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Abstract

The empirical copula process plays a central role in the asymptotic
analysis of many statistical procedures which are based on copulas
or ranks. Among other applications, results regarding its weak con-
vergence can be used to develop asymptotic theory for estimators of
dependence measures or copula densities, they allow to derive tests for
stochastic independence or specific copula structures, or they may serve
as a fundamental tool for the analysis of multivariate rank statistics.
In the present paper, we establish weak convergence of the empirical
copula process (for observations that are allowed to be serially depen-
dent) with respect to weighted supremum distances. The usefulness
of our results is illustrated by applications to general bivariate rank
statistics and to estimation procedures for the Pickands dependence
function arising in multivariate extreme-value theory.

Keywords and Phrases: Empirical copula process; weighted weak conver-
gence; strongly mixing; bivariate rank statistics; Pickands dependence func-
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1 Introduction

The theory of weak convergence of empirical processes can be regarded as
one of the most powerful tools in mathematical statistics. Through the
continuous mapping theorem or the functional delta method, it greatly fa-
cilitates the development of asymptotic theory in a vast variety of situations
(Van der Vaart and Wellner, 1996).
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For applying the continuous mapping theorem or the functional delta
method, the course of action is often similar. Consider for instance the con-
tinuous mapping theorem: starting from some abstract weak convergence
result, say [F,, ~» I in some metric space (D, dp), one would like to deduce
weak convergence of ¢(F,) ~» ¢(F), where ¢ is some mapping defined on
(D, dp) with values in another metric space (€, dg). This conclusion is pos-
sible provided ¢ is continuous at every point of a set which contains the
limit F, almost surely (Van der Vaart and Wellner, 1996).

The continuity of ¢ is linked to the strength of the metric dp — a stronger
metric will make more functions continuous. For example, let D = £°°([0, 1])
denote the space of bounded functions on [0, 1] and consider the real-valued
functional ¢(f) := f 0.1) x)/xdx (with ¢ defined on a suitable subspace
of D). In Sectlon 3.2 below this functional will turn out to be of great inter-
est for the estimation of Pickands dependence function and it is also closely
related to the classical Anderson-Darling statistic. Now, if we equip D with
the supremum distance, as is typically done in empirical process theory, the
map ¢ is not continuous because 1/x is not integrable. Continuity of ¢
can be ensured by considering a weighted distance, such as for instance
supgefoq [f1(z) — f2(x)[/g(z) for a positive weight function g such that
g(x)/x is integrable. Similar phenomenas arise with the functional delta
method, see Beutner and Zihle (2010). It thus is desirable to establish weak
convergence results with the metric dp taken as strong as possible. One class
of metrics which is of particular interest in many statistical applications is
given by weighted supremum distances.

For classical empirical processes, corresponding weak convergence results
are well known. For example, the standard d-dimensional empirical process
Fp(x) = v/n{F,(x) — F(x)} with F having standard uniform marginals,
converges weakly with respect to the metric induced by the weighted norm

G(u)
{g(u)}*

w € (0,1/2). See, e.g., Shorack and Wellner (1986) for the one-dimensional
ii.d.-case, Shao and Yu (1996) for the one-dimensional time series case or
Genest and Segers (2009) for the bivariate i.i.d.-case. For d = 2, the graph
of the function g is depicted in Figure 1.

The present paper is motivated by the apparent lack of such results for the
empirical copula process C,,. This process, an element of D([0,1]%) precisely
defined in Section 2 below, plays a crucial role in the asymptotic analysis
of statistical procedures which are based on copulas or ranks. Unweighted
weak convergence of C,, has been investigated by several authors under a
variety of assumptions on the smoothness of the copula and on the temporal
dependence of the underlying observations, see Gaenssler and Stute (1987);
Fermanian et al. (2004); Segers (2012); Biicher and Volgushev (2013); Biicher
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Figure 1: Graphs of g(u,v) = min{u,v,1 — min(u,v)} (left picture) and of
g(u,v) = min{u, v, (1 —u), (1 —v)} (right picture).

et al. (2014), among others. However, results regarding its weighted weak
convergence are almost non-existent. To the best of our knowledge, the
only reference appears to be Riischendorf (1976), where, however, weight
functions are only allowed to approach zero at the lower boundary of the
unit cube. The restrictiveness of this condition becomes particularly visible
in dimension d = 2 where it is known that the limit of the empirical copula
process is zero on the entire boundary of the unit square (Genest and Segers,
2010). This observation suggests that, for d = 2, it should be possible to
maintain weak convergence of the empirical copula process when dividing
by functions of the form {g(u,v)}* where

g(u,v) =uAvA(l—u)A(1l—0).

A picture of the graph of § can be found in Figure 1, obviously, we have
g < g. The main result of this paper confirms the last-mentioned conjecture.
More precisely, we establish weighted weak convergence of the empirical cop-
ula process in general dimension d > 2 with weight functions that approach
zero wherever the potential limit approaches zero. We also do not require
the observations to be i.i.d. and allow for exponential alpha mixing.

Potential applications of the new weighted weak convergence results are
extensive. As a direct corollary, one can derive the asymptotic behavior
of Anderson-Darling type goodness-of-fit statistics for copulas. The deriva-
tion of the asymptotic behavior of rank-based estimators for the Pickands
dependence functions (Genest and Segers, 2009) can be greatly simplified
and, moreover, can be simply extended to time series observations. Through
a suitable partial integration formula, the results can also be exploited to
derive weak convergence of multivariate rank statistics as for instance of
certain scalar measures of (serial) dependence. The latter two applications
are worked out in detail in Section 3 of this paper.



The remaining part of this paper is organized as follows. In Section 2, the
empirical copula process is introduced and the main result of the paper, its
weighted weak convergence, is stated. In Section 3, the main result is illus-
tratively exploited to derive the asymptotics of multivariate rank statistics
and of common estimators for extreme-value copulas. All proofs are deferred
to Section 4, with some auxiliary results postponed to Section 5. Finally,
Appendix A in the supplementary material contains some general results on
(locally) bounded variation and integration for two-variate functions which
are needed for the proof of Theorem 3.3.

2 Weighted empirical copula processes

Let X = (Xi,...,X4)" be a d-dimensional random vector with joint cu-
mulative distribution function (c.d.f.) F' and continuous marginal c.d.f.s
Fy, ..., Fy. The copula C of F, or, equivalently, the copula of X, is de-
fined as the c.d.f. of the random vector U = (Uy,...,Uy)’ that arises from
marginal application of the probability integral transform, i.e., U; = Fj(X})
for j = 1,...,d. By construction, the marginal c.d.f.s of C are standard
uniform on [0, 1]. By Sklar’s Theorem, C' is the unique function for which
we have

F(l’l,. . .,$d) = C{Fl(xl)a" 'aFd(xd)}

for all & = (x1,...,24) € R9.

Let X;,i = 1,...,n be an observed stretch of a strictly stationary time
series such that X is equal in distribution to X. Set U; = (U;1,...,U;q) ~
C with U; = Fj(X;;). Define (observable) pseudo observations U; =
(U, - .., Uig) of C through Ui; = nF,;(Xi;)(/n +1) for i = 1,...,n and
7 =1,...,d. The empirical copula C,, of the sample X1, ..., X,, is defined
as the empirical distribution function of ﬁl, ceey ﬁn, ie.,

Cr(u) = iin(ﬁi <wu), wec]l0,1]%
=1

The corresponding empirical copula process is defined as
u s Cow) = Vi{Co(u) — )},
For w > 0, define a weight function
g (w) = min{ A% juj, AT [1— (ug Ao AGG A Aug)]},

where the hat-notation u; A --- Adj A --- A ug is used as a shorthand for
min{ui, ..., uj—1, Ujs1,...,uq}. For d =2, the function is particularly nice
and reduces to g, (u1,u2) = min(uy, ug, 1 —ug, 1 — uz)®, see Figure 1. Note
that for vectors u € [0, 1]¢ such that at least one coordinate is equal to 0 or



such that d — 1 coordinates are equal to 1, we have g,(u) = 0. As already
mentioned in the introduction for the case d = 2, these vectors are exactly
the points where the limit of the empirical copula process is equal to 0,
almost surely, whence one might hope to obtain a weak convergence result
for C,,/g.. To prove such a result, a smoothness condition on C has to be
imposed.

Condition 2.1. For every j € {1,...,d}, the first oder partial derivative
Cj(u) = 0C(u)/0u; exists and is continuous on V; = {u € [0,1]? : u; €
(0,1)}. For every jo,ja € {1,...,d}, the second order partial derivative
Cjij(u) := 92C(u)/du;, Ouj, exists and is continuous on Vj, N Vj,. More-
over, there exists a constant K > 0 such that

.. 1 1
|Cj,j. ()] < K min , VueV; NVj,.
ujl(l

- uj1)7 ujz(l - sz)

For completeness, define C;(u) = limsup,_,o{C(u+he;)—C(u)}/h wher-
ever it does not exist. Note, that Condition 2.1 coincides with Condition 2.1
and Condition 4.1 in Segers (2012), who used it to prove Stute’s represen-
tation of an almost sure remainder term (Stute, 1984). The condition is
satisfied for many commonly occurring copulas (Segers, 2012).

For —oco < a < b < oo, let }"fl’ denote the sigma-field generated by those
X, for which i € {a,a+1,...,b} and define, for k > 1,

aX(k) = sup {[P(ANB) —P(A)P(B)| : Ae F' ,B € F,i € L}

as the alpha-mixing coefficient of the time series (X;);ez. The sequence is
called strongly mixing (or alpha-mixing) if a/*!(k) — 0 for k¥ — oo. Finally,

an(u) = Vi{Gn(u) = C(u)},  Gu(u) =n""Y7 1(U; < w),
denotes the (unobservable) empirical process based on Uy, ..., U,.

Theorem 2.2. (Weighted weak convergence of the empirical copula
process) Suppose that X1, Xo,... is a stationary, alpha-mizing sequence
with aXV(k) = O(a*), as k — oo, for some a € (0,1). If the marginals of
the stationary distribution are continuous and if the corresponding copula C
satisfies Condition 2.1, then, for any ¢ € (0,1) and any w € (0,1/2),

sup
ue[%alfﬁ]d

9w () 9w ()

where, for any u € [0,1]%,

d
Co(u) 1= an(u) — 3 Cj(w)an(u),



with w() = (1,...,1,uj,1,...,1). Moreover, we have Cy,/Gw ~ Cc/gu in
(22 (10,119, || - lloo), where go,(w) = gw(u + 1{gw(u) = 0}, where

Colu) = ZC (J))

and where ac denotes a tzght centered Gaussian process with covariance

Cov{ac(u), ac(v)} = Z Cov{1(Up < u), 1(U; < v)}.

The proof of Theorem 2.2 is given in Section 4.1 below. In fact, we state
a more general result which is based on conditions on the usual empirical
process a;,. These conditions are subsequently shown to be valid for expo-
nentially alpha-mixing time series.

3 Applications

Theorem 2.2 may be exploited in numerous ways. For instance, many of
the most powerful goodness-of-fit tests for copulas are based on distances
between the empirical copula and a parametric estimator for C' (Genest
et al., 2009). The results of Theorem 2.2 can be exploited to validate tests for
a richer class of distances, as for weighted Kolomogorov-Smirnov or L?-dis-
tances. Second, estimators for extreme-value copulas can often be expressed
through improper integrals involving the empirical copula (see Genest and
Segers, 2009, among others). Weighted weak convergence as in Theorem 2.2
facilitates the anlysis of their asymptotic behavior and allows to extend the
available results to time series observations. Details regarding the CFG- and
the Pickands estimator are worked out in Section 3.2 below.

Theorem 2.2 may also be used outside the genuine copula framework, for
instance, for proving asymptotic normality of multivariate rank statistics.
The power of that approach lies in the fact that proofs for time series are
essentially the same as for i.i.d. data sets. In Section 3.1, we derive a general
weak convergence result for bivariate rank statistics.

3.1 Bivariate rank statistics

Bivariate rank statistics constitute an important class of real-valued statis-
tics that can be written as

I o -
= *ZJ(UH,UQ)
i

for some function J : (0,1)2 — R, called score function. R, can also be
expressed as a Lebesgue-Stieltjes integral with respect to Cp, i.e.,

R, = J(u,v)dCyp(u,v),

[ 1 n ]2
n+1’n+1



which offers the way to derive the asymptotic behavior of R, from the
asymptotic behavior of the empirical copula. This idea has already been
exploited in Fermanian et al. (2004): however, in their Theorem 6, J has to
be a bounded function which is not the case for many interesting examples.
Also, the uniform central limit theorems for multivariate rank statistics in
van der Vaart and Wellner (2007) require rather strong smoothness assump-
tions on J (which imply boundedness of J).

