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Short and Long Memory
in Equilibrium Interest Rate Dynamics

Jin-Chuan Duan', Kris Jacobs’
Résumé/ Abstract

Dans cet article, nous analysons une classe de processus pour le taux
d'intérét a court terme, qui sont dérivés dans un cadre d'équilibre en temps discret.
La dynamique des taux dintéréts et des rendements est commandée par la
dynamique de la voldtilité conditionnelle de la variable d'éat. Sous des
restrictions de parametres appropriées, les taux d'intérét dérivés dans ce cadre sont
non-négatifs. Nous étudions les processus Markovien de taux dintérét, de méme
gue des procédés Markoviens plus généraux, qui affichent une mémoire « courte »
et « longue ». Ces processus affichent aussi des schémas d'hétéroscédasticité qui
sont plus généraux que ceux des modéles d'équilibre existants. Nous trouvons que
les déviations a la structure Markovienne améiorent de fagon significative la
performance empirique du modele et que les données soutiennent la présence de
meémoire longue. Nous trouvons également que les données soutiennent des
schémas d'hétéroscédasticité qui different de ceux présents dans les modeles
d'équilibre existants.

This paper analyzes a large class of processes for the short-term interest
rate that are derived in a discrete-time equilibrium framework. The dynamics of
interest rates and yields are driven by the dynamics of the conditional volatility of
the state variable. Under appropriate parameter restrictions, interest rates
derived in this framework are nonnegative. We study Markovian interest rate
processes as well as more general non-Markovian processes that display “ short”
and “long” memory. These processes also display heteroskedasticity patterns that
are more general than those of existing equilibrium models. We find that
deviations from the Markovian structure significantly improve the empirical
performance of the model and that the data support the presence of long memory.
We also find that the data support heteroskedasticity patterns that are different
from the ones present in existing equilibrium models.
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1 Introduction

The study of term structure models is a topic of considerable interest in asset pricing, and the
existing literature contains several classes of term structure models that use different theoretical
constructs and differ in aim and scope. An important class of models studies the term structure by
analyzing a standard representative agent economy. The empirical performance of these models is
typically studied by analyzing the short interest rate (the time series implications of the model) as
well as the implied shape of the term structure (the cross sectional implications of the model). Even
though we currently have a large number of these equilibrium models at our disposal, their empirical
performance has not been entirely satisfactory. The main motivation for this paper is to investigate
the empirical performance of a class of equilibrium term structure models that are substantially
more general compared to existing equilibrium models. The empirical results in this paper focus
on the dynamics of the short-term rate, and do not address the cross-sectional implications of the
class of equilibrium models under study.

Duffie and Kan (1996) demonstrate that a large number of existing term structure models, such
as Vasicek (1978) and Cox, Ingersoll and Ross (1985) can be nested within a unifying framework,
which is known as the affine class of term structure models. This class of models has a number
of advantages, the most important one being the existence of analytical solutions for bond prices
and yields. However, it has become clear that the empirical performance of this class of models is
unsatisfactory. Most notably, parameterization of these models that perform well in the time series
dimension often perform poorly in the cross sectional dimension.

In response to these empirical failures, there have been two major developments.! One approach
focuses on the problem that the affine models do not perform well in the cross-sectional dimension.
This has serious consequences because to price term structure derivatives, it has proven necessary to
match the initial (cross-sectional) term structure exactly. To accommodate this empirical problem,
a number of models were constructed that essentially extend exponential affine models to allow for
time-varying drifts, a feature that allows exact matching of the initial term structure. This is a
large and expanding literature, including contributions such as Ho and Lee (1986), Hull and White
(1990,1993), Black, Derman and Toy (1990), Black and Karasinski (1991) and Heath, Jarrow and
Morton (1992). For our purpose, we note that the Ho and Lee and Hull and White models are both
Markovian models, just like the original exponential affine models. The Heath, Jarrow and Morton
framework is substantially more general and allows for non-Markovian structure. However, most of
the models implemented in the Heath-Jarrow-Morton framework are for practical reasons restricted
to special forms that are low dimensional Markovian systems. A second empirical innovation has
been the extension of the initial one-factor exponential affine models such as Vasicek (1978) and
Cox, Ingersoll and Ross (1985) to multiple factors (e.g. see Litterman and Scheinkman (1991),
Chen and Scott (1993) and Pearson and Sun (1994)). Observable factors used in this context
include the long yield (Brennan and Schwartz (1979)), the volatility of the short rate (Longstaff
and Schwartz (1992), Balduzzi, Das, Foresi and Sundaram (1996)), and the long-run mean of the
short rate (Jegadeesh and Pennacchi (1996), Balduzzi, Das, Foresi and Sundaram (1996)).2 Tt

IThere is some controversy regarding the relative merits of these developments (e.g. see Backus, Foresi and Zin
(1998)).
2There is also an extensive literature that investigates continuous-time and discrete-time models of the short rate



must be noted that these multifactor approaches also maintain the Markovian structure of the
early exponential affine term structure models. This is somewhat remarkable given the fact that
departures from the Markovian structure are popular in empirical modeling across many disciplines.
Moreover, even though the multifactor extensions of the exponential affine models have enjoyed
some empirical success, much work remains to be done to improve empirical performance. Recent
empirical work has for example indicated that the specification of multifactor models is far from
obvious (see Dai and Singleton (1999)). It seems therefore interesting to explore other modeling
approaches, such as deviations from the Markovian structure. Backus and Zin (1995) explore
such deviations using a discrete-time framework with Gaussian innovations (see also Campbell, Lo
and MacKinlay (1997)). Their work indicates that departures from the Markovian structure can
substantially improve model performance, but a disadvantage of their modeling strategy is that
interest rates can become negative.? Nevertheless, it seems interesting to further explore to what
extent non-Markovian models can capture some of the stylized facts of term structure data.

This paper uses a discrete-time representative-agent setup to analyze a large class of term
structure models that can be nested in a single equilibrium framework. In general the framework is
non-Markovian, but restrictions can be imposed to create a Markovian model and these restrictions
can be tested. The main difference with existing equilibrium interest rate models is that the
interest rate dynamic is driven by the time-varying volatility of consumption, as opposed to the
time-varying mean of consumption. In principle, this modeling strategy can be implemented by
modeling the volatility of aggregate consumption using a class of nonnegative processes. In this
paper we use a chi-square dynamic for consumption volatility, borrowing from the extensive work
done in the area of stock market volatility using the GARCH framework (see Engle (1982) and
Bollerslev (1986)). The resulting dynamics for the short-term interest rate are extremely tractable
for empirical purposes. These dynamics inherit the structure of consumption volatility, and are
also governed by innovations of chi-square distributions, in contrast with most existing interest
rate models which are governed by normally distributed innovations. The advantage of the chi-
square innovations is that interest rates can stay positive under suitable parameter restrictions,
whereas it is not possible to ensure positive interest rates with normally distributed innovations.

Our interest rate dynamics are very general and include a range of dynamics resembling those
of models based on the ARMA specification. Building on the evidence of long memory in in-
terest rates uncovered by Backus and Zin (1993), we also investigate a long-memory specification
of our equilibrium model. In general, because we use a setup where interest rate dynamics are
determined by the conditional variance of consumption instead of the conditional mean, we obtain
much greater flexibility in our modeling approach. We illustrate this flexibility by modeling fairly

outside the affine class of models. These specifications do not lead to closed form solutions for bond prices and
yields (e.g. see Chan, Karolyi, Longstaff and Sanders (1992), Brenner, Harjes and Kroner (1996), Andersen and
Lund (1997, 1999), Koedijk, Nissen, Schotman and Wolff (1997) and Pfann, Schotman and Tschernig (1996) on the
incorporation of more general heteroskedasticity patterns. See Hamilton (1988) and Gray (1996) on the importance
of regime switching for interest rates).

3Interest rates can become negative in the Backus-Zin setup because of the assumption of Gaussian shocks within
a discrete time framework. Even though the continuous-time exponential affine models also use Gaussian shocks,
it is possible to avoid negative interest rates because shocks are of infinitesimal nature (see Cox, Ingersoll and Ross
(1985)).



general heteroskedasticity patterns in the interest rate dynamic. It is well known that allowing
for heteroskedasticity improves the empirical performance of the short-term interest rate and term
structure models. The empirical results of Chan, et al. (1992) indicate that the use of the constant
elasticity of variance (CEV) specification to reflect heteroskedasticity can improve the fit of the
model to the interest rate data. We show in this paper that the CEV type of heteroskedasticity can
be easily incorporated into our equilibrium interest rate model. Heteroskedasticity is incorporated
into interest rates by directly modeling the time variation in the conditional heteroskedasticity of
the consumption process. The typical term structure models such as the exponential affine models
of Vasicek (1978), Cox, Ingersoll and Ross (1985) and Duffie and Kan (1996) do not explore this
dimension, and therefore cannot model such heteroskedasticity patterns.*

The empirical analysis of the short-term interest rate in this paper highlights several inter-
esting stylized facts and suggests that the class of models proposed in this paper may be able
to match some empirical regularities of the term structure. We analyze two time series contain-
ing daily observations on the short-term interest rate — overnight Eurodollar rates and one-week
Eurodollar rates. When we restrict our analysis to the Markovian subclass of models, these two
time series seem to exhibit similar characteristics. However, the estimation and test results for
non-Markovian models are quite different for these two time series. Although formal statistical
tests support deviations from the Markovian structure, the deviation is much more significant (sta-
tistically) for the one-week rates series. The results for the two time series also differ in terms of
heteroskedasticity patterns. The weekly interest rate series supports heteroskedasticity models that
are inherently different from the typical equilibrium models, but this is not the case if overnight
rates are used. The results for overnight rates suggest that the existing heteroskedastic equilibrium
interest rate models seem adequate. Finally, both interest rate time series imply some moderate
levels of long memory. Although the long memory parameter is moderate in magnitude, allowing
for long memory substantially improves model fit compared to the Markovian interest rate models.
A small-scale simulation experiment indicates that the impact of the long memory parameter for
the term structure is substantial.

