exchange options and standard options are simple examples of derivatives that are closely

connected by symmetry relations.

Some intuition for PCS is based on the properties of the normal distribution. Indeed, in the

model with constant coe�cients the distribution of the terminal stock price is lognormal. Symmetry

of the put and call option payo� function combined with the symmetry of the normal distribution

then suggest that the put and call values can be deduced from each other by interchanging the

arguments of the pricing functions. This can be veri�ed directly from the valuation formulas for

standard European and American options. As demonstrated by Gao, Huang and Subrahmanyam

(2000) it is also true for European and American barrier options, such as down and out call and up

and out put options, in the model with constant coe�cients.

Since option values depend only on the volatility of the underlying asset price it seems reasonable

to conjecture that PCS will hold in di�usion models in which the drift is an arbitrary function of

the asset price but the volatility is a symmetric function of the price. This intuition is exploited by

Carr and Chesney (1994) who show that PCS indeed extends to such a setting. Since alternative

assumptions about the behavior of the underlying asset price destroy the symmetry of the terminal

price distribution it would appear that the property cannot hold in more general contexts. Somewhat

surprisingly, Schroder (1999), relying on a change of numeraire introduced by Geman, El Karoui and

Rochet (1995), is able to show that the result holds in very general environments including models

with stochastic coe�cients and discontinuous underlying asset price processes.1

This paper surveys the latest results in the �eld and provides further extensions. Our basic

market structure is one in which the underlying asset price follows an Ito process with progressively

measurable coe�cients (including the dividend rate) and the interest rate is an adapted stochastic

process. We show that a version of PCS holds under these general market conditions. One feature

behind the property is the homogeneity of degree one of the put and call payo� functions with respect

to the stock price and the exercise price. For such payo�s the standard symmetry property of prices

follows from a simple change of measure which amounts to taking the asset price as numeraire.

The identi�cation of the change of numeraire as a central feature underlying the standard PCS

property permits the extension of the result to more complex contracts which involve liquidation

provisions. A random maturity option is an option (put or call) which is automatically liquidated at

a prespeci�ed random time and, in such an event, pays a prespeci�ed random cash �ow. A typical

example is a down and out put option with barrier L. This option expires automatically if the

underlying asset price hits the level L (null liquidation payo�), but pays o� (K � S)+ if exercised

prior to expiration. Put-call symmetry for random maturity options states that the value of an

1Symmetry results in general market environments are also reported in Kholodnyi and Price (1998). Their proofs
are based on no-arbitrage arguments and use operator theory and group theory notions.
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American put with strike price K, maturity date T , automatic liquidation time � l and liquidation

payo�H�l equals the value of an American call with strike S, maturity date T , automatic liquidation

time ��l and liquidation payo� H�
�l
in an auxiliary �nancial market with interest rate � and in which

the underlying asset price pays dividends at the rate r and has initial value K. The liquidation

characteristics ��l and H�
�l

of the equivalent call can be expressed in terms of the put speci�cations

K; � l and H�l and the initial value of the underlying asset S. For a down and out put option with

barrier L which has characteristics

�L = infft 2 [0; T ] : St = Lg and H�L = 0

the equivalent up and out call has characteristics

��L = �L� = infft 2 [0; T ] : S�t = L� � KS

L
g and H�

�L
= 0:

where S� denotes the price of the underlying asset in the auxiliary �nancial market.

Contingent claims which are written on multiple assets also exhibit symmetry properties when

their payo� is homogeneous of degree one. In fact the same change of measure argument as in the

one asset case identi�es classes of contracts which are related by symmetry and therefore can be

priced o� each other. In particular, for contracts on two underlying assets, we show that American

call max-options are symmetric to American options to exchange the maximum of an asset and cash

against another asset, that American exchange options are symmetric to standard call or put options

(on a single underlying asset) and that American capped exchange options with proportional cap are

symmetric to both capped call options with constant caps and capped put options with proportional

caps. In all of these relationships the symmetric contract is valued in an auxiliary �nancial market

with suitably adjusted interest rate and underlying asset prices.

We then discuss extensions of the property to a class of contracts analyzed recently in the

literature, namely occupation time derivatives. These contracts, typically, depend on the amount of

time spent by the underlying asset price in certain presepeci�ed regions of the state space. Examples

of such path-dependent contracts are Parisian and Cumulative barrier options (Chesney, Jeanblanc-

Picque and Yor (1997)), Step options (Linetsky (1999)) and Quantile options (Miura (1992)). More

general payo�s based on the occupation time of a constant set, above or below a barrier, are discussed

in Hugonnier (1998). While the literature has focused exclusively on European-style contracts in

the context of models with geometric Brownian motion price processes, we consider American-style

occupation time derivatives in models with Ito price processes. We also allow for occupation times of

random sets. We show that occupation time derivatives with homogeneous payo� functions satisfy

a symmetry property in which the symmetric contract depends on the occupation time of a suitably

adjusted random set. Extensions to multiasset occupation time derivatives are also presented.

Symmetry-like properties also hold when the contract under consideration is homogeneous of

degree � 6= 1. In this instance the interest rate in the auxiliary economy depends on the coe�cient

�, the interest rate in the original economy and the dividend rate and volatility coe�cients of the

numeraire asset in the original economy. The dividend rates of other assets in the new numeraire

are also suitably adjusted.

Since symmetry properties re�ect the passage to a new numeraire asset it is of interest to examine

the replicability of attainable payo�s under changes of numeraire. For the case of nondividend

paying assets Geman, El Karoui and Rochet (1995) have established that contingent claims that

are attainable in one numeraire are also attainable in any other numeraire and that the replicating

portfolios are the same. We show that these results extend to the case of dividend-paying assets.

This demonstrates that any symmetric contract can indeed be attained in the appropriate auxiliary

economy with new numeraire and that its price satis�es the usual representation formula involving

the pricing measure and the interest rate that characterize the auxiliary economy.

The second section reviews the property in the context of the standard model with constant

coe�cients. In section 3 PCS is extended to a �nancial market model with Brownian �ltration and
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stochastic opportunity set. The markovian model with di�usion price process (and general volatility

structure) is examined as a subcase of the general model. Extensions to random maturity options,

multiasset contingent claims, occupation time derivatives and payo�s that are homogeneous of degree

� are carried out in sections 4-7. Questions pertaining to changes of numeraire, replicating portfolios

and representation of asset prices are examined in section 8. Concluding remarks are formulated

last.

2 Put-Call Symmetry in the Standard Model.

We consider the standard �nancial market model with constant coe�cients (constant opportunity

set). The underlying asset price, S, follows a geometric Brownian motion process

dSt = St[(r � �)dt+ �dezt]; t 2 [0; T ];S0 given (1)

where the coe�cients (r; �; �) are constant. Here r represents the interest rate, � the dividend rate

and � the volatility of the asset price. The asset price process (1) is represented under the equivalent

martingale measure Q: the process ez is a Q-Brownian motion.

In this complete �nancial market it is well known that the price of any contingent claim can be

obtained by a no-arbitrage argument. In particular the value of a European call option with strike

price K and maturity date T is given by the Black and Scholes (1973) formula

c(St;K; r; �; t) = Ste
��(T�t)N(d(St;K; r; �; T�t))�Ke�r(T�t)N(d(St;K; r; �; T�t)��

p
T � t) (2)

where

d(S;K; r; �; T � t) =
log(

S
K
) + (r � � + 1

2
�2)(T � t)

�
p
T � t

: (3)

Similarly the value of a European put with the same characteristics (K;T ) is

p(St;K; r; �; t) = Ke�r(T�t)N(�d(St;K; r; �; T�t)+�
p
T � t)�Ste��(T�t)N(�d(St;K; r; �; T �t)):

(4)

Comparison of these two formulas leads to the following symmetry property

Theorem 1 (European PCS). Consider European put and call options with identical characteristics

K and T written on an asset with price S given by (1). Let p(S;K; r; �; t) and c(S;K; r; �; t) denote

the respective price functions. Then

p(S;K; r; �; t) = c(K;S; �; r; t) (5)

Proof of Theorem 1: Substituting (K;S; �; r) for (S;K; r; �) in (2) and using

d(K;S; �; r; T � t) =
log(

K
S
) + (� � r + 1

2
�2)(T � t)

�
p
T � t

= �
log(

S
K
) + (r � � + 1

2
�2)(T � t)

�
p
T � t

+ �
p
T � t

= �d(S;K; r; �; T � t) + �
p
T � t (6)

gives the desired result.
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This results shows that the put value in the �nancial market under consideration is the same as

the value of a call option with strike price S and maturity date T in an economy with interest rate �

and in which the underlying asset price follows a geometric Brownian motion process with dividend

rate r, volatility � and initial value K, under the risk neutral measure.

This symmetry property between the value of puts and calls is even more striking when we

consider American options. For these contracts (Kim (1990), Jacka (1991) and Carr, Jarrow and

Myneni (1992)) have shown that the value of a call has the early exercise premium representation

(EEP)

C(St;K; r; �; t; B
c
(�)) = c(St;K; r; �; t) + �(St;K; r; �; t; B

c
(�)) (7)

where C(S;K; r; �; t; Bc
(�)) is the value of the American call, c(S;K; r; �; t) represents the value of

the European call in (2) and �(S;K; r; �; t; Bc
(�)) is the early exercise premium

�(St;K; r; �; t; B
c
(�)) =

Z T

t

�(St;K; r; �; v � t; Bc
v)dv (8)

with

�(St;K; r; �; v�t; Bc
v) = �Ste

��(v�t)N(d(St; B
c
v; r; �; v�t))�rKe�r(v�t)N(d(St; B

c
v; r; �; v�t)��

p
v � t):

(9)

The exercise boundary Bc
(�) of the call option solves the recursive integral equation

Bc
t �K = C(Bc

t ;K; r; �; t; B
c
(�)) (10)

subject to the boundary condition Bc
T = max(K; r

�
K). Let Bc

(K; r; �; t) denote the solution.