Example 3.1. (Rank Autocorrelation Coefficients) Suppose Y1, ...,Y,
are drawn from a stationary, univariate time series (Y;);cz. Rank autocor-
relation coefficients of lag k € N are statistics of the form

Tnk = —k Z J1{n+1 )}J2{n+1 (Yzek)},

where Jy, Jo are real-valued functions on (0, 1) and F;, denotes the empirical
cdf of Y1, ...,Y,. For example, the van der Waerden autocorrelation (Hallin
and Puri, 1988) is given by

TnkpdW = — —k: Z {n+1 (Y)}‘l)_l{n%an(YE—k)}»

i=k+1

(with ® and ®~! denoting the cdf of the standard normal distribution and
its inverse, respectively) and the Wilcoxon autocorrelation (Hallin and Puri,
1988) is defined as

Tn,k,W:nik zn: {nLHFn(Yi)—%}log{ s n(:zyf)k)}

1=k+1

Obviously, the corresponding score functions are unbounded. Asymptotic
normality for these and similar rank statistics has been shown for i.i.d. ob-
servations and for ARM A-processes (Hallin et al., 1985). To the best of
our knowledge, no general tool to handle the asymptotic behavior of such
statistics for dependent observations seems to be available. Theorem 3.3
below aims at partially filling that gap.

Example 3.2. (The pseudo-maximum likelihood estimator) As a
common practice in bivariate copula modeling one assumes to observe a
sample X1,..., X, from a bivariate distribution whose copula belongs to a
parametric copula family, parametrized by a finite-dimensional parameter
0 € © C RP. Except for the assumption of absolute continuity, the marginal
distributions are often left unspecified in order to allow for maximal ro-
bustness with respect to potential miss-specification. In such a setting, the



pseudo-maximum likelihood estimator (see Genest et al. (1995) for a theoret-
ical investigation) provides the most common estimator for the parameter 6.
If ¢y denotes the corresponding copula density, the estimator is defined as

n
0, = arg maxycg Z log{co(U;1,Ui2)}.
i=1
Using standard arguments from maximum-likelihood theory and imposing
suitable regularity conditions, the asymptotic distribution of \/n(6,, — o)
can be derived from the asymptotic behavior of

1< N
Ry =—> Jo,(Uir,Us), 3.1
7z;£; 80 (Ui, Uia) (3.1)

where 0y denotes the unknown true parameter and where Jy = (9logcy)/(06)
denote the score function. Typically, this function is unbounded, as for in-
stance in case of the bivariate Gaussian copula model where @ is the corre-
lation coefficient and the score function takes the form
(1 - 6%) — 0{2 ' (u)® + @7 '(v)?} + (1 + 6%)2 ' (u) 2~ (v)
1+6? '
Still, the conditions of Theorem 3.3 below can be shown to be valid.
Finally, note that pseudo-maximum likelihood estimators also arise in
Markovian copula models (Chen and Fan, 2006) where copulas are used to
model the serial dependence of a stationary time series at lag one. Again,
their asymptotic distribution may be derived from rank statistics as in (3.1).

Jo(u,v) =

The following theorem is the central result of this section. It establishes
weak convergence of bivariate rank-statistics by exploiting weighted weak
convergence of the empirical copula process. For the definition of the space
of functions of locally bounded total variation in the sense of Hardy-Krause,
BV HK,.((0,1)?), and for Lebesgue-Stieltjes integrals with respect to such
functions, we refer the reader to Definition A.8 in the supplementary mate-
rial. The proof is given in Section 4.4.

Theorem 3.3. Suppose the conditions of Theorem 2.2 are met. Moreover,
suppose that J € BV HK;,.((0,1)?) is right-continuous and that there exists
w € (0,1/2) such that |J(u)| < const xg,(u)~! and such that

/ gu(w)|dJ (w)] < oo. (3.2)
(0,1)2
Moreover, for 6 — 0, suppose that
/ |J(du,d)] = O(6~) and |[J(du,1 =98)|=0("%), (3.3)
(6,14 (6,1—6]
/ |J(d,dv)| = O(6™) and [J(1—=46,dv)|=0(6"%). (3.4)
(6,14 (6,1—6]



Then, as n — 00,
Vn{R, —E[J(U)]} ~ o1y Co(u)dJ(u).

The weak limit is normally distributed with mean 0 and variance

o2 = / / E[Co(w)Co (0)]dJ (1) dJ (o).
o2 Jiop2

Remark 3.4. (i) Provided the second order partial derivative Jya(u,v) :=
82J(u,v)/8uavn exists, then the conditions (3.2)—(3.4) are equivalent to
f(o 1y2 9w (1, 0)|J12(u, v)|d(u, v) < 00 and, as § — 0,

1-6 =6
/ |J1(u,0)|du = O(6~*) and / |J1(u, 1 —6)|du = O(6™%),
é é

1-6 1-46
/ 1J(6, 0)|dv = O(5~) and / a(1 = 8,0)|dv = O(5—%),
1) )

where Ji (u,v) := dJ (u,v)/du, Jo(u,v) := 8.J (u,v)/v.
(ii) A careful check of the proof of Theorem 3.3 shows that the theorem

actually remains valid under the more general conditions of Theorem 4.5
below, with w € (0,1/2) replaced by w € (0, 2(19_191) A 2(19_292) A (05 —1/2)).

As a simple application of Theorem 3.3 let us return to the autocorrelation
coefficients from Example 3.1. It can easily be shown that both Jygw (u,v) =
&~ Hu)® 1 (v) and Jw (u,v) = (u—1)log($L;) satisfy the conditions of The-
orem 3.3. To prove this for Jyqy use that |®~1(u)| < {u(l —u)}~¢ for any
e > 0 and that m < {u(1—wu)}~1, with ¢ denoting the density of the
standard normal distribution. Therefore, both coefficients are asymptot-
ically normally distributed for any stationary, exponentially alpha-mixing
time series provided that the copula of (Y;,Y;_x) satisfies Condition 2.1.
This broadens results from Hallin et al. (1985), which may be further ex-
tended along the lines of Remark 3.4(ii) by a more thorough investigation
of Conditions 4.1-4.3. Details are omitted for the sake of brevity.

3.2 Nonparametric estimation of Pickands dependence func-
tion

Theorem 2.2 can be used to extend recent results for the estimation of
Pickands dependence functions. Recall that C' is a multivariate extreme-
value copula if and only if C' has a representation of the form

log u; log ug_1

< sy =g
i—1logu; ijl log u;

C(u) =exp <zd:loguj)A<Z ) , uE (0,1)d,
j=1



for some function A : Ay_1 — [1/d, 1], where A;_1 denotes the unit simplex
Ay ={w=(wi,...,wg_1) €[0,1]%1: Z;.l;i w; < 1}. In that case, A is
necessarily convex and satisfies the relationship

max(wy, ..., wg) < Alwy, ..., wa1) <1 (wg=1- Y1 wy),

for all w € Ag_1. By reference to Pickands (1981), A is called Pickands
dependence function. Nonparametric estimation methods for A in the i.i.d.
case and under the additional assumption that the marginal distributions are
known have been considered in Pickands (1981); Deheuvels (1991); Capéraa
et al. (1997); Jiménez et al. (2001), among others. In the more realistic
case of unknown marginal distribution, rank-based estimators have for in-
stance been investigated in Genest and Segers (2009); Biicher et al. (2011);
Gudendorf and Segers (2012); Berghaus et al. (2013), among others. For
illustrative purposes, we restrict attention to the rank-based versions of the
Pickands estimator in Gudendorf and Segers (2012) in the following, even
though the results easily carry over to, for instance, the CFG-estimator.
The Pickands-estimator is defined as

Py I~ . g—log(Un)  —log(Ui)
An(w)—[n;mm{ w7 }

Wq

-1

and it follows by simp}e algebra (see Lemma 1 in Gudendorf and Segers,
2012) that AL := /n(AP — A) = —A?BE /(1 4+ n'/’BL), where

1
Bﬁ(w):/ @n(uwl,...,uw’i)d—u.
0 u
Note that fol v~ du does not converge, which hinders a direct application
of the continuous mapping theorem to deduce weak convergence of B! (and
hence of AZ) in £*°(Ay_1) just on the basis of (unweighted) weak conver-
gence of C,,. Deeper results are necessary and in fact, Genest and Segers
(2009) and Gudendorf and Segers (2012) deduce weak convergence of B
by using Stute’s representation for the empirical copula process based on
i.i.d. observations (see Stute, 1984; Tsukahara, 2005) and by exploiting a
weighted weak convergence result for «,.
With Theorem 2.2, we can give a much simpler proof. Write

BP(w) :/1 Cn(uwl,...,uwd) min(uw17,._’uwd)w du
n 0 min(uun’ . 7uwgl)w U .
Then, since fol min(u®?, ... u%d)¥ dju < fol w@/4=1 du exists for any w > 0,

weak convergence of Bﬁ is a direct consequence of the continuous mapping
theorem and Theorem 2.2. Note that this method of proof is not restricted
to the i.i.d. case.

10



4 Proofs

4.1 Proof of Theorem 2.2

Theorem 2.2 will be proved by an application of a more general result on
the empirical copula process. For its formulation, we need a couple of ad-
ditional conditions which, subsequently, will be shown to be satisfied for
exponentially alpha-mixing time series.

Condition 4.1. There exists some ¢; € (0,1/2] such that, for all x € (0,6;)
and all sequences 9,, — 0, we have

o () — an(v)]
M, (5 =
1 (On, 1) ‘u_sggén = i

= op(1).

Condition 4.1 can for instance be verified in the i.i.d. case with 6; =
1/2, exploiting a bound for the multivariate oscillation modulus derived in
Proposition A.1 in Segers (2012).

Condition 4.2. The empirical process a,, converges weakly in £°(]0, 1]%)
to some limit process a which has continuous sample paths, almost surely.

For i.i.d. samples, the latter condition is satisfies with a¢ being a C-
Brownian bridge, i.e., a centered Gaussian process with continuous sample
paths, a.s., and with Cov{ac(u),ac(v)} = C(u Av) — C(u)C(v).

Condition 4.3. There exist 6 € (0,1/2] and 03 € (1/2,1] such that, for
any w € (0,603), any A € (0,603) and all j =1,...,d, we have

i (uy)

=) | Op(1), sup
j J

uj€(1/n*,1-1/nr)

sup
Uj €(0,1)

uf (1 —u )

where Oénj(u]‘) = \/ﬁ{GnJ(U]) — Uj} and an(uj) = \/E{G;](u]) - uj}'

Here, Gpj(uj) =n~1 3" 1(Ui; < u; ) and, for a distribution function H
on the reals, H~ denotes the (left-continuous) generalized inverse function
of H defined as

H (u):=inf{r e R: H(zx) >u}, 0<u<l,

and H~(0) = sup{x € R: H(z) = 0}. In the i.i.d. case, Condition 4.3 is a
mere consequence of results in Csorgé et al. (1986), with 6, = 1/2 , 63 = 1.

The following proposition shows that the (probabilistic) Conditions 4.1,
4.2 and 4.3 are satisfied for sequences that are exponentially alpha-mixing.

Proposition 4.4.  Suppose that X1, Xa, ... is a stationary, alpha-mizing
sequence with o/X1(k) = O(a*), as k — oo, for some a € (0,1). Then,
Conditions 4.1, 4.2 and 4.3 are satisfied with 61 = 02 = 1/2 and 03 = 1.

11



Here, Condition 4.3 is a mere consequence of results in Shao and Yu
(1996) and Csorgs and Yu (1996), whereas Condition 4.2 has been shown
in Rio (2000). For the proof of Condition 4.1, we can rely on results from
Kley et al. (2014). The precise arguments are given in Section 4.2 below.

The following theorem can be regarded as a generalization of Theorem 2.2:
weighted weak convergence of the empirical copula process takes place pro-
vided the abstract Conditions 4.1, 4.2 and 4.3 are met. The proof is given
in Section 4.3 below.

