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Abstract

The empirical copula process plays a central role in the asymptotic
analysis of many statistical procedures which are based on copulas
or ranks. Among other applications, results regarding its weak con-
vergence can be used to develop asymptotic theory for estimators of
dependence measures or copula densities, they allow to derive tests for
stochastic independence or specific copula structures, or they may serve
as a fundamental tool for the analysis of multivariate rank statistics.
In the present paper, we establish weak convergence of the empirical
copula process (for observations that are allowed to be serially depen-
dent) with respect to weighted supremum distances. The usefulness
of our results is illustrated by applications to general bivariate rank
statistics and to estimation procedures for the Pickands dependence
function arising in multivariate extreme-value theory.

Keywords and Phrases: Empirical copula process; weighted weak conver-
gence; strongly mixing; bivariate rank statistics; Pickands dependence func-
tion.

AMS Subject Classification: 62G30, 60F17.

1 Introduction

The theory of weak convergence of empirical processes can be regarded as
one of the most powerful tools in mathematical statistics. Through the
continuous mapping theorem or the functional delta method, it greatly fa-
cilitates the development of asymptotic theory in a vast variety of situations
(Van der Vaart and Wellner, 1996).
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For applying the continuous mapping theorem or the functional delta
method, the course of action is often similar. Consider for instance the con-
tinuous mapping theorem: starting from some abstract weak convergence
result, say Fn  F in some metric space (D, dD), one would like to deduce
weak convergence of φ(Fn)  φ(F), where φ is some mapping defined on
(D, dD) with values in another metric space (E , dE). This conclusion is pos-
sible provided φ is continuous at every point of a set which contains the
limit F, almost surely (Van der Vaart and Wellner, 1996).

The continuity of φ is linked to the strength of the metric dD – a stronger
metric will make more functions continuous. For example, let D = `∞([0, 1])
denote the space of bounded functions on [0, 1] and consider the real-valued
functional φ(f) :=

∫
(0,1) f(x)/x dx (with φ defined on a suitable subspace

of D). In Section 3.2 below, this functional will turn out to be of great inter-
est for the estimation of Pickands dependence function and it is also closely
related to the classical Anderson-Darling statistic. Now, if we equip D with
the supremum distance, as is typically done in empirical process theory, the
map φ is not continuous because 1/x is not integrable. Continuity of φ
can be ensured by considering a weighted distance, such as for instance
supx∈[0,1] |f1(x) − f2(x)|/g(x) for a positive weight function g such that
g(x)/x is integrable. Similar phenomenas arise with the functional delta
method, see Beutner and Zähle (2010). It thus is desirable to establish weak
convergence results with the metric dD taken as strong as possible. One class
of metrics which is of particular interest in many statistical applications is
given by weighted supremum distances.

For classical empirical processes, corresponding weak convergence results
are well known. For example, the standard d-dimensional empirical process
Fn(x) =

√
n{Fn(x) − F (x)} with F having standard uniform marginals,

converges weakly with respect to the metric induced by the weighted norm

‖G‖ω = sup
u∈[0,1]d

∣∣∣∣ G(u)

{g(u)}ω

∣∣∣∣ , g(u) =
( d

min
j=1

uj
)
∧
(
1−

d
min
j=1

uj
)
,

ω ∈ (0, 1/2). See, e.g., Shorack and Wellner (1986) for the one-dimensional
i.i.d.-case, Shao and Yu (1996) for the one-dimensional time series case or
Genest and Segers (2009) for the bivariate i.i.d.-case. For d = 2, the graph
of the function g is depicted in Figure 1.

The present paper is motivated by the apparent lack of such results for the
empirical copula process Ĉn. This process, an element of D([0, 1]d) precisely
defined in Section 2 below, plays a crucial role in the asymptotic analysis
of statistical procedures which are based on copulas or ranks. Unweighted
weak convergence of Ĉn has been investigated by several authors under a
variety of assumptions on the smoothness of the copula and on the temporal
dependence of the underlying observations, see Gaenssler and Stute (1987);
Fermanian et al. (2004); Segers (2012); Bücher and Volgushev (2013); Bücher
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Figure 1: Graphs of g(u, v) = min{u, v, 1 −min(u, v)} (left picture) and of
g̃(u, v) = min{u, v, (1− u), (1− v)} (right picture).

et al. (2014), among others. However, results regarding its weighted weak
convergence are almost non-existent. To the best of our knowledge, the
only reference appears to be Rüschendorf (1976), where, however, weight
functions are only allowed to approach zero at the lower boundary of the
unit cube. The restrictiveness of this condition becomes particularly visible
in dimension d = 2 where it is known that the limit of the empirical copula
process is zero on the entire boundary of the unit square (Genest and Segers,
2010). This observation suggests that, for d = 2, it should be possible to
maintain weak convergence of the empirical copula process when dividing
by functions of the form {g̃(u, v)}ω where

g̃(u, v) = u ∧ v ∧ (1− u) ∧ (1− v).

A picture of the graph of g̃ can be found in Figure 1, obviously, we have
g̃ ≤ g. The main result of this paper confirms the last-mentioned conjecture.
More precisely, we establish weighted weak convergence of the empirical cop-
ula process in general dimension d ≥ 2 with weight functions that approach
zero wherever the potential limit approaches zero. We also do not require
the observations to be i.i.d. and allow for exponential alpha mixing.

Potential applications of the new weighted weak convergence results are
extensive. As a direct corollary, one can derive the asymptotic behavior
of Anderson-Darling type goodness-of-fit statistics for copulas. The deriva-
tion of the asymptotic behavior of rank-based estimators for the Pickands
dependence functions (Genest and Segers, 2009) can be greatly simplified
and, moreover, can be simply extended to time series observations. Through
a suitable partial integration formula, the results can also be exploited to
derive weak convergence of multivariate rank statistics as for instance of
certain scalar measures of (serial) dependence. The latter two applications
are worked out in detail in Section 3 of this paper.
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The remaining part of this paper is organized as follows. In Section 2, the
empirical copula process is introduced and the main result of the paper, its
weighted weak convergence, is stated. In Section 3, the main result is illus-
tratively exploited to derive the asymptotics of multivariate rank statistics
and of common estimators for extreme-value copulas. All proofs are deferred
to Section 4, with some auxiliary results postponed to Section 5. Finally,
Appendix A in the supplementary material contains some general results on
(locally) bounded variation and integration for two-variate functions which
are needed for the proof of Theorem 3.3.

2 Weighted empirical copula processes

Let X = (X1, . . . , Xd)
′ be a d-dimensional random vector with joint cu-

mulative distribution function (c.d.f.) F and continuous marginal c.d.f.s
F1, . . . , Fd. The copula C of F , or, equivalently, the copula of X, is de-
fined as the c.d.f. of the random vector U = (U1, . . . , Ud)

′ that arises from
marginal application of the probability integral transform, i.e., Uj = Fj(Xj)
for j = 1, . . . , d. By construction, the marginal c.d.f.s of C are standard
uniform on [0, 1]. By Sklar’s Theorem, C is the unique function for which
we have

F (x1, . . . , xd) = C{F1(x1), . . . , Fd(xd)}

for all x = (x1, . . . , xd) ∈ Rd.
Let Xi, i = 1, . . . , n be an observed stretch of a strictly stationary time

series such that Xi is equal in distribution to X. Set Ui = (Ui1, . . . , Uid) ∼
C with Uij = Fj(Xij). Define (observable) pseudo observations Ûi =
(Ûi1, . . . , Ûid) of C through Ûij = nFnj(Xij)(/n + 1) for i = 1, . . . , n and
j = 1, . . . , d. The empirical copula Ĉn of the sample X1, . . . ,Xn is defined
as the empirical distribution function of Û1, . . . , Ûn, i.e.,

Ĉn(u) =
1

n

n∑
i=1

1(Ûi ≤ u), u ∈ [0, 1]d.

The corresponding empirical copula process is defined as

u 7→ Ĉn(u) =
√
n{Ĉn(u)− C(u)}.

For ω ≥ 0, define a weight function

gω(u) = min{∧dj=1uj ,∧dj=1[1− (u1 ∧ · · · ∧ ûj ∧ · · · ∧ ud)]}ω,

where the hat-notation u1 ∧ · · · ∧ ûj ∧ · · · ∧ ud is used as a shorthand for
min{u1, . . . , uj−1, uj+1, . . . , ud}. For d = 2, the function is particularly nice
and reduces to gω(u1, u2) = min(u1, u2, 1− u1, 1− u2)ω, see Figure 1. Note
that for vectors u ∈ [0, 1]d such that at least one coordinate is equal to 0 or
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such that d − 1 coordinates are equal to 1, we have gω(u) = 0. As already
mentioned in the introduction for the case d = 2, these vectors are exactly
the points where the limit of the empirical copula process is equal to 0,
almost surely, whence one might hope to obtain a weak convergence result
for Cn/gω. To prove such a result, a smoothness condition on C has to be
imposed.

Condition 2.1. For every j ∈ {1, . . . , d}, the first oder partial derivative
Ċj(u) := ∂C(u)/∂uj exists and is continuous on Vj = {u ∈ [0, 1]d : uj ∈
(0, 1)}. For every j2, j2 ∈ {1, . . . , d}, the second order partial derivative
C̈j1j2(u) := ∂2C(u)/∂uj1∂uj2 exists and is continuous on Vj1 ∩ Vj2 . More-
over, there exists a constant K > 0 such that

|C̈j1j2(u)| ≤ K min

{
1

uj1(1− uj1)
,

1

uj2(1− uj2)

}
, ∀u ∈ Vj1 ∩ Vj2 .

For completeness, define Ċj(u) = lim suph→0{C(u+hej)−C(u)}/h wher-
ever it does not exist. Note, that Condition 2.1 coincides with Condition 2.1
and Condition 4.1 in Segers (2012), who used it to prove Stute’s represen-
tation of an almost sure remainder term (Stute, 1984). The condition is
satisfied for many commonly occurring copulas (Segers, 2012).

For −∞ ≤ a < b ≤ ∞, let Fba denote the sigma-field generated by those
Xi for which i ∈ {a, a+ 1, . . . , b} and define, for k ≥ 1,

α[X](k) = sup
{
|P(A ∩B)− P(A)P(B)| : A ∈ F i−∞, B ∈ F∞i+k, i ∈ Z

}
as the alpha-mixing coefficient of the time series (Xi)i∈Z. The sequence is
called strongly mixing (or alpha-mixing) if α[X](k)→ 0 for k →∞. Finally,

αn(u) =
√
n{Gn(u)− C(u)}, Gn(u) = n−1∑n

i=11(Ui ≤ u),

denotes the (unobservable) empirical process based on U1, . . . ,Un.

Theorem 2.2. (Weighted weak convergence of the empirical copula
process) Suppose that X1,X2, . . . is a stationary, alpha-mixing sequence
with α[X](k) = O(ak), as k → ∞, for some a ∈ (0, 1). If the marginals of
the stationary distribution are continuous and if the corresponding copula C
satisfies Condition 2.1, then, for any c ∈ (0, 1) and any ω ∈ (0, 1/2),

sup
u∈[ c

n
,1− c

n
]d

∣∣∣∣∣ Ĉn(u)

gω(u)
− C̄n(u)

gω(u)

∣∣∣∣∣ = oP (1)

where, for any u ∈ [0, 1]d,

C̄n(u) := αn(u)−
d∑
j=1

Ċj(u)αn(u(j)),
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with u(j) = (1, . . . , 1, uj , 1, . . . , 1). Moreover, we have C̄n/g̃ω  CC/g̃ω in
(`∞([0, 1]d), ‖ · ‖∞), where g̃ω(u) = gω(u) + 1{gω(u) = 0}, where

CC(u) = αC(u)−
d∑
j=1

Ċj(u)αC(u(j)),

and where αC denotes a tight, centered Gaussian process with covariance

Cov{αC(u), αC(v)} =
∑

i∈Z
Cov{1(U0 ≤ u),1(Ui ≤ v)}.

The proof of Theorem 2.2 is given in Section 4.1 below. In fact, we state
a more general result which is based on conditions on the usual empirical
process αn. These conditions are subsequently shown to be valid for expo-
nentially alpha-mixing time series.

3 Applications

Theorem 2.2 may be exploited in numerous ways. For instance, many of
the most powerful goodness-of-fit tests for copulas are based on distances
between the empirical copula and a parametric estimator for C (Genest
et al., 2009). The results of Theorem 2.2 can be exploited to validate tests for
a richer class of distances, as for weighted Kolomogorov-Smirnov or L2-dis-
tances. Second, estimators for extreme-value copulas can often be expressed
through improper integrals involving the empirical copula (see Genest and
Segers, 2009, among others). Weighted weak convergence as in Theorem 2.2
facilitates the anlysis of their asymptotic behavior and allows to extend the
available results to time series observations. Details regarding the CFG- and
the Pickands estimator are worked out in Section 3.2 below.

Theorem 2.2 may also be used outside the genuine copula framework, for
instance, for proving asymptotic normality of multivariate rank statistics.
The power of that approach lies in the fact that proofs for time series are
essentially the same as for i.i.d. data sets. In Section 3.1, we derive a general
weak convergence result for bivariate rank statistics.

3.1 Bivariate rank statistics

Bivariate rank statistics constitute an important class of real-valued statis-
tics that can be written as

Rn =
1

n

n∑
i=1

J(Ûi1, Ûi2)

for some function J : (0, 1)2 → R, called score function. Rn can also be
expressed as a Lebesgue-Stieltjes integral with respect to Ĉn, i.e.,

Rn =

∫
[ 1
n+1

, n
n+1

]2
J(u, v)dĈn(u, v),
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which offers the way to derive the asymptotic behavior of Rn from the
asymptotic behavior of the empirical copula. This idea has already been
exploited in Fermanian et al. (2004): however, in their Theorem 6, J has to
be a bounded function which is not the case for many interesting examples.
Also, the uniform central limit theorems for multivariate rank statistics in
van der Vaart and Wellner (2007) require rather strong smoothness assump-
tions on J (which imply boundedness of J).