2 Equilibrium interest rates with short and long memory

We characterize the short-term interest rate dynamic using an equilibrium approach. Specifically,
we assume a representative-agent economy in which the agent has time-separable constant-relative-
risk-aversion (TS-CRRA) preferences. Let C; denote aggregate consumption at time ¢ and let
denote the information set up to time ¢. For any asset with a price X; and a dividend payment Dy
at time ¢, equilibrium requires the following Euler equation to hold:

Cit1

X, = E[e7%( G

)7 (Xig1 + Digr) |4 (1)

“Note that one can study any conceivable term structure model, including arbitrary forms of heteroskedasticity,
outside the affine framework by using numerical techniques. However, the class of models under investigation in this
paper leads to analytical solutions for some important objects of interest. Our modeling approach does not yield
analytical solutions for bond yields nor for bond option prices, but it delivers analytical expressions for the short-term
interest rate under risk neutrality, which greatly facilitates the valuation of bonds and options in this framework.



where ~ is the relative risk aversion coefficient and § is the intertemporal discount rate.® Let ry
denote the one-period risk-free interest rate (continuously compounded) at time ¢. Since the time-t
value of a one-dollar time-(¢ 4 1) payoff is e~ ", we have the following result:

e = Bl (S0 2)
Cy
Given this setup, the dynamic for the interest rate process is determined by the dynamic for the
aggregate consumption growth rate.

We model the logarithm of the aggregate consumption growth rate by a GARCH-in-mean
process; that is,

C
In %tl = [+ KG41 + /Gr1Et41 (3)
ei+1/8% ~ N(0,1) (4)

We investigate the interest rate dynamic using two different classes of models for the conditional
volatility of the consumption dynamic. Because consumption growth is unobservable at high fre-
quencies, we use the GARCH class of processes that have proven useful for describing stock price
volatility. These processes are therefore also likely to be useful for describing the time variation of
the volatility of the state variable that drives financial markets. The first class of models assumes
the GARCH(p, q) specification of Bollerslev (1986).

p q
g1 =Po+ > B g+ Y ol e} (5)
=1 i=1

The volatility dynamic in (5) can accommodate fairly rich autocorrelation patterns.” However,

it has recently been shown that a wide variety of phenomena display long memory, and that
these patterns cannot be adequately captured by (5).8 Backus and Zin (1993), Shea (1991) and
Connolly and Guner (1999) show that long memory processes can also be helpful for the empirical
modeling of interest rate processes. Therefore, we study a second class of models that assumes the
FIGARCH(p, d, q) model of Baillie, Bollerslev and Mikkelsen (1996) for conditional volatility.”

5Tt is of course possible to derive results similar to the ones in this paper by modeling the pricing kernel instead
of modeling an equilibrium setup with a representative investor.

SNote that the GARCH(p,q) specification is often represented as q:+1 = Bo + Zle GiL g + Z;f:l o L2
with u: = \/grer and &¢|Q:—1 ~ N(0, 1). The representation in (5) is therefore completely standard.

" Although we limit ourselves to the linear GARCH(p,q) process here, our derivation can be easily generalized to
GARCH(p,q) models with leverage effects such as the non-linear asymmetric GARCH(p,q) of Engle and Ng (1993),
EGARCH(p,q) of Nelson (1991), or to more general models like the augmented GARCH(p,q) process proposed by
Duan (1997).

8See the overview paper by Baillie (1996) for examples of long memory in the natural and social sciences and
Baillie and Bollerslev (1999) for the importance of long memory for the foreign exchange market.

9Other forms of fractionally integrated GARCH process such as Bollerslev and Mikkelsen (1996) and McCurdy
and Michaud (1996) can also be used to derive alternative long memory interest rate dynamics.



P ' P . max(p,q)
Gr1=0B+Y B+ 1 =D B —(1— Y &L - L)Yqcty (6)
j=1 j=1 i=1

where the parameters in (5) and (6) are subject to the usual restrictions. It should be noted that
the FIGARCH(p, d, q) dynamic in (6) nests the GARCH(p, ¢) dynamic in (5) by setting d = 0. We
present them as two separate specifications for the sake of clarity.'?

Following the approach of Duan (1996) and Duan and Jacobs (1996), we use the Euler equation
for the interest rate in (2) and the consumption dynamic in (3) and (4) to arrive at r = 6 +ypu +
(7(26 —7)/2)qi+1.** This relationship between the interest rate and the conditional volatility is the
cornerstone for the interest rate models derived below. To simplify notation we define an adjusted
interest rate, 7} =1 — 6 —yu and G5 = (Boy(2k — 7)) /2.12 This yields the following models

Model 1. Short-memory interest rate dynamic,

ry =05 + ZﬁjLJ 17" 1T Zale 17"t 15t7 (7)

7j=1
if the GARCH(p, ¢) consumption dynamic in (5) is employed; and

Model 2. Long-memory interest rate dynamic,

P ' P . max(p,q)
Ty =0y + Zﬂjﬂ_lrf—l +[1— ZﬂjLJ Z ¢iL')(1 = L)"rief s, (8)
j=1 J=1
if the FIGARCH(p, d, ¢) consumption dynamic in (6) is used.
In both cases, the interest rate dynamic inherits the properties of the conditional volatility
process for the aggregate consumption. The long-memory interest rate dynamic of Model 2 differs

107t has been noted in the literature that the long memory specification in (6) implies 8o = 0 (e.g. see Chung (1999))
if a finite unconditional variance is desired. We have not as yet found a satisfactory long memory specification that
resolves this issue. Whereas this is a problem for these models, it affects the estimate for Gy but not the estimates
for other parameters of interest in a significant way.

Note that a similar relationship between the interest rate and the conditional volatility always holds. We can
therefore generate arbitrary processes for the interest rate by an appropriate choice of volatility dynamic. However,
the choice of volatility dynamic is of substantial interest when deriving the implications of the model under the risk-
neutral probability measure. As will be shown in Section 5, the choice of the GARCH(p, ¢) and FIGARCH(p, d, q)
dynamics is critical in that respect because the innovations are simple functions of the normal distribution, which
allows us to characterize the interest rate dynamic explicitly under the risk-neutral measure.

12Notice that in the relationship 7: = & + vyu + (v(2x — 7)/2)qt+1 between the short interest rate and volatility,
it is the presence of the GARCH-in-mean parameter « that makes it possible for positivity of interest rates to be
imposed, specifically for 2k — v > 0, under the reasonable assumption that § + yu > 0. The interpretation of this
is that (up to a constant p) we only model the conditional mean through the GARCH-in-mean effect. In a more
realistic model one could also specify ARMA-type effects in the conditional mean. These effects would interact with
the conditional volatility dynamic to produce equilibrium interest rates. However, in such a more realistic model one
cannot ascertain that interest rates will stay positive.



substantially from the long-memory interest rate model investigated by Backus and Zin (1993).
The innovation in this model is of the chi-square type and the dynamic is derived endogenously
from a necessary condition of the equilibrium. The interest rate in Model 2 can be made positive
with proper parameter restrictions, whereas there is always a positive probability for the interest
rate in the long-memory interest rate model of Backus and Zin (1993) to take on negative values.

For estimation purposes it is more convenient to express these interest rate dynamics with an
innovation that has a zero conditional mean. Let vi41 = (1/v/2)(e7; —1). It is clear that v;1 has
mean 0 and variance 1, conditional on ;. Model 1 can thus be rewritten as

max(p,q) max(p,q)

=05+ Z (o + Bj)L Tt 1+\/_ Z a; L'~ 17’t 1Ut 9)

Note that if p > ¢, then 3; =0 for j = ¢+ 1,---,p. Similarly, ; =0 for i =p+1,---,qif ¢ > p.
Model 2, on the other hand, can be written as

max(p,q) max(p,q)
= B5+[1- Z ¢ LN (1=L)r;+v2[1 Z/BJLJ — > illH(A—=L)Yrfveyr. (10)
=1

Expressing the fractional difference operation as an infinite sum can also be a useful alternative
expression for the long memory interest rate model. An alternative expression is given below when
equation (10) is derived based on the FIGARCH(1, d, 1) process:

= G S I0meld) — ma (@1 4 VA mald) — men @1EF — Bt (1)
k=0

k=0

We have used in the above expression the fact that (1 — L) = " m(d)L* with mo(d) = 1 and
k=0
m(d) = (—1)F [T, =L for k> 1.