Theorem 4.5. (Weighted weak convergence of empirical copula
processes) Suppose Conditions 2.1, 4.1 and 4.3 are met. Then, for any
ce (0,1) and any w € (0, 2(197191) A 2(107292) A (6035 —1/2)),

sup
ue[%vlfﬁ]d

9w () 9w ()

If additionally Condition 4.2 is met, then Cy /G, ~ Cc/gu in (£2°([0,1]9), |-
loo)-

Proof of Theorem 2.2. The theorem is a mere consequence of Proposition 4.4
and Theorem 4.5. O

4.2 Proof of Proposition 4.4

For an r-dimensional random vector (Y7,...Y,)’, define the rth order joint
cumulant by

cm(Yy,... ;)= > (=1 ' p-DE([] V) x--xE(][ V),

{V17"'7VP} jeyl jeVp
where the summation extends over all partitions {v1,...,v,},p € {1,...,7},
of {1,...,r}. The following lemma will be one of the main tools for estab-

lishing Condition 4.1 under exponentially alpha-mixing.

Lemma 4.6. IfY1,Ys,... is a strictly stationary sequence of random vari-
ables with |Y;| < K < oo and if there exist constants p € (0,1) and K’ < oo
such that for any p € N and arbitrary i1,...,1, € Z

um(Yiy, .., Y )| < K pmeseelis=iel

then, there exist constants C1,Co < oo only depending on K, K' and |v,|
such that

n
‘cum (ZY;,j € I/T) < C1(n+1)e(|loge| +1)%2,

=1

where € = E[|Y;]].

12



Proof. The proof is almost identical to the proof of Lemma 7.4 in Kley et al.
(2014) and is therefore omitted. O

Proof of Proposition 4.4. The weak convergence result in Condition 4.2 has
been shown in Theorem 7.3 in Rio (2000).

Regarding Condition 4.3, note that exponentially alpha-mixing implies
that o/X)(k) = O(k=79) for any b > 1 + /2 and any & > 0. Therefore, by
Theorem 3.1 in Shao and Yu (1996),

Vi{ G () — )
{u(l —w)}A-170/72

sup =O0p(1)

u€l0,1]

Since (1—1/b)/2 converges to 1/2 for b — oo, we indeed have the first display
in Condition 4.3 with 62 = 1/2. Regarding the second display, Csorgé and
Yu (1996) have shown that

VA{Gry () — u}
{u(1 — )} A-1702

- OP(l)v

sup
ue[67ul_5n]

for 8, = n=t/0+) 5 n=1 a5 b — oo, which implies that we may choose
03 = 1.

Finally, consider Condition 4.1. It follows from a simple multivariate
extension of Proposition 3.1 in Kley et al. (2014) that, in our case of an
exponentially alpha-mixing sequence (X;);cz, there exist constants p € (0, 1)
and K < oo such that, for any p € N and any arbitrary hyper-rectangles
A, . A, C R? and arbitrary ii,. .. yip € Z,

leum(1{X;, € A1},..., 1{X;, € A,})| < Kpmaxwelin=icl, (4.1)

The latter display will be the main tool to establish Condition 4.1. First,
decompose

|an(u) - an(v)|
M, (6 —
n(Ons 1) |u§3|1;5n PRV

= max{Sn1, Sn2}

where

apn(u) — ay (v
Sm= sup (0T gy () - anu)]
n=1<|lu—v|<dy, ”U, - ’U‘ lu—v|<n—1
It suffices to show that S,; = op(1) and Sp2 = op(1) as n — oo.
First consider Sy2. We will show that, for any £ € N and any g € (0,1),

there exist constants K7 and K5 only depending on d, ¢, # and the constants
in (4.1) such that

IP’( sup  Jan(u) — an(v)] > 5) <31(n"V? > Kie) 4+ Koe 2!

u—v|<n-1

(4.2)

13



Indeed, Sp2 = op(1) follows by setting e = n~H¢’, by choosing 3 > 2u and
by finally choosing ¢ sufficiently large.

In order to prove (4.2), we begin by bounding the left-hand side of that
display by

1 & €
P sup — 11U, <u)—1U,; <v)| > =
(|u_,v|§n1 n; ( ) ( >’ 2)
€
+IP’< sup  /n|C(u) — C(v)| > 7>,
lu—v|<n—1 2

where the second probability is smaller than 1(n=%/? > 5) by Lipschitz-
continuity of C'. Furthermore, we have

sup
lu—v|<n—1

;ﬁzn:n(ui <)~ 1(U; <)
=1

d n
1
< g sup n E L(Uij < vj) = 1(Uij < uy)
i=1

j=10%vj—u;<n

d
= Z sup V{Grj(vj) — Gpj(uj)}

j=1 0<vj—u;j<n~—1

d
< sup Vn|Grj(vs) — Gnj(us) — (v; — uj)| + T
j=1 [vj—uj|<n—1 n
d d
= sup ’anj (”J) Qnj (uj)] + .
; [vj—uj|<n ! \/ﬁ

We now proceed similar as in the proof of Lemma 8.6 in Kley et al. (2014)
to bound the sum on the right-hand side. Set M,, = {0, %, %, ..., 1}. Mono-
tonicity of Gy,; yields

sup  V/n|Gnj(uj) — Gnj(vy) = (uj — v5)|

[uj—vj|<n—?

< max VlGrj(uj) — Grj(vg) — (uj — ;)| +2/v/n.

U, € Mn:lu;—v;|<2/n

Therefore, we get

P( sup

lu—v|<n—1

€
<IP( max i (0:) — s (s >7)
B jz—;“jv“J'EMn1|Uj—vy‘|§2/n| nj (1)) nj ()] 6

+]l<n_l/2 > Gid) —|—]1<n_1/2 > %)

14



Now, note that the set {(u,v) € M2 : |u — v| < 2/n} contains O(n) ele-
ments. Since E(max;—1,_n |YilP) < mxmax;=1__, E(]Y;?) for any random
variables Y7, ...,Y,,, we can conclude that

-----

P(Zdj masx o (1) — g ()] > )

= w0 € Mnp:|u;j—v;|<2/n

B

3
P( max i (0:) — i (ws)] > )
1 uj,vjeMn:\uJ-—vj|§2/n| ”J( J) nj( J)| 8d

.
Il

8d)2 fzeE[ i (05) — Qi (s 2@}
BOPHE] L max (@) = o)

<
Il
—

M-

d
< const xe 2 Z n  sup  El|ani(vy) — anj(uj)\%}.
j=1 uj—v;|<2/n
The assertion in (4.2) now follows from an inequality in the proof of Lem-
ma 8.6 in Kley et al. (2014). These authors showed that, if (4.1) is satisfied,
then, for any ¢ € N, there exist constants ¢; and ¢o which only depend on ¢
and the constants in (4.1) such that

sup B (1) — anj(v) 2 < el {6(1 + [log 6|°)} v n 1%
uj,v;€[0,1]:|u;—v;i| <8

Set 6 = 2/n and exploit that logn < n(=PA/e for g e (0,1) to get rid of the
logarithmic term on the right-hand side to finally arrive at (4.2).
It remains to be shown that S,; = op(1). We have

P( qp 12w —en()] E)

n—1<|lu—v|<8, |u' - ’U‘“

< IP’( max sup [an(u) = an(v)) > 8)
kn—1<2-k§, 2~ (k+1)5, <|lu—v|<2-F5, |u — 'U’M

< > sup an(w) = an()] > £(27F5,)27+)

kn—1<2-k§, 27 (D5, <Ju—v| <274,

< Y Pl sw |an(u)—an(v)|>5(2_k5n)“2_“).

kn—1<27k§, lu—v|<27*3,

Therefore, we only have to show, that

Z P sup  |an(u) — ay(v)] > 5(2*’“5”)“2*“) =o(1). (4.3)

kn—1l<2-k§, |u7v|§2—k6n

We will show later that, for any L € N and for any v € (0,1/2), there
exists a constant K = K(v,L) > 0 such that, for all w,v € [0,1]¢ with

15



|’LL - ’U| > n_la

lan(u) — apn(v)|l2r < Klu —v|” =: Kd(u,v), (4.4)
where || X|, = E[|X[P]'/P. Note that the packing number D(e,d) of the
metric space ([0,1]%,d) satisfies D(e,d) < const xe~%7. Then, using the
notation W(z) = 2L, U1(z) = 2V, § = (27%6,)7 and 7 = 2n77,
Lemma 7.1 in Kley et al. (2014) yields the existence of a random variable
S1 such that

P( sup o) = an()] > £(27F5,)127)
|lu—v|<2-k§,

< P(Sl > (2*’“5,1)“2*#*15)

FP(2 swp Jan(u) - an(v)] > (276, r2 7)),

lu—v|<n—1 ueT
where T denotes a finite set of cardinality O(n%) and where, for any 1 > 7,

P(|S;| > (27%6,)*2 7+ 1e)

JTemBE de + {(27%6,)7 + 4n~V}n 3T 2
< const X .
(27K§, )H2—1-1g
_ 1+
- n 2L
Set n =2(27%6 )7/( 71) choose ~ and L such that d < 2L and note that
4n~7 < 4(27%6,,)7. Then

1—-ad_
—pty—22E | of,
P(]S1] > (2_k5n)“2_“_15) < const x{(2_k6n) 55 }

where the constant may depend on e,~, u,d, L. Therefore, choosing L and
~ sufficiently large, we obtain that

P(|S1] > (27%6,)*27# L&) < const x(27%6,)"
for some x > 0.
Furthermore, (4.2) and the fact that 277§, > n~! implies that
P(2  sup  |an(u) — an()| > (2‘k5n)“2‘“_15)
lu—v|<n—1ueT
< const xn 7 + 31(n*~ /2 > const)
for some 8 > 0, by choosing 3 € (2u, 1) and ¢ sufficiently large. Therefore,

p sup  |an(®) — an(v)] > 5(2—k5n)u2—u)

kn—1<2-k§, lu—v|<27%6n

< const {log(n){n_ﬁ + 31 ("2 > const)} + 0° Z 2"“} =o(1),
k=0
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where the logarithmic term is due to the fact that there are at most O(logn)
summands such that (27%4,) > n~!. The last display is exactly (4.3).

Finally, it remains to be shown that (4.4) is satisfied. For i = 1,...,n, let
Aij(u,v) =1(U; < u)—-1(U; < v)—{C(u)—C(v)}. Then, by Theorem 2.3.2
in Brillinger (1975),

n

E{an(u) — an(v)}?F = ”_LE{ Z Ai(u, v)}QL

i=1
2L n
=n"fcum ( H Z Ai(u, v))

j=1i=1

R n
—n L Z chm (ZAi(u,'v),j IS VT>,
Vl,...,VR r=1 =1
where the sum runs over all partitions of the set {1,...,2L} and where

cum(Yj, j € v) denotes the joint cumulant of all random variables Y; with
j € v. Note that, for v, with |v,| = 1, we have cum (> 1| A;(u,v),j €
vy) = EY" , Ai(u,v) = 0, whence it is sufficient to consider R < L. In
that case, an application of Lemma 4.6 implies that there exist constants
0 < C,C" < oo such that

cum (ZAi(u,v),j € VT) < C(n+ 1)Ju— v|(1+ | log |u — v||)’
=1
< K(n+1)u—v?.

Hence, for any u,v € [0,1]¢ such that |u — v| > n~1,

E{ o, (u) — an(v)}2 < const x Z (n+ D)Ly — v
Vi v REL

< const x|u — v|?L7,

which is exactly (4.4). O

4.3 Proof of Theorem 4.5
Throughout the proof, we will use the following additional notations. Set
Colw) = GG (W)}, G (w) = (G (), Gg(ua)
and define a version of the empirical copula process based on C), by
w Colw) = v {Calw) - Cw)}.
Moreover, for 0 < a < b < 1/2, define

N(a,b) = {u € [0,1]%a < gi(u) < b}.

17



Note that [0,1]% = {u : g1(u) = 0} UN(0,a) U N(a,1/2). The set N(a,1/2)
consists of those vectors such that all of their coordinates are larger than a
and such that at most d — 2 coordinates are larger than or equal to 1 — a.
In particular, for d = 2, we have N(a,1/2) = (a,1 — a)?.

The proof of Theorem 4.5 will be based on the following sequence of
Lemmas. All convergences are with respect to n — oo.

