
Automatic Synthesis of

Component & Connector-

Software Architectures

with Bounded Combinatory Logic

Dissertation

zur Erlangung des Grades eines

D o k t o r s d e r N a t u r w i s s e n s c h a f t e n

der Technischen Universität Dortmund

an der Fakultät für Informatik

von

Boris Düdder

Dortmund

2014

Tag der mündlichen Prüfung: 25. August 2014
Dekan: Prof. Dr.-Ing. Gernot A. Fink

Gutachter: Prof. Dr. Jakob Rehof
Prof. Ph.D. Fritz Henglein

Acknowledgment

Foremost, I would like to express my sincere gratitude to my advisor
Prof. Dr. Jakob Rehof for the continuous support of my dissertation and
research, for his inspiration, patience, motivation, enthusiasm, and profound
knowledge. His guidance helped me in all the time of my research and of
writing of this thesis. I could not have imagined having a better advisor and
mentor for my research and dissertation.

Ditto, I would like to thank the rest of my promotions committee:
Prof. Ph.D. Fritz Henglein, Prof. Dr. Bernhard Steffen, and Dr. Doris Schmed-
ding, for their encouragement, insightful comments, and hard but constructive
questions.

My sincere thanks also goes to Dr. Moritz Martens, Prof. Dr. Dietmar Jan-
nach, Prof. Dr. Pawel Urzyczyn, Prof. Dr. Ugo de’Liguoro, Prof. Dr. Mari-
angiola Dezani-Ciancaglini, Zani Sarkisya, Anna Vasileva, Jan Bessai, and
Andrej Dudenhefner, for working with me on various exciting projects and
also to Ute Joschko for her help. Thanks are also due to my wife Olga, my
brother Gordon, and my parents.

Abstract

Combinatory logic synthesis is a new type-based approach towards auto-
matic synthesis of software from components in a repository. In this thesis we
show how the type-based approach can naturally be used to exploit taxonomic
conceptual structures in software architectures and component repositories
to enable automatic composition and configuration of components, and also
code generation, by associating taxonomic concepts to architectural building
blocks such as, in particular, software connectors. Components of a repository
are exposed for synthesis as typed combinators, where intersection types are
used to represent concepts that specify intended usage and functionality of
a component. An algorithm for solving the type inhabitation problem in
combinatory logic — does there exist a composition of combinators with
a given type? — is then used to automate the retrieval, composition, and
configuration of suitable building blocks with respect to a goal specification.

Since type inhabitation has high computational complexity, heuristic opti-
mizations for the inhabitation algorithm are essential for making the approach
practical. We discuss particularly important (theoretical and pragmatic) opti-
mization strategies and evaluate them by experiments. Furthermore, we apply
this synthesis approach to define a method for software connector synthesis
for realistic software architectures based on a type theoretic model. We
conduct experiments with a rapid prototyping tool that employs this method
on complex concrete ERP- and e-Commerce-systems and discuss the results.

Contents

1 Introduction 1
1.1 Composition Synthesis and Inhabitation 3
1.2 Combinatory Logic Synthesis 5
1.3 Example for Combinatory Logic Synthesis 7
1.4 Combinatory Logic Synthesis and Software Connectors 9
1.5 Why does this problem matter? 12
1.6 Synthesizing from Components 13
1.7 Contributions . 13

1.7.1 Publications & Delimitations 13
1.7.2 Theoretical Contributions 15
1.7.3 Technical Contributions 15
1.7.4 Interconnections between Contributions 16

1.8 Organization . 17

2 Software Architecture 19
2.1 What is Software Architecture? 19
2.2 Describing Software Architectures 21

2.2.1 Components and Connectors 22
2.2.2 Software Connector Roles 28
2.2.3 Software Interconnection Models 29
2.2.4 Composing Basic Connectors 30

2.3 Synthesizing Software Architectures 31
2.4 Ontologies in Software Architecture 31

3 Bounded Combinatory Logic 33
3.1 Combinatory Logic . 33
3.2 Intersection Types . 35

3.2.1 Types . 36
3.2.2 Subtyping . 36
3.2.3 Paths . 38
3.2.4 Substitutions . 39

i

ii CONTENTS

3.3 Bounded Combinatory Logic 39
3.3.1 Type Assignment . 40
3.3.2 Relativized Inhabitation Problem 41

3.4 Alternating Turing Machines 43
3.5 Deciding Relativized Inhabitation 44
3.6 Combinatory Logic Synthesis 46
3.7 Related Work on Synthesis . 47

4 Optimization of CLS 51
4.1 Theoretical Algorithm . 52

4.1.1 Restricting Intersections in Substitutions 52
4.1.2 Intersection Type Matching 56
4.1.3 Matching Optimization 59
4.1.4 Lookahead Optimization 61
4.1.5 Experimental Evaluation 66

4.2 Algorithmic Optimization . 71
4.2.1 Execution Graph . 72
4.2.2 Term Level Optimization 77
4.2.3 Elimination of Redundant Calculations 80
4.2.4 Parallel Computation 87

4.3 A Distributed Algorithm for BCL0(∩,≤) Inhabitation 94

5 Combinatory Logic Synthesizer 105
5.1 Reconstructing Inhabitants . 105
5.2 Implementation . 106
5.3 (CL)S Input Specification . 110
5.4 (CL)S Output Specification . 112
5.5 Additional Applications and Extensions 115

6 Synthesis of Software Architectures 119
6.1 Software Connectors . 119
6.2 Type-theoretic Model . 120

6.2.1 Component . 120
6.2.2 Connector . 121
6.2.3 Building Blocks . 122
6.2.4 C&C Type Environment 125
6.2.5 Taxonomy . 126

6.3 Combinatory Logic Connector Synthesis 134
6.3.1 Synthesis of Connector 134
6.3.2 Generation of a Connector 135
6.3.3 Combinatory Logic Connector Synthesis Method 136

CONTENTS iii

6.3.4 Example for Combinatory Logic Connector Synthesis . 136
6.3.5 Synthesis of Behavior 138
6.3.6 Designing C&C Type Repositories and Templates . . . 139

6.4 Related Work . 143

7 ArchiType 147
7.1 UML2 Extension . 148
7.2 User Interface . 149
7.3 Synthesizing Connectors in UML2 150
7.4 Code Generation . 152
7.5 ArchiType Composition Language 154
7.6 Staged Composition Synthesis 159

7.6.1 Implementation Type Correctness 161
7.7 Implementation . 162
7.8 Related Work . 164

8 Applications and Experiments 165
8.1 Secure Connectors . 166

8.1.1 Setup . 166
8.1.2 Execution of the Experiment 166
8.1.3 Results . 167
8.1.4 Analysis and Discussion 169

8.2 Detailed Broker Pattern Example 170
8.2.1 Setup . 170
8.2.2 Execution . 173
8.2.3 Results, Analysis, and Discussion 173

8.3 Enterprise Resource Planning Scenario 174
8.3.1 Setup . 174
8.3.2 Execution . 175
8.3.3 Results . 179

8.4 e-Commerce Scenario . 179
8.4.1 Setup . 180
8.4.2 Execution . 180
8.4.3 Results . 188
8.4.4 Analysis and Discussion 188

8.5 Collective Analysis and Discussion 189
8.5.1 Expressiveness . 189
8.5.2 Applicability . 190
8.5.3 Adaptability . 190
8.5.4 Costs and Effort . 191
8.5.5 Usability . 192

iv CONTENTS

8.5.6 Limitations . 193

9 Conclusion 197

A Selected implementation details 199
A.1 Grammar of (CL)S’s input language 199
A.2 Example in the Listing in ArchiType CL 201
A.3 Example Template in T4 . 202
A.4 Algorithm Listings . 205

A.4.1 Inhabitation Algorithm (data-centric part) 205

B Experiments 207
B.1 Compiler . 207

B.1.1 Compiler Flags . 207
B.2 Benchmark Problems . 207
B.3 Configuration of the Test Systems 209

B.3.1 Test System I - Desktop PC 209
B.3.2 Test System II - Compute Server 209

Acronyms 211

List of Figures 215

List of Tables 219

List of Algorithms 221

Bibliography 223

Index 241

Chapter 1

Introduction

Software systems tend to be large and complex. These factors must be
managed in the design and development of such systems. Except for product
lines, software architectures are unique products. Design and development
take the form of a project and the development process is repeated for every
software system that is constructed.

Over the years, software engineers designed and developed software appli-
cations and -systems with increasing complexity. Different techniques have
been developed to handle growing complexity of systems. A very powerful
tool is the abstraction of a system’s building blocks. The very low-level
abstraction of functions in procedural programming was replaced by objects
in object-oriented programming. From there, objects have been abstracted to
distributed programming and after that to component-based programming.
The idea of component-based programming is to divide software applications
and -systems into reusable components. The advantage of reusable compo-
nents is that the number of newly created components for a new application
can be reduced by reusing existing components. That means that components
only have to be developed for missing functionality that is not covered by
existing components.

The idea of component marketplaces emerged where components are
traded. Furthermore, topically coherent components have been bundled into
libraries or repositories in order to increase revenue for producers of such
repositories and also to increase additional benefit for users of component
repositories.

In order to develop a component-based software application or -system
suitable components have to be retrieved from a suitable component repository
and composed or assembled in a way such that the composite application
fulfills the functional and non-functional requirements demanded by the
end-user.

1

2 CHAPTER 1. INTRODUCTION

As it turned out, it was not that easy to compose components in a goal-
directed fashion. Components are typically documented in textual form. The
sheer quantity of components that have to be used to compose the intended
software application made such an approach intricate and error-prone. From
this problem, the idea emerged to automate composition by synthesizing a
composition plan describing which components have to be composed with
other components to reach a specific synthesis goal. Component-oriented
synthesis is the goal-directed construction of a composite software system
composed by components residing in a component repository.

On an even higher level of abstraction, the production cost of software
systems could be reduced through a higher degree of reuse of architectural
elements. This is not that easy to achieve, because architectures contain
interactions among elements as well as computations in specific elements
satisfying the user’s functional and non-functional requirements. Reuse is
hindered by varying, especially functional, requirements some of which may
be unique to the software system. Therefore, synthesis of whole software
systems is desirable but not easily achievable.

The distinction between interaction and computation comes naturally.
Thus, a distinction between architectural elements seems reasonable. Software
components are the architectural elements in which computation resides and
software connectors are responsible for interactions among those components.

The functionality of a software system stems from its computation. We
know that the computational part may not be easily synthesizable and reuse
does not bring much advantage because the computational part is likely unique
for every software system. On the other hand, the interaction of components
via software connectors is somewhat different. Composable connectors can
be reused for different software systems. The versatility of connectors can
be achieved by the composition of connector building blocks that create the
desired functionality.

Another motivation for focusing on software connectors is that a software
architect’s knowledge can be exploited. Such a knowledge can be represented
formally as a taxonomy and then be used by algorithms for reasoning with
this taxonomy. Existing work on software connector’s taxonomies can also be
used and also be further developed. This approach requires that the synthesis
method also exploits taxonomic information.

In this thesis we study a novel approach to component-oriented synthesis
which is based on combinatory logic. In the remainder of this chapter we will
illustrate this approach in broad outline.

1.1. COMPOSITION SYNTHESIS AND INHABITATION 3

1.1 Composition Synthesis and Inhabitation

In general, composition synthesis is a method for synthesizing compositions
of typed functions which is based on combinatory logic [Rehof, 2013]. One
can broadly classify this approach within the line of work often referred to as
deductive program synthesis.1 However, whereas deductive program synthesis
has traditionally been based on Hoare-style program logics and have been
pursued within semi-automated frameworks, composition synthesis is founded
on type theory and aims at fully automated synthesis. Moreover, whereas
synthesis has traditionally been pursued as the construction of a program or
a system from scratch, combinatory logic synthesis is a component-oriented
approach to synthesis, in which synthesis is relativized to arbitrary libraries
(repositories) of components. Component-oriented synthesis is a surprisingly
recent development2 which is also being pursued in the technically very
different setting of temporal logic and automata theory [Lustig and Vardi,
2009].

In its minimal form, composition synthesis only consists of a single logical
rule(referred to as implication elimination, modus ponens, or application):

Γ ⊢ e : τ ′ → τ Γ ⊢ e′ : τ ′

Γ ⊢ (e e′) : τ
(→E)

Here, Γ is a combinatory type environment consisting of bindings of the
form (X, ρ) where X is a combinator symbol and ρ is a type. Applicative
expressions (ee′) are built from combinator symbols and are typed by the
rule shown above. This rule can be used to constitute the simplest and most
fundamental logical model of applicative composition of named component
specifications, where Γ models a repository of named components (X) and their
type specifications (ρ). The basic idea behind combinatory logic synthesis is
to consider the component-oriented synthesis problem as being modeled by
the problem of combinatory type inhabitation. For fixed Γ and τ as input,
the inhabitation problem is the following decision problem

∃e. Γ ⊢ e : τ?

or, does there exist a composition e of components from repository Γ satisfying
goal τ ,

Γ ⊢ e : τ?
1Deductive program synthesis has been developed by Manna and Waldinger [1980] and

later more refined by Waldinger [1990]. Deductive program synthesis founded the base
for a family of deductive synthesis approaches like the synthesis approach of Traugott
[1989] on deductive synthesis of sorting programs. Manna and Waldinger [1992] present a
comprehensive tutorial on deductive program synthesis.

2http://www.dagstuhl.de/de/programm/kalender/semhp/?semnr=14232

http://www.dagstuhl.de/de/programm/kalender/semhp/?semnr=14232

4 CHAPTER 1. INTRODUCTION

An (inhabitation) algorithm is used to construct or synthesize a composition
e from Γ and τ . The inhabitation algorithm is the foundation for automatic
synthesis and is inherently component-oriented, because combinatory environ-
ments only expose component names and their types to synthesis. Later on,
we will use the abbreviating notation Γ ⊢ ? : τ for the inhabitation problem.

In the type-based approach to composition synthesis, types (τ) take the
role of specifications of named components represented by terms (e):

Types τ, τ ′ ::= a | α | τ → τ ′

Terms e, e′ ::= X | (e e′)

Types are constructed by using type constants (a), type variables (α), and
function types (τ → τ ′). Terms are constructed by using component names or
combinators X and using application of e to e′, (ee′). In standard combinatory
logic [Hindley and Seldin, 2008], an additional rule (var) is added to allow
schematic instantiation of combinator types under substitutions S.

[Substitution S]

Γ, (X : τ) ⊢ X : S(τ)
(var)

Γ ⊢ e : τ ′ → τ Γ ⊢ e′ : τ ′

Γ ⊢ (e e′) : τ
(→ E)

From a type-theoretic point of view, combinator types are considered as being
implicitly polymorphic.3 From a logical point of view, under the Curry-Howard
isomorphism [Sørensen and Urzyczyn, 2006], the system is a Hilbert-style
presentation of minimal implicative propositional logic. Viewed thus, the
environment (repository) Γ represents a propositional theory, and inhabitation
is the question of provability for this theory. Famously, if Γ is the following
fixed base, then the combinatory logic (SK) is equivalent to the full λ-calculus:

{S : (α→ β → γ)→ (α→ β)→ α→ γ,K : α→ β → α}

The inhabitation problem in SK-calculus is shown Pspace-complete by
Statman [1979].

But a fixed base is not the right model for composition synthesis, since
repositories (Γ) vary, and, moreover, λ-calculus as a model is not component-
oriented as is combinatory logic. Combinatory logic synthesis must therefore

3Also sometimes referred to as typical ambiguity.

1.2. COMBINATORY LOGIC SYNTHESIS 5

be based on the relativized inhabitation problem where the input theory Γ is
not held fixed but is given as part of the input:

Given Γ and τ as input, does there exist e such that Γ ⊢ e : τ

It turns out [Rehof, 2013] that the relativized inhabitation relation is surpris-
ingly expressive: the relativized inhabitation problem is undecidable, already
in simple types (Linial-Post theorems [Linial and Post, 1949]). As detailed in
[Rehof, 2013], relativized inhabitation can be seen as defining the semantics
for a Turing-complete logic programming language for computing type-correct
compositions. Under this viewpoint, Γ can been regarded as a logic program,
typed combinators (X : τ ′) ∈ Γ are its rules, τ its input goal, and search for
inhabitants its execution semantics.

1.2 Combinatory Logic Synthesis

Combinatory logic synthesis (CLS) was proposed by Rehof [2013] as a type-
based approach to synthesis from components in a repository. Based on
combinatory logic introduced by Schönfinkel (1923) and again by Curry
(1927), components are specified semantically in CLS by intersection types
introduced in [Barendregt et al., 1983]. Hindley and Seldin [2008] provide a
synopsis on combinators and combinatory logic.

Combinatory logic synthesis refines composition synthesis by augmenting
the specification of components with semantic information encoded by inter-
section types. We briefly sketch the outline of the formal system underlying
CLS. Full details of the system will be given in Chapter 3 on page 33.

Semantic types t ::= a | t→ t′ | t ∩ t′

Semantically annotated types φ ::= τ | φ∩t | φ→ φ′ | φ∩φ′

The intersection type operator (∩) was introduced by Dezani-Ciancaglini
[Barendregt et al., 1983] and was integrated into combinatory logic in [Dezani-
Ciancaglini and Hindley, 1992]. We note semantic types in blue color. Addi-
tionally, two extra type rules (∩I and ≤) are added.

[Substitution S]

C, X : φ ⊢ X : S(φ)
(var)

C ⊢ e : φ→ φ′ C ⊢ e′ : φ

C ⊢ (e e′) : φ′ (→E)

C ⊢ e : φ C ⊢ e : φ′

C ⊢ e : φ∩φ′ (∩I)
C ⊢ e : φ φ ≤ φ′

C ⊢ e : φ′ (≤)

6 CHAPTER 1. INTRODUCTION

The intersection type operator, ∩, captures semantic information by
adding semantic types (t) to a type (φ) resulting in semantically annotated
types (φ∩t). Rule (≤) adds subtyping and can be used to encode taxonomic
hierarchies. In the next subsection, an example will demonstrate the idea of
using intersections to specify components in a repository and synthesizing
compositions in more detail.

The situation in combinatory logic synthesis can be briefly summarized
as follows: We are given a repository (set) of component names Xi with
associated implementations or combinators Ci of type τi, e.g. int of Java, in
a native implementation language L1, e.g. Java or ML,

X1 , C1 : τ1, . . . , Xn , Cn : τn

A name Xi is used as label or placeholder for a concrete implementation
Ci in L1. In addition, an associated repository forming a combinatory type
environment

C = {X1 : φ1, . . . , Xn : φn}

is given where φi are enriched types with (φi)
◦ ≡ τi. Enriched types φi

with i ∈ {1, . . . , n} are projected by erasure (·)◦ to a corresponding im-
plementation language type. Enriched types φi are augmented by adding
semantic information to τi describing the type of the implementation of Ci in
a native implementation language L1. Then, using inhabitation, we ask for
combinatory compositions e such that

C ⊢ e : φ and ⊢L1 e[Ci/Xi] : (φ)◦

Here, the condition ⊢L1 e[Ci/Xi] : (φ)◦ is implementation type correctness
and guarantees that combinatory compositions e are well-typed programs in
the given native implementation language L1 after substituting all occurring
labels Xi with their corresponding implementations Ci.

4

It should be noted that CLS considers semantic types as given and is
not per se concerned with establishing their correctness by type checking
semantic types against component implementations. Doing so is considered
an orthogonal issue. In this regard, the CLS approach follows work on
adaptation synthesis via proof counting by Haack et al. [2002] as well as Wells
and Yakobowski [2005], where semantic types are combined with proof search
in a specialized proof system.

4We refer to Section 7.6.1 on page 161 for a more detailed discussion about implementa-
tion type correctness in the thesis.

1.3. EXAMPLE FOR COMBINATORY LOGIC SYNTHESIS 7

1.3 Example for Combinatory Logic Synthe-

sis

Rehof [2013] presented the following example that is used to exemplify the
idea of combinatory logic synthesis.

Example 1.1. We assume an implemented repository of components or
application programming interface (API) providing functionality for tracking
temperature-sensitive containers, e.g. reefer containers, in logistics. The
following repository Γ represents the existing (API-)functions: R is the data-
type real. Function O returns a tracking object TrObj. Given a tracking object
TrObj, function Tr returns a triple whose first entry is the coordinate of the
tracking object, followed by the time information, and the current temperature
of the tracking object. The function pos projects a position and time from
such a triple. Function cdn projects a coordinate and functions fst and snd

project the first respectively second entry in a pair like a coordinate. Function
tmp returns the temperature. Two additional conversion functions cc2pl

and cl2fh are contained, that convert Cartesian to polar coordinates and
respectively temperature from Celsius to Fahrenheit.

Γ = {
O : TrObj,
Tr : TrObj→ D((R, R), R, R),
pos : D((R, R), R, R)→ ((R, R), R),
cdn : ((R, R), R)→ (R, R),
fst : (R, R)→ R,
snd : (R, R)→ R,
tmp : D((R, R), R, R)→ R,
cc2pl : ((R, R), R)→ ((R, R), R),
cl2fh : R→ R

}
In the native API shown, however, the semantic information given above

cannot be represented. Semantic information is typically only included, if at
all, in the form of informal text describing the repository as accompanying
documentation, which cannot be exploited by formal or automatic methods.

In order to get formal semantic structure representing such information, a
taxonomic hierarchy can be specified. Dashed lines denote a has-a relationship
whereas continuous lines denote an is-a relationship. We will denote concepts
in blue again. Trackdata contains a position Pos and a temperature Temp.
A temperature can be measured in units of Celsius Cel or Fh. A coordinate
can be represented in Cartesian Cart or polar Polar coordinates. A Cartesian

8 CHAPTER 1. INTRODUCTION

coordinate is a pair of x Cx and y Cy coordinates whereas a polar coordinate
is a pair of radius Radius and angle Angle.

Trackdata

Pos Temp

Coord Time Cel Fh

Cart Polar Gpst Utc

Cx Cy Radius Angle

The taxonomic hierarchy and intersection types ∩ can be used to superim-
pose semantic concepts onto the native API, thereby refining the specification
of functions contained in the repository Γ with semantic information:
C = {

O : TrObj,
Tr : TrObj→ D((R, R)∩Cart , R∩Gpst , R∩Cel),
pos : D((R, R)∩a, R∩a′, R)→ ((R, R)∩a, R∩a′)∩Pos ,
cdn : ((R, R)∩a, R)∩Pos → (R, R)∩a,
fst : ((R, R)∩Coord → R)∩

(Cart → Cx)∩(Polar → Radius),
snd : ((R, R)∩Coord → R)∩

(Cart → Cy)∩(Polar → Angle),
tmp : D((R, R), R, R∩a)→ R∩a,
cc2pl : (R, R)∩Cart → (R, R)∩Polar ,
cl2fh : R∩Cel → R∩Fh

}
Note, in particular, the usage of the intersection-operator (∩) to combine

several specifications into a single type, e.g. in combinator cl2fh the inter-
section type R∩Fh. In C, is-a relations are translated to intersections with
semantic types and has-a relations are expressed by projection combinators like
tmp. The repository reflects the semantic information that has been provided
in textual form in the description of the implementation repository.

We can now use relativized type inhabitation to ask for synthesizing a
composition being a function that returns a temperature in Fahrenheit, R∩Fh.

C ⊢ ? : R∩Fh C ⊢ cl2fh (tmp (Tr O)) : R∩Fh

Constructing an inhabitant, denoted by , satisfying the (type-)specification
R∩Fh leads to the term cl2fh (tmp (Tr O)) as solution.

1.4. COMBINATORY LOGIC SYNTHESIS AND SOFTWARE CONNECTORS9

C ⊢ ? : R∩Radius C ⊢ fst (cc2pl (cdn (pos (Tr O)))) : R∩Radius

A more complex inhabitant is constructed for the inhabitation request for a
function returning Radius as a real. The inhabitant

fst (cc2pl (cdn (pos (Tr O))))

satisfies the inhabitation request R∩Radius.

We return to synthesis of software connectors using combinatory logic
synthesis.

1.4 Combinatory Logic Synthesis and Soft-

ware Connectors

The type-based approach is well suited for associating semantic specifications
with components in a natural way, since components exhibit type information
through their interfaces. In the software engineering community, taxonomies
[Hirsch et al., 1999, Mehta et al., 2000] and ontologies [Kruchten, 2004]
have been introduced and examined to structure and reason about classes of
architectural elements such as, for instance, software connectors.

In the thesis we show how the type-based approach to synthesis can
be used to exploit such information in order to automate composition and
configuration of components, code generation, and deployment instructions.
In the methodology proposed here, software architectural concepts organized
in a taxonomy are used to specify the intended usage and other relevant
properties of components. Such concepts are attached to components via
type structure (for example, component interfaces), and are regarded as
semantic types following the ideas of Haack et al. [2002] and Wells and
Yakobowski [2005]. Taxonomic relations between concepts in taxonomic
hierarchies can technically be represented as subtyping partial orders. To
semantically describe components we use intersection types by Barendregt
et al. [1983] to append concepts to component types. The type-based approach
results in an intuitive form of specification.

Technically, the basic idea in CLS is to represent a repository of com-
ponents as a combinatory type environment Γ [Rehof and Urzyczyn, 2011a,
Rehof, 2013], that is, a set of type assumptions of the form (x : τ), where
x is the name of a component regarded as a combinator symbol and τ is
its semantic type. Informally, the statement (x : τ ∩ σ), where τ ∩ σ is an

10 CHAPTER 1. INTRODUCTION

intersection type, means that x has both type τ and type σ, i.e., x satisfies
both specifications. For example, in the following specification in a scenario
where software components have required and provided interfaces

x : (I1 → I2) ∩ ws ∩ sec

the combinator symbol x names a connector connecting a component providing
interface I1 to a component requiring interface I2. The type (I1 → I2) is
enriched with semantic types ws and sec by means of intersections, expressing
the fact that x is a secure web service.

Type inhabitation is the decision problem: given a type environment Γ
and a type τ , does there exist a combinatory term (applicative combination
of combinator symbols) e such that Γ ⊢ e : τ holds. Γ ⊢ e : τ states that
combinatory term e has type τ in the type environment Γ. An algorithm for
type inhabitation solves the problem of component identification, retrieval, and
composition and results in a combinatory term, e, specifying how components
are to be composed to achieve a certain goal specification, τ .

Besides the semantic specification each component has an underlying
implementation that is hidden from the user. Such implementations may
consist of code templates or meta-code describing how code templates are to
be composed. These templates are used for the code generation. Composing
the underlying templates according to the combinatory term e results in
compilable code. We say that e is synthesized from the repository Γ and
that code is generated from e. The theoretical foundation of CLS has been
laid by recent research on the inhabitation problem in finite and bounded
combinatory logic by Rehof and Urzyczyn [2011a], Rehof and Urzyczyn [2012],
Düdder et al. [2012], Rehof [2013], Düdder et al. [2012], and Düdder et al.
[2013a].

The basis theory of CLS having been developed recently, the methodology
still requires investigation regarding its applicability in practice. Theoretical
results by Rehof and Urzyczyn [2011a, 2012], Düdder et al. [2012] show that
the inhabitation problem has high theoretical complexity: for the logic used
here, bounded combinatory logic denoted by BCLk(∩,≤), type inhabitation
is shown to be (k + 2)−Exptime-complete in [Düdder et al., 2012]. Thus,
CLS requires heuristic optimizations to be useful in practice. Based on a
solution to the intersection type matching problem presented in [Düdder et al.,
2013a], we present, in the first part of the thesis, a heuristically optimized
version of the theoretical inhabitation algorithm of Düdder et al. [2012] that
provides significant speedups. We discuss experimental data obtained from
applying the optimized algorithm to an example. The example tests different
aspects of that algorithm and a speedup of several orders of magnitude in the

1.4. COMBINATORY LOGIC SYNTHESIS AND SOFTWARE CONNECTORS11

optimized algorithm compared to the theoretical algorithm can be witnessed.
Besides pinpointing the reasons for a speedup we also identify problems that
the optimized algorithm has to cope with. From these observations we derive
design principles for the specification of repositories. After the optimization
of the theoretical algorithm, a variety of practical optimizations that are
relevant for an implementation and an implemented software tool named
Combinatory Logic Synthesizer (CL)S containing all optimizations for the
theoretical and the practical algorithm are presented.

In the second part of the thesis, we present two realistic, larger-scale
applications of (CL)S to software connector synthesis [Perry and Wolf, 1992,
Allen and Garlan, 1997, Taylor et al., 2010]. Connector construction typically
requires the repeated solution of basically similar but varying tasks, regarding
both configuration and coding. This is usually a complex process, since
there can be a huge number of such variations, and managing these can
be tedious and error-prone if done manually. Making it difficult to reuse
already created connectors. Furthermore, varying frameworks, technologies,
and implementation languages require an architect to have in-depth technical
knowledge that cannot always be expected. To solve this problem, Spitznagel
and Garlan [2001, 2003] propose composite connectors composed from building
blocks. However, this compositional approach still requires the retrieval
and composition of suitable building blocks. Hirsch et al. [1999] and also
Mehta et al. [2000] describe properties of connectors and building blocks by
comprehensive taxonomies. Such taxonomies reflect best-practice knowledge
in software architecture. Thus, they may help optimize the connector-synthesis
for specific contexts. We present a type-theoretic model describing connectors
and building blocks as well as connector taxonomies.

We implemented a tool, ArchiType, which fully automates software con-
nector synthesis based on (CL)S. In ArchiType synthesized combinatory terms
are interpreted in an architecture description language (ADL) from which
compilable code is generated. Since types are abstract, there is no need to
deal with actual implementations, code, or configurations. Moreover, the
approach is agnostic of the ADL and target technology used.

We used ArchiType to synthesize and generate connectors to transform
two monolithic real-world software-systems into distributed software sys-
tems. A mid-sized open-source enterprise resource planning (ERP) sys-
tem comprising of 38 250 logical lines of code (LLOC) and a larger-sized
eCommerce-application comprising of 225 763 LLOC are used for experiments
and demonstration of the method proposed in the thesis. At the end, we
deployed the distributed architectures on different virtual machines to verify
that indeed functionally correct code was generated.

12 CHAPTER 1. INTRODUCTION

1.5 Why does this problem matter?

Complex software systems consist of thousands of interdependent components
that use many interconnections to meet functional and non-functional require-
ments. The number of system interconnections can be huge.5 Furthermore,
the interconnections affect the software system’s functional and also non-
functional properties. Moreover, these interconnections depend on different
aspects like the technology used. A software architect usually constructs
prototypical implementations of his software architecture for testing and
evaluating his ideas. But, modifying, changing, or adding software connectors
in the software architecture is time-consuming and therefore the evaluations
are only conducted for a few, well-chosen variants of the software architecture.

Furthermore, because of system complexity and emerging risks, a software
architect is obliged to construct prototypical implementations to experimen-
tally evaluate the system’s functional and non-functional properties. The
business logic (operations) is located in the system’s components. These
components have to be implemented together with a possibly large (in the
worst-case quadratic) number of connectors. Hence, the number of inter-
connections has a strong impact on the time needed for the prototype’s
construction. Probably, we cannot avoid the construction of software connec-
tors in order to reduce the needed construction time. However, we can reduce
the time that is spent on the construction of each connector. Therefore, the
automatic synthesis and code generation could accelerate the development
and the evaluation of software architectures.

Then, automatic synthesis can be applied to different fields of application.
A rapid prototyping tool for software architects can synthesize prototypical
software architectures, e.g. for evaluating various properties and aspects of
architectural design choices. By supporting different middleware systems
and communication infrastructures, the initial skill adaption training and
search in technological software and documentation libraries can be reduced.
Another field is the application in software product lines. Software product
lines, vary software products by including or excluding features depending on
the actual product line.

In addition, the thesis is closely related to actual movements6 in the
component-based synthesis community. In general, synthesis approaches can
be classified based on a respective model and related methods. Two distinct
and often independent approaches can be distinguished, sometimes called
“Church-style” synthesis and “Curry-style” synthesis, respectively. Church-

5In the e-Commerce example in Chapter 8 on page 165, 400 components depend on a
central component.

6http://www.dagstuhl.de/de/programm/kalender/semhp/?semnr=14232

http://www.dagstuhl.de/de/programm/kalender/semhp/?semnr=14232

1.6. SYNTHESIZING FROM COMPONENTS 13

style synthesis is characterized by the usage of temporal logic and automata
theoretic models, whereas Curry-style synthesis is characterized by the usage
of deductive methods in program logics and in type theory. Recent work,
for example by Lustig and Vardi [2009], has inspired the idea of component-
based synthesis, where systems are synthesized relative to a given collection
(library, repository) of components within both the Church-style and the
Curry-style approach. Delineating a collection needs included components to
be designed for composition requiring a non-trivial degree of design intelligence,
abstraction, and specification. The thesis can be classified as Curry-style
component-based synthesis for software connectors as an application domain
providing such a non-trivial design intelligence, abstraction, and specification
for software architecture as a domain.

1.6 Synthesizing from Components

Today’s software developers and architects can use components from off-the-
shelf component libraries originating from the idea of a global component
marketplace favored by component-based development. In contrast, a software
architect cannot choose the software connectors from an analogous library.
Such a lack is a serious deficit for software architects. Particularly, various
communication frameworks like the Eclipse Communication Framework or
the Microsoft windows communication foundation (WCF) try to close the
gap with their service offerings. However, a software connector fulfills more
than a communication role. Hence, one major contribution of the thesis is
to remedy these deficiencies by providing a synthesis and generation method
as well as providing the idea and a concrete implementation of a software
connector library.

1.7 Contributions

The contributions of the thesis are twofold and can be categorized into
theoretical and technical contributions. Before the contributions are listed,
the primary publications, their respective contributions, and a delimitation
to the original and proprietary contributions of the thesis are presented.

1.7.1 Publications & Delimitations

The following list of co-authored peer-reviewed publications contribute and
influence the thesis.

14 CHAPTER 1. INTRODUCTION

• The paper “Using Inhabitation in Bounded Combinatory Logic with
Intersection Types for GUI Synthesis” by Düdder et al. [2012] presents
some applications combinatory logic synthesis to various scenarios.

• The paper “Bounded Combinatory Logic” by Düdder et al. [2012]
provides the theoretical foundation, complexity results, and algorithms
for bounded combinatory logic. The results are not repeated in this
work but are essential for the thesis.

• The paper “Intersection Type Matching with Subtyping” by Düdder
et al. [2013a] presents a complexity analysis and an algorithm for type
matching in intersection types based on the algorithm presented in
[Düdder et al., 2012]. In addition, an optimized algorithm for deciding
relativized type inhabitation is presented that is similar to the Algo-
rithm 4.5 on page 64. Algorithm 4.5 is an accumulation of the preceding
optimizations presented in Section 4.1. In addition, various algorithmic
optimizations are added in the thesis and result in an implementation
of the algorithm used by a tool called (CL)S in Chapter 5.

• The paper “Staged Computation Synthesis” by Düdder et al. [2014a]
introduces a meta-language into composition synthesis by adding the
modal type constructor � to distinguish native language and meta-
language in synthesis. This approach, is similar to the approach pre-
sented in Section 7.5 on page 154 that presents the ArchiType Computa-
tion Language corresponding to the meta-language presented in Düdder
et al. [2014a].

• The paper “Delegation-based Mixin Composition Synthesis” by Bessai
et al. [2014a] shows an application of combinatory logic synthesis for
object-oriented software systems with a focus on synthesizing composi-
tions of mixins.

• The paper “Combinatory Logic Synthesizer” by Bessai et al. [2014b]
provides an overview of recent, current, and future features of the
Combinatory Logic Synthesizer (CL)S that has been developed in the
thesis.

• The paper “Model Checking in multiagentengesteuerten Materialflusssys-
temen” by Düdder et al. [2008] and the diploma thesis “Formale Veri-
fikation mittels Model Checking in Materialflusssystemen” by Düdder
[2008] are not related to this thesis.

1.7. CONTRIBUTIONS 15

1.7.2 Theoretical Contributions

The thesis provides the following theoretical contributions

• First, a combinatory logic for specifying components is presented.

• Second, for this logic, an approach for combinatory logic synthesis using
type inhabitation is presented.

• Third, the complexity results presented in Chapter 3 on page 33 for the
type inhabitation algorithms for the combinatory synthesis necessitate
heuristical optimizations to enable the practical usability of the combina-
tory synthesis for concrete scenarios. Hence, different improvements and
heuristical optimizations are discussed and evaluated experimentally.

• Fourth, Combinatory Logic Connector Synthesis, a type-based method
for the synthesis of software connectors in component & connector
(C&C) architectures is presented. This method offers

– a mapping of an abstract context and problem domain of specific
software architectures into a concise specification in combinatory
logic preserving the domain’s peculiar semantic.

– an efficiently7 computable synthesis of software connectors exploit-
ing the specifications using the combinatory logic.

– a mapping from the synthesis results into a description language
for software architectures.

– a goal-oriented synthesis and generation of software connectors
that provide syntactic and semantic interconnections.

1.7.3 Technical Contributions

The technical contributions supplement the theoretical contributions and can
be summarized as follows

• Fifth, a variety of pragmatic optimizations for combinatory logic synthe-
sis with respect to a practical implementation of the synthesis algorithm
is introduced. The implementation takes advantage of the theoretical
contributions.

7Efficient not from the a priori runtime complexity but from an algorithm comprising
the optimizations.

16 CHAPTER 1. INTRODUCTION

• Sixth, an implementation of the combinatory logic synthesis algorithm in-
cluding the mentioned optimizations is presented. Experimental results
give evidence for the significant improvements that these optimizations
provide.

• Seventh, a rapid prototyping software architecture tool using the im-
plementation of the combinatory logic synthesis algorithm and the
Combinatory Logic Connector Synthesis method is discussed.

• Eighth, the rapid prototyping software architecture tool is used to
conduct four experiments on real software systems to verify the benefits
of the Combinatory Logic Connector Synthesis method in the presence
of real-world software architectures.

1.7.4 Interconnections between Contributions

Main contributions included in the thesis are interconnected in the following
way as depicted in Figure 1.1

RelativizedSTypeSInhabitationSin
BoundedSCombinatorySLogic

HeuristicSOptimizationsSfor
InhabitationSAlgorithm

CombinatorySLogicSSynthesizer
(CL)S

CombinatorySLogic
ConnectorSSynthesis

Rapid-prototypingSToolSforSSoftwareSArchitects
ArchiType

BCL0

Figure 1.1: Interconnections between main contributions in the thesis

• Relativized type inhabitation, a type-theoretic decision problem, in
bounded combinatory logic will be presented and used as synthesis
procedure.

• Various heuristics yield an optimized synthesis algorithm.

1.8. ORGANIZATION 17

• Combinatory Logic Synthesizer (CL)S, a tool, encapsulates the synthesis
algorithm in its core and provides an abstract interface for synthesis.

• Type-theoretic model of software components and connectors is a require-
ment for Combinatory Logic Connector Synthesis allowing synthesis of
software connectors.

• Thereby, (CL)S is employed for a rapid-prototyping tool for software
architects, ArchiType, implementing Combinatory Logic Connector Syn-
thesis.

1.8 Organization

The thesis is structured in the following way

• Chapter 1 serves as general introduction, sets the context of the thesis
and motivates the problem. Furthermore, it outlines the organization
of the thesis and describes the contributions of this work.

• Chapter 2 introduces problems in software architecture and its methods.
The general problem of the synthesis of architectural elements and
related work is discussed. The discussion leads to the (general) main
idea of the thesis which will be concretized in the remainder of the
thesis.

• Chapter 3 contains the theoretical foundations of the thesis. Here, the
combinatory logic as well as the synthesis algorithm on which the thesis
is based are defined. Both main artifacts (logic and synthesis) are put
into context with related work.

• Chapter 4 presents different theoretical and also pragmatic optimization
approaches for the synthesis algorithm. The optimizations are derived by
analyzing the algorithm(s) and developed further from type-theoretical
to pragmatic optimizations.

• Chapter 5 presents an implementation called (CL)S of the synthesis
algorithm including the theoretical and pragmatic optimizations.

• Chapter 6 precisely defines the method Combinatory Logic Connector
Synthesis, provides a classification system for software connectors, and
describes the usage of combinatory logic synthesis for synthesizing
compositions of software connectors.

18 CHAPTER 1. INTRODUCTION

• Chapter 7 reviews a rapid prototyping software architecture tool (Ar-
chiType) using (CL)S and that is integrated in an industrial software
engineering tool providing the Combinatory Logic Connector Synthesis
method to a software architect. The method is extended by including a
model-to-code transformer which generates compilable source code that
implements the synthesized software connector with an user-specified
functionality.

• Chapter 8 evaluates the Combinatory Logic Connector Synthesis method
with the help of experiments in which the rapid prototyping software
architecture tool is applied to different software systems with increasing
complexity. The experiment’s consolidated findings and lessons learned
are also included in the description of the individual experiments.

• Chapter 9 concludes the thesis by a résumé and a perspective on future
work.

• The appendices provide more detailed information on specific technical
details, of the tools as well as the conducted experiments and their
results.

• The discussion on related work with respect to this thesis is split into two
separate discussions in Chapters 3 and 6. This separation is reflects the
fact that this thesis merges results coming from two separate scientific
communities, type theory/logic and software architecture.

Chapter 2

Software Architecture

In this chapter we will discuss various and differing definitions of software
architecture. From this discussion we will derive definitions of important
architectural entities like software components and software connectors. Both
architectural elements will be studied separately in order to assess their various
properties and features. With synthesis in mind, we will discuss composition
and synthesis of architectural elements and argue for the need of semantic
specifications of the interconnections of architectural elements.

2.1 What is Software Architecture?

Software architecture is a sub discipline of software engineering. The definition
of software architecture depends largely on specific authors and their respective
intentions. Some of the more influential definitions for software architecture
are discussed in the following.

The IEEE-Standard 1471-2000 [IEEE Architecture Working Group, 2000,
page 9] defines software architecture as:

Definition 2.1.1. (Software architecture I)
“The fundamental organization of a system embodied in its components, their
relationships to each other, and to the environment, and the principles guiding
its design and evolution.”

The definition primarily considers software intensive systems and explicitly
considers the evolution of these systems. Shaw and Garlan [Shaw and Garlan,
1996] promoted the idea of software architecture concepts such as components,
connectors, and styles: “The architecture of a software system defines that
system in terms of computational components and interactions among those
components.” According to Shaw and Garlan [1996] “an architectural style

19

20 CHAPTER 2. SOFTWARE ARCHITECTURE

defines: a family of systems in terms of a pattern of structural organization;
a vocabulary of components and connectors, with constraints on how they
can be combined.”

Bass, Clements, and Kazman [2003, page 27] define software architecture
from a structural point of view:

Definition 2.1.2. (Software architecture II)
“The software architecture of a system is the structure or structures of the
system, which comprise software elements, the externally visible properties of
those elements, and the relationships among them.”

Perry and Wolf [1992] identify three types of architectural building blocks:
processing elements, data elements, and connecting elements. Such a struc-
tural view of software architecture is opposite to a descriptive view on software
architecture. In a descriptive view, the main entities of a software architecture
are (principal) design decisions. Taylor, Medvidovic, and Dashofy provide a
corresponding definition in [Taylor et al., 2010, page 58]:

Definition 2.1.3. (Software architecture III)
“A software system’s architecture is the set of principal design decisions about
that system.”

Combining the previous definitions, some inherent properties of software
architecture can be derived from these definitions. Software architecture:

• is conceptual,

• is about fundamental things or its abstractions,

• exists in some context,

• is high-level design,

• is overall structure of the system,

• is “the structure of the system, including the principles and guidelines
governing their design and evolution over time” [Garlan and Perry,
1995],

• is about components and connectors,

• is about interactions (behavior),

• is about the relationship of its elements.

We will later recall the properties in order to synthesize meaningful software
architectures.

2.2. DESCRIBING SOFTWARE ARCHITECTURES 21

2.2 Describing Software Architectures

Software architectures have to be documented, communicated, and managed.
High-level design and describing principal design decisions [Taylor et al.,
2010, page 58] must be captured using a qualified language. An architecture
description language (ADL) is any means of expression used to describe a
software architecture (ISO/IEC/IEEE 42010 [ISO/IEC/IEEE, 2011]). ADLs
can be general- or special-purpose. General-purpose languages used for
software architectures are the unified modeling language (UML) 2.0 [Object
Management Group (OMG), 2005] (see for [Clements et al., 2011, pages 431ff])
and the systems modeling language (SysML) [Object Management Group
(OMG), 2012] (see for [Clements et al., 2011, pages 465ff]).

Medvidovic and Taylor [2000] present a specialized framework for eval-
uating ADLs especially for component and connector architectures (and
C2-architectures)1 that contains classification and comparison methods. The
authors evaluated nine different ADLs and they concluded [Medvidovic and
Taylor, 2000, pages 50ff] that no single ADL completely fulfills the identified
needs that the authors gathered. We will now discuss some of these and some
additional ADLs in more detail but refer to Medvidovic and Taylor [2000] for
a complete discussion.

An early survey on ADLs has been presented in [Clements, 1996] and
has been further developed in [Bass et al., 2003]. A recent survey is given
in [Malavolta et al., 2013].

• The architectural analysis and design language (AADL) has been devel-
oped as a SAE International standard [Clements et al., 2011, pages 473ff].
It can be used to describe software as well as hardware architectures.

• Wright was developed by Allen at the Carnegie Mellon University [Allen,
1997] and supports components, connectors, roles, and ports. Wright
uses communicating sequential processes (CSP) to specify and formalize
the behavior of ports of components.

• Stanford’s well-known Rapide [Luckham et al., 1995] is an ADL for
prototyping of large-scale, distributed concurrent systems.

• Acme was developed by Carnegie Mellon University [Garlan et al.,
1997] and supports components, connectors and also, in particular, an
architectural ontology.

1The C2 architecture [Medvidovic et al., 1997, Taylor et al., 2010] is a special component
and connector architectural style.

22 CHAPTER 2. SOFTWARE ARCHITECTURE

• xADL [Dashofy et al., 2002] has been developed by the University of
California, Irvine. It uses extensible markup language (XML) documents
to describe software architectures thus offering interoperability with
other ADLs.

• Darwin [Magee et al., 1995] developed by a research group at the
Imperial College London supports components, interfaces, and bindings.
Connectors are not first-class objects within Darwin. The operational
semantics is based on π-calculus [Milner, 1980, 1999].

• The idea of using π-calculus for an operational semantic has been further
developed by Oquendo [2004] and Oquendo [2008] for π-ADL.

• PADL is an ADL developed by Bernardo et al. [2002] that is based on
the process algebra EMPAgr which is a mix of two process algebras,
CCS by Milner [1989] and CSP by Hoare [1985].

Most of the itemized special-purpose tools (except Darwin by Magee et al.
[1995]) support software components and connectors as objects as well as
relations among these objects.