Example 3.1. (Rank Autocorrelation Coefficients) Suppose Y1, . . . , Yn
are drawn from a stationary, univariate time series (Yi)i∈Z. Rank autocor-
relation coefficients of lag k ∈ N are statistics of the form

rn,k =
1

n− k

n∑
i=k+1

J1

{
n
n+1Fn(Yi)

}
J2

{
n
n+1Fn(Yi−k)

}
,

where J1, J2 are real-valued functions on (0, 1) and Fn denotes the empirical
cdf of Y1, . . . , Yn. For example, the van der Waerden autocorrelation (Hallin
and Puri, 1988) is given by

rn,k,vdW =
1

n− k

n∑
i=k+1

Φ−1
{

n
n+1Fn(Yi)

}
Φ−1

{
n
n+1Fn(Yi−k)

}
,

(with Φ and Φ−1 denoting the cdf of the standard normal distribution and
its inverse, respectively) and the Wilcoxon autocorrelation (Hallin and Puri,
1988) is defined as

rn,k,W =
1

n− k

n∑
i=k+1

{
n
n+1Fn(Yi)−

1

2

}
log
{ n

n+1Fn(Yi−k)

1− n
n+1Fn(Yi−k)

}
.

Obviously, the corresponding score functions are unbounded. Asymptotic
normality for these and similar rank statistics has been shown for i.i.d. ob-
servations and for ARMA-processes (Hallin et al., 1985). To the best of
our knowledge, no general tool to handle the asymptotic behavior of such
statistics for dependent observations seems to be available. Theorem 3.3
below aims at partially filling that gap.

Example 3.2. (The pseudo-maximum likelihood estimator) As a
common practice in bivariate copula modeling one assumes to observe a
sample X1, . . . ,Xn from a bivariate distribution whose copula belongs to a
parametric copula family, parametrized by a finite-dimensional parameter
θ ∈ Θ ⊂ Rp. Except for the assumption of absolute continuity, the marginal
distributions are often left unspecified in order to allow for maximal ro-
bustness with respect to potential miss-specification. In such a setting, the
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pseudo-maximum likelihood estimator (see Genest et al. (1995) for a theoret-
ical investigation) provides the most common estimator for the parameter θ.
If cθ denotes the corresponding copula density, the estimator is defined as

θ̂n = arg maxθ∈Θ

n∑
i=1

log{cθ(Ûi1, Ûi2)}.

Using standard arguments from maximum-likelihood theory and imposing
suitable regularity conditions, the asymptotic distribution of

√
n(θ̂n − θ0)

can be derived from the asymptotic behavior of

Rn =
1

n

n∑
i=1

Jθ0(Ûi1, Ûi2), (3.1)

where θ0 denotes the unknown true parameter and where Jθ = (∂ log cθ)/(∂θ)
denote the score function. Typically, this function is unbounded, as for in-
stance in case of the bivariate Gaussian copula model where θ is the corre-
lation coefficient and the score function takes the form

Jθ(u, v) =
θ(1− θ2)− θ{Φ−1(u)2 + Φ−1(v)2}+ (1 + θ2)Φ−1(u)Φ−1(v)

1 + θ2
.

Still, the conditions of Theorem 3.3 below can be shown to be valid.
Finally, note that pseudo-maximum likelihood estimators also arise in

Markovian copula models (Chen and Fan, 2006) where copulas are used to
model the serial dependence of a stationary time series at lag one. Again,
their asymptotic distribution may be derived from rank statistics as in (3.1).

The following theorem is the central result of this section. It establishes
weak convergence of bivariate rank-statistics by exploiting weighted weak
convergence of the empirical copula process. For the definition of the space
of functions of locally bounded total variation in the sense of Hardy-Krause,
BVHKloc((0, 1)2), and for Lebesgue-Stieltjes integrals with respect to such
functions, we refer the reader to Definition A.8 in the supplementary mate-
rial. The proof is given in Section 4.4.

Theorem 3.3. Suppose the conditions of Theorem 2.2 are met. Moreover,
suppose that J ∈ BVHKloc((0, 1)2) is right-continuous and that there exists
ω ∈ (0, 1/2) such that |J(u)| ≤ const×gω(u)−1 and such that∫

(0,1)2
gω(u)|dJ(u)| <∞. (3.2)

Moreover, for δ → 0, suppose that∫
(δ,1−δ]

|J(du, δ)| = O(δ−ω) and

∫
(δ,1−δ]

|J(du, 1− δ)| = O(δ−ω), (3.3)∫
(δ,1−δ]

|J(δ, dv)| = O(δ−ω) and

∫
(δ,1−δ]

|J(1− δ, dv)| = O(δ−ω). (3.4)
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Then, as n→∞,

√
n{Rn − E[J(U)]} 

∫
(0,1)2

CC(u)dJ(u).

The weak limit is normally distributed with mean 0 and variance

σ2 =

∫
(0,1)2

∫
(0,1)2

E[CC(u)CC(v)]dJ(u)dJ(v).

Remark 3.4. (i) Provided the second order partial derivative J̈12(u, v) :=
∂2J(u, v)/∂u∂v exists, then the conditions (3.2)–(3.4) are equivalent to∫

(0,1)2 gω(u, v)|J̈12(u, v)|d(u, v) <∞ and, as δ → 0,∫ 1−δ

δ
|J̇1(u, δ)|du = O(δ−ω) and

∫ 1−δ

δ
|J̇1(u, 1− δ)|du = O(δ−ω),∫ 1−δ

δ
|J̇2(δ, v)|dv = O(δ−ω) and

∫ 1−δ

δ
|J̇2(1− δ, v)|dv = O(δ−ω),

where J̇1(u, v) := ∂J(u, v)/∂u, J̇2(u, v) := ∂J(u, v)/∂v.

(ii) A careful check of the proof of Theorem 3.3 shows that the theorem
actually remains valid under the more general conditions of Theorem 4.5
below, with ω ∈ (0, 1/2) replaced by ω ∈ (0, θ1

2(1−θ1) ∧
θ2

2(1−θ2) ∧ (θ3 − 1/2)).

As a simple application of Theorem 3.3 let us return to the autocorrelation
coefficients from Example 3.1. It can easily be shown that both JvdW (u, v) =
Φ−1(u)Φ−1(v) and JW (u, v) = (u− 1

2) log( v
1−v ) satisfy the conditions of The-

orem 3.3. To prove this for JvdW use that |Φ−1(u)| ≤ {u(1− u)}−ε for any
ε > 0 and that 1

φ{Φ−1(u)} ≤ {u(1−u)}−1, with φ denoting the density of the

standard normal distribution. Therefore, both coefficients are asymptot-
ically normally distributed for any stationary, exponentially alpha-mixing
time series provided that the copula of (Yt, Yt−k) satisfies Condition 2.1.
This broadens results from Hallin et al. (1985), which may be further ex-
tended along the lines of Remark 3.4(ii) by a more thorough investigation
of Conditions 4.1–4.3. Details are omitted for the sake of brevity.

3.2 Nonparametric estimation of Pickands dependence func-
tion

Theorem 2.2 can be used to extend recent results for the estimation of
Pickands dependence functions. Recall that C is a multivariate extreme-
value copula if and only if C has a representation of the form

C(u) = exp

(
d∑
j=1

log uj

)
A
( log u1∑d

j=1 log uj
, . . . ,

log ud−1∑d
j=1 log uj

) , u ∈ (0, 1)d,

9



for some function A : ∆d−1 → [1/d, 1], where ∆d−1 denotes the unit simplex
∆d−1 = {w = (w1, . . . , wd−1) ∈ [0, 1]d−1 :

∑d−1
j=1 wj ≤ 1}. In that case, A is

necessarily convex and satisfies the relationship

max(w1, . . . , wd) ≤ A(w1, . . . , wd−1) ≤ 1 (wd = 1−
∑d−1

j=1 wj),

for all w ∈ ∆d−1. By reference to Pickands (1981), A is called Pickands
dependence function. Nonparametric estimation methods for A in the i.i.d.
case and under the additional assumption that the marginal distributions are
known have been considered in Pickands (1981); Deheuvels (1991); Capéraà
et al. (1997); Jiménez et al. (2001), among others. In the more realistic
case of unknown marginal distribution, rank-based estimators have for in-
stance been investigated in Genest and Segers (2009); Bücher et al. (2011);
Gudendorf and Segers (2012); Berghaus et al. (2013), among others. For
illustrative purposes, we restrict attention to the rank-based versions of the
Pickands estimator in Gudendorf and Segers (2012) in the following, even
though the results easily carry over to, for instance, the CFG-estimator.
The Pickands-estimator is defined as

ÂPn (w) =

[
1

n

n∑
i=1

min
{− log(Ûi1)

w1
, . . . ,

− log(Ûid)

wd

}]−1

and it follows by simple algebra (see Lemma 1 in Gudendorf and Segers,
2012) that APn :=

√
n(ÂPn −A) = −A2BPn /(1 + n1/2BPn ), where

BPn (w) =

∫ 1

0
Ĉn(uw1 , . . . , uwd)

du

u
.

Note that
∫ 1

0 u
−1 du does not converge, which hinders a direct application

of the continuous mapping theorem to deduce weak convergence of BPn (and
hence of APn ) in `∞(∆d−1) just on the basis of (unweighted) weak conver-
gence of Ĉn. Deeper results are necessary and in fact, Genest and Segers
(2009) and Gudendorf and Segers (2012) deduce weak convergence of BPn
by using Stute’s representation for the empirical copula process based on
i.i.d. observations (see Stute, 1984; Tsukahara, 2005) and by exploiting a
weighted weak convergence result for αn.

With Theorem 2.2, we can give a much simpler proof. Write

BPn (w) =

∫ 1

0

Ĉn(uw1 , . . . , uwd)

min(uw1 , . . . , uwd)ω
min(uw1 , . . . , uwd)ω

u
du.

Then, since
∫ 1

0 min(uw1 , . . . , uwd)ω du
u ≤

∫ 1
0 u

ω/d−1 du exists for any ω > 0,
weak convergence of BPn is a direct consequence of the continuous mapping
theorem and Theorem 2.2. Note that this method of proof is not restricted
to the i.i.d. case.
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4 Proofs

4.1 Proof of Theorem 2.2

Theorem 2.2 will be proved by an application of a more general result on
the empirical copula process. For its formulation, we need a couple of ad-
ditional conditions which, subsequently, will be shown to be satisfied for
exponentially alpha-mixing time series.

Condition 4.1. There exists some θ1 ∈ (0, 1/2] such that, for all µ ∈ (0, θ1)
and all sequences δn → 0, we have

Mn(δn, µ) := sup
|u−v|≤δn

|αn(u)− αn(v)|
|u− v|µ ∨ n−µ

= oP (1).

Condition 4.1 can for instance be verified in the i.i.d. case with θ1 =
1/2, exploiting a bound for the multivariate oscillation modulus derived in
Proposition A.1 in Segers (2012).

Condition 4.2. The empirical process αn converges weakly in `∞([0, 1]d)
to some limit process αC which has continuous sample paths, almost surely.

For i.i.d. samples, the latter condition is satisfies with αC being a C-
Brownian bridge, i.e., a centered Gaussian process with continuous sample
paths, a.s., and with Cov{αC(u), αC(v)} = C(u ∧ v)− C(u)C(v).

Condition 4.3. There exist θ2 ∈ (0, 1/2] and θ3 ∈ (1/2, 1] such that, for
any ω ∈ (0, θ2), any λ ∈ (0, θ3) and all j = 1, . . . , d, we have

sup
uj∈(0,1)

∣∣∣∣∣ αnj(uj)

uωj (1− uj)ω

∣∣∣∣∣ = OP (1), sup
uj∈(1/nλ,1−1/nλ)

∣∣∣∣∣ βnj(uj)

uωj (1− uj)ω

∣∣∣∣∣ = OP (1),

where αnj(uj) =
√
n{Gnj(uj)− uj} and βnj(uj) =

√
n{G−nj(uj)− uj}.

Here, Gnj(uj) = n−1
∑n

i=1 1(Uij ≤ uj) and, for a distribution function H
on the reals, H− denotes the (left-continuous) generalized inverse function
of H defined as

H−(u) := inf{x ∈ R : H(x) ≥ u}, 0 < u ≤ 1,

and H−(0) = sup{x ∈ R : H(x) = 0}. In the i.i.d. case, Condition 4.3 is a
mere consequence of results in Csörgő et al. (1986), with θ2 = 1/2 , θ3 = 1.

The following proposition shows that the (probabilistic) Conditions 4.1,
4.2 and 4.3 are satisfied for sequences that are exponentially alpha-mixing.

Proposition 4.4. Suppose that X1,X2, . . . is a stationary, alpha-mixing
sequence with α[X](k) = O(ak), as k → ∞, for some a ∈ (0, 1). Then,
Conditions 4.1, 4.2 and 4.3 are satisfied with θ1 = θ2 = 1/2 and θ3 = 1.
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Here, Condition 4.3 is a mere consequence of results in Shao and Yu
(1996) and Csörgő and Yu (1996), whereas Condition 4.2 has been shown
in Rio (2000). For the proof of Condition 4.1, we can rely on results from
Kley et al. (2014). The precise arguments are given in Section 4.2 below.

The following theorem can be regarded as a generalization of Theorem 2.2:
weighted weak convergence of the empirical copula process takes place pro-
vided the abstract Conditions 4.1, 4.2 and 4.3 are met. The proof is given
in Section 4.3 below.

Theorem 4.5. (Weighted weak convergence of empirical copula
processes) Suppose Conditions 2.1, 4.1 and 4.3 are met. Then, for any
c ∈ (0, 1) and any ω ∈ (0, θ1

2(1−θ1) ∧
θ2

2(1−θ2) ∧ (θ3 − 1/2)),

sup
u∈[ c

n
,1− c

n
]d

∣∣∣∣∣ Ĉn(u)

gω(u)
− C̄n(u)

gω(u)

∣∣∣∣∣ = oP (1).

If additionally Condition 4.2 is met, then C̄n/g̃ω  CC/g̃ω in (`∞([0, 1]d), ‖·
‖∞).

Proof of Theorem 2.2. The theorem is a mere consequence of Proposition 4.4
and Theorem 4.5.

4.2 Proof of Proposition 4.4

For an r-dimensional random vector (Y1, . . . Yr)
′, define the rth order joint

cumulant by

cum(Y1, . . . Yr) =
∑

{ν1,...,νp}

(−1)p−1(p− 1)!E
( ∏
j∈ν1

Yj
)
× · · · × E

( ∏
j∈νp

Yj
)
,

where the summation extends over all partitions {ν1, . . . , νp}, p ∈ {1, . . . , r},
of {1, . . . , r}. The following lemma will be one of the main tools for estab-
lishing Condition 4.1 under exponentially alpha-mixing.