Lemma 4.7. Under the conditions of Theorem 4.5,

sup

)Cn(u) Cp(u) ‘
weN(en—1,1/2)

go(uw)  gu(u)

Lemma 4.8. Under the conditions of Theorem 4.5,

sup
uEN(n=1/2/1/2)

9w () 9w ()

Lemma 4.9. Under the conditions of Theorem 4.5, for any 6, | 0 such
that 6, > en~ 1,

sup
uEN (cn=1,8,)

P
9w (u)

Lemma 4.10. Under the conditions of Theorem 4.5, for any d, | 0,

9w ()

a

sup ‘ ‘ = op(1).

uEN(0,6,)

Lemma 4.11. Under the conditions of Theorem 4.5, for any 6, | 0

(Cn(u) B Cn(u’) _,
uvU’G[ﬁyl—Sg}g:lu—u’\gan ‘ go(u)  go(w)l (1) (4.5)
and
Cn(u) _ @n(u’) .
i ‘gw(u) Gow) | p(1) (4.6)

u,u/€[0,1]4: |l u—u/|<6y

Proof of Theorem 4.5. Set 6, = dn~Y2. Given u € (5,1 — %]d, choose
u € [ﬁ, 1-— ﬁ]d such that |u — u/| < §,. Since
@n(u) Cn(u C n(w)  Cy(u) Cp(u) Cp(u)
aiwcn) B P e el e e
gu(u)  gu(u gu(u)  gu(uw gu(u)  gu(w)
Cn(u) Cp(u)




the first assertion of the theorem follows from Lemma 4.7, 4.8 and 4.11.
Next, let us show that C, /g, ~ Cc/dw in (£°([0,1]9), | - [|oc). From
Problem 2.1.5 in Van der Vaart and Wellner (1996) and Lemma 4.11 we
obtain that C,/g, is asymptotically equicontinuous. Furthermore, Con-
dition 4.2 yields that the finite dimensional distributions of C, /g, con-
verge weakly to the finite dimensional distributions of C¢/g,. Note that
Cc/gu(u) = C,/gu(u) = 0 for any u with at least one entry equal to 0 or
with d — 1 entries equal to 1. ]

Proof of Lemma 4.7. It suffices to show that, there exists p € (w,6;) such
that R
sup  |Ch(u) — Cp ()] = op(n™1/27H).

uel0,1]¢
Note that F,;(Xi;) = Gn;j(U;), whence

sup |G (u) — Cp(u)

u€(0,1)4

sup Zn{a <ty — 1{G,(U;) < u}

ueOl
sup Z]I{G i) <u}—1{U; < G, (u)}
uEOl]d nz 1

d n

<y [ sup fZﬂ{u<Gw<Uw>s L)

j=1 [ue [0,11 1

+ s?p}Z’]l{Gn] Uij) < u} — 1{U;; < G,;( )}‘
u€|0,1

From the definition of the empirical distribution function and the generalized
inverse function we have that, for any fixed u, both Y " | 1{u < G,;(U;;) <
2tly} and 307 |1{Gn;(Uy) < u} — 1{U;; < F, ;(u)}] are bounded by the
maximal number of U;; which are equal. Note that this maximal number is
equal to n X supy¢(o 1) |Gnj(u) — Grj(u—)|. Provided there are no ties among
Uij,...,Upj, for any j = 1,...,d (which, for instance, occurs in the i.i.d.
case), this expression is equal to 1 and the Lemma is proven. In the general
case, we have
sup |Gpj(u) = Gnj(u=)| < sup |Ghj(u) — Gn;(v)]

u€(0,1] u,v€(0,1]
lu—v|<1/n

1

< sup  |Grj(u) — Grj(v) = (u—0)[ + —
u,v€(0,1] n
|u v|<1/n

sup |ap(u) — an(v)| + % (4.7)

B \/> u,v€[0,1]4

lu—v|<1/n
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Then, the assertion follows from Condition 4.1. O

Proof of Lemma 4.8. First of all, we write
(Cn(u) - Cn(u) = (Bnl + Bpo + Bn3)(u)
where

Bui(u) = an{G, (u)} — an(u)

d
Bua(u) = v/n [C{G, (u) = Ci(w)Bnj(uy)

J=1

d
Z CJ ) {Bnj(uz) + amj(u;)}
j=1

For p = 1,2,3, set App(u) = Bpp(u)/gu(uw). The Lemma is proved if we
show uniform negligibility of each term individually.
Treatment of Ap1. Let €2, denote the event that sup,co1j¢ |G, (u) — uf <

6, = n Y25 with k > 0 to be specified later on. Note that the probability
of Q,, converges to 1. Exploiting Condition 4.1 and the fact that |g,(u)| ™ <
n®/? for u € N(n='/2,1/2) we obtain, for any pu € (0,6;),

sup A (u)] <0 sup | {G, (W)} — an(u)
uEN(n=1/21/2) u€l0,1]4

<My (0ny 1) sup {|Gy (u) —ul vVt g,
u€l0,1]¢

+ Op(l)
< @27 r2HRRG (1) + op(1)
The right-hand side is op(1) if we choose p € (w, 61) sufficiently large and
t > 0 sufficiently small such that w < p(1 — 2k).

Treatment of Aps. Fix u € N(n=/2,1/2). Let S = S,, denote the set of all
j €{1,...,d} such that u; € [p~/2,1 — n™7], with 4 > 1/2 to be specified
later. Let (G, (u))s denote the vector in R? whose jth coordinate is equal
to G, (uj)1(j € S) +u;L(j ¢ S). Write Apa(u) = Dni(w) + Dn2(u), where

Dm(u):(mc{c,;(u)}—c{( - X G )i (),
jgs

Dyatw) = (Vi [CUGs w)s) = Cw] = X sl o5 w)

jES

Since C € [0,1], we can bound

22 ﬁnj

B (uy)
sup eyl B

u; €[1-n=7,1]

7j=1
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The right-hand side is op(1) by Lemma 5.3. Regarding D2, by Taylor’s
Theorem, |Dpa(u)| = %Zjl’hes D?Y? (u), where

DI (u) = 028y 4, (€0) By (wjy) B () g () 77,

and where &, = (§n1,...,&nq) is an intermediate point between (G, (u))s
and u. By Condition 2.1, we have

|éj1j2 (571)‘ < K{fnﬁ (1 - fnj1)}71/2{§nj2 (1 - én]é)}il/?
DI )] < Kn V22 sup

Therefore, since g,,(u)~! < n¥/2,
1/2
{uﬂl—%)} :
u€n=1/2,1-n-1/2)d gnjl(l - gnjl)

y { wjy (1 — uj) }1/2 o B )l 1B (ug)]
gnjz(l - §Hj2) {ujl(l - ujl)}w {uj2(1 - uj2)}w
wfl/Q“

x {ug (1= ugy )ugy (1 —uy,)}

By an application of Lemma 5.2 and by Condition 4.3, the right-hand
side is of order Op(n~1/?tw/2+v(1=2w)) — 45(1), provided we choose v €
(1/2,{1/2 4+ w/(2 — 4w)} A {1/(2(1 — 62))} A 63). Since u € N(n/2,1/2)
was arbitrary, we can conclude that sup,ey(,-1/2,1/2) [An2(w)| = op(1).

Treatment of Ans. Since |C;(u)| < 1 for any u € [0, 1]%, we have

d
sup |Aps(u)| < nw/? Z sup |,an(u]) + anJ{G;j(u])}]
ueN(n=1/2,1/2) j=1 u3€[0,1]
d
+ ne/? sup | {G,;(u;j)} — anj(u;))| -
j=1 u;€[0,1]

The second sum on the right-hand side is of order op(1) as shown in the pre-
ceding treatment of the term A,;. Negligibility of the first sum follows from
Lemma 5.1, observing that ani{G,;(u;)} = Vn[Gni{G,;(uj)} — G, ;(us)]
from the definition of «,. O

Proof of Lemma 4.9. Note that, by a monotonicity argument, it suffices to
treat sequences 6, such that é,, > n1/2 e, dny/n — oo. First of all, choose
v such that 1/2 +w < v < 1/{2(1 — 62)} A b5. Set M,y = N(n™7,0,) N
(n=",1 —n~")% and My, = Nn™,0,) \ (n77,1 - n~")?, and note that
N(en™',8,) = N(en™t,n™7) U My, U M, . Therefore,

tle) ‘ = R, {N(ecn t,n77)} Vv Rp(Mny) V Ry (My,), (4.8)

sup ‘
Juw(u)

uEN (en=1,6,)
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where, for A C [0,1]%, R,,(A) = sup,ec4 |Crn(u)/gw(u)|. It suffices to show
negligibility of each term on the right-hand side of (4.8).

Treatment of R,{N(cn=t,n~7)}. We will distinguish the cases that either
guw(u) = uf or g, (u) = (1—u1)”. The cases g,(u) = uf or g,(u) = (1—uy)*
for some j > 1 can be treated similarly.

Let us first consider w such that g, (u) = uf. Obviously,

Cn(u) = Clu)| < [C(u) = Cn(0,ug, .., ug)| +|C(0,u, . .. ug) = Clu)].

By Lipschitz-continuity of the copula function C, the second term on the
right hand side can be bounded by u; = g1(u). For the first term, note that

Calw) — a0, s, ua)| = - S 1{U; < Gy ()}
=1

< U3 U < Goy(un)) = GG ()} (49)
=1

By Lemma 5.1 the last expression is equal to u; + op(n~/27#) = g (u) +
op(n~Y?71) for any pu € (w,6;), where the residual term is uniformly in
up € [0,1]. Combined, this yields |Cy,(u)| < /n2¢1(u) + op(n™*), and
hence

@

sup
u€EN (en~1,n=7),g9u (u)=uy

Now, consider the case g,(u) = (1 —up)¥, ie, 1 —ug =1—ug A--- A
U A -+ Aug for some k € {2,...,d} and without loss of generality we may
assume that k = 2. Then, in particular, 1 —u; <1—wug and 1 —uy > 1 —u;
for all 7 > 3. Now, decompose

|Cn () =C ()] < |Cr (1) =Cr(u) |[+]Crn(u®) =C(w®) | +|C(u®) ~C(u).
Again by Lipschitz-continuity of the copula function, we have

IC(u®) = C(u)| <> 11 —u| < (d = D1 —w| = (d - 1)g1(u).
J#2
Furthermore, we have
|Cn() = Co(u?)] < |Cp(w) = Cu{1,us, .., ug}|
+ |Cn{1,UQ, - ,ud} — Cn{l,UQ, 1,1y, ... ,ud}|
o {1 ug, 1,1, 1 ug) — Co(u®)] (4.10)
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and thus, by similar arguments as in (4.9), |Cp(u) — Cp(u®)| < (d —
g1 (w) + op(n~Y/27#), uniformly in w. Finally, from Lemma 5.1

1C(u®) — C(u?)] = |Gpa{Giy(uz)} — us| = op(n~ 121,
Altogether, we obtain

Cpn(u)
9w (u)

sup ’ < 2(d—1)nY /T pop(nTF) = op(1).

ueEN(cn=1,n=7),90(u)=(1—u1)¥

Treatment of Ry (My,~). Again, let us first treat the case where g, (u) = uf.
We can write C,,(u )/gw( ) = Sin(uw) + Son(u) + S3,(u), where

Sin(uw) = Vn[Gn{G,, (u)} — C{G,, (v)}]/ g0 (u)
Son(u) = Vn[C{G, (w)} — C{G (u1), vz, - ., ua}l/gu(uw)
Ssn(u) = Vn[C{G,;(u1),ug, ..., ugt — C(u)]/gu(u).

Lipschitz continuity of the copula C' together with Condition 4.3 implies
that supyeny, . g, (w)=us [S3n(w)| = op(1).