A common problem of such special-purpose languages is the classical hen
and egg problem that a lack of industrial tools is caused by low dissemination
of these special-purpose languages in industry. It can be seen by comparing
the total numbers of software tools supporting general-purpose tools like UML
2.0 and of special-purpose tools. Thus, the suitability of UML as an ADL is
examined and discussed by Pérez-Mart́ınez and Sierra-Alonso [2004]. That
even academia recognizes UML as an ADL can be seen by the fact that UML
is listed as an ADL in [Clements et al., 2011]. Also Medvidovic et al. [2002]
provide a comprehensive discussion on UML as an ADL on standalone UML
as well as on extended UML.

Taking the arguments made into account, we can conclude that a tool
for practical industrial applications, should favor UML instead of highly
specialized formalisms as an ADL.

2.2.1 Components and Connectors

In the thesis, we regard software architecture as a set of components together
with the connectors realizing the interactions among these components similar
to Component&Connector (C&C)-Architectures discussed by Taylor et al.
[2010]. Hence, we recapitulate the definitions of components and connectors
from [Taylor et al., 2010]:

2.2. DESCRIBING SOFTWARE ARCHITECTURES 23

Definition 2.2.1. (Software component) (see for [Taylor et al., 2010,
page 69])
“A software component is an architectural entity that (1) encapsulates a subset
of the system’s functionality and/or data, (2) restricts access to that subset
via an explicitly defined interface, and (3) has explicitly defined dependencies
on its required execution context.”

We primarily concentrate on characteristics (2) and (3) since our goal
is to synthesize connectors for which interfaces are the access point to a
component. From here on, we explicitly exclude the component’s behavior
as protocols in the thesis. But we are going to specify behavior abstract as
interface semantics using concepts. Thus, from a connector’s point-of-view
a component simply consists of a set of provided and required interfaces.
Provided interfaces of a component are exposing the components functionality
via these interfaces. Whereas its required interfaces are used by the component
to receive a functionality provided by other components.

Definition 2.2.2. (Software connector) (see for [Taylor et al., 2010,
page 70])
“A software connector is an architectural element tasked with effecting and
regulating interaction among components.”

A connector must connect provided interfaces of (possibly several) com-
ponents with suitable required interfaces of some other components, where
some of the required or provided interfaces may be optional depending on
the usage context.

Definition 2.2.3. (Interface type) An interface with name I has the in-
terface type I.

Note, that an interface’s type is independent of its methods. The reason
for this definition is that software architects use the name of an interface,
like IIterator, as a semantical description of the functionality a component
provides via this interfaces.

The following special case, depicted for component C in Figure 2.1, occurs
often:

Definition 2.2.4. (I-connector) A connector that connects a single pro-
vided interface I to a single required interface I is called an I-connector.

Example 2.1. An example I-connector is depicted in Figure 2.1. The con-
nector C requires an interface I and provides an interface I as well.

24 CHAPTER 2. SOFTWARE ARCHITECTURE

C
I I

Figure 2.1: I-connector

An I-connector is not necessarily a simple pipe since it may provide further
functionality beyond the fact that it connects I to I. For example, it may
add security properties, for example a secure channel by using encryption, to
the interaction.

Interface types are not sufficient to capture all relevant properties, thus it
may be necessary to also include semantic concepts to specify them. Note
that the distinction between components and connectors does not have to be
sharp. Rather, components and connectors can be regarded as two ends of a
continuum as argued by Kell [2007].

Usually, connectors are generic with regard to their usage scenario, i.e.,
there is a limited number of functional and non-functional general properties
that a connector may or may not need to have. The idea of composite
connectors (connectors that are assembled out of components) has been
advocated by Spitznagel and Garlan [2001] and by Julien and Perry [2008],
because of such a genericity and in order to improve reusability. Clearly, a
high degree of automation in finding appropriate composite connectors would
be an advantage. The idea underlying our approach to connector synthesis
is to assume a set of building blocks from which composite connectors may
be synthesized for a given usage context. Some of the building blocks may
be specialized for exactly such an usage context, whereas others may be
more generic. The building blocks may be atomic, i.e., they provide certain
interfaces without further requirements. Other more complex building blocks
may offer certain functionalities if they are provided with certain functionalities
offered by other building blocks. Such complex blocks can be used to build
compositions of building blocks and may capture architectural design decisions
or even whole architectural styles with regard to software connectors. Note
that some building blocks can be components or connectors themselves. Since,
in principle, building blocks can be composed in arbitrary way the resulting
composite connectors may offer great variability. This variability often makes
the manual retrieval and composition of building blocks tedious as well as
repetitious and therefore error-prone.

We address the problem by exploiting taxonomies to specify properties

2.2. DESCRIBING SOFTWARE ARCHITECTURES 25

of connectors as described by Hirsch et al. [1999] and by Mehta et al. [2000].
The repository has to be thus designed or specified once for possibly multiple
uses in a given usage context. Each building block is linked to an underlying
(i.e. hidden from the user by an abstract link) set of code templates, that
have been prepared such that they correctly implement the specification of
the building block. In the following subsection we will present a rich semantic
based description language that can be used to specify building blocks. Once
a repository of building blocks has been specified using intersection types
we synthesize connectors by asking suitable inhabitation questions. An
inhabitant can be regarded as a description or blueprint of how certain building
blocks should be composed. From such compositions we infer connector
descriptions in an ADL. The ADL-description of a connector is used to
generate executable code by combining the underlying templates according
to a suitable interpretation of the ADL-description.

In order to avoid confusion, we distinguish the terms specification, synthe-
sis, and generation.

Definition 2.2.5. (Specification)
We denote a process that constructs a concise logical model including semantics
for synthesis from a problem space in a C&C architecture, as specification.

Definition 2.2.6. (Synthesis)
We denote a process that constructs a composition plan by means of a logical
method, as synthesis.

It means that type inhabitation is a synthesis method producing an
inhabitant as composition plan.

Definition 2.2.7. (Generation)
We denote a process that transforms a composition plan into an abstract or
textual object, as generation.

The definition also covers the generation of source code, deployment code,
and also UML diagrams as concrete generation products.

Summarizing, the Combinatory Logic Connector Synthesis method consists
of three essential steps:

1. Using a taxonomy, we semantically specify the building blocks in our
repository and link them to a set of templates.

2. We synthesize compositions of building blocks by posing suitable inhab-
itation questions.

26 CHAPTER 2. SOFTWARE ARCHITECTURE

3. We interpret the resulting inhabitants in an ADL and/or generate code
from underlying templates.

An overview of the method is depicted as an abstracted process in Figure 2.2.

Specification

Repository Templates

Synthesis

Generation

UML Code

C&CDConnectorDSynthesisDProblem

C
om

binatoryDLog
icDC

onnectorDS
ynthesis

Input

Data

ProcessDStep

ControlDflow

Synthesis

Figure 2.2: Overview of the Combinatory Logic Connector Synthesis method.

We follow the discussion of Taylor et al. [2010] and extend their argumenta-
tion for software connectors as first-class citizenship in software architecture.

Software Connectors as First-Class Citizens

A software connector is an architectural element modeling different prop-
erties in a software architecture. In Definition 2.2.2 and in [Taylor et al.,
2010], a software connector is responsible for the interactions among software
components. The interaction is performed by transferring control and/or
data among components. The connector also encodes and enforces rules that
govern those interactions. Some simple interactions are procedure calls and
shared variable access. Some more complex and semantically rich interactions
are client-server protocols, database access protocols, and asynchronous event

2.2. DESCRIBING SOFTWARE ARCHITECTURES 27

multicast. Each connector provides interaction via so called ducts. Ducts
[Mehta et al., 2000, Kell, 2007] are channels along which data and control
can be passed between components.

The reason for distinguishing between connectors and components is that
components provide application-specific functionality whereas connectors
provide application-independent interaction mechanisms. The interactions
can be more abstract by applying parameterization to connectors. The
parametrization allows the specification of complex interactions, because
these interactions can be specified independently from the components.

A classification can be used that distinguishes binary from n-ary connectors
and asymmetric from symmetric connectors. These concepts will be used
later within an ontology of connectors. Different interaction protocols can be
identified and are presented in [Taylor et al., 2010]. The global view on an
architecture’s interaction model is broken down to a set of local interaction
definitions. The global architecture’s interaction emerges from such local
architecture interactions. Then, such ideas can be used for a component system
for interactions and their information. Such extra-components are called
connectors and in a formal model, connector building blocks. Furthermore,
the introduction of connectors brings component independence and interaction
flexibility.

The benefits of first-class connectors are the conceptual separation of
computation from interaction. It minimizes component interdependencies and
supports the evolution of software architectures at component-, connector-,
and system-level. It offers potential for supporting dynamism in software
architectures and facilitates heterogeneity. Software connectors can become
partition points as presented in the examples in Chapter 8. The separation
of components and connectors also aids the system’s analysis and testing.

Connectors allow modeling of arbitrarily complex interactions because
of a local view on interactions. The connector’s flexibility, for example by
composition or by individual local adaptations, aids the system’s evolution.
Components can be added, removed, replaced, reconnected, and migrated
without affecting other components, because connectors isolate effects. A
support for connector interchange is also desirable. Then, connectors could
be interchanged without affecting the system’s functionality. This can be
advantageous with respect to the system’s evolution and also its prototyping.

Also Kell [2007] advocates software connectors as first-class citizens in
software architecture and provides a table of connector types and their
instances. Balek and Plasil [2001] discuss the importance and effects of
software connectors for the deployment of the software. A more general
discussion on software connectors with various examples can be found in
[Balek, 2002].

28 CHAPTER 2. SOFTWARE ARCHITECTURE

2.2.2 Software Connector Roles

With a first-class citizenship, software connectors are now the locus of interac-
tion among a set of components. The behavior and interaction of components
is facilitated by connectors and their sometimes implicit protocol specification
that defines the connector’s properties. Connectors can be characterized by
the different types of interfaces they are able to mediate. A connector has to
assure its interaction policy for a desired system’s functionality. Therefore,
rules about interaction ordering and interaction commitments, for instance,
about performance or on availability are essential. And last but not least,
software connectors play different roles in software architectures. According
to Taylor et al. [2010], the software connector roles can be identified as

• Communication

• Coordination

• Conversion

• Facilitation.

The order of the roles does not correspond to the importance of a role. Their
importance varies with different applications. The roles are orthogonal to
each other and will now be discussed in more detail.

Connectors as Communicators

The most prominent role associated with connectors is the support of different
communication mechanisms, for example procedure call (PC), remote procedure
call (RPC), shared data access, and message passing. Software connectors
pose constraints on communication structures and directions, for instance
pipes. They put constraints on the quality of service, for instance persistence,
availability, and reliability. The concept separates communication of systems
from their computation but may as well influence the non-functional system
characteristics, by way of example performance, scalability, and security.

Connectors as Coordinators

Software connectors also take the role of coordinators. Connectors coordinate
components by determining computational control. Furthermore, connectors
also control the delivery of data among components and are the architec-
tural element that separates control from computation. The coordination
role itself is orthogonal to the other roles, communication, conversion, and
facilitation. Whereas the elements of control reside in the three remaining
roles: communication, conversion, and facilitation.

2.2. DESCRIBING SOFTWARE ARCHITECTURES 29

Connectors as Converters

Software connectors also serve as converters among components. Connectors
enable interaction of independently developed and possibly mismatched com-
ponents. The mismatches are caused by the component’s interactions. The
conversion performed by a connector can be versatile. Possible conversions
are the conversion of types, of numbers, of the frequency, or of the order of
interactions. A number of different converters are known in software architec-
ture, for example adaptors or wrappers. For example, Taylor et al. [2010] and
Buschmann et al. [1996] describe various converters primarily as architectural
patterns. We will later use the term adapter and mean in general a converter.

Connectors as Facilitators

The last role in the list of roles is the connector as a facilitator. Connectors
enable interactions among components that are intended to interoperate.
Therefore, connectors have to mediate and to streamline the interactions and
also to govern access to shared information. With respect to non-functional
requirements, connectors also have to ensure proper performance profiles,
for instance, load balancing. Connectors have to provide synchronization
mechanisms like critical sections, transactions, and monitors, because software
architectures include such concurrent components.

The different roles are used to define dimensions and sub-dimensions in
software connector taxonomies. The usefulness of software connector tax-
onomies, in particular, for synthesizing software connectors will be discussed
next.

2.2.3 Software Interconnection Models

Software interconnection models (IMs) are relevant for the understanding
of software connectors. The interconnections in a software system can be
classified according to Perry [1987]. Interconnection can be found on different
abstraction levels and on disparate architectural views on a software architec-
ture. Perry discriminates between three essential classes of interconnections.
The classes are ordered by the contained information content.

Unit interconnection

A unit interconnection defines relations between different units of the system.
In such a model, units are components that are modules or files and a basic
unit relationship is the dependency of these units. The model is programming
language agnostic and does not contain semantic information.

30 CHAPTER 2. SOFTWARE ARCHITECTURE

Syntactic interconnection

A syntactic interconnection describes relations among syntactic elements of
programming languages, for example, variable definition and use, or method
declaration and invocation.

Semantic interconnection

A semantic interconnection expresses how the system’s components are meant
to be used. This includes the view of the component’s designer, his intentions,
prescriptive view, and captures how system components are actually used,
descriptive view. In addition, it also includes the intention of a component’s
user. Such interconnection semantics can be formally specified by pre- and
post-conditions or dynamic interaction protocols, for example communicat-
ing sequential processes (CSP), finite state machine (FSM), or UML state
diagrams. The semantic connections build on the syntactic interconnections.
Furthermore, interconnections can be static and/or dynamic.

For a meaningful and intended software system, a complete interconnection
specification is needed that specifies both syntactic and semantic intercon-
nection validity. Such a specification is crucial at every level of software
architectures and allows the construction of large components with complex
interactions. It facilitates dealing with heterogeneity in software architecture
and increasing the reusability of components.

In result, a formal semantic model including concepts arises as a re-
quirement for using semantic interconnections. Ontologies and taxonomic
hierarchies are such formal semantic models and will be discussed in Sec-
tion 2.4 on the facing page. Specialized taxonomies will play an important
role as ontological structure in the presented method.

2.2.4 Composing Basic Connectors

The composition of systems eases the system designer’s work. The number of
involved elements can be reduced by composing composite components from
a reduced set of atomic components. Mehta and Medvidovic [2003] present a
method for composing architectural styles from architectural primitives. This
work is based on an ADL named Alfa.

In many systems, a software connector incorporating multiple types may be
required to service (a subset of) the components. The compositional approach
is not a universal remedy, because it cannot be expected that all connectors can
be composed and some might be naturally interoperable or even incompatible.
Thoughtful design and trade-offs are required. Composition can be considered

2.3. SYNTHESIZING SOFTWARE ARCHITECTURES 31

at the level of connectors in all type dimensions and subdimensions. For
example, a composition for component-based modeling is presented Gößler
and Sifakis [2005] which is focused on refinement and on interaction models.
In addition, Sifakis [2005] provides a related framework for component-based
construction based on an algebraic composition model for interaction models.

From an orthogonal viewpoint of software performance engineering, the
authors Strittmatter and Happe [2012] discuss a compositional approach to
software connectors, because the choice of software connectors has as well a
major impact on the system’s performance.

2.3 Synthesizing Software Architectures

Synthesis combines one or more entities to form something new. In order to
automate synthesis some prerequisites have to be fulfilled. Knowledge about
the domain and the context of the entities and the entities itself must be
represented. A synthesis goal must be specifiable. The synthesis (-process)
needs an operational semantic. An automatic synthesis procedure must
use the represented knowledge and the target to create a combination of
components coming from a set of components. This combination must be
interpreted in the domain and the context of the entities.

In order to synthesize meaningful software architectures, synthesis must
reflect the properties listed in Section 2.1 on page 19. It has to operate
on abstract, conceptual objects and to support contexts. The structural
development and high-level design with components and connectors as well
as their mutual relationships must also be supported.

The usage of ontologies for capturing knowledge in software architecture
is not new. The ADL Acme by Garlan et al. [1997] supports an architectural
ontology and the usage of ontologies to capture architectural design decisions
has been proposed by Kruchten [2004]. An idea for the composition of
architectural aspects based on style semantics is presented by Chavez et al.
[2009].

ADLs are ideal candidates as interpretation targets of compositions of
software architectural entities because ADLs come with a defined semantic
and a restrictable meaning.

2.4 Ontologies in Software Architecture

In the subsection introducing semantic interconnections, a requirement for
complete interconnection specification is raised also including the semantics of

32 CHAPTER 2. SOFTWARE ARCHITECTURE

the connectors.The use of an ontology for the architectural views is presented
in [Kruchten, 2004].

Taxonomic hierarchies of classes, among others, are often equated with
ontologies according to Gruber [1993]. In the thesis (and further referenced
works using ontologies), we equate taxonomy or taxonomic hierarchy with
ontology and depict taxonomies as taxonomic trees.

A specific taxonomy for connectors have been introduced by Mehta et al.
[2000] based on a previous classification model provided by Hirsch et al. [1999].
The book of Taylor et al. [2010] comprises a complex taxonomical model in
the form of taxonomic trees. The connector taxonomies have in common that
the knowledge of a software architect is captured and can be algorithmically
used for reasoning.

Inverardi and Tivoli [2013] also use an ontology for the automated synthesis
of modular connectors. However, the connectors differ in their abstraction
level from the architectural connectors presented in our work. Spalazzese
and Inverardi [2010] and Inverardi and Tivoli [2013] consider compositions of
mediators (adaptors) on method level focusing on interaction and interactions
based on an observable behavior of traces.

The taxonomy in [Taylor et al., 2010] and a derived, specialized taxonomy
that is used for Combinatory Logic Connector Synthesis are discussed in
Section 6.2.5 on page 126. This taxonomy will include conceptual information
on functional and non-functional properties of a connector as well as its
technological concepts.

Chapter 3

Bounded Combinatory Logic

This chapter establishes the mathematical foundation for combinatory logic
synthesis. We begin with the introduction of intersection types that is the
foundation of bounded combinatory logic. A decision problem for this logic
called relativized type inhabitation and a decision procedure for it will be
discussed. Afterwards, the connection between relativized type inhabitation
and synthesis will be reviewed.

3.1 Combinatory Logic

Before we explain the mathematical foundation, we refer to the discussed
motivation of combinatory logic in the introduction in Section 1.1 on page 3
and combinatory logic synthesis in Section 1.2 on page 5. We now briefly
recapitulate the logical and type-theoretical arguments of the discussion made
in these two sections for a motivation of the usage of combinatory logic for
synthesis.

In this work we pursue the way of a type-based approach to deductive
logic synthesis that is used for synthesizing compositions of typed components
employing intersection types. These components in a repository shall be
specified by semantic concepts coming from a taxonomy. The usage of a logic
for the specification of components and deduction for the synthesis suggests
itself.

Usually a fixed set of basic combinators or axiom schemes like SK in
Subsection 1.1 are considered in combinatory logic. Under the Curry-Howard
isomorphism (propositions-as-types correspondence), the provability of formu-
las in this logic is Pspace-complete for simple types as shown by Statman
[1979]. The inhabitation problem for the λ-calculus with intersection types
was shown to be undecidable by Urzyczyn [1999]. Combinatory logic with

33

34 CHAPTER 3. BOUNDED COMBINATORY LOGIC

System Complexity Author(s)

FCL(≤) Ptime Rehof and Urzyczyn [2011a]
FCL(∩,≤) Exptime Rehof and Urzyczyn [2011a]
BCLk(≤) Exptime Düdder et al. [2012]
BCLk(∩,≤) (k+2)-Exptime Düdder et al. [2012]
CL(SK)→ Pspace Statman [1979]
λ(− ∩ I) Expspace Rehof and Urzyczyn [2012]
λr2∩ Expspace Urzyczyn [2009]
λ∩ ∞ Urzyczyn [1999]
CL(∩) ∞ Dezani-Ciancaglini and Hindley [1992]

and Urzyczyn [1999]

Table 3.1: Complexity results for various provability (inhabitation) problems

intersections types was studied by Dezani-Ciancaglini and Hindley [1992],
where it was shown that the combinatory system is complete in that it is
logically equivalent to the λ-calculus by term (proof) translations in both
directions. It follows that provability (inhabitation) for combinatory logic
with intersections types is undecidable. If arbitrary sets of axiom schemes are
considered, then the inhabitation problem is undecidable even for simple types
(λ→) as described in Section 1.1 on page 3 shown by Linial and Post [1949]
(Linial-Post theorem). Table 3.1 lists some complexity results on deciding
provability (inhabitation) in various systems.

For composition, a logic with modus ponens is meaningful, because we
can interpret the usage of modus ponens as applying a composition operation.

Under the Curry-Howard isomorphism, combinator types correspond to
axiom schemes of propositional logic in a Hilbert-style proof system, with
modus ponens and a rule of axiom scheme instantiation as the principles of
deduction. The schematic interpretation of axioms corresponds to implicit
polymorphism of combinator types, where type variables (α, β, γ, . . .) may
be instantiated with arbitrary types. Thus, the combinator K has types
τ → σ → τ for all τ and σ. In logic, implicit polymorphism is termed typical
ambiguity.

Restricting combinatory logic with intersection types to a monomorphic
system forming a Hilbert-style logic has been studied by Rehof and Urzyczyn
[2011a]. The resulting logic with intersection types and subtyping is called
finite combinatory logic FCL(∩,≤). Its provability problem is decidable in
Exptime.

Bounded combinatory logic BCLk(∩,≤) extends FCL(∩,≤) by a restricted

3.2. INTERSECTION TYPES 35

form of polymorphism but avoids undecidability. Bounded combinatory logic
restricts substitutions of variables by a bound on the depth of types that are
instantiated by substitutions. Düdder et al. [2012] showed that synthesis in
BCLk(∩,≤) is (k + 2)-Exptime-complete.

A way to refine the specification of components is presented in the fol-
lowing section. Whereas in addition, in the next chapter different heuristical
optimization approaches for the synthesis problem are presented, that allow
the solution of the synthesis problem under a reasonable resource consumption
in practical applications. To understand these optimizations and for discussing
the theoretical problems, this chapter contains the mathematical foundation
and begins with the basics of the combinatory logic and its definitions.

3.2 Intersection Types

The current section is mainly reproduced from our paper that introduces
BCLk(∩,≤) [Düdder et al., 2012], but is expanded with more details, for
example detailed proofs, and examples. Further details on BCLk(∩,≤) can
be found in technical report [Düdder et al., 2012].

Intersection types have been introduced by Barendregt, Coppo, and Dezani-
Ciancaglini [1983] to define a type system which characterizes exactly strong
normalizing λ-terms. The system types the strongly normalizing terms [Coppo
and Dezani-Ciancaglini, 1980, Pottinger, 1980], hence typability is undecidable.
In contrast, typability in simple types, λ→, is decidable in linear time, so
there is an immense gap between simple types and intersection types from
the perspective of typability.

The connection between strong normalization and program termination
in λ-calculus with typeability in intersection types provides an indication
on the expressibility of intersection types with regard to specification of
computations.

The inhabitation problem for λ-calculus with intersection types is closely
related to the λ-definability problem [Salvati, 2009, Salvati et al., 2012] and
is also undecidable [Urzyczyn, 1999]. In contrast, deciding the inhabitation
problem for simple types is PSpace-complete [Statman, 1979].

Intersection types are regarded interesting for the overarching synthesis
purposes presented in this thesis, because intersection types are known to
capture deep semantic properties of λ-terms [Dezani-Ciancaglini and Hindley,
1992].

36 CHAPTER 3. BOUNDED COMBINATORY LOGIC

3.2.1 Types

Type expressions, ranged over by τ, σ etc., are defined by

τ, τ ′ ::= a | ω | τ → τ ′ | τ ∩ τ ′ | C(· · ·)

where a, b, c, . . . range over atoms comprising of type constants, drawn from
a finite set A including the constant ω, and type variables, drawn from a
disjoint denumerable set V ranged over by α, β, γ, . . ., and type constructors
drawn from a disjoint denumerable set C ranged over C,C ′, We let T
denote the set of all types.

As usual [Barendregt et al., 1983], types are taken modulo commutativity
(τ ∩ σ = σ ∩ τ), associativity ((τ ∩ σ) ∩ ρ = τ ∩ (σ ∩ ρ)), and idempotentcy
(τ ∩ τ = τ). As a matter of notational convention, function types associate
to the right, and ∩ binds stronger than →.

Let Var(τ) and At(τ) denote, respectively, the set of variables and the
set of atoms occurring in τ .

A type τ ∩ σ is said to have τ and σ as components. For an intersection
of several components we sometimes write

n
i=1 τi or

i∈I τi or

{τi | i ∈ I},

where the empty intersection (

i∈∅) is identified with ω.

3.2.2 Subtyping

Intersection types come with a natural notion of subtyping ≤ as given by Baren-
dregt, Coppo, and Dezani-Ciancaglini [1983] and presented by Barendregt et al.
[2013]. Subtyping ≤ is the least preorder (that is a reflexive and transitive
relation) on T, satisfying the following axioms with τ, τ ′, σ, σ′, ρ, ω ∈ T:

σ ≤ ω, ω ≤ ω → ω, σ ∩ τ ≤ σ, σ ∩ τ ≤ τ, σ ≤ σ ∩ σ;

(σ → τ) ∩ (σ → ρ) ≤ σ → τ ∩ ρ;

If σ ≤ σ′ and τ ≤ τ ′ then σ ∩ τ ≤ σ′ ∩ τ ′ and σ′ → τ ≤ σ → τ ′.

Type constant ω is the least-upper bound with respect to the subtyping
relation ≤. We may extend the subtyping relation ≤ on T by a ≤ a′ with
a, a′ ∈ A by adding the axiom (a, a′) ∈ A ⇒ a ≤ a′ to the axioms given in
Barendregt et al. [1983]. Subtyping is shown decidable in Ptime by Rehof
and Urzyczyn [2011a].

We identify σ and τ , written as σ = τ , when σ ≤ τ and τ ≤ σ. The
relation = is referred to as type equality. We write σ ≡ τ , if σ and τ are
syntactically identical. For τ ≤ σ we will say:

3.2. INTERSECTION TYPES 37

• that τ is a subtype of σ and vice versa

• that σ is a supertype of τ .

The following two convenient distributivity properties follow from the
previous axioms of subtyping:

(σ → τ) ∩ (σ → ρ) = σ → (τ ∩ ρ)

(σ → τ) ∩ (σ′ → τ ′) ≤ (σ ∩ σ′)→ (τ ∩ τ ′)

We extend the subtyping relation ≤ with additional covariant type con-
structors C(· · ·) ∈ C. These type constructors have arity n ≥ 0 but do not
distribute over → and ∩. We identify type constructors with 0-arity with
type constants.

We say that a type τ is reduced with respect to ω if it has no subterm of the
form ρ∩ω or τ1 → · · · → τm → ω with m ≥ 1. It is easy to reduce a type with
respect to ω, by applying the equations ρ∩ω = ρ and τ1 → · · · → τm → ω = ω
left to right.

We augment the subtyping relation ≤ from [Barendregt et al., 1983] by
covariant type constructors.

Definition 3.2.1. (Subytping relation ≤C)
The subtyping relation ≤C is the smallest transitive closure of the subtyping
relation ≤ with covariant type constructors C ∈ C with n the number of
arguments of C and the additional subtyping rule:

τ1 ≤C σ1, . . . , τn ≤C σn ⇒ C(τ1, . . . , τn) ≤C C(σ1, . . . , σn)

We have to show that the extension from ≤ to ≤C does not change the
complexity of deciding the subtype relation.

Lemma 3.2.1. The subtyping relation ≤C for intersection types is decidable
in Ptime.

Proof. The first observation is that for a covariant type constructor linearly
(in the number of the arguments) many checks of the subtyping relation
≤C must be performed, because these covariant type constructors are not
distributive. Even, in nested covariant type constructors can occur linearly
many times. Therefore, at most linear many arguments of covariant type
constructors exist in a type. Assume type τ has k and type σ has l arguments.
Then at most k × l subtype checks ≤ must be performed. The subtype
≤ check is computable in Ptime [Rehof and Urzyczyn, 2011a]. Therefore,
deciding ≤C is also in Ptime.

38 CHAPTER 3. BOUNDED COMBINATORY LOGIC

The following property, probably first stated in [Barendregt et al., 1983],
is often called beta-soundness . Note that the converse is trivially true.

Lemma 3.2.2. Let a and aj, for j ∈ J , be atoms.

1. If

i∈I(σi → τi) ∩

j∈J aj ≤ a then a = aj, for some j ∈ J .

2. If

i∈I(σi → τi) ∩

j∈J aj ≤ σ → τ , where σ → τ ̸= ω, then the set

{i ∈ I | σ ≤ σi} is nonempty and

{τi | σ ≤ σi} ≤ τ .

3.2.3 Paths

If τ = τ1 → · · · → τm → σ, then we write σ = tgtm(τ) and τi = arg i(τ), for
i ≤ m. We say that σ is a target of τ and τi is the i-th argument of τ .

If arg i(τ) = ρ for all i we also write τ = ρm → σ. A type of the form
τ1 → · · · → τm → a, where a ̸= ω is an atom,1 is called a path of length m.
A type τ is organized if it is a (possibly empty) intersection of paths (those
are called paths in τ).

Lemma 3.2.3. Every type τ is equal to an organized type τ , computable in
polynomial time [Rehof and Urzyczyn, 2012].

Proof. Define a = a if a is an atom and let τ ∩ σ = τ ∩σ. If σ =

i∈I σi then
take τ → σ =

i∈I(τ → σi).

Note that premises in an organized type do not have to be organized, i.e.,
organized is not necessarily the same as normalized in the sense of Hindley
[1982]. Essentially, τ is obtained by repeatedly applying the distributivity
property above to any intersection occurring as a target of τ .

For an organized type σ, we let Pm(σ) denote the set of all paths in σ
of length m or more. We extend the definition to arbitrary τ by implicitly
organizing τ , i.e., we write Pm(τ) as a shorthand for Pm(τ).

The size of a type τ , denoted |τ |, is defined to be the number of nodes
in the syntax tree of τ (this is identical to the textual size of τ). The path
length of a type τ is denoted ∥τ∥ and is defined to be the maximal length of
a path in τ .

1Note that τ1 → · · · → τm → ω = ω.

3.3. BOUNDED COMBINATORY LOGIC 39

3.2.4 Substitutions

A substitution as given in [Düdder et al., 2012] is a function S : V → T
such that S is the identity everywhere but on a finite subset of V. For a
substitution S, we define the support of S, written Supp(S), as Supp(S) =
{α ∈ V | α ̸= S(α)}. We may write S : V → T when V is a finite subset of V
with Supp(S) ⊆ V . With At(τ) defining the set of type atoms occurring in τ
we write At(S) to denote the set {At(S(α)) | α ∈ Supp(S)}. A substitution S
is tacitly lifted to a function on types, S : T→ T, by homomorphic extension.

Definition 3.2.2. (Application of substitution)
An application of a substitution S = {α1 →→ τ1, . . . , αn →→ τn} on types to a
type σ is defined as follows:

S(a) =a if a ∈ A
S(αi) =τi if αi ∈ V

S(

j∈J

σi) =

j∈J

S(σj)

S(σ1 → σ2) =S(σ1)→ S(σ2)

S(C(σ1, . . . , σm)) =C(S(σ1), . . . , S(σm)) if C ∈ C.

A type σ′ with σ′ = S(σ) is called an instantiation of a type σ under
substitution S.

A kinded type variable α of kind κA with a set of type atoms A ⊆ A,
written as α.κA, restricts the set of type atoms for substitutions applied on α
to A. We may omit A in α.κA and write α.κ if A is clear from the context of κ.
With TA we denote all intersection types that can be constructed with A ⊆ A
(TA = {t ∈ T | At(t) ⊆ A}). The following definition extends Definition 3.2.2
to kinded variables as follows:

Definition 3.2.3. (Substitution of kinded variables)
A substitution S for a kinded type variable α.κA of kind κA satisfies

S(α.κA) ∈ TA.

We canonically extend substitutions to sets of kinded type variables using
Definition 3.2.3 compatibly. For convenience, we use anonymous substitutions
S and write {α →→ S(α) | α ∈ V}.

3.3 Bounded Combinatory Logic

After introducing intersection types, we can define bounded combinatory
logic. As motivated in Section 1.2 on page 5, term application represents

40 CHAPTER 3. BOUNDED COMBINATORY LOGIC

composition and typed combinators represent components in a repository
of semantically annotated components. The current section will make this
representation more precise.

Applicative terms ranged over by e, e′, . . . are defined by

e ::= x | (e e).

Here x, y, z, . . . range over a denumerable set of combinators and (e e) is
referred to as an application. We use the convention that application associates
to the left and we freely omit outermost parentheses. Thus, any applicative
term can be written uniquely as x e1 . . . en. We freely denote x e1 . . . en by
x(e1, . . . , en), representing x as an n-ary function. A type environment Γ is a
finite set of type assumptions of the form x : τ interpreted as x has type τ .

Definition 3.3.1. (Type levels)
Given a type τ , we define the level of τ , written ℓ(τ), as follows.

ℓ(a) = 0, for a ∈ A ∪ V;
ℓ(τ → σ) = 1 + max{ℓ(τ), ℓ(σ)};
ℓ(
n

i=1 τi) = max{ℓ(τi) | i = 1, . . . , n}.

The level of a substitution S, written ℓ(S), is defined as

ℓ(S) = max{ℓ(S(α)) | α ∈ V}.

A level-k type is a type τ with ℓ(τ) ≤ k, and a level-k substitution is a
substitution S with ℓ(S) ≤ k. For k ≥ 0, we let Tk denote the set of all level-k
types. For a subset A of atomic types, we let Tk(A) denote the set of level-k
types with atoms (leaves) in the set A.

Notice that the level of a type is independent from the width (number of
arguments) of intersections. Notice also that ℓ(S) is completely determined
by the restriction of S to Supp(S): if Supp(S) = ∅, then ℓ(S) = 0, and if
Supp(S) ̸= ∅, then ℓ(S) = max{ℓ(S(α)) | α ∈ Supp(S)}. Finally, we have
ℓ(S ◦ S ′) ≤ ℓ(S) + ℓ(S ′) where ◦ denotes function composition.

3.3.1 Type Assignment

For each k ≥ 0 the system BCLk(∩,≤) (k-bounded combinatory logic with
intersection types) is defined by the type assignment rules shown in Figure 3.1.
In rule (var), the condition ℓ(S) ≤ k is understood as a side condition to the
axiom Γ, x : τ ⊢k x : S(τ). The restriction to simple types (types without ∩)
is called BCLk(≤,→) and is defined by the rules (var), (→E) and (≤), where

3.3. BOUNDED COMBINATORY LOGIC 41

τ and τ ′ range over simple types, by dropping all axioms from the subtyping
relation that involve ∩, and by considering only substitutions S mapping
type variables to simple types. Recalling from Rehof and Urzyczyn [2011a]
finite combinatory logic with intersection types, denoted FCL(∩,≤), can be
presented as the restriction of BCLk(∩,≤) in which the (var) rule is simplified
to the axiom Γ, x : τ ⊢k x : τ in which substitution is disallowed.

Under the type assumptions in Γ, the statement Γ ⊢k e : τ denotes that
the applicative term e can be given the type τ .

[ℓ(S) ≤ k]

Γ, x : τ ⊢k x : S(τ)
(var)

Γ ⊢k e : τ → τ ′ Γ ⊢k e′ : τ

Γ ⊢k (e e′) : τ ′
(→E)

Γ ⊢k e : τ1 Γ ⊢k e : τ2
Γ ⊢k e : τ1 ∩ τ2

(∩I)
Γ ⊢k e : τ τ ≤ τ ′

Γ ⊢k e : τ ′
(≤)

Figure 3.1: Bounded combinatory logic BCLk(∩,≤)

3.3.2 Relativized Inhabitation Problem

The inhabitation problem is the following decision problem:
Assuming a fixed Γ, given a type τ as input, is there a term e with

Γ ⊢ e : τ?
The term e is called an inhabitant (of τ). Note, that the type environment

Γ is not part of the input to the inhabitation problem and contains a fixed
set of combinators like SK. In contrast, the relativized inhabitation problem
is the following decision problem abbreviated as Γ ⊢ ? : τ :

Given Γ and τ , is there a term e with Γ ⊢ e : τ?
The term e is also called an inhabitant (of τ) and type τ is an inhabitation

goal, request, or question. In the relativized inhabitation problem, the type
environment Γ is also part of the input and makes the decision problem harder
to solve with respect to the complexity class of the problem. From here, we
will refer to the relativized inhabitation problem whenever we will use the
notion inhabitation (problem).

The power of using intersection types as type constructs is demonstrated
in a brief example. The example contains an excerpt of the tracking object
example presented in Section 1.3 on page 7 and is discussed in more detail.

Example 3.1. Assume a type environment Γ with the following definition
and concrete, native types tempFh and tempCel denoting a temperature in

42 CHAPTER 3. BOUNDED COMBINATORY LOGIC

degree Fahrenheit respectively in Celsius, int, and double

Γ = {
Conv : tempFh→ tempCel ∩ int→ double,

M : tempFh ∩ int
}

If we now ask the relativized inhabitation question Γ ⊢ ? : double ∩ tempCel,
then a direct inhabitation try will fail, because no combinator in the type
environment Γ has this goal type. However, by applying the (∩E)-rule to both
sides of M as well as on both sides of Conv and by using the (∩I)-rule on the
conclusions, we can conclude that Γ ⊢ ConvM : double ∩ tempCel holds
and the inhabitant is ConvM. The specification by intersection types leads to
non-trivial and not directly obvious inhabitants.

Without going into the formal definitions, we present a small example
illustrating these ideas and the definitions above for synthesizing software
connectors. This example anticipates a more detailed definition of the syn-
thesis method as well as comes back to the discussion of software connector
synthesis in the previous chapter.

Example 3.2. Assume we are given two interfaces I and I ′ of two separate
components that have to be connected. We are further given a building
block b that implements such a connection if it is provided with interfaces I1
and I2 and two (software) components C1 respectively C2 that provide these
two interfaces. We further assume that C1 is an adapter (a) and C2 is a
(transaction) monitor (m), and that b preserves the properties of the interfaces
it requires. The scenario can be described by the following typed repository
Γ = {b : (I1 → I2 → I ′ → I) ∩ (α → β → α ∩ β),C1 : I1 ∩ a,C2 : I2 ∩m}.
By asking the inhabitation question Γ ⊢? : (I ′ → I) ∩ a ∩ m we ask for a
connection between I ′ and I that is an adapter and a monitor as well. We
obtain the inhabitant b(C1,C2), describing how the building block and the
components have to be composed.

The following lemma is important for optimization and states that, when-
ever a type is not inhabited, all its subtypes are also not inhabited.

Lemma 3.3.1. Let τ and τ ′ be types with τ ≤ τ ′.
If Γ ̸⊢ ? : τ ′ holds, then Γ ̸⊢ ? : τ also holds.

Proof. Assume there exists an applicative term M with Γ ⊢ M : τ . Using
the (≤)-rule in Figure 3.1, we can conclude Γ ⊢ M : τ ′, which contradicts
the initial assumption. Therefore, there cannot exist an applicative term M
with Γ ⊢ M : τ .

3.4. ALTERNATING TURING MACHINES 43

We will also need to refer often to a special case of type inhabitation and
therefore introduce the following definition.

Definition 3.3.2. (Direct inhabitation)
An inhabitation question Γ ⊢ ? : τ is inhabited directly if Γ ⊢ ? : τ is
inhabited and the inhabitant e is a single combinator.

Proposition 3.3.2. The relativized inhabitation problem for BCLk(∩,≤) with
≤C subtyping is (k + 2)−Exptime-complete.

Proof. Because ≤C and ≤ are decidable in Ptime, the subtyping relation ≤
in the relativized inhabitation problem for BCLk(∩,≤) can be substituted by
≤C without changing the complexity class of the problem.

We do not distinguish both inhabitation problems for ≤ and ≤C and
simply write ≤.

3.4 Alternating Turing Machines

The synthesis algorithm in the next section uses an alternating Turing machine
(ATM) as formal computation model. An ATM as proposed in [Chandra et al.,
1981] is a tuple M = (Σ, Q, q0, qa, qr,∆). The set of states Q = Q∃ ⊎ Q∀ is
partitioned into a set Q∃ of existential states and a set Q∀ of universal states.

There is an initial state q0 ∈ Q, an accepting state qa ∈ Q∀, and a rejecting
state qr ∈ Q∃.The successor relation C ⇒ C ′ on configurations is defined as
usual according to the transition relation ∆ [Papadimitriou, 1994].

The notion of eventually accepting configuration is defined by induction
as follows:

• An accepting configuration is eventually accepting.

• If C is existential and some successor of C is eventually accepting then
so is C.

• If C is universal and all successors of C are eventually accepting then so
is C.

An input is said to be accepted byM if and only if the initial configuration
is eventually accepting.

Formally we define the set of all eventually accepting configurations as
the smallest set satisfying the appropriate closure conditions.

44 CHAPTER 3. BOUNDED COMBINATORY LOGIC

3.5 Deciding Relativized Inhabitation

The relativized inhabitation problem for BCLk(∩,≤) is shown to be (k +
2)−Exptime-complete by Düdder et al. [2012]. In [Düdder et al., 2012] an
alternating Turing machine in Algorithm 3.1 is given deciding relativized
inhabitation in BCL0(∩,≤) .

We use a shorthand notation for instruction sequences starting from exis-
tential states (choose . . .) and instruction sequences starting from universal
states (forall . . .). A command choose s ∈ S branches from an existential
state to successor states in which s gets assigned distinct elements of the set
of successor states S. A command forall(l = 1 . . .m) seqi branches from an
universal state to m successor states from which each instruction sequence
seqi is executed.

Algorithm 3.1: ATM deciding inhabitation in BCL0(∩,≤)

1: Input: Γ, τ, k
2: Output: INH1 accepts iff ∃e such that Γ ⊢k e : τ
3:

4: loop:
5: CHOOSE (x : σ) ∈ Γ;
6: σ′ :=

{S(σ) | S a substitution};

7: CHOOSE m ∈ {0, . . . ∥σ′∥};
8: CHOOSE P ⊆ Pm(σ′);
9:

10: if

π∈P tgtm(π) ≤ τ then
11: if m = 0 then
12: ACCEPT;
13: else
14: FORALL (l = 1 . . .m) τ :=

π∈P argl(π);

15: GOTO loop;
16: end if
17: else
18: FAIL;
19: end if

Informally, the ATM proceeds as follows: τ holds the value of the current
inhabitation goal. In lines 5–8, the machine non-deterministically guesses x,
m, and P . Line 10 filters these guesses, checking whether the resulting target
intersection is a subtype of the current goal type τ . If this is the case, the
machine transitions to a universal state (line 14) from which every branch of

3.5. DECIDING RELATIVIZED INHABITATION 45

the computation spawns a new goal τ based on the corresponding argument
types. Then, computation loops back to line 4. The computation stops when
no further arguments have to be processed (line 12). The machine fails if no
choices leading to acceptance are possible.

The machine can be shown to operate in alternating exponential space
and with the results of Chandra et al. [1981] in (k + 2)-Exptime [Düdder
et al., 2012]. A short applicative example will show an inhabitation more
detailed.

Example 3.3. We will explain the algorithm by discussing an example in
simple types without type variables. Assume a type environment

Γ = {x : τ ′, y : τ ′′, . . .}

and a relativized inhabitation question:

Γ ⊢ ? : τ

The algorithm in Figure 3.1 proceeds as follows

1. Guess non-deterministically a combinator x out of Γ

x : τ1 → . . .→ τn−1 → τn

2. Guess non-deterministically, m, the number of arguments of x

x : τ1 → . . .→ τm
m arguments

→ τm+1 → . . .→ τn
target

3. Check if the target is a subtype of τ (else redo guesses)

x : τ1 → . . .→ τm → τm+1 → . . .→ τn
target≤τ?

4. Check if all m arguments can be inhabited (else redo guesses)

x : τ1 → . . .→ τm
m arguments

→ τm+1 → . . .→ τn

Intersections types need a more sophisticated treatment.

• Line 10: Targets of possible paths π where the intersection of all targets
must be a subtype of τ .

46 CHAPTER 3. BOUNDED COMBINATORY LOGIC

• Line 14: Additionally, in order that τ is inhabited every argument of
a possible path π must also be inhabited such that intersections of all
corresponding arguments of possible paths π are inhabited as well.

It can be seen that the algorithm tries to prove a target by proving all its
arguments. In this case, such an algorithm is similar to logic programming
with Horn-clauses.

A Horn-clause in reverse form:

q ←− p1, . . . , pk.

with q as head of the Horn-clause and a tail p1, . . . , pk. The selective linear
definite (SLD) resolution uses a similar proof strategy. In order to prove
predicate q all predicates pi with i ∈ {1, . . . , k} must be proven.

In Prolog the previous Horn-clause can be written as:

q :- p1, ..., pk.

In addition, a coding for a two-counter automaton in simple types is
provided by Rehof [2013] and demonstrates the computational power even
of simple types, because two-counter automatons are known to be Turin-
complete.

3.6 Combinatory Logic Synthesis

Rehof [2013] proposed the combinatory logic synthesis (CLS) as a method
that uses relativized type inhabitation in combinatory logic, for instance, in
BCLk(∩,≤) for composition synthesis. In this method, the type environment
Γ can be understood as a repository of named components. A component x
is specified via its intersection type σ and is included as typed combinator
in the type environment or repository (x : σ) ∈ Γ. Intersection types can be
used to build feature vectors by intersecting these features in order to refine
specifications of components.

With a given repository Γ and a target specification τ , we construct an
inhabitant e satisfying Γ ⊢ e : τ . A combinatory inhabitant e is a program
composed by applicative combination of the components in the repository
Γ. A type inhabitation algorithm could therefore be used to compute such
programs e. It allows the automatic synthesis of the program e from a specific,
given Γ that may be changed for different applications or scenarios. The
framework of relativized inhabitation in combinatory logic might be the right
logical model for this process, because the repository Γ may change. The idea

3.7. RELATED WORK ON SYNTHESIS 47

of combinatory logic synthesis is loosely connected to the concept of abstract
logic programming languages presented by Miller et al. [1991] where a proof
search defines the declarative semantic of a logic program.

3.7 Related Work on Synthesis

Since the pioneering work of Church [1957] on circuit synthesis inaugurated
a class of deep lying problems in computer science (now commonly referred
to as “Church’s Problem”), automatic synthesis of software has been and
remains an important active area of research. Some recent work on synthesis
will be discussed.

In its most general form, the synthesis problem asks to automatically
construct a program satisfying a given logical specification. The two major
challenges in synthesis are

1. algorithmic complexity and

2. specification complexity.