Lemma 4.6. If Y1, Y2, . . . is a strictly stationary sequence of random vari-
ables with |Yi| ≤ K <∞ and if there exist constants ρ ∈ (0, 1) and K ′ <∞
such that for any p ∈ N and arbitrary i1, . . . , ip ∈ Z

| cum(Yi1 , . . . , Yip)| ≤ K ′ρmaxk,` |ik−i`|,

then, there exist constants C1, C2 < ∞ only depending on K,K ′ and |νr|
such that ∣∣∣ cum

( n∑
i=1

Yi, j ∈ νr
)∣∣∣ ≤ C1(n+ 1)ε(| log ε|+ 1)C2 ,

where ε = E[|Yi|].
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Proof. The proof is almost identical to the proof of Lemma 7.4 in Kley et al.
(2014) and is therefore omitted.

Proof of Proposition 4.4. The weak convergence result in Condition 4.2 has
been shown in Theorem 7.3 in Rio (2000).

Regarding Condition 4.3, note that exponentially alpha-mixing implies
that α[X](k) = O(k−b−δ) for any b > 1 +

√
2 and any δ > 0. Therefore, by

Theorem 3.1 in Shao and Yu (1996),

sup
u∈[0,1]

∣∣∣∣ √n{Gnj(u)− u}
{u(1− u)}(1−1/b)/2

∣∣∣∣ = OP (1)

Since (1−1/b)/2 converges to 1/2 for b→∞, we indeed have the first display
in Condition 4.3 with θ2 = 1/2. Regarding the second display, Csörgő and
Yu (1996) have shown that

sup
u∈[δn,1−δn]

∣∣∣∣∣
√
n{G−nj(u)− u}

{u(1− u)}(1−1/b)/2

∣∣∣∣∣ = OP (1),

for δn = n−b/(1+b) → n−1 as b → ∞, which implies that we may choose
θ3 = 1.

Finally, consider Condition 4.1. It follows from a simple multivariate
extension of Proposition 3.1 in Kley et al. (2014) that, in our case of an
exponentially alpha-mixing sequence (Xi)i∈Z, there exist constants ρ ∈ (0, 1)
and K < ∞ such that, for any p ∈ N and any arbitrary hyper-rectangles
A1, . . . , Ap ⊂ Rd and arbitrary i1, . . . , ip ∈ Z,

| cum(1{Xi1 ∈ A1}, . . . ,1{Xip ∈ Ap})| ≤ Kρmaxk,` |ik−i`|. (4.1)

The latter display will be the main tool to establish Condition 4.1. First,
decompose

Mn(δn, µ) = sup
|u−v|≤δn

|αn(u)− αn(v)|
|u− v|µ ∨ n−µ

= max{Sn1, Sn2}

where

Sn1 = sup
n−1≤|u−v|≤δn

|αn(u)− αn(v)|
|u− v|µ

, Sn2 = sup
|u−v|≤n−1

nµ|αn(u)− αn(u)|.

It suffices to show that Sn1 = oP (1) and Sn2 = oP (1) as n→∞.
First consider Sn2. We will show that, for any ` ∈ N and any β ∈ (0, 1),

there exist constants K1 and K2 only depending on d, `, β and the constants
in (4.1) such that

P
(

sup
|u−v|≤n−1

|αn(u)− αn(v)| > ε
)
≤ 31(n−1/2 > K1ε) +K2ε

−2`n1−β`.

(4.2)
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Indeed, Sn2 = oP (1) follows by setting ε = n−µε′, by choosing β > 2µ and
by finally choosing ` sufficiently large.

In order to prove (4.2), we begin by bounding the left-hand side of that
display by

P
(

sup
|u−v|≤n−1

∣∣∣ 1√
n

n∑
i=1

1(Ui ≤ u)− 1(Ui ≤ v)
∣∣∣ > ε

2

)
+ P

(
sup

|u−v|≤n−1

√
n|C(u)− C(v)| > ε

2

)
,

where the second probability is smaller than 1(n−1/2 > ε
2) by Lipschitz-

continuity of C. Furthermore, we have

sup
|u−v|<n−1

∣∣∣ 1√
n

n∑
i=1

1(Ui ≤ u)− 1(Ui ≤ v)
∣∣∣

≤
d∑
j=1

sup
0≤vj−uj≤n−1

1√
n

n∑
i=1

1(Uij ≤ vj)− 1(Uij ≤ uj)

=

d∑
j=1

sup
0≤vj−uj≤n−1

√
n{Gnj(vj)−Gnj(uj)}

≤
d∑
j=1

sup
|vj−uj |≤n−1

√
n|Gnj(vj)−Gnj(uj)− (vj − uj)|+

d√
n

=

d∑
j=1

sup
|vj−uj |≤n−1

|αnj(vj)− αnj(uj)|+
d√
n
.

We now proceed similar as in the proof of Lemma 8.6 in Kley et al. (2014)
to bound the sum on the right-hand side. Set Mn = {0, 1

n ,
2
n , . . . , 1}. Mono-

tonicity of Gnj yields

sup
|uj−vj |≤n−1

√
n|Gnj(uj)−Gnj(vj)− (uj − vj)|

≤ max
uj ,vj∈Mn:|uj−vj |≤2/n

√
n|Gnj(uj)−Gnj(vj)− (uj − vj)|+ 2/

√
n.

Therefore, we get

P
(

sup
|u−v|≤n−1

∣∣∣ 1√
n

n∑
i=1

1(Ui ≤ u)− 1(Ui ≤ v)
∣∣∣ > ε

2

)
≤ P

( d∑
j=1

max
uj ,vj∈Mn:|uj−vj |≤2/n

|αnj(vj)− αnj(uj)| >
ε

6

)
+ 1

(
n−1/2 >

ε

6d

)
+ 1

(
n−1/2 >

ε

12

)
.
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Now, note that the set {(u, v) ∈ M2
n : |u − v| ≤ 2/n} contains O(n) ele-

ments. Since E(maxi=1,...,m |Yi|p) ≤ m×maxi=1,...,m E(|Yi|p) for any random
variables Y1, . . . , Ym, we can conclude that

P
( d∑
j=1

max
uj ,vj∈Mn:|uj−vj |≤2/n

|αnj(vj)− αnj(uj)| >
ε

8

)

≤
d∑
j=1

P
(

max
uj ,vj∈Mn:|uj−vj |≤2/n

|αnj(vj)− αnj(uj)| >
ε

8d

)

≤
d∑
j=1

(8d)2`ε−2`E
[

max
uj ,vj∈Mn:|uj−vj |≤2/n

|αnj(vj)− αnj(uj)|2`
]

≤ const×ε−2`
d∑
j=1

n sup
|uj−vj |≤2/n

E
[
|αnj(vj)− αnj(uj)|2`

]
.

The assertion in (4.2) now follows from an inequality in the proof of Lem-
ma 8.6 in Kley et al. (2014). These authors showed that, if (4.1) is satisfied,
then, for any ` ∈ N, there exist constants c1 and c2 which only depend on `
and the constants in (4.1) such that

sup
uj ,vj∈[0,1]:|uj−vj |≤δ

E|αnj(uj)− αnj(vj)|2` ≤ c2[{δ(1 + | log δ|c1)} ∨ n−1]`.

Set δ = 2/n and exploit that log n ≤ n(1−β)/c1 for β ∈ (0, 1) to get rid of the
logarithmic term on the right-hand side to finally arrive at (4.2).

It remains to be shown that Sn1 = oP (1). We have

P
(

sup
n−1≤|u−v|≤δn

|αn(u)− αn(v)|
|u− v|µ

> ε
)

≤ P
(

max
k:n−1<2−kδn

sup
2−(k+1)δn≤|u−v|≤2−kδn

|αn(u)− αn(v)|
|u− v|µ

> ε
)

≤
∑

k:n−1<2−kδn

P
(

sup
2−(k+1)δn≤|u−v|≤2−kδn

|αn(u)− αn(v)| > ε(2−kδn)µ2−µ
)

≤
∑

k:n−1<2−kδn

P
(

sup
|u−v|≤2−kδn

|αn(u)− αn(v)| > ε(2−kδn)µ2−µ
)
.

Therefore, we only have to show, that∑
k:n−1<2−kδn

P
(

sup
|u−v|≤2−kδn

|αn(u)− αn(v)| > ε(2−kδn)µ2−µ
)

= o(1). (4.3)

We will show later that, for any L ∈ N and for any γ ∈ (0, 1/2), there
exists a constant K = K(γ, L) > 0 such that, for all u,v ∈ [0, 1]d with
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|u− v| ≥ n−1,

‖αn(u)− αn(v)‖2L ≤ K|u− v|γ =: Kd(u,v), (4.4)

where ‖X‖p = E[|X|p]1/p. Note that the packing number D(ε, d) of the
metric space ([0, 1]d, d) satisfies D(ε, d) ≤ const×ε−d/γ . Then, using the
notation Ψ(x) = x2L, Ψ−1(x) = x1/(2L), δ = (2−kδn)γ and η̄ = 2n−γ ,
Lemma 7.1 in Kley et al. (2014) yields the existence of a random variable
S1 such that

P
(

sup
|u−v|≤2−kδn

|αn(u)− αn(v)| > ε(2−kδn)µ2−µ
)

≤ P
(
S1 > (2−kδn)µ2−µ−1ε

)
+ P

(
2 sup
|u−v|≤n−1,u∈T̃

|αn(u)− αn(v)| > (2−kδn)µ2−µ−1ε
)
,

where T̃ denotes a finite set of cardinality O(nd) and where, for any η > η̄,

P(|S1| > (2−kδn)µ2−µ−1ε)

≤ const×
[∫ η

0 ε
− d

2γL dε+ {(2−kδn)γ + 4n−γ}η−
d
γL

(2−kδn)µ2−µ−1ε

]2L

.

Set η = 2(2−kδn)
γ/(1+ d

γ2L
)
, choose γ and L such that d < 2γL and note that

4n−γ ≤ 4(2−kδn)γ . Then

P(|S1| > (2−kδn)µ2−µ−1ε) ≤ const×
{

(2−kδn)
−µ+γ

1− d
2γL

1+ d
2γL

}2L
,

where the constant may depend on ε, γ, µ, d, L. Therefore, choosing L and
γ sufficiently large, we obtain that

P(|S1| > (2−kδn)µ2−µ−1ε) ≤ const×(2−kδn)κ

for some κ > 0.
Furthermore, (4.2) and the fact that 2−kδn ≥ n−1 implies that

P
(

2 sup
|u−v|≤n−1,u∈T̃

|αn(u)− αn(v)| > (2−kδn)µ2−µ−1ε
)

≤ const×n−β̄ + 31(nµ−1/2 > const)

for some β̄ > 0, by choosing β ∈ (2µ, 1) and ` sufficiently large. Therefore,∑
k:n−1<2−kδn

P
(

sup
|u−v|≤2−kδn

|αn(u)− αn(v)| > ε(2−kδn)µ2−µ
)

≤ const

{
log(n){n−β̄ + 31(nµ−1/2 > const)}+ δκn

∞∑
k=0

2−kκ

}
= o(1),
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where the logarithmic term is due to the fact that there are at most O(log n)
summands such that (2−kδn) > n−1. The last display is exactly (4.3).

Finally, it remains to be shown that (4.4) is satisfied. For i = 1, . . . , n, let
Ai(u,v) = 1(Ui ≤ u)−1(Ui ≤ v)−{C(u)−C(v)}. Then, by Theorem 2.3.2
in Brillinger (1975),

E{αn(u)− αn(v)}2L = n−LE
{ n∑
i=1

Ai(u,v)
}2L

= n−L cum
( 2L∏
j=1

n∑
i=1

Ai(u,v)
)

= n−L
∑

ν1,...,νR

R∏
r=1

cum
( n∑
i=1

Ai(u,v), j ∈ νr
)
,

where the sum runs over all partitions of the set {1, . . . , 2L} and where
cum(Yj , j ∈ ν) denotes the joint cumulant of all random variables Yj with
j ∈ ν. Note that, for νr with |νr| = 1, we have cum

(∑n
i=1Ai(u,v), j ∈

νr
)

= E
∑n

i=1Ai(u,v) = 0, whence it is sufficient to consider R ≤ L. In
that case, an application of Lemma 4.6 implies that there exist constants
0 < C,C ′ <∞ such that

cum
( n∑
i=1

Ai(u,v), j ∈ νr
)
≤ C(n+ 1)|u− v|(1 +

∣∣ log |u− v|
∣∣)C′

≤ K̄(n+ 1)|u− v|2γ .

Hence, for any u,v ∈ [0, 1]d such that |u− v| > n−1,

E{αn(u)− αn(v)}2L ≤ const×
∑

ν1,...,νR,R≤L
(n+ 1)R−L|u− v|2Rγ

≤ const×|u− v|2Lγ ,

which is exactly (4.4).

4.3 Proof of Theorem 4.5

Throughout the proof, we will use the following additional notations. Set

Cn(u) = Gn{G−n (u)}, G−n (u) =
(
G−n1(u1), . . . , G−nd(ud)

)
and define a version of the empirical copula process based on Cn by

u 7→ Cn(u) =
√
n{Cn(u)− C(u)}.

Moreover, for 0 < a < b < 1/2, define

N(a, b) = {u ∈ [0, 1]d|a < g1(u) ≤ b}.
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Note that [0, 1]d = {u : g1(u) = 0} ∪N(0, a)∪N(a, 1/2). The set N(a, 1/2)
consists of those vectors such that all of their coordinates are larger than a
and such that at most d − 2 coordinates are larger than or equal to 1 − a.
In particular, for d = 2, we have N(a, 1/2) = (a, 1− a)2.

The proof of Theorem 4.5 will be based on the following sequence of
Lemmas. All convergences are with respect to n→∞.

Lemma 4.7. Under the conditions of Theorem 4.5,

sup
u∈N(cn−1,1/2)

∣∣∣ Ĉn(u)

gω(u)
− Cn(u)

gω(u)

∣∣∣ = oP (1).

Lemma 4.8. Under the conditions of Theorem 4.5,

sup
u∈N(n−1/2,1/2)

∣∣∣Cn(u)

gω(u)
− C̄n(u)

gω(u)

∣∣∣ = oP (1).