The EEP representation for the American put can be obtained by following the same approach

as for the call. Alternatively the put value can be deduced from the call formula by appealing to

the following result (McDonald and Schroder (1998)).

Theorem 2 (American PCS). Consider American put and call options with identical characteristics

K and T written on an asset with price S given by (1). Let P (S;K; r; �; t; Bp
(�)) and C(S;K; r; �; t; Bc

(�))
denote the respective price functions and Bp

(K; r; �; �) and Bc
(S; r; �; �) the corresponding immediate

exercise boundaries. Then

P (S;K; r; �; t; Bp
(K; r; �; �)) = C(K;S; �; r; t; Bc

(S; �; r; �)) (11)

and for all t 2 [0; T ]

Bp
(K; r; �; t) =

SK

Bc(S; �; r; t)
(12)

This result can again be demonstrated by substitution along the lines of the proof of theorem 1.

A more elegant approach relies on a change of measure detailed in the next section.

Hence, even for American options the value of a put is the same as the value of a call with strike

S, maturity date T , in an economy with interest rate � and in which the underlying asset price,

under the risk neutral measure, follows a geometric Brownian motion process with dividend rate r,

volatility � and initial value K. Furthermore the exercise boundary for the American put equals the

inverse of the exercise boundary for the American call with characteristics (S; �; r) multiplied by the

product SK.

Some intuition for this result rests on the properties of normal distributions. In models with

constant coe�cients (r; �; �) the value of put and call options can be expressed in terms of the

cumulative normal distribution. Combining the symmetry of the normal distribution with the sym-

metry of the put and call payo�s leads to the relationship between the option values and the exercise

boundaries.

A priori this intuition may suggest that the property does not extend beyond the �nancial market

model with constant coe�cients. As we show next this conjecture turns out to be incorrect.
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3 Put-Call Symmetry with Ito Price Processes.

In this section we demonstrate that a version of PCS holds under fairly general �nancial market

conditions. The key to the approach is the adoption of the stock as a new numeraire. Changes

of numeraire have been discussed thoroughly in the literature, in particular in Geman, El Karoui

and Rochet (1995). The extension of options' symmetry properties to general uncertainty structures

based on this change of numeraire is due to Schroder (1999). This section considers a special case

of Schroder, namely a market with Brownian �ltration.

Suppose an economy with �nite time period [0; T ], a complete probability space (
;F ; P ) and

a �ltration F(�). A Brownian motion process z is de�ned on (
;F) and takes values in R. The

�ltration is the natural �ltration generated by z and FT = F .
The �nancial market has a stochastic opportunity set and nonmarkovian price dynamics. The

underlying asset price follows the Ito process,

dSt = St[(rt � �t)dt+ �tdezt]; t 2 [0; T ];S0 given (13)

under the Q-measure. The interest rate r, the dividend rate � and the volatility coe�cient � are

progressively measurable and bounded processes of the Brownian �ltration F(�) generated by the

underlying Brownian motion process z. The process ez is a Q-Brownian motion.

At various stages of the analysis we will also be led to consider an alternative �nancial market

with interest rate �, in which the underlying asset price S� satis�es

dS�t = S�t [(�t � rt)dt+ �tdz
�
t ]; t 2 [0; T ];S�

0
given (14)

under some risk neutral measure Q�. In this market the asset has dividend rate r and volatility

coe�cient �. The process z� is a Brownian motion under the pricing measure Q�. Both z� and Q�

will be speci�ed further as we proceed.

We �rst state a relationship between the values of European puts and calls in the general �nancial

market model under consideration.

Theorem 3 (generalized European PCS). Consider a European put option with characteristics K

and T written on an asset with price S given by (13) in the market with stochastic interest rate r.

Let p(S;K; r; �;Ft) denote the put price process. Then

p(St;K; r; �;Ft) = c(S�t ; S; �; r;Ft) (15)

where c(S�t ; S; �; r;Ft) is value of a call with strike price S = St and maturity date T in a �nancial

market with interest rate � and in which the underlying asset price follows the Ito process (14) for

v 2 [t; T ] with initial value S�t = K and with z� de�ned by

dz�v = �dezv + �vdv (16)

for v 2 [0; T ], with z�
0
= 0:

This result extends the PCS property of the previous section to nonmarkovian economies with Ito

price processes and progressively measurable interest rates. The key behind this general equivalence

is a change of measure, detailed in the proof, which converts a put option in the original economy into

a call option with symmetric characteristics in the auxiliary economy. Note that the equivalence is

obtained by switching (S;K; r; �) to (S�; S; �; r), but keeping the trajectories of the Brownian motion

the same, i.e. the �ltration which is used to compute the value of the call in the auxiliary �nancial

market is the one generated by the original Brownian motion z. Thus information is preserved across

economies. In e�ect the change of measure creates a new asset whose price is the inverse of the

original asset price adjusted by a multiplicative factor which depends only on the initial conditions.

6



As we shall see below in the context of di�usion models the change of measure is instrumental in

proving the symmetry property without placing restrictions on the volatility coe�cient.

Proof of Theorem 3: In the original �nancial market the value pt � p(St;K; r; �;Ft) of the put

option with characteristics (K;T ) has the (present value) representation

pt = eE
"
exp(�

Z T

t

rvdv)(K � St exp(

Z T

t

�vdv +

Z T

t

�vdezv))+ j Ft

#

where � � r � � � 1

2
�2 and the expectation is taken relative to the equivalent martingale measure

Q. Simple manipulations show that the right hand side of this equation equals

eE
"
exp(�

Z T

t

(�v +
1

2
�2v)dv +

Z T

t

�vdezv)(K exp(�
Z T

t

�vdv �
Z T

t

�vdezv)� St)
+ j Ft

#

Consider the new measure

dQ�
= exp(�1

2

Z T

0

�2vdv +

Z T

0

�vdezv)dQ (17)

which is equivalent to Q. Girsanov's Theorem (1960) implies that the process

dz�v = �dezv + �vdv (18)

is aQ�-Brownian motion. Substituting (18) in the put pricing formula and passing to the Q�-measure

yields

pt = E�

"
exp(�

Z T

t

�vdv)(K exp(

Z T

t

(�v � rv �
1

2
�2v)dv +

Z T

t

�vdz
�
v)� St)

+ j Ft

#
: (19)

But the right hand side is the value of a call option with strike S = St, maturity date T in an

economy with interest rate �, asset price with dividend rate r and initial value S�t = K, and pricing

measure Q�.

An even stronger version of the preceding result is obtained if the coe�cients of the model are

adapted to the sub�ltration generated by the process z�. Let F�
(�) denote the �ltration generated by

this Q�-Brownian motion process.

Corollary 4 Suppose that the coe�cients (r; �; �) are adapted to the �ltration F�
(�). Then

p(St;K; r; �;Ft) = c(S�t ; S; �; r;F�
t )

where c(S�t ; S; �; r;F�
t ) is value of a call with strike price S = St and maturity date T in a �nancial

market with information �ltration F�
(�) generated by the Q�-Brownian motion process (16), interest

rate � and in which the underlying asset price follows the Ito process (14) with initial value S�t = K.

In the context of this Corollary part of the information embedded in the original information

�ltration generated by the Brownian motion z may be irrelevant for pricing the put option. Since all

the coe�cients are adapted to the sub�ltration generated by z� this is the only information which

matters in computing the expectation under Q� in (19).
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Remark 1 Note that the standard European PCS in the model with constant coe�cients is a special

case of this Corollary. Indeed in this setting direct integration over z� leads to the call value in the

auxiliary economy and the put value in the original economy.

Let us now consider the case of American options. For these contracts early exercise, prior to the

maturity date T , is under the control of the holder. At any time prior to the optimal exercise time

the put value Pt � P (St;K; r; �;Ft) in the original economy is (see Bensoussan (1984) and Karatzas

(1988))

Pt = sup
�2St;T

eE �exp(� Z �

t

rvdv)(K � St exp(

Z �

t

(rv � �v �
1

2
�2v)dv +

Z �

t

�vdezv))+ j Ft

�

where St;T denotes the set of stopping times of the �ltration F(�) with values in [t; T ]. Using the

same arguments as in the proof of Theorem (3) we can write

Pt = sup
�2St;T

E�

�
exp(�

Z �

t

�vdv)(K exp(

Z �

t

(�v � rv �
1

2
�2v)dv +

Z �

t

�vdz
�
v)� St)

+ j Ft

�

where the expectation is relative to the equivalent measure Q� and conditional on the information

Ft. Since the change of measure performed does not a�ect the set of stopping times over which the

holder optimizes the following result holds.

Theorem 5 (generalized American PCS). Consider an American put option with characteristics K

and T written on an asset with price S given by (13) in the market with stochastic interest rate r.

Let P (S;K; r; �;Ft) denote the American put price process and �p(K; r; �) the optimal exercise time.

Then, prior to exercise, the put price is

P (St;K; r; �;Ft) = C(S�t ; S; �; r;Ft) (20)

where C(S�t ; S; �; r;Ft) is the value of an American call with strike price S = St and maturity date

T in a �nancial market with interest rate � and in which the underlying asset price follows the Ito

process (14) with initial value S�t = K and with z� de�ned by (16). The optimal exercise time for

the put option is

�p(S;K; r; �) = � c(K;S; �; r) (21)

where � c(S; �; r) denotes the optimal exercise time for the call option.