Whereas synthesis has so far been employed in specialized fields of engineering
(by way of example, circuit synthesis, controller synthesis, VLSI design), much
potential still lies untapped in extending the scope of synthesis to larger classes
of software-intensive applications. Currently, the first mentioned challenge (1)
is being addressed by considering synthesis from a given library of components
rather than synthesizing a program from scratch (for instance, current work
by Lustig and Vardi [2009]). This line of work has, however, remained within
the classical specification framework of temporal logic which is often difficult
to use in practice for larger classes of software systems. Basin et al. [2004]
survey different methods for synthesizing recursive programs in computational
logic. Recently, Bodik and Jobstmann [2013] provide a concise introduction
into algorithmic program synthesis and distinguish reactive synthesis as well
as functional synthesis. Reactive synthesis focuses on synthesizing reactive
systems by using temporal specifications, for example linear time logic (LTL).
Whereas functional synthesis is characterized by candidate spaces. Candidate
spaces are a set of programs that a synthesizer considers when deriving
a program satisfying a given specification. Furthermore, such candidate
spaces can discriminated into semantical (with axioms) or syntactical (with
grammars) candidate spaces. Within the classification scheme provided in
[Bodik and Jobstmann, 2013], combinatory logic synthesis can be classified
as functional synthesis with semantic candidate spaces.

In their work, the research group of Rehof are developing new synthesis
algorithms and specification techniques based on combinatory logic and

48 CHAPTER 3. BOUNDED COMBINATORY LOGIC

constructive type theory in [Rehof and Urzyczyn, 2011a], [Rehof and Urzyczyn,
2012], [Rehof, 2013], and [Düdder et al., 2012]. This allows specifications
to be much easier to connect to components by exploiting that component
interfaces are natively equipped with type structure and that type structure
naturally allows scaling the level of abstraction in specifications. The basic
approach is to specify components by means of taxonomic type structures in
a semantic type system based on the formalism of intersection types, which
is known to combine extreme simplicity with enormous semantic expressive
power. While radically novel, this line of work has already demonstrated its
viability in applications to robotics and the generation of GUI-applications,
for example, presented in [Düdder et al., 2012].

Interestingly, the bounded problem for k = 0 is comparable to other
synthesis frameworks, for instance, LTL- [Vardi, 2008] and propositional
dynamic logic synthesis [Lange and Lutz, 2005, Tuominen, 1988], which are
2-Exptime-complete but appear to be algorithmically quite different. Our
approach can be broadly compared in spirit (rather than in technology) to
synthesis of loop free programs proposed by Gulwani et al. [2011] and proof-
theoretic synthesis by Srivastava et al. [2010]. The combinatory approach is
fundamentally different, at a technical level, from such approaches that are
based on either temporal logic, automata theory, or traditional program logics.
The specification language, the logic and the algorithmics of combinatory logic
synthesis are distinct in being based on type theoretical and proof theoretical
ideas for propositional logics of the Hilbert type. We expect that future work
will raise many questions concerning engineering Hilbert-style propositional
logics which is not as well understood as it should be. A general introduction
to the combinatory standpoint can be found in [Rehof, 2013].

The CLS approach is related to adaptation synthesis via proof counting
discussed by Haack et al. [2002], Wells and Yakobowski [2005], where semantic
types are combined with proof search in a specialized proof system. In partic-
ular, we follow the approach of Haack et al. [2002], Wells and Yakobowski
[2005] in using semantic specifications at the interface level. The idea of adap-
tation synthesis by Haack et al. [2002] is related to our notion of composition
synthesis presented in Section 1.1 on page 3, however our logic is different, our
design of semantic types with intersection types is novel, and the algorithmic
methods are different. In [Haack et al., 2002] the specification language used
is a typed predicate logic. Semantic intersection types can be compared to
refinement types by Freeman and Pfenning [1991], but semantic types do not
need to stand in a refinement relation to implementation types (as can be
seen from our examples, this is important). Still, refinement types are a great
source of inspiration for how semantic types can be used in specifications in
many interesting situations.

3.7. RELATED WORK ON SYNTHESIS 49

Composition synthesis based on combinatory logic as presented by Hindley
and Seldin [2008] with intersection types by Barendregt, Coppo, and Dezani-
Ciancaglini [1983] was introduced and developed in the following line of
work in [Rehof and Urzyczyn, 2011a], [Düdder et al., 2012], [Düdder et al.,
2012], [Rehof, 2013], and [Düdder et al., 2013a]. The complexity theoretical
and algorithmic foundations of the relativized inhabitation problem were
laid down in [Rehof and Urzyczyn, 2011a, Düdder et al., 2012] (Exptime-
completeness for the monomorphic restriction, (k+ 2)-Exptime-completeness
for the k-bounded restrictions). The lower-bound techniques provide insights
into the expressive power of inhabitation in the combinatory framework,
including connections to tree automata in [Rehof and Urzyczyn, 2011a] and
ATMs in [Düdder et al., 2012]. A type environment can be interpreted as
logic program and relativized type inhabitation as execution of such a logic
program. Grossof et al. [2003] present an approach for combining description
logic programs that are related to description Horn logic.

A closely related work to component-based synthesis is presented by Steffen
et al. [1997]. In that work linear process models, a sequence of components, are
automatically synthesized from semantically extended temporal constraints
in semantic linear time logic (SLTL), specifying a given set of components.
This work also allows for semantic specification and uses types respectively
subtyping to capture taxonomic hierarchies.

An orthogonal approach for synthesis of services is presented by Jannach
and Leopold [2007]. In this work, an artificial intelligence (AI) planning
algorithm, the Stanford Research Institute Problem Solver (STRIPS), is used
to synthesize a pipeline of processors for transforming video data depending
on display capabilities and users’ preferences. Another approach is synthesis
using constraint-solver as presented by Lamprecht et al. [2011]. The constraint
solver searches for solutions in the solution space spanned by the constraint
definitions.

50 CHAPTER 3. BOUNDED COMBINATORY LOGIC

Chapter 4

Optimization of CLS

This chapter discusses two orthogonal families of approaches for optimizing
relativized inhabitation in BCLk(∩,≤).

The first family of approaches addresses the optimization of the theo-
retical algorithm presented as ATMs in Chapter 3.3. These optimizations
will lead to reformulations of the inhabitation algorithm including a com-
bined heuristic optimization providing a significant speed-up. The combined
heuristic uses sufficient restrictions on possible substitutions examined by the
algorithm as well as a sufficient restriction on newly generated inhabitation
requests. Employing the combined heuristic yields a speed-up that is verified
by experiments later in this chapter.

The second family of approaches, considered in Section 4.2, address a
possible implementation of the (distributed) relativized inhabitation algorithm.
This family includes algorithmic optimization of a more general nature and
are generally applicable to implementations of ATMs. With a distributed
implementation in mind, a specialized shared data-structure, execution graph,
for controlling and optimizing the computation of relativized inhabitation is
presented. A group of optimizations on type term level simplifying types for
efficient processing are discussed. Subsequently, computation of relativized
inhabitation is optimized by various approaches manipulating the execution
graph in order to reduce unnecessary computations. We will also apply results
from type theory (for instance using Lemma 3.3.1 on page 42) to make these
heuristical optimizations even more effective and efficient.

A distributed and concurrent algorithm unifying previous results of both
families of optimization will be shown and discussed in Section 4.3.

51

52 CHAPTER 4. OPTIMIZATION OF CLS

4.1 Theoretical Algorithm

We begin with the optimizations of the theoretical algorithm by primar-
ily exploiting type theoretic properties of relativized type inhabitation in
BCLk(∩,≤).

4.1.1 Restricting Intersections in Substitutions

One profound cause of the exponentially growing complexity of inhabitation in
the logic BCLk(∩,≤) (compared to the monomorphic restriction, FCL(∩,≤),
presented in [Rehof and Urzyczyn, 2011a]) lies in the need to search for
suitable instantiating substitutions S in rule (var). In [Düdder et al., 2012] it
is shown that one needs only to consider rule (var) restricted to substitutions
of the form S : Var(Γ) → Tk(Atω(Γ, τ)), where Atω(Γ, τ) denotes the set
of atoms occurring in Γ or τ , together with ω, and for k ≥ 0, Tk denotes
the set of all level-k types out of T. This finitizes the inhabitation problem
and immediately leads to decidability. Now, given a number k ≥ 0, an
environment Γ and a type τ , define for each x occurring in Γ the set of
substitutions S(Γ,τ,k)

x = Var(Γ(x))→ Tk(Atω(Γ, τ)). This set, as well as the
type size of substitutions, grows exponentially with k.

Let expk be the iterated exponential function, given by the following
definition

exp0(n) = n

expk+1(n) = 2expk(n)

The lemma below can be shown by an elementary counting argument.

Lemma 4.1.1 (Lemma 13 in [Düdder et al., 2012]). For every k ≥ 0, there
is a polynomial p(n) such that the number of level-k types over n atoms is
at most expk+1(p(n)), and the size of such types is at most expk(p(n)). The
number and size of simple level-k types (for a fixed k) is respectively bounded
by a polynomial and a constant.

The root of the (k + 2)-Exptime-hardness result of Düdder et al. [2012]
for inhabitation in BCLk(∩,≤) is the fact that one cannot bypass, in the
worst case, exploring such vast spaces of types and substitutions. However,
in applications, as presented in [Düdder et al., 2012] and in [Düdder et al.,
2012], it is to be expected that a complete, brute-force exploration of the

sets S(Γ,τ,k)
x is unnecessary. This is the point of departure for our heuristic

optimizations of the type theoretical algorithm of Düdder et al. [2012], which,
for convenience, is stated in the following. It is a (k + 1)-Expspace ATM,
yielding a (k + 2)-Exptime decision procedure.

4.1. THEORETICAL ALGORITHM 53

Algorithm 4.1: ATM deciding inhabitation in BCLk(∩,≤)

1: Input: Γ, τ, k
2: Output: INH1 accepts iff ∃e such that Γ ⊢k e : τ
3:

4: loop:
5: CHOOSE (x : σ) ∈ Γ;

6: σ′ :=

{S(σ) | S ∈ S(Γ,τ,k)

x };
7: CHOOSE n ∈ {0, . . . ∥σ′∥};
8: CHOOSE P ⊆ Pn(σ′);
9:

10: if

π∈P tgtn(π) ≤ τ then
11: if n = 0 then
12: ACCEPT;
13: else
14: FORALL (j = 1 . . . n) τ :=

π∈P argj(π);

15: GOTO loop;
16: end if
17: else
18: FAIL;
19: end if

The idea behind our first optimization is to show that for a type τ =

i∈I τi
to satisfy τ ≤ σ, where σ =

j∈J σj , the size of the index set I can be bounded

by the size of the index set J of σ. One might at first conjecture that it always
suffices to consider an index set I where |I| ≤ |J |. This is not true as can
easily be seen by considering (a→ b) ∩ (a→ c) ≤ a→ (b ∩ c), for example.
In this example, only choosing both paths a→ b and a→ c altogether leads
to inhabitation. But we show that the property holds for organized types.

Based on Lemma 3.2.2 on page 38 we characterize the subtypes of a path
(generalizing Lemma 3 in [Düdder et al., 2012]):

Lemma 4.1.2. Let τ =

i∈I τi where the τi are paths and let σ = β1 →
. . .→ βn → p where p ̸= ω is an atom.

We have τ ≤ σ if and only if there is an i ∈ I with τi = α1 → . . . →
αn → p and βj ≤ αj for all j ≤ n.

Proof. We write

i∈I τi =

j∈J aj ∩

k∈K σk → σ′
k (in particular I = J ∪K).

⇒: We use induction over n.

n = 0: We have

i∈I τi ≤ p where p is a type constant. Lemma 3.2.2
on page 38 states that there must be a j ∈ J with aj = p.

54 CHAPTER 4. OPTIMIZATION OF CLS

n⇒ n + 1: Assume

i∈I τi ≤ β1 → . . . → βn+1 → p. Lemma 3.2.2
on page 38 further states that the set H = {k ∈ K|β1 ≤ σk} is
non-empty and

h∈H σ′

k ≤ β2 → . . .→ βn+1 → p. Note that each
of the σ′

k is again a path. Therefore, we may apply the induction
hypothesis to the last inequality and we see that there is some
h0 ∈ H with σ′

h0
= α2 → . . . → αn+1 → p where βl ≤ αl for all

2 ≤ l ≤ n + 1. Because h0 ∈ H we know that β1 ≤ σh0 . Setting
α1 = σh0 , the type σh0 → σ′

h0
= α1 → . . . → αn+1 → τ has the

desired properties.

⇐: For this direction we first show by induction over n that a type α1 → . . .→
αn → p with βj ≤ αj for all j ≤ n is a subtype of β1 → . . .→ βn → p.

n = 0: There is nothing to prove because both types are equal to p.

n⇒ n + 1: We want to show α1 → . . . → αn+1 → p ≤ β1 → . . . →
βn+1 → p. Because of Lemma 3.2.2 on page 38 this inequality
holds if and only if β1 ≤ α1 and α2 → . . . → αn+1 → p ≤ β2 →
. . .→ βn+1 → p. The first inequality holds by the assumption and
the second one holds because of the induction hypothesis.

By assumption there is an i ∈ I with τi = α1 → . . . → αn → p and
βj ≤ αj for all j ≤ n. From the above we know τi ≤ β1 → . . .→ βn → p
and therefore also

i∈I τi ≤ β1 → . . .→ βn → p.

For σ =

j∈J σj (not necessarily organized), it is easy to see that one
has τ ≤ σ iff for all j we have τ ≤ σj. Using this observation together with
Lemma 4.1.2 we obtain:

Lemma 4.1.3. Let τ =

i∈I τi and σ =

j∈J σj be organized types that are
reduced with respect to ω.

We have τ ≤ σ iff there exists I ′ ⊆ I with |I ′| ≤ |J | and

i∈I′ τi ≤ σ.

Proof. The right-to-left implication is obvious.
Assume τ ≤ σ. This implies τ ≤ σj for all j ∈ J . Fix j ∈ J . σ

is organized and we write σj = βj
1 → . . . → βj

nj
→ pj. By the “if”-part

of Lemma 4.1.2 on the preceding page there is an index ij ∈ I such that

τij = α
ij
1 → . . . → α

ij
nj → pj with βj

k ≤ α
ij
k for all 1 ≤ k ≤ nj. Set

I ′ := {i ∈ I|∃j ∈ J with i = ij}. Clearly |I ′| ≤ |J | holds. For every j ∈ J
the “only if”-part of Lemma 4.1.2 on the previous page shows

i∈I′ τi ≤ σj

because τij satisfies the condition stated. This implies

i∈I′ τi ≤ σ.

4.1. THEORETICAL ALGORITHM 55

As shown in [Düdder et al., 2012], the key to an algorithm matching the
lower bound for BCLk(∩,≤) is a path lemma [Düdder et al., 2012, Lemma 11]
which characterizes inhabitation by the existence of certain sets of paths in
instances of types in Γ. The following lemma is a consequence of Lemma 4.1.3
on the facing page and Lemma 11 in [Düdder et al., 2012].

Lemma 4.1.4. Let τ =

i∈I τi be organized and let x : σ ∈ Γ.
The following are equivalent conditions:

1. Γ ⊢k x e1 . . . em : τ

2. There exists a set P of paths in Pm(

{S(σ) | S ∈ S(Γ,τ,k)

x }) such that

(a)

π∈P tgtm(π) ≤ τ ;

(b) Γ ⊢k ei :

π∈P arg i(π), for all i ≤ m.

3. There exists a set S ⊆ S(Γ,τ,k)
x of substitutions with |S| ≤ |I| and a set

P ′ ⊆ Pm(

S∈S S(σ)) of paths with |P ′| ≤ |I| such that

(a)

π∈P ′ tgtm(π) ≤ τ ;

(b) Γ ⊢k ei :

π∈P ′ arg i(π), for all i ≤ m.

Proof. The implication 1. ⇒ 2. follows from Lemma 10 in [Düdder et al.,
2012].

We prove 2.⇒ 3 : Let P be as in the condition, i.e.,

π∈P tgtm(π) ≤ τ .
Lemma 4.1.3 on the preceding page states that there is P ′ ⊆ P with |P ′| ≤ |I|
and

π∈P ′ tgtm(π) ≤ τ. For each π ∈ P ′ there exists Sπ ∈ S(Γ,τ,k)

x such that

π ∈ Pm(Sπ(σ)). Define S = {Sπ|π ∈ P ′}. It is clear that |S| ≤ |I| and that
P ′ ⊆ Pm(

S∈S S(σ)). Thus, 3.(a) holds. Fix i ≤ m. Because P ′ ⊆ P we

have

π∈P arg i(π) ≤

π∈P ′ arg i(π). Since we have Γ ⊢k ei :

π∈P arg i(π),
rule (≤) yields Γ ⊢k ei :

π∈P ′ arg i(π). Therefore, 3.(b) also holds.

The implication 3. ⇒ 1. follows from a suitable application of the type
rules.

We immediately get the following corollary.

Corollary 4.1.5 (Path Lemma). Let τ =

i∈I τi be an organized type and
let (x : σ) ∈ Γ.

The following are equivalent conditions:

1. Γ ⊢k x e1 . . . em : τ

2. There exists a set S ⊆ S(Γ,τ,k)
x of substitutions with |S| ≤ |I| and a set

P ⊆ Pm(

S∈S S(σ)) of paths with |P | ≤ |I| such that

56 CHAPTER 4. OPTIMIZATION OF CLS

(a)

π∈P tgtm(π) ≤ τ ;

(b) Γ ⊢k ej :

π∈P arg j(π), for all j ≤ m.

Algorithm 4.2 below is a direct implementation of the path lemma
(Corollary 4.1.5 on the previous page) and therefore decides inhabitation
in BCLk(∩,≤).

Algorithm 4.2: INH1’(Γ, τ, k)

1: Input: Γ, τ, k — wlog: All types in Γ and τ =

i∈I τi are organized
2: Output: INH1’ accepts iff ∃e such that Γ ⊢k e : τ
3:

4: loop:
5: CHOOSE (x : σ) ∈ Γ;

6: CHOOSE S ⊆ S(Γ,τ,k)
x with |S| ≤ |I|;

7: σ′ :=

{S(σ)|S ∈ S};

8: CHOOSE n ∈ {0, . . . ∥σ′∥};
9: CHOOSE P ⊆ Pn(σ′) with |P | ≤ |I|;
10:

11: if

π∈P tgtn(π) ≤ τ then
12: if n = 0 then
13: ACCEPT;
14: else
15: FORALL (j = 1 . . . n) τ :=

π∈P argj(π);

16: GOTO loop;
17: end if
18: else
19: FAIL;
20: end if

Algorithm 4.1 is identical to Algorithm 4.2 but for the fact that it ignores
the restrictions |S| ≤ |I| (line 6 in Algorithm 4.2) and |P | ≤ |I| (line 9). It
can be seen, from purely combinatorial considerations, that the optimization
resulting from taking these bounds into account can lead to arbitrarily large
speed-ups (when |I| is relatively small, as can be expected in practice).

4.1.2 Intersection Type Matching

Considering the ATM in Figure 3.1 on page 44, the complexity arises from the
intersection built in line 2 taking up exponential space. The (k+2)−Exptime-
hardness result of Düdder et al. [2012] shows that this complexity cannot be

4.1. THEORETICAL ALGORITHM 57

avoided in the worst case, but from a pragmatic point of view the ATM is very
suboptimal. In line 2 every possible instantiation of σ is combined into one
large intersection. From this intersection the paths relevant for inhabiting τ are
singled out in line 4. If it is possible to filter out substitutions beforehand that
do not contribute to inhabitation of τ the size of the intersection constructed
in line 2 can be reduced. This can lead to drastic speedups.

A subtyping relation between a type resulting from instantiations of σ
and τ has to be checked (see for line 5 in Figure 3.1 on page 44). Thus, an
important opportunity for speedups by filtering out nonessential substitutions
lies in solving the intersection type matching problem (cMATCH) [Düdder
et al., 2013a], i.e., the problem whether, given σ′ and τ ′, there exists a substi-
tution S with S(σ′) ≤ τ ′. This problem is NP-complete [Düdder et al., 2013a].
We present a variant of the ATM above, which uses a decision-procedure for
intersection type matching, Match(σ′ ≤ τ ′), to exclude unnecessary substi-
tutions. We further use intersection type matching to exclude substitutions
downstream which cannot lead to successful inhabitation of τ , even though
the test in line 5 succeeds. This may be the case because new inhabitation
questions are created which cannot be solved. The matching algorithm is
shown in Algorithm 4.3 on the next page. This outlined algorithm Match(C)
does not handle covariant type constructors. Because the covariant type
constructors are not distributive, Match(C) can be extended to process these
type constructors by including further case distinctions for recursively solving
constraints occuring in arguments of a covariant type constructor.

Definition 4.1.1. Matchable
Type σ is matchable with type τ if there exists a substitution S such that
S(σ) ≤ τ holds.

Extending this type matching algorithm by operating on ≤C might change
the problem’s complexity. This is not the case and is shown in the following
corollary.

Corollary 4.1.6. Deciding cMATCH and CMATCH1 with ≤C is NP-
complete.

Proof. This follows directly from the proof of lemma 4 in [Düdder et al.,
2013a] and the Lemma 3.2.1 on page 37 because arguments of covariant type
constructors are bundle sets of constraints without introducing novel type
constructors.

Using Corollary 4.1.6, we can exchange CMATCH’s subtyping relation
without effecting a change in the complexity of algorithm Match(C).

1In the sense of the definition given in [Düdder et al., 2013a].

58 CHAPTER 4. OPTIMIZATION OF CLS

Algorithm 4.3: Match(C) from Düdder et al. [2013a]

1: Input: C = {τ1 ≤ σ1, . . . , τn ≤ σn} such that for all i at most one
of σi and τi contains variables. Furthermore, all types have to be
organized.

2: Output: true if C can be matched otherwise false
3:

4: while ∃ nonbasic constraint in C do
5: choose a nonbasic constraint c = (τ ≤ σ) ∈ C
6: reduce τ and σ with respect to ω
7: switch
8: case: c does not contain any variables
9: if τ ≤ σ then
10: C := C\{c}
11: else
12: return false
13: end if
14: case: σ =

i∈I σi

15: C := C\{c} ∪ {τ ≤ σi|i ∈ I}
16:

17: write τ =

i∈I τi,1 → . . .→ τi,mi
→ pi, σ = σ1 → . . .→ σm → a

18: write I1 = {i ∈ I|mi < m}, I2 = {i ∈ I|mi = m},
I3 = {i ∈ I|mi > m}

19: case: σ contains variables, τ does not contain any variables
20: if a ∈ V then
21: CHOICE:
22: 1.) C := C\{c} ∪ {ω ≤ a}
23: 2.) choose ∅ ≠ I ′ ⊆ I2 ∪ I3
24: C := C\{c} ∪ {σj ≤ τi,j|i ∈ I ′, 1 ≤ j ≤ m}∪
25: {

i∈I′ τi,m+1 → . . .→ τi,mi

→ pi ≤ a}
26: else
27: choose i0 ∈ I2
28: C := C\{c} ∪ {σj ≤ τi0,j|1 ≤ j ≤ m} ∪ {pi0 ≤ a}
29: endif
30: case: τ contains variables, σ does not contain any variables
31: choose i0 ∈ I1 ∪ I2
32: C := C\{c} ∪ {σj ≤ τi0,j|1 ≤ j ≤ mi0}∪

{pi0 ≤ σmi0
+1 → . . .→ σm → a}

33: end switch
34: end while
35: if C is consistent then
36: return true
37: else
38: return false
39: end if

4.1. THEORETICAL ALGORITHM 59

This algorithm is discussed in detail in [Düdder et al., 2013a]. Line 21
contains a non-deterministic choice.

4.1.3 Matching Optimization

Algorithm 4.4 below checks for every target of every component σj of σ
and τi of the inhabitation goal τ whether the constraint consisting of the
corresponding target and τi is matchable. The τi can be inhabited by different
components of σ. The number n of arguments, however, has to be the same
for all i. This condition leads to the construction of N in line 10. Note that
we may need to compute tgtn(σj) in line 8 where n is larger than mj := ∥σj∥.
Any such call to Algorithm 4.3 on the preceding page in this line is assumed
to return false if tgtmj

(σj) is a type constant. If tgtmj
(σj) = α, then we check

matchability of α ≤ τi. The following lemma shows that it suffices to only
consider n with n ≤ ∥σ∥+ k in lines 7 and 10.

Lemma 4.1.7. Let σ be an organized type and let S be a level-k substitution.
We have ∥S(σ)∥ ≤ ∥σ∥+ k.

Proof. Let σ1 → . . . → σm → α be a longest path in σ whose target is a
variable. Note that m ≤ ∥σ∥. The worst case is that S(α) is a path of
length k. In this case we have ∥S(σ1) → . . . → S(σm) → S(α)∥ = m + k.
There are two cases: If S(σ1) → . . . → S(σm) → S(α) is a longest path in
S(σ), then we have ∥S(σ)∥ = m + k ≤ ∥σ∥+ k. Otherwise, a longest path in
S(σ) must have been created by instantiating a longest path in σ, and such a
path must be longer than m (and it does not have a variable in the target!).
We conclude ∥S(σ)∥ = ∥σ∥ ≤ ∥σ∥+ k.

We need an adaptation of Lemma 4.1.5 on page 55 to prove the correctness
of Algorithm 4.4 on the next page.

Lemma 4.1.8. Let τ be a path and let x : σ ∈ Γ where σ =

j∈J σj is
organized.

The following are equivalent conditions:

1. Γ ⊢k x e1 . . . em : τ

2. There exists S ∈ S(Γ,τ,k)
x and a path π ∈ Pm(Sτ (σ)) such that

(a) tgtm(π) ≤ τ ;

(b) Γ ⊢k el : arg l(π), for all l ≤ m.

3. There exists j ∈ J , S ∈ S(Γ,τ,k)
x , and π ∈ Pm(S(σj)) such that

60 CHAPTER 4. OPTIMIZATION OF CLS

Algorithm 4.4: INH2(Γ, τ, k)

1: Input: Γ, τ, k — wlog: All types in Γ and τ =

i∈I τi are organized
2: Output: INH2 accepts iff ∃e such that Γ ⊢k e : τ
3:

4: loop:
5: CHOOSE (x : σ) ∈ Γ;
6: write σ =

j∈J σj

7: for all i ∈ I, j ∈ J, n ≤ ∥σ∥+ k do
8: candidates(i, j, n) := Match(tgtn(σj) ≤ τi)
9: end for
10: N := {n ≤ ∥σ∥+ k | ∀i∈I∃j∈J : candidates(i, j, n) = true}
11: CHOOSE n ∈ N ;
12: for all i ∈ I do
13: CHOOSE ji ∈ J with candidates(i, ji, n) = true

14: CHOOSE Si ∈ S(Γ,τi,k)
x

15: CHOOSE πi ∈ Pn(Si(σji))
16: end for
17:

18: if ∀i∈I : tgtn(πi) ≤ τi then
19: if n = 0 then
20: ACCEPT;
21: else
22: FORALL (l = 1 . . . n) τ :=

i∈I argl(πi);

23: GOTO loop;
24: end if
25: else
26: FAIL;
27: end if

(a) tgtm(π) ≤ τ ;

(b) Γ ⊢k el : arg l(π), for all l ≤ m.

Proof. The implication 1.⇒ 2. follows from Corollary 4.1.5 on page 55.

We want to prove 2.⇒ 3 : Denote by S ′ and π′ the substitution and path
in condition 2. Because Pm(S ′(σ)) = Pm(

j∈J S

′(σj)) it is clear that there

is an index j′ such that π′ occurs in S ′(σj′). Choosing j = j′, S = S ′, and
π = π′, the conditions clearly hold.

The implication 3. ⇒ 1. follows from a suitable application of the type
rules.

4.1. THEORETICAL ALGORITHM 61

We get the following corollary:

Corollary 4.1.9. Let τ =

i∈I τi be organized and let (x : σ) ∈ Γ where
σ =

j∈J σj is also organized.

The following are equivalent conditions:

1. Γ ⊢k x e1 . . . em : τ

2. For all i ∈ I there exist ji ∈ J , Si ∈ S(Γ,τi,k)
x , and πi ∈ Pm(Si(σji)) with

(a) tgtm(πi) ≤ τi;

(b) Γ ⊢k el :

i∈I arg l(πi), for all l ≤ m.

Proof. It is clear that Γ ⊢k x e1 . . . em : τ is equivalent to Γ ⊢k x e1 . . . em : τi
for all i ∈ I. An application of the equivalence of conditions 1. and 3.
of Lemma 4.1.8 on page 59 shows that this is equivalent to the following
condition: For all i ∈ I there exist ji ∈ J , Si ∈ S(Γ,τi,k)

x , and πi ∈ Pm(Si(σji))
such that

1. tgtm(πi) ≤ τi;

2. Γ ⊢k el : arg l(πi), for all l ≤ m.

With these choices this condition is equivalent to condition 2. of the corollary.

Algorithm 4.4 is a direct realization of condition 2. of the corollary
above. This proves the correctness of the algorithm. Again, a combinatorial
consideration shows that this optimization can lead to very large speed-ups
since it prevents the consideration of useless substitutions.

Based on a decision procedure for intersection type matching in [Düdder
et al., 2013a], we discuss an optimization of the ATM in Figure 3.1 on page 44.

4.1.4 Lookahead Optimization

Using matching, we formulate a necessary condition for newly created inhabi-
tation questions to be solvable: for such a question to be solvable, at least
each

i∈I argl(πi) in line 22 in Algorithm 4.4 on the preceding page must be

inhabited. The following example motivates this intuition.

62 CHAPTER 4. OPTIMIZATION OF CLS

Example 4.1. Assume a type environment:

Γ = {
A : σ1 → σ2 → σ3 → τ,

B : σ4 → σ5 → σ6 → τ,

C : σ1,

D : σ4,

E : σ5,

F : σ6

}

In Figure 4.1 on the facing page a corresponding proof-graph for Γ ⊢ ? : τ is
shown. We use circles to represent inhabitation questions and rectangles to
represent choices of the relativized inhabitation algorithm that are related to
an inhabitation question.

To solve this inhabitation question, the algorithm chooses either A : σ1 →
σ2 → σ3 → τ with n = 3 or B : σ4 → σ5 → σ6 → τ also with n = 3,
generating sub inhabitation questions for the arguments σ1, σ2, and σ3 or
respectively σ4, σ5, and σ6.

Each of these arguments must be inhabited with a suitable combinator
that has a suitable σi with i ∈ {1, . . . , 6} as a target. These combinators
exist for σ1, σ4, σ5, and σ6 namely C, D, E, and F . As a consequence, the
inhabitation request is only successful for the choice B : σ4 → σ5 → σ6 → τ
with n = 3 whereas a choice of A : σ1 → σ2 → σ3 → τ with n = 3 fails.

The initial inhabitation request Γ ⊢ ? : τ could have prevented three
unnecessary inhabitation requests Γ ⊢ ? : σ1, Γ ⊢ ? : σ2, and Γ ⊢ ? : σ3 if
it would have used a lookahead for inhabited arguments. The strategy of the
lookahead optimization that the target type of an combinator as well as its
arguments are checked for (possibly) being inhabited.

We use the matching-algorithm to check a necessary condition for this to
be possible. We refer to this optimization as the lookahead test.

Even though this necessary condition may seem rather coarse it turned
out to have significant impact on the runtime. This impact will be discussed
in Section 4.1.5 on page 66. We obtain the ATM presented in Figure 4.5 on
page 64.

The for each . . . do-constructs in lines 3 and 7 describe for-loops
and not universal states of the ATM. We point out a few details regarding the
implementation of the matching-based optimizations. Matching is included in
line 4 to check which type component σj of σ has a target with m arguments

4.1. THEORETICAL ALGORITHM 63

Γ ⊢ ? : τ

x = A : σ1 → σ2 → σ3 → τ, n = 3 x = B : σ4 → σ5 → σ6 → τ, n = 3

Γ ⊢ ? : σ1 Γ ⊢ ? : σ2 Γ ⊢ ? : σ3 Γ ⊢ ? : σ4 Γ ⊢ ? : σ5 Γ ⊢ ? : σ6

Figure 4.1: Example proof graph with lookahead

that can be instantiated such that it is a subtype of a fixed type component
τi of τ . Executing these matching-checks, we store the results in the matrix
candidates, i.e., candidates(i, j,m) = true if and only if the constraint
tgtm(σj) ≤ τi is matchable. Line 5 uses candidates to filter possible path
lengths m: Fixing m, then m is a possible number of arguments, only if there
exists j with candidates(i, j,m) = true for all i. This is because every τi
may be inhabited by a different type component σj of σ, if it is done with the
same number of arguments. Having chosen a possible number of arguments
in line 6, the for each . . . do-block from line 7 to 12 first chooses for every
τi a type component σji , a substitution Si, and a path πi of length at least m
in Si(σji). Then, it first checks whether the choices are suitable to inhabit
τi (i.e., whether tgtm(πi) ≤ τi). The lookahead-test is performed in lines 11
and 12. The idea is that a path πi is only meaningful if for all 1 ≤ l ≤ m and
all type components π′ of argl(π) there exists (y : ρ) ∈ Γ such that ρ has a
target tgtk(ρ) for some k for which Match(tgtk(ρ) ≤ π′) returns true. If there
is no such (y : ρ), then argl(π) and thus

π∈P arg l(π) cannot be inhabited.

The correctness of the optimized algorithm is based on the Corollary 4.1.9
on page 61 and lemma whose proofs can be found in [Düdder et al., 2012,
Corollary 34 respectively Lemma 36]. The proposition characterizes the

64 CHAPTER 4. OPTIMIZATION OF CLS

Algorithm 4.5: ATM with lookahead-test

Input : Γ, τ— all types in Γ and τ =

i∈I τi organized
loop :

1 choose (x : σ) ∈ Γ;
2 write σ ≡

j∈J σj

3 for each i ∈ I, j ∈ J,m ≤ ∥σ∥ do
4 candidates(i, j,m) := Match(tgtm(σj) ≤ τi)
5 M := {m ≤ ∥σ∥ | ∀i∈I∃j∈J : candidates(i, j,m) = true}
6 choose m ∈M ;
7 for each i ∈ I do
8 choose ji ∈ J with candidates(i, ji,m) = true
9 choose Si a substitution

10 choose πi ∈ Pm(Si(σji)) with tgtm(πi) ≤ τi and

11 ∀1 ≤ l ≤ m ∀π′ ∈ argl(πi) ∃(y : ρ) ∈ Γ ∃ a path ρ′

12 in ρ ∃k : Match(tgtk(ρ′) ≤ π′) = true
13 if (m = 0) then accept;
14 else forall(l = 1 . . .m)
15 τ :=

i∈I arg l(πi);

16 goto loop;

condition under which an organized type τ is inhabited.
We need an auxiliary lemma for the desired lemma:

Lemma 4.1.10. Let τ be a type and let ρ = ρ1 → . . . → ρr → a be a path.
Let S be a substitution. Let π ∈ Pm(S(ρ)) such that tgtm(π) ≤ τ .

There exist h ≤ r and a substitution S ′ such that S ′(tgth(ρ)) ≤ τ . Fur-
thermore, l(S ′) ≤ l(S) and any constants occurring in the image of S ′ also
occur in the image of S.

Proof. We distinguish two cases:

a ∈ V: Write a = α, i.e., ρ1 → . . . → ρr → α. Again we distinguish two
cases:

m ≤ r: Then we can write tgtm(π) = S(ρm+1) → . . . → S(ρr) →
πr+1 → . . . → πs → b ≤ τ , where πr+1 → . . . → πs → b is
a component in S(α). Choosing h = m and S ′ = S, we get
S ′(tgth(ρ)) = S(tgtm(ρ)) = S(tgtm(ρ)) = S(ρm+1 → . . . → ρr →
α) = S(ρm+1) → . . . → S(ρr) → S(α) ≤ S(ρm+1) → . . . →

4.1. THEORETICAL ALGORITHM 65

S(ρr) → πr+1 → . . . → πs → b ≤ τ where the first inequality
follows because πr+1 → . . .→ πs → b is a component in S(α).

m > r: Then, we can write π = S(ρ1)→ . . .→ S(ρr)→ πr+1 → . . .→
πs → b, where πr+1 → . . .→ πs → b is a component in S(α). We
get tgtm(π) = πm+1 → . . . → πs → b ≤ τ . We choose h = r and
we define S ′ = {α →→ πm+1 → . . . → πs → b}. Then we have
S ′(tgth(ρ)) = S ′(α) = πm+1 → . . .→ πs → b ≤ τ .

a /∈ V: We have S(ρ) = S(ρ1) → . . . → S(ρr) → a. Thus, m ≤ r and
tgtm(π) = S(ρm+1) → . . . → S(ρr) → a ≤ τ . Choosing h = m and
S ′ = S, we get S ′(tgth(ρ)) = S(tgtm(ρ)) = S(ρm+1 → . . .→ ρr → a) =
S(ρm+1)→ . . .→ S(ρr)→ a ≤ τ .

It is clear that l(S ′) ≤ l(S) and that the statement about the constants in
the image of S ′ holds.

The lemma formulates the necessary condition whose violation is checked
in lines 11 and 12 of the ATM. Using the fact that any term e can be
written as e = x e1 . . . em, the lemma follows from the only if-direction of the
proposition.

Lemma 4.1.11. Assume Γ ⊢ e : τ , where τ is a path.

There exist (y : ρ) ∈ Γ, a path ρ′ in ρ, k ≤ ∥ρ′∥ and a substitution S such
that S(tgtk(ρ′)) ≤ τ .

Proof. We write e = x e1 . . . em and we use the only-if direction of Corol-
lary 4.1.9 on page 61 to conclude that there exists an (x : σ) ∈ Γ, j ∈ J ,

S ∈ S(Γ,τ,k)
x , and π ∈ Pm(S(σj)) with tgtm(π) ≤ τ . Thus, setting

(y : ρ) = (x : σ), we know that there exist (y : ρ) ∈ Γ, a path ρ′ in ρ

(note that ρ′ = σj), S ∈ S(Γ,τ,k)
x , and π ∈ Pm(S(ρ′)) with tgtm(π) ≤ τ .

Applying Lemma 4.1.10 on the preceding page we get the statement of the
lemma.

Correctness follows because the optimized ATM directly implements the
condition of Proposition 4.1.9 on page 61 and combines it for every path
τi in τ with the necessary condition of Lemma 4.1.11. Line 10 of the ATM
incorporates the check of tgtm(πi) ≤ τi (condition 2.(a) of Proposition 4.1.9
on page 61) into the choice of πi. This makes the if -block in line 5 of the
ATM in Figure 3.1 on page 44 obsolete.

66 CHAPTER 4. OPTIMIZATION OF CLS

4.1.5 Experimental Evaluation

In order to evaluate the impact of the heuristic and optimization by the
previous finding, we can define the following question:

Can the improvement of the optimized algorithm compared to the original
algorithm be quantified as a function of the arguments of an inhabitant and
the type constants that are present in the inhabitation problem respectively
the type environment by a parameterized problem?

In this experiment, n and m will determine the number of arguments
respectively the number of type constants that are present in a type environ-
ment.

Setup

We implemented both ATMs in Figures 3.1 on page 44 and 4.5 on page 64 in
our tool called (CL)S that will be discussed later in Section 5 on page 105.
We start by describing the experimental setup: We used F# and C# (.NET
Framework 4.5) to implement the ATMs. The core algorithms realizing the
respective ATMs were implemented in F# whereas the control-algorithm
was implemented in C#. The complete setup configuration is included in
Appendix B on page 207 in Subsection B.3.1.

The experimental example does arithmetic in Zn. This example is qualified
for answering the research question, because every combinator occurring in the
type environment has exactly m arguments and the number of type constants
is n. This allows a fine grained control of the occurring inhabitation questions
and the generated substitutions. All inhabitation questions are uniform in
the number of arguments and the substitutions share the same range (over
the same type constants).

We exploit the fact that finite function tables can be coded by means of
intersection types by Barendregt et al. [1983]. The successor function in Z3,
for example, can be coded by the combinator s3 : (0→ 1)∩ (1→ 2)∩ (2→ 0).
Similarly, we may define combinators i3 and p3 with corresponding types
representing the identity respectively the predecessor function in Z3. We
consider i3, s3, and p3 as our basic building blocks from which we want to
synthesize other functions in Z3 by function composition. For this purpose we
introduce a composition combinator c : (α→ β)→ (β → γ)→ (α→ γ) into
the repository. It is a combinator that takes two functions as arguments and
returns a function representing their composition. Note that the combinators
i3, s3, and p3 have monomorphic types (0, 1, and 2 are type constants),
whereas c is polymorphically typed (type variables may be instantiated under
substitutions). Considering a repository Γ containing i3, s3, p3, and c as

4.1. THEORETICAL ALGORITHM 67

above, we ask the inhabitation question Γ ⊢? : (0→ 2) ∩ (1→ 0) ∩ (2→ 1),
i.e., we want to synthesize addition of 2 in Z3. Using the rules in Figure 3.1
on page 41, one obtains the three inhabitants c(s3, s3), c(i3, p3), and c(p3, i3).
This is not surprising, since addition of 2 can be realized in Z3 by adding 1
twice or by subtracting 1.

We chose this example for our experiments since it scales along two
parameters. We may increase n or the arity m of c as a function taking
other functions as an argument. The combinator cm : (α0 → α1) → . . . →
(αm−1 → αm)→ (α0 → αm) takes m functions as an argument and returns
their sequential composition. We obtain the following general form of Γm

n :

{in : f ∩ (0→ 0) ∩ . . . ∩

(n− 1)→ (n− 1)

,

sn : f ∩ (0→ 1) ∩ . . . ∩

(n− 1)→ 0

,

pn : f ∩

0→ (n− 1)

∩ . . . ∩

(n− 1)→ (n− 2)

,

cm :

f ∩ (α0 → α1)

→ . . .→

f ∩ (αm−1 → αm)

→

(α0 → αm)}

We enriched the types of the basic combinators by adding a type constant f ,
which indicates that the combinator is a function. The arguments of cm are
also specified to be functions. This is necessary to prohibit self-application of
cm which would lead to cyclic solutions.2

Execution

Γm
n is very well suited for an experimental evaluation since we may trace the

effects that result from varying the parameters. We use it to compare our
implementations of both ATMs. In the experiments we asked the inhabitation
question Γm

n ⊢? : (0→ 2)∩ (1→ 3)∩ . . .∩

(n− 1)→ 1

, i.e., we synthesized

addition of 2 in Zn. Our main interest was in comparing the speedups achieved
by the lookahead-test compared to the unoptimized ATM. We use the number
of inhabitation questions created as measure for the runtime because this
number determines the execution time of the algorithm linearly since the
execution time per inhabitation question is more or less constant for fixed n
and m. We had to estimate this number3 for some values of n and m for the
unoptimized implementation because computation exceeded resources. We
do not measure memory consumption per inhabitation question because it is
also more or less constant for fixed n and m. This is because substitutions
are not instantiated up-front but as needed.

2This technique corresponds to the semantic specification of software components in
order to control synthesis.

3Estimates are indicated by an asterisk, ∗, in Table 4.1 on page 69.

68 CHAPTER 4. OPTIMIZATION OF CLS

Figure 4.2: Logarithmic Plot of Ratio of Created Inhabitation Questions

We analyze the speedup by benchmarking the performance of the optimized
algorithm with respect to the unoptimized algorithm. We graphically depict
our experimental results by a 3D-plot depicted in Figure 4.2. We plotted
the logarithm of the ratio of the number of created inhabitation questions
for the unoptimized implementation divided by the corresponding number
of the lookahead-implementation against n and m. Thus, we normalized
the numbers of created inhabitation questions to the unoptimized algorithm.
Hence, a larger ratio in these charts corresponds to a greater speedup achieved
by the lookahead. In Figure 4.2 the discrete values are indicated by the bullets.
We interpolated these values in order to illustrate the increase in the speedup.

Results

Table 4.1 on the next page presents some absolute figures. For both imple-
mentations and the respective values of n and m it lists the number of created
inhabitation questions (respectively the estimates for the unoptimized ATM),
#I, and the mean runtime of the algorithms in milliseconds, RT/ms, over
runs of five experiments. For n = m = 2 the unoptimized implementation is
almost as fast as the lookahead-ATM even though it has to create 8 times as

4.1. THEORETICAL ALGORITHM 69

Unoptimized ATM Lookahead-ATM

n m #I RT/ms #I RT/ms

2 2 73 112.2 9 109.8
2 3 973 209.6 49 111.4
2 4 11 665 2245.2 257 124.4
3 2 43 905 12 504 55 124
3 3 1.4× 1010∗ − 2188 354
3 4 4.8× 1012∗ − 78 733 50 959.6
4 2 1.3× 1014∗ − 33 142.4
4 3 6.6× 1018∗ − 3889 1314.6
4 4 3.3× 1023∗ − 640 001 7.5× 106

Table 4.1: Experimental Data for Γm
n

many inhabitation questions. These results from the fact that the lookahead-
optimization requires some computational effort which for small values of n
and m may be significant. However, for larger n and m the improvement is
obvious. The estimated numbers of inhabitation goals for the unoptimized
ATM are only very rough lower bounds. An estimate for this number was
not feasible directly since the number of substitutions got so large that it
was impossible to estimate the size of the organization of the intersection
created in line 2 of the unoptimized ATM out of which subsets of paths have
to be chosen (line 4). This size, however, determines the number of new
inhabitation questions that have to be checked in line 9. Instead, we only
estimated the inhabitation questions created by an ATM in Algorithm 4.4 on
page 60 that only implements the condition of Proposition 4.1.9 on page 61
(without the lookahead check). Such an ATM would only choose one sub-
stitution per type component of the inhabitation goal which is already an
enormous improvement over the unoptimized ATM, and therefore such an
estimate may serve as a lower bound for the number of inhabitation questions
created by the unoptimized ATM. Nonetheless, the estimates show that the
implementation of the unoptimized ATM is completely infeasible even for
small values of n and m.

Example 4.2. We consider the case n = 4 and m = 3 in more detail by
estimating the possible number of substitutions. Ignoring the type constant f
and substitutions mapping variables to ω for simplicity, a level-0 substitution
can map a variable to 24 − 1 types (every non-empty subset of {0, 1, 2, 3}
represents an intersection of atoms). Since c3 contains 4 variables there are
154 = 50 625 substitutions. The ATM that only implements the condition of

70 CHAPTER 4. OPTIMIZATION OF CLS

Proposition 4.1.9 on page 61 would only instantiate four substitutions per
check in line 5 for the original inhabitation question Γ3

4 ⊢? : (0→ 2) ∩ (1→
3)∩(2→ 0)∩(3→ 1). This would result in at least (154)4 ≈ 6.6× 1018 checks
in line 5. Many of the 50 625 possible substitutions will not help to inhabit
(0→ 2) ∩ (1→ 3) ∩ (2→ 0) ∩ (3→ 1), though. The impact of lookahead-test
used by the ATM in Figure 4.5 on page 64 to eliminate infeasible substitutions
in advance is enormous: In total, the implementation of the ATM with the
lookahead-test only constructed 3889 inhabitation questions and synthesized
all solutions to the inhabitation question in approximately 1.3 seconds.

Analysis & Discussion

The lesson learned from this experimental example is two-fold.