Lemma 4.9. Under the conditions of Theorem 4.5, for any δn ↓ 0 such
that δn ≥ cn−1,

sup
u∈N(cn−1,δn)

∣∣∣Cn(u)

gω(u)

∣∣∣ = oP (1).

Lemma 4.10. Under the conditions of Theorem 4.5, for any δn ↓ 0,

sup
u∈N(0,δn)

∣∣∣ C̄n(u)

gω(u)

∣∣∣ = oP (1).

Lemma 4.11. Under the conditions of Theorem 4.5, for any δn ↓ 0

sup
u,u′∈[ c

n
,1− c

n
]d:|u−u′|≤δn

∣∣∣Cn(u)

gω(u)
− Cn(u′)

gω(u′)

∣∣∣ = oP (1) (4.5)

and

sup
u,u′∈[0,1]d:|u−u′|≤δn

∣∣∣ C̄n(u)

g̃ω(u)
− C̄n(u′)

g̃ω(u′)

∣∣∣ = oP (1) (4.6)

Proof of Theorem 4.5. Set δn = dn−1/2. Given u ∈ [ cn , 1 −
c
n ]d, choose

u′ ∈ [ 1√
n
, 1− 1√

n
]d such that |u− u′| ≤ δn. Since

∣∣∣ Ĉn(u)

gω(u)
− C̄n(u)

gω(u)

∣∣∣ ≤ ∣∣∣ Ĉn(u)

gω(u)
− Cn(u)

gω(u)

∣∣∣+
∣∣∣Cn(u)

gω(u)
− Cn(u′)

gω(u′)

∣∣∣
+
∣∣∣Cn(u′)

gω(u′)
− C̄n(u′)

gω(u′)

∣∣∣+
∣∣∣ C̄n(u′)

gω(u′)
− C̄n(u)

gω(u)

∣∣∣
18



the first assertion of the theorem follows from Lemma 4.7, 4.8 and 4.11.
Next, let us show that C̄n/g̃ω  CC/g̃ω in (`∞([0, 1]d), ‖ · ‖∞). From

Problem 2.1.5 in Van der Vaart and Wellner (1996) and Lemma 4.11 we
obtain that C̄n/g̃ω is asymptotically equicontinuous. Furthermore, Con-
dition 4.2 yields that the finite dimensional distributions of C̄n/g̃ω con-
verge weakly to the finite dimensional distributions of CC/g̃ω. Note that
CC/g̃ω(u) = C̄n/g̃ω(u) = 0 for any u with at least one entry equal to 0 or
with d− 1 entries equal to 1.

Proof of Lemma 4.7. It suffices to show that, there exists µ ∈ (ω, θ1) such
that

sup
u∈[0,1]d

|Ĉn(u)− Cn(u)| = oP (n−1/2−µ).

Note that Fnj(Xij) = Gnj(Uj), whence

sup
u∈[0,1]d

|Ĉn(u)− Cn(u)|

≤ sup
u∈[0,1]d

∣∣∣∣∣ 1n
n∑
i=1

1{Gn(Ui) ≤ n+1
n u} − 1{Gn(Ui) ≤ u}

∣∣∣∣∣
+ sup

u∈[0,1]d

∣∣∣∣∣ 1n
n∑
i=1

1{Gn(Ui) ≤ u} − 1{Ui ≤ G−n (u)}

∣∣∣∣∣
≤

d∑
j=1

[
sup
u∈[0,1]

1

n

n∑
i=1

1{u < Gnj(Uij) ≤ n+1
n u}

+ sup
u∈[0,1]

1

n

n∑
i=1

∣∣∣1{Gnj(Uij) ≤ u} − 1{Uij ≤ G−nj(u)}
∣∣∣]

From the definition of the empirical distribution function and the generalized
inverse function we have that, for any fixed u, both

∑n
i=1 1{u < Gnj(Uij) ≤

n+1
n u} and

∑n
i=1 |1{Gnj(Uij) ≤ u} − 1{Uij ≤ F−nj(u)}| are bounded by the

maximal number of Uij which are equal. Note that this maximal number is
equal to n× supu∈[0,1] |Gnj(u)−Gnj(u−)|. Provided there are no ties among
U1j , . . . , Unj , for any j = 1, . . . , d (which, for instance, occurs in the i.i.d.
case), this expression is equal to 1 and the Lemma is proven. In the general
case, we have

sup
u∈[0,1]

|Gnj(u)−Gnj(u−)| ≤ sup
u,v∈[0,1]
|u−v|≤1/n

|Gnj(u)−Gnj(v)|

≤ sup
u,v∈[0,1]
|u−v|≤1/n

|Gnj(u)−Gnj(v)− (u− v)|+ 1

n

≤ 1√
n

sup
u,v∈[0,1]d

|u−v|≤1/n

|αn(u)− αn(v)|+ 1

n
(4.7)
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Then, the assertion follows from Condition 4.1.

Proof of Lemma 4.8. First of all, we write

Cn(u)− C̄n(u) = (Bn1 +Bn2 +Bn3)(u)

where

Bn1(u) = αn{G−n (u)} − αn(u)

Bn2(u) =
√
n
[
C{G−n (u)} − C(u)

]
−

d∑
j=1

Ċj(u)βnj(uj)

Bn3(u) =
d∑
j=1

Ċj(u) {βnj(uj) + αnj(uj)} .

For p = 1, 2, 3, set Anp(u) = Bnp(u)/gω(u). The Lemma is proved if we
show uniform negligibility of each term individually.

Treatment of An1. Let Ωn denote the event that supu∈[0,1]d |G−n (u) − u| ≤
δn = n−1/2+κ, with κ > 0 to be specified later on. Note that the probability
of Ωn converges to 1. Exploiting Condition 4.1 and the fact that |gω(u)|−1 ≤
nω/2 for u ∈ N(n−1/2, 1/2) we obtain, for any µ ∈ (0, θ1),

sup
u∈N(n−1/2,1/2)

|An1(u)| ≤ nω/2 sup
u∈[0,1]d

∣∣αn{G−n (u)} − αn(u)
∣∣

≤ nω/2Mn(δn, µ) sup
u∈[0,1]d

{
|G−n (u)− u|µ ∨ n−µ

}
1Ωn

+ oP (1)

≤ nω/2−µ/2+κµoP (1) + oP (1)

The right-hand side is oP (1) if we choose µ ∈ (ω, θ1) sufficiently large and
κ > 0 sufficiently small such that ω < µ(1− 2κ).

Treatment of An2. Fix u ∈ N(n−1/2, 1/2). Let S = Su denote the set of all
j ∈ {1, . . . , d} such that uj ∈ [n−1/2, 1− n−γ ], with γ > 1/2 to be specified
later. Let (G−n (u))S denote the vector in Rd whose jth coordinate is equal
to G−nj(uj)1(j ∈ S) + uj1(j 6∈ S). Write An2(u) = Dn1(u) +Dn2(u), where

Dn1(u) =

(√
n
[
C{G−n (u)} − C{(G−n (u))S}

]
−
∑
j /∈S

Ċj(u)βnj(uj)

)
g−1
ω (u),

Dn2(u) =

(√
n
[
C{(G−n (u))S} − C(u)

]
−
∑
j∈S

Ċj(u)βnj(uj)

)
g−1
ω (u).

Since Ċj ∈ [0, 1], we can bound

Dn1(u) ≤ 2
∑
j /∈S

∣∣∣∣βnj(uj)gω(u)

∣∣∣∣ ≤ 2
d∑
j=1

sup
uj∈[1−n−γ ,1]

∣∣∣∣βnj(uj)n−ω/2

∣∣∣∣ .
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The right-hand side is oP (1) by Lemma 5.3. Regarding Dn2, by Taylor’s
Theorem, |Dn2(u)| = 1

2

∑
j1,j2∈S D

j1j2
n2 (u), where

Dj1j2
n2 (u) = n−1/2C̈j1j2(ξn)βnj1(uj1)βnj2(uj2)gω(u)−1,

and where ξn = (ξn1, . . . , ξnd)
′ is an intermediate point between (G−n (u))S

and u. By Condition 2.1, we have

|C̈j1j2(ξn)| ≤ K{ξnj1(1− ξnj1)}−1/2{ξnj2(1− ξnj2)}−1/2.

Therefore, since gω(u)−1 ≤ nω/2,

|Dj1j2
n2 (u)| ≤ Kn−1/2+ω/2 sup

u∈[n−1/2,1−n−1/2]d

∣∣∣∣∣
{
uj1(1− uj1)

ξnj1(1− ξnj1)

}1/2

×
{
uj2(1− uj2)

ξnj2(1− ξnj2)

}1/2

× |βnj1(uj1)|
{uj1(1− uj1)}ω

× |βnj2(uj2)|
{uj2(1− uj2)}ω

× {uj1(1− uj1)uj2(1− uj2)}ω−1/2
∣∣∣ .

By an application of Lemma 5.2 and by Condition 4.3, the right-hand
side is of order OP (n−1/2+ω/2+γ(1−2ω)) = oP (1), provided we choose γ ∈
(1/2, {1/2 + ω/(2 − 4ω)} ∧ {1/(2(1 − θ2))} ∧ θ3). Since u ∈ N(n−1/2, 1/2)
was arbitrary, we can conclude that supu∈N(n−1/2,1/2) |An2(u)| = oP (1).

Treatment of An3. Since |Ċj(u)| ≤ 1 for any u ∈ [0, 1]d, we have

sup
u∈N(n−1/2,1/2)

|An3(u)| ≤ nω/2
d∑
j=1

sup
uj∈[0,1]

|βnj(uj) + αnj{G−nj(uj)}|

+ nω/2
d∑
j=1

sup
uj∈[0,1]

∣∣∣αnj{G−nj(uj)} − αnj(uj)∣∣∣ .
The second sum on the right-hand side is of order oP (1) as shown in the pre-
ceding treatment of the term An1. Negligibility of the first sum follows from
Lemma 5.1, observing that αnj{G−nj(uj)} =

√
n[Gnj{G−nj(uj)} − G

−
nj(uj)]

from the definition of αn.

Proof of Lemma 4.9. Note that, by a monotonicity argument, it suffices to
treat sequences δn such that δn � n−1/2, i.e., δn

√
n→∞. First of all, choose

γ such that 1/2 + ω < γ < 1/{2(1 − θ2)} ∧ θ3. Set Mnγ = N(n−γ , δn) ∩
(n−γ , 1 − n−γ)d and M c

nγ = N(n−γ , δn) \ (n−γ , 1 − n−γ)d, and note that
N(cn−1, δn) = N(cn−1, n−γ) ∪Mnγ ∪M c

nγ . Therefore,

sup
u∈N(cn−1,δn)

∣∣∣Cn(u)

gω(u)

∣∣∣ = Rn{N(cn−1, n−γ)} ∨Rn(Mnγ) ∨Rn(M c
nγ), (4.8)
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where, for A ⊂ [0, 1]d, Rn(A) = supu∈A |Cn(u)/gω(u)|. It suffices to show
negligibility of each term on the right-hand side of (4.8).

Treatment of Rn{N(cn−1, n−γ)}. We will distinguish the cases that either
gω(u) = uω1 or gω(u) = (1−u1)ω. The cases gω(u) = uωj or gω(u) = (1−uj)ω
for some j > 1 can be treated similarly.

Let us first consider u such that gω(u) = uω1 . Obviously,

|Cn(u)− C(u)| ≤ |Cn(u)− Cn(0, u2, . . . , ud)|+ |C(0, u2, . . . , ud)− C(u)|.

By Lipschitz-continuity of the copula function C, the second term on the
right hand side can be bounded by u1 = g1(u). For the first term, note that

|Cn(u)− Cn(0, u2, . . . , ud)| =
1

n

n∑
i=1

1{Ui ≤ G−n (u)}

≤ 1

n

n∑
i=1

1{Ui1 ≤ G−n1(u1)} = Gn1{G−n1(u1)} (4.9)

By Lemma 5.1 the last expression is equal to u1 + oP (n−1/2−µ) = g1(u) +
oP (n−1/2−µ) for any µ ∈ (ω, θ1), where the residual term is uniformly in
u1 ∈ [0, 1]. Combined, this yields |Cn(u)| ≤

√
n2g1(u) + oP (n−µ), and

hence

sup
u∈N(cn−1,n−γ),gω(u)=uω1

∣∣∣Cn(u)

gω(u)

∣∣∣ ≤ 2n1/2+ω−γ + oP (n−µ+ω) = oP (1).

Now, consider the case gω(u) = (1 − u1)ω, i.e., 1 − u1 = 1 − u1 ∧ · · · ∧
ûk ∧ · · · ∧ ud for some k ∈ {2, . . . , d} and without loss of generality we may
assume that k = 2. Then, in particular, 1−u1 ≤ 1−u2 and 1−u1 ≥ 1−uj
for all j ≥ 3. Now, decompose

|Cn(u)−C(u)| ≤ |Cn(u)−Cn(u(2))|+|Cn(u(2))−C(u(2))|+|C(u(2))−C(u)|.

Again by Lipschitz-continuity of the copula function, we have

|C(u(2))− C(u)| ≤
∑
j 6=2

|1− uj | ≤ (d− 1)|1− u1| = (d− 1)g1(u).

Furthermore, we have

|Cn(u)− Cn(u(2))| ≤ |Cn(u)− Cn{1, u2, . . . , ud}|
+ |Cn{1, u2, . . . , ud} − Cn{1, u2, 1, u4, . . . , ud}|

+ · · ·+ |Cn{1, u2, 1, 1, . . . , 1, ud} − Cn(u(2))| (4.10)
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and thus, by similar arguments as in (4.9), |Cn(u) − Cn(u(2))| ≤ (d −
1)g1(u) + oP (n−1/2−µ), uniformly in u. Finally, from Lemma 5.1

|Cn(u(2))− C(u(2))| = |Gn2{G−n2(u2)} − u2| = oP (n−1/2−µ).

Altogether, we obtain

sup
u∈N(cn−1,n−γ),gω(u)=(1−u1)ω

∣∣∣Cn(u)

gω(u)

∣∣∣ ≤ 2(d−1)n1/2+ω−γ+oP (n−µ+ω) = oP (1).