1=

3 Heteroskedasticity in Equilibrium Interest Rates

Inspection of expressions (7) and (8) illustrates that the equilibrium processes derived in Section
2 allow for heteroskedasticity, because the innovations depend on the level of the lagged interest
rate. In this section we show that the class of equilibrium interest rate processes derived in Section
2 can be easily extended to accommodate more general heteroskedasticity patterns. This extension
is motivated by empirical studies supporting more general heteroskedasticity patterns. It must be
noted that the empirical studies that made this observation start by assuming the existence of
an ad hoc short interest rate process, without deriving this interest rate process in an equilibrium
context. In this paper we show that interest rate processes with heteroskedasticity patterns similar
to the ones in these ad hoc models can be derived and analyzed within an equilibrium framework.
Chan, et al. (1992) study the following specification for the short interest rate



= Bri_1 + T‘;p_ll/t (12)

where 14 is a disturbance term with conditional mean zero. Their empirical results show that the
data indicate point estimates of ¢ around 1.5, and that these estimates are statistically different
from 1. Therefore, the data seem to indicate support for heteroskedasticity patterns that are
different from the ones modeled in Section 2.13

It is straightforward to incorporate this type of heteroskedasticity into the equilibrium model
derived in Section 2. If we change the consumption dynamic to

p q
Qa1 = Po+ Y B g+ il lged, (13)

j=1 i=1

the corresponding interest rate dynamic becomes

Model 3. Short-memory interest rate dynamic with general heteroskedasticity:

Ty —ﬂo—i-ZﬂJLJ 17" —{-ZO@LZ l(rt l)wsf (14)
j=1 i=1

To obtain the long-memory version of the model, we simply adopt the following consumption
dynamic:

max(p,q)

Gi+1 = Po + ZﬁyLJ Y+ [1— ZﬁgL] Z &iL')(1— L)' 81 (15)

The resulting interest rate model is

Model 4. Long-memory interest rate dynamic with general heteroskedasticity:

max(p,q)

p p
rr =004 BT (1= B — Z ¢ L) (1 — L)Y (r})Ved . (16)
j=1 j=1

The incorporation of this type of heteroskedasticity in the context of our model is technically
trivial. Inspecting the issue from a different perspective, however, it shows the flexibility of the
equilibrium approach when focused on modeling the conditional volatility dynamic. The essence
of the standard Lucas type of asset pricing equilibrium is that the dynamic for the equilibrium
interest rate is driven by the behavior of aggregate consumption. The most straightforward way of
getting an internally consistent interest rate model is via modeling the conditional volatility of the

13Subsequent studies, significantly differing in empirical methodology and model specification, have confirmed these
findings (see for example Ait-Sahalia (1996), Campbell, et al. (1997), Conley, Hansen, Luttmer and Scheinkman
(1997) and Ahn and Gao (1999)). Andersen and Lund (1997), on the other hand, do not find evidence for these type
of heteroskedasticity effects.



aggregate consumption. The current literature on equilibrium models of the term structure does not
follow this approach. Consequently, existing equilibrium models face difficulties in incorporating
this type of heteroskedasticity into the specification of the interest rate process.

To emphasize this important point, we demonstrate in our discrete time environment the prob-
lems of incorporating heteroskedasticity when using a model that displays similarities with the
well-known class of exponential affine term structure models.'* In the simplest of these exponential
affine term structure models, the consumption dynamic is given by

Cii1 Cy
1 = ¢l 17
n C, ¢n0t_1+77t+1 (17)
ne1|Q ~ N(0,0%), (18)

which yields the following AR(1) equilibrium short-term interest rate dynamic:

re=06(1—¢)+ (6%/2)(1 — ¢) + ¢ri_1 + o (19)

This equilibrium interest rate model is similar to the continuous-time Vasicek model. At the first
glance, it seems easy to insert heteroskedasticity into the equilibrium interest rate dynamic by
changing the consumption dynamic to

Cii1 Ci Ci

Gt = ol 4 (g . (20)
It can be easily verified that this consumption dynamic yields an analytical solution for the equi-
librium interest rate only when 1 = 0.5. The nature of heteroskedasticity in the resulting model
is similar to the continuous-time Cox-Ingersoll-Ross (1985) model, even though a comparison with
this continuous-time model is tenuous. It nevertheless shows that the potential for building het-
eroskedasticity into equilibrium models of this class is very limited. In contrast, our approach allows
for a wider range of heteroskedasticity patterns.

In

4 Estimation and Test Results

The parameters in Models 1-4 can in principle be estimated in several ways. We estimate the
parameters using the quasi-maximum likelihood technique proposed in White (1982) and Bollerslev
and Wooldridge (1992). This technique is used instead of exact maximum likelihood estimation,
because the innovation in these systems is governed by a y? distribution with one degree of freedom,
which has an unbounded likelihood at the origin. To the best of our knowledge it is not possible
to restrict the parameter space to deal with this problem.

We present estimation and test results using two different data sets. The first data set is the one
analyzed in Ait-Sahalia (1996). This data set contains daily observations on one-week Eurodollar
rates from June 1, 1973 to February 25, 1995, totaling 5505 observations. It is presented in Figure

1A comparison between discrete and continuous-time models is often tenuous. However, the characteristic of the
model under study here has similar effects in both modeling approaches.



1. The second data set contains daily observations on overnight Eurodollar rates from January 1,
1981 to May 30, 1997, for a total of 4280 observations. This dataset is presented in Figure 2. In
much of the term structure literature, there is a trade-off between using overnight rates versus one-
week rates as the short-term interest rates. When estimating and testing continuous-time models,
for instance, conceptually there is a clear advantage to using the overnight rates, because these
data are a closer approximation to the theoretical construct of the model (see Chapman, Long and
Pearson (1999) for an extensive analysis of this issue). In this paper, the theory is formulated in
discrete time. If the data has daily frequency, the overnight rate is, by the definition of the model,
the unambiguous choice for the short-term interest rate. Overnight rates are, however, more prone
to microstructure effects, which can considerably complicate the interpretation of the empirical
findings. We therefore also estimate the models using the one-week rates. The importance of the
microstructure effects for the overnight data can clearly be seen from Figure 2, which contains far
more outliers than Figure 1.1° To illustrate the potential importance of long-memory specifications
for the data, Figures 3 and 4 provide the sample autocorrelations up to lag 600 for the weekly and
overnight data respectively. For the weekly yields in Figure 3, the autocorrelation at lag 600 is
0.21. For the daily data, the autocorrelation at lag 600 is even higher at 0.28. It is clear that long
memory specifications are very useful to capture this kind of empirical phenomena, because it may
be hard to fit these characteristics of the data with standard short memory models.

Tables 1 through 8 present the estimation results. Table 1 presents results for Model 1 (the
short memory interest rate dynamics) obtained using the data on the one-week Eurodollar rates.
Table 2 also uses the one-week Eurodollar rates but presents results for Model 2 (the long memory
interest rate dynamic). Tables 3 and 4 present results for the short and long memory dynamics
respectively, this time using data on the overnight Eurodollar rates. Tables 5 and 6 present results
for the one-week rates using Models 3 and 4 respectively (the short and long memory interest rate
dynamics with general heteroskedasticity). Finally, Tables 7 and 8 present results for the overnight
rates using Models 3 and 4. In each table, a number of entries present estimates of parameters
with the robust asymptotic standard error indicated in parentheses. Please note that in some cases
parameters and standard errors are multiplied by 10, to improve the presentation of the results.
Also note that the number of observations used in the estimation of the weekly data is 4505 and the
number of observations for the daily data is 3280. The number of observations available in the two
data sets are 5505 and 4280, respectively, but the first 1000 observations are reserved for setting
the initial values of the interest rate dynamic implied by the FIGARCH consumption process.
Inspection of expression (11) shows that one actually needs an infinite number of data points for
the initial condition. In practice, one is forced to truncate the infinite sum in (11) at a sufficiently
high number. In our empirical analyses, the data required for the initial condition are truncated
at 1000 lags. Implicit in this practice is our assumption that the first 1000 data points are enough
to bring the system to its steady state so that the resulting likelihood function for either Model 2
or 4 is a good proxy for the true likelihood function. For Models 1 and 3, the initial condition does

15To neutralize the effects of these outliers, one can filter the data to remove microstructure effects. However,
Figure 1 shows that the one-week rates also contain significant outliers, and the analysis of these rates is standard.
Therefore, we decided to analyze the raw data. Interestingly, we find that the estimation results for the overnight
rates and one-week rates are not dramatically different along some dimensions, perhaps suggesting that the outliers
are important for both series or for neither.
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not require as many data points. In order to ensure meaningful comparisons between the results of
Model 1 (3) and Model 2 (4), however, we also discard the first 1000 data points. Besides point
estimates and standard errors for the parameters, columns 14 through 20 of each table also contain
a variety of robust Wald tests that test the joint significance of extra coefficients for higher order
specifications. The notational convention used in these columns is as follows: for a given row,
ay, denotes the highest order « coefficient for that specification and Gy denotes the highest order
B coefficient. For example, in the row corresponding to the GARCH(2,2) model, aj stands for
the g coefficient. Similarly, in the row corresponding to the GARCH(6,6) model ;1 stands for
the O5 coefficient. This notation explains the interpretation of the robust Wald statistics that are
listed: for example, for the row corresponding to the GARCH(5, 5) specification the column with
Br—1 = PBr = 0 presents the robust Wald statistic that g5 = 64 = 0. The last column in each
table presents the value of the objective function at the optimum. It must be noted that because
we estimate using quasi-maximum likelihood, the value of the objective function cannot be used to
construct test statistics and we have to resort to the robust Wald statistics reported in the tables.