Regarding Siy, let €2, denote the event that sup, cps5,] Gn1(u1) < 26,
On Qf,, we have \/nd, < sup,, cps,] VPG, (u1) — u1] = Op(1), whence,
by the assumption that \/nd, — oo, we get Pr(Q5) — 0. Therefore, by
Condition 4.1, for any p € (0,6;), we have

1Sy (0)] = ‘an{GE(u)} - an{O,TZ*JnQ(uQ), o ,Gnd(ud)}’
< M ‘{G u1)3“ 2 PR
uy
=ortt) { ‘Gnl(ull_ ul T uﬁtw} VnTHY 4 oop(1),
uy

where we used subadditivity of the function z — z#, > 0. By Condi-
tion 4.3, we have

sup ’Gnl(ul) — ul’ < n—u/2 sup ‘u‘f(ﬂ_l)‘op(l)

u1€[n=7,8,] uy u1€[n77,6n]

— Op(n—u/2—w(u—1)>

Exploit that v < 1 and choose u € (w/(w + 1/2),01) to obtain that, as

N — 00, SUPye M, g (u \Sln( )| = op(1).
Finally, we turn to Sgn The mean value theorem allows to write

d C’]{G;1(U1)a C27 s Cd}f{Gn] (U] — Uy
= 9u(w) - Z Tt

Szn(’u) =
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for some intermediate values (; between u; and G;j(uj), for j = 2,....,d.
We may consider each summand individually; let us fix j € {2,...,d} and
distinguish two cases. First, suppose that 1 —u; < u; = g1(w). Then, with
W' € (w,0),

n|G. - (uj) — u; .
P04 = = op),

|S2nj(u)] <

by Condition 4.3 and the fact that n™" < (1 —u;) < d,. Now, suppose that
1 —uj >u = gi(u) >n". Since C;(0,u,...,uq) =0 forany j =2,...,d,
another application of the mean value theorem allows to write

Sanj(u) = Cj1(6) G (1) Vi { G (uy) - Uj},

w
uy

where &; = (&1, (2, ..., (q) satisfies &1 € (0,G,;(u1)). Now, fix w’ € (0,62)
such that w’ > (1 — %) V w. By Condition 2.1 and Lemma 5.2, we have

ot < Ca() | VLG () —ugd | (1 — )}
[Song ()] < uy {uj (1 —uj) 3’ K (1 —&5j) (4.11)
< {n_1/2 \/H|G;175;1) — + ui_w} {u; (1 - Uj)}w/_lOP(l)

Observing that u; > u; as a consequence of g, (u) = uf and that 1—u; > u;
by assumption, we obtain

{ui(1— )} 1 < [{uy A (1 —uy) /2 <279yt < ouy

where we used the fact that u(l —u) > {u A (1 —u)}/2 for all u € [0, 1].
Therefore, we can bound the right-hand side of (4.11) by

{725 710p(1) + ut =} x 0p(1),

where all Op-terms are uniform in {u € M, : g,(u) = u{'}. Thus, by the
choice of v and W', Supyepr,,, g, (w)=us [S2n(w)| = op(1).

For the treatment of R, (M,,), it remains to consider the case g, (u) =
(I—wup)? e, 1—up=1—(ug A---Aug A--- Aug) for some k € {2,...,d}.
Again, without loss of generality, we may assume that & = 2, which implies
that 1 —u; < 1—wug and 1—wu; > 1—u; for all j > 3. Note that, additionally,

1—wuj>n""forall j=1,...,dsince u € M,,. Now,
Co(u) _ on{Gy (W)} + ValC{Gy (W)} — Cw)] _ 5~
gw(u) - gw(u) - I;Tpn( )
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with
an{G,, (u)} —an{1,G 5(u2),1,...,1}

Tin(u) = 9 (u)
Ton(u) = O‘n{laG;z(U?)a 1,.. gawl(}u‘;‘ \/ﬁ{Gﬁz(W) — us}

_ Vn[C{G, (w)} = C{G1(u1),u2, G5(us), - - -, Gpy(ua)}]
Ton(u) = g (u)

~ V{Gop(u2) — ug}
Juw(u)

_ Vn[C{G,; (u1),u2, G5(u), - ., G y(ua) } — Cu)]

Tin(us) = g (u)

Concerning T1,,, we can proceed similar as for Sy, above. Define the event
Q, by |G, (u) — (1,G,5(u2),1,...,1)| < 2dj, and note that P(Q25) — 0.
Then, by Condition 4.1 applied with p € (w/(w + 3),61),

|G, (w) — (1,G, 5 (u2),1,..., )|V nH
(1 —ul)w

T (w)] < Mi(2d5,, 1) Lg, + op(1).

Use the fact that v < 1and 1—u; > 1—u; > n~7 for j > 3 and subadditivity
of x — x* to bound the right-hand side by

|G () — w1 — |
oy 3 et L I
72 /

nlG(u) — w1
< O0p(1) Zn*“ﬂ*w*‘dﬂ { vl (1”3_( u]A))w i } + 0879 3 +op(1).
J#2 J

Therefore, by Condition 4.3 and by the choice of u, |T1,(u)| = op(1) uni-
formly in {u € My, : go(u) = (1 —u1)*}.
Regarding T, by the definition of a,, and since g;(u) =1 —u; > n"1,

sup |Ton(u)| < n* sup \/ﬁ|GnQ{G;2(u2)} — ug|.
UE M~ ,g1(u)=1—u1 u2€[0,1]

An application of Lemma 5.1 with p € (w,6;) yields that the right-hand
side is of order op(n=H*%) = op(1).

Regarding T3y, choose w’ € (wV (1— %), 02). By the mean-value theorem,
we can write

V[Co{ G,y (1), G, Grglus), ..., Gry(ua)} — 11{Gy, (ug) — ug}
gw(u)

Tgn (u) =
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for some intermediate value (2 between G, ,(uz2) and uz. Due to the fact
that C2{1,(2,1,...,1} =1, a second application of the mean value theorem
allows to write the right-hand side of the last display as

Z VnCoj (€){Gyry(uz) — us HG,,;(uj) — 1}

T3n(u) = gw(u)

#2
for some & lying between G,, (u) and u. Hence, by Condition 2.1, Condi-
tion 4.3 and Lemma 5.2, we can bound T3, as follows:

V| Gy (u2) — up| {ua(1 — ug)}*’ _
’T3n(U)H < {u2(1 — UQ)}"JI (1 . Ul)w u2 1 _ u2 Z ’Gn] u] 1’

’ Uj
Op(1){uz(1 — ug)}* ! Z {(1_;)“,]' +(1— uj)lw}-
J#2

Since 1 — ugs > 1 —wuy and us > 1 — wuq, the right-hand side is of order
Op{n=2(1 —u)*" ' 4+ (1 —u)¥' "} = op(1) uniformly in u € M, such
that g, (u) = (1 — u1)%, by the choice of w'.

Finally, regarding T},, Lipschitz-continuity of the copula function and
Condition 4.3 immediately imply that for any w’ € (w, 63)

Y o VUG () = uj
Tin()] < (1 =)™ (1 —uy)” =722
J7#2
which is of order op(1) uniformly in {w € My : g, (u) = (1 —uq)*}.

Treatment of R, (My,). First note that, from the definition of N(n~7,4,),
for every u € My, there are at most d — 2 components larger than or equal
to 1 — n~7. For that reason, we can write

Mg, = U Sp, X -+ x Sg,,
(1, £a)€{0,1}%]€]>2

where €| = Zd 14, So=[1-n""1and S; = (n77,1—n""). In order to
show neghglblhty of Rn(My,), it suffices to fix a vector £ with [{| > 2 and
to show uniform negligibility of C,,/g., over w € Sp:= Sy, x --- X Sy,.

For u € [0,1]%, let u® denote the vector whose jth component (with
j=1,..,d)is equal to 1(¢; =0) + u;1(¢; = 1). Then,

= Op((1 —w)“™),

— — —(u)®
ap |C20) < sy YIGo{G3 ()} - Gr{G ) )
uESy gw 'u.ESe n=—«y

— ()1 _ (©)
4 sup VAIGGr ()0} — Clu®)
Uu€ESy gw(u)
0y —
4 sup YAIC@®) - Ot
ueSy n=wv

=:In1 + Ino + Ip3.
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For I3, by Lipschitz-continuity of C' and by the choice of ~,
Iz < 020 dlu — u®| = O(n'/2+777) = o(1).

For the treatment of I,,;, we can proceed similar as in (4.10) to obtain
that |G {G; (u)} — G {G, (W)} < (d — 2)n~7 + op(n~'/>7#) for any
i € (w,61). This yields I,,; = 0p(n1/2+°”*”f + n¥7H) = op(1).

Finally, regarding I,,2, note that g, (u) = g, (u®). Therefore,

C(u®)]
I, = sup ————
27 neh go(u®)

All coordinates of vectors in Sy which are not equal to 1 liein (=7, 1—n"7).
Therefore, I,2 can be treated similar as Ry, (M, ). O

Proof of Lemma 4.10. Again, by a monotonicity argument, it suffices to
treat sequences 6, such that 8, > n=1/2, ie., dnv/n — oo. Analogously
to the proof of Lemma 4.9 we can decompose the supremum. For 1/{2(1 —

w)} < <1 we can write
-
()

Cp(u)

sup
Jw(u)

’U.GN(O,(STL)

sup
ueN(0,n=7)

‘@u
gu(u)

’\/ sup ’ = le\/Rgm.

uEN (n=7,6p)

Therefore, we only have to show that le =op(1) and Rgm = op(1). For
both of these terms, we will distinguish the cases that either g, (u) = u{ or
gw(u) = (1 —u1)?. The cases g,(u) = uf or go(u) = (1 —uy;)” for j > 1
can be treated similarly.

Treatment of le. First of all note that by definition

Co (g5 uj1,0,u511, - ug) = Cp(ul) =0 (4.12)

and that a,(u9)) = /n{Gnj)(uj) — u;} for any j = 1,...,d. Let us first
consider the supremum over those u € N(0,n~7) that additionally satisfy
guw(u) = uf. Choose w' € (w,62), then

Cp(u) ’ _ ’@n(u) — Cpn(0,us, ... ,ud)‘

w
Uy

Sx/ﬁ‘cniéul)‘Jr\/ﬁul“JrZ‘ () v/{Gnj(uy) Uy}‘

uy

(4.13)

<‘\F{Gn1 Uy _ul}‘ w’ w_|_2\/>u1 w
ul

_1_2) ( u)v/n{Gn;(u;) _uj}‘

uy
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By Condition 4.3, the first summand on the right-hand side is of order
n~ "' =9)0p(1) = op(1), by the choice of w’. The second summand can be
bounded by 2n!/2-7(1-%) = 4(1), by the choice of 7. Thus, it remains to be
shown that, for any j =1,...,d,

_ _ CJ(U)\/ﬁ{Gn](u]) - Uj}

Spj(u) s

= op(1) (4.14)

uniformly in {u € N(0,n77) : g,(u) = u¢}. For later reference, we even
show uniform negligibility on w € N(0,d,) such that g, (u) = u¢. S, can
be bounded by the first term on the right-hand side of (4.13), and, therefore,
is Op(6<'~%). Now, fix j € {2,...,d}. Uniformly in u € N(0,4,) such that
1 —u; <y, we have

Snj (u) < sup \/E{G"J (UJ) — uj} % n—'y(w’—w)

u;€(0,1) (1 — )+’

=op(1)

from Condition 4.3 and since |Cj(u)| < 1 for any u € [0,1]. Note that

Spj(u) =0, if u; = 1. For the remaining case, i.e., for u such that 1 —u; >

u1, we may use the fact that C;(0,ug,...,uq) = 0. A suitable application of

the mean value theorem together with Condition 2.1 implies that, for any
/

w' € (w,02),

Snj(w) = [Crj(& uz, - . ug)urv/n{Gnj(us) — uj}| /uf
|V {Gnj(u;) — uji}|
(1 = uy) 3’

<u"¥0p(1) = 0p(62 %) = op(1).

< up {uy(1— )} K

In order to finalize the treatment of le, let us now consider the case
that gy(u) = (1 —uy)¥, ie, 1 —ug =1—ug A--- Aug A -+ - A ug for some
k€ {2,...,d}. Without loss of generality, we may assume that k& = 2, which
implies that 1 —u; <1—wug and 1 —u; > 1 —wu; for all j > 3. By definition
of C,, and by (4.12), we can write (note that C,(u(®) =0 a.s.)

Colw) _ Culw) = Co(w®) =7
go(w) (I —wup)® —;Tnp( ); (4.15)
where
T n u) — u( ) B n u( ) _ u
T (u) = f{Gn((l)_ C);ff( N T = \F{C((lj ) )wC'( Iy
. v Ul
Tn3(u) _ Z Cj(u)\/g{fnj(;ig) — Uj}’
372, . u1
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By Lipschitz-continuity of the copula function, we immediately obtain that
[Tz (w)| < v (1= uj)(1—w)™
72
< (d—1)v/n(l —uy) ™ = O(n!/2770=9)) = o(1).