Treatment of Rn(Mnγ). Again, let us first treat the case where gω(u) = uω1 .
We can write Cn(u)/gω(u) = S1n(u) + S2n(u) + S3n(u), where

S1n(u) =
√
n[Gn{G−n (u)} − C{G−n (u)}]/gω(u)

S2n(u) =
√
n[C{G−n (u)} − C{G−n1(u1), u2, . . . , ud}]/gω(u)

S3n(u) =
√
n[C{G−n1(u1), u2, . . . , ud} − C(u)]/gω(u).

Lipschitz continuity of the copula C together with Condition 4.3 implies
that supu∈Mnγ ,gω(u)=uω1

|S3n(u)| = oP (1).

Regarding S1n, let Ωn denote the event that supu1∈[0,δn]G
−
n1(u1) ≤ 2δn.

On Ωc
n, we have

√
nδn < supu1∈[0,δn]

√
n|G−n1(u1) − u1| = OP (1), whence,

by the assumption that
√
nδn → ∞, we get Pr(Ωc

n) → 0. Therefore, by
Condition 4.1, for any µ ∈ (0, θ1), we have

|S1n(u)| =
∣∣∣αn{G−n (u)} − αn{0, G−n2(u2), . . . , G−nd(ud)}

uω1

∣∣∣
≤Mn(2δn, µ)

∣∣∣∣{G−n1(u1)}µ ∨ n−µ

uω1

∣∣∣∣1Ωn + oP (1)

≤ oP (1)

{
|G−n1(u1)− u1|µ

uω1
+ uµ−ω1

}
∨ n−µ+γω + oP (1),

where we used subadditivity of the function x 7→ xµ, x ≥ 0. By Condi-
tion 4.3, we have

sup
u1∈[n−γ ,δn]

|G−n1(u1)− u1|µ

uω1
≤ n−µ/2 sup

u1∈[n−γ ,δn]

|uω(µ−1)
1 |OP (1)

= OP (n−µ/2−γω(µ−1))

Exploit that γ < 1 and choose µ ∈ (ω/(ω + 1/2), θ1) to obtain that, as
n→∞, supu∈Mnγ ,gω(u)=uω1

|S1n(u)| = oP (1).
Finally, we turn to S2n. The mean value theorem allows to write

S2n(u) =

d∑
j=2

Ċj{G−n1(u1), ζ2, . . . , ζd}
√
n{G−nj(uj)− uj}

gω(u)
=:

d∑
j=2

S2nj(u)
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for some intermediate values ζj between uj and G−nj(uj), for j = 2, . . . , d.
We may consider each summand individually; let us fix j ∈ {2, . . . , d} and
distinguish two cases. First, suppose that 1− uj < u1 = g1(u). Then, with
ω′ ∈ (ω, θ1),

|S2nj(u)| ≤
√
n|G−nj(uj)− uj |

(1− uj)ω′
(1− uj)ω

′−ω = oP (1),

by Condition 4.3 and the fact that n−γ < (1− uj) ≤ δn. Now, suppose that
1−uj ≥ u1 = g1(u) > n−γ . Since Ċj(0, u2, . . . , ud) = 0 for any j = 2, . . . , d,
another application of the mean value theorem allows to write

S2nj(u) =
C̈j1(ξj)G

−
n1(u1)

√
n{G−nj(uj)− uj}

uω1
,

where ξj = (ξj1, ζ2, . . . , ζd) satisfies ξj1 ∈ (0, G−n1(u1)). Now, fix ω′ ∈ (0, θ2)
such that ω′ > (1− 1

2γ ) ∨ ω. By Condition 2.1 and Lemma 5.2, we have

|S2nj(u)| ≤ G−n1(u1)

uω1

∣∣∣∣∣
√
n{G−nj(uj)− uj}
{uj(1− uj)}ω′

∣∣∣∣∣×K {uj(1− uj)}ω
′

ξjj(1− ξjj)
(4.11)

≤
{
n−1/2

√
n|G−n1(u1)− u1|

uω1
+ u1−ω

1

}
{uj(1− uj)}ω

′−1OP (1)

Observing that uj ≥ u1 as a consequence of gω(u) = uω1 and that 1−uj ≥ u1

by assumption, we obtain

{uj(1− uj)}ω
′−1 ≤ [{uj ∧ (1− uj)}/2]ω

′−1 ≤ 21−ω′uω
′−1

1 ≤ 2uω
′−1

1 ,

where we used the fact that u(1 − u) ≥ {u ∧ (1 − u)}/2 for all u ∈ [0, 1].
Therefore, we can bound the right-hand side of (4.11) by{

n−1/2uω
′−1

1 OP (1) + uω
′−ω

1

}
×OP (1),

where all OP -terms are uniform in {u ∈ Mnγ : gω(u) = uω1 }. Thus, by the
choice of γ and ω′, supu∈Mnγ ,gω(u)=uω1

|S2n(u)| = oP (1).
For the treatment of Rn(Mnγ), it remains to consider the case gω(u) =

(1− u1)ω, i.e., 1− u1 = 1− (u1 ∧ · · · ∧ ûk ∧ · · · ∧ ud) for some k ∈ {2, . . . , d}.
Again, without loss of generality, we may assume that k = 2, which implies
that 1−u1 ≤ 1−u2 and 1−u1 ≥ 1−uj for all j ≥ 3. Note that, additionally,
1− uj > n−γ for all j = 1, . . . , d since u ∈Mnγ . Now,

Cn(u)

gω(u)
=
αn{G−n (u)}+

√
n[C{G−n (u)} − C(u)]

gω(u)
=

4∑
p=1

Tpn(u)
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with

T1n(u) =
αn{G−n (u)} − αn{1, G−n2(u2), 1, . . . , 1}

gω(u)

T2n(u) =
αn{1, G−n2(u2), 1, . . . , 1}+

√
n{G−n2(u2)− u2}

gω(u)

T3n(u) =

√
n[C{G−n (u)} − C{G−n1(u1), u2, G

−
n3(u3), . . . , G−nd(ud)}]

gω(u)

−
√
n{G−n2(u2)− u2}

gω(u)

T4n(u) =

√
n[C{G−n1(u1), u2, G

−
n3(u3), . . . , G−nd(ud)} − C(u)]

gω(u)

Concerning T1n, we can proceed similar as for S1n above. Define the event
Ωn by |G−n (u) − (1, G−n2(u2), 1, . . . , 1)′| ≤ 2dδn and note that P(Ωc

n) → 0.
Then, by Condition 4.1 applied with µ ∈ (ω/(ω + 1

2), θ1),

|T1n(u)| ≤Mn(2dδn, µ)
|G−n (u)− (1, G−n2(u2), 1, . . . , 1)′|µ ∨ n−µ

(1− u1)ω
1Ωn + oP (1).

Use the fact that γ < 1 and 1−u1 ≥ 1−uj ≥ n−γ for j ≥ 3 and subadditivity
of x 7→ xµ to bound the right-hand side by

OP (1)
∑
j 6=2

|G−nj(uj)− uj |µ + |1− uj |µ

(1− uj)ω
+ oP (1)

≤ OP (1)

∑
j 6=2

n−µ/2+ω−ωµ

{√
n|G−nj(uj)− uj |

(1− uj)ω

}µ
+ δµ−ωn

+ oP (1).

Therefore, by Condition 4.3 and by the choice of µ, |T1n(u)| = oP (1) uni-
formly in {u ∈Mnγ : gω(u) = (1− u1)ω}.

Regarding T2n, by the definition of αn and since g1(u) = 1− u1 ≥ n−1,

sup
u∈Mnγ ,g1(u)=1−u1

|T2n(u)| ≤ nω sup
u2∈[0,1]

√
n|Gn2{G−n2(u2)} − u2|.

An application of Lemma 5.1 with µ ∈ (ω, θ1) yields that the right-hand
side is of order oP (n−µ+ω) = oP (1).

Regarding T3n, choose ω′ ∈ (ω∨(1− 1
2γ ), θ2). By the mean-value theorem,

we can write

T3n(u) =

√
n[Ċ2{G−n1(u1), ζ2, G

−
n3(u3), . . . , G−nd(ud)} − 1]{G−n2(u2)− u2}

gω(u)
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for some intermediate value ζ2 between G−n2(u2) and u2. Due to the fact
that Ċ2{1, ζ2, 1, . . . , 1} = 1, a second application of the mean value theorem
allows to write the right-hand side of the last display as

T3n(u) =
∑
j 6=2

√
nC̈2j(ξ){G−n2(u2)− u2}{G−nj(uj)− 1}

gω(u)

for some ξ lying between G−n (u) and u. Hence, by Condition 2.1, Condi-
tion 4.3 and Lemma 5.2, we can bound T3n as follows:

|T3n(u)|| ≤
√
n|G−n2(u2)− u2|
{u2(1− u2)}ω′

{u2(1− u2)}ω′

(1− u1)ω
OP (1)

u2(1− u2)

∑
j 6=2

|G−nj(uj)− 1|

= OP (1){u2(1− u2)}ω′−1
∑
j 6=2

{ |G−nj(uj)− uj |
(1− uj)ω

+ (1− uj)1−ω
}
.

Since 1 − u2 ≥ 1 − u1 and u2 ≥ 1 − u1, the right-hand side is of order
OP {n−1/2(1− u1)ω

′−1 + (1− u1)ω
′−ω} = oP (1) uniformly in u ∈ Mnγ such

that gω(u) = (1− u1)ω, by the choice of ω′.
Finally, regarding T4n, Lipschitz-continuity of the copula function and

Condition 4.3 immediately imply that for any ω′ ∈ (ω, θ2)

|T4n(u)| ≤
∑
j 6=2

(1− u1)−ω(1− uj)ω
′
√
n|G−nj(uj)− uj |

(1− uj)ω′
= OP ((1− u1)ω

′−ω),

which is of order oP (1) uniformly in {u ∈Mnγ : gω(u) = (1− u1)ω}.
Treatment of Rn(M c

nγ). First note that, from the definition of N(n−γ , δn),
for every u ∈M c

nγ there are at most d− 2 components larger than or equal
to 1− n−γ . For that reason, we can write

M c
nγ =

⋃
`=(`1,...,`d)∈{0,1}d;|`|≥2

S`1 × · · · × S`d ,

where |`| =
∑d

j=1 `j , S0 = [1− n−γ , 1] and S1 = (n−γ , 1− n−γ). In order to
show negligibility of Rn(M c

nγ), it suffices to fix a vector ` with |`| ≥ 2 and
to show uniform negligibility of Cn/gω over u ∈ S` := S`1 × · · · × S`d .

For u ∈ [0, 1]d, let u(`) denote the vector whose jth component (with
j = 1, ..., d) is equal to 1(`j = 0) + uj1(`j = 1). Then,

sup
u∈S`

∣∣∣Cn(u)

gω(u)

∣∣∣ ≤ sup
u∈S`

√
n|Gn{G−n (u)} −Gn{G−n (u)(`)}|

n−ωγ

+ sup
u∈S`

√
n|Gn{G−n (u)(`)} − C(u(`))|

gω(u)

+ sup
u∈S`

√
n|C(u(`))− C(u)|

n−ωγ

=: In1 + In2 + In3.

26



For In3, by Lipschitz-continuity of C and by the choice of γ,

In3 ≤ n1/2+ωγ
√
d|u− u(`)| = O(n1/2+ωγ−γ) = o(1).

For the treatment of In1, we can proceed similar as in (4.10) to obtain
that |Gn{G−n (u)} − Gn{G−n (u)(`)}| ≤ (d − 2)n−γ + oP (n−1/2−µ) for any
µ ∈ (ω, θ1). This yields In1 = oP (n1/2+ωγ−γ + nωγ−µ) = oP (1).

Finally, regarding In2, note that gω(u) = gω(u(`)). Therefore,

In2 = sup
u∈S`

|Cn(u(`))|
gω(u(`))

All coordinates of vectors in S` which are not equal to 1 lie in (n−γ , 1−n−γ).
Therefore, In2 can be treated similar as Rn(Mnγ).

Proof of Lemma 4.10. Again, by a monotonicity argument, it suffices to
treat sequences δn such that δn � n−1/2, i.e., δn

√
n → ∞. Analogously

to the proof of Lemma 4.9 we can decompose the supremum. For 1/{2(1−
ω)} < γ < 1 we can write

sup
u∈N(0,δn)

∣∣∣ C̄n(u)

gω(u)

∣∣∣ = sup
u∈N(0,n−γ)

∣∣∣ C̄n(u)

gω(u)

∣∣∣∨ sup
u∈N(n−γ ,δn)

∣∣∣ C̄n(u)

gω(u)

∣∣∣ =: R̄1nγ∨R̄2nγ .

Therefore, we only have to show that R̄1nγ = oP (1) and R̄2nγ = oP (1). For
both of these terms, we will distinguish the cases that either gω(u) = uω1 or
gω(u) = (1 − u1)ω. The cases gω(u) = uωj or gω(u) = (1 − uj)ω for j > 1
can be treated similarly.

Treatment of R̄1nγ. First of all note that by definition

C̄n(u1, . . . , uj−1, 0, uj+1, . . . , ud) = C̄n(u(j)) = 0 (4.12)

and that αn(u(j)) =
√
n{Gnj)(uj) − uj} for any j = 1, . . . , d. Let us first

consider the supremum over those u ∈ N(0, n−γ) that additionally satisfy
gω(u) = uω1 . Choose ω′ ∈ (ω, θ2), then∣∣∣ C̄n(u)

gω(u)

∣∣∣ =
∣∣∣ C̄n(u)− C̄n(0, u2, . . . , ud)

uω1

∣∣∣ (4.13)

≤
√
n
∣∣∣Gn1(u1)

uω1

∣∣∣+
√
nu1−ω

1 +
d∑
j=1

∣∣∣ Ċj(u)
√
n{Gnj(uj)− uj}

uω1

∣∣∣
≤
∣∣∣√n{Gn1(u1)− u1}

uω
′

1

∣∣∣uω′−ω1 + 2
√
nu1−ω

1

+
d∑
j=1

∣∣∣ Ċj(u)
√
n{Gnj(uj)− uj}

uω1

∣∣∣
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By Condition 4.3, the first summand on the right-hand side is of order
n−γ(ω′−ω)OP (1) = oP (1), by the choice of ω′. The second summand can be
bounded by 2n1/2−γ(1−ω) = o(1), by the choice of γ. Thus, it remains to be
shown that, for any j = 1, . . . , d,

S̄nj(u) =
∣∣∣ Ċj(u)

√
n{Gnj(uj)− uj}

uω1

∣∣∣ = oP (1) (4.14)

uniformly in {u ∈ N(0, n−γ) : gω(u) = uω1 }. For later reference, we even
show uniform negligibility on u ∈ N(0, δn) such that gω(u) = uω1 . S̄n1 can
be bounded by the first term on the right-hand side of (4.13), and, therefore,
is OP (δω

′−ω
n ). Now, fix j ∈ {2, . . . , d}. Uniformly in u ∈ N(0, δn) such that

1− uj ≤ u1, we have

S̄nj(u) ≤ sup
uj∈(0,1)

∣∣∣∣√n{Gnj(uj)− uj}(1− uj)ω′
∣∣∣∣× n−γ(ω′−ω) = oP (1)

from Condition 4.3 and since |Ċj(u)| ≤ 1 for any u ∈ [0, 1]d. Note that
S̄nj(u) = 0, if uj = 1. For the remaining case, i.e., for u such that 1− uj >
u1, we may use the fact that Ċj(0, u2, . . . , ud) = 0. A suitable application of
the mean value theorem together with Condition 2.1 implies that, for any
ω′ ∈ (ω, θ2),

S̄nj(u) = |C̈1j(ξ, u2, . . . , ud)u1

√
n{Gnj(uj)− uj}|/uω1

≤ u1−ω
1 {uj(1− uj)}ω

′−1K
|
√
n{Gnj(uj)− uj}|
{uj(1− uj)}ω′

≤ uω′−ω1 OP (1) = oP (δω
′−ω

n ) = oP (1).