Table 1 presents the results for Model 1 using the one-week Eurodollar rates. The first row
presents results corresponding to the GARCH(1, 1) consumption dynamic. This model is of partic-
ular interest because the resulting interest rate model displays similarities with a number of models
in the literature. First note that the interest rate process inherits the characteristics of the condi-
tional volatility process. Since the GARCH process has its conditional volatility behaving like an
ARMA process, we can think of the equilibrium interest rate dynamic as an ARMA process with
heteroskedastic features. In the case of the GARCH(1, 1) model, the resulting equilibrium interest
rate process is Markovian and bears resemblance to the models belonging to the exponential affine
class of interest rate models. Our reference to the ARMA process is tenuous, because the positivity
requirement on the conditional volatility of the consumption process imposes restrictions on the
parameters of the interest rate process. These restrictions do not apply if one directly writes down
an ARMA process for the short-term interest rate without deriving it via an equilibrium argument.

Bollerslev (1986) gave the conditions on (; and «; of equation (5) under which the conditional
volatility is always positive. His conditions require 8; and «; to be non-negative. These condi-
tions can actually be relaxed when one goes beyond the GARCH(1,1) model. Nelson and Cao
(1992) provided a weaker set of requirements that can ensure positive conditional volatility under
GARCH(p, q). Our estimation results require invoking Nelson and Cao’s (1992) conditions because
some parameter estimates turn out to be negative. We have verified that the parameter values
presented in Table 1 do satisfy the conditions for positive conditional variances.

Estimation results for the interest rate process corresponding to the GARCH(1, 1) consumption
dynamic indicate that all coefficients are very precisely estimated. The estimate for (; is large,
indicating a slow mean reversion (large persistence). The estimate for «; is small and the sum of oy
and (3 is smaller than one, satisfying the stationarity requirement. These results are consistent with
the standard empirical findings in the literature when Markovian processes are used in estimation.
The interesting question is therefore whether extensions to non-Markovian processes are required by
the data. In rows 2 and 4, we present the results for the GARCH(1,2) and GARCH(2, 2) dynamics,
respectively. The results in rows 2 and 4 clearly support extensions to non-Markovian models. In
row 2, the estimate for the parameter as is clearly significant, based on the robust standard error.
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A similar conclusion applies to the parameter (2 in column 4. These results are supportive of the
results established by Backus and Zin (1994), who reject the Markovian assumption in exponential
affine models.

The other results for Model 1 presented in Table 1 are now summarized briefly. The table
contains results for GARCH(p, ¢) processes with GARCH(6,6) the highest order that is reported.
Higher order GARCH models were investigated but are not reported to keep the tables manageable.
The main result is that for high orders of p and ¢ (higher than 8), the robust Wald statistics indicate
that the inclusion of extra coefficients does not improve the statistical fit of the model. This result
is not surprising given the results reported in the table: the results for the GARCH(5,5) and
GARCH(6,6) specifications indicate that for these models, t-statistics are much smaller than ¢-
statistics for lower-order models, such as the GARCH(2,2) model. Not surprisingly, therefore, the
robust Wald statistics for joint significance are much lower and in some cases indicate nonrejection
of the null hypothesis that these extra coeflicients are jointly equal to zero.

Table 2 presents results for Model 2, which also uses the weekly data but is based on the
FIGARCH consumption dynamic. We start by inspecting the first row, which shows that the
FIGARCH(1,d, 1) dynamic yields an estimate of the long memory parameter d of 0.0122. Even
though the estimated value for d is rather small, it is statistically different from zero as indicated by
its robust standard error. The data seem therefore supportive of long memory in the interest rate
dynamic. This finding of course confirms that the Markovian assumption is quite a poor assumption
for the one-week interest rate data. The remaining rows in the table indicate what happens if we
increase p and ¢ in the specification of the FIGARCH(p, d, q) process. Importantly, they confirm
the findings of Table 1: as we increase p and ¢, the standard errors increase rapidly and for the
FIGARCH(6, d, 6) process, the robust Wald statistics indicate in several cases that extra coefficients
are not supported by the data. This is also the case when we investigate specifications for p and ¢
larger than 6 (not reported). Table 2 also allows us to answer the following important question: as
p and q increase, what happens to the estimate of the long-memory parameter d? This question is
important because of the finding in row 1 that the long-memory parameter is significantly estimated.
Whereas long-memory processes are of interest because they allow us to capture important empirical
phenomena with a rather parsimonious parameterization, their implementation in equilibrium term
structure models is far from obvious. It would therefore be interesting if we could capture nonzero
autocorrelation at long horizons by increasing p and ¢ in the specification of the FIGARCH(p, d, q)
process. Inspection of Table 2 indicates that the estimates of d differ substantially between the
different rows. However, for the FIGARCH(1,d, 1), FIGARCH(3,d,3), FIGARCH(4, d,4) and
FIGARCH(5,d, 5) processes the estimates are all slightly larger than 0.01, and are very precisely
estimated. The interesting outlier is the estimate of d for the FIGARCH(6,d, 6) process, which
is negative and insignificant. When investigating p and ¢ higher than 6, we also found negative
point estimates of d that were insignificantly estimated (not reported). This seems to indicate
that by increasing p and ¢ in the FIGARCH(p, d, q) process, it is possible to capture the empirical
phenomena that give rise to a long memory parameter that is significantly different from zero in
the FIGARCH(1,d, 1) model.'® The extra coefficients introduced in the FIGARCH(6, d, 6) model

161t must be noted that these statements are based on in-sample fitting. In terms of predictive accuracy, it is likely
that one will have to pay a price for estimating large numbers of MA parameters. Ray (1991) provides an analysis
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capture the correlation patterns captured by the long memory parameter in more parsimonious
models. The remaining correlation captured by the long-memory parameter is not statistically
significant.

Tables 3 and 4 present the results for Models 1 and 2 using the overnight Furodollar rates. To
some extent, the estimates support the general conclusions drawn from those presented in Table
1. Row 1 in Table 3 indicates that the data support deviations from Markovian models. Row 1
in Table 4 indicates that the data support the presence of long memory. Again, the estimate for
the coefficient that captures long memory is small but significantly different from zero. Finally,
as we increase p and ¢ in the FIGARCH(p, d, ¢) model in Table 4, it becomes possible to capture
the empirical phenomena that yield a significantly positive long memory parameter in row 1 with
short memory parameters. The last row of Table 4 indicates that for the FIGARCH(6, d, 6) model,
the estimated d parameter is negative. This result is different from the one obtained in Table
2, where the point estimate is also negative but statistically insignificant. It must be noted that
investigation of p and ¢ larger than 6 confirms the presence of a negative long-memory parameter,
which in many cases is insignificantly estimated (not reported).

However, a comparison of Tables 1 and 3 indicates that there is an interesting difference between
the empirical regularities for the weekly rates as opposed to the overnight rates. Whereas in Table
1 the standard errors increase significantly as we increase p and ¢ in the GARCH(p, q) specification,
this is not the case in Table 3. The same can be said about the comparison between Tables 2 and 4.
Not surprisingly therefore, the robust Wald statistics in Tables 3 and 4 indicate that the inclusion
of extra coefficients is supported by the data. Investigation of p and ¢ higher than 6 indicated
that very high orders are needed to provide an adequate statistical fit of the overnight rates (not
reported). The highest order that we investigated is p = ¢ = 15, and the test statistics indicated
that including a15 and (315 improves the statistical fit of the model. Perhaps this finding is not
surprising: comparison of Figures 1 and 2 shows that the time series of overnight rates contains
many outliers which result from microstructure effects, and is consequently harder to fit with a
parsimonious parameterization. These findings are of interest for the study of term-structure
models. They seem to indicate that the performance for a given model may be critically affected
by the choice of the short-term interest rate.

Tables 5 and 6 present the estimation results for Models 3 and 4, using data on one-week
Eurodollar rates. The result corresponding to the modified GARCH(1,1) dynamic is presented in
row 1 of Table 5. The point estimate for v is 1.340. This heteroskedasticity parameter is very
precisely estimated. The result based on the robust standard error shows that it is significantly
different from 1. This result is largely consistent with the finding by Chan, et al. (1992), although
our estimate for 1 is slightly lower than theirs. The other results in Table 5 and 6 can be summarized
very briefly, because they largely confirm the findings of Tables 1 and 2. The data favor larger values
for p and ¢, and therefore support departures from the Markovian model. However, for the modified
GARCH(5,5) and GARCH(6, 6) specifications the standard errors are fairly large and the robust
Wald statistics in some cases favor a more parsimonious parameterization. The estimated values
for ¢ in rows 2 to 11 are very similar to the one in row 1. The estimation using the long-memory
model in Table 6 also yields a value of 1 similar to those in Table 5. The estimates for the «;

of the predicitve performance of long-memory and competing short memory models, but analyzes AR models only.
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parameters in Tables 5 and 6 are very different from those in Tables 1 and 2. The estimates for
the §; parameters are relatively similar, however. Point estimates of the long-memory parameter
d in Table 6 are lower than those in Table 2. For the modified FIGARCH(6, d, 6) specification, the
estimated d parameter is negative and insignificantly estimated.