For the estimation of T},; we can proceed similarly as in (4.10) and obtain

= \/ﬁZj;«£2|1_an(uj)|
‘Tn1<u)| < (1 _ ul)w

<2 'ﬁ{ﬁ"ﬁﬁ; S (0 g (@ = v )

= Op(n "W =)) 4 O(n'/?71=9)) = op(1)

uniformly in {u € N(0,277) N (0,1)¢ : g,(u) = (1 — u1)*}, by the choice
of v and by choosing w’ € (w,62). Note that the terms with u; = 1 van-
ish immediately from the definition of Gy,;. Similarly, using the fact that
|Cj(u)| <1 forall j=1,...,d and for all u € [0,1]%, we get that

L] <Y sup |G Z0H o =) = o)
j2 4 €(0,1) (1 —uy)

uniformly in {u € N(0,n77) : g,(u) = (1 —u1)¥}, by choosing w’ € (w, 6s).

Finally, in order to bound the remaining term Ty,, we may use the mean
value theorem and Conditions 2.1 and 4.3 to obtain that

VY 1Co(€)(1 = u){Gra(ua) — us}
- (1 —wup)¥

<Y 0p()(1 = u) " {uz(l — u2)} ™ = Op(n 7 7%)) = op(1)
J7#2

| Ta(w)]

uniformly in {w € N(0,n77) : g,(u) = (1 —u1)*}, with some intermediate
value € = (&1, u2,&3, ... ... ,&2) € (0,1)% between u® and w and where the
last estimation follows by choosing w’ in (w, 63).

Treatment of Rgm. First suppose that g,(u) = uf. Then we write

‘(Cn(u) ‘ _ ‘Cn(u) — Cn(0,uz,...,uq) ‘
uf

w
Uy

d

an(uw) — an(0,ug, ..., u -

e DAL
Jj=1

where S,,;(u) is defined in (4.14). Negligibility of S,,; in the latter decom-
position has been shown subsequent to (4.14). From Condition 4.1, the
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first term on the right-hand side of the last display can be bounded by
{uf ™ v tuiYop(1) = op(8h " V n~#T%), which vanishes as n — oo
if we choose p € (w, 61).

Now, suppose g,(u) = (1 —u1)¥,ie, 1 —ug =1—ug A=~ Aug A---Aug
for some k € {2,...,d}. Again, without loss of generality, we may assume
that k = 2, which implies that 1 —u; <1 —wup and 1 —u; > 1 — u; for all
7 > 3. We decompose
‘Cn(u)‘ _ ‘Cn(U) —Cau®)| _ Jan(u) - an(w?)]

g () geo(00) - (1 —up)®
where T),3(u) and Tp4(u) are defined in (4.15). By the same arguments as
for their treatment on N(0,n77), we have |T,3(u)| = op(1) and |Tha(u)| =
op(1), uniformly in w € N(0,d,) with g,(u) = (1 — u1)“. The remain-
ing term on the right-hand side of the last display can be bounded by an
application of Condition 4.1. Choosing i € (w, ), we obtain

+ [ Tns(w)] + [Tna(u)),

Jn () — i (u?))] (I —w)vnt - W
(1 —up)® = ; (1—u) op(1) = op(6H% v n HTT),

which is op(1). This completes the proof. O

Proof of Lemma 4.11. Let us first show (4.5). As in the proof of Lemma 4.9,
by a monotonicity argument, it suffices to treat sequences §, such that
6n > n~ Y2, We split the proof into two cases and begin by considering
u € N(en™1, 25,11/2). Obviously, |u — u'| < 4, implies u' € N(en™1, 26/ +
6n) C N(en™t, 35,11/2). Thus, by Lemma 4.9, we obtain
sup Colw) _ Calw) =op(1).
u,,u/e[ﬁ,17%}d,|ufu’\§6n,u€N(cn_1,25711/2) gw(u) gw(UI)

Now, consider the case u € N(2(5711/2, 1/2). Then, |u — u/| < §,, implies that
u € N(2571/2 —0n,1/2) C N(&I/Q, 1/2). Hence, Lemma 4.8 implies that

‘ Cu(u)  Cp(u)

sup p
W €€ 1 ] fuw] < uen (282 1/2) | I (W) Gu(W)

Cn Cp(u/
< sup ‘ (U) - (U/) ‘|‘0P(1).
wa€[E 1- 2NN (6L/2,1/2) Ju—w!|<5, o(w)  gulw)
Therefore, in order to prove (4.5), it suffices to show that
C,(u) — C, (v
sup (w) ) (w) =op(1) (4.16)
w €N(5Y21/2),|u—w'|<6n Yoo
_ 1 1
Co(w/ = | =op(). (417
o (u )(gw(U) gw(U’)) opll). (41D

wa €N(63/%,1/2), [u—u/|<6,



The respective proofs will be given lgelow at the end of this proof.
For the proof of (4.6), note that C,,(u)/gw(u) = 0 for g,(u) = 0. There-
fore, we can bound

sup — — = ; < sup
[u—|<6p,91(w)=0,g1 (u)>0 | Ju (W) Gu(W) 1 ™ wen(,s,)

by Lemma 4.10. The suprema over {u : gi(u) > 0,¢g1(¢v') = 0} or {u :
g1(u) = g1(u') = 0} can be treated analogously, whereas the suprema over
{u: gi(u) > 0,¢91(u') > 0} can be handled by (4.16), (4.17) and Lemma
4.10. This proves (4.6).

It remains to be shown that (4.16) and (4.17) are valid.

Proof of (4.16). By Condition 2.1 and 4.1 and the fact that C; € [0, 1] we
have, for u,u’ € N (0, 5/ ,1/2), |[u — /| <6, and any u € (0,6,),
Ci(w){an(u) — an(u'(j))}|

d
*;} golu)

{Cj(u) = Cj(u))}an (w'D))
9w () .

Cp(u) — Cp(u))
9w (u)

ap(u) — an
G (u

2

d
j=1

The right-hand side can be further bounded by

lu —u|* Vo

{Cj(u) = Cj(u))}an (u'D))
9w () .

(@+1) g ()

d
My (8 1)+
j=

Since g, (u) > 55/ for u € N((5711/2, 1/2) , the first summand on the right of

the last display is of order Op(&ﬁ_w/z), which is op(1) if we choose > w/2.
For the second term, we fix j and will consider two cases for each summand

1/2

separately. First, suppose 1 — u < 65/ 7. In this case, Condition 4.3 yields,

for arbitrary w’ € (0, 62),

‘{Cﬂ () ey (w/D)

9w ()

r_lan (WD)

{u(1 =y}

< 25;W/2{u;.(1 — )}

= Op(8,/21/2).

Since we can choose w’ € (w, 02) the latter is op(1).

Now, suppose 1 — u; > 6,11/ 2, Then, the mean value theorem allows to

write

d

<D

/=1

Ce(€j)om (u'D) (ue — up)

9o (u) ’

{Cj(u) — Cj(w)) o (w'V))
9w ()
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where £; denotes an intermediate point between w and u’. In particular,
the components of & = (&1,...,&q) satisfy & > Vb, and 1 — &j >
Von—08, > \/gn/Q, for sufficiently large n. Then, by Condition 2.1, the sum
on the right-hand side of the last display can be bounded by

K

ey @6 = Op(8;/277%) = op(1).
33 )

Proof of (4.17). Note that it is sufficient to bound |g, (u)~! — g.(u')7!|,
because sup,,cpo 1]¢ |C,(u)| = Op(1). To this end, we first observe that, for

u, u € N(51/2 1/2) and ‘u_u/| <6, we have
|geo(w) — gw(’U:,)| < wéﬁj"_l)/ﬂgl( ) —g1(u )‘ — O(5£LM+1)/2)

where we used the mean value theorem and the fact that g; is Lipschitz-
continuous on N (dy, 5a/? ,1/2). Therefore,

1 . 1 _ gw(u,) - gw(u) _ 0(57(Lw+1)/27w) _ 0(1)’

go(u)  go(w) 9o (1) g (w)
which implies (4.17). O

4.4 Proof of Theorem 3.3.
Let n > 2. Decompose /n{R,, —E[J(U)]} = A,, — rn1, where

Tnl = \F/ L ap }CJ(u)dC(u),

where A¢ denotes the complement of a set A in (0,1)2. From integration by
parts for Lebesgue-Stieltjes integrals (see Theorem A.6 in the supplementary
material) we have that A, = By, + rp2 + 7,3, where

By = Cn(u)dJ (u)
(zml= 2 )2
where
o = A(C, Job b1 Lo Ly
_/(1 s Colu, 1= 57)J (du, 1 — )+/(1’11} Clu, ) J (du, 5)
=, Gl 50 (1 g5, dv) + . Co(sh,0) (o, dv),
2n 2n 2n’ 2n
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with A(f, a1,a2,b1,b2) = f(b1,b2) — f(a1,b2) — f(b1,a2) + f(a1,az2) for f:
(0,1)> - R and a,b € (0,1)? and where

Tn3 = / ({’U,} X (’U, 1-— %]) + Vn((u7 - %] X {'U})
( 1 17 1 ]2
+ vn({(u, 0)})dJ (u,v)

PO R R PO

2n’

+/(11 (k1= k] x (oI, do),

an1= 2]

with v, denoting the unique signed measure on [Qn’ 1——] associated with C,,
(see Theorem A.4 in the supplementary material).

For the arguments that follow, we remark that by Proposition 4.4 the
conditions of Theorem 2.2 imply those of Theorem 4.5. Thus, all results
from the proof of Theorem 4.5 are applicable here.

Regarding weak convergence of B,, observe that by Theorem 2.2, Lem-

ma 4.10 and the integrability condition in (3.2)

. u _72 Cn(u) u u 0
Bu= [ e G- ) M AT < or()

_ /(O Enlu) ) () dT(w) + op(1).

,1)2 9w ()

Now, the integrability condition in (3.2) implies that the functional f —
f(0,1)2 fgwdJ is continuous when viewed as a map from (£>°((0,1)2), | - |loo)
to R, and thus B,, converges weakly to f(071)2 Cc(u)dJ(u) by Theorem 2.2
and the continuous mapping theorem. Hence, it remains to be shown that
Tnl, Tn2 and 3 are op(1).

Regarding 7,1, since |J(u,v)| < const x g, (u,v) ™

, we can bound

Irn1] < f/ G (u,v)"2dC (u, v).

1 I_L]Q)c

The set {(3-,1— 5-]2}¢ consists of vectors where either both components or
only one component is close to the boundary of [0,1]2. In order to bound
the integral on the right-hand side of the last display, we distinguish these
cases and exemplarily consider the integral over (0, %]2 and the one over
(0, 5] x (2,1 — 5]. Integrals over the remaining subsets can be treated in
the same way. First, since g,,(u,v) ™! <u™%+v~% for u,v € (0, ﬁ], we have

Vvn 9o (u,v) 1 dC (u,v) < Vn uY +v7vdC (u,v).
(0,35) (0,35)
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Let us only consider the integral over «~ on the right-hand side, the one

over v~ ¥ can be treated analogously. We have

Vn u¥dC(u,v) < v/n u ¥ dC(u,v)
(0,512 (0,5,;1x[0,1]
=+/n u™ du = O(n~V/#) = o(1).
(0,5;]

Second, on (0, %] X (%, 1-— %], we have g, (u,v)™! = u™* , whence, by a
similar reasoning,
\/ﬁ/ 9o (u,v)1dC (u,v) < v/n u™ du = O(n~Y/21%).

( 72n]><( 1_%] (O’2n

Regarding rp2, use Theorem 2.2 and (3.3) and (3.4) to replace C,,/g,, by
Cn/g. at the cost of a negligible remainder (note that g, (u,d) = §* for

€ (8,1 —¢]) . Then, the four integrals in the definition of 7,2 are 0p(1)
by (3. ) (3.4), Lemma 4.10 and Proposition 4.4, while A(CpJ, 55, 5,1 —
zln, 1— ) converges to 0 by Lemma 4.10, Proposition 4.4 and the fact that
|J(u)] S const x g, (u)~! for u € (0,1)2.