In order to finalize the treatment of R̄1nγ , let us now consider the case
that gω(u) = (1 − u1)ω, i.e., 1 − u1 = 1 − u1 ∧ · · · ∧ ûk ∧ · · · ∧ ud for some
k ∈ {2, . . . , d}. Without loss of generality, we may assume that k = 2, which
implies that 1− u1 ≤ 1− u2 and 1− u1 ≥ 1− uj for all j ≥ 3. By definition
of C̄n and by (4.12), we can write (note that C̄n(u(2)) ≡ 0 a.s.)

C̄n(u)

gω(u)
=

C̄n(u)− C̄n(u(2))

(1− u1)ω
=

4∑
p=1

T̄np(u), (4.15)

where

T̄n1(u) =

√
n{Gn(u)−Gn(u(2))}

(1− u1)ω
, T̄n2(u) =

√
n{C(u(2))− C(u)}

(1− u1)ω
,

T̄n3(u) = −
∑
j 6=2

Ċj(u)
√
n{Gnj(uj)− uj}
(1− u1)ω

,

T̄n4(u) =

√
n{Ċ2(u(2))− Ċ2(u)}{Gn2(u2)− u2}

(1− u1)ω
.
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By Lipschitz-continuity of the copula function, we immediately obtain that

|T̄n2(u)| ≤
√
n
∑
j 6=2

(1− uj)(1− u1)−ω

≤ (d− 1)
√
n(1− u1)1−ω = O(n1/2−γ(1−ω)) = o(1).

For the estimation of T̄n1 we can proceed similarly as in (4.10) and obtain

|T̄n1(u)| ≤
√
n
∑

j 6=2 |1−Gnj(uj)|
(1− u1)ω

≤
∑
j 6=2

|
√
n{Gnj(uj)− uj}|

(1− uj)ω′
(1− uj)ω

′−ω + (d− 1)
√
n(1− u1)1−ω

= OP (n−γ(ω′−ω)) +O(n1/2−γ(1−ω)) = oP (1)

uniformly in {u ∈ N(0, n−γ) ∩ (0, 1)d : gω(u) = (1 − u1)ω}, by the choice
of γ and by choosing ω′ ∈ (ω, θ2). Note that the terms with uj = 1 van-
ish immediately from the definition of Gnj . Similarly, using the fact that
|Ċj(u)| ≤ 1 for all j = 1, . . . , d and for all u ∈ [0, 1]d, we get that

|T̄n3(u)| ≤
∑
j 6=2

sup
uj∈(0,1)

∣∣∣√n{Gnj(uj)− uj}
(1− uj)ω

∣∣∣ = OP (n−γ(ω′−ω)) = oP (1)

uniformly in {u ∈ N(0, n−γ) : gω(u) = (1− u1)ω}, by choosing ω′ ∈ (ω, θ2).
Finally, in order to bound the remaining term T̄4n, we may use the mean
value theorem and Conditions 2.1 and 4.3 to obtain that

|T̄n4(u)| =
√
n
∑

j 6=2 |C̈2j(ξ)(1− uj){Gn2(u2)− u2}|
(1− u1)ω

≤
∑
j 6=2

OP (1)(1− u1)1−ω{u2(1− u2)}ω′−1 = OP (n−γ(ω′−ω)) = oP (1)

uniformly in {u ∈ N(0, n−γ) : gω(u) = (1 − u1)ω}, with some intermediate
value ξ = (ξ1, u2, ξ3, . . . . . . , ξd)

′ ∈ (0, 1)d between u(2) and u and where the
last estimation follows by choosing ω′ in (ω, θ2).

Treatment of R̄2nγ. First suppose that gω(u) = uω1 . Then we write∣∣∣ C̄n(u)

uω1

∣∣∣ =
∣∣∣ C̄n(u)− C̄n(0, u2, . . . , ud)

uω1

∣∣∣
≤ |αn(u)− αn(0, u2, . . . , ud)|

uω1
+

d∑
j=1

S̄nj(u),

where S̄nj(u) is defined in (4.14). Negligibility of S̄nj in the latter decom-
position has been shown subsequent to (4.14). From Condition 4.1, the
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first term on the right-hand side of the last display can be bounded by
({uµ−ω1 ∨ n−µ}u−ω1 )oP (1) = oP (δµ−ωn ∨ n−µ+γω), which vanishes as n → ∞
if we choose µ ∈ (ω, θ1).

Now, suppose gω(u) = (1− u1)ω, i.e., 1− u1 = 1− u1 ∧ · · · ∧ ûk ∧ · · · ∧ ud
for some k ∈ {2, . . . , d}. Again, without loss of generality, we may assume
that k = 2, which implies that 1 − u1 ≤ 1 − u2 and 1 − u1 ≥ 1 − uj for all
j ≥ 3. We decompose∣∣∣ C̄n(u)

gω(u)

∣∣∣ =
∣∣∣ C̄n(u)− C̄n(u(2))

gω(u)

∣∣∣ ≤ |αn(u)− αn(u(2))|
(1− u1)ω

+ |T̄n3(u)|+ |T̄n4(u)|,

where T̄n3(u) and T̄n4(u) are defined in (4.15). By the same arguments as
for their treatment on N(0, n−γ), we have |T̄n3(u)| = oP (1) and |T̄n4(u)| =
oP (1), uniformly in u ∈ N(0, δn) with gω(u) = (1 − u1)ω. The remain-
ing term on the right-hand side of the last display can be bounded by an
application of Condition 4.1. Choosing µ ∈ (ω, θ1), we obtain

|αn(u)− αn(u(2))|
(1− u1)ω

≤
∑
j 6=2

(1− uj)µ ∨ n−µ

(1− u1)ω
oP (1) = oP (δµ−ωn ∨ n−µ+ωγ),

which is oP (1). This completes the proof.

Proof of Lemma 4.11. Let us first show (4.5). As in the proof of Lemma 4.9,
by a monotonicity argument, it suffices to treat sequences δn such that
δn ≥ n−1/2. We split the proof into two cases and begin by considering

u ∈ N(cn−1, 2δ
1/2
n ). Obviously, |u − u′| ≤ δn implies u′ ∈ N(cn−1, 2δ

1/2
n +

δn) ⊂ N(cn−1, 3δ
1/2
n ). Thus, by Lemma 4.9, we obtain

sup
u,u′∈[ c

n
,1− c

n
]d,|u−u′|≤δn,u∈N(cn−1,2δ

1/2
n )

∣∣∣Cn(u)

gω(u)
− Cn(u′)

gω(u′)

∣∣∣ = oP (1).

Now, consider the case u ∈ N(2δ
1/2
n , 1/2). Then, |u− u′| ≤ δn implies that

u′ ∈ N(2δ
1/2
n − δn, 1/2) ⊂ N(δ

1/2
n , 1/2). Hence, Lemma 4.8 implies that

sup
u,u′∈[ c

n
,1− c

n
]d,|u−u′|≤δn,u∈N(2δ

1/2
n ,1/2)

∣∣∣Cn(u)

gω(u)
− Cn(u′)

gω(u′)

∣∣∣
≤ sup

u,u′∈[ c
n
,1− c

n
]d∩N(δ

1/2
n ,1/2),|u−u′|≤δn

∣∣∣ C̄n(u)

gω(u)
− C̄n(u′)

gω(u′)

∣∣∣+ oP (1).

Therefore, in order to prove (4.5), it suffices to show that

sup
u,u′∈N(δ

1/2
n ,1/2),|u−u′|≤δn

∣∣∣ C̄n(u)− C̄n(u′)

gω(u)

∣∣∣ = oP (1) (4.16)

sup
u,u′∈N(δ

1/2
n ,1/2),|u−u′|≤δn

∣∣∣C̄n(u′)
( 1

gω(u)
− 1

gω(u′)

)∣∣∣ = oP (1). (4.17)
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The respective proofs will be given below at the end of this proof.
For the proof of (4.6), note that C̄n(u)/g̃ω(u) = 0 for gω(u) = 0. There-

fore, we can bound

sup
|u−u′|≤δn,g1(u)=0,g1(u′)>0

∣∣∣ C̄n(u)

g̃ω(u)
− C̄n(u′)

g̃ω(u′)

∣∣∣ ≤ sup
u′∈N(0,δn)

∣∣∣ C̄n(u′)

gω(u′)

∣∣∣ = oP (1)

by Lemma 4.10. The suprema over {u : g1(u) > 0, g1(u′) = 0} or {u :
g1(u) = g1(u′) = 0} can be treated analogously, whereas the suprema over
{u : g1(u) > 0, g1(u′) > 0} can be handled by (4.16), (4.17) and Lemma
4.10. This proves (4.6).

It remains to be shown that (4.16) and (4.17) are valid.

Proof of (4.16). By Condition 2.1 and 4.1 and the fact that Ċj ∈ [0, 1] we

have, for u,u′ ∈ N(δ
1/2
n , 1/2), |u− u′| ≤ δn and any µ ∈ (0, θ1),∣∣∣∣ C̄n(u)− C̄n(u′)

gω(u)

∣∣∣∣ ≤ ∣∣∣∣αn(u)− αn(u′)

gω(u)

∣∣∣∣+
d∑
j=1

∣∣∣∣∣ Ċj(u){αn(u(j))− αn(u′(j))}
gω(u)

∣∣∣∣∣
+

d∑
j=1

∣∣∣∣∣{Ċj(u)− Ċj(u′)}αn(u′(j))

gω(u)

∣∣∣∣∣ .
The right-hand side can be further bounded by

(d+ 1)
|u− u′|µ ∨ n−µ

gω(u)
Mn(δn, µ) +

d∑
j=1

∣∣∣∣∣{Ċj(u)− Ċj(u′)}αn(u′(j))

gω(u)

∣∣∣∣∣ .
Since gω(u) ≥ δω/2n for u ∈ N(δ

1/2
n , 1/2) , the first summand on the right of

the last display is of order OP (δ
µ−ω/2
n ), which is oP (1) if we choose µ > ω/2.

For the second term, we fix j and will consider two cases for each summand

separately. First, suppose 1− u′j < δ
1/2
n . In this case, Condition 4.3 yields,

for arbitrary ω′ ∈ (0, θ2),∣∣∣∣∣{Ċj(u)− Ċj(u′)}αn(u′(j))

gω(u)

∣∣∣∣∣ ≤ 2δ−ω/2n {u′j(1− u′j)}ω
′ |αn(u′(j))|
{u′j(1− u′j)}ω

′

= OP (δ−ω/2+ω′/2
n ).

Since we can choose ω′ ∈ (ω, θ2) the latter is oP (1).

Now, suppose 1 − u′j ≥ δ
1/2
n . Then, the mean value theorem allows to

write ∣∣∣∣∣{Ċj(u)− Ċj(u′)}αn(u′(j))

gω(u)

∣∣∣∣∣ ≤
d∑
`=1

∣∣∣∣∣ C̈j`(ξj)αn(u′(j))(u` − u′`)
gω(u)

∣∣∣∣∣ ,
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where ξj denotes an intermediate point between u and u′. In particular,
the components of ξj = (ξj1, . . . , ξjd) satisfy ξj` ≥

√
δn and 1 − ξjj ≥√

δn− δn ≥
√
δn/2, for sufficiently large n. Then, by Condition 2.1, the sum

on the right-hand side of the last display can be bounded by

d
K

ξjj(1− ξjj)
|αn(u′(j))|δ1−ω/2

n = OP (δ1/2−ω/2
n ) = oP (1).

Proof of (4.17). Note that it is sufficient to bound |gω(u)−1 − gω(u′)−1|,
because supu∈[0,1]d |C̄n(u)| = OP (1). To this end, we first observe that, for

u,u′ ∈ N(δ
1/2
n , 1/2) and |u− u′| ≤ δn, we have

|gω(u)− gω(u′)| ≤ ωδ(ω−1)/2
n |g1(u)− g1(u′)| = O(δ(ω+1)/2

n )

where we used the mean value theorem and the fact that g1 is Lipschitz-

continuous on N(δ
1/2
n , 1/2). Therefore,∣∣∣ 1

gω(u)
− 1

gω(u′)

∣∣∣ =
∣∣∣gω(u′)− gω(u)

gω(u)gω(u′)

∣∣∣ = O(δ(ω+1)/2−ω
n ) = o(1),

which implies (4.17).