• First, the immense reduction in newly created inhabitation goals and
execution time achieved by the implementation of the lookahead-ATM
shows that any heuristic that helps to exclude substitutions early on in
ATM (the earlier the better!) contains potential for drastic speedups.

The lookahead-condition appears to be rather coarse (for example, the
various numbers of arguments, k, checked for in line 12 of the ATM
with the lookahead-test are not compared at all even though a common
k must exist for all τi). Still, the condition is suitable to reduce the
runtime by some 15 orders of magnitude in this example. We believe
that the potential in restricting the number of substitutions has not
been fully exploited. In particular, for many practical applications
domain-specific knowledge may be used to exclude substitutions that
are not meaningful in the practical context.

• Second, already for this small example even the ATM with the lookahead-
test surpasses the resource boundaries rather quickly. The reason can
be seen in the fact that the number of substitutions grows exponentially
with m and n: There are O(2nm) possible substitutions. The important
conclusion to be drawn here with regard to practical applications is that
variable kinding is indispensable.

A further improvement can be established by restricting the ranges of
substitutions of type variables. This restriction can be achieved by introducing
kinded type variables. A type variable is kinded by a set A ⊆ A if it can only
be instantiated by types that can be built from A (see for Section 3.2.3 on
page 39 for details). Having said that, in many practical applications variable
kinding comes naturally, since very often it is clear that a type variable of a

4.2. ALGORITHMIC OPTIMIZATION 71

certain combinator can only meaningfully be instantiated with very few type
constants. The case where every type variable may be instantiated with any
type constant, as encountered in the Zn-example above, may therefore often
prove to be far too general. Furthermore, often it does not make sense to
instantiate a variable by an intersection of atoms but rather by single atoms
at a time. A type variable is atomic if it can only be instantiated by single
type constants. We enriched the implementation of the ATMs by kinded
and atomic variables which was an essential step towards the applications
to connector synthesis as presented in the following sections. Type variable
kinding will be discussed as one optimization mechanism in the following
section.

4.2 Algorithmic Optimization

Complementary to the optimizations discussed before, we now consider more
general heuristical optimizations that are unspecific to type theory and that
can be applied to implementations of ATMs in general. Nevertheless, we
will apply type theoretic results wherever applicable in order to increase the
effectiveness of the proposed optimizations.

We begin with a discussion of theoretical inhabitation algorithms and
show different general optimizations to the implementation of this ATM. In
the next chapter, these optimizations will be used in an implementation of
relativized type inhabitation in BCL0(∩,≤). We start by analyzing previously
presented algorithms.

The theoretical algorithms in Figures 3.1 on page 44 and 4.5 on page 64 are
ATMs. In order to simplify the following discussion, we mark the existential
and universal choices of the Figure 3.1 on page 44 in lines 5, 7, 8, 14, and 15
in blue. With this coloring we obtain the Algorithm 4.6.

The core algorithm in Figure 4.1 on page 53 realizes the step function δ
of the ATM as well as the proof-graph, which here is called execution graph.
The blue part is related to the control of the ATM. An ATM distinguishes
existential and universal states and we use this distinction to separate the
algorithm into parts. Lines 12 and 18 contain the acceptance information
ACCEPT and FAIL. The other lines (6, 10-13, 16-19) contain algorithmic
information that can be regarded as a logical predicate depending on the
choices before. We call this part of the algorithm data-centric.

After evaluating the mentioned predicate, the control of the ATM is
delegated to either acceptance in lines 12 and 18 or to a transition to a
universal state in line 14 generating new inhabitation questions in line 15.
We call this part control-centric, because it only creates n new inhabitation

72 CHAPTER 4. OPTIMIZATION OF CLS

Algorithm 4.6: Alternating Turing Machine deciding inhabitation in
BCLk(∩,≤) with marked choices

1: Input: Γ, τ, k
2: Output: INH1 accepts iff ∃e such that Γ ⊢k e : τ
3:

4: loop:
5: CHOOSE (x : σ) ∈ Γ;

6: σ′ :=

{S(σ) | S ∈ S(Γ,τ,k)

x };
7: CHOOSE n ∈ {0, . . . ∥σ′∥};
8: CHOOSE P ⊆ Pn(σ′);
9:

10: if

π∈P tgtn(π) ≤ τ then
11: if n = 0 then
12: ACCEPT;
13: else
14: FORALL (j = 1 . . . n) τ :=

π∈P argj(π);

15: GOTO loop;
16: end if
17: else
18: FAIL;
19: end if

questions for every argument of a chosen (x : σ) ∈ Γ. Then, the result of
the inhabitation question depends on the results of these newly generated
inhabitation questions.

Since we want to implement a non-deterministic ATM, we also have to
apply a determinization procedure to provide a deterministic implementable
algorithm. Therefore, we start with a representation for simulating the ATMs
presented so far. This representation simplifies the discussion on optimizations
and its data structure is closer to a deterministic implementation.

4.2.1 Execution Graph

The key idea for optimizing the Algorithm 4.1 on page 53 is to separate data
and control of the ATM. Correspondingly, we will use the terms data-centric
part and control-centric part of the ATM. For example, the control-centric
part will include the ATM’s acceptance rules for existential states in Q∃
and for universal states in Q∀. These parts will be separated and optimized
differently.

4.2. ALGORITHMIC OPTIMIZATION 73

We model data and control separation by a bipartite directed graph (BDG)
distinguishing both kinds of states of Q = Q∀ ⊎Q∃ of the ATM. The BDG
represents a proof-graph. One kind of nodes, the non-deterministic choices
(Q∃), are called group nodes, NG, and are depicted as a rectangle. These
nodes are called group nodes, because the choice in the Algorithm 4.6 on the
facing page leads to n new inhabitation questions forming this group. These
new questions emanate from the n chosen arguments of the inhabitation
algorithm in Figure 4.6 on the preceding page. These nodes are elements of
the set of universal states Q∀ of the ATM. We will associate group nodes in
NG with the choices that have been made in the ATM for the combinator x,
the number of x’s arguments, and an adequate subset of paths P .

The other kind of nodes are called inhabitation nodes, NI , contain the
inhabitation question, and are depicted as circles. These nodes are elements
of the set of existential states Q∃ of the ATM.

The non-deterministic choice in state q ∈ Q∃ can be implemented by
choosing every possible solution in q. This idea has been presented by
Shapiro [1984] and is adapted to the ATM deciding inhabitation. Shapiro
[1984] provides a transformation procedure of the ATM into a logical Prolog
program, by coding universal states (Q∀) as logical conjunctions ∧ and
existential states (Q∃) as logical disjunctions ∨. Analogically, rules operating
on execution graphs will simulate conjunctions and disjunctions of states
respectively computations of ATMs.

The execution graph GE is a data structure for implementing (simulating)
and optimizing the ATM presented in Figure 4.1 on page 53. Its nodes consist
of group nodes and inhabitation nodes. The edges between these nodes are
linked to the deterministic simulation of the ATM.

Definition 4.2.1. (Execution graph)
An execution graph GE is a tuple (NG, NI , E) where the set NG are the group
nodes, the set NI are the inhabitation nodes, and E ⊆ (NI ×NG)∪ (NG×NI)
is the edge relation.

We call a node, nc, child of a parent node np if (nc, np) ∈ E holds. In order
to simplify the discussion of nodes in the execution graph, we denominate
the different kinds of nodes with respect to the edge relation. The parent
respectively child nodes of an inhabitation node are also called its parent group
nodes respectively its child group nodes. Conversely, the parent respectively
child nodes of a group node are called its parent inhabitation nodes respectively
its child inhabitation nodes.

Furthermore, we define two labeling functions LI and LG for both kinds
of nodes labeling inhabitation nodes in NI with its inhabitation question
(Γ ⊢ ? : τ) or group nodes in NG with its choices for x, n, and P . We will

74 CHAPTER 4. OPTIMIZATION OF CLS

Γ ⊢ ? : τ

{x = A : τ ′, n = 0, P = . . .} {x = B : τ ′′, n = 0, P = . . .}

Γ ⊢ ? : τ ′ Γ ⊢ ? : τ ′′

∃ ∃

∀ ∀

Figure 4.3: Execution Graph for Γ ⊢ ? : τ

use the convention that we omit P where the choice of P is clear from the
context.

We can translate the acceptance rules of an ATM deciding inhabitation,
for instance in Algorithm 4.6, to rules operating on an execution graph as
follows:

1. At least one child node of a node in NI (respectively a successor state
in Q∃ accepts) must signal a successful inhabitation.

2. All children of a child group node of a node in NG (respectively all of
its successor states in Q∀ accept) must signal successful inhabitation.

3. We can evaluate these rules bottom-up.

We will use the color gray to mark an unknown state (either successful
or failed) of inhabitation, green for successful inhabited nodes, and red for
failed inhabitation nodes. A node is successful if its inhabitation question is
inhabited otherwise the node failed. Furthermore, we will decorate edges to
existential states with ∃ and respectively edges to universal states with ∀.

Figure 4.3 shows an example execution graph for the relativized inhabita-
tion question Γ ⊢ ? : τ with the following type environment Γ:

4.2. ALGORITHMIC OPTIMIZATION 75

Γ = {
A : τ ′ → τ,

B : τ ′′ → τ,

C : τ ′ ∩ τ ′′

}

The algorithm tries to solve this question by choosing {x = A : τ ′ → τ, n =
1, P = {τ ′ → τ}} and {x = B : τ ′′ → τ, n = 1, P = {τ ′′ → τ}}. Both choices
lead to new child inhabitation questions Γ ⊢ ? : τ ′ and Γ ⊢ ? : τ ′′. Both
inhabitation questions Γ ⊢ ? : τ ′ and Γ ⊢ ? : τ ′′ can be directly inhabited by
choosing x = C : τ ′ ∩ τ ′′, n = 0, and P = {τ ′} respectively P = {τ ′′}.

The acceptance rules can be translated into corresponding graph markings
by operational rules, wherein the state of acceptance of the ATM is translated
into graph markings where the corresponding nodes NI and NG are marked
with flags SUCCESS or FAIL representing successful inhabitation respectively
failed inhabitation. Analogously to the Prolog coding by [Shapiro, 1984],
acceptance rules are propagated in reverse direction of the execution graph’s
edges as follows (see Figure 4.4 for explanation):

Definition 4.2.2. (Execution graph acceptance)
Assume an execution graph GE = (NG, NI , V), a parent inhabitation node
np
I ∈ NI has k child group nodes gj ∈ NG ((np

I , gj) ∈ E for every j ∈
{1, . . . , k}), and child inhabitation nodes nj

1, . . . , n
j
mj
∈ NI with mj ∈ N of

these child group nodes nj ((nj, n
j
i) ∈ E for every i ∈ {1, . . . ,mj} and every

j ∈ {1, . . . , k}).

1. The parent inhabitation node np
I is marked with

(a) SUCCESS if at least one of its child group nodes gj′ is marked with
SUCCESS.

(b) FAIL if all of its child group nodes gj′ are marked with FAIL.

2. A group node gj′′ is marked with

(a) SUCCESS if all its child inhabitation nodes nj′′

l are marked with
SUCCESS for all l ∈ {1, . . . ,mj′′}.

(b) FAIL if at least one of its child inhabitation nodes nj′′

l for all
l ∈ {1, . . . ,mj′′} is marked with FAIL.

76 CHAPTER 4. OPTIMIZATION OF CLS

np
I

g1 gk

n1
1 n1

m1
nk
1 nk

mk

∃

∀ ∀

∃

∀ ∀

Figure 4.4: Acceptance rule in GE

3. An inhabitation node without any child group node is marked with

(a) SUCCESS if the inhabitation question in this node has been inhabited
directly (see Definition 3.3.2 on page 43).

(b) FAIL if the inhabitation question in this node cannot been inhabited
directly (see Definition 3.3.2 on page 43).

Lemma 4.2.1. ATM in Figure 4.6 eventually accepts if and only if the root
inhabitation node of the ATM’s corresponding execution graph GE is marked
with SUCCESS.

The proof of Lemma 4.2.1 is straightforward, because the execution graph’s
marking rules are designed in such a way that these marking rules simulate
the eventually acceptance rules of an ATM in Section 3.4 on page 43.

Note, that cases 3a) and 3b) in the Definition 4.2.2 correspond to line 12
with the choice n = 0 in the Algorithm 4.6 on page 72.

The optimizations presented in the following sections can be categorized
as follows:

• term level optimizations

– normalization of intersection types

– optimization of subtyping relation ≤
– bounding the substitution in types

4.2. ALGORITHMIC OPTIMIZATION 77

– organization of type environment Γ

• prevention of redundant calculations

– result caches

– reusing cached results

– cycle detection

– restriction of result sets of inhabitants

• multi-core processing and parallelization

– rolling processing queues

– distributed computing barriers

These optimizations are discussed from the view point of an heuristical
optimized, distributed implementation of the inhabitation algorithm. This al-
gorithm will not only decide the inhabitation question but will also enumerate
all inhabitants satisfying the inhabitation question by completely exhausting
the search space of possible solutions. The various optimizations are now
discussed in in more detail.

4.2.2 Term Level Optimization

Normalization of Intersection Types

A frequently executed operation is comparison and analysis of terms of
intersection types. It is self-evident and necessary that a normalization of these
types improves the run-time of comparisons and analyses, because normalized
terms allow exploiting structural properties for these purposes. By profiling
the implementation (CL)S of the inhabitation algorithm, we discovered that
the normalization of intersection types consumes approximately 30% of the
total computation time measured in utilized CPU usage.

Remark 4.1. Note that we use the term normalization or normalized term
with a different meaning than originally introduced by Hindley [1982]. Hind-
ley’s intersection type normalization uses a directed form of the distributivity
rule of ∩ and → for a full expansion of the intersection type’s term. For
example, the intersection type τ → σ ∩ σ′ → ρ ∩ ρ′ has the normalized type
(τ → σ → ρ) ∩ (τ → σ → ρ′) ∩ (τ → σ′ → ρ) ∩ (τ → σ′ → ρ′). Therefore,
Hindley’s normalization can lead to an exponential sized intersection type
causing inefficiency when computed. Instead we use the organization of in-
tersection types according to Lemma 3.2.3 on page 38. At this point, we are

78 CHAPTER 4. OPTIMIZATION OF CLS

interested in succinct but distinct terms increasing efficiency and effectiveness
of computations.

Normalization of an intersection type τ :

• removes duplicate sub-terms by exploiting idempotency of ∩.

• flattens intersections using associativity of ∩, for example τ = (τ1 ∩
τ2) ∩ (τ3 ∩ τ4) becomes τ = τ1 ∩ τ2 ∩ τ3 ∩ τ4.

• ordering of sub-terms in τ . A hash-code over occurring sub-terms
used in the ordering relation increases the effectiveness of comparison
operations. After applying the order relation on an intersection type,
components of τ have the following order:

– type variables from T,

– type constructors,

– →-types, and

– further intersections.

Again, the ordering operation is applied recursively to the arguments of
the sub-terms in τ .

Furthermore, this normalization guarantees that the normalized type τ has a
unique hash-code, which is later used for fast comparison operations.

Optimizing the Subtyping Relation

In later chapters, subtyping is used for encoding taxonomical trees representing
knowledge, for example on software connectors and software architectures.
Therefore, we extended the subtyping relation ≤ by adding axioms containing
atomic pairs of type constants to the rules presented by Barendregt et al.
[1983]. Rehof and Urzyczyn [2011a] showed that deciding ≤ is Ptime. It
follows from a result of Rehof and Mogensen [1999] that this also holds when
≤ is extended to a semi-lattice. Detailed information on satisfiability of other
inequalities can be found in [Rehof, 1998, Pratt and Tiuryn, 1996, Tiuryn,
1992].

To speed up the subtyping decision procedure, we need to efficiently
calculate the transitive closure of the atomic extension of ≤. Skiena [2008]
lists some efficient algorithms for computing the transitive closure of relations.
Coppersmith and Winograd [1987] presented an algorithm that is of O(n2.3736)
(with Stothers [2010] improvement). This algorithm has the disadvantage that

4.2. ALGORITHMIC OPTIMIZATION 79

it uses matrix multiplication and therefore cannot be efficiently implemented
for small relations. The algorithm by Warshall [1962] is O(n3) and comes
with a succinct coding. Hence, Warshall’s algorithm is used to pre-compute
the transitive closure of the atomic extension of ≤ upfront.

Bounding the Type Substitution

In Algorithm 4.1 on page 53 in line 6 all intersections of possible substitutions
are applied to σ and combined in a top-level intersection. The number of
substitutions in this line in BCLk(∩,≤) is bounded by expk+1(p(n)) with p(n),
a polynomial function in the number of type constants. Therefore, a bound
on the substitutions leads to an optimization with regard to space and time
resource consumption. This bound is directly controlled by the parameter k
in BCLk(∩,≤).

A straightforward optimization is to restrain substitutions only to variables
occurring in a type to be substituted and restricting the substitutions by a
union of the substitution ranges of each variable.

In many scenarios a variable has to be instantiated by a single type
constant. For example, in a scenario for synthesizing Boolean functions as
components with type constants 0 and 1, the occurring variables should
only be instantiated with either 0 or 1 and not with 0 ∩ 1. The experiment
conducted in Section 4.1.5 allows in a similar scenario only substitutions by
type atoms. Atomic substitutions are an essential optimization for these usage
scenarios.

This idea can be generalized by introducting kinded type variables (see
for Section 3.2.3 on page 39). Here, type variables of the same kind have the
same range under substitution allowing a more refined control of the used
substitutions.

Later in this chapter an implementation, named (CL)S, of the decision
algorithm for relativized inhabitation in BCL0(∩,≤) is presented that allows
either atomic or substitutions of level 0 for type variables.

Organization of Type Environment Γ

Inhabitation algorithms presented in Algorithms 4.1, 4.2, 4.4, and 4.5 require
organized types as defined in Section 3.3 in their input. An optimization is the
pre-calculation of the organized types in Γ by tacitly lifting the organization
of types to a set of types like the type environment Γ as follows:

Definition 4.2.3. (Organized type environment)
The organized type environment Γ for a type environment Γ is defined by:

Γ = {(x : τ)|(x : τ) ∈ Γ}.

80 CHAPTER 4. OPTIMIZATION OF CLS

This reduces the frequent and unnecessary repetition of organization of
types in the relativized inhabitation algorithm for every inhabitation goal.

4.2.3 Elimination of Redundant Calculations

During the solution of an inhabitation question, new inhabitation questions
are generated. Some of these newly generated inhabitation questions might
occur multiple times.

Caching Results

The relativized inhabitation question Γ ⊢ ? : τ has type environment Γ and
type τ as input can either be successfully inhabited or the inhabitation fails.
The result for the inhabitation question Γ ⊢ ? : τ can be stored in one or more
caches. We will say that an information or type is cached if the information
or type is stored in a cache.

To optimize the look-up, a hash-map with τ as a key and the result of
the inhabitation as value is used. We omit Γ, because it is constant for all
child inhabitation questions. Therefore it is sufficient to make the look-up in
the caches independent of the type environment Γ.

We will store successful inhabitations in a success cache CS whereas failed
inhabitations are stored in a fail cache CF . We will use the short notation
τ ∈ Cs respectively τ ∈ CF if τ is stored in Cs respectively in CF . We will use
these caches to store results on child inhabitation questions and reuse these
results to avoid redundant calculations. The size of the caches is bound by
the space-complexity (k + 1)−-Expspace of relativized type inhabitation in
BCLk(∩,≤). However, using the optimizations presented in the previous and
this chapter, the number of cache entries in CS and CF is linearly bounded
by the number of inhabitation questions in the execution graph.

We can improve the caching of failed inhabitation questions by using
Lemma 3.3.1 on page 42. Lemma 3.3.1 states that if the inhabitation of a
supertype τ ′ of a type τ has failed, Γ ̸⊢ ? : τ ′, then the inhabitation of τ
must also fail, Γ ̸⊢ ? : τ .

By modifying the lookup method for the fail cache CF by also comparing
τ with possible τ ′ in CF , we can further reduce unnecessary inhabitation
requests.

Remark 4.2. One could come up with the idea that applying a dual principle
to the caching of successful inhabitants could be also an improvement. And
indeed, a dual version of the Lemma 3.3.1 for τ and the success cache CS

would be correct and be an improvement for the decision problem of relativized

4.2. ALGORITHMIC OPTIMIZATION 81

a

b c

d e f d e f

Figure 4.5: Example graph with multiple nodes

type inhabitation. However, we aim on explicitly constructing the set of all
inhabitants satisfying the inhabitation question. Using the dual principle would
lead to pruning the execution graph for successful inhabitation nodes and, in
effect, loosing further inhabitants that are supertypes of τ , because there might
exist more than one inhabitant (even subtypes) for an inhabitation goal. Then,
the resulting algorithm with the dual principle would not be complete with
respect to the set of inhabitants.

Execution Graph Compression

If we cache results of Γ ⊢ ? : τ , then we can reuse these results to prevent
unnecessary computations for reoccurring inhabitation questions of Γ ⊢ ? : τ .
This is constrained by requirement that the algorithm has to be complete.
Within the execution graph the reoccuring calculation of Γ ⊢ ? : τ can be
reused from the cache by appending the subgraph of Γ ⊢ ? : τ which has
been calculated already, to the parent inhabitation node.

For the following example, we simplify the execution graph by ignoring
nodes containing the information on the non-deterministic choices for x, n,
and P of the algorithm.

A common compression technique for graphs is a sharing representation
by using a direct acyclic graph (DAG). In this representation nodes that
occur multiple times are eliminated and substituted by a single node that is
shared under all edges in the graph. Originally this technique was proposed
by Boyer and Moore [1972] for theorem-proving.4

4One year later it was included in the PhD thesis of Moore [1973].

82 CHAPTER 4. OPTIMIZATION OF CLS

a

b c

d e f

Figure 4.6: Example graph (see for Figure 4.5 on the previous page) with
shared representation as DAG

Figure 4.5 on the previous page depicts an example of a graph that is
compressed in a DAG for a sharing representation in Figure 4.6. This example
is a special case in which only leaf nodes are shared. The technique of Boyer
and Moore is of course more general.

Remark 4.3. All paths of the graph in Figure 4.5 on the preceding page can be
directly mapped to a path in graph of Figure 4.6. Therefore, this representation
conserves all paths of a graph, because all paths can be reconstructed possibly
causing exponential cost.

This representation can be applied for execution graphs.

Example 4.3. We discuss an example of a relativized inhabitation question
Γ ⊢ ? : τ in Figure 4.7 on the facing page. Solving this inhabitation question
needs two new child inhabitation question Γ ⊢ ? : τ ′ and Γ ⊢ ? : σ to be
solved. To solve Γ ⊢ ? : τ ′, two further inhabitation questions Γ ⊢ ? : τ ′′ and
Γ ⊢ ? : τ ′′′ have to be solved as well. Without loss of generality we assume that
Γ ⊢ ? : τ ′′ and Γ ⊢ ? : τ ′′′ have been solved successfully. We argue the other
three cases with inhabitation results for Γ ⊢ ? : τ ′′ and Γ ⊢ ? : τ ′′′ similarly.
We can cache Γ ⊢ ? : τ ′′ and Γ ⊢ ? : τ ′′′ as successful inhabitations in CS,
because Γ ⊢ ? : τ ′′ and Γ ⊢ ? : τ ′′′ have been solved successfully. Furthermore,
it follows that Γ ⊢ ? : τ ′ can be solved successfully. In addition, we can also
cache Γ ⊢ ? : τ ′ as successful inhabitation.

In order to inhabit Γ ⊢ ? : τ , we also have to solve the inhabitation question
of Γ ⊢ ? : σ. To solve Γ ⊢ ? : σ we again have to solve the inhabitation
question for Γ ⊢ ? : τ ′ in Figure 4.8 on the next page.

4.2. ALGORITHMIC OPTIMIZATION 83

Γ ⊢ ? : τ

Γ ⊢ ? : τ ′

Γ ⊢ ? : τ ′′ Γ ⊢ ? : τ ′′′

Γ ⊢ ? : σ

∃ ∃

∃ ∃

Figure 4.7: Execution Graph with cached result for Γ ⊢ ? : τ ′

Γ ⊢ ? : τ

Γ ⊢ ? : τ ′ Γ ⊢ ? : σ

Γ ⊢ ? : τ ′Γ ⊢ ? : τ ′′ Γ ⊢ ? : τ ′′′

∃ ∃

∃ ∃ ∃

Figure 4.8: Execution Graph with a reoccuring Γ ⊢ ? : τ ′ node

84 CHAPTER 4. OPTIMIZATION OF CLS

Γ ⊢ ? : τ

Γ ⊢ ? : τ ′ Γ ⊢ ? : σ

Γ ⊢ ? : τ ′′ Γ ⊢ ? : τ ′′′

∃ ∃

∃ ∃

Figure 4.9: Execution Graph with a reused Γ ⊢ ? : τ ′ node

Since we have Γ ⊢ ? : τ ′, Γ ⊢ ? : τ ′′, and Γ ⊢ ? : τ ′′′ cached. We can
use the cached result for Γ ⊢ ? : τ ′ and prevent a recalculation of Γ ⊢ ? : τ ′.
These results are depicted in Figure 4.9.

After reusing the cached result of Γ ⊢ ? : τ ′, we can conclude that Γ ⊢ ? : σ
can be inhabited successfully. Therefore, the initial inhabitation question
Γ ⊢ ? : τ can be inhabited successfully.

The technique of Boyer and Moore is here used to prevent the creation
of duplicate nodes. This is achieved by maintaining a hash-map of existing
nodes. A lookup in this hash-map is used, to determine if a new node has to
be created or an existing is shared.

We have also to extend this rule for operating on group nodes for inhabi-
tation questions of arguments of a chosen x in an execution graph.

Cycle Detection

The set of inhabitants in BCLk(∩,≤) can be of infinite cardinality. Rehof and
Urzyczyn [2011a] proved that in the case of infinite many inhabitants cyclic
structures must occur in the computation of the inhabitation algorithm. We
will demonstrate this fact with a small example.

4.2. ALGORITHMIC OPTIMIZATION 85

Γ ⊢ ? : τ

{x = I : τ → τ, n = 1}

Γ ⊢ ? : τ

Γ ⊢ ? : τ

{x = X : τ, n = 0}

Γ ⊢ ? : τ Γ ⊢ ? : τ

∃ ∃

∀ ∀

∃

Figure 4.10: Execution Graph containing a cyclic solution

Example 4.4. For example, we have a type environment Γ consisting of two
combinators:

Γ = {
I : τ → τ,

X : τ

}

I is the identity function τ → τ and x is a combinator of type τ . The inhabi-
tation question Γ ⊢ ? : τhas the inhabitants X, IX, I(IX), I(I(IX)), In
general the inhabitant can be written as a regular expression (I)∗X, with I∗

noting a sequence of zero, one, or many occurrences of I. Note, that this does
not mean that there exists an infinite application of I. The applicative terms
constructed by the regular expression are still finite terms. The execution
graph is depicted in Figure 4.10.

An algorithm without cycle detection would also lead to an infinite com-
putation. We use a cycle detection algorithm, which traverses the execution
graph from the actual position, where a new child inhabitation question
Γ ⊢ ? : σ is posed, up to the root inhabitation question. We compare each

86 CHAPTER 4. OPTIMIZATION OF CLS

Γ ⊢ ? : τ

{x = I : τ → τ, n = 1}

Γ ⊢ ? : τ

{x = X : τ, n = 0}

Γ ⊢ ? : τ Γ ⊢ ? : τ

∃ ∃

∀ ∀

Figure 4.11: Execution Graph containing a cyclic solution with a backward
edge

node (Γ ⊢ ? : σ′) on the path from the new child inhabitation question
Γ ⊢ ? : σ to the root inhabitation question and if σ′ ≤ σ holds, then we can
use the solution of σ to satisfy the inhabitation question of Γ ⊢ ? : σ. In this
case we can use a backward edge from this position to the one of Γ ⊢ ? : σ′.
For the example above, this is shown in Figure 4.11.

Remark 4.4. Note that the node in the left-corner cannot be removed since
we would loose the information that I can be used.

Since we can inhabit Γ ⊢ ? : τ by choosing {x = X : τ, n = 0}, we can
mark the cyclic solution in the left part of Figure 4.11 as successful, too. We
can do this, because the left hand side inhabitation question is a subtype (in
this case identical) with the successfully inhabited right hand side. This leads
to Figure 4.12 on the facing page and the expected successful inhabitation
of the root inhabitation question Γ ⊢ ? : τ . Also note that this operation
is not possible in an ATM. An ATM would have to roll out the complete
computation contained in a cyclic path. Using an inductive argument over
the path length, it is easy to see that the acceptance in this case can be
simulated by the compressed cyclic graph.

Note 4.1. Cyclic structures in the execution graph denoting inhabitants are
representable as a term by using a regular tree grammar.

Restricting the Result Set of Inhabitants

In some usage scenarios there is no need to return the complete set of all
inhabitants of an inhabitation request. Either only one solution is needed or
a quick solution is favored against time-intensive finding of all inhabitants.

4.2. ALGORITHMIC OPTIMIZATION 87

Γ ⊢ ? : τ

{x = I : τ → τ, n = 1}

Γ ⊢ ? : τ

{x = X : τ, n = 0}

Γ ⊢ ? : τ Γ ⊢ ? : τ

∃ ∃

∀ ∀

Figure 4.12: Execution Graph marked with success containing a cyclic solution
with a backward edge

In case that finding single solution for inhabitations is favored, a unique
specification property stating that a type environment Γ can always be
rewritten suitably for an inhabitation question such that this inhabitation
question has a unique inhabitant.

Proposition 4.2.2 (Unique specification [Rehof and Urzyczyn, 2011a,b]).
For every combinatory expression e there exists an environment Γe and a type
τe such that e is the unique term with Γe ⊢ e : τe.

The proof for this property by Rehof and Urzyczyn [2011a,b] can easily be
transferred to BCLk(∩,≤). On the contrary, if an inhabitation question returns
too many inhabitants, then the type environment Γ might be underspecified.
Either such an underspecification is intended or the type environment Γ needs
a more refined specification.

In the case of a single or fixed number of solutions, counters for the number
of inhabitants in the algorithm can be used to terminate the computation
whenever sufficient number of inhabitants have been found.

4.2.4 Parallel Computation

The execution graph is evaluated based on its edge-relation. Every inhab-
itation question of the form Γ ⊢ ? : τ can be inhabited separately. The
inhabitation algorithm is encapsulated in the nodes. The inhabitation algo-
rithm does not modify these nodes. Such problems are called data-parallel
because the non-deterministic choices are the same in all nodes. Only a
dependency to the parent node must be respected. This fact does not hinder
scalable parallelism. The first solution could be a data-parallel algorithm

88 CHAPTER 4. OPTIMIZATION OF CLS

using barriers on each level. At this point, the overall problem is to find an op-
timal task-schedule for maximizing the CPU-utilization (indirectly measured
by thread utilization).

Different strategies exist for traversing a graph like an execution graph. A
depth-first search (DFS) would traverse into the depth of an execution graph.
This strategy would reduce the advantage of reusing results. This can easily
be seen in an execution graph with varying path depths. In DFS traversal,
this short path is evaluated after the deep path. Therefore, the cached result
will not be available during the traversal of the deep path.

This disadvantage for DFS points to the idea of one other traversal strategy.
The breadth-first search (BFS) traverses all nodes with same distance (path
length in the execution graph) or in trees called level at the same time. BFS
can be implemented with a (thread-safe) queue operating in FIFO order. In
our case, the inhabitation questions in the queue are linked to corresponding
Q∃ nodes in the execution graph.

If two or more tasks are solving the same inhabitation question, we
terminate the remaining tasks after one task finds a solution in order to
minimize unnecessary computations, for instance, by using cancellation tokens.

The implemented algorithm in (CL)S uses a thread-pool whose size depends
on the number of cores of a given computer. We have conducted experiments
that shown that either 2n or only n threads should be generated for a n-core
CPU to be optimal. There exist two causes for the sizes 2n and n. The
first cause is that the inhabitation task is very computationally intensive
and therefore a one to one correlation of tasks to cores is plausible. The
second cause is that the costs for interprocess communication, thread context-
switching, and thread blocking are increasing by the number of tasks and
these costs dominate the utilization for higher figures greater than 2n threads
for n CPU cores.

(CL)S offers two possible parallelization strategies:

• One strategy is called rolling queue strategy (RQS), which uses the
level in an execution graph as a barrier. This strategy is also known as
barriers in distributed computing. A barrier stops tasks that reach the
barrier until all tasks reach this barrier. Then the barrier resumes all
tasks. Barriers are placed at the same depth in the execution graph and
can be implemented by rolling queues. The depth is measured in the
number of computation steps from the root. The definition of depth
directly corresponds to the common definition of a level in a tree.

Example 4.5. For example, we assume a thread-pool that contains four
threads. And we have an execution graph which has the following se-
quence of number of nodes at each level (1, 3, 5, 9). Then we have the fol-

4.2. ALGORITHMIC OPTIMIZATION 89

lowing number of utilized threads working concurrently (1, 3, 4, 1, 4, 4, 1)
with length 7. This schedule is sub-optimal with respect to the optimal
solution (1, 3, 4, 4, 4, 2) with length 6 obeying the dependencies, because
the optimal solution needed one step less than the previous schedule.

• The second strategy is more flexible but more complex to implement. In
this strategy, generic task partitioners are used to partition a given set of
tasks and assign these partitions to threads for execution. A partitioner
called term complexity partitioner (TCP) has been implemented and
used for experiments described later. TCP uses the term complexity of
τ of an inhabitation question Γ ⊢ ? : τ to cluster sets of inhabitation
questions. Here, the term complexity is measured in the size ∥τ∥ which
is the number of nodes in the abstract syntax tree of τ .

Optionally, another partition strategy could be to assign unique threads
to types containing variables and using the rest of the cores shared for
types only containing type constants. This can be useful, because we
know from the analysis of the theoretical algorithm that computing the
substitutions is very resource-consuming in memory and CPU-time.

A good survey on partitioning algorithms can be found in the work
by Chamberlain [1998]. Walshaw et al. [1997] are presenting notable
experimental results for an algorithmically similar problem called un-
structured meshes. Partitioners are an ongoing research topic in high
performance computing (HPC).

Both strategies allow a scattering algorithm to distribute the computation
input among workers equally for optimal load balancing.

Experiments on these parallelization strategies have been conducted with
the (CL)S implementation applied to various example inhabitation questions
on a quad-core (4), on a hex-core (16), and on a 64-core computer. These
experiments have been conducted on two different systems.

• A PC was used for conducting the experiments on a quad-core computer.
Its specification is included in the Appendix in Section B.3.1 on page 209.

• A compute cluster server was used for conducting the experiments on a
16 and 64 core computer. Its specification is included in the Appendix
in Section B.3.2 on page 209.

More detailed information on the systems and the measurement method can
be found in the Appendix B.

For analysis, the performance workload has been logged. This log shows
the utilization ratio (UR) UR of the aggregated normalized sum of utilized

90 CHAPTER 4. OPTIMIZATION OF CLS

threads. With a thread-pool size T and a number of maximal computation
steps N of an execution graph, and a number of utilized threads Ti in
computation step i ∈ {1, . . . , N}, UR can be written as:

UR =

N
i=1

Ti

T

N

UR for Example 4.5 above (1, 3, 5, 9) with utilization (1, 3, 4, 1, 4, 4, 1) is 0.643.
In our setting with a single root node, UR is always less than 1. Since every
inhabitation question has to try every x ∈ Γ, different numbers of arguments
n, and paths P the measured computation time in a node NI is nearly
constant. The variance of the computation time is caused by the optimization
strategies in the computation of substitutions. Multi-tasking also inflicts
additional fluctuations in the measurements. The variance as measured so far
is insignificant. Therefore,

T i
U

T
corresponds (by multiplication of a constant

factor) to the classical utilization definition with utilization of processor Pi as

Utilization(Pi) =
ComputeT ime(Pi)

IdleT ime(Pi) + ComputeT ime(Pi)
.

Here, an advantage of using UR’s definition is to be a relative figure delivering
a dimensionless quantity.

Table 4.2 and Plot 4.13 show the experimentally measured UR for the
rolling queue strategy (RQS) for different inhabitation problems. The details
to the different inhabitation problems are presented in the Appendix in
Section B.2 on page 207. The measured speedup for RQS is shown in
Table 4.3 on page 92.

UR

Problem 4 cores 16 cores 64 cores

Problem 1 / Tracking (cf. pp. 7) 0.831 0.781 0.697
Problem 2 / Γ2

4 (cf. pp. 66) 0.911 0.867 0.828
Problem 3 / Γ3

4 (cf. pp. 66) 0.937 0.178 0.43
Problem 4 / Γ4

3 (cf. pp. 66) 0.856 0.742 0.538
Arithmetical mean 0.88 0.777 0.623
Standard deviation 0.048 0.057 0.151

Table 4.2: Experimentally measured UR for RQS

Table 4.4 on page 92 and Plot 4.14 show the same results for experimentally
measured UR for the term complexity partitioner (TCP). The measured
speedup for TCP is shown in Table 4.5 on page 92.

4.2. ALGORITHMIC OPTIMIZATION 91

Figure 4.13: Plot of Experimentally measured UR for RQS

Figure 4.14: Plot of Experimentally measured UR for TCP

92 CHAPTER 4. OPTIMIZATION OF CLS

Speedup RQS

Problem 4 cores 16 cores 64 cores

Problem 1 / Tracking (cf. pp. 7) 3.252 12.496 44.608
Problem 2 / Γ2

4 (cf. pp. 66) 3.644 13.872 52.992
Problem 3 / Γ3

4 (cf. pp. 66) 3.748 11.488 27.52
Problem 4 / Γ4

3 (cf. pp. 66) 3.424 11.872 34.432
Arithmetical mean 3.517 12.432 39.888
Standard deviation 0.193 0.906 9.705

Table 4.3: Experimentally measured speedup for RQS

UR

Problem 4 cores 16 cores 64 cores

Problem 1 / Tracking (cf. pp. 7) 0.907 0.893 0.881
Problem 2 / Γ2

4 (cf. pp. 66) 0.89 0.943 0.798
Problem 3 / Γ3

4 (cf. pp. 66) 0.438 0.414 0.367
Problem 4 / Γ4

3 (cf. pp. 66) 0.8 0.614 0.581
Arithmetical mean 0.759 0.691 0.657
Standard deviation 0.19 0.19 0.2

Table 4.4: Experimentally measured UR for TCP

Speedup TCP

Problem 4 cores 16 cores 64 cores

Problem 1 / Tracking (cf. pp. 7) 3.628 14.288 56.384
Problem 2 / Γ2

4 (cf. pp. 66) 3.56 13.488 51.072
Problem 3 / Γ3

4 (cf. pp. 66) 1.752 6.624 23.488
Problem 4 / Γ4

3 (cf. pp. 66) 3.2 9.824 37.184
Arithmetical mean 3.035 11.056 42.032
Standard deviation 0.758 3.063 12.797

Table 4.5: Experimentally measured speedup for TCP

Both data sets have been measured with a sample size of 50 runs.

In Tables 4.2 and 4.4, the case of experimentation with one single CPU
core, that is identical to a sequential processing of the inhabitation question,
is omitted, because the utilization of this case will be constant, UR = 1.

The results of the measurements in Tables 4.2 and 4.4 are discussed now.

4.2. ALGORITHMIC OPTIMIZATION 93

1. In Table 4.2 and also in Table 4.4, the figures of the utilization UR are
decreasing as we increase the number of CPU cores assigned to the
inhabitation problem. This can be explained by idle threads waiting
for new inhabitation requests in the working queue to process.

2. The results suggest that the TCP strategy has a better utilization UR

for multi-core systems (64 cores), whereas RQS’s deviation is smaller.

3. The smaller mean values of the deviation of RQS of 0.085 compared to
0.193 of TCP show that RQS is more robust than TCP with respect
to varying problems. That makes RQS a more suitable candidate as a
robust default algorithm for many- and multi-core settings. Whereas
TCP has more potential for optimization because of its genericity.

These results suggest to use RQS as default algorithm for the implemen-
tation of (CL)S and to use TCP for a future optimization strategy.

Alternative parallelization approaches

A second parallelization approach is thinkable. This method would parallelize
the data-centric part of the algorithm. Both parallelization strategies exclude
each other, because we have a finite set of cores for executing the tasks. In
experiments, only optimizing the data-centric part turned out to be not that
efficient. The reason is that within the data-centric part many computations
are interconnected and dependent.

This approach goes well with embarassingly parallel problems. After
analyzing experiments, the Utilization Ratio of this approach was significantly
lower (≈30%) than the parallelization of the control-centric part. This does
not mean that there is no way to parallelize the data-centric part. It rather
means that this approach is more complicated and needs a sophisticated
analysis and a more advanced algorithm design.

A third approach is a hybrid of data-centric and control-centric paral-
lelization. This approach needs a more fine grained control on the task to
core assignment to optimize the utilization ratio of the computation. This
approach has not been pursued yet but seems to be a promising idea for a
future optimization especially for multi-core systems.

Nevertheless, the heuristical optimizations discussed before lead to an
implementation that is very effective for real-world problems and has been
used in many different scenarios.5

5These optimizations have been used for synthesis problems for Lego R⃝ NXT Mindstorm
Robots embedded controller code synthesis, GUI-Synthesis, Cloud configuration synthesis,
and Workflow-Synthesis.

94 CHAPTER 4. OPTIMIZATION OF CLS

4.3 A Distributed Algorithm for BCL0(∩,≤) In-
habitation

The distributed inhabitation algorithm for BCL0(∩,≤) is implemented sepa-
rately for:

1. a data-centric part

2. a control-centric part

as advocated in Section 4.2.1 on page 72. The algorithm includes the heuristi-
cal optimizations listed in Sections 4.1 to 4.2 on pages 52–71. The data-centric
part of the algorithm is called InhabOptimized and depicted in Figure 4.7
on page 96.

The algorithm is a deterministic implementation of the algorithm in
Figure 4.5 on page 64 with a modification that the recursion of the ATM is
moved to a separate, central control algorithm. This control algorithm will
be presented in two different versions. The first control algorithm will be
sequential and easier to discuss. The second control algorithm will be based
on the sequential algorithm but be concurrent.

Data Algorithm (Inhabitation)

The algorithm presented in Figure 4.5 on page 64 is using an ATM that
contains non-deterministic choices, which is a theoretical but not a practical
construct. Therefore, we have to simulate the occurring non-deterministic
choices by a deterministic construct. deterministic Turing machines (DTMs)
can simulate non deterministic Turing machines (NTMs) [Papadimitriou,
1994]. This simulation uses a DTM whose configurations represent multiple
configurations of the NTM. Now the step operation of the DTM is to visit
each of the NTM’s successor configurations in turn, executing a single step at
each visit, and spawning new configurations whenever the transition relation
defines multiple continuations.

We can now use a similar approach to simulate the non-deterministic
choices in the ATM by deterministic choices. The non-deterministic choices of
the form CHOOSE q ∈ Q with predicate q ∈ Q are replaced by FORALL q ∈ Q to
probe all possible valuations of q. The similarities to the optimized algorithm
in Figure 4.5 are obvious.

We will discuss the changes that are related to the algorithmic optimization
discussed in Section 4.2 on page 71:

• Line 2: A Boolean mutable variable PossibleSuccess is initialized
with false. This variable is used to determine, if any new inhabitation

4.3. A DISTRIBUTED ALGORITHM FOR BCL0(∩,≤) INHABITATION95

question or any direct inhabitation (with no arguments n = 0) occurred
in this node. If this is not the case, node τ in the execution graph can
directly be marked with FAILED in line 35. If during the processing of
this node either a direct inhabitation is successful or new inhabitation
questions have been generated in line 18 respectively line 23, then the
variable PossibleSuccess is set to TRUE.

• Line 14: At this line a path satisfying the condition πi ≤ τ has been
found. In this case a new group node labeled with the choices for x ∈ Γ,
n, and π is created as child of the current node τ .

• Line 17: The choice of x ∈ Γ must have been a combinator (x : σ) where
σ is a type without any arguments since n = 0 in this case. The current
node τ can be marked as successful and the successful inhabitation of τ
with x can be propagated in the execution graph.

• Line 20: In this case we have found (x : σ) with a possibly successful path
satisfying πi ≤ τ but with arguments that must be inhabited. Therefore,
we cannot mark this node τ neither as SUCCESS nor FAILED. Instead
we mark the current node τ as UNKNOWN.

We will later see in the control algorithm that nodes marked with
UNKNOWN at the end of the complete inhabitation processing are
marked with FAILED.

An excerpt of the concrete implementation in F# of Algorithm 4.7 is
shown in a source code listing in Appendix A.1 on page 205.

Sequential Control Algorithm

The control-part is shown in Algorithm 4.8 on page 97. This algorithm calls
InhabOptimized in line 22. Either InhabOptimized returns (see for Fig-
ure 4.7)

• SUCCESS in the case that new inhabitation nodes containing new
inhabitation questions have been created or

• FAILED in the case that the node has been marked as failed and no
new inhabitation nodes have been created.

The control algorithm simulates the transition ∆ and acceptance rules of an
ATM presented in Section 3.4 on page 43 and by Chandra et al. [1981].

We will discuss the sequential version of the algorithm for clarity and will
refer to the differences for a concurrent version of Algorithm 32 as needed.

96 CHAPTER 4. OPTIMIZATION OF CLS

Algorithm 4.7: Algorithm InhabOptimized for (CL)S

Require: Γ, τ =

i∈I τi are organized
1: Input: Γ, τ
2: PossibleSuccess:=false
3: for all (x : σ) ∈ Γ do
4: write σ ≡

j∈J σj

5: for all i ∈ I, j ∈ J,m ≤ ∥σ∥ do
6: candidates(i, j,m):=Match(tgtm(σj) ≤ τi)
7: end for
8: M:={m ≤ ∥σ∥ | ∀i∈I∃j∈J : candidates(i, j,m) = true}
9: if M̸= ∅ then
10: for all m ∈M do
11: for all ji ∈ J with candidates(i, ji,m) = true do
12: for all Si is a substitution do
13: for all πi ∈ Pm(Si(σji)) with tgtm(πi) ≤ τi and

∀1 ≤ l ≤ m ∀π′ ∈ argl(πi) ∃(y : ρ) ∈ Γ ∃ a path ρ′ in ρ
∃k : Match(tgtk(ρ′) ≤ π′) = true do

14: Add group node to τ
15: if n = 0 then
16: Mark τ with true
17: Propagate result τ in execution graph GE
18: PossibleSuccess:=true
19: else
20: Mark τ with UNKNOWN
21: for all l ∈ {1 . . .m} do
22: Add inhabitation node

i∈I arg l(πi) to g

23: PossibleSuccess:=true
24: end for
25: end if
26: end for
27: end for
28: end for
29: end for
30: end if
31: end for
32: if PossibleSuccess then
33: return SUCCESS
34: else
35: Mark τ as FAILED
36: return FAILED
37: end if

4.3. A DISTRIBUTED ALGORITHM FOR BCL0(∩,≤) INHABITATION97

Algorithm 4.8: Sequential Control Algorithm for (CL)S

1: Input: Γ, τ
2: Q := Initialize Working Queue
3: CS := Initialize Success Cache
4: CF := Initialize Fail Cache
5: Γ := Organize Γ
6: τN := Normalize τ
7: root := Create inhabitation node τN
8: Enqueue root in Q

9: while Q has elements do
10: q := Dequeue from Q

11: if q is part of cycle then
12: Mark q as end point of cycle
13: end if
14: τ ′ := Organize τ ′ in q

15: if τ ′ ∈ CS then
16: Link parent τ ′ to existing τ ′ ∈ CS

17: else
18: if ∃σ ∈ CF .τ ′ ≤ σ then
19: Mark τ ′ as FAILED
20: end if
21: if τ ′ ̸∈ CF then
22: if InhabOptimized(Γ,τ ′)=FAILED then
23: Add τ ′ to CF

24: Mark τ ′ as FAILED
25: end if
26: Propagate result of τ ′ in execution graph GE
27: end if
28: end if
29: end while
30: Fix cycles recursively in root

31: Mark UNKNOWN nodes as FAILED and propagate result
32: if root is marked with SUCCESS then
33: return ACCEPT

34: else
35: return FAIL

36: end if

98 CHAPTER 4. OPTIMIZATION OF CLS

Thus, we will postpone a discussion about synchronization and threading
issues to Section 4.3 in favor of clarity.

