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Over the past decade much effort has 
been invested into the development of in 
vitro systems as alternatives to animal exper-
iments (Hammad et al., 2013, 2014a, b; 
Hammad, 2013; Godoy et al., 2010, 2013; 
Hewitt et al., 2007; Stewart and Marchan, 
2012; Gebel et al., 2014; Grinberg et al., 
2014). However, in vitro systems still have 
the limitation that they often do not suffi-
ciently represent the in vivo situation. More-
over, quantitative in vitro to in vivo extrapo-
lation is difficult (Ghallab, 2013; Reif, 2014; 
Stewart, 2010).  

In recent years a concept is emerging that 
may overcome many of the current limita-
tions of in vitro testing, namely in silico tis-
sues (Hoehme et al., 2010; Schliess et al., 
2014). Typically, virtual tissues are based on 
reconstructions of real tissues, where the ex-
act positions of each individual cell and fur-
ther relevant structures, e.g. blood vessels, 
are known in a three-dimensional space 
(Hoehme et al., 2010; Höhme et al., 2007). 
In the first step spatio-temporal models are 
generated from reconstructions (Hammad et 
al., 2014c). For this purpose the individual 
cell serves as the smallest unit. Model pa-

rameters, such as the probability to divide or 
to die, and even more complex properties, 
such as migration rules can be programmed 
into each cell. This results in a model that 
can simulate, for example, the spatio-
temporal process of tissue damage and re-
generation. Key principles how cells in the 
liver coordinately respond to large destruc-
tions to restore functional tissue have been 
identified by such models (Drasdo et al., 
2014a; Hoehme et al., 2010). In next steps, 
further processes can be integrated into spa-
tio-temporal models, e.g. blood flow or met-
abolic processes. As an example, Schliess et 
al. (2014) have integrated metabolic pathway 
models of ammonia detoxification into spa-
tio-temporal models. This allows simulating 
ammonia concentrations in the blood circula-
tion and how they are influenced by specific 
damage patterns of the liver. 

In toxicology, modelling especially struc-
ture activity and physiologically-based-
pharmacokinetic (PBPK) models have a long 
standing tradition (Schug et al., 2013; Kara-
manakos et al., 2009; Carlsson et al., 2004; 
Thiel et al., 2015; Hammad and Ahmed, 
2014; Dobrev et al., 2001; El-Masri et al., 
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1996). However, the advent of spatio-
temporal models with the possibility to inte-
grate other model types opens new possibili-
ties. Integrated mathematical models formal-
ize the relationship between individual com-
ponents to test their interactions in a virtual 
setting (Drasdo et al., 2014a, b; Widera, 
2014). It can be expected that virtual tissue 
approaches will have a strong impact to un-
derstand complex pathophysiologies, espe-
cially when processes and interactions have 
to be elucidated that cannot be directly 
measured by established methods. 
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