4.4 Proof of Theorem 3.3.

Let n ≥ 2. Decompose
√
n{Rn − E[J(U)]} = An − rn1, where

An =
√
n

∫
( 1
2n
,1− 1

2n
]2
J(u)d(Ĉn − C)(u)

rn1 =
√
n

∫
{( 1

2n
,1− 1

2n
]2}c

J(u)dC(u),

where Ac denotes the complement of a set A in (0, 1)2. From integration by
parts for Lebesgue-Stieltjes integrals (see Theorem A.6 in the supplementary
material) we have that An = Bn + rn2 + rn3, where

Bn =

∫
( 1
2n
,1− 1

2n
]2
Ĉn(u)dJ(u)

where

rn2 = ∆(ĈnJ, 1
2n ,

1
2n , 1−

1
2n , 1−

1
2n)

−
∫

( 1
2n
,1− 1

2n
]
Ĉn(u, 1− 1

2n)J(du, 1− 1
2n) +

∫
( 1
2n
,1− 1

2n
]
Ĉn(u, 1

2n)J(du, 1
2n)

−
∫

( 1
2n
,1− 1

2n
]
Ĉn(1− 1

2n , v)J(1− 1
2n ,dv) +

∫
( 1
2n
,1− 1

2n
]
Ĉn( 1

2n , v)J( 1
2n , dv),
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with ∆(f, a1, a2, b1, b2) = f(b1, b2) − f(a1, b2) − f(b1, a2) + f(a1, a2) for f :
(0, 1)2 → R and a, b ∈ (0, 1)2 and where

rn3 =

∫
( 1
2n
,1− 1

2n
]2
νn({u} × (v, 1− 1

2n ]) + νn((u, 1− 1
2n ]× {v})

+ νn({(u, v)})dJ(u, v)

+

∫
( 1
2n
,1− 1

2n
]
νn({u} × ( 1

2n , 1−
1

2n ])J(du, 1
2n)

+

∫
(

1
2n ,1−

1
2n ]

νn(( 1
2n , 1−

1
2n ]× {v})J( 1

2n ,dv),

with νn denoting the unique signed measure on [ 1
2n , 1−

1
2n ] associated with Ĉn

(see Theorem A.4 in the supplementary material).
For the arguments that follow, we remark that by Proposition 4.4 the

conditions of Theorem 2.2 imply those of Theorem 4.5. Thus, all results
from the proof of Theorem 4.5 are applicable here.

Regarding weak convergence of Bn, observe that by Theorem 2.2, Lem-
ma 4.10 and the integrability condition in (3.2)

Bn =

∫
(0,1)2

1{u ∈ ( 1
2n , 1−

1
2n ]2} C̄n(u)

gω(u)
gω(u) dJ(u) + oP (1)

=

∫
(0,1)2

C̄n(u)

gω(u)
gω(u) dJ(u) + oP (1).

Now, the integrability condition in (3.2) implies that the functional f 7→∫
(0,1)2 fg̃ω dJ is continuous when viewed as a map from (`∞((0, 1)2), ‖ · ‖∞)

to R, and thus Bn converges weakly to
∫

(0,1)2 CC(u)dJ(u) by Theorem 2.2
and the continuous mapping theorem. Hence, it remains to be shown that
rn1, rn2 and rn3 are oP (1).

Regarding rn1, since |J(u, v)| ≤ const×gω(u, v)−1, we can bound

|rn1| ≤
√
n

∫
([ 1

2n
,1− 1

2n
]2)c

gω(u, v)−1dC(u, v).

The set {( 1
2n , 1−

1
2n ]2}c consists of vectors where either both components or

only one component is close to the boundary of [0, 1]2. In order to bound
the integral on the right-hand side of the last display, we distinguish these
cases and exemplarily consider the integral over (0, 1

2n ]2 and the one over
(0, 1

2n ]× ( 1
2n , 1−

1
2n ]. Integrals over the remaining subsets can be treated in

the same way. First, since gω(u, v)−1 ≤ u−ω +v−ω for u, v ∈ (0, 1
2n ], we have

√
n

∫
(0, 1

2n
]2
gω(u, v)−1 dC(u, v) ≤

√
n

∫
(0, 1

2n
]2
u−ω + v−ωdC(u, v).
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Let us only consider the integral over u−ω on the right-hand side, the one
over v−ω can be treated analogously. We have

√
n

∫
(0, 1

2n
]2
u−ωdC(u, v) ≤

√
n

∫
(0, 1

2n
]×[0,1]

u−ω dC(u, v)

=
√
n

∫
(0, 1

2n
]
u−ω du = O(n−1/2+ω) = o(1).

Second, on (0, 1
2n ] × ( 1

2n , 1 −
1

2n ], we have gω(u, v)−1 = u−ω , whence, by a
similar reasoning,

√
n

∫
(0, 1

2n
]×( 1

2n
,1− 1

2n
]
gω(u, v)−1dC(u, v) ≤

√
n

∫
(0, 1

2n
]
u−ω du = O(n−1/2+ω).

Regarding rn2, use Theorem 2.2 and (3.3) and (3.4) to replace Ĉn/gω by
C̄n/gω at the cost of a negligible remainder (note that gω(u, δ) = δω for
u ∈ (δ, 1 − δ]) . Then, the four integrals in the definition of rn2 are oP (1)
by (3.3), (3.4), Lemma 4.10 and Proposition 4.4, while ∆(C̄nJ, 1

2n ,
1

2n , 1 −
1

2n , 1−
1

2n) converges to 0 by Lemma 4.10, Proposition 4.4 and the fact that
|J(u)| ≤ const×gω(u)−1 for u ∈ (0, 1)2.

Regarding rn3, since Ĉn and C are completely monotone, the (unique)
measures in the Jordan decomposition of νn are given by ν+

n =
√
nνĈn and

ν−n =
√
nνC , where νĈn and νC denote the measures corresponding to Ĉn

and C, respectively. Thus, continuity of the copula C yields

νn({u}×(v, 1− 1
2n ]) =

√
nνĈn({u}×(v, 1− 1

2n ]) ≤
√
n{Ĉn(u, 1)−Ĉn(u−, 1)}.

Since the last display is bounded by n−1/2 times the maximum number of
Ûi1 that are equal, a reasoning which is similar to the one used to obtain
(4.7) yields that, for any µ ∈ (ω, 1/2),

νn({u} × (v, 1− 1
2n ]) = OP (n−µ)

uniformly in u, v ∈ (0, 1)2. Similar estimations for the remaining terms in
rn3 imply that |rn3| is of the order

OP (n−µ)

{∫
( 1
2n
,1− 1

2n
]2
|dJ |+

∫
( 1
2n
,1− 1

2n
]
|J(du, 1

2n)|+
∫

(
1

2n ,1−
1

2n ]
|J( 1

2n ,dv)|
}
.

By Conditions (3.2)–(3.4), these integrals are of order O(nω) which leads to
|rn3| = OP (nω−µ) = oP (1).

5 Auxiliary results

Lemma 5.1. Suppose Condition 4.1 is met. Then, for j = 1, . . . , d and
any µ ∈ [0, θ1), we have

sup
u∈[0,1]

|Gnj{G−nj(u)} − u| = oP (n−1/2−µ).
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Proof. From the definition of the (left-continuous) generalized inverse, we
have that supu∈[0,1] |H{H−(u)}−u| is bounded by the maximum jump heigth
of the function H, i.e.,

sup
u∈[0,1]

|Gnj{G−nj(u)} − u| ≤ sup
u∈[0,1]

|Gnj(u)−Gnj(u−)|

Therefore, the assertion follows from (4.7) and Condition 4.1.

Lemma 5.2. Suppose Condition 4.3 is met. Then, for j = 1, . . . , d and
any γ ∈ (0, {1/[2(1− θ2)]} ∧ θ3), we have

Knj(γ) = sup

∣∣∣∣uj(1− uj)ξj(1− ξj)

∣∣∣∣ = OP (1),

where the supremum is taken over all uj ∈ [n−γ , 1−n−γ ] and all ξj between
G−nj(uj) and uj.

Proof of Lemma 5.2. Since

Knj(γ) ≤ K(1)
nj (γ)×K(2)

nj (γ) := sup

∣∣∣∣ujξj
∣∣∣∣× sup

∣∣∣∣1− uj1− ξj

∣∣∣∣ ,
it suffices to treat both suprema on the right-hand side separately. In the
following, we only consider the first one; the second one can be treated along
similar lines. Obviously,

K
(1)
nj (γ) ≤ 1 ∨ sup

uj∈[n−γ ,1−n−γ ]

uj

G−nj(uj)

Let Ωn denote the event that supuj∈[n−γ ,1−n−γ ] |{G−nj(uj)− uj}/uj | ≤ 1/2.

Choose ω′ ∈ (0 ∨ (1− 1
2γ ), θ2) and use Condition 4.3 to conclude that

sup
uj∈[n−γ ,1−n−γ ]

∣∣∣∣∣G
−
nj(uj)− uj

uj

∣∣∣∣∣ ≤ sup
uj∈[n−γ ,1−n−γ ]

{
√
n

∣∣∣∣∣G
−
nj(uj)− uj

uω
′

j

∣∣∣∣∣× uω
′−1

j√
n

}
= OP (n−1/2−γ(ω′−1)) = oP (1).

Thus, P(Ωc
n) = o(1), which implies

sup
uj∈[n−γ ,1−n−γ ]

uj

G−nj(uj)
= sup

uj∈[n−γ ,1−n−γ ]

(
1 +

G−nj(uj)− uj
uj

)−1

1Ωn + oP (1)

≤ 2 + oP (1) = OP (1),

where we used that 1/(1 + x) ≤ 1/(1− |x|) for x ∈ [−1/2, 1/2]. This yields
the assertion.
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Lemma 5.3. Under Condition 4.1, Conidtion 4.2 and Condition 4.3 we
have for any ω ∈ (0, θ1∧θ2) and any γ > 1/2

sup
uj∈[1−n−γ ,1]

|βnj(uj)| = oP (n−ω/2).

Proof. Since the result is one-dimensional, we drop the index j in the fol-
lowing. Note that all the arguments that follow lead to bounds which are
valid uniformly in u ∈ [1 − n−γ , 1]. Now, fix u ∈ [1 − n−γ , 1] and choose
i ∈ {0, . . . , n − 1} such that u ∈ ( in ,

i+1
n ]. Then, G−n (u) = Ui+1:n, where

U1:n ≤ · · · ≤ Un:n denote the order statistics of U1, . . . , Un. Hence,

nω/2|βn(u)| ≤ nω/2+1/2{|Ui+1:n − i/n| ∨ |Ui+1:n − (i+ 1)/n|}
≤ nω/2+1/2|Ui+1:n − i/n|+ n−1/2+ω/2

Now, as a consequence of Lemma 5.1, we have Gn(Ui+1:n) = Gn{G−n (u)} =
i/n+ κi,n, where maxn−1

i=0 κi,n = oP (n−µ−1/2) with µ ∈ (ω/2, θ1). Therefore,

nω/2+1/2|Ui+1:n − i/n| ≤ nω/2+1/2|Gn(Ui+1:n)− Ui+1:n|+ nω/2+1/2κi,n

The second term on the right-hand side is oP (n−µ+ω/2) = oP (1). For the
first term, we have

nω/2+1/2|Gn(Ui+1:n)− Ui+1:n| =
αn(Ui+1:n)

(1− Ui+1:n)ω
nω/2(1− Ui+1:n)ω

≤ sup
u∈(0,1)

|αn(u)|
(1− u)ω

× nω/2(1− Ui+1:n)ω = OP (1)× {
√
n(1− Ui+1:n)}ω

For the factor on the right, since u ≥ 1− nγ , we have, for any w ∈ ( in ,
i+1
n ],

√
n(1− Ui+1:n) =

√
n{w −G−n (w) + 1− w}

≤ sup
v∈[1−n−γ ,1]

|βn(v)|+ n1/2−γ

≤ sup
v∈[1−n−γ ,1]

|βn(v)− βn(1− n−1/2)|+ |βn(1− n−1/2)|+ n1/2−γ .

The first term in the expression above is oP (1) by asymptotic equicontinuity
of βn (which follows from weak convergence of βn to a Gaussian process,
this is a consequence of Condition 4.2 and the functional delta method), the
second term is oP (1) by Conidtion 4.3, and the third term vanishes since
γ > 1/2.
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37



Genest, C., K. Ghoudi, and L.-P. Rivest (1995). A semiparametric esti-
mation procedure of dependence parameters in multivariate families of
distributions. Biometrika 82 (3), 543–552.

Genest, C., B. Rémillard, and D. Beaudoin (2009). Goodness-of-fit tests for
copulas: a review and a power study. Insurance Math. Econom. 44 (2),
199–213.

Genest, C. and J. Segers (2009). Rank-based inference for bivariate extreme-
value copulas. Ann. Statist. 37 (5B), 2990–3022.

Genest, C. and J. Segers (2010). On the covariance of the asymptotic em-
pirical copula process. J. Multivariate Anal. 101 (8), 1837–1845.

Gudendorf, G. and J. Segers (2012). Nonparametric estimation of multivari-
ate extreme-value copulas. J. Statist. Plann. Inference 142 (12), 3073–
3085.

Hallin, M., J.-F. Ingenbleek, and M. L. Puri (1985). Linear serial rank tests
for randomness against ARMA alternatives. Ann. Statist. 13 (3), 1156–
1181.

Hallin, M. and M. L. Puri (1988). Optimal rank-based procedures for time
series analysis: testing an ARMA model against other ARMA models.
Ann. Statist. 16 (1), 402–432.

Hardy, G. H. (1905). On double Fourier series, and especially those which
represent the double zeta-function with real and incommensurable param-
eters. Quart. J. 37, 53–79.
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dépendants, Volume 31 of Mathématiques & Applications (Berlin) [Math-
ematics & Applications]. Berlin: Springer-Verlag.

38
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A Bounded variation and Lebesgue-Stieltjes inte-
gration for two-variate functions

In this supplement, we briefly recapitulate some results on bounded variation
and integration for two-variate functions. We begin by treating the case of
functions defined on a compact rectangle in R2. Of particular interest is the
integration by parts formula in Theorem A.6. At the end of this appendix,
we consider the case of potentially unbounded functions on open rectangles.

Let A denote some rectangle in R2 and let f be a real-valued function on
A. For x,y ∈ A such that x ≤ y we set

∆(f, x1, x2, y1, y2) := f(y1, y2)− f(x1, y2)− f(y1, x2) + f(x1, x2).

For x,y ∈ A such that x1 < y1, we set

∆1(f, x1, y1;x2) := f(y1, x2)− f(x1, x2)

and finally, for x,y ∈ A such that x2 < y2, we set

∆2(f, x2, y2;x1) := f(x1, y2)− f(x1, x2).