• Line 2 to line 7: In these lines the data structures used by the control
algorithm are constructed and initialized:

1. The working queue Q is initialized as empty queue. This working
queue is used for the BFS traversal through the execution graph.

2. The success cache CS is a hash map from integers to nodes mapping
hash numbers of types to their nodes in the execution graph.
Types/nodes in this cache have been successfully inhabited by
the algorithm so far. This structure will be used to compress
the execution graph as described in Section 4.2.3 on page 81 and
Section 4.2.3 on page 80.

3. The fail cache CF is a hash map from integers to nodes mapping
hash numbers of types to their nodes in the execution graph.
Types/nodes in this cache have failed to be successfully inhabited
by the algorithm so far. This structure will be used to stop further
inhabitation attempts that have failed before. This implements
the optimization discussed in Section 4.2.3 on page 80.

4. The type environment Γ is organized as described in Section 4.2.2
on page 79 to prevent repetitive organization.

5. The goal type τ of the inhabitation question Γ ⊢ ? : τ is normalized
to τN as described in Section 4.2.2 on page 77.

6. The optimization of the atomic extension of the subtyping relation
≤ as discussed in Section 4.2.2 on page 78 is omitted for brevity.

• Line 7 and line 8: The root node of the execution graph is created
with τN and also placed in the working queue as primary inhabitation
question.

• Line 9 to line 29: The while-loop iterates over the elements in the
working queue Q for traversing the execution graph in BFS.

• Line 10: The current inhabitation question with goal q is retrieved from
the working queue Q.

• Line 11: This line checks if node q is part of a cycle. The cycle detection
is described in Section 4.2.3 on page 84.

4.3. A DISTRIBUTED ALGORITHM FOR BCL0(∩,≤) INHABITATION99

• Line 12: If node q is part of a cycle with a starting point of the cycle q′

a separate cycle edge from q to q′ is created. This step is also described
in Section 4.2.3 on page 84.

• Line 14: The type in node q is organized and assigned to τ ′ because
the inhabitation algorithm requires organized input.

• Line 15: If the organized type τ ′ creates a cache hit, τ ′ must have
been inhabited successfully before. We can omit its computation and
reuse the former result of the inhabitation of τ ′. This is described in
Section 4.2.3 on page 80 in more detail. A direct look-up method can
be used. Remark 4.2 on page 80 provides further information on this
decision.

• Line 16: We reuse the previous result of the inhabitation of τ ′ by
relinking the result’s subgraph of the execution graph beneath the
former inhabitation to q’s parent node.

• Line 18: If there exists a supertype σ of τ ′ in the fail cache CF , then
the inhabitation of τ ′ will also fail. This follows because τ ′ ≤ σ and
the inhabitation of the supertype σ of τ ′ has failed before and we can
omit this computation. This is described in Section 4.2.3 on page 80 in
addition with Lemma 3.3.1 on page 42.

• Line 19: The inhabitation of τ ′ must have failed before and we can
mark q with FAILED, accordingly.

• Line 21: The current inhabitation goal τ ′ is neither cached in CS nor
in CF . It means, we have no information on τ ′.

• Line 22: We must call the inhabitation procedure InhabOptimized of
the Algorithm 4.7 on page 96.

• Line 23: The inhabitation of τ ′ did not produce a direct inhabitation
and no additional inhabitation questions have been created. There is
no possibility for a successful inhabitation of τ ′ and we can add τ ′ to
the fail cache CF to prevent further inhabitation attempts.

• Line 24: τ ′ can never be inhabited. Accordingly, the node q of τ ′ is
marked with FAILED.

• Line 26: For any possible outcome of the inhabitation question for τ ′,
the result must be propagated in the execution graph to set nodes either
to SUCCESS or FAIL or leave them unchanged. This propagation is

100 CHAPTER 4. OPTIMIZATION OF CLS

described in Section 4.2.1 on page 72 and the while-loop can proceed
processing the next element in the working queue.

• Line 30: After processing all elements, cycles must be set to the states
(SUCCESS or FAIL) according to the cycle begin’s state. If the cycle
has been inhabited by another branch of the execution graph, the cycle
itself is inhabited using finitely many cycles together with at least one
successful branch.

• Line 31: If there are any nodes in the execution graph marked with
UNKNOWN, then mark these nodes with failed.

• Line 32 to line 36: If the root inhabitation question is marked with
SUCCESS, Γ ⊢ ? : τ is inhabited. The result is returned by the control
algorithm.

Remark 4.5. Note that Algorithms 4.7 and 4.8 are deterministic algorithms
and not ATMs anymore. The procedure call in line 22 of Algorithm 4.8 would
be invalid within an ATM.

Concurrent Control Algorithm

The concurrent algorithm (Algorithm 4.9) is based on the sequential algorithm
in the previous subsection. The while-loop is now executed by separate worker
threads in a master-slave pattern [Buschmann et al., 1996, pages 321ff]. These
threads are spawned by a main thread, which waits for all worker threads to
be stopped.

The working threads are stopping their execution upon a termination
signal that is triggered whenever a semaphore S reaches zero. We initialize
the semaphore at the start of the threads in line 12 with the number of
working threads in the thread-pool. After finishing one inhabitation question
the semaphore is decreased in line 32.

If the number reaches zero an extra watchdog thread monitoring the
semaphore raises a termination signal for the working threads. The working
threads receive the termination signal and stop their execution. The main
thread is waiting in line 36 for the termination of all worker threads. After all
worker threads stopped their execution, the main thread continues analogously
to the sequential algorithm.

This procedure is needed, because when processing of the inhabitation
questions concurrently some worker threads might become idle if not enough
inhabitation questions are contained as tasks in the working queue. The

4.3. A DISTRIBUTED ALGORITHM FOR BCL0(∩,≤) INHABITATION101

construction, initialization, and destruction is very resource consuming. There-
fore, it would be a waste of resource to terminate these threads and restart
them with a new task. Hence, these working threads should terminate if
and only if no inhabitation questions are in the working queue and no new
inhabitation questions will be generated.

The working queue is implemented as work-stealing queue that has been
presented by Blumofe [1994] and later by Blumofe and Leiserson [1999].

We will discuss the concurrent algorithm in more detail:

• Line 2 to line 31: This part is similar to the sequential control algorithm
except that the data structures are thread-safe using thread-safe caches,
a shared memory6 structure for execution graph with locks, a semaphore,
and a signal for the termination of threads, and a thread-safe queue.

• Line 9: Spawns n concurrent working threads coming from a thread-pool
that are executing the task defined in line 11 to line 33.

• Line 11: This line corresponds to the one of the sequential algorithm.
Also a check for the presence of a set signal is used to inform the thread
to abort its task. If such a signal is received, then the while-loop is
exited.

• Line 12: In this line the semaphore S is incremented by one because
the thread has an inhabitation question of q as task to process.

• Line 32: In this line the semaphore S is decreased by one because the
thread has finished an inhabitation question q as task to process.

• Line 13 to line 31: These lines correspond to the lines in the sequential
algorithm except that concurrency must be treated by thread-safe data-
structures as described above.

• Line 36: The main thread waits for all n spawned worker threads to
finish by putting the main thread to sleep. It is woken up automatically
by a signal that all worker threads have finished their tasks.

• Line 37 to line 43: This part is similar to the sequential control algorithm
because these lines are independent of concurrency. This part belongs
to the main thread and is therefore sequential.

An implementation of an execution graph as convergent or commutative
replicated data type (CRDT) graph, e.g. discussed by Shapiro et al. [2011] and

6In the sense of a shared repository pattern in [Buschmann et al., 1996, pages 202ff].

102 CHAPTER 4. OPTIMIZATION OF CLS

Algorithm 4.9: Concurrent Control Algorithm for (CL)S

1: Input: Γ, τ
2: Q := Initialize Working Queue
3: CS := Initialize Success Cache
4: CF := Initialize Fail Cache
5: Γ := Organize Γ
6: τN := Normalize τ
7: root := Create inhabitation node τN
8: Enqueue root in Q

9: Spawn n working threads executing the task={
10:

11: while Q has elements and (not termination signal received) do
12: Increase semaphore S
13: q := Dequeue from Q (using assignment strategy S)
14: if q is part of cycle then
15: Mark q as end point of cycle
16: end if
17: τ ′ := Organize τ in q

18: if τ ′ ∈ CS then
19: Link parent of τ ′ to existing τ ′ ∈ CS

20: else
21: if ∃σ ∈ CF .τ ′ ≤ σ then
22: Mark τ ′ as FAILED
23: end if
24: if τ ′ ̸∈ CF then
25: if not InhabOptimized(Γ,τ ′) then
26: Add τ ′ to CF

27: Mark τ ′ as FAILED
28: end if
29: Propagate result of τ ′ in execution graph GE
30: end if
31: end if
32: Decrease semaphore S
33: end while
34: }
35:

36: Wait for all n working threads
37: Fix cycles recursively in root

38: Mark UNKNOWN nodes as FAILED and propagate result
39: if root is marked with SUCCESS then
40: return ACCEPT

41: else
42: return FAIL

43: end if

4.3. A DISTRIBUTED ALGORITHM FOR BCL0(∩,≤) INHABITATION103

Letia et al. [2009], has also been tested. An CRDT graph implementation
turned out to be very efficient with respect to communication efforts needed
for consesus on consistency because CRDTs do not induce conflicts during
convergence. Therefore, CRDTs are conflict-free data structures. However,
CRDT graphs also raised a problem of a slow convergence of eventually
consistence that lead to unnecessary and redundant computations in an
execution graph.

The concurrent algorithm is used for synthesis in practical scenarios. Some
additional features, for example providing interfaces to the algorithm or an
execution context, are needed to to simplify its usage. The resulting tool is
presented in the next chapter.

104 CHAPTER 4. OPTIMIZATION OF CLS

Chapter 5

Combinatory Logic Synthesizer

The current chapter presents an implementation of the discussed concurrent
inhabitation algorithm including the heuristic optimizations described in
the previous chapter. The implementation is embedded in a tool named
Combinatory Logic Synthesizer (CL)S and will be discussed now. We begin
with the construction algorithm of resulting inhabitants of a relativized
inhabitation request from an execution graph, then (CL)S implementation
and relevant features are presented. Afterwards, (service-)interfaces of (CL)S
for input and output are defined and some application scenarios, to which
(CL)S and an extension of (CL)S, SCS, have been employed, are exhibited.

The distributed algorithm presented in Section 4.3 was implemented for
BCL0(∩,≤) using Microsoft .NET Framework. The data-centric part of the
inhabitation algorithm (cf. Algorithm 4.7 on page 96) was implemented
in F# whereas the control-centric part of the inhabitation algorithm (cf.
Algorithm 4.8 on page 97) was implemented in C#. The core of the F#
algorithm is shown in the appendix in Listing A.4.1 on page 205.

The non-deterministic choices in NI have been implemented by iterations
on all possible choices. For example, Algorithm 4.7 on page 96 iterates
every x ∈ Γ in line 3 and checked if its target is a subtype of τ in line 13.
The algorithms discussed before are algorithms for deciding the relativized
inhabitation problem. A subtle but important difference of the algorithms
presented now is that (CL)S explicitly enumerates and returns all inhabitants.

5.1 Reconstructing Inhabitants

Inhabitants have to be constructed explicitly by decompressing the compressed
information contained in the execution graph because a sharing representation
to the execution graph is used. The reconstruction of inhabitants in an

105

106 CHAPTER 5. COMBINATORY LOGIC SYNTHESIZER

Γ ⊢ ? : τ

{x = A : σ → τ, n = 1} {x = Z : ρ, n = 0}

Γ ⊢ ? : ρΓ ⊢ ? : σ

{x = X1 : σ, n = 0} {x = X2 : σ, n = 0}

Γ ⊢ ? : σ Γ ⊢ ? : σ

∃ ∃

∀ ∀

∃ ∃

∀ ∀

Figure 5.1: Constructing inhabitant from an execution graph GE

execution graph is achieved by following all paths from the root to successful
leafs in the constructed execution graph and by storing every combinator x
that occurs in a group node on this path. The following example will clarify
this idea.

Example 5.1. An example execution graph GE is shown in Figure 5.1. Green
nodes are marked with SUCCESS and red nodes are marked with FAILED. In
this execution graph two leaves are marked with SUCCESS. Two paths to these
nodes can be found from the root. The group nodes contain the combinators
x = A : σ → τ , x = X1 : σ, and x = X2 : σ. The resulting inhabitants for the
initial inhabitation question Γ ⊢ ? : τ are AX1 and AX2.

The algorithm for the construction is displayed as recursive Algorithm 5.1.
The initial call to this algorithm is made with the root node of the execution
graph GE and returns the set of all inhabitants as applicative terms. This
algorithm constructs sets of inhabitants, by way of example the applicative
term A(X1(X2), X3(X4, X5)) is such an inhabitant.

5.2 Implementation

(CL)S is a direct implementation of the Algorithms 4.7 and 4.9. (CL)S

5.2. IMPLEMENTATION 107

Algorithm 5.1: Algorithm for reconstruction of inhabitants
Reconstruct
Require: n is inhabitation node in GE
1: S := ∅
2: for all g is child group node of n

and g is marked with SUCCESS do
3: S ′ := ∅
4: x := combinator of g
5: i := 1
6: for all n′ is child inhabitation node of g

and n′ is marked with SUCCESS do
7: argi := Reconstruct(n′) is x i-th argument
8: S ′ := S ′ ∪ {x(arg1, . . . , argn)
9: i := i + 1
10: end for
11: S ′ := S ′ ∪ S ′′

12: end for
13: return S

supports two different processing modes that have both been compiled for
Microsoft Windows as well as for Linux (using Mono). These are a batch-mode
processing a synthesis request from a local file. A batch mode is important
for automatically conducting experiments. A webservice-mode for synthesis
requests on a remote server exposes endpoints offering access via SOAP
and REST. To this end, there are two hosting solutions of the webservice.
First, there is a stand-alone server, mainly intended for usage in experiments.
Second, there exists a hosted version for application servers (e.g. Microsoft
Internet Information Server IIS), intended for usage in industrial settings.

(CL)S as a server application provides its inhabitation service via a web
service interface (WS-SOAP/REST/NetTCP). The inhabitation service imple-
ments a method Inhabitate with a string (containing the inhabitation request)
as argument and returns a unique string containing a token that is used for
polling the inhabitation results. The calculation of the inhabitation question
takes undeterminable time and therefore an algorithm using a busy-waiting
approach might produce a time-out error. Calling the method GetResults
with the token as argument has two possible results. Either an empty string,
meaning there is no inhabitation result yet, or the inhabitation result as a
string containing an XML-document is returned.

The software architecture of (CL)S as a layer diagram is depicted in
Figure 5.2 on the following page. The service provides auxiliary standard

108 CHAPTER 5. COMBINATORY LOGIC SYNTHESIZER

Loggin
g, M

anage
m

ent

Service

Lexer & Parser

Controller

Cache I

Working Queue

Worker Pool

Caches

Execution
Graph

Exporter

Figure 5.2: (CL)S architecture as layer diagram

features like thread and application pooling as well as security. Configurable
logging functionalities are provided by (CL)S which is a crucial feature with
regard to debugging and analyzing experiments.

The external communication with (CL)S is done through its service in-
terfaces at the top in Figure 5.2, its exporting interfaces, or its logging files.
The results are exported in various formats discussed in the (CL)S output
section. For analysis, the execution graph and solution terms can be outputted
graphically.

A component diagram of the implementation of (CL)S is depicted in
Figure 5.3. In Figure 5.4 the inter-object dependencies and associations
are shown. Architectural standard techniques like a loadbalancer and an
additional application cache for filtering redundant calculations are omitted
for clarity in front of the controller component in Figure 5.4. The execution
graph is implemented as a shared memory data structure with spin locks. An
alternative implementation as CRDT graph is possible. The working queue is
also replaceable by a distributed queue, e.g. by using ∅MQ, in a distributed
compute cluster. Moderate resulting communication costs, primarily resulting
from interconnect latency of ≈ 20µs, by using ∅MQ as distributed queue
turned out to be a promising solution in a distributed compute cluster and
replaces the work-stealing queue in a many- and multi-core implementation
in the used compute cluster with 19 cluster units and more than 1200 cores.

The server allows multiple clients to share the server’s threads in a fair

5.2. IMPLEMENTATION 109

Caches ExecutionGraph

Exporter

Processing

Result

Controller

BCL Inhab Service

BCLAlgo

BCLUnitTests

Figure 5.3: (CL)S package diagram

110 CHAPTER 5. COMBINATORY LOGIC SYNTHESIZER

InhabitationFSCS

WorkingFQueue

ExecutionFGraph

Controller ThreadFPool

Worker

Worker

InhabOptimized

SuccessFCache FailFCache

Figure 5.4: (CL)S inter-object dependencies

way. Because every client request is associated with a fixed number of threads
that depends on the number of CPU cores of the system. Therefore, every
core is shared equally.

5.3 (CL)S Input Specification

In the previous subsection, the input specification of (CL)S for an inhabi-
tation request was introduced as a string. The string is a domain-specific
language (DSL) aligned to the mathematical specification of BCLk(∩,≤) pre-
sented in Section 3.3 on page 39. We prefer a DSL instead of an embedded
domain-specific language (eDSL), because an eDSL would require an individ-
ual compilation for every novel input of (CL)S disallowing a batch processing
mode of (CL)S.

Table 5.1 on the next page depicts mathematical operators and their
corresponding (CL)S operator representation used in the (CL)S input grammar.
The correspondence between both representations is intended to be close.

The data structure representation of intersections is a recursive list of
intersection types. A list structure is an appropriate representation, because
∩ is associative (see Section 3.3 on page 39). This representation corresponds
to the original representation of intersection types in [Barendregt et al., 1983].

5.3. (CL)S INPUT SPECIFICATION 111

Mathematical (CL)S representation
example example

Atoms τ , σ tau, sigma, τ , σ
Variables α, β alpha, beta, α, β
→ τ → σ tau->sigma or τ → σ
∩ τ ∩ σ [tau, sigma] or [τ , σ]
Covariant C(τ1, . . . , τn) C(tau1,...,taun)

constructor
≤ τ ≤ σ tau<=sigma or τ ≤ σ
Subst. S(α) = τ {α} => {τ}

{α} ∼> {τ}

Table 5.1: Mathematical operators and corresponding expressions in (CL)S

Example 5.2. Assuming a type environment

Γ = {
A : σ1 → σ2 ∩ σ3 → a,

B : α,

C : σ2 ∩ σ3

},

with the substitution {α →→ σ1} and the atomic subtyping extension a ≤ a′

with type atoms a and a′. Then Γ ⊢ ? : a′ can be coded as input for (CL)S as
follows:

{

(* Type environment Gamma *)

A : sigma1 -> [sigma2, sigma3] -> a,

B : alpha,

C : [sigma2, sigma3]

},

{

(* Substitution(s) *)

{alpha} => {sigma1}

},

{

(* Atomic subtyping extension *)

tau<=tau’

}

|- ? : a’ (* Inhabitation question *)

112 CHAPTER 5. COMBINATORY LOGIC SYNTHESIZER

Appendix A.1 on page 199 contains the grammar definition of (CL)S in
extended Backus-Naur form (EBNF).

This input is parsed into an abstract syntax tree (AST) that is similar to the
functional data-type representation of (CL)S. This data-type representation
is used by the implementation of the inhabitation algorithm in Figure 4.9 on
page 102 and a F# implementation in Listing A.1 on page 205.

5.4 (CL)S Output Specification

(CL)S returns inhabitants of the posed inhabitation request as a string con-
taining an XML document with all inhabitants as XML tree and auxiliary
information. Additionally, the execution graph and the contained applicative
terms are exported to a directed graph markup language (DGML)1 file for
graphical representation. DGML is a graph description language using XML
containing a directed graph with additional information. This information
can be used to filter or operate on the graph in Microsoft Visual Studio 2013.
These operations include queries on the graph structure and content or layout
operations like cluster view or tree view.

In different experiments conducted with (CL)S, graphs have been created
with more than 1 000 000 nodes. For analysis and debugging purposes this
graph representation of the execution graph GE has proven very valuable.

The DGML representation is graphically similar to the execution graph
GE in Section 4.2.1. Figure 5.5 and Figure 5.6 show an example of a small
execution graph and a more complex execution graph as output in DGML.
The example in Figure 5.5 is taken from the tracking object-example pre-
sented in [Rehof, 2013]. In Figure 5.6, the extended tracking object-example
presented in [Düdder et al., 2014a, 2013b] and in Section 1.3 on page 7 is
depicted.

Another export filter of (CL)S for execution graphs is the DOT format.
DOT is also a graph representation language. GraphViz2 uses the DOT
format as input to render graphic files in various formats. Open-source editors
and viewers for DOT are available. This file format is particularly important
with regard to Linux users.

Furthermore, various data of the processing of (CL)S are logged in files.
This information includes timings, CPU and thread utilization, RAM con-
sumption, and warnings and errors.

1XML-schema definition of DGML: http://schemas.microsoft.com/vs/2009/dgml
2GraphViz’s and Dot’s main page is http://www.graphviz.org.

http://schemas.microsoft.com/vs/2009/dgml
http://www.graphviz.org

5.4. (CL)S OUTPUT SPECIFICATION 113

□[
D

is
ta

nc
e,

 R
]?

di
st

an
ce

□[
Ca

rt
, P

([R
; R

])]
?

cd
n

[P
os

, P
([[

P(
[R

; R
]),

 C
ar

t];
 R

])]
?

po
s

D
([[

Ca
rt

, P
([R

; R
])]

; [
G

ps
t,

R]
; R

])?

Tr
V

Tr
O

bj
?

O

cd
n

[P
os

, P
([[

P(
[R

; R
]),

 C
ar

t];
 R

]),
 P

([[
P(

[R
; R

]),
 P

ol
ar

];
R]

)]?

□[
Ca

rt
, P

([R
; R

])]
?

cd
n

[P
os

, P
([[

P(
[R

; R
]),

 C
ar

t];
 R

])]
?

po
s

D
([[

Ca
rt

, P
([R

; R
])]

; [
G

ps
t,

R]
; R

])?cd
n

[P
os

, P
([[

P(
[R

; R
]),

 C
ar

t];
 R

]),
 P

([[
P(

[R
; R

]),
 P

ol
ar

];
R]

)]?

Figure 5.5: (CL)S execution graph in DGML

114 CHAPTER 5. COMBINATORY LOGIC SYNTHESIZER

□VArrayV[TrObj]h2>[ArrayV[TrObj]hwmSortedV[decTO]h]h?

filterAndSortFunction

□VTrObj2>[CelwmRwmms]h?

Bullet

[□VDV[PV[R;mR]h;mR;m[AvgwmCelwmR]]h2>[AvgwmCelwmR]hwm□VDV[PV[R;mR]h;mR;m[CelwmRwmms]]h2>[CelwmRwmms]h]?

□VTrObj2>DV[PV[R;mR]h;mR;m[CelwmR]]hh?

TrV

Bullet

[□VDV[PV[R;mR]h;mR;m[AvgwmCelwmR]]h2>[AvgwmCelwmR]hwm□VDV[PV[R;mR]h;mR;m[CelwmRwmms]]h2>[FhwmRwmms]h]?

□VTrObj2>DV[PV[R;mR]h;mR;m[CelwmR]]hh?

Bullet

[□VDV[PV[R;mR]h;mR;m[AvgwmCelwmR]]h2>[AvgwmFhwmR]hwm□VDV[PV[R;mR]h;mR;m[AvgwmCelwmR]]h2>[AvgwmCelwmR]hwm□VDV[PV[R;mR]h;mR;m[CelwmRwmms]]h2>[CelwmRwmms]h]?

□VTrObj2>DV[PV[R;mR]h;mR;m[CelwmR]]hh?

Bullet

[□VDV[PV[R;mR]h;mR;m[AvgwmCelwmR]]h2>[AvgwmFhwmR]hwm□VDV[PV[R;mR]h;mR;m[AvgwmCelwmR]]h2>[AvgwmCelwmR]hwm□VDV[PV[R;mR]h;mR;m[CelwmRwmms]]h2>[FhwmRwmms]h]?

□VTrObj2>DV[PV[R;mR]h;mR;m[CelwmR]]hh?

Bullet

[□VDV[PV[R;mR]h;mR;m[AvgwmCelwmR]]h2>[AvgwmCelwmR]hwm□VDV[PV[R;mR]h;mR;m[CelwmRwmms]]h2>[CelwmRwmms]h]?

□VTrObj2>DV[PV[R;mR]h;mR;m[CelwmR]]hh?

Bullet

[□VDV[PV[R;mR]h;mR;m[AvgwmCelwmR]]h2>[AvgwmCelwmR]hwm□VDV[PV[R;mR]h;mR;m[CelwmRwmms]]h2>[CelwmRwmms]hwm□VDV[PV[R;mR]h;mR;m[CelwmRwmms]]h2>[FhwmRwmms]h]?

□VTrObj2>DV[PV[R;mR]h;mR;m[CelwmR]]hh?

Bullet

[□VDV[PV[R;mR]h;mR;m[AvgwmCelwmR]]h2>[AvgwmCelwmR]hwm□VDV[PV[R;mR]h;mR;m[CelwmRwmms]]h2>[CelwmRwmms]hwm□VDV[PV[R;mR]h;mR;m[CelwmRwmms]]h2>[FhwmRwmms]h]?

□VTrObj2>DV[PV[R;mR]h;mR;m[CelwmR]]hh?

Bullet

[□VDV[PV[R;mR]h;mR;m[AvgwmCelwmR]]h2>[AvgwmCelwmR]hwm□VDV[PV[R;mR]h;mR;m[CelwmRwmms]]h2>[FhwmRwmms]h]?

□VTrObj2>DV[PV[R;mR]h;mR;m[CelwmR]]hh?

Bullet

[□VDV[PV[R;mR]h;mR;m[AvgwmCelwmR]]h2>[AvgwmCelwmR]hwm□VDV[PV[R;mR]h;mR;m[CelwmRwmms]]h2>[CelwmRwmms]h]?

□VTrObj2>DV[PV[R;mR]h;mR;m[CelwmR]]hh?

Bullet

[□VDV[PV[R;mR]h;mR;m[AvgwmCelwmR]]h2>[AvgwmCelwmR]hwm□VDV[PV[R;mR]h;mR;m[CelwmRwmms]]h2>[CelwmRwmms]hwm□VDV[PV[R;mR]h;mR;m[CelwmRwmms]]h2>[FhwmRwmms]h]?

□VTrObj2>DV[PV[R;mR]h;mR;m[CelwmR]]hh?

Bullet

[□VDV[PV[R;mR]h;mR;m[AvgwmCelwmR]]h2>[AvgwmFhwmR]hwm□VDV[PV[R;mR]h;mR;m[CelwmRwmms]]h2>[CelwmRwmms]h]?

□VTrObj2>DV[PV[R;mR]h;mR;m[CelwmR]]hh?

Bullet

[□VDV[PV[R;mR]h;mR;m[AvgwmCelwmR]]h2>[AvgwmFhwmR]hwm□VDV[PV[R;mR]h;mR;m[CelwmRwmms]]h2>[CelwmRwmms]hwm□VDV[PV[R;mR]h;mR;m[CelwmRwmms]]h2>[FhwmRwmms]h]?

□VTrObj2>DV[PV[R;mR]h;mR;m[CelwmR]]hh?

Bullet

□VDV[PV[R;mR]h;mR;m[CelwmRwmms]]h2>[CelwmRwmms]h?

tmp

□VTrObj2>DV[PV[R;mR]h;mR;m[CelwmR]]hh?

Bullet

[□VDV[PV[R;mR]h;mR;m[CelwmRwmms]]h2>[CelwmRwmms]hwm□VDV[PV[R;mR]h;mR;m[CelwmRwmms]]h2>[FhwmRwmms]h]?

□VTrObj2>DV[PV[R;mR]h;mR;m[CelwmR]]hh?

Bullet

[□VDV[PV[R;mR]h;mR;m[CelwmRwmms]]h2>[CelwmRwmms]hwm□VDV[PV[R;mR]h;mR;m[CelwmRwmms]]h2>[FhwmRwmms]h]?

□VTrObj2>DV[PV[R;mR]h;mR;m[CelwmR]]hh?

Bullet

[□VDV[PV[R;mR]h;mR;m[CelwmRwmms]]h2>[CelwmRwmms]hwm□VDV[PV[R;mR]h;mR;m[CelwmRwmms]]h2>[FhwmRwmms]h]?

□VTrObj2>DV[PV[R;mR]h;mR;m[CelwmR]]hh?

□[stopV[decTO]hwmVpairV[R;mR]h2>boolh]?

stopWrapper

□[decTOwmVpairV[R;mR]h2>boolh]?

greaterThan stopWrapper

[□[VpairV[R;mR]h2>boolhwmincTO]wm□[VpairV[R;mR]h2>boolhwmdecTO]]?

Phi

[□VpairV[R;mR]h2>boolhwm□RevV[incTO]h]?

swap

[□VpairV[R;mR]h2>boolhwm□incTO]?

lessThan

V□VTrObj2>[CelwmRwmms]h2>□VArrayV[TrObj]h2>[AvgwmCelwmRwmms]hh?

AverageFunction

V□VArrayV[TrObj]h2>[AvgwmCelwmRwmms]h2>V□[stopV[decTO]hwmVpairV[R;mR]h2>boolh]2>V□ArrayV[TrObj]h2>V□VTrObj2>[CelwmRwmms]h2>□VTrObj2>boolhhhhh?

largerThanAv2

V□VTrObj2>boolh2>□[FilterwmVArrayV[TrObj]h2>ArrayV[TrObj]hh]h?

F

Figure 5.6: (CL)S execution graph in DGML

5.5. ADDITIONAL APPLICATIONS AND EXTENSIONS 115

5.5 Additional Applications and Extensions

(CL)S has been employed to various synthesis scenarios:

1. In Combinatory Process Synthesis (CPS), Vasileva [2013] uses SCS3 as
a tool to generate BPMN 2.0 workflows (Activiti4) from a repository of
process components.

2. Wolf [2013] uses (CL)S to synthesize control programs for LEGO R⃝
Mindstorm NXT robots from a repository of atomic and complex control
components .

3. Plate [2013] uses (CL)S to synthesize configurations for virtual machine
images in cloud computing infrastructures with OpenNebula5 as cloud
computing stack and corresponding deployment code for instantiating
synthesized virtual machine images from a repository containing vari-
ous configuration components and a comprehensive IT infrastructure
taxonomy.

4. Düdder et al. [2014b] use (CL)S featuring SCS for automatically syn-
thesizing deployable and executeable business process workflows in
BPMN 2.0 for a specific workflow management system (Activiti).

5. (CL)S with SCS is used by Bessai et al. [2014a] for synthesizing compo-
sitions of mixins in object-oriented software systems for Java 8.

6. Bessai et al. [2014b] provides an overview of features of (CL)S that has
been developed in this thesis and features an example of synthesizing
Dependency Injection code for Java and Spring framework6.

In order to simplify the design and editing of type environments, (CL)S
ships with a configurable editor extension(cf. Figure 5.8) for Microsoft Visual
Studio 2013 providing syntax highlighting, code completion, support for
revision control and source code management (CVS, subversion and GIT) as
well as sending inhabitation requests directly at the push of a button to a
(CL)S service. Furthermore, an extension for the open-source programming
editor Notepad++7, depicted in Figure 5.7, provides syntax highlighting and
also code completion for various operating systems, for example Microsoft

3SCS is an extension of (CL)S for staged computation synthesis Düdder et al. [2014a]
(see for 7.6 on page 159)

4http://activiti.org
5http://opennebula.org/
6http://spring.io/
7http://notepad-plus-plus.org/

http://activiti.org
http://opennebula.org/
http://spring.io/
http://notepad-plus-plus.org/

116 CHAPTER 5. COMBINATORY LOGIC SYNTHESIZER

Figure 5.7: (CL)S support in the open source programming editor Notepad++

Figure 5.8: SCS support in Microsoft Visual Studio 2013

5.5. ADDITIONAL APPLICATIONS AND EXTENSIONS 117

Figure 5.9: SCS support in the open source programming editor Notepad++

Windows and Linux. Both editor extensions also support the (CL)S extension
SCS as depicted in Figure 5.9.

118 CHAPTER 5. COMBINATORY LOGIC SYNTHESIZER

Chapter 6

Synthesis of Software
Architectures

This chapter contains a detailed discussion on software architecture and a
presentation of the Combinatory Logic Connector Synthesis method. We
develop a set-theoretic model for capturing relevant features and relations of
software architectural entities. Using this set-theoretic model and composition
in mind, we will identify and classify various common building blocks as well
as their type-theoretic encoding for later use in a repository defined as a type
environment. We methodologically develop the idea of taxonomic hierarchies
encoding semantic concepts of software architecture and present an excerpt
of a comprehensive taxonomy used in various experiments.

Constituting on this work, we define the Combinatory Logic Connector
Synthesis method as specialization of combinatory logic synthesis and devise
its consisting sequential steps. These steps consist of the following major ac-
tivities: definition of a connector synthesis goal, encoding existing connectors
as intersection types and collecting these intersection types in a designated
connector type environment, application of relativized type inhabitation for a
connector type environment and a connector synthesis goal, and generation of
objects, e.g. compilable and executable program code, from synthesis results.
Afterwards, several development and design best practices for connector type
environments are presented.

6.1 Software Connectors

We recall the notions of components and connectors in software architecture
[Perry and Wolf, 1992, Allen and Garlan, 1997, Taylor et al., 2010] and discuss
our methodology and the underlying type-theoretic model. The figures will

119

120 CHAPTER 6. SYNTHESIS OF SOFTWARE ARCHITECTURES

use UML2 component diagrams as ADL by default. The connectors developed
in this chapter allow for a syntactic and semantic interconnection.

6.2 Type-theoretic Model

We explain how intersection types are used to specify components, connectors,
and building blocks. Let P be a finite set of semantic concepts, ranged over
by p, p′, that describe properties of components, connectors, building blocks,
and interfaces. Let T ⊆ P × P be a preorder on P forming a taxonomical
hierarchy. Let I be a finite set of interfaces ranged over by I, I ′. Denote by
TP,I be the set of intersection types that can be built from taking P ∪I to be
the set of constants. We denote τ ∈ TP,I as a connector type. We extend the
subtyping relation ≤ on TP,I by T by adding the axiom (p, p′) ∈ T ⇒ p ≤ p′

to the axioms given in [Barendregt et al., 1983]. We will also say, that a set of
axioms is added to the subtyping relation ≤. The extension of the subtyping
relation is used to encode semantic concepts in a taxonomical hierarchy that
are specifying the building blocks of software connectors.

Remark 6.1. Note that interfaces of components and connectors are more
abstract in the sense that these interfaces can be seen as describing a set of
methods with a unique symbol instead of a single method with a method name.

We begin with a set theoretic-model of software components and software
connectors that eases the discussion and the construction of a type-theoretic
model that our method is based on.

6.2.1 Component

In our set-theoretic model, a software component is characterized by its inter-
action via its provided and required interfaces. The component’s computation
is abstract and hidden because we are only interested in synthesizing software
connectors.

Definition 6.2.1. (Component)
A component C is a pair C = (R,P) where R,P ⊆ I with P ≠ ∅ are C’s
required resp. provided interfaces.

Each Ij ∈ R, P, and C itself may be annotated by sets of concepts Pj , PP ,
PC ⊆ P . Some of the sets of concepts may be empty. This does not present a
problem in the following since the empty intersection is equal to ω and it can
be shown that τ ∩ ω = τ holds. A software component can be translated into
an intersection type representing this component as follows.

6.2. TYPE-THEORETIC MODEL 121

Definition 6.2.2. (Component type)
Let C be a component with R = {I1, . . . , Ik}. Then, C is represented by
the type τC ≡ (τ1 → . . . → τk → τP) ∩

p∈PC

p where τj ≡ Ij ∩

p∈Pj
p for

1 ≤ j ≤ k and τP ≡

I∈P I ∩

p∈PP
p.

6.2.2 Connector

In our set-theoretic model, a software connector is characterized by its in-
teraction via its provided and required interfaces as well as the functional
dependency between provided and required interfaces. A software connector
might need some external services that are connected to its required interfaces
in order to provide some of its services by its provided interfaces. These
external services might be provided by supplemental software components.

Definition 6.2.3. (Connector)
A connector c is a triple c = (R,P, f) where R,P ⊆ I with R ̸= ∅ and
P ≠ ∅ describe c’s required resp. provided interfaces. The partial function
f : 2P → 2R maps subsets of provided interfaces of c to subsets of required
interfaces of c.

We intuitively explain the meaning of f . Let P ′ ⊆ P be a set of provided
interfaces of c. Then, f(P ′), if defined, states which of the required interfaces
of c are needed to provide the functionality of the interfaces in P ′. A connector
c may connect a set P1 ⊆ I of provided interfaces to a set R1 ⊆ I of required
interfaces if all interfaces that c requires to provide R1 are contained in P1.
Thus, c must be able to provide the interfaces in R1 (i.e., f(R1) must be
defined). Furthermore, the interfaces that c requires to do so must be provided
to c (i.e., f(R1) ⊆ P1).

Definition 6.2.4. (May connect)
c may connect P1 to R1 if the following two conditions hold:

1. f(R1) ̸= ⊥ and

2. f(R1) ⊆ P1.

Note that an I-connector is represented by ({I}, {I}, {{I} →→ {I}}). To
translate a connector c to a typed combinator, consider a set P ′ ⊆ P of
provided interfaces with f(P ′) = {I1, . . . , Ik}. Again, each Ij where 1 ≤ j ≤ k
and P ′ may be annotated by sets Pj resp. PP ′ ⊆ P of concepts. We represent
this functional dependency by the type σP ′ ≡ τ1 → . . . → τk → τP ′ where
τj ≡ Ij ∩

p∈Pj

p for 1 ≤ j ≤ k and τP ′ ≡

I∈P ′ I ∩

p∈PP′ p. The connector

c may also be annotated by a set Pc ⊆ P of concepts.

122 CHAPTER 6. SYNTHESIS OF SOFTWARE ARCHITECTURES

A software connector can be translated into an intersection type repre-
senting this connector as follows.

Definition 6.2.5. (Connector type)
The connector is represented by the type τc ≡

P ′⊆P σP ′ ∩

p∈Pc

p.

In this definition, we tacitly assume that the first intersection is only
indexed by subsets P ′ with f(P ′) ̸= ⊥.

6.2.3 Building Blocks

We now define some identified building blocks and provide examples for their
definition. These building blocks classify characteristic usages of software
connectors. This classification system is an integral part of our method and
contains the following elements

• Atomic building block

• Complex building block

• Container building block

• Adapter building block

Atomic Building Block

A very basic building block is a building block that only provides interfaces
without requiring any interfaces. Such an atomic building block does not need
any other building blocks to provide its service via its provided interfaces.

Definition 6.2.6. (Atomic building block)
Let b be an atomic building block providing the interfaces in P ⊆ I which
may be annotated by a set Pb ⊆ P of concepts. It is represented by the type
τb ≡

I∈P I ∩

p∈Pb

p.

Example 6.1. Assume an atomic building block b as depicted in Figure 6.1
providing three interfaces with Pb = {I1, I2, I3}. Furthermore, assume that
we have concepts Pb = {p1, p2} associated to b. The representation of b as
type is:

τb ≡ I1 ∩ I2 ∩ I3 ∩ p1 ∩ p2.

6.2. TYPE-THEORETIC MODEL 123

b

I1
I2
I3

Figure 6.1: Atomic building block

b

I1
I3

I2

Figure 6.2: Complex building block

Complex Building Block

Definition 6.2.7. (Complex building block)
A complex building block b may be described by an arbitrary type τb ∈ TP,I.

Example 6.2. Assume a complex building block b depicted in Figure 6.2
providing two interfaces with Pb = {I1, I2} and requiring one interface with
Rb = {I3}. Furthermore, assume that we have concepts Pb = {p1, p2}
associated to b. The representation of b as type is:

τb ≡ (I1 ∩ I2)→ I3 ∩ p1 ∩ p2.

Thus, complex building blocks are the only objects whose types may
contain type variables. Such variables are used to connect a complex building
block to concrete interfaces. This definition allows us to regard components
and connectors as building blocks. A special kind of complex building blocks
is used as top-level containers that offers the functionality of a software
connector and packages all its required service components.

Container Building Block

Definition 6.2.8. (Container building block)
A building block b whose type τb has at least one type component of the form
σ1 → . . .→ σm → (ι1 ∩ ρ1 → . . .→ ιl ∩ ρl →

k∈K ι′k ∩ ρ) where m ≥ 0 and

l, |K| > 0 is called a container (building block).

124 CHAPTER 6. SYNTHESIS OF SOFTWARE ARCHITECTURES

Here, ιi resp. ι′j are atomic type variables that are kinded by I (see
for Section 3.2.3 on page 39). Type variables ι act as meta-variables that
get instantiated with concrete interfaces of components. The types ρh for
1 ≤ h ≤ l and ρ are level-0 types that can be built from P and type variables
kinded by P . Such containers can be regarded as the top-level building blocks
from which connectors can be synthesized. The types σi can be regarded as
the arguments required to synthesize the connector.

Example 6.3. If, for example, there is a container (b : I ′ ∩ p → (ι ∩ p′ →
ι ∩ p′′)) an I-connector can be synthesized (by instantiating ι by I) if b is
provided with an interface I ′ that has been specified by concept p. This I-
connector would have the property that it requires I to have property p′ and
then provides I with property p′′.

The container building block is an important building block for realistic
models and also for synthesis. Container building blocks will later be repre-
sented as UML2-packaging components [Object Management Group (OMG),
2005] because container building blocks are logical (and often meta combina-
tors in the sense of L2 in Section 7.6 on page 159) entities that resemble a
specific, actual usage-context, e.g. technical environment (triggering tools),
for child building blocks of such container building blocks.

Another example for a container building block is shown in the following
example.

Example 6.4. Assume a container building block b, depicted in Figure 6.3,
providing three interfaces with Pb = {ι, I1, I2} and requiring one interface with
Rb = {ι}. The interface ι is the placeholder (as type variable) for connecting
this container building block to components. Furthermore, assume that we
have two concepts Pb = {p1, p2} associated to b. The representation of b as
type is:

τb ≡ I1 → I2 → ((ι→ ι) ∩ p1 ∩ p2).

Adapter Building Block

Definition 6.2.9. (Adapter building block)
A building block b whose type τb of the form (ι1 ∩ ρ1 → . . . → ιl ∩ ρl →

k∈K ι′k ∩ ρ) where m ≥ 0 and l, |K| > 0 is called an adapter (building
block).

Here, ιi resp. ι′j are atomic type variables that are kinded by I (see
for Section 4.1.5 on page 66). We will assume that an adapter building block
is not an identity function and therefore P is not empty. The types ρh for

6.2. TYPE-THEORETIC MODEL 125

b

ι ι

I1 I2

Figure 6.3: Container building block

1 ≤ h ≤ l and ρ are level-0 types that can be built from P and type variables
kinded by P . Such containers can be regarded as adapters for I-connector’s
with ι → ι. In a later example and experiment in Section 8.2 on page 170,
an adapter building block will be presenting a façade (pattern) [Buschmann
et al., 1996, pages 294ff] to connect two slightly different interfaces. The
adapter building block is a specialization of the container building blocks.
These adapter building blocks can be derived from complex connectors by
splicing the complex connector as a transformation as suggested in [Spitznagel
and Garlan, 2001]. This transformation is an element of a proposed set of
transformations that are discussed in Section 6.3.6.

One purpose of adapter building blocks is data transformation. Even
though the components to be connected share the same interface ι, these
interfaces might be specified by semantic information ρ ∈ P . An adapter
building block can connect to other adapter building blocks and container
building blocks.

Example 6.5. Assume an adapter building block b providing one interface
with Pb = {ι} and requiring one interface with Rb = {ι}. Like in a container
building block, the interface ι is the placeholder (as type variable) for connecting
this adapter building block to components or other connectors. Furthermore,
assume that we have concepts Pb = {p1, p2} associated to b. The representation
of b as type is:

τb ≡ ι→ ι ∩ p1 ∩ p2.

6.2.4 C&C Type Environment

Let R be a given repository of building blocks.

126 CHAPTER 6. SYNTHESIS OF SOFTWARE ARCHITECTURES

b

ι ι

Figure 6.4: Adapter building block

Definition 6.2.10. (C&C type environment)
A type repository containing at least one container building block is called
C&C type environment.

We assume that R is a C&C type environment. For each C, c, and
b in R we define typed combinators (C : τC), (c : τc), resp. (b : τb) as
above. We define the type environment ΓR to contain exactly these typed
combinators. BCL0(∩,≤)-inhabitation can be used to synthesize from R
a connector c specified with certain concepts by asking the inhabitation
question ΓR ⊢? : τc. A resulting inhabitant is an applicative term consisting
of combinators representing building blocks in R. We define the inhabitation
question and the interpretation of the applicative term.

6.2.5 Taxonomy

Taxonomies (or taxonomical hierarchies) are used to assign semantic concepts
to objects by linking concepts coming from the taxonomy to those objects.
These semantics can contain a rich structure as depicted in the Figure 6.5.
The idea of encoding taxonomic trees into a subtyping relation is shown
in [Rehof, 2013, pages 8f] and in [Steffen et al., 1997].

Our motivation to use taxonomies for the Combinatory Logic Connector
Synthesis method is that we want to represent and automatically reason based
on the software architect’s knowledge on software architectures. Here, we will
primarily focus on the conceptual knowledge on software connectors and the
interaction among components.