Tables 7 and 8 present our empirical results for Models 3 and 4 using the overnight Eurodollar
rates. Interestingly, the point estimates for the parameter v are very different from those in Tables
5 and 6. Moreover, the robust standard errors suggest that the more general heteroskedasticity
pattern is not supported by the data. This result indicates that the heteroskedasticity properties
of the overnight Eurodollar rates are different from the one-week Eurodollar rates. Given that the
data do not support a more general heteroskedasticity pattern, it is not surprising that the other
parameter estimates for Models 3 and 4 presented in Tables 7 and 8 do not differ greatly from those
for Models 1 and 2 presented earlier in Tables 3 and 4.

5 The Economic Significance of Long Memory

Whereas the estimates of the long memory parameter d are statistically significant for a parsi-
monious parameterization of the short memory component, they are fairly small. It is therefore
of critical importance to investigate whether these small estimates of the long-memory parame-
ter are economically significant. To investigate this issue, we present the results of a small-scale
simulation experiment that investigates the implications of the long-memory estimates obtained in
the previous section for the equilibrium term structure. The implications for the term structure
can be investigated by exploiting the pricing result using the equilibrium price measure (), which
was earlier adopted in this context in Duan (1996) for the GARCH term structure model. The
expression for the yield to maturity at time t for a default-free zero-coupon bond of maturity 7 is

Ri(r) = = In{BQ(e” T 7ij0y). (21)
To implement this pricing formula we use the expression for the interest rate dynamic under the
equilibrium pricing measure ). We present results for model 2, without the general heteroskedas-
ticity built into model 4. Even though the innovation in our interest rate model is nonstandard, it
is possible to characterize the interest rate dynamic (see Duan, 1996). It is important to note that
this becomes possible because of the choice of a GARCH specification for the volatility dynamic.
This choice of volatility dynamic implies that the driving process for interest rate is a noncentral
chi-squared. We are therefore able to characterize the risk-neutral distribution because this non-
central chi-squared is a simple transformation of the normal distribution. Specifically, using the
expressions for the short memory dynamic (7) and the long memory dynamic (8) under the data
generating probability measure, the short memory dynamic under the equilibrium pricing measure
@ is therefore

P q
vy =05+ BT+ LT (e — \fry)? (22)

j=1 i=1

and the long memory dynamic under the equilibrium pricing measure is
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max(p,q)

p p
rP=0 Y BT 1= B — (1= > L) (1= L)rf(ee — \Jnri_1)® (23)
=1

j=1 j=1

In both equations the parameter n, which represents the price of risk, is equal to (2 —+)/2. In our
framework the price of risk is therefore not only determined by the rate of relative risk aversion, but
also by the specification of the GARCH-in-mean equation in (3). Moreover, i cannot be determined
from the time series dimension of interest rates alone. Whereas our estimates in Tables 1 through
4 identify the regression intercept (j, this intercept is equal to Bpy(2x — v)/2 and therefore does
not identify 7. In order to implement (21) using the time-series parameters in Tables 2 and 4, we
therefore need to make an assumption on the parameter 7. In the simulation experiments below,
7 is set arbitrarily at 150. It must also be noted that whereas we have analytical expressions for
the interest rates under the equilibrium pricing measure, we do not have analytical results for the
yields to maturity in (21). Therefore, we have to evaluate expression (21) using simulation. In
the simulation experiment below, the number of simulations used to compute bond yields is set at
5000. Increasing the number of simulations above 5000 does not change the results.

One can conceive of several experiments to demonstrate the impact of long memory. The
purpose of this section is not to present an exhaustive analysis of all possible experiments. Rather,
we want to present a limited set of results to convince the reader of the economic importance
of long memory. This experiment also serves to demonstrate that our analysis is a full-fledged
general equilibrium approach, and not ad hoc. To achieve this, we set up the following experiment.
We use the estimates for the model parameters obtained in Table 4, using overnight Eurodollar
rates. To focus on the importance of long memory, we limit our attention to the FIGARCH(1,d, 1)
specification. The parameter estimates used are therefore 31 = 0.987, 85 = 0.0132, ¢1 = 0.998
and d = 0.0129. We then generate term structures by computing the yields starting for day t = 1
to t = 3650 (10 years), using different sets of initial conditions. Now examine Figure 5. The
yield curves in this figure are obtained by setting yesterday’s interest rate (the interest rate on day
t = 0) at an annualized 8%. The difference between the yield curves in Figure 5 is due to different
values for the interest rates on days t = —1 to ¢t = —1000.17 For the solid line, the value for the
interest rates on days t = —1 to t = —1000 is set at 2%. For the broken line, those rates are set
at 8%. Over a wide range of maturities, the difference between the simulated yields exceeds 20
basis points. If the long memory parameters are economically insignificant, we would not expect
to see any differences between these term structures. The results would be indistinguishable from
the results under a Markovian system with yesterday’s interest rate at 8%. Our results suggest to
the contrary and illustrate the importance of long memory.'®

17Tn the simulation experiment, we implement the long-memory specification in the same way as in the estimation,
namely by truncating the infinite sum in (11) at 1000.

18Tt may at first seem counterintuitive that the long yield is higher in the experiments where lagged interest rates
are low. However, this is simply a consequence of the finding that was discussed in the previous section. Short-
memory parameters can generate significant autocorrelation at long horizons, provided that the process is sufficiently
persistent. The AR(1) coefficient in the dynamic used for the simulation experiment is actually ¢1 41 (d) = 0.998 -
(-0.0129) = 1.0109. Therefore, this ”short memory” component by itself would actually generate an explosive process.
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6 Conclusion

This paper analyzes a large class of potential dynamics for the short-term interest rate. These
dynamics are derived in a discrete-time equilibrium setting in which interest rates are determined
by the specification for the conditional volatility of the aggregate consumption process, instead of
the conditional mean of consumption. By modeling the conditional volatility of consumption as a
nonnegative process, it is then possible to model nonnegative interest rates under certain parameter
restrictions. In this paper such an approach is implemented by modeling the conditional volatility
of consumption as a GARCH-type process, implying a chi-square innovation for interest rates. The
class of interest rate models that we derive is very large and includes Markovian and non-Markovian
interest rate dynamics. The interest rate dynamic can be of short or long memory. Because the
conditional volatility of the consumption is the driving force behind the interest rate dynamic, it is
straightforward to incorporate more general heteroskedasticity patterns that are known to be more
consistent with interest rate data.

The empirical analysis, using overnight and one-week Eurodollar rates, indicates that the data
support deviations from the Markovian assumption. The long memory parameter is small but
very precisely estimated. A simulation experiment shows that the impact of long memory on the
term structure is not negligible. For one-week Eurodollar rates, the data support heteroskedasticity
patterns different from those within the exponential affine class. For the overnight Eurodollar rates,
the result is opposite. Interestingly, the overnight and one-week rates also differ in other dimensions.
When the interest rate model is restricted to be Markovian, however, the two interest rate series
produce similar outcomes. Our empirical results seem to indicate that the class of equilibrium
interest rate models proposed in this paper can parsimoniously capture some important aspects of
the data. The ability of this class of equilibrium models to describe the cross-sectional variations of
the term structure and to price term structure derivatives will be studied in future work. Another
finding that deserves attention is the apparent ability of richly parameterized short memory models
to capture long memory phenomena. It is clear that parsimony in parameterization may be a
goal in itself. To get a clearer view of the performance of the long memory model versus richly
parameterized short memory models, it will be necessary to evaluate the predictive (out of sample)
performance of these models as opposed to the descriptive (in-sample) performance.
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Table 1: Parameter estimates for the equilibrium short-term rate dynamics (Model 1-short memory)

using one-week Eurodollar rates (4505 observations)