Regarding r,3, since C, and C are completely monotone, the (unique)
measures in the Jordan decomposition of v, are given by v, = /n ne and

v, = \/nvc, where Ve and v¢o denote the measures corresponding to C,
and C, respectively. Thus, continuity of the copula C' yields

vn(fu} x (v, 1= 1)) = Vg, ({u}x (v,1=2]) < vVa{Cuu, 1) = Cr(u—, 1)},

1/2

Since the last display is bounded by n™"/% times the maximum number of

U; that are equal, a reasoning which is similar to the one used to obtain
(4.7) yields that, for any u € (w,1/2),

va({u} % (v,1— £)) = Op(n~")
uniformly in u,v € (0,1)?. Similar estimations for the remaining terms in
Tpg imply that |r,3] is of the order

0r(n )| a7 + / J(du, ) + / I aoll
(- Lo (-

By Conditions (3.2)—(3.4), these 1ntegrals are of order O(n*) which leads to
|Tn3’ = Op(nw_“) = Op(l). [

5 Auxiliary results

Lemma 5.1. Suppose Condition 4.1 is met. Then, for j = 1,...,d and
any pu € [0,601), we have

sup |Goj{G,;(u)} —u| = op(n~1/27H).
u€(0,1]
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Proof. From the definition of the (left-continuous) generalized inverse, we
have that sup,,co 1) [H{H ™~ (u) }—u| is bounded by the maximum jump heigth
of the function H, i.e.,

sup |Gpi{G,;(u)} —u| < sup |Gypj(u) — Grj(u—)|
uel0,1] uel0,1]

Therefore, the assertion follows from (4.7) and Condition 4.1. O

Lemma 5.2. Suppose Condition 4.3 is met. Then, for j = 1,...,d and
any v € (0,{1/[2(1 — 62)]} A 03), we have

Uj(l — Uj)
&1 —¢)
where the supremum is taken over all u; € [n™7,1 —n""] and all &; between

G (u;) and u;.

Koj(y) = sup — 0p(1),

Proof of Lemma 5.2. Since
ﬁ 1-— Uj
& 1=¢;

it suffices to treat both suprema on the right-hand side separately. In the
following, we only consider the first one; the second one can be treated along
similar lines. Obviously,

Knj(7) < KX () x K2 (7) := sup

9

xsup‘

uj

(1)
K,/(y) <1V  sup -
J u; €[n=7,1-n"7] an(uj)

Let 2, denote the event that sup,cpn-,1-n- {Gp; () — ujt/us| < 1/2.
Choose w’' € (0V (1 — %), 62) and use Condition 4.3 to conclude that

Gi(uj) — u; " ug' !
NG

nj
uj

Gry(ug) —u;

nj
w

uj

= Op(n™2770) = op(1).

sup
u; €[n=7,1-n=7]

!

< sup { vn

u;€n=7,1-n"7]

Thus, P(Q) = o(1), which implies

G . (uj) — u, -
sup !uj = sup 1+ Bk A L ]lQn + OP(l)
UjE[n_"/,l*n_'Y] Gn](uj) UjE[n_W,lfn_W] u]

<2+op(1) =0p(1),

where we used that 1/(1 +z) < 1/(1 —|z|) for x € [-1/2,1/2]. This yields
the assertion. O
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Lemma 5.3. Under Condition 4.1, Conidtion 4.2 and Condition 4.3 we
have for any w € (0,01A82) and any v > 1/2

sup | Bnj(uy)| = op(n/?).
u; €[1—n="7,1]

Proof. Since the result is one-dimensional, we drop the index j in the fol-
lowing. Note that all the arguments that follow lead to bounds which are
valid uniformly in v € [1 —n77,1]. Now, fix u € [l —n™7,1] and choose

i € {0,...,n — 1} such that u € (%,%} Then, G, (u) = Uiy1.n, where
Ui < -+ < Uy, denote the order statistics of Uy, ..., U,. Hence,

2By (w)| < n/ 2TV {Uspain — i/n| V |Usgrn — (i + 1) /nl}

< nw/2+1/2|Ui+1:n _ Z/?’L| + n—1/2+w/2

Now, as a consequence of Lemma 5.1, we have Gy, (Uit1:n) = Go{G,, (u)} =
i/n+ Kin, where max' ;' K, = op(n™#"1/2) with p € (w/2,60;). Therefore,

nw/2+1/2‘Ui+1:n - Z/TL’ < nw/2+1/2‘Gn(Ui+1:n) - Ui—i—l:n’ + nw/2+1/2/‘3i,n
The second term on the right-hand side is op(n~#+“/2) = op(1). For the

first term, we have

w O[n U/L m w w
n /2+1/2|Gn(Ui+1:n) = Uitim| = (I(Uii“’n /2(1 — Uit1m)

< sup 122l w2 g0 = 0p(1) X (VAL = Urggn)
ue(0,1) (1 —u)

For the factor on the right, since u > 1 —n?, we have, for any w € (%, %],
Vil = Uiyin) = vofw — Gy (w) + 1 — w}
< sup  |Ba(v)| + 0!/
vE[l—n—7,1]
< sup [Ba(v) = Ba(l =072+ |Bu(1 — 072 4 02
vE[l—n"7,1]

The first term in the expression above is op(1) by asymptotic equicontinuity
of 5, (which follows from weak convergence of /3, to a Gaussian process,
this is a consequence of Condition 4.2 and the functional delta method), the
second term is op(1) by Conidtion 4.3, and the third term vanishes since
v >1/2. O

References

Aistleitner, C. and J. Dick (2014). Functions of bounded variation, signed
measures, and a general Koksma-Hlawka inequality. arXiv:1406.02300v2.

36



Berghaus, B., A. Biicher, and H. Dette (2013). Minimum distance estima-
tors of the pickands dependence function and related tests of multivariate

extreme-value dependence. Journal de la Société Francaise de Statis-
tique 154 (1), 116-137.

Beutner, E. and H. Zahle (2010). A modified functional delta method
and its application to the estimation of risk functionals. J. Multivari-
ate Anal. 101(10), 2452-2463.

Brillinger, D. R. (1975). Time series. Holt, Rinehart and Winston, Inc., New
York-Montreal, Que.-London. Data analysis and theory, International
Series in Decision Processes.

Biicher, A., H. Dette, and S. Volgushev (2011). New estimators of the
Pickands dependence function and a test for extreme-value dependence.
Ann. Statist. 39(4), 1963-2006.

Biicher, A., J. Segers, and S. Volgushev (2014, 08). When uniform weak con-
vergence fails: Empirical processes for dependence functions and residuals
via epi- and hypographs. The Annals of Statistics 42(4), 1598-1634.

Biicher, A. and S. Volgushev (2013). Empirical and sequential empirical
copula processes under serial dependence. J. Multivariate Anal. 119, 61—
70.

Capéraa, P., A.-L. Fougeres, and C. Genest (1997). A nonparametric esti-
mation procedure for bivariate extreme value copulas. Biometrika 84(3),
567-577.

Chen, X. and Y. Fan (2006). Estimation of copula-based semiparametric
time series models. J. Econometrics 130(2), 307-335.

Csorg8, M., S. Csorgd, L. Horvath, and D. M. Mason (1986). Weighted
empirical and quantile processes. Ann. Probab. 1/ (1), 31-85.

Csorgé, M. and H. Yu (1996). Weak approximations for quantile processes
of stationary sequences. Canad. J. Statist. 24 (4), 403-430.

Deheuvels, P. (1991). On the limiting behavior of the pickands estimator
for bivariate extreme-value distributions. Statistics and Probability Let-
ters 12, 429-439.

Fermanian, J.-D., D. Radulovié¢, and M. Wegkamp (2004). Weak convergence
of empirical copula processes. Bernoulli 10(5), 847-860.

Gaenssler, P. and W. Stute (1987). Seminar on empirical processes, Vol-
ume 9 of DMV Seminar. Basel: Birkhauser Verlag.

37



Genest, C., K. Ghoudi, and L.-P. Rivest (1995). A semiparametric esti-
mation procedure of dependence parameters in multivariate families of
distributions. Biometrika 82(3), 543-552.

Genest, C., B. Rémillard, and D. Beaudoin (2009). Goodness-of-fit tests for
copulas: a review and a power study. Insurance Math. Econom. 44(2),
199-213.

Genest, C. and J. Segers (2009). Rank-based inference for bivariate extreme-
value copulas. Ann. Statist. 37(5B), 2990-3022.

Genest, C. and J. Segers (2010). On the covariance of the asymptotic em-
pirical copula process. J. Multivariate Anal. 101(8), 1837-1845.

Gudendorf, G. and J. Segers (2012). Nonparametric estimation of multivari-
ate extreme-value copulas. J. Statist. Plann. Inference 142(12), 3073—
3085.

Hallin, M., J.-F. Ingenbleek, and M. L. Puri (1985). Linear serial rank tests
for randomness against ARMA alternatives. Ann. Statist. 13(3), 1156—
1181.

Hallin, M. and M. L. Puri (1988). Optimal rank-based procedures for time
series analysis: testing an ARMA model against other ARMA models.
Ann. Statist. 16(1), 402-432.

Hardy, G. H. (1905). On double Fourier series, and especially those which
represent the double zeta-function with real and incommensurable param-
eters. Quart. J. 37, 53-79.

Jiménez, J. R., E. Villa-Diharce, and M. Flores (2001). Nonparametric
estimation of the dependence function in bivariate extreme value distri-
butions. J. Multivariate Anal. 76, 159-191.

Kley, T., S. Volgushev, H. Dette, and M. Hallin (2014). Quantile spectral
processes: Asymptotic analysis and inference. arXiv:1401.8104v1.

Owen, A. B. (2005). Multidimensional variation for quasi-Monte Carlo. In
Contemporary multivariate analysis and design of experiments, Volume 2
of Ser. Biostat., pp. 49-74. World Sci. Publ., Hackensack, NJ.

Pickands, III, J. (1981). Multivariate extreme value distributions. In Pro-
ceedings of the 43rd session of the International Statistical Institute, Vol.
2 (Buenos Aires, 1981), Volume 49, pp. 859-878, 894-902. With a dis-

cussion.

Rio, E. (2000). Théorie asymptotique des processus aléatoires faiblement
dépendants, Volume 31 of Mathématiques & Applications (Berlin) [Math-
ematics € Applications]. Berlin: Springer-Verlag.

38



Riischendorf, L. (1976). Asymptotic distributions of multivariate rank order
statistics. Annals of Statistics 4, 912-923.

Segers, J. (2012). Asymptotics of empirical copula processes under non-
restrictive smoothness assumptions. Bernoulli 18(3), 764-782.

Shao, Q.-M. and H. Yu (1996). Weak convergence for weighted empirical
processes of dependent sequences. Ann. Probab. 24(4), 2098-2127.

Shorack, G. R. and J. A. Wellner (1986). Empirical processes with applica-
tions to statistics. Wiley Series in Probability and Mathematical Statis-
tics: Probability and Mathematical Statistics. John Wiley & Sons, Inc.,
New York.

Stute, W. (1984). The oscillation behavior of empirical processes: the mul-
tivariate case. Ann. Probab. 12(2), 361-379.

Tsukahara, H. (2005). Semiparametric estimation in copula models. Canad.
J. Statist. 33(3), 357-375.

Van der Vaart, A. W. and J. A. Wellner (1996). Weak Convergence and

Empirical Processes - Springer Series in Statistics. New York: Springer.

van der Vaart, A. W. and J. A. Wellner (2007). Empirical processes indexed
by estimated functions. In Asymptotics: particles, processes and inverse
problems, Volume 55 of IMS Lecture Notes Monogr. Ser., pp. 234-252.
Beachwood, OH: Inst. Math. Statist.

39



Supplement to
“Weak convergence of the empirical copula process
with respect to weighted metrics”

Betina Berghaus, Axel Biicher and Stanislav Volgushev
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A Bounded variation and Lebesgue-Stieltjes inte-
gration for two-variate functions

In this supplement, we briefly recapitulate some results on bounded variation
and integration for two-variate functions. We begin by treating the case of
functions defined on a compact rectangle in R2. Of particular interest is the
integration by parts formula in Theorem A.6. At the end of this appendix,
we consider the case of potentially unbounded functions on open rectangles.

Let A denote some rectangle in R? and let f be a real-valued function on
A. For x,y € A such that < y we set

A(f, o1, 22,91,92) = f(y1,92) — f(w1,92) — f(y1,22) + f(21, 22).

For @,y € A such that z1 < y1, we set

Ar(f,z1,y1322) = f(y1,1‘2) — f(z1,22)

and finally, for @,y € A such that zs < yo, we set

Ao(f, 2,25 1) := f(x1,52) — f(21,22).

A function f : A — Ris called completely monotone it A(f,x1,x2,y1,y2) >0
for any x,y € A such that x < y , A1(f,x1,y1;22) > 0 for any x,y € A
such that x1 < y1 and Ao(f,x9,y2;21) > 0 for any x,y € A such that
T2 < Y2.