The structure is given in the form of a taxonomic tree in Figure 6.5,
in which the nodes contain semantic type names, and where dotted lines
indicate structure containment. It means that Concept 2 is also a Concept
1. The Composite Concept is a composition of two concepts Concept 3 and
Concept 4. Furthermore, we have an instance-of relation that relates abstract
concepts with concrete instances. A taxonomy for connectors is presented
and discussed in [Taylor et al., 2010]. If we directly transfer such a taxonomy

6.2. TYPE-THEORETIC MODEL 127

Concept 3 Concept 4

Concept 2 Comp. Concept

Instance of 2 Instance of 1

is-a

composition

instance-of

Concept 1

Figure 6.5: Example (abstract) taxonomy

into an atomic extension of the subtyping relation ≤, then we would lose the
extra information of the semantic of the vertices. Within this relation we
cannot distinguish between semantics of relations (is-a vs. instance-of) in a
taxonomy. To integrate different semantics encoded by the corresponding
relations, a separate meta-taxonomy for describing those semantics can be
added to our subtyping relation ≤. A meta-taxonomy is depicted in Figure 6.6.
This taxonomy only contains conceptual information on the semantics of
taxonomic relations. To integrate both taxonomies into a subtyping relation,

has-relation

Composition Aggregation

has-a is-a instance-of

Figure 6.6: Example meta-taxonomy

1. we construct the atomic subtyping extension on the union of both
relations.

128 CHAPTER 6. SYNTHESIS OF SOFTWARE ARCHITECTURES

2. we combine every occurrence of a taxonomic concept in a type of
a combinator in the C&C type environment with the concept of its
taxonomic relation originating from the meta-taxonomy. In the case
of the composition relation, we use a coding using arrow types (→).
Assume the concept a is a composition of the concepts b, c, and d, then
the relation is encoded as the type b→ c→ d→ a. This type is then
inserted into the corresponding position in the combinator’s type.

3. we encapsulate different taxonomical concepts in the arguments of
designated type constructors.

This construction allows a succinct encoding of the taxonomical hierarchies
into the subtyping relation ≤ and the C&C type environment. The atomic
extension can easily be encoded in (CL)S as described in the previous chapter.

We can now use the connector classes and instances presented by Hirsch
et al. [1999] depicted in Figure 6.1 to construct a taxonomy representing
this information. The meaning of a connector class in [Hirsch et al., 1999]
is: “[...] a connector class can be seen as a connector that does not define
criteria for a set of properties, these properties are viewed as optional by
the class. Consequently, a class instance is a connector with no optional
properties that has all mandatory properties of its class.” Asterisks are
indicating optional properties. Pipe and Typed Pipe are instances of the class
Pipe. The vertical line in Figure 6.1 on the facing page is used to visually
separate instance classes like Typed Pipe from the classes like Pipe (class).
PC and RPC abbreviate procedure call respectively remote procedure call.
An idea for transferring these connector classes and instances to a taxonomy
is to interpret properties such as to be “Connection oriented” as concepts and
the instances either as concept instances (1) or directly as combinators (2)
(including an underlying set of templates). In [Hirsch et al., 1999] an entry
“Yes” means that this property is present whereas an entry “No” means that a
property is not applicable. An entry “*” means that this property is optional.
Here, we ignore the “No” and “*” cases and use “Yes” marked properties
only. It means that the connector classes and instances in Figure 6.1 can
be transferred into a taxonomy such as presented in Figure 6.7. The figure
shows a taxonomical tree for the concept of a reliable connection, for instance
a reliable connection can be implemented by a pipe.

We can now define the atomic subtyping extension of ≤ by adding the
following axioms:

6.2. TYPE-THEORETIC MODEL 129

P
ro

p
er

ty
P

ip
e

R
P

C
E

ve
n
t

P
C

S
h

ar
ed

P
ip

e
T

y
p

ed

B
ro

ad
ca

st
D

at
a

P
ip

e

K
n

ow
s

ta
rg

et
N

o
Y

es
N

o
Y

es
N

o
N

o
N

o

R
eq

u
es

t/
R

ep
ly

N
o

Y
es

N
o

Y
es

N
o

N
o

N
o

S
y
n

ch
ro

n
ou

s
N

o
Y

es
N

o
Y

es
N

o
N

o
N

o

F
lo

w
C

on
tr

ol
Y

es
N

o
N

o
N

o
N

o
Y

es
Y

es

O
n

e
W

ay
Y

es
N

o
N

o
N

o
N

o
Y

es
Y

es

B
ro

ad
ca

st
N

o
N

o
Y

es
N

o
Y

es
N

o
N

o

S
tr

ea
m

ed
Y

es
N

o
N

o
N

o
N

o
Y

es
Y

es

C
on

n
ec

ti
on

N
o

N
o

N
o

N
o

N
o

N
o

N
o

or
ie

n
te

d

R
el

ia
b

le
Y

es
Y

es
Y

es
Y

es
N

o
Y

es
Y

es

T
y
p

ed
*

Y
es

Y
es

Y
es

Y
es

N
o

Y
es

E
n

cr
y
p

ti
on

*
*

*
*

*
N

o
N

o

A
u

th
en

ti
ca

ti
on

*
*

*
*

*
N

o
N

o

C
om

p
re

ss
io

n
*

*
*

*
*

N
o

N
o

M
on

it
or

in
g

*
*

*
*

*
N

o
N

o

T
ab

le
6.

1:
C

on
n

ec
to

r
cl

as
se

s
an

d
in

st
an

ce
s

ac
co

rd
in

g
to

H
ir

sc
h

et
al

.
[1

99
9]

130 CHAPTER 6. SYNTHESIS OF SOFTWARE ARCHITECTURES

Reliable

Event BroadcastPipe RPC

Class Pipe

is-a

composition

instance-of

PC

Figure 6.7: Connector classes taxonomy inspired by Hirsch et al. [1999]

RPC ≤ Knows Target PC ≤ Knows Target

RPC ≤ Request Reply PC ≤ Request Reply

RPC ≤ Synchronous PC ≤ Synchronous

Pipe ≤ Flow Control Pipe ≤ One Way

Event Broadcast ≤ Broadcast Shared Data ≤ Broadcast

Pipe ≤ Streamed

Pipe ≤ Reliable RPC ≤ Reliable

Event Broadcast ≤ Reliable PC ≤ Reliable

RPC ≤ Typed Event Broadcast ≤ Typed

PC ≤ Typed Shared Data ≤ Typed

It allows the definition of a combinator with type ι→ ι that is a container
building block bSharedMemory for shared memory connector:

bSharedMemory : (ι→ ι) ∩ Shared Data

Everywhere where a property “Typed and Broadcast” (Typed ∩ Broadcast)
for a connector is required by components, the building block bSharedMemory

can be used, because Shared Data ≤ Broadcast and Shared Data ≤ Typed
holds.

The connector classes by Hirsch et al. [1999] have been picked up, refined,
and extended by Mehta et al. [2000] and more completely presented in [Taylor
et al., 2010, pages 157ff].

The (atomic) connector types described here are:

• Procedure call (in Figure 6.8)

6.2. TYPE-THEORETIC MODEL 131

Figure 6.8: Example connector type Arbitrator from Taylor et al. [2010,
pages 166ff]

• Data access

• Event

• Stream

• Linkage

• Distributor

• Arbitrator (in Figure 6.9)

• Adaptor

These taxonomies can be combined with a connector compatibility matrix
in Figure 6.10 to form a complex practical taxonomy respectively subtyping
extension for Combinatory Logic Connector Synthesis. A way of coding
negations and exclusions for BCLk(∩,≤) is presented in [Düdder et al., 2013a].

The composite connector types described in [Taylor et al., 2010] that can
be composed from the atomic connector types are:

132 CHAPTER 6. SYNTHESIS OF SOFTWARE ARCHITECTURES

Figure 6.9: Example connector type Arbitrator from Taylor et al. [2010,
pages 171f]

• Cloud/grid connectors (e.g., Globus1)

• Procedure call

• Data access

• Stream

• Distributor

• Peer-to-peer connectors (e.g., Bittorrent)

• Arbitrator

• Client-server connectors

• Event-based connectors

1Project website: http://toolkit.globus.org.

http://toolkit.globus.org

6.2. TYPE-THEORETIC MODEL 133

Figure 6.10: Connector compatibility matrix from Taylor et al. [2010,
pages 178f]

We developed a tool, named ArchiType, to conduct experiments on re-
alistic software architectures. ArchiType includes a taxonomy (coded as
subtypes) that subsumes the taxonomy in [Taylor et al., 2010]. The build-
ing blocks have been developed for different target technologies like .NET
or Java. The complete taxonomy is too large to be discussed here, there-
fore we provide an excerpt in Figure 6.11.This excerpt is focused on the
concept of Reliable Messaging. Object is the root of all concepts in this
connector taxonomy. Furthermore, concepts of Communication Role pre-
sented in Subsection 2.2.2 on page 28 and Connector Type have two sub
concepts Pipe and Linkage, here. Furthermore the concept communication-
Protocol with the relevant sub-concepts HTTP, TCP/IP, and Mail can be
used as channels by REST (representational state transfer (REST) [Fielding,
2000]) and together with Mail as channels by WS-SOAP. A Message Queue

is a kind of Reliable Messaging and RabbitMQ is an instance or prod-
uct providing a Message Queue service. Note, that the instance RabbitMQ

134 CHAPTER 6. SYNTHESIS OF SOFTWARE ARCHITECTURES

is specified in the corresponding C&C type environment as a combinator
RabbitMQ : MessageQueue ∩ Linkage ∩ Pipe ∩ REST ∩ SOAP.

WS-ReliableMessaging

ReliableHMessaging

MessageHQueue

is-a
instance-of

Object

RabbitMQ

Pipe

CommunicationHRole ConnectorHType

Linkage HTTP Mail

SOAP

Protocol

TCP/IP

REST

Figure 6.11: Excerpt of a connector taxonomy included in ArchiType

6.3 Combinatory Logic Connector Synthesis

For the definition of the Combinatory Logic Connector Synthesis, we need
some more definitions for the method’s steps.

6.3.1 Synthesis of Connector

In order to use type inhabitation, we have to specify a corresponding C&C
type environment ΓR as well as an atomic extension of the subtyping relation
≤ representing a taxonomy. Furthermore, we have to provide templates
that are linked to the combinators in a C&C type environment and a type
inhabitation question formulated as intersection type τ . This synthesis goal
is given schematically where types ι1, . . . , ιl are instantiated by concrete
interfaces.

Definition 6.3.1. (Connector synthesis goal) A type ι1 ∩ ρ1 → . . . →
ιl ∩ ρl →

k∈K ι′k ∩ ρ where m ≥ 0 and l, |K| > 0 is called a connector

synthesis question.

The intuitive meaning of the connector synthesis goal is that we have two
or more components that have a set of provided interfaces ι1, . . . , ιl and a set
of required interfaces ι′k ∈ K. The connector to be synthesized has to connect
the required interfaces of the components with their provided interfaces and

6.3. COMBINATORY LOGIC CONNECTOR SYNTHESIS 135

vice versa for the provided interfaces of the components. Note the structural
similarity of a connector synthesis goal and a container building block.

We now have gathered all essential elements for using the type inhabitation
Γ ⊢ ? : τ for synthesizing a software connector description. Such a software
connector description is an inhabitant e which is an applicative BCLk(∩,≤)
term defined in Section 3.3 on page 39 that satisfies Γ ⊢ ? : τ .

6.3.2 Generation of a Connector

The remaining step is the generation of a software connector by interpreting
the inhabitant e. We interpret the inhabitant on its applicative term level
corresponding to the following definition. The definition is aligned to a domain
theory over interpretations.

Definition 6.3.2. (Generation of a connector)
An inhabitant e is interpreted as software connector by recursive application
of cases in the interpretation function J·KI under a given interpretation I
defined by

1. e ≡ a: if e has no arguments, a :

I∈I I ∩ ρ, and ρ an intersection
of properties, then JeKI is connector named e that provides interfaces
I ∈ I.

2. If e ≡ a(b1, . . . , bn) and a is of a type not representing an atomic building
block: Term e is an application of n arguments b1, . . . , bn with a, then
the required interfaces of component aare connected to the corresponding
provided interfaces of Jb1KI, . . . , JbnKI.

Note that the cases of the definition above are excluding each other. The
interpretation of an inhabitant e provided by JeKI is abstract with respect to
concrete objects like a software component and a container building block. We
will use different interpretations to generate different objects. These objects
will be concrete like UML2 components in a UML2 component diagram,
program source code, configuration code, and so on. The program source
code is generated by using the linked text templates of a combinator as
its interpretation. In [Düdder et al., 2012] and more advanced in [Düdder
et al., 2014b] we present an interpretation that generates Petri-Nets via graph
expansion.Summarizing, the generation process can produce (nearly) arbitrary
artifacts by an appropriate interpretation.

136 CHAPTER 6. SYNTHESIS OF SOFTWARE ARCHITECTURES

A

I0
B

I0

Figure 6.12: Components A and B

6.3.3 Combinatory Logic Connector Synthesis Method

This section and the previous Section 6.1 provide concise definitions for the
Combinatory Logic Connector Synthesis method in Figure 2.2 on page 26
that is an essential contribution of this thesis.

Definition 6.3.3. (Combinatory Logic Connector Synthesis)
The Combinatory Logic Connector Synthesis method consists of the following
steps executed sequentially:

1. Specifying a C&C type repository and a taxonomy represented by an
atomic extension of ≤ (by analyzing an architectural scenario).

2. Synthesizing compositions of building blocks by posing suitable connector
synthesis goals.

3. Generation of objects (for example using code from the templates) by a
suited interpretation function.

We will say synthesize and generate and mean the sequential composition
of specifying, synthesizing, and generation. This method can now be applied
to synthesize2 specific software connectors. In the following sections and
chapters this method will be evaluated by conducting different experiments.
But before we begin with that, we apply this method to a small example for
demonstration.

6.3.4 Example for Combinatory Logic Connector Syn-
thesis

We present a small example illustrating the Combinatory Logic Connector
Synthesis method. We will come back to this small example in an experiment
described later.

Example 6.6. Consider the two components A and B depicted in Figure 6.12
that interact via interface I0 which is required by A and provided by B. Both

2It might be confusing that synthesis occurs in the methods name as well as in the
name of a step in the method.

6.3. COMBINATORY LOGIC CONNECTOR SYNTHESIS 137

S

Ienc

C

Ienc

Figure 6.13: Components S and C

WSenc

ι ι

Ienc

Figure 6.14: Building block wsenc

components reside in the same process and shall be distributed in a way that
guarantees message security by encryption, i.e., we want to synthesize an
I0-connector that guarantees message security.

Assume a simple taxonomy that states sym and asym are encryption
concepts (symmetric and asymmetric encryption, for instance in [Schneier,
1995]). Also assume a repository R containing two components, S and C
depicted in Figure 6.13, providing functionalities for symmetric (by a shared
secret) respectively asymmetric (by a certificate with public and private key
pair) encryption. Both components provide the same interface Ienc. Further-
more, there is a container building block in the repository R that requires Ienc
and is an I-connector that implements an interaction via a web service that
guarantees message security by encryption.

We extend ≤ with the axioms sym ≤ enc and asym ≤ enc. The repository
ΓR contains (S : Ienc ∩ sym) and (C : Ienc ∩ asym) (each combinator is
semantically specified by an intersection stating what kind of encryption is
provided) and the container building block (wsenc : (Ienc → (ι→ ι)∩ws)∩(α→
α)) depicted in Figure 6.14. If wsenc is given an interface of type Ienc it
produces an I-connector for any I (by instantiating ι with I) by a web service
(ι → ι is semantically specified with the type ws). Furthermore, wsenc may
transfer any property that α can be instantiated with to the resulting connector.

We synthesize the desired I0-connector (i.e., an encrypted connection via
web service) with connector synthesis goal (I0 → I0) ∩ ws ∩ enc by posing the

138 CHAPTER 6. SYNTHESIS OF SOFTWARE ARCHITECTURES

WSenc

ι ι

Ienc

C

Ienc

Figure 6.15: Resulting connector wsenc(C)

WSenc

I0I0

Ienc

C

Ienc

A

I0
B

I0

Figure 6.16: Resulting connector wsenc(C) with components A and B

inhabitation question Γ ⊢? : (I0 → I0) ∩ ws ∩ enc, and obtain two inhabitants
wsenc(S) and wsenc(C). If, for example, we specifically want an I0-connector
with asymmetric encryption we pose the analog inhabitation question Γ ⊢? :
(I0 → I0) ∩ ws ∩ asym and only obtain wsenc(C) in Figure 6.15.

With a substitution ι →→ I0, the resulting connector can be used to connect
components A and B as shown in Figure 6.16.

6.3.5 Synthesis of Behavior

In object-oriented software behavior and data are treated separately. The
same holds for computation and interaction in C&C software architectures.
Sometimes, interaction is more than mere data transfer and needs protocols
as discussed in Section 2.2.2 on page 28. A way to specify protocols is using
finite-state machines. Finite state machines and even ATMs can be simulated
in BCLk(∩,≤).

A simulation of a two counter machine3 simulated by the type inhabitation
in simple types λ→ is shown by Rehof [2013]. The type inhabitation in

3A two counter machine has two registers for counting integer numbers.

6.3. COMBINATORY LOGIC CONNECTOR SYNTHESIS 139

combinatory logic used here is even more expressive. This can be seen in
the proof of the lower bound of type inhabitation in BCLk(∩,≤). In [Düdder
et al., 2012] the halting problem for expk+1(n)-space bounded ATM is shown
to be reducible to relativized type inhabitation in BCLk(∩,≤).

An advantage of employing BCLk(∩,≤) for synthesis is the possibility
to use higher-order typed combinators for composition. In C&C connector
synthesis, data-adapters (or converters) map values from domain A into
domain B. This data-adapter can be used in complex building blocks, for
example as arguments such in (τA → τD) → ι. Such higher-order typed
combinators are used in the experiment “Detailed Broker Pattern Example”
in Section 8.2 on page 170 as a façade-pattern adapting incompatible interfaces
of clients and servers.

6.3.6 Designing C&C Type Repositories and Templates

Aldrich [2008] defines architectural conformance as: “A system conforms
to its architecture if the architecture is a conservative abstraction of the
run-time behavior of the system.” This description is primarily focused on a
system’s behavior. Furthermore Aldrich [2008] states that “[...] conformance
is a critical issue for any architecture.” We can see that from an architect’s
point-of-view, architectural conformance is not only desired but also a critical
requirement. Otherwise, the system’s abstract architecture and the run-time
system have different behavior.

This architectural conformance must also hold between the C&C type
environment with linked templates and the synthesized and generated run-
time system as well. Preserving the architectural conformance depends on
three key assets of the Combinatory Logic Connector Synthesis method. First,
it depends on the specification of a complete taxonomy. This completeness
means that all relevant concepts and relations have to be specified. This is
achievable by an iterative refinement of these specifications. Second, it also
depends on the design of an appropriate C&C type environment and the
proper specification with taxonomical concepts from the first step. Third, a
conformant design and development of code templates with a balance between
behavior (the runtime of the system) and its data. A more advanced but
more complex synthesis approach with a preservation property is discussed in
Section 7.6 on page 159. These three key assets must be specified correctly,
aligned to a group of scenarios, in order to preserve architectural conformance.

For the construction of a C&C repository, a set of steps and transformations
can be given.

The step for this design process is to determine a system’s interconnection
and interaction needs. For this, software interconnection models can be

140 CHAPTER 6. SYNTHESIS OF SOFTWARE ARCHITECTURES

helpful. The roles of the connectors can be analyzed and transferred into a
classification for connector types. A classification using roles as a classifier is
discussed in Section 2.2.2 on page 28. Summarizing, the discussion provides
the following roles for a software connector: communication, coordination,
conversion, and facilitation. In addition, Taylor et al. [2010] also suggest
to determine the connector’s appropriate types and its dimensions of in-
terest. Exemplary dimensions and values, taxonomic ranks, for a special
software connector are depicted in Figure 6.8 on page 131. Then, in the
next step, appropriate values for each dimension should be chosen. Multi-
types4 described by Taylor et al. [2010], for example for composite connectors,
can be spliced into compatible atomic connectors. For connector synthesis,
the distinction between application-specific functionality (components) and
application-independent interaction mechanisms (connectors), as discussed in
Section 2.2.1 on page 26, offer an indication for distinguishing components
from connectors.

During the design of building blocks, a set of transformations might be
applied to the connectors in order to create composite building blocks. Spitz-
nagel and Garlan [2001] propose a set of such transformations for connector
construction. This set of transformations consists of the following elements:

1. Data Transform: “Data Transform changes the format of the data
being exchanged in an interaction.”

2. Splice: The splice transformation “[...] combines two binary connectors
into a new binary connector”.The splice operation can be generalized
to n-ary connector splicing.

3. Add a role: “The transformation add a role adds a new interface (or
“role”) to an interaction to enable a new party to be involved”.

4. Sessionize: changes connectionless protocols to session-oriented proto-
cols and vice versa.

5. Aggregate: “[...] combines two or more connectors with a con-
troller”,where only one connector is active at a time.

These operations can be applied to connectors in order to create composite
connectors.

An automatic model extraction algorithm could simplify the design phase
for the Combinatory Logic Connector Synthesis method. For example, a type

4Such multi-types are software connectors that belong to different types of software
connectors, e.g. a grid or a peer-to-peer connector.

6.3. COMBINATORY LOGIC CONNECTOR SYNTHESIS 141

system and a related model extraction algorithm are presented in [Lam and
Rinard, 2003]. The type system in [Lam and Rinard, 2003] seems to be very
expressive and whereas it is unclear if the corresponding inhabitation problem
for this type system is decidable.

Remark 6.2. Because of the complex inner structure and unique behavior
that is needed for the application’s business logic, a business component’s
possible reusability is drastically reduced. Applied to the components, the
reduced reusability makes our methodology less effective. However, components
encapsulating cross-cutting concerns of the software system represent an
exception. We conjecture that these components providing services like security
or logging, can also be synthesized and generated by extending our method to
those components.

General Development Guidelines

Some methods have been proven useful in our experiments and applications
of (CL)S. The collection of development methods is not complete. Primarily,
a good advice is the usage of logic programming methods and principles as
presented in [Nilsson and Maluszynski, 1990]. The expressive power of logic
programming has been surveyed in [Dantsin et al., 2001]. An investigation
that is closer to the combinatory logic synthesis has been presented in [Miller
et al., 1991] for uniform proofs as a foundation for logic programming.

(CL)S uses the relativized inhabitation in BCL0(∩,≤) for synthesis. It
means that type variables can only be substituted by intersections of type
atoms. This might not be sufficient in all scenarios, for instance, where
type variables have to be substituted by functions. A way to approximate
substitutions in BCL1(∩,≤) with BCL0(∩,≤) substitution is to introduce fresh
type variables. For example type variable α in BCL1(∩,≤) can be instantiated
with intersections of type atoms as in BCL0(∩,≤) but also with terms of level
1 that are intersections of arrows (→) with intersections of type atoms in
argument and target position of the arrows. With type variables β1, β2, and
σ, α can be approximated by the type

σ ∩ β1 → β2.

In application scenarios like in Combinatory Logic Connector Synthesis or
in Petri-Net synthesis in [Düdder et al., 2012], a property coming from a set
of properties has to be transported from a target position in an arrow type
to the next inhabitation question. This can be encoded by an appropriate
substitution of type variable α by the set of properties and the type

τ ∩ α→ τ ′ ∩ α.

142 CHAPTER 6. SYNTHESIS OF SOFTWARE ARCHITECTURES

Whenever a type is inhabited with a type τ∩p with property p, the inhabitation
question spawned for the argument will be τ ∩ p. The now transferred
information on p can then be used for that inhabitation question.

Remark 6.3. Note that this encoding differs from an encoding that replaces
the substitution of the property (type variable α) by subtyping. Assuming
p ≤ p1, . . . , p ≤ pn with properties pi for i ∈ {1, . . . , n}, an encoding using
subtyping would have the type

τ ∩ p→ τ ∩ p.

From that, the (≤)-rule allows to conclude

τ ∩ pi → τ ∩ pj

for i, j ∈ {1, . . . , n} whereas the substitution with α only instantiates as

τ ∩ pi → τ ∩ pj

with i = j ∈ {1, . . . , n}. This means that the case i ̸= j cannot be simulated
by using a single variable. By introducing a second variable for the first or
second occurrence of α, the resulting substitutions can be instantiated with
arbitrary i, j ∈ {1, . . . , n}. By using subtyping, we lose the information on
the correlation of instantiations of used type variables of a path.

An important feature of intersection types is the possibility to encode
finite functions via their function tables. The encoding of a monadic function
f over a domain D can be encoded by

x∈D

x→ f(x).

This encoding can easily be generalized to polyadic functions and is used in
Definition 6.2.3 for the connectors in Combinatory Logic Connector Synthesis
and more explicitly in the setup of the experiment presented in Section 4.1.5
on page 66.

The encoding of finite function tables in intersection types can be used
to implement the transition function of finite state machines. Then, the
inhabitation can be used to simulate the execution of a finite state machine
in combination with an appropriate encoding of finite state machine’s states,
input and output. A two-counter machine encoding is presented using (for
simple type λ→) in [Rehof and Urzyczyn, 2012]. A more complex encoding
for expk+1(n)-space bounded ATMs is used in the (k+2)-Exptime hardness
proof in [Düdder et al., 2012].

6.4. RELATED WORK 143

Finite existential quantification, ∃x.P , and finite universal quantification,
∀x.P , of a formula P can be mimicked in BCLk(∩,≤) by applying ∩ to all
valuations of x for ∃ or by applying ∩ to all valuations of x in contravariant
position of → for ∀.

Last of all, a recursive but strong normalizing combinator x can be given
an intersection type τ → τ ∩ τ ′ where τ → τ represents the recursive part and
the type τ ′ represents the result of the termination. Such an intersection type
is a valid alternative to the usage of ω to type strong normalizing combinators.
By adding a designated type constant that prevents recursive inhabitation, we
can eliminate undesired cyclic inhabitants. Such a designated type constant
is the type constant f that is used in Section 4.1.5 on page 66.

6.4 Related Work

Various logics have also been used in the context of synthesis within software
architecture to obtain end-to-end realizations from abstract architecture
descriptions to code where the focus varies between specification of entire
architectures and specification and synthesis of connectors.

Broadly speaking, the approaches may be distinguished in at least three
dimensions. First, manual approaches to composition can be contrasted
with automatic approaches, the former aiming for verification of composed
architectures by using powerful, sometimes undecidable, specification logics
whereas the latter rely on simpler, decidable logics. Second, some approaches
view components as black-boxes that only expose their interfaces whereas
others also describe the behavior of the components, for example, by protocols.
Last, the approaches differ in what is synthesized, ranging from the synthesis
of abstract architecture elements such as ADLs or views, for example, to
concrete code.

A classical approach to use higher order logic (HOL) for the specification
of software architectures is presented in [Allen and Garlan, 1994] which is
based on the ideas described by Garlan and Shaw [1993]. The specification
language Z has been proposed for architectural specifications in [Coombes
and McDermid, 1991]. Moriconi and Qian [1994] propose modal logic to
specify software architectures and their manual composition but the focus lies
in verifying intensional correctness of a composed architecture. SAT-solvers
are proposed by Maoz et al. [2013] for structural architectural synthesis using
Alloy developed by Jackson [2002].

Maoz et al. [2013] use also propositional logic to specify C&C architectures.
One particular difference of the work in [Maoz et al., 2013] compared to our
work is that our type theoretic approach also models the functional dependency

144 CHAPTER 6. SYNTHESIS OF SOFTWARE ARCHITECTURES

between a connector’s provided and required interfaces. Furthermore, (CL)S
based on BCL0(∩,≤) presents a more expressive language which is also
reflected in the complexity of the corresponding decision problem (NP versus 2-
Exptime). Ports are a part of the model presented by Maoz et al. [2013].
Such a port can be represented in our model by a designated covariant type
constructor containing the interfaces that are pooled by such a port. In
this thesis, ports are not taken explicitly into account, because ports are no
first-class citizens in C&C architectures as defined by, for instance, Taylor
et al. [2010]. Nevertheless, we generate one individual port for each interface
of a component in a UML2 component diagram, because a components-ports-
interfaces connection is compulsory for valid UML2 component diagrams.

de Alfaro and Henzinger [2001] present interface automata that are used
by Inverardi and Tivoli [2013] and Autili et al. [2010] to describe the behavior
of components. Connectors whose main purpose is to adapt varying behaviors
are synthesized. Yellin and Strom [1997] synthesizes component adapters that
comply with protocol specifications. Fiadeiro et al. [2003] provide an ADL
agnostic and independent formalism to specify the semantics of architectural
connectors by category theory. This specification is intended for the system’s
description.

Penix [1999] proposes a first-order logic specification of architectural
components that is used to retrieve components from a library based on
matching conditions. The construction of exogenous composite connectors via
a hierarchy is presented by Lau et al. [2007]. In this work, the composition is
done manually and components are specified by sequences of logical atomic
predicates. A current work by Bennaceur et al. [2013] on the automated
synthesis of mediators [Buschmann et al., 1996, pages 410ff] describes a formal
method and also presents a tool using an ontological reasoner in combination
with behavioral specifications to synthesize such mediators.

Most of these specification proposals aim to architectural documentation
and/or verification. Prevalently, even approaches for composing architec-
tures by specifications are manual approaches that guarantee architectural
conformance according to those specifications.

The idea of composite connectors like in our method and the ideas pre-
sented by Spitznagel and Garlan [2001] and Julien and Perry [2008] have
also been proposed as composable context-aware architectural connectors
as presented by Julien and Perry [2008] as abstract objects. The author’s
interest in composable connectors is motivated by their usage for expressing
self-adaptive software architectures. Interestingly, the authors note that:
“To our knowledge, no one has ever before considered composing connectors;
although different uses of connectors have been distinguished.” [Julien and
Perry, 2008, page 1].

6.4. RELATED WORK 145

The work presented here is also related to the work that has been done in
the domain of semantic web services (web service modeling ontology (WSMO)
and ontology web language (OWL-S) and related reasoning capabilities), e.g.
Rao and Su [2004], the use of artificial intelligence (AI) planning techniques for
the selection of proper compositions, e.g. by Bertoli et al. [2010] and Kazhami-
akin et al. [2013], or the use of genetic algorithms by Aversano et al. [2006]
to determine suitable compositions.

Waters and Abowd [1999] provide a good overview of general synthesis
processes for software architectures. The main focus in this overview is
the integration of different architectural perspectives for legacy software
architectures.

146 CHAPTER 6. SYNTHESIS OF SOFTWARE ARCHITECTURES

Chapter 7

ArchiType

In order to demonstrate the applicability of the Combinatory Logic Connector
Synthesis method presented in Section 6.1, we implemented ArchiType as an
extension to Microsoft Visual Studio Ultimate 20131 (VS2013) which includes
an architecture extension supporting UML2. ArchiType also uses (CL)S as a
synthesis service. In principle, we want to generate connector descriptions in
an arbitrary ADL, however, in this work we restrict ourselves to the usage of
UML2-component diagrams [Object Management Group (OMG), 2005] as an
ADL.

We adapted UML2-component diagrams to include several stereotypes
capturing the types describing components and interfaces and their properties.
ArchiType allows the initiation of connector synthesis by selecting specific
interfaces to be connected in actual UML2-component diagrams. The system
proposes synthesized solutions in the form of compositions of building blocks,
and the architect (user) chooses an eligible solution. ArchiType automatically
generates a description of the synthesized connector within the diagram
depicted in Figure 8.8 on page 182 below) as a UML2-packaging component
[Object Management Group (OMG), 2005] from the chosen composition. This
process may be repeated for all interfaces for which connectors are needed.
This yields a UML2-component diagram that is enriched with the generated
connector descriptions.

Primarily, ArchiType is technology and language agnostic with respect to
generation targets, e.g. Java. It uses a database as data-store and can be
extended or be reconfigured easily. The current version allows different tech-
nologies like Microsoft WCF and the open-source communication framework
ServiceStack.2 We will focus on WCF because the generated code is easier to

1http://www.microsoft.com/visualstudio/eng/products/

visual-studio-ultimate-2013
2The project’s website is http://www.servicestack.net/

147

http://www.microsoft.com/visualstudio/eng/products/visual-studio-ultimate-2013
http://www.microsoft.com/visualstudio/eng/products/visual-studio-ultimate-2013
http://www.servicestack.net/

148 CHAPTER 7. ARCHITYPE

present.
The enriched UML2-component diagram is then interpreted in order to

generate compilable code for all synthesized connectors from the underlying
templates of the used building blocks. For this code generation, ArchiType
uses the Microsoft T4 Text Templating engine. Each building block in the
repository has to be provided with a set of suitable T4-templates. The syn-
thesis specification is then translated in an ArchiType Composition Language
script. Controlled by the ArchiType Composition Language script, we use
the T4-engine to generate C#-source code as well as XML-configurations for
connectors. An extended approach with staged composition synthesis (SCS),
an extension for (CL)S, for the generation of ArchiType Composition Language
scripts as well as implementation type correctness are discussed. Following
up, implementation details of (CL)S and notable features are presented.

We will now discuss these topics in more detail in the following sections.

7.1 UML2 Extension

For the purpose of connector synthesis, type information must be added
to the UML2-components. UML2 has two categories to extend existing
UML2-diagrams.

The first category are meta-model changes like using the meta-object
facility (MOF) defined by the Object Management Group (OMG) [2011].3

MOF is standard model-driven approach defined by the object management
group (OMG). MOF defines a complex meta-model for UML2 that allows
extension or modification of the UML2 model. A disadvantage of MOF is its
support in industrial tools, because it modifies UML2 in a non-trivial way,
e.g. by adding semantic, that complicates the integration of MOF into these
tools.

The second category are UML2 modifications by existing constructs within
the standard of UML2. In this category, the extensibility mechanisms are
tags, constraints (for instance using the object constraint language (OCL), or
stereotypes.

The residual third category are stereotypes that are a mechanism allowing
to extend the vocabulary of UML2 by creating new model elements. These
model elements are reusing existing model elements and can have supplemen-
tary, specific properties. Graphically, a stereotype is notated by guillemets
(≪ · ≫) enclosing the stereotypes name (·). Stereotypes are commonly sup-
ported in today’s industrial software engineering tools (by way of example,
Microsoft Visual Studio or IBM Rational).

3OMG’s MOF webpage: http://www.omg.org/mof/

http://www.omg.org/mof/

7.2. USER INTERFACE 149

We defined four stereotypes containing a property named Type. This
property is of data type string and contains BCLk(∩,≤) type information
in the form described in Section 5.3 on page 110 and in Appendix A.1 on
page 199. The defined stereotypes of ArchiType are:

• ≪ArchiType component≫: This stereotype is used to add a property
named “types” to UML2 components.

• ≪ArchiType connector≫: This stereotype is used to add a property
named types to UML2 connectors. This connector also contains a string
property called WCF-Configuration. This property can be used to link
a UML2 connector to specific WCF-configuration files.

• ≪ArchiType part≫: This stereotype is used to add a property named
types to UML2 parts. UML2 parts are a general group of different
model elements in UML2. One of these parts is the UML2-interface
and thus UML2-interfaces also contain the property Type.

• ≪ArchiType port≫: This stereotype is used to add a property types
to UML2 ports.

These stereotypes are integrated in the ArchiType extension as a file de-
scribing a profile. This profile is an XML-document containing a collection of
the stereotypes, meta-classes, and property type definitions. These stereotypes
contain a meta-class moniker definition that specifies in which contexts this
stereotype can be employed, for example within UML2-component diagrams
or within UML2-activity diagrams.

Such a profile has to be activated manually for the UML2-component
diagram. Then, a new property appears for marked objects in the property
view of objects called Type. This property can be edited and the BCLk(∩,≤)
type can be placed as string there.

More profiles containing different stereotypes are integrated in Visual
Studio 2013. Such stereotypes allow storing information, for instance of
source code file information or namespaces, in the properties of UML2-model
elements. This information can also be used by ArchiType provided that such
information is actually available.

7.2 User Interface

ArchiType is fully integrated in the Architecture Modeler of Microsoft Visual
Studio 2013 Ultimate. Thus, the first step in ArchiType’s usage is to open or
to create a UML2 component model project. This project can be created in

150 CHAPTER 7. ARCHITYPE

Figure 7.1: Specification of ArchiType specific stereotypes for UML2 elements

a new project solution or an existing project solution that already contains
other projects. In the UML2-component diagram view, existing classes, for
instance written in C#, can be added by dragging their classes onto the UML2-
component diagram view. For these classes, the corresponding stereotypes
as described in Section 7.1 must be applied to the according component and
its child model-elements. A UML2-component has UML2-ports containing
UML2-interfaces. Then, the needed UML2-model elements must be specified
by types. This specification is shown in Figure 7.1.

After marking two or more interfaces in the UML2-component diagram, a
context menu entry on the UML2-component diagram initiates the synthesis
process with a web service call to a (CL)S-server. After computing the results,
the user can select one out of these synthesized solutions in a dialog. A
selected solution is now interpreted as UML2-connector and a corresponding
ArchiType-component model for the UML2-connector is created. This step
can be repeated for more interfaces and, thus, more UML2-components for
UML2-connectors are generated.

Another context menu entry starts adjacently the code generation process.
The user has to select a target technology and language that ArchiType offers.
For this target technology and language specific code is generated. After
the process stopped, a total generation time or a list of error messages is
displayed.

7.3 Synthesizing Connectors in UML2

The selected target technology and language influences the automatic con-
struction of the specialized C&C type environments. The software connector

7.3. SYNTHESIZING CONNECTORS IN UML2 151

ComponentsPackaging component

C&C Type Repository

Figure 7.2: Generation process from inhabitant to UML2 connector

is generated from a synthesized inhabitant of the specialized C&C type en-
vironment. This inhabitant is an applicative term in which its components
represent building blocks as described in Section 6.2.3 on page 122 to Sec-
tion 6.2.3 on page 123. The generation from such an inhabitant to a packaging
component is done by interpreting the components of the applicative term’s
AST in top-down traversal. Figure 7.2 shows the process. The process starts
with an existing UML2-component diagram containing at least two selected
UML2-components to be connected. The following steps generate a UML2-
component diagram that is enriched with a generated connector resp. its
UML2-packaging component.

A container building block is represented by a UML2-packing component
with the top-level main component in a packaging component. A UML2-
packaging component is then connected to two or more UML2-components
that shall be connected by a synthesized connector. The connections of a
UML2-packaging component are constructed with respect to linked BCLk(∩,≤)
type information as well as provided and required interfaces. Also, ports of
the UML2-packaging component are connected via delegate connectors to
the main component of the UML2-packaging component. Here, an argument
position in a term resp. position of a child in an AST is used for a correct
correlation between two components to connect.

Every other component in the inhabitant is interpreted as a corresponding
UML2-component. The interfaces of components are connected via connectors.
A component of the inhabitant’s required interface must be connected to a

152 CHAPTER 7. ARCHITYPE

Figure 7.3: ArchiType screenshot before generation

provided interface of its child or argument components.
Following, a corresponding port for each interface is inserted between a

component and an associated interface. Furthermore, every generated UML2-
component is given a correct BCLk(∩,≤) type information in a corresponding
stereotype property depending on a C&C type environment in a repository.
Such a type information is later used for a code generation process described
in the next section.

7.4 Code Generation

Code generation is the process to translate connector model elements (in
the form of UML2-packaging components) in a given synthesized UML2-
component diagram into source code fragments. Generated source code
fragments and existing source code, which is modeled by a UML2-component
diagram, have to be compiled into an executable program. This process is a
part of the model-driven engineering approach. The code generation process
is depicted in Figure 7.5.

The depicted process uses an indirection via an intermediate language to
control the generation process. Such an indirection is needed to bridge the
gap between an abstract synthesized connector depicted in UML2 without any
code reference with a very specific format of source code. The gap is missing

7.4. CODE GENERATION 153

Figure 7.4: ArchiType screenshot after generation

C&C Type Repository

Template Repository

Figure 7.5: Generation process from UML2 to source code

154 CHAPTER 7. ARCHITYPE

information like directory or file names, or additional uses of software tools
(for example for generating WSDL code from existing interface specifications).
The intermediate language is called ArchiType composition language.

Every building block in the repository is linked to a set of template names.
Such templates are used to generate script code. The script language will be
discussed in the following section. The template’s selection is determined by
the chosen target technology and language resulting in different ArchiType
composition language files depending on the technology and language. This
variability allows for a flexibility and extensibility of ArchiType.

The generation starts with a UML2 package component implementing the
connector and traverses to its children. For every component that is reached
by a traversal, an entry in the repository is used to insert a set of template
names into the script file. Note that such a traversal is alike to traversing an
inhabitant from which a UML2-component diagram is enriched. Container
building blocks may contain additional information depending on concrete
technology associated with a building block.

7.5 ArchiType Composition Language

The ArchiType Composition Language is a textual DSL. The purpose of the
ArchiType Composition Language and its interpreter is to:

1. Control the code generation process in compliance with the dependen-
cies existing between the code templates.

2. Provide values for variables that are used in the code templates.

3. Trigger the Microsoft T4 engine to compile and execute source code
templates in T4 code in a closure operation in order to generate concrete
target source code.

4. Evaluate operations, e.g. concatenating strings.

5. Handle errors either from the interpreter (file not found) or from the
T4 engine.

6. Generate multiple files. A software system contains a lot of source
code files. A generator must be able to generate multiple files. For a
contract-based client-server connection, source code for a client proxy,
a server stub, a contract, communication codes (for example WS-SOAP
or REST), and a lot of configuration files as well as triggering a lot of
tools supporting the generation are necessary.

7.5. ARCHITYPE COMPOSITION LANGUAGE 155

7. Comply with existing interdependencies between different template
files as specified by the semantics added to the C&C type environment.

The composition language file is a text file that contains three sections.
These sections have different purposes:

1. The first section is a declarative part, where a collection of template
names is declared. The declaration format is function-like. Assume we
have a template named T and this template takes three other templates
as its arguments a1, a2, and a3, then the declaration looks like:

T (a1, a2, a3)

2. The second section is used to initialize string variables with values. A
generic template file gets specific values via such variables. In order to
distinguish template names and variables, variables have to begin with
$. The section is also used by ArchiType to apply concrete values, for
instance stemming from the UML2 component diagram to variables for
a code generation in text templates.

3. The third section contains composition commands in an imperative
script form. The script language is a sequence of commands including
functional applications. A special binary infix operator ->> has two
arguments. The first argument is a command (template name) and the
second argument is a string or variable containing a file name. The
file name will later be used to write the result of a command into a
file designated by the file name. It allows the generation of multiple
files during an interpretation of the script. An example line in such a
command sequence is:

T(A, B(C,D), E)->>’’path/file1.ext’’

A simple example for an ArchiType Composition Language code file is
contained in the appendix in Section A.2 on page 201.

The ArchiType Composition Language interpreter expects that every
template name in a script part has a corresponding template file with the
same name. It parses an input file and checks if all declarations are correct.
Afterwards, it initializes all variables with data from the second section. The
second section forms a blackboard architectural pattern as a central data
provider for the generation process. In the next phase, it picks the first
command and interprets its arguments. The results of the arguments of the
command then are passed as values to the first command. Command and

156 CHAPTER 7. ARCHITYPE

arguments are linked to templates via their name. The interpretation of
commands and arguments is made by a call to a controller mapping argument
names from a specification to variable names in a T4 template. Then, the
ArchiType’s T4 controller loads a template text and assigns this template text
to a T4 processor. A T4 processor compiles and executes the template as
executable and returns its return value to the ArchiType’s T4 controller. If a
first command is an argument of ->>, then a return value is written to ->>’s
second argument interpreted as a file name. After that, a second command is
interpreted. The interpreter stops, if an error is raised or the last command
in a script has been processed.

The Microsoft text template transformation toolkit (T4) is a template
based text generation framework included in Visual Studio. The T4 generates
arbitrary text files and is therefore agnostic to target languages. T4 accepts a
custom template format which can contain .NET code and string literals in it.
String literals and .NET code are separated by two special symbols <# and
#>. The .NET code contains meta-code for a code generation, is compiled,
and executed. The result is embedded into a resulting text that contains a
mixture of executed result and string literal parts.

Example 7.1. A simple T4 text template is shown below:

Listing 7.1: Example T4 template file

1 <#@ template debug=”true” hostSpecific=”true” #>
2 <#@ output extension=”.cs” #>
3 <#@ Assembly Name=”System.Core” #>
4 <#@ import namespace=”System” #>
5 <#@ import namespace=”System.IO” #>
6 <#@ import namespace=”System.Collections” #>
7 <#@ import namespace=”System.Collections.Generic” #>
8 <#@ parameter name=”className” type=”System.String” #>
9 <#

10 // this is meta code in C# that is executed
11 string Greeting = ”Hello”;
12 #>
13 // This is the output code from your template
14 namespace MyNameSpace{
15 class <#=className#>{
16 static void main (string[] args){
17 System.Console.WriteLine(”<#= Greeting #>, the time is now:

<#= System.DateTime.Now.ToString() #>”);
18 }

7.5. ARCHITYPE COMPOSITION LANGUAGE 157

19 }
20 }
21
22 <#
23 // Insert any template procedures here
24 // this is also meta code in C# that is executed
25 void foo(){}
26 #>

In this example template a C# file is produced that contains a namespace
and a class declaration with a static void method main. The static method is
called if this program is compiled to an executable with console output. The
method main outputs a string with time information. The content and the
effect of the listing is:

• Lines 1 to 8: Are meta-template codes for configuring the T4-processor.
Such a meta-template code is encapsulated by <#@ and #>.

• Line 1: The template directive is used to set compiler specific options,
like compiler options or culture variables used for specific cultural system
settings (for example the user’s language). If the option hostspecific

is set to true, then a variable Host can be used. The variable Host is a
connection to the T4 processor host which is in this case the ArchiType’s
processor host. If the debug attribute is true, then information for the
debugger is provided that enables the debugger to identify a position in
the template where a break or an exception occurred more accurately.
Analogously, such information is as well used by ArchiType to present
warning or error information to the user.

• Line 2: The output directive is used to set the file extension of a file
that is used for output. The flag can be used to override the setting
that is made with the binary operator ->> in the ArchiType composition
language.

• Line 3: The assembly directive loads an assembly that allows a tem-
plate code to use types defined in a template meta-code.

• Lines 4 to 7: The import directive allows referring to elements
in another namespace without providing a fully-qualified name. The
directive corresponds to the using directive in C#.

• Line 8: The parameter directive is used to set parameters externally
to provided values. A data type must be provided for a parameter. A

158 CHAPTER 7. ARCHITYPE

value of a parameter is set by the ArchiType T4 processor and depends
on all evaluated values of corresponding arguments of a template in the
ArchiType’s composition language.