Model 1: B, B, By B, Bs Bs [i; x 10 o,x 10 a,x 10 as;x 10 aux 10 asx 10 a,x 10 Oy = O o= O Olo,enny Bei= Bio=Biy  BosBi o= Quasi
consumption (s.e.) (s.e.) (s.e.) (s.e.) (s.e.) (s.e.) (s.ex10) (s.ex10) (s.ex10) (s.ex10) (s.ex10) (s.e.10) (s.ex10) =0 =0, =0 o, =0 B=0 =B,=0 =0 B=0 Log
dynamic (sig.level)  (sig.level) (sig.level)  (siglevel)  (sig.level) (sig.level)  (sig.level)  Likelihood
GARCH (1,1) 0975 - - - - - 0.214 0.238 - - - - - - - - - - - - 3790.9
(0.001) — - - - - (0.084) (0.011) - - - - - - - - - - - - -
GARCH (1.2)  0.984 - - - - - 0.124 0.224 -0.078 - - - - - - - - - - - 4074.1
0.002) — — - — — (0.120) 0.007) 0.013) — — — — - — — — — — — —
GARCH (1,3) 0.985 - - - - - 0.119 0.223 -0.076 -0.010 - - - 57.64 - - - - - - 4078.5
(0.001) — - - - - (0.078) (0.007) (0.013) (0.008) - - - (0.000) - - - - - - -
GARCH (2,2) 1.173 -0.185 - - - - 0.116 0.223 -0.111 - - - - - - - - - - 79.85 4089.4
0.041)  (0.040) — — — — 0.057) 0.007) 0.012) — — — — - — — — — — (0.000) —
GARCH(3.,3) 1.229 -0.311 0.069 - - - 0.121 0.223 -0.122 0.018 - - - 49.37 - - 9.49 - - 0.57 4091.4
(0.096)  (0.177)  (0.093) — - - (0.069) (0.007) (0.022) (0.028) - - - (0.000) - - (0.009) - - (0.751) -
GARCH(4.4) 1.435 -0.925 0.576 -0.100  — - 0.123 0.221 -0.167 0.129 -0.056 - - 45.27 128.72 - 37.34 51.71 - 39.99 4130.2
0.325)  (0.628)  (0.165) (0.156) — — (0.083) (0.008) 0.067) 0.101)  (0.014) — — (0.000) (0.000) — (0.000) (0.000) — (0.000) —
GARCH (5.5) 1.400 -0.756 0.171 0.195 -0.024 - 0.120 0.220 -0.159 0.096 0.015 -0.033 - 7.12 41.71 89.01 3.96 47.30 57.53 12.62 4149.4
(0.100)  (0.341)  (0.511) (0.423) (0.163) — (0.117) (0.007) (0.021) (0.056) (0.063) (0.043) — (0.028) (0.000) (0.000) (0.138) (0.000) (0.000) (0.002) -
GARCH(6.6) 1.272 -0.858 0.709 -0.591 0.480 -0.033 0.119 0.219 -0.129 0.130 -0.065 0.090 -0.050 4.79 4.85 81.33 6.23 12.49 65.49 10.47 41712
0.090)  (0.267) (0.534) (0.608)  (0.423)  (0.099)  (0.442) 0.007) (0.022) 0.057)  (0.073)  (0.084)  (0.034)  (0.091) (0.183) (0.000) (0.044) (0.006) (0.000) (0.005) —




Table 2: Parameter estimates for the equilibrium short-term rate dynamics (Model 2-long memory)

using one-week Eurodollar rates (4505 observations)

Model 2: By By B3 By Bs Bs B(; x10 L3 [ b3 [ s [ d b= Ora= 0y Opoty Br1= Bro= B BBy 0= Quasi
consumption (s.e.) (s.e.) (s.e.) (s.e.) (s.e.) (s.e.) (s.e.x10) (s.e.) (s.e.) (s.e.)- (s.e.) (s.e) (s.e.) (s.e) =0 =6,=0 =0 B="0 =B,=0 =0 B=0 Log
dynamic (sig.level)  (sig.level) (sig.level)  (sig.level)  (sig.level) (sig.level)  (sig.level)  Likelihood
FIGARCH (1,1)  0.989 - - - - - 0.106 0.999 - - - - - 0.0122 - - - - - - - 4058.0
(0.001) — — — — — 0.071) 0.001) — — — — — 0.0014) — — — — — — — —
FIGARCH (1,2)  0.987 - - - - - 0.112 1.004 -0.005 - - - - 0.0051 - - - - - - - 4082.9
0.001) — - - - - (0.077) (0.002)  (0.002) — - - - (0.0024) — - - - - - - -
FIGARCH (1,3)  0.987 - - - - - 0.112 1.003 -0.005 0.0003 - - - 0.0059 5.85 - - - - - - 4083.1
(0.001) — — — — — (0.075) 0.003)  (0.002) (0.001) — — — (0.0033)  (0.054) — — — — — — —
FIGARCH (2,2)  1.140 -0.152 - - - - 0.119 1.159 -0.161 - - - - 0.0029 - - - - - - 7.62 4090.1
(0.056)  (0.056) — - - - (0.064) (0.059)  (0.058) — - - - (0.0039) — - - - - - (0.022) -
FIGARCH(3.3) 1.427 -0.912 0.472 - - - 0.115 1.437 -0.917 0.479 - - - 0.0114 74.07 - - 74.59 - - 75.21 4136.7
0.069) (0.112)  (0.055) — — — (0.077) 0.070)  (0.114)  (0.056) — — — 0.0016)  (0.000) — — (0.000) — — (0.000) —
FIGARCH(4,4)  1.357 -0.744 0.182 0.190 - - 0.123 1.369 -0.749  0.188 0.191 - - 0.0108 124.04 191.09 - 123.74 191.42 - 2.10 41429
(0.090)  (0.202)  (0.293) (0.171) — - (0.082) (0.092)  (0.204) (0.295) (0.173) — - (0.0024)  (0.000) (0.000) - (0.000) (0.000) - (0.350) -
FIGARCH (5,5) 1.360 -1.012 0.726 -0.445 0.353 - 0.120 1.372 -1.017 0.734 -0.446 0.356 - 0.0101 4.60 152.78 354.87 4.671 153.56 355.14 2.623 4156.9
(0.155)  (0.175)  (0.654) (0.776)  (0.393) — (0.089) (0.157)  (0.174)  (0.655) (0.779) (0.397) — (0.0023)  (0.100) (0.000) (0.000) (0.097) (0.000) (0.000) (0.269) —
FIGARCH(6.6)  1.283 -0.792 0.623 -0.519  0.466 -0.083 0.140 1.317 -0.815 0.640 -0.530  0.478 -0.092  -0.0120 3.47 13.30 101.92 3.69 14.18 94.71 0.81 4179.6
(0.111)  (0.146)  (0.407)  (0.489) (0.304) (0.104)  (0.203) (0.099) (0.143)  (0.416) (0.505) (0.319) (0.114)  (0.0210)  (0.176) (0.004) (0.000) (0.158) (0.003) (0.000) (0.667) -




Table 3: Parameter estimates for the equilibrium short-term rate dynamics (Model 1-short memory)

using overnight Eurodollar rates (3280 observations)

Model 1: B, B, By By Bs Be [5(; x 10 a;x 10 a,x 10 asx 10 ayx 10 asx 10 agx 10 o= U o= O O,y Oy Bri= Bio=Bii BBy o= Quasi
consumption (s.) (s.e) (s.e) (s.e) (s.) (s.e) (se.x10) (sex10) (s.ex10) (s.ex10) (sex10) (sex10) (s.ex10) a,=0 =o,=0 =0 B=0 =B=0 =0 B,=0 Log
dynamic (sig.level)  (sig.level) (sig.level)  (sig.level)  (sig.level) (sig.level)  (sig.level)  Likelihood
GARCH (1,1) 0971 - - - - - 0.538 0.245 - - - - - - - - - - - - 3591.4
0.002) — — — — — (0.223) 0.012) — — — — — — — — — — — — —
GARCH (1,2)  0.977 - - - - - 0.368 0.242 -0.042 - - - - - - - - - - - 3629.9
0.002) — - - - - (0.172) (0.012) (0.013) - - - - - - - - - - - -
GARCH (1.3)  0.983 - - - - - 0.215 0.239 -0.050 -0.042 - - - 18.72 - - - - - - 3671.8
0.003) — — — — — (0.146) 0.012)  (0.012)  (0.015) — — — (0.000) — — — — — — —
GARCH (2,2)  0.942 0.034 - - - - 0.389 0.242 -0.033 - - - - - - - - - - 21.14 3630.1
(0.061)  (0.058) — - - - (0.199) (0.012) (0.024) - - - - - - - - - - (0.000) -
GARCH(3.3) 0.819 0.158 0.003 - - - 0.267 0.239 -0.015 -0.046 - - - 8.63 - - 6.72 - - 9.33 3676.8
0.077)  (0.078)  (0.008) — — — (0.159) 0.012)  (0.021)  (0.016) — — — 0.013) — — (0.035) — — (0.009) —
GARCH(4.4)  0.796 -0.198 0.658 -0.270  — - 0.156 0.235 -0.028 0.033 -0.115 - - 34.76 59.12 - 23.59 2791 - 18.82 3726.5
(0.231)  (0.584) (0.419) (0.072) — - (0.248) (0.012) (0.047) (0.105) (0.027) - - (0.000) (0.000) - (0.000) (0.000) - (0.000) -
GARCH (5.5)  0.604 -0.050 0.442 0.099 -0.111 - 0.173 0.233 0.020 0.020 -0.070 -0.065 - 40.70 44.19 72.48 5.76 16.24 38.49 22.40 3755.0
(0.203)  (0.365) (0.237) (0.110) (0.049) — (0.240) (0.012)  (0.040)  (0.054)  (0.025)  (0.015)  — (0.000) (0.000) (0.000) (0.056) (0.001) (0.000) (0.000) —
GARCH(6.6)  0.657 -0.058 0.022 0.063 0.793 -0.493 0.157 0.229 0.007 0.015 0.023 0.002 -0.138 141.52 145.31 206.91 338.40 414.95 706.92 240.80 3819.1
(0.051)  (0.039)  (0.028)  (0.031) (0.045) (0.038) (0.112) (0.012) (0.010) (0.007) (0.007) (0.005) (0.012) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) -




Table 4: Parameter estimates for the equilibrium short-term rate dynamics (Model 2-long memory)

using overnight Eurodollar rates (3280 observations)