Remark 2 Consider the model with constant coe�cients (r; �; �). In this setting the optimal exercise

time for the call option in the auxiliary �nancial market is

� c(K;S; �; r) = infft 2 [0; T ] : K exp((� � r � 1

2
�2)t+ �z�t ) = Bc

(S; �; r; t)g

On the other hand the optimal exercise time for the put option in the original �nancial market is

�p(S;K; r; �) = infft 2 [0; T ] : S exp((r � � � 1

2
�2)t+ �ezt) = Bp

(K; r; �; t)g

where Bp
(K; r; �; t) is the put exercise boundary. Using the de�nition of z� in (16) we conclude

immediately that

Bp
(K; r; �; t) =

SK

Bc(S; �; r; t)
:
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3.1 Di�usion Financial Market Models.

Suppose that the stock price satis�es the stochastic di�erential equation

dSt = St[(r(St; t)� �(St; t))dt+ �(St; t)dezt]; t 2 [0; T ];S0 given (22)

under the Q-measure. In this market the interest rate r may depend on the stock price and along

with the other coe�cients of (22) satis�es appropriate Lipschitz and Growth conditions for the

existence of a unique strong solution (see Karatzas and Shreve (1988)). We assume that the solution

is continuous relative to the initial conditions.

Since this markovian �nancial market is a special case of the general model of the previous section

PCS holds. However, in the model under consideration the exercise regions of options have a simple

structure which leads to a clear comparison between the put and the call exercise policies.

De�ne the discount factor

Rt;s = exp(�
Z s

t

r(Sv ; v)dv)

for t; s 2 [0; T ] and the Q-martingale

Mt;s � exp(�1

2

Z s

t

�(Sv; v)
2dv +

Z s

t

�(Sv; v)dezv)
for t; s 2 [0; T ]; s � t.

Consider an American call option and let E denote the exercise set. Continuity of the strong

solution of (22) relative to the initial conditions implies that the option price is continuous and that

the exercise region is a closed set. Thus we can meaningfully de�ne its boundary Bc.2 Let E(t)
denote the t-section of the exercise region. The EEP representation for a call option with strike K

and maturity date T is

C(St;K; r; �; t; B
c
(�)) = c(St;K; r; �; t) + �(St;K; r; �; t; B

c
(�)) (23)

where C(S;K; r; �; t; Bc
(�)) is the value of the American call, c(S;K; r; �; t) represents the value of

the European call

c(St;K; r; �; t) = eE[(St exp(�
Z T

t

�(Sv ; v)dv)Mt;T �KRt;T )
+ j St] (24)

and �t � �(St;K; r; �; t; B
c
(�)) is the early exercise premium

�t = eE
"Z T

t

(�(Sv; v)St exp(�
Z s

t

�(Sv; v)dv)Mt;s � r(Ss; s)KRt;s)1fSs2E(s)gds j St

#
: (25)

In these expressions dependence on r and � is meant to represent dependence on the functional

form of r(�) and �(�). The boundary Bc
(�) of the exercise set for the call option solves the recursive

integral equation

Bc
t �K = C(Bc

t ;K; r; �; t; B
c
(�)) (26)

subject to the boundary condition Bc
T = max(K;

r(Bc
T ;T )

�(Bc
T ;T )

K). Let Bc
(K; r; �; t) denote the solution.

The optimal exercise policy for the call is to exercise at the stopping time

� c(S;K; r; �) = infft 2 [0; T ] : SR�1

0;t exp(�
Z t

0

�(Sv ; v)dv)M0;t = Bc
(K; r; �; t)g: (27)

In this context put-call symmetry leads to

2If the exercise region is up-connected the exercise boundary is unique. Failure of this property may imply the
existence of multiple boundaries.
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Proposition 6 Consider an American put option with characteristics K and T written on an asset

with price S given by (22) in the market with interest rate r(S; t). Let P (S;K; r; �; t) denote the

American put price process and �p(S;K; r; �) the optimal exercise time. Then, prior to exercise, the

put price is

P (St;K; r; �; t) = C(S�t ; S; �; r; t) (28)

where C(S�t ; S; �; r; t) is value of an American call with strike price S = St and maturity date T in

a �nancial market with stochastic interest rate � and in which the underlying asset price S� satis�es

the stochastic di�erential equation

dS�v = S�v

��
�(

1

S�v
; v)� r(

1

S�v
; v)

�
dv + �(

1

S�v
; v)dz�v

�
; for v 2 [t; T ] (29)

with initial value S�t = K and with z� de�ned by (16). The optimal exercise time for the put option

is �p(S;K; r; �) = � c(K;S; �; r) and the exercise boundaries are related by

Bp
(K; r; �; t) =

SK

Bc(S; �; r; t)
(30)

In the �nancial market setting of (22) all the information relevant for future payo�s is embedded

in the current stock price. Any strictly monotone transformation of the price is also a su�cient

statistic. Thus the passage from the original economy to the auxiliary economy with stock price (29)

preserves the information required to price derivatives with future payo�s. No information beyond

the current price S�t is required to assess the correct evolution of the coe�cients of the underlying

asset price process. This stands in contrast with the general model with Ito price processes in which

the path of the Brownian motion needs to be recorded in the auxiliary economy for proper evaluation

of future distributions.

Note also that the change of measure converts the original underlying asset into a symmetric

asset with inverse price up to a multiplicative factor depending only on the initial conditions. Since

the change of measure can be performed independently of the structure of the coe�cients the results

are valid even in the absence of symmetry-like restrictions on the volatility coe�cient.

Proof of Proposition 6: The �rst part of the proposition follows from Theorem 5. To prove the

relationship between the exercise boundaries note that the call boundary at maturity equals

Bc
= max(K; bc)

where bc solves the nonlinear equation

r(
SK

bc
; T )bc � �(

SK

bc
; T )S = 0:

In this expression we used the relation ST =
SK
S�T

. Now with the change of variables bp =
SK
bc

it is

clear that bp solves

r(bp; T )K � �(bp; T )bp = 0

and that the put boundary at the maturity date satis�es (30). To establish the relation prior to

the maturity date it su�ces to use the recursive integral equation for the call boundary, pass to the

Q�-measure and perform the change of variables indicated. The resulting expression is the recursive

integral equation for the put boundary.

The results in this section can be easily extended to multivariate di�usion models (S; Y ) where Y

is a vector of state variables impacting the coe�cients of the underlying asset price process. Passage

to the measure Q�, in this case, introduces a risk premium correction in the state variables processes.

Multivariate models in that class are discussed extensively in Schroder (1999).
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4 Options with Random Expiration Dates.

We now consider a class of American derivatives which mature automatically if certain prespeci�ed

conditions are satis�ed. Let � l denote a stopping time of the �ltration and let H = fHt : t 2 [0; T ]g
denote a progressively measurable process. A call option with maturity date T , strike K, automatic

liquidation time � l and liquidation payo� H pays (S�K)
+ if exercised by the holder at date t < � l.

If � l materializes prior to T the option automatically matures and pays o� H� l . A random maturity

put option with characteristics (K;T; � l; H) has similar provisions but pays (K � S)+ if exercised

prior to the automatic liquidation time � l. Options with such characteristics are referred to as

random maturity options.

Popular examples of such contracts are barrier options such as down and out put options and

up and out call options. Both of these contracts become worthless when the underlying asset price

reaches a prespeci�ed level L (i.e. the liquidation payo� is a constant H = 0).

Another example is an American capped call option with automatic exercise at the cap L. This

option is automatically liquidated at the random time

� l = �L � infft 2 [0; T ] : St = Lg

or �L =1 if no such time materializes in [0; T ] and pays o� the constant H = L�K in that event.

If �L > T the option payo� is (S�K)
+.3 Capped options with growing caps and automatic exercise

at the cap are examples in which the automatic liquidation payo� is time dependent

Consider again the general �nancial market model with underlying asset price given by (13).

Recall the de�nitions of the discount factor

Rt;s = exp(�
Z s

t

rvdv)

for t; s 2 [0; T ] and the Q-martingale

Mt;s � exp(�1

2

Z s

t

�2vdv +

Z s

t

�vdezv)
for t; s 2 [0; T ]; s � t.

Let Pt = P (S;K; T; � l; H; r; �;Ft) denote the value of an American random maturity put with

characteristics (K;T; � l; H). In this �nancial market the put value is given by

Pt = sup
�2St;T

eE
"
Rt;�

�
K � StR

�1

t;� exp(�
Z �

t

�vdv)Mt;�

�+

1f�<�lg +Rt;�lH� l1f���lg jFt

#

Performing the same change of measure as in the previous section enables us to rewrite the put value

Pt as

sup
�2St;T

eE �exp(� Z �

t

�vdv)Mt;�

�
KRt;� exp(

Z �

t

�vdv)M
�1

t;� � St)
+
1f�<�lg +

StH� l

S� l
1f���lg

�
jFt

�

= sup
�2St;T

E�

�
exp(�

Z �

t

�vdv)

�
(KRt;� exp(

Z �

t

�vdv)M
�1

t;� � St)
+
1f�<� lg +H�

� l
1f���lg

�
jFt]

�

where we de�ne the stochastic process H� as

3Note that, in the case of constant cap, an American capped call option without an automatic exercise clause when
the cap is reached is indistinguishable from an American capped call option with an automatic exercise provision at
the cap but otherwise identical features. It is indeed easy to show that the optimal exercise time for such an option is
the minimum of the hitting time of the cap and the optimal exercise time for an uncapped call option with identical
features (see Broadie and Detemple (1995) for a derivation of this result in a market with constant coe�cients).
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H�
v =

StHv

Sv

for v 2 [t; T ].

With these transformations it is apparent that the following result holds.