• Lines 9 to 12: The lines contain meta-code in C# encapsulated by <#

and #>. Such a code is compiled and executed by the T4 processor. In
line 11 the variable Greeting of type string is set to the value Hello.

• Line 13 to 21: These lines are interpreted mostly as string literal and
are inserted in a generated file unchanged as program code in C#.

• Line 15: The class declaration is made for a class where the substituted
parameter className is used.

• Line 17: In the meta code <#= Greeting #>, the variable Greeting

is used in an execution of the program and a result replaces the cor-
responding section. In <#= System.DateTime.Now.ToString() #> a
call to the class method now of class System.DateTime is made and the
method’s result is converted to a string replacing the original meta-code.

• Line 22-26: These lines are an example of declaring a void method in
meta code that can be used during an execution of the T4 processor.

The generated output file by ArchiType’s T4 processor of such a template
file with the parameter className set to MyGeneratedClass is:4

Listing 7.2: Output of example T4 template file 7.1

1 using System;
2 // This is the output code from your template
3 namespace MyNameSpace{
4 class MyGeneratedClass{
5 static void main (string[] args){
6 System.Console.WriteLine(”Hello, the time is now: 12:39 on

12.01.2014”);
7 }
8 }
9 }

A more complex file that is used for experiments in Chapter 8 in Section 8.4
on page 179 can be found in the Appendix in Section A.3 on page 202. All
experiments in Chapter 8 have been conducted with templates in T4 and the
ArchiType composition language.

4Under the assumption that foo() did not produce any output.

7.6. STAGED COMPOSITION SYNTHESIS 159

7.6 Staged Composition Synthesis

In the presented combinatory logic synthesis, synthesis provides no distinction
between composition and program code. Such a distinction is made implicit by
adding conceptual information to used combinators. However, the distinction
between a type τ and a code of type τ can be made more explicit. The
idea is called staged composition synthesis (SCS) presented in [Düdder et al.,
2014a] and in more detail in a technical report [Düdder et al., 2013b]. In
SCS the intersection type system is extended by a modal type constructor �.
An intersection type �τ is interpreted as a code of type τ . The modal type
constructor allows to separate two different and individual stages of synthesis.
Analogously, the ArchiType Composition Language interpreter separates meta-
computation in T4 meta-code and native computation in the target system.
An appropriate type inhabitation algorithm like Algorithm 4.1 on page 53 is
presented for SCS in [Düdder et al., 2014a]. An optimized implementation
of the inhabitation algorithm for SCS as presented in Chapter 4 is used for
program synthesis. Figure 7.6 depicts a brief overview of the different levels
of computation of SCS.

L1

L2

CL
Combinatory
Logic

Compositional
Metalanguage

Native
Language

Composition-time

Inhabitation

Composition-time

Reduction

Run-time

Execution

Languages
Notions
of computation

Figure 7.6: Three levels of computation in SCS

160 CHAPTER 7. ARCHITYPE

The work on SCS is inspired by the λ�→e calculus presented by Davies
and Pfenning [2001]. The operational semantics is the reduction relation
→−→ (and its reflexive transitive closure →−→∗) defined for λ�→e in [Davies and
Pfenning, 2001]. The code generation is implemented by a β-reduction and a
letbox-reduction rule which is called �β in [Davies and Pfenning, 2001]. The
reduction →−→∗ is responsible for the meta-computation (code generation)
which results in a well-typed native language program, for example in the
functional language ML. The well-typedness of the native language program
is guaranteed in both works [Düdder et al., 2014a] and [Davies and Pfenning,
2001] by a conservative extension theorem. A similar reduction in SCS is
presented and implemented as an extension to (CL)S that is used to conduct
experiments on different scenarios.

Especially one additional optimization for SCS has been considered. This
optimization poses a restriction on the substitutions that have to be generated.
Substitution instances must contain exactly one single native type, because
a native program must be well-typed and a common native language does
only support simple types instead of intersection types. The requirement of
containing one single native type instead of multiple native types reduces the
possible number of substitutions.

The SCS approach is closely related to the approach with the ArchiType
compositional language presented above in the previous section. The ArchiType
compositional language is interpreted in a way that after an interpretation a
well-typed program is generated. A similar well-typedness as in SCS cannot
be guaranteed. On the other hand, the ArchiType compositional language
with T4 templates presents an industrial tool that can generate multiple files
using an abstract, high-level language like C#, whereas the SCS tool uses a
functional language close to the λ-calculus. The functional language is, in
turn, not easy to comprehend and to apply to complex scenarios.

The question arises, whether SCS would be an appropriate synthesis
method for synthesizing software connectors? But it turns out that SCS
is too restricted to be used as synthesis method for software connectors in
the Combinatory Logic Connector Synthesis method. In the type-encoding
presented in Section 6, software connectors are represented by a type τc ≡

P ′⊆P σP ′∩

p∈Pc
p according to Definition 6.2.5 on page 122. In this encoding,

arbitrary top-level intersections of interface types σP ′ out of P ′ ⊆ P might
occur. Interface types σP ′ are primus inter pares without precedence and
(semantically) meaningful distinction in software architecture. In SCS lingo,
such interface types might be identified as native types in SCS. But as
defined in [Düdder et al., 2014a, page 6], SCS only allows the occurrence of
one single native type within an intersection type. This feature is in conflict
with the type encoding presented here and hinders a usage of SCS in the

7.6. STAGED COMPOSITION SYNTHESIS 161

synthesis scenario of software connectors in the Combinatory Logic Connector
Synthesis method. Even introducing a single dummy native type, e.g. a
computational type module, would not solve the discussed problem so far and,
in fact, it would reduce the effectiveness of SCS since all semantic information
is located in the meta-computation. The efficiency of SCS results from a
rule-based entanglement of two separate (staged) dimensions of specification.
The first dimension is formed by a specification in a native language and
a corresponding logic. Whereas in an orthogonal second dimension, meta-
computation is specified by semantic concepts. Nevertheless, using a single
native type constant collapses the first dimension to a singleton and only
allows variability in the second dimension with minimal restrictions originating
from the entanglement.

An experimental approach using a single designated native type module

is adopted. Thereby, the SCS extension of (CL)S with a two-level type system
and a distinction of computation phases can be used by ArchiType to generate
ArchiType composition language files. Generated ArchiType composition
language files are then interpreted by the ArchiType composition language
interpreter that generates native code program files using underlying T4
templates.

Partial evaluation of programs by Jones et al. [1993] and [Jones, 1996] is
also related to SCS in a broader sense. In partial evaluation input programs
are optimized by specialization, e.g. to speed-up the program execution while
guaranteeing the preservation of program behavior. Partial evaluation also
distinguishes two phases between program transformation, by residualizing a
program, and its execution in an untyped setting.

7.6.1 Implementation Type Correctness

In Section 6, implementation type correctness is preserved in the encoding of
software connectors as types, in the well-typedness of building blocks, and in
the implementation details of building blocks occurring in a synthesis solution.

Implementation type correctness for software connectors is equal to sat-
isfaction of all may-connect properties in Definition 6.2.4 on page 121 for
interfaces occurring in an inhabitant, because interface types are the only
implementation types occurring in a connector type τc ≡

P ′⊆P σP ′ ∩

p∈Pc

p
with σP ′ ≡ τ1 → . . . → τk → τP ′ according to Definition 6.2.5 on page 122.
Both conditions occurring in Definition 6.2.4 are argued separately:

• Condition 1 of may-connect is satisfied because a building block occurs in
an inhabitant, because by construction of a C&C type environment there
must have been an argument i building block providing an interface τi

162 CHAPTER 7. ARCHITYPE

with i ∈ {1, . . . , k} that the current building block requires. Otherwise,
the current building block respectively its provided interface would not
have been inhabited.

• Condition 2 is also satisfied because of the encoding of connectors
as types and an inhabitant exists in which all required interfaces of
building blocks are satisfied by corresponding provided interfaces by
other building blocks. Subset ⊆ in condition 2 corresponds directly to
the implicit (∩E) rule (cf. Section 3.3.1 on page 40) that is derivable
using the (≤) rule together with subtyping rules for ≤ in Section 3.2.2
on page 36.

Well-typedness of building blocks remains a task of the designer of a C&C
type environment. But similar to the work of Haack et al. [2002], implementa-
tions of semantic types are not (formally) checked against their specification.
This trade-off allows to hide and abstract complex implementation details
and to refer to concise features via abstract semantic concepts represented as
symbols instead.

Implementation type correctness for building block implementations is
preserved by the fact that underlying templates associated to a building
block are closed with respect to templates of other building blocks and only
communicate via label/name sharing. Only container building blocks have
a designated context in which child building blocks can interfere by code
fragments under control of the container building block. Therefore container
building blocks must be designed in a way such that isolation of its child
building blocks is respected as well as the wiring of required and provided
interfaces respectively their source code pendants is made in a sensitive manner.
Especially, container building blocks need a thoughtful and purposeful design
to guarantee (implementation) type correctness on a source-code level.

7.7 Implementation

ArchiType is implemented in C# as an extension package for Visual Studio
2013 Ultimate and uses the (CL)S service presented in the end of the last
chapter. Figure 7.7 depicts a UML2 object diagram for ArchiType. Grey
objects are part of the Microsoft Visual Studio 2013 Ultimate and are used
by ArchiType. Arrows in this diagram represent directed dependencies.

Technically, ArchiType uses Microsoft’s managed extensibility framework
(MEF) to integrate itself into Visual Studio 2013. MEF is a container frame-
work for extensible applications that is used by Visual Studio 2013. Specific
commands and dialogs are used for user-interaction. A SQL Server instance is

7.7. IMPLEMENTATION 163
V

is
ua

lgS
tu

di
og

U
lti

m
at

e

ATgT4gController
ATgT4

ProcessorHost

DatagModel

T4gTemplate
Model

Command
Processor

UMLgComposer
Generator

(CL)SgService

DialogsArchiType
Package

EMF

T4gProcessor

C&CgTypegEnvironment
Database

Template
Database

UMLgArchitect

Figure 7.7: UML2 object diagram for ArchiType

used via the entity framework (EF) framework as a repository by ArchiType for
persisting the C&C type environment as well as the T4 text templates. The
EF framework is an object-relational mapper for relational data that is usable
by domain-specific objects. The database also stores data for different target
technologies and languages (as template variants). Using this implementation,
experiments are conducted with T4 on bigger scenarios presented in Chapter 8
in Section 8.4 on page 179. There, a code generation for approximately 4000
lines of C# and related configuration code took less than 30 seconds. The
figures suggest that the presented code generation process seems to be slow.
After analyzing the results, the reasons and most time consuming operations
are:

1. The repeated compilation and execution for every T4 template takes
most of the dedicated computation time. If ArchiType is developed
more in the direction of an industrial tool, then the generation process
can be expedited by the usage of precompiled T4 templates. Such T4

164 CHAPTER 7. ARCHITYPE

templates have been precompiled, cached by ArchiType, and reused on
demand preventing repetitive compilations of the same T4 template.

2. The repeated initialization of the .NET application domain that is
used to form a closure for each T4 template generation (for instance to
prevent parameter clashes with a similar name caused by other possibly
concurrent executions).

It is important to mention that code generation by T4 is not a time-critical
operation, if ArchiType is used as a prototyping tool. In some of the conducted
experiments in the next chapter, ArchiType is also used to generate deployment
code and configurations for generated connectors and applications. For
example, in the e-Commerce example in Section 8.4 on page 179 configurations
for a Microsoft Internet Information Server hosting the eCommerce solution
were also generated to speed up the experiments and to reduce errors.

7.8 Related Work

Using ArchJava by Aldrich et al. [2002] and Alloy by Jackson [2002], Bagheri
[2011] presents an end-to-end approach to automatic synthesis that is similar
to our approach in that we also generate ADL (UML2) and source code in Java.
In ArchJava [Aldrich, 2008] data types can be used to preserve communication
integrity which is a valuable property of architectural conformance. ArchJava
and related approaches differ from Combinatory Logic Connector Synthesis
because ArchJava has no explicit concept for connectors. Connectors can
only be approximated by using ArchJava’s links and ports. Furthermore,
ArchJava does not provide a synthesis method.

Model-driven engineering tools are also related to ArchiType. Such tools
are using model-to-model- and model-to-code-transformer even in sequence
forming so called model-pipelines. Model-driven engineering tools also contain
wizards to aid an architect and/or developer to create or modify models. Such
wizards are very rigid and do not offer the flexibility of the synthesis/generation
method proposed in the thesis.

Chapter 8

Applications and Experiments

We apply the Combinatory Logic Connector Synthesis method to concrete
software architectures and evaluate its applicability by means of conducted
experiments. We will conduct the experiments in a rigid structure: An
experiment starts with an initial question to be answered by the experiment.
An experiment is designed whose results are solving the posed question. An
appropriate environment for the experiment is setup in which the designed
experiment is conducted. Afterwards, experimental results are presented,
analyzed, and discussed.

We begin with a motivating example that develops the example presented
in Chapter 6 in Subsection 6.2.4 on page 125 further. This motivating
example will primarily focus on the design of a C&C type environment and
synthesis with relativized type inhabitation. In contrast to the motivating
example, a more complex example is discussed with a strong focus on code
generation aspects. In this example, a many-to-many client-server application
is transformed by introducing a supplementary broker pattern in addition
with specific software connectors that are constructed on-demand.

Two more examples will provide more insight on practical, concrete
applications and scalability of connector synthesis. The systems will be a mid-
scaled (38 250 LLOC) and large-scaled (225 763 LLOC) application. Both
scenarios have in common that both assume an application involving several
components that resides on a single machine (monolithic architecture). This
monolithic architecture shall be adapted into a distributed, network-based
architecture for which software connectors (with various properties) have to
be synthesized and generated. The reference system the experiments were
executed on is the same as the one described in Section 4.1.5 on page 66 and
is described in more detail in the appendix in Chapter B on page 207.

Subsequently to the last experiment, we will present a collective analysis of
the experimental results and discuss the findings with regard to applicability,

165

166 CHAPTER 8. APPLICATIONS AND EXPERIMENTS

adaptability, costs and effort, usability, and limitations of the Combina-
tory Logic Connector Synthesis method with respect to the experimental
application scenarios.

We begin with two synthetic examples to exemplify the Combinatory Logic
Connector Synthesis method and related aspects in concrete code generation.

8.1 Secure Connectors

The intention of this experiment is to demonstrate the applicability of our
method in an in-vitro scenario that allows us to explain different features of our
method in more detail. We will present in detail how the Combinatory Logic
Connector Synthesis method bridges the gap from an abstract, type-based
specification to a concrete, executable program source code.

8.1.1 Setup

We performed experiments with ArchiType on the example discussed in Sec-
tion 6.2. We used Microsoft Windows Communication Foundation (WCF)1 to
implement a messaging system. WCF is a communication framework based
on the ABC-paradigm, realizing communication by providing an address, a
behavior(-specification), and a contract. We opted for WCF, because it is
extensible, fits to our compositional approach WCF, and allows behavioral
extensions.

8.1.2 Execution of the Experiment

We consider two components A and B depicted in Figure 6.12 that interact via
interface I0 which is required by A and provided by B. Both components reside
in the same process and shall be distributed in such a way that guarantees
message security by encryption, i.e., we want to synthesize an I0-connector
that guarantees message security.

We implemented A and B as well as I0 in C# with a simple mock-up
functionality (37 logical lines of code (LLOC). We also implemented ΓR

as described in Section 6.2 on page 120 by linking each combinator to a
set of T4-templates for generating configurations. The combinator wsenc is
provided with three underlying T4-templates realizing a SOAP-web service.
The first template uses the C#-declaration of interface I0 as a contract to
generate a web service description language (WSDL)-file and a characteristic
XML-Schema. From these files a C#-proxy for the implementation of I0

1https://www.rabbitmq.com/

https://www.rabbitmq.com/

8.1. SECURE CONNECTORS 167

and a WCF-client configuration are derived defining address, binding, and
behavior of the connector. The second template generates a WCF-server
hosting the implementation of B, exposing I0 as a service. The server needs a
WCF-server configuration which is generated from the third template. The
combinators S and C are provided with one T4-template each which specify
symmetric respectively asymmetric encryption within the two WCF-confi-
gurations (client and server) by shared secrets respectively by certificates
utilizing a public key infrastructure (PKI).

8.1.3 Results

Choosing one of the inhabitants wsenc(S) and wsenc(C), ArchiType generated
a UML2-component diagram2 and a complete client-server application dis-
tributing A and B with generated proxy and stub. For this application 257
LLOC were generated within 8.1s. It should be noted that solving the inhab-
itation question only made up for a fraction (162ms) of the execution time.
The repeated compilation and also repeated initialization of the T4-engine
consumed most of the execution time. In this motivating example the ratio
between LLOC of existing code (implementations of A, B, and I0) versus
generated code is approximately 7.0. Such high ratios cannot be expected
for real scenarios, for example, such as discussed in Section 8.4. However, for
such scenarios the software connector codes are usually very complex.

The program code in Figure 8.1 was automatically generated as a partial
C# class extending ClassA with method Initialize to create a proxy with
interfaceB that redirects method calls from ClassA to classB. The server
hosting the service B with interfaceB is situated on the local machine
listening on port 8080. Line 5 contains a WCF configuration not as an
XML-configuration but as a program code. Both configurations have the
identical effect with respect to a messaging configuration of WCF.

The program code in Figure 8.2 contains an excerpt from the program
code of the server hosting the service classB with interface interfaceB. The
service host is instantiated in line 1 and opens a host in line 11. In line 12
a diagnostic output is made to a console for every endpoint generated. The
endpoints are defined in a WCF-configuration. In this experiment we config-
ured SOAP Web Service and NetTCP endpoints for the service. Analogously
to the previous listing, such a configuration can also be implemented using
program code, but would have the disadvantage that a recompilation of the
program code is required after changing the configuration.

Even this motivating example requires a lot interlinked program code,

2Akin to the one presented in Figure 8.8 below.

168 CHAPTER 8. APPLICATIONS AND EXPERIMENTS

1 public partial class ClassA
2 {
3 private void Initialize()
4 {
5 refToB = new

InterfaceBClient(”DefaultBinding InterfaceB InterfaceB”,
6 ”http://localhost:8080/ICSESimpleExample.ClassB/”);
7 }
8 }

Figure 8.1: Generated code for classA in secure connectors scenario

1 using (var hostSimpleExample.ClassB = new
ServiceHost(typeof(SimpleExample.ClassB)))

2 {
3 try
4 {
5 // Server settings section
6 //TODO: Change connection settings
7 // Open the ServiceHost to start listening for messages. Since
8 // no endpoints are explicitly configured, the runtime will create
9 // one endpoint per base address for each service contract

10 // implemented by the service.
11 hostSimpleExample.ClassB.Open();
12 foreach(var uri in hostSimpleExample.ClassB.BaseAddresses)
13 Console.WriteLine(”The service SimpleExample.ClassB is ready at

{0}”, uri);
14 //...
15 } catch(...) { ... }
16 }

Figure 8.2: Generated code for service host Server in secure connectors
scenario

8.1. SECURE CONNECTORS 169

therefore a manual implementation of connectors is error-prone and, in general,
should be avoided. We only had to manually adapt 2 out of the 257 generated
LLOC to specify the address and the binding of the generated service. Note,
that there was no necessity to adapt the original source code in order to
integrate it with the generated code.

8.1.4 Analysis and Discussion

We extended the motivating example slightly by adding further building blocks
offering more services which resulted in a large increase in the combinatorics
(number of possible compositions of combinators). ArchiType resolves and
thus hides these combinatorics from the software architect.

We added four authentication concepts (and combinators corresponding
to those concepts), for example, authentication by Kerberos , for instance
described in [Schneier, 1995], or an issued token to the taxonomy. These
concepts can be combined with the aforementioned encryption concepts. We
also added a corresponding combinator, stating that encryption respectively
authentication can be disabled, i.e., such combinators allow opting for the
synthesis of software connectors for messaging connections that do not require
any security or authentication.

Next, we introduced a container building block realizing a messaging
connection by a TCP-pipe as opposed to a web service-connection, e.g. using
WS-SOAP. On an orthogonal scale, we added for each of these building
blocks a corresponding combinator of the same type implementing the same
functionality not by a configuration but by a direct C#-implementation.
This way (also allowing hybrid solutions involving code and configurations or
servers exposing web service- and TCP-pipe-transport), we synthesized 240
different I0-connectors for distributing A and B if no properties were required
of the connector. The computation of the corresponding inhabitation question
took 84ms.

By requiring additional properties of the desired I0-connector expressed
by additional concepts in the taxonomy, we pruned the number of solutions.
For example, if we ask for a TCP-pipe connection with authentication using
a NT LAN Manager and symmetric encryption we obtain 8 connectors that
can be chosen from as needed.3 Theoretical results by Rehof and Urzyczyn
[2011a] show that it is always possible to specify the repository in such a way
that for a given inhabitation question a unique solution can be found (see for
Proposition 4.2.2 on page 87). Using ArchiType, we generated I0-connectors
for A and B for more than 50 out of the 240 synthesized combinations and

3The 8 variants originate from the fact that we allow mixing code and configuration.

170 CHAPTER 8. APPLICATIONS AND EXPERIMENTS

tested them. On average this generation took approximately 16.5s. This
indicates that inhabitation is not necessarily the determining factor with
respect to time consumption.

8.2 Detailed Broker Pattern Example

The intention of the broker example is also to demonstrate the applicability of
our method in a controlled and more realistic scenario that allows us to discuss
the power of the specification using intersection types and the simultaneous
fulfillment of multiple orthogonal requirements. Additionally, we want to
synthesize and generate behavior of connector that are conform to specified
(communication-)protocols.

8.2.1 Setup

In this synthetic example, we will focus on certain details of code genera-
tion. This example corresponds to a classical example that is described and
motivated by Buschmann et al. [1996]. The scenario is a software system
consisting of 6 clients and 4 servers as depicted in Figure 8.3. Each server
provides a separate service. The clients are using services provided by the
servers. Every client needs for its tasks all services provided by the servers.
This leads to a classical n × m problem for n clients and m servers and
the architecture needs n ×m connections between clients and servers. As
discussed in [Buschmann et al., 1996, pages 237ff], such a software system
has many disadvantages and problems as well as it hinders the evolution of
the software system. Buschmann et al. [1996] proposes a solution to this
problem that introduces a broker pattern into the software system. The
broker decouples clients and servers by an indirection over itself. The broker
in Figure 8.4 becomes a central relay for all communications between clients
and servers. Such a software architecture design change does not completely
solve the problem for a software architect. After introducing the central
broker, one problem still remains, how do client and server interact with each
other through software connectors? Even tough we reduced the amount of
needed software connectors from n×m to n+m, but these n+m connectors
still have to be implemented. Furthermore, in realistic scenarios, we cannot
expect that we have to implement a homogeneous set of software connectors.
Each software connectors might have to conform to individual requirements
of each client and server. Even in this example, 10 software connectors have
to be synthesized and generated.

8.2. DETAILED BROKER PATTERN EXAMPLE 171

Server 4

Server 3

Server 2

Server 1

Client 1

Client 2

Client 3

Client 4

Client 5

Client 6

Figure 8.3: Many-to-many client server application

172 CHAPTER 8. APPLICATIONS AND EXPERIMENTS

Server 4

Server 3

Server 2

Server 1

Client 1

Client 2

Client 3

Client 4

Client 5

Client 6

Broker

Figure 8.4: Many-to-many client server application with broker pat-
tern [Buschmann et al., 1996, pages 237ff]

We use ArchiType with an appropriate C&C type environment and tem-
plates to synthesize these software connectors automatically. We now describe
the setup of the experimental system and additional requirements which are
as follows.

For every server, we have a server application exposing service interfaces
IS1, . . . , IS4 with different semantic properties in P .

• Server 1 uses a SOAP web service (IS1) to provide its service.

• Server 2 also uses a SOAP web service (IS2) to provide its service and
in addition the web service requires authentication.

• Server 3 uses a REST web service (IS3) to provide its service.

• Server 4 uses a NetTCP web service (IS4) to provide its service. The
web service also provides a supplemental secure connection channel
via asymmetric encryption using a certificate (implying an existing
PKI-infrastructure).

8.2. DETAILED BROKER PATTERN EXAMPLE 173

8.2.2 Execution

In order to increase the experiment’s complexity, we introduce a further not
unrealistic requirement for a single client. Client 1 needs a façade (pattern)
[Buschmann et al., 1996, pages 294ff] for interface I ′S1 to connect to server 1’s
(or broker’s) service interface IS1. An additional adapter building block
is needed for synthesizing this façade. This adapter building block uses
higher-order typed combinators that provide data-adaptation / -conversion
functionality. Every client is a console application using all four services
interfaces IS1, . . . , IS4 provided by the servers.

The broker requires that all its messaging [Buschmann et al., 1996,
pages 221ff] satisfies all the individual requirements demanded by the servers.
We present the capability of our approach by transforming the initial synthesis
question for n + m connectors to a synthesis question for synthesizing only
a single connector encapsulating a broker pattern inside. The pattern also
includes the behavior to relay messages to the correct receiver (client or
server). Then, we have to generate program codes and configurations for
n + m software connectors and the broker. This broker software connector is
now a n-to-m software connector.

The original code for clients and servers is 116 LLOC resp. 169 LLOC
of C# and 318 LLOC resp. 236 LLOC of WCF-configuration. The code
contains many repetitions for the n×m connections.

Every software connector in the system was generated from its interface
declaration used as a contract. All contracts have been compiled into appro-
priate WCF-configurations. The broker’s container building block provided
interfaces IS1, . . . , IS4 and also its WCF-configuration was generated. The
services with interfaces IS1, . . . , IS4 of the broker relay the requests to the
correct server and also the responses to the correct client. The broker uses
asynchronous completion token [Buschmann et al., 1996, pages 268ff] to
correlate communication requests and responses.

8.2.3 Results, Analysis, and Discussion

An appropriate C&C type environment has been designed to capture and
reflect the demanded (semantic) requirements of the Combinatory Logic
Connector Synthesis method described in Chapter 6. An appropriate UML2-
component diagram has been sketched and complementary stereotypes have
been assigned scenario-adequate types. After choosing one particular solution
out of 4096, ArchiType generated the necessary code consisting of 993 LLOC in
less than 7 seconds. The 4096 solutions resulted from the 46 variations based
on the four different semantic properties for the communication channels.

174 CHAPTER 8. APPLICATIONS AND EXPERIMENTS

The server addresses had to be manually modified. Then, the servers and the
clients could be executed without errors according to the specified setting.

Even though the broker’s container building block must be specified for
all variants of n and m connectors for clients and servers, the T4 template is
made smart enough to allow different cardinalities n and m of connections.
Therefore, all container building blocks of the container are linked to a
single set of T4 template files. Here, a set is needed, because a server
consists of multiple individual source code files, C# source code files, WCF-
configurations, and a deployment description for easier testing.

The example and the related experiment demonstrate that ArchiType and
our method is adaptable to such application scenarios as well as powerful
enough that software connectors with arbitrary complexity4 can be synthesized
and generated. Furthermore it demonstrates that the behavior of a connector
to execute protocols can be hidden by encapsulating the behavior in an
abstract specification of a corresponding building block and in associated
templates implementing the behavior.

8.3 Enterprise Resource Planning Scenario

The underlying question for ERP experiment is how effective and with how
many manual adaptions can the Combinatory Logic Connector Synthesis
method be applied to a realistic, mid-scaled software application that is not
streamlined for the Combinatory Logic Connector Synthesis method.

8.3.1 Setup

We apply the method to a first real-world software system to evaluate its
applicability and scalability. We chose an open-source enterprise resource
planning (ERP) solution, XERP.NET5 as the test object, because it is large
and complex enough for meaningful experiments, and its code is freely accessi-
ble. Furthermore, it is suitable for ArchiType since it uses the .NET-framework
and also is based on plain old C# Objects (POCO). We prefer POCO sys-
tems for these experiments, because POCO systems are more controllable
and easier analyzable, e.g. no dependency injection is used. It also means
that the application is not developed using component-based development.
XERP.NET as an application is realistic, because it is commercially operated
in small- and mid-sized enterprises.

4As long as the software connectors are composable.
5http://xerpdotnet.codeplex.com/

http://xerpdotnet.codeplex.com/

8.3. ENTERPRISE RESOURCE PLANNING SCENARIO 175

8.3.2 Execution

XERP.NET is modular system consisting of 137 subsystems/components
with 691 classes with 38 250 LLOC altogether. The software architecture
of XERP.NET is layered. Again, the goal is to distribute the monolithic
object-oriented architecture/implementation of the system and to synthesize
the connectors that are necessary to distribute the components into a network-
based architecture. We defined the partition points for the system on the
premise to minimize impacts on functional and non-functional system prop-
erties. The architecture of XERP.NET is such that all interactions between
components are one-to-one. Thus, for the chosen partition points we only
have to synthesize I-connectors replacing the procedure calls between the
involved components. As discussed in Section 6.2, more complex connectors
can be specified and synthesized if the underlying system requires interaction
between several interfaces of various components (multicast), for example in
the detailed broker pattern example in Section 8.2 on page 170.

In our scenario the complexity arises from the fact that we allow for a great
variability in the connectors: we use a comprehensive taxonomy classifying
21 concepts describing connectors (our taxonomy is inspired by Hirsch et al.
[1999] and Mehta et al. [2000]). This taxonomy proved to be well-suited to
control connector synthesis in the context of XERP.NET. For example, we
added combinators and templates for transactions, reliable messaging via
a message queue server (for instance provided by RabbitMQ6), application
caches like memcached7/redis8/CouchDB9, data services like OData10, a
composable security model, and many more. Usually, it is to be expected
that the architect specifying a suitable repository for connector synthesis for
a specific scenario possesses a comprehensive domain knowledge. Often, this
will allow for the exclusion of certain elements of the repository. Ultimately,
the repository Γ used in the following contained 24 building blocks from the
variety of building blocks mentioned above.

Since all affected components of XERP.NET do not exhibit interfaces,
we first refactored those components by automatically extracting their inter-
faces. We then proceeded as follows. We imported the components into an
appropriate UML2-component diagram. Using dependency analysis for this
diagram we determined two partition points in the server system for which
we wanted to synthesize connectors. As discussed, we chose these points such

6https://www.rabbitmq.com/
7http://memcached.org
8http://redis.io/
9http://couchdb.apache.org

10http://www.odata.org/

https://www.rabbitmq.com/

176 CHAPTER 8. APPLICATIONS AND EXPERIMENTS

that the number of dependencies was small, in order to reduce the possible
impact on functional and non-functional system properties. Furthermore,
if necessary, this makes manual adaptation of the connectors easier. For
the involved components we applied appropriate stereotypes that define the
types of their interfaces as defined in Section 7. For each partition point we
performed synthesis of a connector. Depending on the connector specification
there were several solutions. We chose a best-suited solution, which was then
included as a UML2-packaging component representing the connector into the
UML2-component diagram depicted in the ArchiType screenshot in Figure 8.8.
Once all connectors were included in the diagram we started the generation
of the different connectors.

Figures 8.5 and 8.6 contain visualizations of the subsystem dependencies
of XERP.NET created with an architecture tool in JetBrains Resharper 8.1,
a refactoring tool for Visual Studio 2013. The visualized subsystems contain
in mean more than 280 LLOC and nearly 5 classes per subsystem. The
dependency view depicted here was used to identify partition points that are
congenial to the condition of minimal dependency.

We consider one out of these partition points in more detail. The chosen
partition point is the component XERP.Server.DAL.MenuSecurityDAL. This
component delivers meta-data for the security system of XERP.NET by using
an entity framework class from a database. The intention to place a partition
point here is that XERP.NET is connected to the security system hosted
in another environment via a newly synthesized connector. The component
XERP.Server.DAL.MenuSecurityDAL is used by 7 other components. We
chose a broker pattern as described in the previous example to connect all 7
service clients with the partitioned service residing in a newly generated host
next to an existing database server hosting the master data of XERP.NET.

The following modifications to the original source code of XERP.NET and
manual operations had to be made:

1. Extracting service interface definitions from the components resp. classes
to partition. A tool called Resharper was used to automatically extract
all service interfaces from classes into new interface files.

2. Replacing direct method calls to the identified components respectively
classes by proxy calls to a generated service proxy. For example, 7
service clients using XERP.Server.DAL.MenuSecurityDAL have been
redirected via a proxy by a manual class instantiation with a call to the
redirected class. The apparently redundant amount of program code
could have been diminished by only instantiating a single class and
using class methods instead of object methods. But the decision lead
to a cleaner software code.

8.3. ENTERPRISE RESOURCE PLANNING SCENARIO 177

Figure 8.5: Visualization of XERP.NET’s client’s subsystem dependencies

178 CHAPTER 8. APPLICATIONS AND EXPERIMENTS

Figure 8.6: Visualization of XERP.NET’s server’s subsystem dependencies

8.4. E-COMMERCE SCENARIO 179

3. Adapting the references to assemblies for the partition points according
to a distributed architecture. Assemblies are artifacts of Microsoft
.NET’s module system.

4. Compiling the source code of XERP.NET and deploying the resulting
program to an internet information server (IIS).

5. Compiling the generated service host source code including all parti-
tioned parts of XERP.NET. This part did not need any modifications.

6. Adaption of the WCF configuration to an existing network topology
(IP-addresses and ports).

7. Starting an IIS instance with XERP.NET and the generated service
host.

8. Testing the functionality of XERP.NET by user interface tests and more
thoroughly by performing provided unit tests.

8.3.3 Results

From both synthesized connectors we generated 1731 LLOC for WCF-con-
figurations and C#-code in 18.11s. Minor (20 LLOC) manual adaptations in
the original implementation of XERP.NET were necessary to use the generated
proxies for redirection instead of the local components. Major adaptations to
XERP.NET had to be made because XERP.NET was developed for earlier
.NET, IIS, and SQL Server versions.

We deployed the distributed implementation of XERP.NET and executed
and tested it on separate virtual machines. The resulting system showed no
functional deficiencies after performing unit tests. The distribution of the
system had an impact on non-functional properties, for example, a measurable
performance reduction caused by higher network latency. This, however, is
to be expected from a partition of the system. By making the earlier design
decision to distribute XERP.NET we accepted this inevitable trade-off.

For an analysis and a discussion on this experiment, we refer to the end
of this chapter for a detailed analysis and discussion of the experiments.

8.4 e-Commerce Scenario

The question for this experiment is, how effective and with how many manual
adaptions can the Combinatory Logic Connector Synthesis method be applied
to a realistic, large-scale software application that is not entirely streamlined

180 CHAPTER 8. APPLICATIONS AND EXPERIMENTS

for our method. Furthermore, we want to analyze the scalability of our
method on the software system’s size and/or complexity.

8.4.1 Setup

We apply the methodology to a second real-world software system to evaluate
its applicability and scalability. We chose an open-source e-Commerce solution,
AspxCommerce V2.011 (AspxCommerce) as the respective test object. Aspx-
Commerce as an application is realistic, because it is a commercially operated
web shop solution by many small- and big-sized e-Commerce companies.

AspxCommerce consists of 37 subsystems with 1293 classes with 225 763
LLOC. The figures also include some subprojects contained in AspxCommerce.
Standard components of .NET are explicitly excluded from the presented
figures. Again, the goal is to distribute the monolithic object-oriented archi-
tecture/implementation of the software system and to synthesize connectors
necessary to distribute the components into a network-based architecture.
We defined the partition points for the system on the premise to minimize
impacts on functional and non-functional system-properties. The architec-
ture of AspxCommerce is such that all interactions between components are
one-to-one. Thus, for the chosen partition points we only have to synthesize
I-connectors replacing the method calls between the involved components.

8.4.2 Execution

We reuse the taxonomy and templates developed for the previous experiment
on XERP.NET. Thus, the repository Γ used in the following experiment on
AspxCommerce contains 24 building blocks out of the variety of building
blocks mentioned above.

Figure 8.7 contains a visualization of the subsystem dependencies of
AspxCommerce’s created with an architecture tool in JetBrains Resharper
8.1, a refactoring tool for Visual Studio 2013. The visualized subsystems
contain in median more than 6000 LLOC and nearly 35 classes per subsystem.
The dependency view depicted here was used to identify partition points that
are congenial to the condition of minimal dependency.

Again, we consider one partition point in more detail. AspxCommerce
uses a module, CurrencyConverter, for currency conversion. Its interface
ICurrencyConverter is used by various other modules, for instance, by the
component AspxCommerceWebService, which exposes the functionality of
AspxCommerce via a SOAP-web service. We separate CurrencyConverter

11http://aspxcommerce.codeplex.com/

http://aspxcommerce.codeplex.com/

8.4. E-COMMERCE SCENARIO 181

Figure 8.7: Visualization of AspxCommerce’s subsystem dependencies

182 CHAPTER 8. APPLICATIONS AND EXPERIMENTS

Figure 8.8: Generated UML2-component diagram in VS2013 for component
CurrencyConverter

from the monolithic implementation of AspxCommerce and we require that
the ICurrencyConverter -connector should be a SOAP-web service supporting
transactions, authentication by Kerberos, and symmetric encryption.

Thus, we pose the corresponding inhabitation question

Γ ⊢? : (ICurrencyConverter→ ICurrencyConverter)

∩ws ∩ transactionEnabled ∩Kerberos ∩ sym.

The resulting inhabitant was used to automatically generate the UML2-com-
ponent diagram shown in Figure 8.8.12 The residual partition points were
treated similarly (requiring other specific properties as needed) which resulted

12The≪ArchiType connector≫-component wraps the generated connector and delegates
the interfaces of wsenc.

8.4. E-COMMERCE SCENARIO 183

Figure 8.9: Screenshot of the configuration interface of the internet informa-
tion server (IIS) hosting AspxCommerce visible in the background

in similar UML2-component diagrams. ArchiType used the enhanced diagram
to generate the synthesized connectors using the combinators underlying
templates.

The resulting source code was integrated and compiled. The compiled
application was then deployed to a Microsoft Windows 2012 Server with
an internet information server (IIS) and a Microsoft SQL Server 2012 as
database back-end for AspxCommerce. The IIS hosted the AspxCommerce
application. A screenshot in Figure 8.9 depicts the configuration interface of
the IIS containing the AspxCommerce as default website. In the background
AspxCommerce is visible in the browser window. The server is visible in the
console output offering the three generated services with individual service-
endpoints.

A generated server hosting the mentioned services was also deployed and
executed. The screenshot in Figure 8.10 shows the running AspxCommerce
application in a web-browser client (Microsoft Internet Explorer) with the
generated server exposing all three services. The currency selector is visible
in the top row as most right hand side graphical element. There, a customer
can select the monetary currency used by AspxCommerce. The currency

184 CHAPTER 8. APPLICATIONS AND EXPERIMENTS

Figure 8.10: Screenshot of AspxCommerce including generated code

conversion is now redirected and performed by the generated server providing
the CurrencyConverter service.

The following modifications to the original source code of AspxCommerce
and manual operations had to be made:

1. Extracting service interface definitions from the components respectively
classes to partition. A tool called Resharper was used to automatically
extract all service interfaces from the classes into new interface files.

2. Replacing direct method calls to the components respectively classes by
proxy calls to a generated service proxy.

3. Adapting the references to assemblies for the chosen partition points to
reflect the intended distributed architecture.

4. Compiling the source code of AspxCommerce and deploying the resulting
program to an IIS.

5. Compiling the generated service host source code including the parti-
tioned parts of AspxCommerce. This part did not need any modifica-
tions.

8.4. E-COMMERCE SCENARIO 185

6. Adaption of the WCF configuration to an existing network topology
(IP-addresses and ports).

7. Starting an IIS instance with AspxCommerce and the generated service
host.

8. Testing of the functionality of AspxCommerce by user interface tests
and more thoroughly by performing provided unit tests.

Some typical source code modifications are depicted for the component
CurrencyConverter. We omit implementation details and present some key
modifications that have been conducted. Before interface extraction, the
declaration part of CurrencyConverter was:

1 public class CurrencyConverter
2 {
3 public double ConvertCurrency(string from, string to, double

amount)
4 {
5 // ...
6 }
7
8 public double GetRate(string from, string to)
9 {

10 // ...
11 }
12
13 public double GetRateFromGoogle(string fromCurrency, string

toCurrency)
14 {
15 // do a web service call to google’s service...
16 }
17
18 public double GetRateFromYahoo(string from, string to)
19 {
20 // do a web service call to yahoo’s service...
21 }
22 }

After refactoring all classes with an automatic interface extraction tool, an
additional interface definition for ICurrencyConverter in Lines 1 to 12 has
been generated and ICurrencyConverter implements this interface in Line 14.
Then, the corresponding source code is modified:

186 CHAPTER 8. APPLICATIONS AND EXPERIMENTS

1 [ServiceContract]
2 public interface ICurrencyConverter
3 {
4 [OperationContract]
5 double ConvertCurrency(string from, string to, double amount);
6 [OperationContract]
7 double GetRate(string from, string to);
8 [OperationContract]
9 double GetRateFromGoogle(string fromCurrency, string toCurrency);

10 [OperationContract]
11 double GetRateFromYahoo(string from, string to);
12 }
13
14 public class CurrencyConverter : ICurrencyConverter
15 {
16 public double ConvertCurrency(string from, string to, double

amount)
17 {
18 // ...
19 }
20
21 public double GetRate(string from, string to)
22 {
23 // ...
24 }
25
26 public double GetRateFromGoogle(string fromCurrency, string

toCurrency)
27 {
28 // do a web service call to google’s service...
29 }
30
31 public double GetRateFromYahoo(string from, string to)
32 {
33 // do a web service call to yahoo’s service...
34 }
35 }

The source code for a method call to CurrencyConverter is shown in the
following listing in class AspxCommereceWebService lines 7341 to 7378.

1 [WebMethod(EnableSession = true)]

8.4. E-COMMERCE SCENARIO 187

2 public double GetCurrencyRateOnChange(AspxCommonInfo
aspxCommonObj, string from, string to, string region)

3 {
4 System.Net.ServicePointManager.Expect100Continue = false;
5 try
6 {
7 // ...
8 if (isRealTimeEnabled.ToLower() == ”true”)
9 {

10 try
11 {
12 // result = (new

AspxCommerce.Core.CurrencyConverter()).GetRate(from, to);
13 result = (new

CurrencyConverterClient(”DefaultBinding ICurrencyConverter”,
”http://localhost:8080/CurrencyConverter/”)).GetRate(from,
to);

14 }
15 catch (Exception)
16 {
17 return 1;
18 }
19 }
20 else
21 {
22 result =

AspxCurrencyProvider.GetRatefromTable(aspxCommonObj, to);
23 }
24 HttpContext.Current.Session[”CurrencyCode”] = to;
25 HttpContext.Current.Session[”CurrencyRate”] = result;
26 HttpContext.Current.Session[”Region”] = region;
27 return Math.Round(double.Parse(result.ToString()), 4);
28 }
29 catch (Exception ex)
30 {
31 throw ex;
32 }
33 }

Line 12 contains the original method call to the CurrencyConverter com-
mented (out) and Line 13 contains the redirected call to the generated proxy

188 CHAPTER 8. APPLICATIONS AND EXPERIMENTS

for CurrencyConverter that is using the new service hosted by a server
application.

8.4.3 Results

We examine some figures concerning the synthesis of these software connectors.
If we pose an inhabitation question for synthesizing a most general I-connector,
i.e., we ask the inhabitation question I → I without specifying any restricting
properties, then from Γ we obtain 1920 different inhabitants. Of course, this
does not present a practical solution, as must be expected when asking for
a completely general (underspecified) software connector. So we went on to
specify the connectors to narrow down the set of solutions. In our experiments
we were able to refine the specifications of the repository and the desired
connectors to receive unique solutions, for example, the inhabitation question
stated above for the synthesis of a connector between the CurrencyConverter
and AspxCommerceWebService resulted in a single inhabitant.

From the three synthesized connectors we generated 2171 LLOC for WCF-
configurations and C#-code in 21.98s. Minor (5 LLOC with ratio 0.000 02)
manual adaptations in the implementation of AspxCommerce were necessary
to use the redirection provided by the generated proxies instead of the local
components. Again, major adaptations to AspxCommerce had to be made
because AspxCommerce was developed for earlier .NET, IIS, and SQL Server
versions. We deployed the distributed implementation of AspxCommerce and
executed and tested it on separate virtual machines. The resulting system
showed no functional deficiencies under performing various unit tests.

8.4.4 Analysis and Discussion

By means of the resulting distributed implementation of AspxCommerce we
illustrate one additional feature of (CL)S. We generated three separate servers,
one for each partition point. Depending on the requirements, it might have
been sufficient to only generate a single server that exposes the interfaces
of all three components as services. It is not difficult to incorporate this
adapted implementation into our approach. The type-based description of
an interface only describes the intended usage of the involved components,
but it leaves out any details as to how the functionality is implemented by
underlying templates. Thus, if a different implementation of the specified
functionality (for instance, one server as opposed to three servers) is required,
we could simply replace the underlying templates without any need to change
the type-based specification of the combinators. It allows for great flexibility,

8.5. COLLECTIVE ANALYSIS AND DISCUSSION 189

since we may use sockets instead of WCF for messaging. Similarly, we may
change other implementation details or even the used programming language.

8.5 Collective Analysis and Discussion

We summarize some facts that can be concluded from the experimental results
in this chapter as follows. Table 8.1 depicts some results of the conducted
experiments described in this chapter.

eCommerce ERP Broker Secure
Connector

Subsystems 37 137 11 3
Classes 1293 691 11 3
LLOC 225 763 38 250 839 37
Generated/LLOC 2171 1731 993 257
Time/s 21.98 18.11 7 8.1
Refactoring/LLOC 5 20 0 0

Table 8.1: Experimental results for various applications of ArchiType

8.5.1 Expressiveness

Clearly, the design of suitable C&C environments using BCL0(∩,≤) needs
getting used to. But some basic experience in logic programming facilitates
such a design. It should also be noted that the succinct encoding and the
mathematical representation makes the design easy. The relational data-model
of ArchiType that is stored in the SQL Server database is close (isomorphic)
to the set-theoretic model presented in Section 6.2 on page 120. ArchiType
uses this object model to automatically map it to a corresponding C&C type
environment.

We would like to note that, in particular, the intersection of different
specifications is very powerful for expressing a finite set of variants a building
block can have. For example, if we go back to the detailed experiment in
which a broker for providing a brokerage service to various clients and servers
was synthesized, then we have the problem that the exact number of clients
and servers varies in different scenarios. The exact number of clients is needed
for the representation of the container building block as an intersection type.
Clearly, a first approach would be to define the container building block in a
way that it exactly fits to the use in a given scenario. This would have the

190 CHAPTER 8. APPLICATIONS AND EXPERIMENTS

disadvantage that this supplementary definition of a building block has to be
repeated for every scenario and this would also possibly lead to a definition
of various sets of templates. By using the intersection, a container building
block can be specified with a combination of finitely many specifications of
its intended future usage. It is easy to see that corresponding templates can
be specified polymorphically to allow variable sets of client and servers, for
example, by assigning a list of clients instead of a single client.