A function f : A→ R is called completely monotone if ∆(f, x1, x2, y1, y2) ≥ 0
for any x,y ∈ A such that x < y , ∆1(f, x1, y1;x2) ≥ 0 for any x,y ∈ A
such that x1 < y1 and ∆2(f, x2, y2;x1) ≥ 0 for any x,y ∈ A such that
x2 < y2.

Definition A.1. (Hardy-Krause variation) Let ∅ 6= [a, b] ⊂ R2 and
f : [a, b]→ R. For x ∈ [a, b] and y ∈ [a, b], we define

V HK(f, [a,x],y) = sup
∑
i

∑
j

|∆(f, si, tj , si+1, tj+1)|

+ sup
∑
i

|∆1(f, si, si+1; y2)|+ sup
∑
j

|∆2(f, tj , tj+1; y1)|,
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as the Hardy-Krause variation of f on [a,x] with anchor-point y. Here,
the supremum is taken over all decompositions s1, . . . , sn and t1, . . . , tm
with a1 = s1 < · · · < sn = x1 and a2 = t1 < · · · < tm = x2, re-
spectively. Let BVHK([a, b]) denote the space of all functions such that
V HK(f, [a, b], b) <∞.

Example A.2. Consider f : [0, 1]2 → R, defined as f(x, y) = 1(x ≥
1/2, y ≥ 1/2). Then V HK(f, [0,1],y) = 1 for any y ∈ [0, 1/2)2, whereas
V HK(f, [0,1],y) = 3 for y ∈ [1/2, 1]2.

The following simple properties are collected from Owen (2005) and Aistleit-
ner and Dick (2014): BVHK([a, b]) is closed under sums, differences and
products. Moreover, for any x,y ∈ [a, b], we have V HK(f, [a, b],x) < ∞
if and only if V HK(f, [a, b],y) < ∞, which can be derived directly from
the definition. The following theorem is a refinement of Proposition 12 in
Owen, 2005.

Theorem A.3. (Theorem 2 in Aistleitner and Dick, 2014) For any
function f ∈ BVHK([a, b]) there exist unique functions f+, f− : [a, b]→ R
such that (i), (ii) and (iii) hold:

(i) f+ and f− are completely monotone

(ii) f±(a) = 0 and f(x) = f(a) + f+(x)− f−(x)

(iii) V HK(f, [a, b],a) = V HK(f+, [a, b],a) + V HK(f−, [a, b],a).

The decomposition in (ii) is called the Jordan decomposition of f . The
explicit form of the functions f± is given in the proof of Theorem 2 of
Aistleitner and Dick (2014) (see also Hardy, 1905):

f+(x) = {V HK(f, [a,x],a) + f(x)− f(a)} /2,
f−(x) = {V HK(f, [a,x],a)− f(x) + f(a)} /2.

The next theorem shows that, if f is additionally right-continuous, then it
defines a unique signed measure on [a, b]. Also note that any signed measure
ν on B([a, b]) has a unique Jordan decomposition ν = ν+ − ν− with two
measures ν+ and ν−, given by

ν+(A) = sup{ν(B) : B ⊂ A,B ∈ B([a, b])},
ν−(A) = − inf{ν(B) : B ⊂ A,B ∈ B([a, b])}.

Theorem A.4. (Theorem 3 in Aistleitner and Dick, 2014) Let f ∈
BVHK([a, b]) be right-continuous. Then there exists a unique signed Borel-
measure ν on B([a, b]) such that

f(x) = ν([a,x]), x ∈ [a, b]. (A.1)
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Moreover, if f(x) = f(a)+f+(x)−f−(x) denotes the Jordan decomposition
of f , and if ν = ν+ − ν− denotes the Jordan decomposition of ν, then

f+(x) = ν+([a,x] \ {a}), f−(x) = ν−([a,x] \ {a}) (A.2)

for any x ∈ [a, b].

Note that, by (A.1) and (A.2), for any a ≤ x < y ≤ b,

ν((x,y]) = ∆(f, x1, x2, y1, y2), ν±((x,y]) = ∆(f±, x1, x2, y1, y2).

Definition A.5. Let f ∈ BVHK([a, b]) be right-continuous. Let g :
[a, b] → R denote a measurable function such that either

∫
[a,b] |g|dν

+ < ∞
or
∫

[a,b] |g|dν
− <∞. Then∫

[a,b]
gdf :=

∫
[a,b]

gdν =

∫
[a,b]

gdν+ −
∫

[a,b]
gdν−

denotes the Lebesgue-Stieltjes integral of g with respect to f .

Given f ∈ BVHK([a, b]) and a fixed point y ∈ [a2, b2], we can define a
collection of functions f1,y : [a1, b1]→ R through f1,y(x) = f(x, y). We have
f1,y ∈ BV ([a1, b1]), hence, by a one-dimensional analog of the preceding
developments, we obtain a unique Jordan decomposition

f1,y(x) = f1,y(a1) + f+
1,y(x)− f−1,y(x), x ∈ [a1, b1]

such that f±1,y is non-decreasing with f±1,y(a1) = 0 and V (f1,y, [a1, b1]) =

V (f+
1,y, [a1, b1]) +V (f−1,y, [a1, b1]), where V (f, [a2, b2]) denotes the usual total

variation of a real-valued function on a compact interval [a2, b2]. Attached
is a unique signed measure ν1,y such that f1,y(x) = ν1,y([a1, x]). Moreover,
if ν1,y = ν+

1,y − ν
−
1,y denotes the Jordan decomposition of ν1,y, then

f+
1,y(x) = ν+

1,y((a1, x]), f−1,y(x) = ν−1,y((a1, x]).

Note that the measure ν1,y is related with ν by

ν1,y([a1, x]) = ν([a1, x]× [a2, y]).

The same arguments apply for the function f2,x : [a2, b2] → R, defined
through f2,x(y) = f(x, y), with x ∈ [a1, b1] fixed. We will write f(dx, y) and
f(x, dy) for ν1,y(dx) and ν2,x(dy), respectively.

Theorem A.6. (Integration by parts) Let µ, ν be finite signed measures
on [a, b] and, for x ∈ [a, b], write f(x) := µ([a,x]), g(x) := ν([a,x]).
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Then, for any (c,d] ⊂ [a, b] with c < d,∫
(c,d]

fdg =

∫
(c,d]

gdf + ∆(fg, c1, c2, d1, d2)

−
∫

(c1,d1]
g(u, d2)f(du, d2) +

∫
(c1,d1]

g(u, c2)f(du, c2)

−
∫

(c2,d2]
g(d1, v)f(d1,dv) +

∫
(c2,d2]

g(c1, v)f(c1, dv)

+

∫
(c,d]

ν({u} × (v, d2]) + ν((u, d1]× {v}) + ν({(u, v)})df(u, v)

+

∫
(c1,d1]

ν({u} × (c2, d2])f(du, c2)

+

∫
(c2,d2]

ν((c1, d1]× {v})f(c1,dv)

Before we give a proof of this general result, we recall that to any right-
continuous f, g ∈ BVHK([a, b]) there correspond unique signed measures
µ, ν, respectively. If either f or g is additionally continuous, the last three
terms in the representation above vanish and we obtain the following result

Corollary A.7. (Integration by parts) Let f, g ∈ BVHK([a, b]) be
right-continuous functions with either f or g continuous. Then, for any
(c,d] ⊂ [a, b],∫

(c,d]
fdg =

∫
(c,d]

gdf + ∆(fg, c1, c2, d1, d2)

−
∫

(c1,d1]
g(u, d2)f(du, d2) +

∫
(c1,d1]

g(u, c2)f(du, c2)

−
∫

(c2,d2]
g(d1, v)f(d1,dv) +

∫
(c2,d2]

g(c1, v)f(c1, dv).

Proof of Theorem A.6. First of all, we use the definition of f, g and obtain∫
(c,d]

f(u, v)dg(u, v) =

∫
(c,d]

∫
(c1,u]×(c2,v]

df(x, y)dg(u, v) +R1,

where R1 =
∫

(c,d] f(u, c2) + f(c1, v)− f(c1, c2)dg(u, v). Now, Fubini’s The-
orem yields∫

(c,d]

∫
(c1,u]×(c2,v]

df(x, y)dg(u, v)

=

∫
(c,d]

∫
[x,d1]×[y,d2]

dg(u, v)df(x, y)
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=

∫
(c,d]

∫
(x,d1]×(y,d2]

dg(u, v)df(x, y)

+

∫
(c,d]

ν({x} × (y, d2]) + ν((x, d1]× {y}) + ν({(x, y)})df(x, y)

and ∫
(c,d]

∫
(x,d1]×(y,d2]

dg(u, v)df(x, y) =

∫
(c,d]

gdf +R2

with R2 =
∫

(c,d] g(d1, d2)− g(u, d2)− g(d1, v)df(u, v). Summarizing,

∫
(c,d]

fdg =

∫
(c,d]

gdf +R1 +R2

+

∫
(c,d]

ν({u} × (v, d2]) + ν((u, d1]× {v}) + ν({(u, v)})df(u, v),

whence it remains to consider R1 and R2. Observe that∫
(c,d]

f(u, c2)dg(u, v) =

∫
(c1,d1]

f(u, c2)g(du, d2)−
∫

(c1,d1]
f(u, c2)g(du, c2)

and a similar identity holds for
∫

(c,d] g(u, d2)df(u, v). To see this, note that

the identity holds for f(u, c2) = I(α,β](u) with c1 ≤ α < β ≤ d1 arbitrary;
the general claim then follows by algebraic induction. Next, observe the
following one-dimensional formula for integration by parts∫

(c1,d1]
f(u, c2)g(du, d2) =−

∫
(c1,d1]

g(u, d2)f(du, c2)

+

∫
(c1,d1]

ν({u} × [a2, d2])f(du, c2)

+ g(d1, d2)f(d1, c2)− g(c1, d2)f(c1, c2).

This formula can be proved by an application of the Fubini Theorem af-
ter writing f(u, c2) =

∫
(c1,u] f(dx, c2) + f(c1, c2) and by observing that

ν1,d2({u}) = ν({u} × [a2, d2]). Thus we have (apply a similar formula for
integration by parts to all four integrals below)

R1 =

∫
(c1,d1]

f(u, c2)g(du, d2)−
∫

(c1,d1]
f(u, c2)g(du, c2)

+

∫
(c2,d2]

f(c1, v)g(d1,dv)−
∫

(c2,d2]
f(c1, v)g(c1,dv)

− f(c)∆(g, c1, c2, d1, d2)

=−
∫

(c1,d1]
g(u, d2)f(du, c2) + g(d1, d2)f(d1, c2)− g(c1, d2)f(c1, c2)
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+

∫
(c1,d1]

ν({u} × [a2, d2])f(du, c2)

+

∫
(c1,d1]

g(u, c2)f(du, c2)− g(d1, c2)f(d1, c2) + g(c1, c2)f(c1, c2)

−
∫

(c1,d1]
ν({u} × [a2, c2])f(du, c2)

−
∫

(c2,d2]
g(d1, v)f(c1, dv) + g(d1, d2)f(c1, d2)− g(d1, c2)f(c1, c2)

+

∫
(c2,d2]

ν([a1, d1]× {v})f(c1,dv)

+

∫
(c2,d2]

g(c1, v)f(c1, dv)− g(c1, d2)f(c1, d2) + g(c1, c2)f(c1, c2)

−
∫

(c2,d2]
ν([a1, c1]× {v})f(c1,dv)

− f(c)∆(g, c1, c2, d1, d2).

For R2 we obtain

R2 =−
∫

(c1,d1]
g(u, d2)f(du, d2) +

∫
(c1,d1]

g(u, d2)f(du, c2)

−
∫

(c2,d2]
g(d1, v)f(d1,dv) +

∫
(c2,d2]

g(d1, v)f(c1, dv)

+ g(d1, d2)∆(f, c1, c2, d1, d2).

The result follows after collecting terms.

Definition A.8. (Locally bounded variation and Lebesgue-Stieltjes
integration) Consider f : (a, b) → R which is potentially unbounded. We
say that f is of locally bounded Hardy-Krause variation, notationally f ∈
BVHKloc((a, b)) if and only if f |[c,d] ∈ BVHK([c,d]) for any a < c <
d < b. In the following, f is assumed to be right-continuous. Let an, bn
be two sequences converging to a and b, respectively, and such that a <
an+1 < an < bn < bn+1 < b. Since f |[an,bn] ∈ BVHK([an, bn]), we can
define unique measures ν+

n and ν−n on B([an, bn]) as in Theorem A.4. Now,
for A ∈ B((a, b)) set

ν±(A) := lim
n→∞

ν±n (A ∩ (an, bn]).

By monotone convergence, ν+ and ν− are [0,∞]-valued measures on B((a, b)).
Moreover, by Proposition A.9 below, the definition of ν± is independent of
the choice of the sequences an and bn. Finally, for a < c < d < b, the
proposition implies that

ν((c, d]) := ν+((c,d])− ν−((c,d]) = ∆(f, c1, c2, d1, d2).
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Note that ν is not necessarily a signed measure on B((a, b)), since expres-
sions of the form “∞−∞” are possible in principle. Still, for a measurable
function g : (a, b) → R such that

∫
|g|dν+ < ∞ or

∫
|g|dν− < ∞, we may

define the Lebesgue-Stieltjes integral∫
(a,b)

gdf :=

∫
(a,b)

gdν :=

∫
(a,b)

gdν+ −
∫

(a,b)
gdν−

Proposition A.9. Let f ∈ BVHK([a, b]) be right-continuous and let
a < c < d < b. Set g := f |[c,d]. Then, for any A ∈ B((c,d]),

ν±f (A) = ν±g (A),

where ν±f and ν±g denote the unique measures associated to the unique signed
measure νf of f and νg of g, respectively.

Proof. It suffices to show the identity on sets of the form (x,y] ⊂ (c,d]. By
(A.1), we have

νf ((x,y]) = ∆(f, x1, x2, y1, y2) = ∆(g, x1, x2, y1, y2) = νg((x,y]).

Uniqueness of the Jordan decomposition implies the assertion.

46



 



 


	Introduction
	Weighted empirical copula processes
	Applications
	Bivariate rank statistics
	Nonparametric estimation of Pickands dependence function

	Proofs
	Proof of Theorem 2.2
	Proof of Proposition 4.4
	Proof of Theorem 4.5
	Proof of Theorem 3.3.

	Auxiliary results
	Bounded variation and Lebesgue-Stieltjes integration for two-variate functions