Theorem 7 (random maturity options PCS). Let � l denote a stopping time of the �ltration and let

H = fHt : t 2 [0; T ]g be a progressively measurable process. Consider an American random maturity

put option with maturity date T , strike K, automatic liquidation time � l and liquidation payo� H,

written on an asset with price S given by (13) in the market with stochastic interest rate r. Denote

the put price by P (S;K; T; � l; H; r; �;Ft) and the optimal exercise time by �p(S;K; T; � l; H; r; �).

Then, prior to exercise, the put price equals

P (St;K; T; � l; H; r; �;Ft) = C(S�t ; S; T; �
�
l ; H

�; �; r;Ft) (31)

where C(S�t ; S; T; �
�
l ; H

�; �; r;Ft) is the value of an American random maturity call with strike price

S = St, maturity date T , automatic liquidation time ��l and liquidation payo� H� in a �nancial

market with interest rate � and in which the underlying asset price follows the Ito process (14) with

initial value S�t = K and with z� de�ned by (16). The liquidation payo� is given by

H�
t =

SHt

St
=
S�tHt

K

and the liquidation time is ��l = � l. The optimal exercise time for the put option is

�p(S;K; � l; H; r; �) = �c(K;S; ��l ; H
�; �; r) (32)

where � c(K;S; ��l ; H
�; �; r) denotes the optimal exercise time for the random maturity call option.

Remark 3 Suppose that the automatic liquidation provision of the random maturity put is de�ned

as

� l = infft 2 [0; T ] : St 2 Ag

where A is a closed set in R+ , i.e. � l is the hitting time of the set A. Then the liquidation time of

the corresponding random maturity call can be expressed in terms of the underlying asset price in

the auxiliary market as

��l = infft 2 [0; T ] : S�t 2 A�g

where A� = fx 2 R
+

: x =
KS
y

and y 2 Ag. Given the de�nition of the process for S� and the

fact that the information �ltration is the same in the auxiliary market it is immediate to verify that

��l = � l:

As an immediate corollary of Theorem 7 we get the symmetry property for down and out put

options and up and out call options. This generalizes results of Gao, Huang and Subrahmanyam

(2000) who consider barrier options when the underlying asset price follows a geometric Brownian

motion process.

Corollary 8 (barrier options PCS). Let �L = infft 2 [0; T ] : St = Lg. Consider an American

down and out put option with maturity date T , strike price K and automatic liquidation time �L
(and liquidation payo� H = 0), written on an asset with price S given by (13) in the market with

stochastic interest rate r. Prior to exercise or liquidation, the put price equals

P (St;K; T; �L; 0; r; �;Ft) = C(S�t ; S; T; �L� ; 0; �; r;Ft) (33)
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where C(S�t ; S; T; �
�
L; 0; �; r;Ft) is the value of an American up and out call with strike price S = St,

maturity date T and automatic liquidation time �L� (and liquidation payo� H�
= 0) in a �nancial

market with interest rate � and in which the underlying asset price follows the Ito process (14) with

initial value S�t = K and with z� de�ned by (16). The liquidation time is

�L� = infft 2 [0; T ] : S�t = L� � KS

L
g

The optimal exercise time for the put option is

�p(S;K; �L; 0; r; �) = � c(K;S; �L� ; 0; �; r) (34)

where � c(K;S; �L� ; 0; �; r) denotes the optimal exercise time for the up and out call option.

Another corollary covers the case of American capped put and call options.

Corollary 9 (capped options PCS). Let �L = infft 2 [0; T ] : St = Lg. Consider an American

capped put option with maturity date T , strike price K, cap L < K and automatic liquidation time

�L (and liquidation payo� H = K�L), written on an asset with price S given by (13) in the market

with stochastic interest rate r. Prior to exercise, the put price equals

P (St;K; T; �L; 0; r; �;Ft) = C(S�t ; S; T; �L� ; 0; �; r;Ft) (35)

where C(S�t ; S; T; �
�
L; 0; �; r;Ft) is the value of an American capped call with strike price S = St,

maturity date T , cap L� =
KS
L

and automatic liquidation time �L� (and liquidation payo� H�
=

L��S) in a �nancial market with interest rate � and in which the underlying asset price follows the

Ito process (14) with initial value S�t = K and with z� de�ned by (16). The liquidation time is

�L� = infft 2 [0; T ] : S�t = L� � KS

L
g

The optimal exercise time for the capped put option is

�p(S;K; �L; 0; r; �) = � c(K;S; �L� ; 0; �; r) (36)

where � c(K;S; �L� ; 0; �; r) denotes the optimal exercise time for the capped call option.

5 Multiasset Derivatives.

In this section we consider American-style derivatives whose payo�s depend on the values of n

underlying asset prices.

The setting is as follows. The underlying �ltration is generated by an n-dimensional Brownian

motion process z. The price Sj of asset j follows the Ito process

dS
j
t = S

j
t [(rt � �

j
t )dt+ �

j
tdezt] (37)

where r, �j and �j are progressively measurable and bounded processes, j = 1; :::; n. The �nancial

market is complete, i.e. the volatility matrix � of the vector of prices is invertible. Let S =

(S1; :::; Sn) denote the vector of prices.

The derivatives under consideration have payo� function f(S;K) with parameter K. In some

applications the parameter K can be interpreted as a strike price; in others it represents a cap. We

assume that the function f is continuous and homogeneous of degree one in the n+ 1-dimensional

vector (S;K). Examples of such contracts are call and put options on the maximum or the minimum

of n assets, spread options, exchange options, capped exchange options and options on a weighted
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average of assets. Capped multiasset options such as capped options on the maximum or minimum

of multiple assets are also obtained if K is a vector.

For a constant � de�ne � �j S as

� �j S = (S1; :::; Sj�1; �Sj ; Sj+1; :::; Sn)

i.e. � �j S represents the vector of prices whose jth component has been rescaled by the factor �.

Also for a given f -claim with parameter K and for any j we de�ne the associated f j-claim obtained

by permutation of the jth argument and the parameter

f j(S;K) = f(�j �j S; Sj)

with �j =
K
Sj
, j = 1; :::; n.

For the contracts under consideration the approach of the previous sections applies and leads to

the following symmetry results.

Theorem 10 Consider an American f-claim with maturity date T and a continuous and homoge-

neous of degree one payo� function f(S;K). Let V (S;K; r; �;Ft) denote the value of the claim in

the �nancial market with �ltration F(�), asset prices St satisfying (37) and progressively measurable

interest rate r. Pick some arbitrary index j and de�ne

�j � K

Sj
and �j(�) � r

�j
:

Prior to exercise the value of the claim is

V (St;K; r; �;Ft) = V j
(S�t ; S

j ; �j ; �j(�) �j �;Ft)

where V j
(S�t ; S

j ; �j ; �j(�) �j �;Ft) is the value of the f
j-claim with parameter Sj and maturity date

T in an auxiliary �nancial market with interest rate �j and in which the underlying asset prices

follow the Ito processes�
dSi�v = Si�v [(�jv � �iv)dv + (�jv � �iv)dz

j�
v ]; for i 6= j and v 2 [t; T ]

dSj�v = Sj�v [(�jv � rv)dv + �jvdz
j�
v ]; for i = j and v 2 [t; T ]

with respective initial conditions Si�t = Si for i 6= j and S
j�
t = K for i = j. The process zj� is

de�ned by

dzj�v = �dezv + �j
0

v dv; for v 2 [0; T ]; zj�
0

= 0:

The optimal exercise time for the f-claim is the same as the optimal exercise time for the f j-claim

in the auxiliary �nancial market.

Theorem 10 is a natural generalization of the one asset case. It establishes a symmetry property

between a claim with homogeneous of degree one payo� in the original �nancial market and related

claims whose payo�s are obtained by permutation of the original one in auxiliary �nancial markets

j = 1; :::; n. In the jth auxiliary market the interest rate is the dividend rate of asset j in the original

economy, the dividend rate of asset i is �i for i 6= j and r for asset j, and the volatility coe�cients

of asset prices are �j � �i for i 6= j and �j for asset j. The initial (date t) value of asset j is the

payo� parameter K of the f -claim under consideration. Clearly the results of the previous sections

are recovered when we specialize the payo� function to the earlier cases considered.

Proof of Theorem 10: De�ne Sj = S
j
t . Proceeding as in section 2 we can write the value of the

contract

V (St;K; r; �;Ft) = sup
�2St;T

eE �exp(� Z �

t

rvdv)f(S� ;K) jFt

�
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= sup
�2St;T

eE �exp(� Z �

t

rvdv)
Sj�
Sj

f(S�
Sj

S
j
�

;K
Sj

S
j
�

) jFt

�

= sup
�2St;T

Ej�

�
exp(�

Z �

t

�jvdv)f(S�
Sj

S
j
�

; Sj�� ) jFt

�

= sup
�2St;T

Ej�

�
exp(�

Z �

t

�jvdv)f
j
(S�� ; S

j
) jFt

�

= V j
(S�t ; S

j ; �j ; �j(�) �j �;Ft)

The second equality above uses the homogeneity property of the payo� function, the third is based

on the de�nition Sj�� = K Sj

S
j
�

and the passage to the measure Qj� and the fourth relies on the

de�nition of the permuted payo� f j . The �nal equality uses the de�nition of the value function V j .

To complete the proof of the theorem it su�ces to use Ito's lemma to identify the dynamics of

the asset prices in the auxiliary economy. This leads to the processes stated in the theorem.

The interest of the Theorem becomes apparent when we specialize the payo� function to familiar

ones. The following results are valid.