Definition A.1. (Hardy-Krause variation) Let (} # [a,b] C R? and
f:la,b] = R. For € [a,b] and y € [a, b], we define

VHE(f,[a, @], y) =sup Y > |A(f,si,t),8i41,41)]
i

+ SUPZ |AL(f, 805 8413 92)| + SUPZ A2 (f, 5, tirs 1),
i J
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as the Hardy-Krause variation of f on [a,x] with anchor-point y. Here,
the supremum is taken over all decompositions si,...,s, and t1,...,t;,
with a1 = 81 < -+ < 8, = z1 and as = t1 < -+ < t, = T9, Te-
spectively. Let BV HK ([a,b]) denote the space of all functions such that
VHK(f,[a,b],b) < occ.

Example A.2. Consider f : [0,1]2 — R, defined as f(z,y) = 1(z >
1/2,y > 1/2). Then VHK(f,[0,1],y) = 1 for any y € [0,1/2)?, whereas
VHEK(f,[0,1],y) =3 for y € [1/2, 1]2'

The following simple properties are collected from Owen (2005) and Aistleit-
ner and Dick (2014): BVHK ([a,b]) is closed under sums, differences and
products. Moreover, for any x,y € [a,b], we have VHK(f,[a,b],x) < oo
if and only if VHK(f,[a,b],y) < oo, which can be derived directly from
the definition. The following theorem is a refinement of Proposition 12 in
Owen, 2005.

Theorem A.3. (Theorem 2 in Aistleitner and Dick, 2014) For any
function f € BVHK(|a,b]) there exist unique functions f*, f~ : [a,b] = R
such that (i), (i) and (iii) hold:

(i) fT and f~ are completely monotone
(ii) f*(a) =0 and f(z) = f(a) + fH(z) - f~(z)
(iii) VHK(f,[a,bl,a) = VHK(f",[a,b],a) + VHK(f,[a,b],a).

The decomposition in (i) is called the Jordan decomposition of f. The
explicit form of the functions f* is given in the proof of Theorem 2 of
Aistleitner and Dick (2014) (see also Hardy, 1905):

fH(x) ={VHEK(f.[a,2],a) + f(z) - f(a)} /2,
(@) ={VHK(f,[a,z],a) - f(z) + f(a)} /2.

The next theorem shows that, if f is additionally right-continuous, then it
defines a unique signed measure on [a, b]. Also note that any signed measure
v on B([a,b]) has a unique Jordan decomposition v = v+ — v~ with two
measures v and v~ given by

vt (A) =sup{v(B): B C A, B € B([a, b))},
v (A)=—inf{v(B): BC A, B € B([a,b])}.
Theorem A.4. (Theorem 3 in Aistleitner and Dick, 2014) Let f €

BV HK ([a,b]) be right-continuous. Then there exists a unique signed Borel-
measure v on B([a,b]) such that

f(x) =v(la,z]), =€ la,b). (A.1)
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Moreover, if f(x) = f(a)+ fT(x)—f~(x) denotes the Jordan decomposition
of f, and if v = v™ — v~ denotes the Jordan decomposition of v, then

fr@)=vi(a,z]\{a}), f(z)=v (la,2]\{a}) (A.2)

for any x € [a, b].
Note that, by (A.1) and (A.2), for any a < x < y < b,

v((z,y]) = A(f, 71, 72, Y1, ¥2), Vi((m,y]) = A(fia$1,$2,y1,y2)'

Definition A.5. Let f € BVHK([a,b]) be right-continuous. Let g :
[a,b] — R denote a measurable function such that either f[ b lg|ldvT < oo

or f[a,b] lg|dv™ < oo. Then

/ gdf ::/ gdl/:/ gdv™ —/ gdv™
[a,b] [a,b] [a,b] [a,b]

denotes the Lebesgue-Stieltjes integral of g with respect to f.

Given f € BVHK ([a,b]) and a fixed point y € [ag, b2], we can define a
collection of functions f1 4 : [a1,b1] — R through fi ,(z) = f(z,y). We have
fiy € BV([a1,b1]), hence, by a one-dimensional analog of the preceding
developments, we obtain a unique Jordan decomposition

fiy(@) = fry(ar) + ffy(x) - fiy(ff)» T € [a,bi]

such that fffy is non-decreasing with ffy(al) = 0 and V(fi1y,[a1,01]) =
V(fffy, [a1,b1]) + V (1, [a1,b1]), where V/(f, [az, bo]) denotes the usual total
variation of a real-valued function on a compact interval [ag, ba]. Attached
is a unique signed measure vy, such that fi,(z) = v1,4([a1,z]). Moreover,
if 11,y = I/I v~ 23 y denotes the Jordan decomposition of v 4, then

fiy@) = v ((ar,al), [, (x) = vy, ((ar, 2)).

Note that the measure 14, is related with v by

viy(lar,2]) = v(lar, 2] x [ag, y]).

The same arguments apply for the function f, : [a2,b2] — R, defined
through fo »(y) = f(z,y), with x € [a1, b;] fixed. We will write f(dz,y) and
f(z,dy) for v y(dx) and vp 5 (dy), respectively.

Theorem A.6. (Integration by parts) Let u, v be finite signed measures
on [a,b] and, for x € [a,b], write f(x) = p(la,x]), g(x) = v(la,z]).
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Then, for any (c,d] C [a,b] with ¢ < d,
fdg = / gdf + A(fg,c1,c,dr, da)
(e,d] (e,d]
/ g(u, ds) f(du, d3) +/ g(u, co) f(du, co)
(c1, d1] (e1,d1]

/ g(dy, v) f(dy, dv) + / g(er,v)f (e, dv)
(cg dg] (527d2]

+ v({u} x (v, da]) + v((u, da] x {v}) + v({(u,v)})df(u,v)

\

(e,d]

+ v({u} x (c2,dz]) f(du, c2)

v((er, di] x {v}) f(er, dv)

Jo
°)

(e2,d2]

Before we give a proof of this general result, we recall that to any right-
continuous f,g € BVHK([a,b]) there correspond unique signed measures
u, v, respectively. If either f or g is additionally continuous, the last three
terms in the representation above vanish and we obtain the following result

Corollary A.7. (Integration by parts) Let f,g € BVHK([a,b]) be

right-continuous functions with either f or g continuous. Then, for any
(¢,d] C [a,b],

fdg:/ gdf + A(fg,c1,c2,d1,dz)
(e,d] (e,d]

[ swdiudy + [ gluc)fdue)

(e1,d1] (c1,d1]
- / g(d1,v) f(dy,dv) +/ g(e1,v) f(c1, dv).
(c2,d2] (e2,d2]

Proof of Theorem A.6. First of all, we use the definition of f, g and obtain

fluodgtun)= [ [ af (2, 5)dg(u,v) + Ry,

(e,d] e d] J (e, c2,0]

where R; = f(c d] f(u,e2) + f(e1,v) — f(e1,c2)dg(u,v). Now, Fubini’s The-
orem yields

| af (@,y)dg(u, v)

(e,d] J(c1,u]lx(c2,v]

-/ dg(u,v)df (2, )
(Cvd] [xfdl]x[:%d?]
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- d u,v d xZ,
/(c,d] /(Ldl]x(y’dﬂ g(u,v)df(z,y)
+/ v({x} x (y,d2]) + v((z,di] x {y}) + v({(z,y)})df(z,y)
(C,d]

and

/ / dg(u,0)df(9) = [ gdf + R
(e,d] J (z,d1]x (y,d2] (e,d]
with Ry = f(cd (dy,ds2) — g(u,ds) — g(dy,v)df(u,v). Summarizing,

fdg= [ gdf+ R+ B
(e,d] (e,d]
T /( ) (o)) (o] ¢ () 5 (00T 00,
c,d
whence it remains to consider R; and Ry. Observe that

f(u, c2)dg(u,v) = /

(Clvdl]

£ (s e2)g(du, da) — / £ (s e2)g(du, )

(C,d} (Clvdl]

and a similar identity holds for f(c’d} g(u,d)d f(u,v). To see this, note that
the identity holds for f(u,c2) = Lo g (u) with ¢; < a < 8 < d; arbitrary;
the general claim then follows by algebraic induction. Next, observe the
following one-dimensional formula for integration by parts

/ F s e2)g(du, da) = — / 9w, do) f(du, c2)
(c1,d1] (e1,d1]
4 / v({u} x [a, da]) f(du, c2)
(clvdl}

+g(dy1,dz) f(d1, ca) — g(e1,da) f(c1, ca).

This formula can be proved by an application of the Fubini Theorem af-
ter writing f(u,c2) f(qu (dz,c2) + f(c1,c2) and by observing that
v1.d, {u}) = v({u} x [az,dz]). Thus we have (apply a similar formula for
integration by parts to all four integrals below)

Ry _/(cl,dl] f(u,c2)g(du, da) — /(Cl,d1] f(u,c2)g(du, ca)
+ /(627612] fle1,v)g(dy,dv) — /(CQ,dﬂ f(er,v)g(cr, dv)

— f(e)A(g, c1, c2,d1, da)
_ /( O )0 2) 5 90, ), e2) = gler, ) fer,c2)
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_|_

~—

v({u} x [az, ds]) f(du, c2)
(e1,d1]

g(u, c2) f(du, c2) — g(d1, ca) f(d1, ca) + g(c1, c2) f(c1, ca)

+
~—

(e1,di]

v({u} x lag, c2]) f(du, c2)

|
~—

(e1,di]

g(dy,v) f(e1,dv) + g(di,dz) f(c1,da) — g(di, c2) f(c1, c2)

|
~—

(e2,d2]

+
~—

v(lar,di] x {v})f(e1,dv)
(c2,d2]

_|_

~—

- 19(017 v) f(c1,dv) — g(er,da) f(c1, d2) + g(er, c2) f(et, e2)

- / v(lar, e1] x {0})(er, dv)
(c2,d2]

- f(C)A(ga C1, 627dla d?)

For Ry we obtain

Ry=— / g, do) f(du, do) + / g(u, da) f(du, c2)
(Clvdl] (Clvdl}

- / g(dy,0) f(d, dv) + / g(d1,v) f(c1, dv)
(c2,d2] (c2,d2]

+ g(di,d2)A(f,c1,¢2,d1,d2).
The result follows after collecting terms. O

Definition A.8. (Locally bounded variation and Lebesgue-Stieltjes
integration) Consider f : (a,b) — R which is potentially unbounded. We
say that f is of locally bounded Hardy-Krause variation, notationally f €
BV HKipe((a,b)) if and only if f[.q € BVHK([c,d]) for any a < ¢ <
d < b. In the following, f is assumed to be right-continuous. Let a,, b,
be two sequences converging to a and b, respectively, and such that a <
ant1 < ap < by < bpyr < b. Since fl(q,p,) € BVHK([an,by]), we can
define unique measures v, and v, on B([a,, by,]) as in Theorem A.4. Now,
for A € B((a,b)) set

vE(A) = lim vE(AN (an,by,)).

n—oo

By monotone convergence, v and v~ are [0, oo]-valued measures on B((a, b)).
Moreover, by Proposition A.9 below, the definition of v* is independent of

the choice of the sequences a, and b,. Finally, for a < ¢ < d < b, the

proposition implies that

v((e,d)) :== v ((e,d]) — v ((e,d]) = A(f,c1, co,d1, da).
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Note that v is not necessarily a signed measure on B((a, b)), since expres-
sions of the form “oco — 00” are possible in principle. Still, for a measurable
function g : (a,b) — R such that [ |g|dvt < oo or [|g|dv™ < oo, we may
define the Lebesgue-Stieltjes integral

/ gdf ::/ gdv ::/ gdv™ / gdv™
(a,b) (a,b) (a,b) (a,b)

Proposition A.9. Let f € BVHK([a,b]) be right-continuous and let
a<c<d<b. Setg:= flcq- Then, for any A € B((c,d]),

F(A) =vE(4A),

where V}t and 1/3: denote the unique measures associated to the unique signed
measure vy of f and vy of g, respectively.

Proof. Tt suffices to show the identity on sets of the form (x,y]| C (¢, d]|. By
(A.1), we have

vi((x,y]) = A(f, z1, 22,91, y2) = A(g, z1, T2, Y1, y2) = ve((x, y]).

Uniqueness of the Jordan decomposition implies the assertion. O
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