Model 2: By By B3 By Bs Bs B(; x10 L3 [ b3 [ s [ d b= Ora= 0y Opoty Br1= Bro= B BBy 0= Quasi
consumption (s.e.) (s.e.) (s.e.) (s.e.) (s.e.) (s.e.) (s.e.x10) (s.e.) (s.e.) (s.e.) (s.e.) (s.e) (s.e.) (s.e) =0 =6,=0 =0 B="0 =B,=0 =0 B=0 Log
dynamic (sig.level)  (sig.level) (sig.level)  (sig.level)  (sig.level) (sig.level)  (sig.level)  Likelihood
FIGARCH (1,1)  0.987 - - - - - 0.132 0.998 - - - - - 0.0129 - - - - - - - 3679.2
0.002) — — — — — (0.088) 0.001) — — — — — 0.0022) — — — — — — — —
FIGARCH (1.2)  0.990 - - - - - 0.093 0.993 0.005 - - - - 0.0207 - - - - - - - 3696.9
0.001) — - - - - (0.068) (0.002)  (0.001) — - - - (0.0024) — - - - - - - -
FIGARCH (1,3)  0.990 - - - - - 0.096 0.995 0.004 -0.001 - - - 0.0188 14.15 - - - - - - 3697.4
(0.001) — — — — — (0.059) 0.004)  (0.002) (0.002) — — — (0.0037)  (0.001) — — — — — — —
FIGARCH (2,2)  0.663 0.325 - - - - 0.111 0.669 0.330 - - - - 0.0182 - - - - - - 97.98 3721.6
(0.079)  (0.079) — - - - (0.088) (0.079)  (0.079) — - - - (0.0019) — - - - - - (0.000) -
FIGARCH(3.3) 0.664 -0.186 0.508 - - - 0.151 0.670 -0.182 0.510 - - - 0.0174 20.06 - - 20.01 - - 17.73 3755.1
0230)  (0.241) (0.121) — — — (0.099) 0211)  (0.242) (0.121) — — — (0.0013)  (0.000) — — (0.000) — — (0.000) —
FIGARCH(4.4)  0.863 -0.373 -0.100  0.593 - - 0.185 0.871 -0.371 -0.099  0.596 - - 0.0148 359.99 400.43 - 350.48 397.71 - 61.80 3778.2
(0.101)  (0.138)  (0.127)  (0.085) — - (0.171) (0.101)  (0.138)  (0.126) (0.085) — - (0.0017)  (0.000) (0.000) - (0.000) (0.000) - (0.000) -
FIGARCH (5,5) 0.374 -0.187 0.020 0.234 0.531 - 0.310 0.383 -0.182 0.024 0.238 0.533 - 0.0148 297.32 845.59 806.06 290.25 810.93 828.89 11.09 3797.5
(0.181)  (0.090) (0.075) (0.136) (0.181) — (0.226) (0.181)  (0.090) (0.076) (0.136) (0.182) — (0.0016)  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.004) —
FIGARCH(6,6)  0.655 -0.084 0.039 0.053 0.774 -0.455 0.179 0.690 -0.085 0.042 0.055 0.774 -0.478  -0.0124 310.84 336.09 628.50 298.78 318.81 607.87 315.61 38254
(0.080)  (0.046)  (0.040)  (0.059) (0.054) (0.029)  (0.121) (0.082)  (0.049)  (0.041) (0.060)  (0.055)  (0.029)  (0.0048)  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) -




Table 5: Parameter estimates for the equilibrium short-term rate dynamics (Model 3-short memory)

using one-week Eurodollar rates (4505 observations)

Model 3: B, B, By By Bs Be [3(; x 10 a;x 10 a,x 10 a3x 10 ayx 10 asx 10 agx 10 W Oy = Up= O Op,.n O Br= Bio=Biy  BasesBy o= Quasi
consumption (s.e.) (s.e.) (s.e.) (s.e.) (s.e.) (s.e.) (s.ex10) (s.ex10) (s.ex10) (s.ex10) (s.ex10) (s.ex10) (s.ex10) (s.e) o=0 =ua,=0 =0 B,=0 =B,=0 =0 B=0 Log
dynamic (sig.level)  (sig.level) (sig.level)  (sig.level)  (sig.level) (sig.level)  (sig.level)  Likelihood
GARCH (1.1)  0.970 - - - - - 0.978 0.115 - - - - - 1.340 - - - - - - - 3933.4
0.002) — — — — — (0.161) (0.019) — — — — — 0.066) — — — — — — — —
GARCH (1,2)  0.981 - - - - - 0.662 0.091 -0.033 - - - - 1.415 - - - - - - - 4296.8
0.001) — - - - - (0.097) (0.013) (0.006) - - - - (0.065) — - - - - - - -
GARCH (1,3)  0.982 - - - - - 0.640 0.091 -0.032 -0.002 - - - 1.414 33.42 - - - - - - 4298.2
(0.001) — — — — — (0.097) (0.013) (0.006) (0.003) — — — (0.066)  (0.000) — — — — — — —
GARCH (2,2)  1.092 -0.108 - - - - 0.583 0.092 -0.040 - - - - 1.408 - - - - - - 26.77 4303.8
(0.046)  (0.045) — - - - (0.095) (0.013) (0.008) - - - - (0.065) — - - - - - (0.000) -
GARCH(3.3) 1.161 -0.346 0.165 - - - 0.708 0.090 -0.043 0.015 - - - 1416 20.18 - - 2.46 - - 133 4313.0
(0.117)  (0.265)  (0.158) — — — (0.182) (0.013) (0.011) (0.017) — — — (0.065)  (0.000) — — (0.293) — — (0.513) —
GARCH4.4) 1.221 -0.652 0.480 -0.069 — - 0.702 0.091 -0.050 0.040 -0.018 - - 1.411 20.45 25.54 - 44.99 48.87 - 13.53 4346.3
(0.105)  (0.148)  (0.078)  (0.061) — - (0.124) (0.013) (0.013) (0.012) (0.006) - - (0.064)  (0.000) (0.000) - (0.000) (0.000) - (0.001) -
GARCH (5.5)  1.240 -0.571 0.149 0.180 -0.018 - 0.712 0.091 -0.053 0.033 0.006 -0.011 - 1.405 7.37 22.11 26.45 3.75 40.38 43.65 7.06 4358.9
0.092)  (0.188) (0.242)  (0.193)  (0.064) — (0.116) (0.013) (0.012) (0.013) (0.013) (0.008) — (0.064)  (0.025) (0.000) (0.000) (0.153) (0.000) (0.000) (0.029) —
GARCH(6.6)  1.149 -0.617 0.437 -0.300  0.287 0.018 0.869 0.091 -0.044 0.040 -0.013 0.024 -0.014 1.402 5.39 5.40 26.10 20.48 24.71 57.62 17.10 4388.6
(0.069) (0.226) (0.416)  (0.440) (0.275)  (0.046)  (0.184) (0.013) (0.009) (0.021) (0.022) (0.025) (0.009) (0.065)  (0.067) (0.145) (0.000) (0.000) (0.0000) (0.000) (0.000) -




Table 6: Parameter estimates for the equilibrium short-term rate dynamics (Model 4-long memory)

using one-week Eurodollar rates (4505 observations)

Model 4: By By Bs By Bs Bs ﬁ(; x10 L3 L2 LS [ s [ d v byr= bra= Oy gy Br1= Bro= B BBy 0= Quasi
consumption (s.e.) (s.e.) (s.e.) (s.e.) (s.e.) (s.e) (s.ex10) (s.e.) (s.e) (s.e) (s.e.) (s.e.) (s.e.) (s.e) (s.e.) =0 =¢,=0 =0 B="0 =B,=0 =0 B=0 Log
dynamic (sig.level)  (sig.level) (sig.level)  (sig.level)  (sig.level) (sig.level)  (sig.level)  Likelihood
FIGARCH (1,1)  0.986 - - - - - 0.479 0.990 - - - - - 0.0054 1.397 - - - - - - - 4259.0
0.002) — — — — — (0.084) (0.001) — — — — — 0.0009)  (0.065) — — — — — — — —
FIGARCH (1,2)  0.983 - - - - - 0.592 0.991 -0.003 - - - - 0.0014 1.412 - - - - - - - 4300.9
0.002) — - - - - (0.105) (0.002)  (0.001) — - - - (0.0011)  (0.070) — - - - - - - -
FIGARCH (1,3)  0.983 - - - - - 0.583 0.990 -0.002 0.0002 - - - 0.0020 1.411 11.12 - - - - - - 4301.4
0.002) — — — — — (0.103) (0.002)  (0.001)  (0.0004) — — — (0.0013)  (0.069)  (0.004) — — — — — — —
FIGARCH (2,2) 1.072 -0.088  — - - - 0.565 1.080 -0.092  — - - - 0.0008 1.408 - - - - - - 4.34 4304.5
(0.057)  (0.056) — - - - (0.112) (0.059) (0.058) — - - - (0.0017)  (0.058) — - - - - - (0.114) -
FIGARCH(3,3) 1.220 -0.638 0.399 - - - 0.633 1.225 -0.640 0.401 - - - 0.0040 1.408 178.33 - - 179.78 - - 85.76 4351.5
(0.026)  (0.050)  (0.045) — — — (0.110) 0.026)  (0.051)  (0.046) — — — (0.0007)  (0.040)  (0.000) — — (0.000) — — (0.000) —
FIGARCH(4.4) 1.212 -0.573 0.175 0.166 - - 0.675 1.217 -0.575 0.178 0.167 - - 0.0039 1.409 79.16 209.71 - 79.22 209.96 - 2.81 4357.4
(0.026)  (0.069) (0.175)  (0.118) — - (0.125) (0.026)  (0.070)  (0.176) 0.119) — - (0.0011) ~ (0.038)  (0.000) (0.000) - (0.000) (0.000) - (0.245) -
FIGARCH (5,5) 1.203 -0.749 0.528 -0.281 0.276 - 0.778 1.208 -0.751 0.530 -0.281 0.277 - 0.0042 1.405 19.80 129.58 726.48 19.85 130.18 725.47 13.07 4368.2
(0.084)  (0.035) (0.198) (0.215)  (0.099) — (0.131) (0.084)  (0.035) (0.198)  (0.216) (0.100) — (0.0008)  (0.029)  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) —
FIGARCH(6.6) 1.151 -0.592 0.417 -0.293 0.301 -0.009 0.862 1.162 -0.597 0.421 -0.295 0.304 -0.011 -0.0013 1.401 69.07 8222 587.99 69.43 85.08 604.15 1831 4388.8
(0.090)  (0.056) (0.228)  (0.262)  (0.113)  (0.009)  (0.153) (0.090)  (0.056)  (0.228) (0.264)  (0.115)  (0.009)  (0.0019)  (0.029)  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) -