1. Call max-option on two assets (f(S1; S2;K) = (max(S1; S2
) � K)

+): One symmetric con-

tract is an option to exchange the maximum of an asset and cash against another asset (or,

equivalently, an exchange option with put �oor) whose payo� is

f2(S1�; S2�;K 0
) = (max(S1�;K 0

)� S2�
)
+
= (S1� � S2�

)
+ _ (K 0 � S2�

)
+

where K 0
= S2 in the auxiliary �nancial market obtained by taking j = 2 as reference. A

similar contract emerges if j = 1 is taken as reference. The Theorem implies that the valuation

of any one of these contracts is obtained by a simple reparametrization of the values of the

symmetric contracts.

2. Exchange option on two assets (f(S1; S2
) = (S1 � S2

)
+): A symmetric contract is a standard

call option with payo�

f2(S1�;K
0

) = (S1� �K 0
)
+

and K 0
= S2 in auxiliary market j = 2 in which S1� satis�es

dS1�
t = S1�

t [(�2t � �1t )dt+ (�2t � �1t )dz
2�
t ] = S1�

t [(�2t � �1t )dt+(�2
1t ��1

1t)dz
2�
1t +(�2

2t ��1
2t)dz

2�
2t ]:

In the second equality we used �i = (�i
1
; �i

2
), for i = 1; 2: Bjerksund and Stensland (1993)

prove this result for �nancial markets with constant coe�cients using PDE methods (see also

Rubinstein (1991) for a proof in a binomial setting and Broadie and Detemple (1997) for a

proof based on the EEP representation). The case of European options is treated in Margrabe

(1978). Our Theorem establishes the validity of this symmetry in a much broader setting. The

second symmetric contract is a standard put option with strike price K 0
= S1 in auxiliary

market j = 1.

3. Capped exchange option with proportional cap (f(S1; S2
) = LS2 ^ (S1 � S2

)
+): In this

instance one symmetric contract (in auxiliary �nancial market j = 2) is a capped call option

with constant cap whose payo� is

f2(S1�;K 0
) = LK 0 ^ (S1� �K 0

)
+

where K 0
= S2. The Theorem thus provides a simple and immediate proof of this result

derived in Broadie and Detemple (1997) for models with constant coe�cients. Alternatively

we can also consider the symmetric contract in the auxiliary market j = 1. We �nd the payo�

f1(K 0; S2�
) = LS2� ^ (K 0 � S2�

)
+;
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with K 0
= S1. In other words the capped exchange option with proportional cap is symmetric

to a put option with proportional cap in the market in which asset 1 is chosen as the numeraire.

4. Capped exchange option with constant cap (f(S1; S2;K) = (S1 ^K � S2
)
+): The symmetric

contract in any auxiliary market j = 2 is a call option on the minimum of two assets with

payo�

f2(S1�; S2�;K 0
) = (S1� ^ S2� �K 0

)
+

where K 0
= S2. An analysis of min-options in the context of the model with constant coe�-

cients is carried out in Detemple and Tian (1998).

5. The symmetry relations of theorem 10 also apply to multiasset derivatives whose payo�s are

homogeneous of degree one relative to a subset of variables. An interesting example is provided

by quantos. These are derivatives written on foreign asset prices or indices but whose payo�

is denominated in domestic currency. For instance a quanto call option on the Nikkei pays o�

(S �K)
+ dollars at the exercise time where S is the value of the Nikkei quoted in Yen. The

payo� in foreign currency is e(S �K)
+ where e is the Y/$ exchange rate. From the foreign

perspective the contract is homogeneous of degree � = 2 in the triplet (e; S;K). However,

for interpretation purposes it is more advantageous to treat it as a contract homogeneous of

degree � = 1 in the exchange rate e. If rf denotes the foreign interest rate and the dividend

rate on the index is � the American quanto call is valued at

C
Q
t = sup

�2St;T

eEf

�
exp(�

Z �

t

rfv dv)e� (S� �K)
+ jFt

�

in Yen where the expectation is taken relative to the foreign risk neutral measure and�
dSt = St[(r

f
t � �t)dt+ �tdezft ]

det = et[(r
f
t � rt)dt+ �etdezft ]:

Here r is the domestic interest rate and �; �e are the volatility coe�cients of the foreign index

and the exchange rate. The process ezf is a 2-dimensional Brownian motion relative to the

foreign risk neutral measure. Using the exchange rate as new numeraire yields

C
Q
t = sup

�2St;T

Ef�

�
exp(�

Z �

t

rvdv)(S� �K)
+ jFt

�

where

dSt = St

h
(r
f
t � �t + �t�

e0
t )dt� �tdz

f�
t

i
:

Hence, from the foreign perspective the quanto call option is symmetric to a standard call

option on an asset paying dividends at the rate � � ��e0 in an auxiliary �nancial market

with interest rate r. Similarly a quanto forward contract is symmetric to a standard forward

contract in the same auxiliary �nancial market. The forward price is

Ft =
Ej�

�
exp(�

R �
t
rvdv)S� jFt

�
Ej�

�
exp(�

R �
t
rvdv) jFt

� :

For the case of constant coe�cients Ft = St exp((r
f ��+��e0)(T �t)). Alternative representa-

tions for these prices can be derived by using the homogeneity of degree 2 relative to (e; S;K);

they are discussed in section 7.

6. Lookback options: The exercise payo� depends on an underlying asset value and its sample

path maximum or minimum. A lookback put pays o� f(Sv;Mv) = (Mv � Sv)
+ where Mv =
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sups2[0;v] Ss; the lookback call payo� is f(Sv ;mv) = (Sv � mv)
+ where mv = infs2[0;v] Ss.

Even though there is only one underlying asset the contract depends on 2 state variables,

namely the underlying asset price and one of its sample path statistics. Since renormalizations

do not a�ect the order of a sample path statistic it is easily veri�ed that the lookback call is

symmetric to a put option on the minimum of the price expressed in a new numeraire (S�m�
v)

where m�
v = (S=Sv) infs2[0;v] Ss = infs2[0;v](SSs=Sv). Likewise, a lookback put is related to a

call option on the maximum of the price expressed in a new numeraire. European Lookback

option pricing is discussed in Goldman, Sosin and Gatto (1979) and Garman (1989) in the

context of the model with constant coe�cients. Similar symmetry relations can be established

for average options (Asian options).

6 Occupation Time Derivatives.

An occupation time derivative is a derivative whose payo� has been modi�ed to re�ect the time spent

by the underlying asset price in certain regions of space. Various special cases have been considered

in the recent literature such as Parisian and Cumulative Barrier options (Chesney, Jeanblanc-Picque

and Yor (1997)), Step options (Linetsky (1999)) and Quantile options (Miura (1992), Akahori (1995),

Dassios (1995)). The general class of occupation time claims is introduced by Hugonnier (1998) who

discusses their valuation and hedging properties. So far the literature has focused exclusively on

European-style derivatives when the underlying asset follows a geometric Brownian motion process.

In this section we provide symmetry results applying to both European and American-style contracts

and when the underlying asset follows an Ito process. Extensions to multiasset occupation time

derivatives are also discussed.

We consider an American occupation time f -claim with exercise payo�

f(S;K;OS;A
)

at time t, where S satis�es the Ito process (1), K is a constant representing a strike price or a cap

and OS;A is an occupation time process de�ned by

O
S;A
t =

Z t

0

1fSv2Avgdv; t 2 [0; T ]:

for some random, progressively measurable, closed set A(�; �) : [0; T ] � 
 ! B(R+
). Thus OS;A

t

represents the amount of time spent by S in the set A during the time interval [0; t]. Examples treated

in the literature involve occupation times of constant sets of the form A = fx 2 R
+

: x � Lg or

A = fx 2 R+
: x � Lg with L constant, which represent time spent above or below a constant barrier

L. Simple generalizations of these are when the barrier L is a function of time or a progressively

measurable stochastic process.

The value of this American claim is

V (St;K;O
S;A; r; �;Ft) = sup

�2St;T

eE �exp(� Z �

t

rvdv)f(S� ;K;O
S;A
� ) j Ft

�
:

Assume that the claim is homogeneous of degree one in (S;K). Then we can perform the usual

change of measure and obtain

Theorem 11 Consider an American occupation time f-claim with maturity date T and a payo�

function f(S;K;O) which is homogeneous of degree one with respect to (S;K): Let V (S;K; OS;A;

r; �;Ft) denote the value of the claim in the �nancial market with �ltration F(�), asset price S

satisfying (1) and progressively measurable interest rate r. Prior to exercise the value of the claim

is

V (St;K;O
S;A; r; �;Ft) = V 1

(S�t ; S; O
S�;A� ; �; r;Ft)
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where A� = fA�(v; !); v 2 [t; T ]g with A�(v; !) = fx 2 R+
: x =

KS
y

and y 2 A(v; !)g and OS�;A�

t �
O
S;A
t . Also V 1

(S�t ; S; O
S�;A� ; �; r;Ft) is the value of the permuted claim f1(S�t ; S; O

S�;A�

t ) = f(S;K S
St
;

O
S�;A�

t ) with parameter S = St, occupation time O
S�;A�

t , and maturity date T in an auxiliary �nan-

cial market with interest rate � and in which the underlying asset price follows the Ito process

dS�v = S�v [(�v � rv)dt+ �vdz
�
v ]; for v 2 [t; T ]

with initial condition S�t = K. The process z� is de�ned by dz�v = �dezv + �vdv; v 2 [0; T ]; z�
0
= 0:

The optimal exercise time for the f-claim is the same as the optimal exercise time for the f1-claim

in the auxiliary �nancial market.

Proof of Theorem 11: Fix t 2 [0; T ] and set O
S;A
t = O

S�;A�

t . For any stopping time � 2 St;T the

occupation time can be written

OS;A
� = O

S;A
t +

Z �

t

1fSv2Avgdv = O
S�;A�

t +

Z �

t

1fS�v2A
�
vg
dv = OS�;A�

�

where S�v = KS=Sv; v 2 [t; T ] and OS�;A�

� denotes the occupation time of the random set A� by the

process S�. Performing the change of measure leads to the results.

Special cases of interest are as follows.

1. Parisian options (Chesney, Jeanblanc-Picque and Yor (1997)): Let g(L; t) = supfs � t : Ss =

Lg denote the last time the process S has reached the barrier L (if no such time exists set

g(L; t) = t) and consider the random time

O
S;A+

(t;L)
t =

Z t

g(L;t)

1fSv�Lgdv =

Z t

0

1f(v;Sv)2A+(t;L)gdv

where A+
(t; L) = f(v; S) : v � g(L; t); S � Lg. Note that O

S;A+
(t;L)

t measures the age of a

current excursion above the level L. A Parisian up and out call with window D has null payo�

as soon as an excursion of age D above L takes place. If no such event occurs prior to exercise

the exercise payo� is (S �K)
+. A Parisian down and out call with window D looses all value

if there is an excursion of length D below the prespeci�ed level L. Parisian put options are

similarly de�ned. Fix t 2 [0; T ] and suppose that no excursion of age D has occurred before t.

The symmetry relation for Parisian options can be stated as

C(St;K;O
S;A+

(t;L)
t ; D; r; �;Ft) = P (S�t ; S; O

S�;A�(t;KS=L)
t ; D; �; r;Ft): (38)

This follows from g(L; t) = supfs � t : Ss = Lg = supfs � t : S�s = KS=Lg = g�(KS=L) and

O
S;A+

(t;L)
t =

Z t

g(L;t)

1fKS=L�KS=Svgdv =

Z t

g�(KS=L;t)

1fKS=L�S�vg
dv = O

S�;A�(t;KS=L)
t ;

with A�(t;KS=L) = f(v; S�) : v � g(KS=L; t);KS=L � S�g, which ensures that the stopping

times

Ht(L;D) = inffv 2 [t; T ] : O
S;A+

(v;L)
v � Dg; and

H�
t (KS=L;D) = inffv 2 [t; T ] : O

S�;A�(v;KS=L)
v � Dg

at which the call and put options loose all value coincide. In summary a Parisian up and out

call with window D has the same value as a Parisian down and out put with window D, strike

S = St, occupation time O
S�;A�(t;KS=L)
t , and maturity date T in an auxiliary �nancial market

with interest rate � and in which the underlying asset price follows the Ito process described in

theorem 11. Chesney, Jeanblanc-Picque and Yor derive this symmetry property for European

Parisian options in a �nancial market with constant coe�cients. In this context they also

provide valuation formulas for such contracts involving Laplace transforms.
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2. Cumulative (Parisian) Barrier options (Chesney, Jeanblanc-Picque and Yor (1997)): The con-

tract payo� is a�ected by the (cumulative) amount of time spent above or below a constant

barrier L. For instance let A�(L) = fx 2 R+
: (x � L)� � 0g and consider a call option that

pays o� if the amount of time spent above L exceeds some prespeci�ed level D (up and in

call). The following symmetry result applies:

C(St;K;O
S;A+

(L)
t ; D; r; �;Ft) = P (S�t ; S; O

S�;A�(KS=L)
t ; D; �; r;Ft): (39)

Here the left hand side is the value of the cumulative barrier call with payo� (S�K)
+
1
fOS;A+(L)�Dg

in the original economy; the right hand side is the value of a cumulative barrier put option

with payo� (S�S�)+1
fOS�;A�(KS=L)�Dg

in an auxiliary economy with interest rate �, dividend

r and asset price process S�. Chesney, Jeanblanc-Picque and Yor (1997) and Hugonnier (1998)

examine the valuation of European cumulative barrier options when the underlying asset price

follows a Geometric Brownian motion process. European cumulative barrier digital calls and

puts satisfy similar symmetry relations and are discussed by Hugonnier. An analysis of these

contracts is relegated to the next section since their payo�s are homogeneous of degree zero.

3. Step options (Linetsky (1999)): A step option is discounted at a rate which depends on the

occupation time of a set. For instance the step call option payo� is (S�K)
+
exp(��OS;A�(L)

t )

for some � > 0 where A�(L) is de�ned above. Again the PCS relation (39) holds in this

case. Put and call step options are special cases of the occupation time derivatives in which

the payo� function involves exponential discounting. Closed form solutions are provided by

Linetsky for Geometric Brownian motion price process.

Occupation time derivatives can be easily generalized to the multiasset case. For a progressively

measurable stochastic closed set A 2 Rn
+
and a vector of asset prices S 2 B(Rn

+
) a multiasset f -claim

has payo� f(S;K;OS;A
) where

O
S;A
t =

Z t

0

1fSv2Avgdv; t 2 [0; T ]:

A natural generalization of theorem 10 is

Theorem 12 Consider an American occupation time f-claim with maturity date T and a payo�

function f(S;K;OS;A
) which is homogeneous of degree one in (S;K). Let V (S;K;OS;A; r; �;Ft)

denote the value of the claim in the �nancial market with �ltration F(�), asset prices S satisfying

(37) and progressively measurable interest rate r. Pick some arbitrary index j and de�ne

�j � K

Sj
and �j(�) � r

�j
:

Prior to exercise the value of the multiasset occupation time f-claim is

V (St;K;O
S;A; r; �;Ft) = V j

(S�t ; S
j ; OS�;A� ; �j ; �j(�) �j �;Ft)

where A� = fA�(v; !); v 2 [t; T ]g with A�(v; !) = fx 2 R
n
+

: xi =
yiS
yj
; for i 6= j; xj =

KS
yj

and

y = (y1; :::; yn) 2 A(v; !)g and O
S�;A�

t � O
S;A
t . Also V j

(S�t ; S
j ; O

S�;A�

t ; �j ; �j(�) �j �;Ft) is the

value of the f j-claim with parameter Sj = S
j
t , maturity date T and occupation time O

S�;A�

t in an

auxiliary �nancial market with interest rate �j and in which the underlying asset prices follow the

Ito processes �
dSi�v = Si�v [(�jv � �iv)dv + (�jv � �iv)dz

j�
v ]; for i 6= j and v � t

dSj�v = Sj�v [(�jv � rv)dv + �jvdz
j�
v ]; for i = j and v � t
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with respective initial conditions Si for j 6= i and K for j = i. The process zj� is de�ned by

dzj�v = �dezv + �j
0

v dv

for all v 2 [0; T ]; z
j�
0

= 0. The optimal exercise time for the f-claim is the same as the optimal

exercise time for the f j-claim in the auxiliary �nancial market.

Some particular cases are the natural counterpart of standard multiasset options.

1. Cumulative barrier max- and min-options: When there are two underlying assets call options

in this category have payo� functions of the form (S1

t _ S2

t �K)
+
1
fO

S;A
t �bg

(max-option) or

(S1

t ^ S2

t �K)
+
1
fO

S;A
t �bg

(min-option), where b 2 [0; T ]. Similarly for put options. It is easily

veri�ed that a cumulative barrier call max-option is symmetric to a cumulative barrier option

to exchange the maximum of an asset and cash against another asset for which the occupation

time has been adjusted.

2. Cumulative barrier exchange options: The payo� function takes the form (S1 � S2
)1
fO

S;A
t �bg

.

This exchange option is symmetric to cumulative barrier call and put options with suitably

adjusted occupation times.

3. Quantile options (Miura (1992), Akahori (1995), Dassios (1995)): An �-Quantile call option

pays o� (M(�; t) �K) upon exercise where M(�; t) = inffx :
R t
0
1fSv�xgdv > �tg = inffx :

O
S;A�(x)
t > �tg. Consider an �-Quantile strike put with payo� (M(�; t)� St). Note that

M(�; t) = inffx :

Z t

0

1fSv�xgdv > �tg = inffx :

Z t

0

1fSSv=St�Sx=Stgdv > �tg

= (St=S) inffy :

Z t

0

1fSSv=St�ygdv > �tg � (St=S)M
�
(�; t)

where M�
(�; t) is the �-quantile of the normalized price S�v;t � SSv=St for v � t. Thus

M(�; t) = (St=S)M
�
(�; t) and an �-Quantile strike put is seen to be symmetric to an �-

Quantile call option with (�xed) strike price S and quantile based on the normalized asset

price S�v;t; v � t.

Multiasset step options can be also be de�ned in a natural manner and satisfy symmetry prop-

erties akin to those of standard multiasset options.

7 Symmetry Property without Homogeneity of Degree One.

Several derivative securities have payo�s that are not homogeneous of degree one. Examples include

digital options and quantile options (homogeneous of degree � = 0) or product options (homogeneous

of degree � 6= 0; 1). Product options (options on a product of assets) include options on foreign

indices with payo� in domestic currency such as quanto options. As we show below, even in these

cases, symmetry-like properties link various types of contracts.