Table 7: Parameter estimates for the equilibrium short-term rate dynamics (Model 3-short memory)

using overnight Eurodollar rates (3280 observations)

Model 3: B, B, By By Bs Be [3(; x 10 a;x 10 a,x 10 a3x 10 ayx 10 asx 10 agx 10 W Oy = Wp= Oy O, Oy Bri= Beo=Bii  BasensBy o= Quasi
consumption (s.e.) (s.e.) (s.e.) (s.e.) (s.e.) (s.e.) (s.ex10) (s.ex10) (s.ex10) (s.ex10) (s.ex10) (s.ex10) (s.ex10) (s.e) o=0 =ua,=0 =0 B=0 =B=0 =0 B=0 Log
dynamic (sig.level)  (sig.level)  (sig.level)  (sig.level)  (sig.level) (sig.level)  (sig.level)  Likelihood
GARCH (1,1)  0.972 - - - - - 0.420 0.268 - - - - - 0.950 - - - - - - - 3592.7
0.005) — — — — — (0.412) (0.051) — — — — — (0.127) — — — — — — — —
GARCH (1,2)  0.978 - - - - - 0.224 0.275 -0.049 - - - - 0.927 - - - - - - - 3632.6
(0.003) — - - - - (0.241) (0.051) (0.018) - - - - (0.125) — - - - - - - -
GARCH (1,3)  0.985 - - - - - 0.046 0.291 -0.064 -0.054 - - - 0.888 9.49 - - - - - - 3677.7
0.003) — — — — — (0.149) (0.052) (0.021) (0.022) — — — (0.122)  (0.009) — — — — — — —
GARCH (2,2) 0976 0.002 - - - - 0.226 0.275 -0.048 - - - - 0.928 - - - - - - 9.26 3632.6
(0.013)  (0.013) — - - - (0.299) (0.052) (0.020) - - - - (0.128) — - - - - - (0.010) -
GARCH(3.3) 0.841 0.165 -0.024 - - - 0.085 0.282 -0.027 -0.064 - - - 0.905 1.81 - - 3.73 - - 8.20 3680.9
(0.144)  (0.454)  (0.309) — — — (1.145) (0.053) (0.030) (0.110) — — — (0.101)  (0.405) — — (0.154) — — 0.017) —
GARCH(4.4)  0.830 -0.292 0.787 -0.337 - - -0.031 0.305 -0.047 0.061 -0.174 - - 0.852 16.77 22.60 - 27.90 36.69 - 13.22 3736.7
(0.239)  (0.645)  (0.500)  (0.096) — - (0.126) (0.052) (0.063) (0.158) (0.051) - - (0.117)  (0.000) (0.000) - (0.000) (0.000) - (0.001) -
GARCH (5.5)  0.629 -0.107 0.506 0.077 -0.118 - 0.020 0.283 0.018 0.035 -0.095 -0.081 - 0.890 11.10 11.27 16.08 1.57 15.66 22.36 4.78 3760.6
(0313)  (0475) (0.344) (0.428) (0227) — (0.376) (0.053) (0.077) (0.071) (0.061) (0.073) — (0.125)  (0.004) (0.010) (0.003) (0.456) (0.001) (0.000) (0.092) —
GARCH(6.6)  0.657 -0.059  0.023 0.064 0.796 -0.495 0.075 0.254 0.008 0.017 0.026 0.003 -0.156 0.940 10.92 19.88 23.64 275.58 300.57 685.25 151.24 3820.8
(0.051)  (0.099) (0.146)  (0.109)  (0.054) (0.043) (1.152) (0.090) (0.013) (0.017) (0.031) (0.012) (0.067) (0.222)  (0.004) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) -




Table 8: Parameter estimates for the equilibrium short-term rate dynamics (Model 4-long memory)

using overnight Eurodollar rates (3280 observations)

Model 4: By By Bs By Bs Bs ﬁ(; x10 L) [ 3 b4 s b6 d v [ bra= Oy gty Brr= Bro=Bir BBy 0= Quasi
consumption (s.e.) (s.e.) (s.e.) (s.e.) (s.e.) (s.e) (s.e.x10) (s.e) (s.e.) (s.e) (s.e) (s.e.) (s.e.) (s.e.) (s.e) $,.=0 =¢,=0 =0 B,=0 =B,=0 =0 B="0 Log
dynamic (sig.level)  (sig.level) (sig.level)  (sig.level)  (sig.level) (sig.level)  (sig.level)  Likelihood
FIGARCH (1,1)  0.989 - - - - - 0.002 1.002 - - - - - 0.0165 0.882 - - - - - - - 3686.1
0.003) — — — — — (0.131) 0.004) — — — — — 0.0043)  (0.131) — — — — — — — —
FIGARCH (1.2)  0.992 - - - - - -0.005 0.995 0.007 - - - - 0.0260 0.879 - - - - - - - 3704.2
0.002) — - - - - (0.102) (0.003)  (0.002) — - - - (0.0052)  (0.130) — - - - - - - -
FIGARCH (1,3) 0991 - - - - - -0.008 0.998 0.005 -0.001 - - - 0.0233 0.876 10.01 - - - - - - 3705.0
0.003) — — — — — (0.176) 0.006)  (0.003) (0.002) — — — (0.0075)  (0.141)  (0.007) — — — — — — —
FIGARCH (2,2)  0.671 0.318 - - - - 0.022 0.678 0.324 - - - - 0.0217 0.906 - - - - - - 63.82 3726.0
(0.088)  (0.087) — - - - (0.109) (0.088)  (0.087) — - - - (0.0044)  (0.128) — - - - - - (0.000) -
FIGARCH(3,3) 0.678 -0.223 0.533 - - - 0.036 0.685 -0.218 0.535 - - - 0.0206 0.901 19.13 - - 19.15 - - 18.64 3760.10
(0352)  (0.406) (0.136) — — — (0.382) (0357)  (0.407) (0.138) — — — (0.0052)  (0.200)  (0.000) — — (0.000) — — (0.000) —
FIGARCH(4,4)  0.880 -0.403 -0.080  0.587 - - 0.050 0.889 -0.401 -0.078 0.592 - - 0.0175 0.911 392.90 406.39 - 389.75 411.02 - 42.93 3782.12
(0.166)  (0.233)  (0.210)  (0.138) — - (0.270) (0.168)  (0.233) (0.211)  (0.138) — - (0.0049)  (0.160)  (0.000) (0.000) - (0.000) (0.000) - (0.000) -
FIGARCH (5,5)  0.407 -0.217 0.034 0.240 0.510 - 0.161 0.416 -0.211 0.039 0.245 0.512 - 0.0166 0.940 217.84 796.57 799.80 212.53 820.95 825.41 6.99 3799.4
(0311)  (0.199)  (0.048) (0.155) (0.263) — (0.273) (0312)  (0.200)  (0.049) (0.155) (0.263) — (0.0044)  (0.141)  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.030) —
FIGARCH(6.6)  0.655 -0.087 0.041 0.054 0.776 -0.456 0.089 0.694 -0.089  0.044 0.056 0.776 -0.481 -0.0135 0.944 126.38 132.00 336.40 132.26 139.33 357.57 103.96 3826.9
(0.078)  (0.078)  (0.069)  (0.042) (0.069) (0.047)  (0.802) (0.083)  (0.080) (0.070)  (0.043) (0.069) (0.052)  (0.0055) (0.199)  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) -




Figure 1: Annualized weekly yields from June 1, 1973 to February 25,1995 (5505 observations)
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Figure 2: Annualized daily yields from January 1, 1981 to May 30, 1997 (4280 observations)
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Figure 3: Autocorrelation function for annualized weekly yields
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Figure 4: Autocorrelation function for annualized daily yields
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Figure 5: Simulation of Annualized Yields; Lagged Interest Rate Set at 8 %
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