Consider an f -claim on n underlying assets whose payo� is homogeneous of degree �, i.e.,

f(�S; �K) = ��f(S;K)

for some � � 0 and for all � > 0. The following result is then valid.
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Theorem 13 Consider an American f-claim with maturity date T and a continuous and homo-

geneous of degree � payo� function f(S;K). Let V (S;K; r; �;Ft) denote the value of the claim in

the �nancial market with �ltration F(�), asset prices St satisfying (37) and progressively measurable

interest rate r. For j = 1; :::; n; de�ne

rj� = (1� �)r + ��j +
1

2
�(1� �)�j�j0

�i� = (1� �)r + �i + (� � 1)�j + (1� �)(�1 +
1

2
�)�j�j0 + (1� �)�i�j0; for i 6= j

�j� = (2� �)r + (� � 1)�j + (1� �)(�1 +
1

2
�))�j�j0:

Prior to exercise the value of the claim is, for any j = 1; :::; n;

V (St;K; r; �;Ft) = V j
(S�t ; S

j ; rj�; ��;Ft)

where V j
(S�t ; S

j ; rj�; ��;Ft) is the value of the f j-claim with parameter Sj and maturity date T in

an auxiliary �nancial market with interest rate rj� and in which the underlying asset prices follow

the Ito processes�
dSi�v = Si�v [(rj�v � �i�v )dv + (�jv � �iv)dz

j�
v ]; for i = j and v 2 [t; T ]

dSj�v = Sj�v [(rj�v � �j�v )dv + �jvdz
j�
v ]; for i = j and v 2 [t; T ]

with respective initial conditions S�it = Si for i 6= j and S
�j
t = K for i = j. The process zj� is

de�ned by

dzj�v = �dezv + ��j0v dv; for v 2 [0; T ]; z
j�
0

= 0:

The optimal exercise time for the f-claim is the same as the optimal exercise time for the f j-claim

in the auxiliary �nancial market.

Proof of Theorem 13: De�ne Sj = S
j
t . Let

rj�v = (1� �)rv + ��jv +
1

2
�(1� �)�jv�

j0
v

and note that

exp(�
Z �

t

rvdv)

�
Sj�
Sj

��
= exp(�

Z T

t

rj�v dv) exp(�1

2
�2
Z T

t

�jv�
j0
v dv + �

Z T

t

�jvdezv):
De�ning the equivalent measure

dQj�
= exp

 
�1

2
�2
Z T

0

�jv�
j0
v dv + �

Z T

0

�jvdezv
!
dQ

enables us to write

V (St;K; r; �;Ft) = sup
�2St;T

eE �exp(� Z �

t

rvdv)f(S� ;K) jFt

�

= sup
�2St;T

eE �exp(� Z �

t

rvdv)

�
Sj�
Sj

��
f(S�

Sj

S
j
�

;K
Sj

S
j
�

) jFt

�

= sup
�2St;T

Ej�

�
exp(�

Z �

t

rj�v dv)f(S�
Sj

S
j
�

; Sj�� ) jFt

�

= sup
�2St;T

Ej�

�
exp(�

Z �

t

rj�v dv)f
j
(S�� ; S

j
) jFt

�

= V j
(S�t ; S

j ; r�j ; ��;Ft):
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Under Qj� the process

dzj�v = �dezv + ��j0v dv

is a Brownian motion and Si� satis�es, for i 6= j and v 2 [t; T ]

dSi�v = Si�v [(�jv � �iv + (�jv � �iv)�
j0
v )dv � (�jv � �iv)dezv]

= Si�v [(�jv � �iv + (�jv � �iv)�
j0
v )dv + (�jv � �iv)[dz

j�
v � ��j0v dv]]

= Si�v [(�jv � �iv + (1� �)(�jv � �iv)�
j0
v )dv + (�jv � �iv)dz

j�
v ]

= Si�v [(rj�v � �i�v )dv + (�jv � �iv)dz
j�
v ]

where

�i�v = (1� �)rv + �iv + (� � 1)�jv + (1� �)(�1 +
1

2
�)�jv�

j0
v + (1� �)�iv�

j0
v

and for i = j and v 2 [t; T ]

dSj�v = Sj�v [(�jv � rv + �jv�
j0
v )dv � �jvdezv ]

= Sj�v [(�jv � rv + (1� �)�jv�
j0
v )dv + �jvdz

j�
v ]

= Sj�v [(rj�v � �j�v )dv + �jvdz
j�
v ]

where

�j�v = (2� �)rv + (� � 1)�jv + (1� �)(�1 +
1

2
�)�jv�

j0
v :

This completes the proof of the Theorem.

Remark 4 When the claim is homogeneous of degree 1 the interest rate and the dividend rates in

the economy with numeraire j become rj�v = �jv ; �
i�
v = �iv; for i 6= j; and �j�v = rv : Thus we recover

the prior results of Theorem 10.

Another special case of interest is when the payo� function is homogeneous of degree 0. The

economy with numeraire j then has characteristics

rj� = r

�i� = r + �i � �j � (�j � �i)�j0; for i 6= j

�j� = 2r � �j � �j�j0

and the underlying asset prices follow the Ito processes�
dSi�v = Si�v [(rj�v � �i�v )dv + (�jv � �iv)dz

j�
v ]; for i 6= j and v 2 [t; T ]

dSj�v = Sj�v [(rj�v � �j�v )dv + �jvdz
j�
v ]; for i = j and v 2 [t; T ]

with respective initial conditions S�it = Si for i 6= j and S
�j
t = K for i = j. The process zj� is

de�ned by dzj�v = �dezv; for v 2 [0; T ]. It is a Brownian motion under Q�
= Q.

Examples of contracts in this category are

1. Digital options: A digital call option (f(S;K) = 1fS�Kg) is symmetric to a digital put option

with strike S = St, written on an asset with dividend rate �� = 2r � � � �2, in an economy

with interest rate r� = r.
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2. Digital multiasset options: A digital call max-option (f(S1; S2;K) = 1fS1_S2�Kg) is symmetric

to a digital option to exchange the maximum of an asset and cash against another asset

(f2(S1; S2;K 0
) = 1fS�1_K0�S�2g, whereK

0
= S2) in the economy with asset j = 2 as numeraire

(with characteristics r2� = r; �1� = r+�1��2�(�2��1)�20; and �2� = 2r��2��2�20). A digital

call min-option (f(S1; S2;K) = 1fS1^S2�Kg) is symmetric to a digital option to exchange the

minimum of an asset and cash against another asset (f2(S1; S2;K 0
) = 1fS�1^K0�S�2g, where

K 0
= S2) in the same auxiliary economy. Similar relations hold for digital multiasset put

options.

3. Cumulative barrier digital options: Symmetry properties for occupation time derivatives with

homogeneous of degree zero payo�s can be easily identi�ed by drawing on the previous sec-

tion. A cumulative barrier digital call option with barrier L (i.e. payo� f(S;K;OS;A+
(L)

) =

1fS�Kg1fO
S;A+(L)

t �bg
where A+

(L) = fx 2 R
+

: (x � L)+ � 0g) is symmetric to a cumula-

tive barrier digital put option with barrier L� = KS=L (i.e. payo� f1(S�;K 0; OS�;A�(L�)
) =

1fK0�S�g1fO
S�;A�(L�)
t �bg

where K 0
= S and A�(L�) = fx 2 R+

: (x � L�)� � 0g). A similar

symmetry relation can be established for Parisian digital call and put options.

4. Quanto options: Consider again the quanto call option with payo� e(S � K)
+ in foreign

currency where e is the Y/$ exchange rate. From the foreign perspective the contract is

homogeneous of degree � = 2 in the triplet (e; S;K). The results of Theorem 13 imply that

the quanto call is symmetric to an exchange option in an economy with interest rate

rf� = �rf + 2r � �e�e0

and which underlying assets have dividend rates

�1� = �rf + � + r � ��e0

�2� = r:

The call value can be written

C
Q
t = et sup

�2St;T

eEf�

�
exp(�

Z �

t

rf�v dv)(S1�
� � S2�

� )
+ jFt

�

where �
dS1�

v = S1�
v [(rf�v � �1�v )dv + (�ev � �v)dz

f�
v ]; for v 2 [t; T ]

dS2�
v = S2�

v [(rf�v � �2�v )dv + �evdz
f�
v ]; for v 2 [t; T ]:

with the initial conditions S1�
t = St and S

2�
t = K: An alternative representation for the quanto

call was provided in section 7.

Remark 5 Representation formulas involving the change of measure introduced in earlier sections

can also be obtained with payo�s that are homogeneous of degree �. In this case the coe�cients of

the underlying asset price processes re�ect the homogeneity degree of the payo� function. Indeed

letting Sj = Sjt we can always write

V (St;K; r; �;Ft) = sup
�2St;T

eE �exp(� Z �

t

rvdv)f(S� ;K) jFt

�

= sup
�2St;T

eE �exp(� Z �

t

rvdv)

�
Sj�
Sj

�
f(S� (

Sj

S
j
�

)
1=� ;K(

Sj

S
j
�

)
1=�

) jFt

�

= sup
�2St;T

Ej�

�
exp(�

Z �

t

�jvdv)f(
bS� ; bSn+1

� ) jFt

�
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where bSiv = Siv(
Sj

S
j
v

)
1=� for i = 1; :::; n and bSn+1

v = K(
Sj

S
j
v

)
1=� for v 2 [t; T ]. The auxiliary economy

has interest rate �j and the equivalent measure Qj� is

dQj�
= exp

 
�1

2

Z T

0

�jv�
j0
v dv +

Z T

0

�jvdezv
!
dQ:

The process dzj�v = �dezv + �j0v dv; for v 2 [0; T ] is a Qj�-Brownian motion process.

8 Changes of Numeraire and Representation of Prices.

In the �nancial markets of the previous sections the price of a contingent claim is the expectation

of its discounted payo� where discounting is at the riskfree rate and the expectation is taken under

the risk neutral measure. This standard representation formula is implied by the ability to replicate

the claim's payo� using a suitably constructed portfolio of the basic securities in the model. Since

symmetry properties are obtained by passing to a new numeraire a natural question is whether

contingent claims that are attainable in the basic �nancial markets are also attainable in the economy

with new numeraire. This question is in fact essential for interpretation purposes since the symmetry

properties above implicitly assume that the renormalized claims can be priced in the new numeraire

economy and that their price corresponds to the one in the original economy.

For the case of nondividend paying assets Geman, El Karoui and Rochet (1995) prove that

contingent claims that are attainable in one numeraire are also attainable in any other numeraire

and that the replicating portfolios are the same. Our next Theorem provides an extension of this

result to dividend-paying assets. The framework of section 2 with Brownian �ltration is adopted for

convenience only; the results are valid for more general �ltrations.

Theorem 14 Consider an economy with Brownian �ltration and complete �nancial market with n

risky assets and one riskless asset. Suppose that risky assets pay dividends and that their prices

follow Ito processes (37), and that the riskless asset pays interest at the rate r. Assume that all

the coe�cients are progressively measurable and bounded processes. If a contingent claim's payo� is

attainable in a given numeraire then it is also attainable in any other numeraire. The replicating

portfolio is the same in all numeraires.

Proof of Theorem 14: Let i = 0 denote the riskless asset. The gains from trade in the primary

assets are

dGi
t � dSit + Sit�

i
tdt = Sit [rtdt+ �itdezt]; for i = 1; :::; n

dG0

t � dBt = Btrtdt; for i = 0:

For i = 0; :::; n; gains from trade expressed in numeraire j are

G
i;j
t =

Sit

S
j
t

+

Z t

0

1

S
j
v

�ivS
i
vdv (40)

so that

dGi;j
t =

1

S
j
t

dSit + Sitd(
1

S
j
t

) +
1

S
j
t

Sit�
i
tdt+ d

�
Si;

1

Sj

�
t

=
1

S
j
t

dGi
t + Sitd(

1

S
j
t

) + d

�
Si;

1

Sj

�
t

:

Now let �i represent the amount invested in asset i and consider a portfolio (�0; �) 2 R
n+1 such

that
R T
0
�v�v�

0
v�

0
vdv <1; (P �a:s:). The wealth process X generated by N where N j

= �j=Sj ; j =

0; :::; n represents the number of shares of each asset in the portfolio satis�es

dXt =

nX
i=0

N i
tdG

i
t
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and Xt =
Pn

i=0
N i
tS

i
t (this portfolio is self �nancing since all dividends are reinvested). Using Ito's

lemma gives

d

�
Xt

S
j
t

�
=

nX
i=0

N i
t

�
dGi

t

S
j
t

�
+Xtd

�
1

S
j
t

�
+

nX
i=0

N i
td

�
Gi;

1

Sj

�
t

=

nX
i=0

N i
t

�
dGi

t

S
j
t

+ Sitd

�
1

S
j
t

�
+ d

�
Si;

1

Sj

�
t

�

=

nX
i=0

N i
tdG

i;j
t

i.e. the normalized wealth process can be synthesized in the new numeraire economy in which all

asset prices have been de�ated by the numeraire asset j. Furthermore the investment policy which

achieves normalized wealth is the same as in the original economy. Consequently, any de�ated payo�

is attainable in the new numeraire economy when the (unde�ated) payo� is attainable in the original

economy.

Remark 6 (i) The proper de�nition of gains from trade in the new numeraire is instrumental in

the proof above. Since dividends are paid over time they must be de�ated at a discount rate which

re�ects the timing of the cash �ows. This explains the discount factor inside the integral of dividends

in (40).

(ii) Note that theorem 14 applies even if the numeraire chosen is a portfolio of assets or any

other progressively measurable process instead of one of the primitive assets. It also applies when

the portfolio is not self �nancing, for example when there are infusions or withdrawal of funds over

time.

(iii) The results above apply for payo�s that are received at �xed time as well as stopping times

of the �ltration: if there exists a trading strategy that attains the random payo� X� where � 2 S0;T
in the original �nancial market then the normalized payo� X�=S

j
� is attainable in the economy with

numeraire asset j.

Our next result now follows easily from the above.

Theorem 15 Suppose that asset j serves as numeraire and that Sj satis�es (37). De�ne the prob-

ability measure Qj� by

dQj�
=

exp(�
R T
0
(rv � �v)dv)S

j
T

S
j
0

dQ = exp

 
�1

2

Z T

0

�jv�
j0
v dv +

Z T

0

�jvdezv
!
dQ (41)

and consider the discount rate �j . Then the discounted prices of primary securities expressed in nu-

meraire j are Qj�-supermartingales (discounted gains from trade in numeraire j are Qj�-martingales)

and the price of any attainable security in the original economy can be represented as the expected

discounted value of its cash �ows expressed in numeraire j where the discount rate is �j and the

expectation is under the Qj�-measure.

Proof of Theorem 15: Using de�nition (40) of gains from trade expressed in numeraire j and

Ito's lemma gives

dGi;j
t =

1

S
j
t

dSit + Sitd(
1

S
j
t

) +
1

S
j
t

Sit�
i
tdt+ d

�
Si;

1

Sj

�
t

=
1

S
j
t

Sit [rtdt+ �itdezt] + Sit
1

S
j
t

[(�
j
t � rt + �

j
t�

j0
t )dt� �

j
tdezt]� Sit

1

S
j
t

�it�
j0
t dt
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=
1

S
j
t

Sit [(�
j
t + (�

j
t � �it)�

j0
t )dt+ (�it � �

j
t )dezt]

=
1

Sjt
Sit [�

j
tdt+ (�

j
t � �it)dz

j�
t ];

where dz
j�
t = �dezt + �

j0
t dt is a Q

j�-Brownian motion process. De�ning Si�t = Sit=S
j
t we can then

write

dSi�t = Si�t [(�
j
t � �it)dt+ (�

j
t � �it)dz

j�
t ]

i.e. the discounted price of asset i in numeraire j, exp(�
R t
0
�jvdv)S

i�
t , is a Qj�-supermartingale where

discounting is at the rate �j . Alternatively the discounted gains from trade process

exp(�
Z t

0

�jvdv)S
i�
t +

Z t

0

exp(�
Z v

0

�judu)S
i�
v �

i
vdv

is a Qj�-martingale. Thus, we can write the representation formula

Si�t = E
j�
t

"
exp(�

Z T

t

�jvdv)S
i�
T +

Z T

t

exp(�
Z v

t

�judu)S
i�
v �

i
vdv jFt

#
:

The relations satis�ed by primary asset prices also apply to portfolios of primary assets and therefore

to any contingent claim that is attainable. This completes the proof of the Theorem.

Remark 7 When a dividend-paying primary asset price is chosen as de�ator the auxiliary economy

has an interest rate equal to the dividend rate of the de�ator. In this new numeraire cash is converted

into an asset that pays a dividend rate equal to the interest rate in the original economy. If we choose

the discounted price bSjt = exp(�
R t
0
(rv � �jv)dv)S

j
t , which is a martingale, as numeraire the process

Si�t = Sit=
bSjt satis�es

dSi�t = Si�t [(rt � �iv)dt+ (�
j
t � �it)dz

j�
t ]

and its discounted value at the riskfree rate is a Qj�-supermartingale where Qj� is de�ned in (41).

With this choice of numeraire the interest rate remains unchanged in the auxiliary economy. Cash

is converted into an asset that pays a dividend rate equal to the interest rate and thus has null drift

(martingale).

Remark 8 (i) Note that a payo� expressed in a new numeraire is not necessarily the same as the

payo� evaluated at normalized underlying asset prices (i.e. prices expressed in the new numeraire).

There is clearly equivalence when the payo� is homogeneous of degree one. With homogeneity of

degree � the payo� in the new numeraire is equivalent to the payo� function evaluated at underlying

asset prices that are normalized by a power of the numeraire price. Normalized asset prices (in the

payo� function) then di�er from asset prices expressed in the new numeraire.

(ii) A byproduct of Theorem 15 is a generalized �symmetry� property which applies to any payo�

function. In this interpretation of the property the symmetric contract is simply the payo� expressed

in the new numeraire.

Some extensions are worth mentioning.

Remark 9 Note that the results on the replication of attainable contingent claims, their �nancing

portfolios and their representation under new measures are valid even when markets are incomplete.

Indeed if the claims under consideration can be replicated in a given incomplete market equilibrium

(i.e. if the claims' payo�s live in the asset span) so can they under a change of numeraire. The

results are also valid when the market is e�ectively complete (single agent economies). In this case

even when claims payo�s cannot be duplicated they have a unique price which can be expressed in

di�erent forms corresponding to various choices of numeraire.
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9 Conclusion.

In this paper we have reviewed and extended recent results on PCS. Features of the models consid-

ered include (i) �nancial markets with progressively measurable coe�cients, (ii) random maturity

options, (iii) options on multiple underlying asset, (iv) occupation time derivatives and (v) payo�

functions that are homogeneous of degree � 6= 1. One important element in the proofs is the abil-

ity to renormalize a vector of prices and parameters which determine the payo� of the contract.

Homogeneity of degree � is su�cient in that regard but it is not a necessary condition. Another

important element in the proofs is the separation between the role of informational variables and the

change of measure (numeraire). Indeed while the change of measure converts the underlying assets

into normalized or symmetric assets in the auxiliary �nancial market the information sets in the

two markets are kept the same. This separation enables us to derive symmetry properties even for

�nancial markets in which prices do not follow Markov processes. In the context of di�usion models

the change of measure is instrumental for obtaining symmetry properties of option prices without

restricting volatility coe�cients.

Some of the results in the paper can be readily extended. Symmetry-like properties hold for

multiasset contracts even when the payo� functions are not homogeneous of some degree � (for

instance when homogeneity of di�erent degrees holds relative to di�erent subsets of the underlying

asset prices). In this instance normalized prices in the auxiliary economy involve further adjustments

to dividends and volatilities. Likewise the methodology reviewed in this paper also applies, in

principle, to complete �nancial markets with general semimartingales or even to incomplete markets

provided that the securities under consideration lie in the asset span.
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