Nevertheless, a repository has to be designed for composition requiring
a non-trivial degree of design intelligence, abstraction, and specification.
Smartness is more located in the design and specification of the repository
and to a lesser extent in the (software-)components.

8.5.2 Applicability

Here it should pointed out that in all experiments described before, only
minor manual adaptations and no redesign of the applications was necessary.
In XERP.NET only 20 LLOC and in AspxCommerce only 5 LLOC had to be
adapted. Both applications are not ideal for our Combinatory Logic Connec-
tor Synthesis method presented here, because both applications are POCO
applications containing components without explicitly exposed interfaces.
Both applications have been chosen, in particular, because we were able to
apply our methodology even to such applications in POCO style easily. Even
in this case, only minor adaptions to components or configurations had to be
made.

8.5.3 Adaptability

ArchiType has been applied to some more (minor) scenarios. For one of these
scenarios, another communication framework with a different technology
has been integrated. ServiceStack13 differs from WCF in many points but
especially in the style of extensibility. We suspected that some bigger changes
or modifications had to be made. However, only minor modifications had
to be made, because both communication framework share a compositional
approach for extensibility.

The adaptability of the Combinatory Logic Connector Synthesis method
strongly relies on the adaptability of implementation templates that are linked
to building blocks. As described in the subsection “limitations”, different
design principles, e.g. open/closed-principle by Meyer [1988], allow for design-
ing more adaptive components. Various approaches has also been discussed

13ServiceStack web page: https://servicestack.net/

https://servicestack.net/

8.5. COLLECTIVE ANALYSIS AND DISCUSSION 191

and analyzed for the related work on component-based software engineering
by Heineman [2000], on adaptable software components by Heineman and
Councill [2001], and on generative software development by Czarnecki [2004]
as well as Czarnecki and Eisenecker [2000]. Such related results are directly
transferable to our method because our method do not pose any further
restrictions to target programming languages for generation.

The line of work around meta-programming, e.g. in particular for staged
meta-programming like for MetaML [Taha and Sheard, 2000, Pitts and
Sheard, 2004] or more recently with hygienic code generation for Haskell
[Kameyama et al., 2014], provides different principles and ideas for adaptable
components and program code generating program code.

Here, we want to spotlight that the synthesis and generation steps of
our method are agnostic to different ADLs and also to varying programming
languages, for instance Java, and related technologies as long as these support
composition.

8.5.4 Costs and Effort

One could argue that it is not clear that this methodology poses an advan-
tage to manually implementing the needed software connectors. We can
discriminate between design costs, (manual) adaptation costs, and direct im-
plementation costs. The methodology’s efficiency can be measured by the
ratio of the direct implementation costs to the sum of design and adaption
costs.

The last three experiments shared the same and unchanged C&C type
repository as well as underlying code templates. The design cost for these
experiments is the sum of code template sizes (791 LLOC). The adaption
costs have been 25 LLOC. But, reusing these code templates in the three
last experiments, 4895 LLOC have been generated automatically. For every
logical code line in the code template, approximately 6 logical code lines in
the connector have been generated automatically.

And indeed, we conducted many more experiments on software connectors
with different inhabitants.14 These auxiliary experiments produced no further
costs, because the before described code adaptions had already been made
and was reused.

The evolution of a generated software architecture can be traced by us-
ing a feedback loop. The feedback loop augments an existing C&C type
environment by synthesized inhabitants with possibly supplementary speci-

14Currently more than 200 times software connectors have been generated successfully
by ArchiType in various experiments.

192 CHAPTER 8. APPLICATIONS AND EXPERIMENTS

fications. An already synthesized inhabitant in the C&C type environment
would directly reflect the current state of the software architecture. Newly
posed inhabitation questions, for example a connector synthesis goal, could
use already synthesized inhabitants to synthesize an incremental transforma-
tion specification ∆ which applied to a current software architecture state
transforms it into a goal state specified by the posed inhabitation questions.
Complementary, such a feedback loop could be formed into a Deming cycle
(or plan–do–check–act (PDCA) cylce), for example discussed in [Deming,
2000, page 88]. The Deming cylce is a well-established management method
consisting of four steps. Each step can be assigned a suitable semantic in our
synthesis approach.

1. The plan step of the Deming cycle defines a new inhabitation question.

2. The do step performs the synthesis and generation of an incremental
transformation specification ∆.

3. The check step performs an evaluation of the generated system including
the transformation specified by ∆.

4. And finally, in the act step, the evaluation is analyzed, a new system
goal is defined and measures are derived to achieve the new system goal.

Applying the Deming cycle helps to control and continuously improve a
software architecture.

8.5.5 Usability

Our tool ArchiType is far from being usable in daily industrial software
engineering. Some improvements could be considered for future releases.

The user interface bears some improvements. One improvement would be
an easier comprehensible presentation of the various inhabitants that could be
synthesized as software connectors. The applicative term representation could
be replaced by a more intuitive graphical representation showing a preview of
the currently selected inhabitant, for example as a UML2 component diagram
of a selected inhabitant.

An analogous representation idea can also be applied to the design and
management of a C&C type environment that is stored in a SQL Server
database. A management GUI would simplify the maintenance and extension
of C&C type environments.

The code generation process could be integrated into the model-transfor-
mation-pipeline of Visual Studio 2013. Such a higher degree of integration

8.5. COLLECTIVE ANALYSIS AND DISCUSSION 193

would enable the usage of additional provided tools and frameworks in Visual
Studio 2013.

8.5.6 Limitations

The Combinatory Logic Connector Synthesis method, presented here, clearly
has limitations.

The design of the C&C type environment is entangled with the devel-
opment of corresponding code templates. Such an entanglement requires a
strict discipline of a designer as well as a developer. In particular, obeying
the following four object-oriented programming principles aid to limit the
scope of needed design decisions.

• The single responsibility principle by Martin [2002] states that every
component should have a single responsibility which is entirely encap-
sulated by the component. It means transfered to our method that
each building block and an associated template (from a linked of set of
templates) is only liable for a single functionality. In particular, this
is necessary, because it would not be clear, how to specify meaningful
properties of such building blocks using intersection types.

• The open/closed principle introduced by Meyer [1988] states that “soft-
ware entities (classes, modules, functions, etc.) should be open for
extension, but closed for modification”. This principle is important
especially for the composition of our building blocks and templates. In
particular, the development of the templates represents a challenge to
reach a highest degree of extensibility of the template.

• The Liskov substitution principle, which is closely related to type
theory, was introduced by Liskov and Wing [1994] stating “Let q(x)
be a property provable about objects x of type T . Then q(y) should
be provable for objects y of type S where S is a subtype of T .” The
Liskov substitution principle is important for functional application just
as well as for designing an appropriate C&C type environment and an
associated set of templates. The principle is naturally included in our
method by the usage of type theory. The arguments of an arrow→ type
are contravariant whereas the target of the type is covariant. Wing’s
behavioral types can be simulated in intersection types by introducing
types representing behavioral concepts.

• The interface segregation principle by Martin [2002] states that no
component should be forced to depend on methods it does not use.

194 CHAPTER 8. APPLICATIONS AND EXPERIMENTS

This principle suggests to refine the interfaces by splitting the interfaces
of the component which are very large into smaller and more specific
ones. Then, these more specific interfaces will be used by clients that
are of interest for them. Such specific interfaces can be refined even
more and therefore made more specific by attaching semantic concepts
using intersection types.

The remaining SOLID principle, the dependency inversion principle, does not
apply to our method. Additionally, the combinators and templates have to be
developed under a minimal assumption on the later usage of these elements
but with a maximum size of possible compositionality.

Our method is developed with the intention of adding value by reusing
components from a repository for many projects or scenarios. Therefrom,
clearly our method does not bring a value added applied to one-time projects,
because the costs described before do not amortize the generated value by
using our method.

Undoubtedly, projects or scenarios containing heterogeneous programming
languages, technologies, or frameworks as variability dimensions constitute
a further limitation, because such dimensions are not encompassed by the
method and need different subsets of templates to cover all these dimensions.

A self-imposed restriction to our method is the synthesis and generation
of behavior. In Chapter 2 about software architecture we discussed the
differences between components and connectors. A notable difference is the
difference of computation vs. interaction. Our method can be extended for
supporting the synthesis and generation of behavioral connectors and also of
selected components. This extension is limited by the requirement that we
must hide a behavior in an abstract specification.

A cornerstone of this thesis are repositories containing specified or typed
components. Such a repository of typed components can be perceived as
an API. Using APIs as programming mechanism for distributed systems
provide location transparency by facilitating local method calls that are
hiding network operations. Such APIs as interfaces for distributed systems
also necessitate an intense coupling between actors. It only admits two-party
client/server architecture and implies a rigid knowledge of the exchanged data
structure. A usage of asynchronous communication exchange patterns are
often discouraged even though needed for advanced distributed systems. APIs,
as a class of technology, disclaim the fundamental complexities of distributed
systems like

• coping with network failures,

• making relevant consistency choices, and

8.5. COLLECTIVE ANALYSIS AND DISCUSSION 195

• obfuscate the determination of influences of data representations on
various properties of distributed systems like availability.

All technologies presented here, e.g. WCF, represent a hybrid solution because
these technologies provide an API and therefore provide a transparent view
on distributed communication but also provide configurations and restricted
behavioral adaptations allowing for a fine tuning of distributed algorithms.
A more fine grained support of distributed algorithms necessitates as well a
more detailed knowledge about computations within a component influencing
properties of a distributed system like logical non-monotonic operations.
Therefore, the direct approach presented here is not appropriate for general
distributed systems.

196 CHAPTER 8. APPLICATIONS AND EXPERIMENTS

Chapter 9

Conclusion

We conclude this thesis with a résumé comprising a retrospective and an ex
post facto on the results presented before and a prospective on future work.

Résumé

The thesis presents a step towards closing the gap to practical applicability of
(CL)S by presenting heuristical optimizations of the BCLk(∩,≤)-inhabitation
algorithm and by applying the framework to software synthesis on a large
scale for the first time. It should be understood that the Combinatory Logic
Connector Synthesis method does not present an approach from which readily
deployable software is to be expected. Rather we view the approach (and
(CL)S in particular) as a rapid prototype-generation framework, ArchiType.
For a given scenario prototypical implementations of software connectors,
that may possibly require some manual adaptation, can be generated rather
quickly. From such prototypes it is often possible to estimate feasibility of
ideas for software-solutions much more precisely before implementing them
in detail.

It is clear that in designing the repository the semantic specification
of the building blocks by intersection types and the definition of suitable
underlying templates needs sophistication and intelligence. In some cases our
experiments revealed interesting solutions that were not expected, in other
cases specifications needed to be specified more detailed to narrow down
solutions. We verified that the tool and experiments may be used to refine
the specification of a repository. Altogether, the increased effort necessary
for specifying the repository pays off if the repository is reused for repeated
synthesis requests. Thus, (CL)S is particularly suitable for synthesis tasks
that rely on repeated uses of the same repository.

197

198 CHAPTER 9. CONCLUSION

Future Work

In future work we want to push our research further in both directions that
have been pursued in this thesis. The reduction of the number of substitutions
that have to be instantiated during the execution of the type inhabitation
algorithm is directly related to its execution time. We plan to apply further
heuristic filtering of substitutions early on.

The current implementation of the inhabitation algorithm in (CL)S uses
a strict linearizability for consistency. This consistency requirement comes
with a cost of an immense communication overhead in a distributed environ-
ment. By relieving this requirement to eventually consistency, a distributed
inhabitation algorithm could exploit the consistency and logical monotonicity
(CALM) theorem by Conway et al. [2012] for better performance. In addition,
convergent or commutative replicated data types (CRDTs) can be applied to
various data structures in a distributed implementation and further reduce
needed communication effort.

We want to further substantiate the applicability of (CL)S by performing
further experiments. We will do so by continuing work on connector synthesis
(other ADLs, generation of system management code for software deployment,
representation of protocols by behavioral types [Gay, 2012] (ICT COST
Action IC1201 – Behavioural Types for Reliable Large-Scale Software Systems
(BETTY)), etc.) but we will also look for other scenarios that are amenable
for component-based (software) synthesis (for instance, code synthesis for
embedded systems, business processes, and workflows).

Another interesting application field for synthesis are dynamic typed
languages that are ubiquitously used in web-based environments and scenarios.
The proof theoretic work by Henglein [1994] on dynamic typing and liquid
types by Rondon et al. [2008] could be starting points for an extension of our
type inhabitation algorithm and (CL)S for dynamic languages.

In an additional line of future work, we want to synthesize state-dependent
components like mixins or objects. Mixins and objects might add a novel stage,
runtime or execution, to the already existent composition and compilation
stage presented in the staged computations synthesis approach. Furthermore,
it is not clear how a type-theoretic model of such a stage looks like.

It will also be interesting to see whether we can integrate our approach
with other code generation frameworks and to investigate how higher-order
combinators can be used to describe how other code templates are to be
combined. A further development could be the integration of behavior in this
method. Intersection types and type inhabitation can be used to simulate
finite state machines that build the fundamental model in which behavior
can be specified.

Appendix A

Selected implementation details

A.1 Grammar of (CL)S’s input language

The grammar in EBNF as railroad diagram and in textual representation of
EBNF is defined as follows:

Grammar

{ Combinator

,

} , { Substitutions } , { Subtypes } |- ? :

Type

Grammar = ’{’ Combinator (’, ’ Combinator)* ’}’ ’,’

’{’ Substitutions ’}’ ’,’

’{’ Subtypes ’}’ ’|-’ ’?’ ’:’ Type

Combinator

<ident> : Type

Combinator = ’<ident>’ ’:’ Type

199

200 APPENDIX A. SELECTED IMPLEMENTATION DETAILS

Type

<atom>

<variable>

Type -> Type

[Type

,

]

Type = ’<atom>’

| ’<variable>’

| Type ’->’ Type

| ’[’ Type (’,’ Type)* ’]’

Substitutions

Substitution

,

Substitutions = Substitution (’,’ Substitution)*

Substitution

{ <variable>

,

} =>

~>

{ <atom>

,

}

Substitution = ’{’ ’<variable>’ (’,’ ’<variable>’)* ’}’

(’=>’ | ’~>’)

’{’ ’<atom>’ (’,’ ’<atom>’)* ’}’

A.2. EXAMPLE IN THE LISTING IN ARCHITYPE CL 201

Subtypes

Subtype

,

Subtypes = Subtype (’,’ Subtype)*

Subtype

<atom> <= <atom>

Subtype = ’<atom>’ ’<=’ ’<atom>’

The lexer rules are omitted because these rules are directly derivable from
the EBNF. The implementation of the lexer and parser has been done using
the F# modules FsLex and FsYacc of the F# Powerpack.1

A.2 Example in the Listing in ArchiType CL

1 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // Declaration of templates with its formal parameters
3 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 GenerateProxyStub(libraryDLL,workingDir)
5 GenerateServer(componentName, serverSettings)
6 GenerateServerConfig(serviceName, serviceInterface, behaviorTemplate,

bindingTemplate, bindingName)
7 GenerateClientConfig(serviceName, serviceInterface, behaviorTemplate,

bindingTemplate, bindingName)
8 GenerateSecurity(componentName)
9 GenerateClientSettings(namespace, className, connectorInitializer)

10 GenerateClientProxyCode(referenceToInterface, proxyClass)
11 GenerateBinding(bindingName, bindingEntries, bindingProperties)
12 SharedSecret()
13 EnableTransaction()
14 EnableTransactionClient()
15 #

1Projects main webpage: http://fsharppowerpack.codeplex.com/.

http://fsharppowerpack.codeplex.com/

202 APPENDIX A. SELECTED IMPLEMENTATION DETAILS

16 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
17 // Declaration of variables with their initial values
18 // (the values are set by ArchiType)
19 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20 $interfaceFile=”.\SimpleExampleInterfaceB.dll”
21 $namespace=”SimpleExample”
22 $classServer=”ClassB”
23 $classClient=”ClassA”
24 $interfaceName=”InterfaceB”
25 $bindingName=”basicHttpBinding” // choose basicHttpBinding
26 $libraryPath= ”.\AspxCommerceV2.0 Source\SageFrame\bin\”
27 #
28 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
29 // Code generation code is generated by an reduction of an inhabitant
30 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
31 // class and interface fully qualified
32 $qualifiedClassServer=$namespace+”.”+$classServer
33 $qualifiedInterface=$namespace+”.”+$interfaceName
34
35 //Inhabitant: WSenc(SharedSecret, EnableTransaction)
36 // generate proxies & stubs
37 GenerateProxyStub($libraryPath+”CurrencyConverter.dll”,

”.\GeneratedFiles\CurrencyConverter”)
38 −>>”.\GeneratedFiles\CurrencyConverter\Test.txt”
39 GenerateProxyStub($libraryPath+”SageFrame.OauthID.dll”,

”.\GeneratedFiles\OauthID”)
40 −>>”.\GeneratedFiles\OauthID\Test.txt”
41 GenerateProxyStub($libraryPath+”SFE.GoogleAdUnit.dll”,

”.\GeneratedFiles\GoogleAdUnit”)
42 −>>”.\GeneratedFiles\GoogleAdUnit\Test.txt”
43 // generate server code in C#
44 GenerateServer(”CurrencyConverter$AdUnit$oAuthBase2”, ”//TODO:

Change connection settings”)
45 −>>”.\GeneratedFiles\Server\Server.cs”

A.3 Example Template in T4

The listing produces a C# server that provides different services whose names
are provided via the parameter componentName. Each of these names is
separated by $.

1 <#@ template language=”C#” debug=”true”#>

A.3. EXAMPLE TEMPLATE IN T4 203

2 <# //Uncomment this line to test that the host allows the engine to set
the extension. #>

3 <# //Uncomment this line if you want to debug the generated
transformation class. #>

4 <# //System.Diagnostics.Debugger.Break(); #>
5 <#@ parameter name=”componentName” type=”System.String” #>
6 <#@ parameter name=”serverSettings” type=”System.String” #>
7 using System;
8 using System.ServiceModel;
9

10 namespace SimpleExample
11 {
12 class Program
13 {
14 static void Main()
15 {
16 // Create the ServiceHost.
17 <#
18 var services = componentName.Split(’$’);
19 foreach (var service in services)
20 WriteLine(String.Format(”using (var host{0} = new

ServiceHost(typeof({0})))\n{{”, service));
21 #>
22 try
23 {
24 // Server settings section
25 <#=serverSettings#>
26 // Open the ServiceHost to start listening for messages. Since
27 // no endpoints are explicitly configured, the runtime will create
28 // one endpoint per base address for each service contract
29 // implemented by the service.
30 <#
31 foreach (var service in services)
32 {
33 WriteLine(String.Format(”host{0}.Open();”, service));
34 WriteLine(String.Format(”foreach(var uri in

host{0}.BaseAddresses)”, service));
35 WriteLine(String.Format(”\tConsole.WriteLine(\”The service

{0} is ready at {{0}}\”, uri);”, service));
36 WriteLine(”// Install a failure handler for logging the error”);

204 APPENDIX A. SELECTED IMPLEMENTATION DETAILS

37 WriteLine(String.Format(”\thost{0}.Faulted+=HostFaulted;”,
service));

38 }
39 #>
40 Console.WriteLine(”Press <Enter> to stop the service.”);
41 Console.ReadLine();
42 // Close the ServiceHost.
43 <#
44 foreach (var service in services)
45 WriteLine(String.Format(”host{0}.Close();”, service));
46 #>
47 }
48 catch (TimeoutException timeProblem)
49 {
50 Console.WriteLine(timeProblem.Message);
51 Console.ReadLine();
52 }
53 catch (CommunicationException commProblem)
54 {
55 Console.WriteLine(commProblem.Message);
56 Console.ReadLine();
57 }
58 <#
59 foreach (var service in services)
60 WriteLine(string.Format(”}} // closing using service {0}”,

service));
61 #>
62 }
63
64 private static void HostFaulted(object sender, EventArgs e)
65 {
66 Console.WriteLine(e.ToString());
67 }
68 }

A.4. ALGORITHM LISTINGS 205

A.4 Algorithm Listings

A.4.1 Inhabitation Algorithm (data-centric part)

The algorithm is implemented in Microsoft F#. The implementation is very
close to the optimized algorithm presented as pseudo-code (of an ATM) in
Figure 4.7 on page 96.

Listing A.1: F# function inhabBCLkOptimized in (CL)S

1 let inhabBCLkOptimized env typeConsts substs atomicSubtypes tau
(node : Node) (adder : System.Action<QueueEntry>)=

2 let tau2=Organize tau
3 let typeVars= projectTypeVarsOutOfSubstitutions substs
4 let PossibleSuccessList= env |> List.map (fun x−>
5 let usedTypevars= extractUsedTypevars (snd x) typeVars
6 let usedSubstitutions= filterUsedSubstitutions substs usedTypevars
7 let NAndTauCSigmaCandidates= matchingSigmasWithTaus

typeConsts usedTypevars usedSubstitutions (snd x) tau2
atomicSubtypes

8 let candidates= snd NAndTauCSigmaCandidates
9 let N = fst NAndTauCSigmaCandidates

10 if not (List.isEmpty candidates) then
11 List.map (fun n−>
12 let TgtsAndArgs=generateTgtsAndArgsWithTau

candidates usedTypevars usedSubstitutions n env
typeConsts atomicSubtypes typeVars substs

13 if List.forall (fun comp−>not (List.isEmpty (snd comp)))
TgtsAndArgs then // Line 22 in Algo 5

14 if n=0 then
15 let newGroup= node.AddNewChildrenGroup(fst

x, 0, StatusType.Success)
16 do node.Check(newGroup.GroupID);
17 true
18 else
19 let sigmas= List.map (fun x−>snd x)

TgtsAndArgs
20 let crossProduct= cartesianProduct sigmas
21 crossProduct |> Seq.iter (fun argFromCross−>
22 let args= Seq.map (fun i−>

(Intersect(List.map (fun p’−>argPi p’ i)
argFromCross) |> Normalize)) (seq [1..n])

206 APPENDIX A. SELECTED IMPLEMENTATION DETAILS

23 let newGroup=
node.AddNewChildrenGroup(fst x, n,
StatusType.Unknown)

24 args |> Seq.iter (fun arg−>
25 let newNode= new

Node(newGroup.GroupID,
StatusType.Unknown, node,
arg.GetHashCode(), node.FailCache,
node.SuccessCache)

26 do newGroup.Children.Add(newNode);
27 let newEntry= new QueueEntry(node.ID,

arg, (fst x), newNode)
28 do newNode.QueueEntry<−newEntry
29 do adder.Invoke(newEntry)
30)
31)
32 true
33 else
34 false
35) N |> Seq.exists (fun x−>x=true)
36 else
37 false
38)
39 let PossibleSuccess= Seq.exists (fun x−>x=true) PossibleSuccessList
40 if not PossibleSuccess then
41 node.Status<−StatusType.Fail
42 node.CheckFail(node.GroupID)
43 PossibleSuccess

Appendix B

Experiments

This chapter contains more detailed information on the experiments that have
been conducted.

B.1 Compiler

The following two compilers have been used to generate all executables
programs for the experiments.

• F#: Microsoft (R) F# 2.0-Compiler, Build 4.0.40219.1

• C#: Microsoft (R) Visual C# Compiler Version 4.0.30319.18408 for
Microsoft (R) .NET Framework 4.5

B.1.1 Compiler Flags

In the F# compiler the optimize, tailcalls, and crossoptimize flags were turned
on and the generate overflow checks flag was turned off. Similarly, in the C#
compiler the optimize flag was turned on and the generate overflow checks
flag was turned off.

B.2 Benchmark Problems

The problems that have been used for the experiments on the parallelization
strategies for RQS and TCP are: The example in Rehof [2013] is a scenario
in which a tracking service has to be synthesized that tracks location and
other information of transport containers as described in Section 1.3 on
page 7. An appropriate composition has to be found. In this example, a
composite function (as an applicative term) has to be synthesized that returns

207

208 APPENDIX B. EXPERIMENTS

Problem # Problem

Problem 1 Example from Rehof [2013] and Section 1.3 on page 7
Problem 2 Γ2

4

Problem 3 Γ3
4

Problem 4 Γ4
3

Table B.1: Problem definitions used for the experiments in the Subsection 4.2.4
on page 87

a Cartesian coordinate as real number (R ∩ Cx). The repository is shown
below:

{

Void : Bottom,

Tr : Bottom -> data -> ([pair -> (R -> pair) -> R , Cart]

-> [R, Gpst] -> data) -> [R, Cel],

pos : (data -> ([pair -> (R -> pair) -> R,varCoord] ->

[R, varTime] -> data) -> R) -> [pair -> ([pair ->

(R -> pair) -> R, varCoord] -> pair) ->

[R, varTime], Pos],

cdn : [pair -> ([pair -> (R -> pair) -> R, varCoord] -> pair)

-> R, Pos] -> [pair -> (R -> pair) -> R, varCoord],

fst : [[pair -> (R -> pair) -> R , Coord] -> R,

Cart -> Cx, Polar -> Radius],

snd : [[pair -> (R -> pair) -> R , Coord] -> R,

Cart -> Cy, Polar -> Angle],

tmp : (data -> ((pair -> (R -> pair) -> R) -> R -> data) ->

[R , varTemp]) -> [R , varTemp],

cc2pl : [pair -> (R -> pair) -> R , Cart] ->

[pair -> (R -> pair) -> R , Polar],

cl2fh : [R , Cel] -> [R , Fh]

},

{{varCoord} ~> {Coord, Cart, Polar}, {varTime}~>{Time, Utc, Gpst},

{varTemp}~>{Temp, Fh, Cel}},

{ Cart <= Coord, Polar <= Coord, Gpst <= Time, Utc <= Time,

Cel <= Temp, Fh <= Temp }

|- ? : [R, Cx]

B.3. CONFIGURATION OF THE TEST SYSTEMS 209

B.3 Configuration of the Test Systems

This section lists the information on the used test systems.

B.3.1 Test System I - Desktop PC

The experiments were performed on a single test system and not on a comput-
ing cluster to make measurements more controllable and reproducible. The
test system has the following specifications:

• Microsoft Windows 8 Enterprise (Version 6.2.9200 Build 9200)

• Processor Intel(R) Core(TM) i5 CPU 750 2.67GHz 4 Cores

• Installed physical memory (RAM) 8.00 GB

• Microsoft Visual Studio Ultimate 2013

• Microsoft .NET Framework – Version 4.5.50743

B.3.2 Test System II - Compute Server

Some experiments were performed on a compute server cluster to make
measurements more controllable and reproducible. The test system has the
following specifications:

• Microsoft Windows Server 2012

• Processors 4 x AMD Opteron 6272 2.1GHz 12 Cores 16MB L3 Cache

• Installed physical memory (RAM) 96GB

• Microsoft Visual Studio 2013 Ultimate

• Microsoft .NET Framework – Version 4.5.50743

The compute server was virtualized with Linux Debian 6 as host operating
system and Microsoft Windows Server 2012 as guest operating system. The
virtualization infrastructure was Linux KVM with OpenNebula as Cloud
Computing Stack. For better comparability of the results a specific instance
with fixed resource guarantees for CPU and RAM was used. Despite these
guarantees, the deviations were significantly greater than the deviations
occurring in the isolated desktop PC in Section B.3.1. Furthermore, at least a
10% performance loss, caused by the virtualization with KVM, must be taken
in consideration. Hence, the measurements have been made with relative
figures, to eliminate such influences on the experimental results and to enhance
the comparability of these results.

210 APPENDIX B. EXPERIMENTS

Acronyms

AADL architectural analysis and design language . 21

ADL architecture description language . 11

AI artificial intelligence. .49

API application programming interface . 7

ATM alternating Turing machine . 43

AST abstract syntax tree . 112

BDG bipartite directed graph . 73

BFS breadth-first search . 88

CLS combinatory logic synthesis . 46

CRDT convergent or commutative replicated data type 101

CSP communicating sequential processes . 21

DAG direct acyclic graph . 81

211

212 ACRONYMS

DFS depth-first search . 88

DGML directed graph markup language . 112

DSL domain-specific language . 110

DTM deterministic Turing machine . 94

EBNF extended Backus-Naur form . 112

eDSL embedded domain-specific language . 110

EF entity framework . 163

ERP enterprise resource planning . 11

FSM finite state machine . 30

HPC high performance computing . 89

IIS internet information server . 179

IM interconnection model . 29

LLOC logical lines of code . 11

LTL linear time logic . 47

MEF managed extensibility framework . 162

213

MOF meta-object facility . 148

NTM non deterministic Turing machine. .94

OCL object constraint language . 148

OMG object management group . 148

OWL-S ontology web language . 145

PC procedure call . 28

PDCA plan–do–check–act . 192

PKI public key infrastructure . 167

POCO plain old C# Objects . 174

REST representational state transfer .133

RPC remote procedure call . 28

RQS rolling queue strategy. .88

SCS staged composition synthesis . 148

SLD selective linear definite . 46

SLTL semantic linear time logic . 49

214 ACRONYMS

STRIPS Stanford Research Institute Problem Solver 49

SysML systems modeling language . 21

T4 text template transformation toolkit . 156

TCP term complexity partitioner . 89

UML unified modeling language. .21

UR utilization ratio . 89

WCF windows communication foundation . 13

WSDL web service description language . 166

WSMO web service modeling ontology. .145

XML extensible markup language . 22

List of Figures

1.1 Interconnections between main contributions in the thesis . . . 16

2.1 I-connector . 24
2.2 Overview of the Combinatory Logic Connector Synthesis method. 26

3.1 Bounded combinatory logic BCLk(∩,≤) 41

4.1 Example proof graph with lookahead 63
4.2 Logarithmic Plot of Ratio of Created Inhabitation Questions . 68
4.3 Execution Graph for Γ ⊢ ? : τ 74
4.4 Acceptance rule in GE . 76
4.5 Example graph with multiple nodes 81
4.6 Example graph (see for Figure 4.5 on page 81) with shared

representation as DAG . 82
4.7 Execution Graph with cached result for Γ ⊢ ? : τ ′ 83
4.8 Execution Graph with a reoccuring Γ ⊢ ? : τ ′ node 83
4.9 Execution Graph with a reused Γ ⊢ ? : τ ′ node 84
4.10 Execution Graph containing a cyclic solution 85
4.11 Execution Graph containing a cyclic solution with a backward

edge . 86
4.12 Execution Graph marked with success containing a cyclic solu-

tion with a backward edge . 87
4.13 Plot of Experimentally measured UR for RQS 91
4.14 Plot of Experimentally measured UR for TCP 91

5.1 Constructing inhabitant from an execution graph GE 106
5.2 (CL)S architecture as layer diagram 108
5.3 (CL)S package diagram . 109
5.4 (CL)S inter-object dependencies 110
5.5 (CL)S execution graph in DGML 113
5.6 (CL)S execution graph in DGML 114
5.7 (CL)S support in the open source programming editor Notepad++116

215

216 LIST OF FIGURES

5.8 SCS support in Microsoft Visual Studio 2013 116
5.9 SCS support in the open source programming editor Notepad++117

6.1 Atomic building block . 123
6.2 Complex building block . 123
6.3 Container building block . 125
6.4 Adapter building block . 126
6.5 Example (abstract) taxonomy 127
6.6 Example meta-taxonomy . 127
6.7 Connector classes taxonomy inspired by Hirsch et al. [1999] . . 130
6.8 Example connector type Arbitrator from Taylor et al. [2010,

pages 166ff] . 131
6.9 Example connector type Arbitrator from Taylor et al. [2010,

pages 171f] . 132
6.10 Connector compatibility matrix from Taylor et al. [2010, pages 178f]133
6.11 Excerpt of a connector taxonomy included in ArchiType 134
6.12 Components A and B . 136
6.13 Components S and C . 137
6.14 Building block wsenc . 137
6.15 Resulting connector wsenc(C) 138
6.16 Resulting connector wsenc(C) with components A and B 138

7.1 Specification of ArchiType specific stereotypes for UML2 elements150
7.2 Generation process from inhabitant to UML2 connector 151
7.3 ArchiType screenshot before generation 152
7.4 ArchiType screenshot after generation 153
7.5 Generation process from UML2 to source code 153
7.6 Three levels of computation in SCS 159
7.7 UML2 object diagram for ArchiType 163

8.1 Generated code for classA in secure connectors scenario . . . 168
8.2 Generated code for service host Server in secure connectors

scenario . 168
8.3 Many-to-many client server application 171
8.4 Many-to-many client server application with broker pattern [Buschmann

et al., 1996, pages 237ff] . 172
8.5 Visualization of XERP.NET’s client’s subsystem dependencies 177
8.6 Visualization of XERP.NET’s server’s subsystem dependencies 178
8.7 Visualization of AspxCommerce’s subsystem dependencies . . 181
8.8 Generated UML2-component diagram in VS2013 for compo-

nent CurrencyConverter . 182

LIST OF FIGURES 217

8.9 Screenshot of the configuration interface of the internet in-
formation server (IIS) hosting AspxCommerce visible in the
background . 183

8.10 Screenshot of AspxCommerce including generated code 184

218 LIST OF FIGURES

List of Tables

3.1 Complexity results for various provability (inhabitation) problems 34

4.1 Experimental Data for Γm
n . 69

4.2 Experimentally measured UR for RQS 90
4.3 Experimentally measured speedup for RQS 92
4.4 Experimentally measured UR for TCP 92
4.5 Experimentally measured speedup for TCP 92

5.1 Mathematical operators and corresponding expressions in (CL)S111

6.1 Connector classes and instances according to Hirsch et al. [1999]129

8.1 Experimental results for various applications of ArchiType . . . 189

B.1 Problem definitions used for the experiments in the Subsec-
tion 4.2.4 on page 87 . 208

219

220 LIST OF TABLES

List of Algorithms

3.1 ATM deciding inhabitation in BCL0(∩,≤) 44

4.1 ATM deciding inhabitation in BCLk(∩,≤) 53
4.2 INH1’(Γ, τ, k) . 56
4.3 Match(C) from Düdder et al. [2013a] 58
4.4 INH2(Γ, τ, k) . 60
4.5 ATM with lookahead-test . 64
4.6 Alternating Turing Machine deciding inhabitation in BCLk(∩,≤)

with marked choices . 72
4.7 Algorithm InhabOptimized for (CL)S 96
4.8 Sequential Control Algorithm for (CL)S 97
4.9 Concurrent Control Algorithm for (CL)S 102

5.1 Algorithm for reconstruction of inhabitants Reconstruct 107

221

222 LIST OF ALGORITHMS

Bibliography

Johnathan Aldrich, Craig Chambers, and David Notkin. ArchJava: Connect-
ing Software Architecture to Implementation. In Proceedings of ICSE’02,
pages 187–197. ACM, 2002. (Cited on page 164)

Jonathan Aldrich. Using Types to Enforce Architectural Structure. In WICSA,
pages 211–220. IEEE Computer Society, 2008. (Cited on pages 139 and 164)

Robert J. Allen. A Formal Approach to Software Architecture. PhD thesis,
School of Computer Science, Carnegie Mellon University, January 1997.
Issued as CMU Technical Report CMU-CS-97-144. (Cited on page 21)

Robert J. Allen and David Garlan. Formalizing Architectural Connection.
In Bruno Fadini, Leon J. Osterweil, and Axel van Lamsweerde, editors,
ICSE, pages 71–80. IEEE Computer Society / ACM Press, 1994. ISBN
0-8186-5855-X. (Cited on page 143)

Robert J. Allen and David Garlan. A Formal Basis for Architectural Connec-
tion. ACM Trans. Softw. Eng. Methodol., 6(3):213–249, 1997. (Cited on

pages 11 and 119)

Marco Autili, Chris Chilton, Paola Inverardi, Marta Kwiatkowska, and Mas-
simo Tivoli. Towards a Connector Algebra. In Proceedings of ISoLA’10,
volume 6416 of Lecture Notes in Computer Science, pages 278–292. Springer,
2010. (Cited on page 144)

Lerina Aversano, Massimiliano Di Penta, and Kunal Taneja. A Genetic
Programming Approach to Support the Design of Service Compositions.
Computer Systems Science and Engineering, 21(4), 2006. (Cited on page 145)

Hamid Bagheri. A Formal Approach to Software Synthesis for Architectural
Platforms. In Proceedings of ICSE’11, pages 1143–1145. ACM, 2011. (Cited

on page 164)

Dusan Balek. Connectors in Software Architectures. PhD thesis, Charles
University, Czech Republic, 2002. (Cited on page 27)

223

224 BIBLIOGRAPHY

Dusan Balek and Frantisek Plasil. Software Connectors and Their Role in
Component Deployment. In Proceedings of DAIS’01, Krakow, Poland,
September 2001. Kluwer Academic Publishers. (Cited on page 27)

Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A Filter
Lambda Model and the Completeness of Type Assignment. Journal of
Symbolic Logic, 48(4):931–940, 1983. (Cited on pages 5, 9, 35, 36, 37, 38, 49, 66,

78, 110, and 120)

Henk Barendregt, Wil Dekkers, and Richard Statman. Lambda Calculus with
Types. Cambridge University Press, 2013. (Cited on page 36)

David A. Basin, Yves Deville, Pierre Flener, Andreas Hamfelt, and Jørgen Fis-
cher Nilsson. Synthesis of Programs in Computational Logic. In Maurice
Bruynooghe and Kung-Kiu Lau, editors, Program Development in Compu-
tational Logic, volume 3049 of Lecture Notes in Computer Science, pages
30–65. Springer, 2004. ISBN 3-540-22152-2. (Cited on page 47)

Len Bass, Paul C. Clements, and Rick Kazman. Software Architecture in
Practice, Second Edition. Addison-Wesley Professional, April 2003. (Cited

on pages 20 and 21)

Amel Bennaceur, Chris Chilton, Malte Isberner, and Bengt Jonsson. Auto-
mated Mediator Synthesis: Combining Behavioural and Ontological Rea-
soning. In Robert M. Hierons, Mercedes G. Merayo, and Mario Bravetti,
editors, SEFM, volume 8137 of Lecture Notes in Computer Science, pages
274–288. Springer, 2013. ISBN 978-3-642-40560-0. (Cited on page 144)

Marco Bernardo, Paolo Ciancarini, and Lorenzo Donatiello. Architecting
Families of Software Systems with Process Algebras. ACM Trans. Softw.
Eng. Methodol., 11(4):386–426, 2002. (Cited on page 22)

Piergiorgio Bertoli, Marco Pistore, and Paolo Traverso. Automated compo-
sition of Web services via planning in asynchronous domains. Artificial
Intelligence, 174(3–4):316–361, 2010. (Cited on page 145)

Jan Bessai, Andrej Dudenhefner, Boris Düdder, and Moritz Martens.
Delegation-based Mixin Composition Synthesis. In Jakob Rehof, editor,
Proceedings of Intersection Types and Related Systems (ITRS’14), Lecture
Notes in Computer Science. Springer, 2014a. (Cited on pages 14 and 115)

Jan Bessai, Andrej Dudenhefner, Boris Düdder, Moritz Martens, and Jakob
Rehof. Combinatory Logic Synthesizer. In Bernhard Steffen, editor, Pro-
ceedings of the 6th International Symposium On Leveraging Applications of

BIBLIOGRAPHY 225

Formal Methods, Verification and Validation (ISoLA’14), Lecture Notes in
Computer Science. Springer, 2014b. (Cited on pages 14 and 115)

Robert D. Blumofe. Scheduling Multithreaded Computations by Work Steal-
ing. In FOCS, pages 356–368. IEEE Computer Society, 1994. (Cited on

page 101)

Robert D. Blumofe and Charles E. Leiserson. Scheduling Multithreaded
Computations by Work Stealing. Journal of the ACM, 46(5):720–748, 1999.
(Cited on page 101)

Rastislav Bodik and Barbara Jobstmann. Algorithmic Program Synthesis:
Introduction. International Journal on Software Tools for Technology
Transfer, 15(5-6):397–411, 2013. ISSN 1433-2779. (Cited on page 47)

Robert S. Boyer and J. Strother Moore. The Sharing of Structure in Theorem-
proving Programs, volume 7 of Machine Intelligence, pages 101–116. Edin-
burgh University Press, 1972. (Cited on page 81)

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. Pattern-Oriented Software Architecture: A System of Patterns,
volume 1. John Wiley and Sons, 1996. (Cited on pages 29, 100, 101, 125, 144,

170, 172, 173, and 216)

Bradford L. Chamberlain. Graph Partitioning Algorithms for Distributing
Workloads of Parallel Computations. Technical Report UW-CSE-98-10-03,
University of Washington, 1998. (Cited on page 89)

Ashok K. Chandra, Dexter. C. Kozen, and Larry J. Stockmeyer. Alternation.
Journal of the ACM, 28(1):114–133, 1981. (Cited on pages 43, 45, and 95)

Christina Chavez, Alessandro F. Garcia, Tháıs Vasconcelos Batista, Marcel
Vinicius Medeiros Oliveira, Cláudio Sant’Anna, and Awais Rashid. Com-
posing architectural aspects based on style semantics. In Kevin J. Sullivan,
Ana Moreira, Christa Schwanninger, and Jeff Gray, editors, AOSD, pages
111–122. ACM, 2009. ISBN 978-1-60558-442-3. (Cited on page 31)

Alonzo Church. Applications of Recursive Arithmetic to the Problem of
Circuit Synthesis. Summaries of the Summer Institute of Symbolic Logic, I:
3 – 50, 1957. (Cited on page 47)

Paul C. Clements. A Survey of Architecture Description Languages. In Proc.
Int’l Workshop on Software Specification and Design, pages 16–25. IEEE
Press, March 1996. (Cited on page 21)

226 BIBLIOGRAPHY

Paul C. Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers,
Reed Little, Robert Nord, and Judith Stafford. Documenting Software
Architectures: Views and Beyond. Addison-Wesley Professional, 2nd edition,
2011. ISBN 0201703726. (Cited on pages 21 and 22)

Neil Conway, William R. Marczak, Peter Alvaro, Joseph M. Hellerstein,
and David Maier. Logic and Lattices for Distributed Programming. In
Michael J. Carey and Steven Hand, editors, SoCC, page 1. ACM, 2012.
ISBN 978-1-4503-1761-0. (Cited on page 198)

Andy Coombes and John McDermid. A Tool for Defining the Architecture
of Z Specifications. In J.E. Nicholls, editor, Z User Workshop, Oxford
1990, Workshops in Computing, pages 77–92. Springer London, 1991. ISBN
978-3-540-19672-3. (Cited on page 143)

Don Coppersmith and Shmuel Winograd. Matrix Multiplication via Arith-
metic Progressions. In Alfred V. Aho, editor, STOC, pages 1–6. ACM,
1987. ISBN 0-89791-221-7. (Cited on page 78)

Mario Coppo and Mariangiola Dezani-Ciancaglini. An Extension of Basic
Functionality Theory for Lambda-Calculus. Notre Dame Journal of Formal
Logic, 21:685–693, 1980. (Cited on page 35)

Krzysztof Czarnecki. Overview of Generative Software Development. In In
Proceedings of Unconventional Programming Paradigms (UPP) 2004, 15-17
September, Mont Saint-Michel, France, Revised Papers, pages 313–328.
Springer-Verlag, 2004. (Cited on page 191)

Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming:
Methods, Tools, and Application. Addison-Wesley, Reading, MA, 2000.
(Cited on page 191)

Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Com-
plexity and expressive power of logic programming. ACM Comput. Surv.,
33(3):374–425, 2001. (Cited on page 141)

Eric M. Dashofy, André van der Hoek, and Richard N. Taylor. An Infrastruc-
ture for the Rapid Development of XML-based Architecture Description
Languages. In Proc. Int’l Conf. Software Engineering (ICSE), pages 266–
276. ACM Press, 2002. ISBN 1-58113-472-X. (Cited on page 22)

Rowan Davies and Frank Pfenning. A Modal Analysis of Staged Computation.
Journal of the ACM, 48(3):555–604, 2001. (Cited on page 160)

BIBLIOGRAPHY 227

Luca de Alfaro and Thomas A. Henzinger. Interface Automata. In Proceedings
of ESEC/FSE’01, pages 109–120. ACM, 2001. (Cited on page 144)

William Edwards Deming. Out of the Crisis. The MIT Press, 2000. (Cited on

page 192)

Mariangiola Dezani-Ciancaglini and J. Roger Hindley. Intersection Types for
Combinatory Logic. Theoretical Computer Science, 100(2):303–324, 1992.
(Cited on pages 5, 34, and 35)

Boris Düdder. Formale Verifikation mittels Model Checking in Materialflusssys-
temen. Diplomarbeit, Universität Dortmund, Fakultät für Informatik, 2008.
Interne Berichte / Universität Dortmund. (Cited on page 14)

Boris Düdder, Guido Follert, and Moritz Roidl. Model Checking in mul-
tiagentengesteuerten Materialflusssystemen. In Peter Buchoholz, editor,
Workshop “Modellierung großer Netze in der Logistik”, Measurement, Mod-
elling and Evaluation of Computer and Communication Systems [Tagung
Dortmund 1. April 2008], volume 817 of Technical Reports. Technical
University Dortmund, 2008. (Cited on page 14)

Boris Düdder, Oliver Garbe, Moritz Martens, Jakob Rehof, and
PawelUrzyczyn. Using Inhabitation in Bounded Combinatory Logic with
Intersection Types for GUI Synthesis. In Proceedings of ITRS’12, 2012.
(Cited on pages 10, 14, 48, 49, 52, 135, and 141)

Boris Düdder, Moritz Martens, and Jakob Rehof. Intersection Type
Matching and Bounded Combinatory Logic (Extended Version). Tech-
nical Report 841, Department of Computer Science (TU Dort-
mund), 2012. http://www-seal.cs.tu-dortmund.de/seal/downloads/

research/cls/TR841-TypeMatching.pdf. (Cited on page 63)

Boris Düdder, Moritz Martens, Jakob Rehof, and PawelUrzyczyn. Bounded
Combinatory Logic. In Proceedings of CSL’12, volume 16 of LIPIcs, pages
243–258. Schloss Dagstuhl, 2012. (Cited on pages 10, 14, 34, 35, 39, 44, 45, 48,

49, 52, 53, 55, 56, 139, and 142)

Boris Düdder, Moritz Martens, Jakob Rehof, and Pawel Urzy-
czyn. Bounded Combinatory Logic (Extended Version). Tech-
nical Report 840, Department of Computer Science (TU Dort-
mund), 2012. http://www-seal.cs.tu-dortmund.de/seal/downloads/

research/cls/TR_840-BCL.pdf. (Cited on pages 35 and 55)

http://www-seal.cs.tu-dortmund.de/seal/downloads/research/cls/TR841-TypeMatching.pdf
http://www-seal.cs.tu-dortmund.de/seal/downloads/research/cls/TR841-TypeMatching.pdf
http://www-seal.cs.tu-dortmund.de/seal/downloads/research/cls/TR_840-BCL.pdf
http://www-seal.cs.tu-dortmund.de/seal/downloads/research/cls/TR_840-BCL.pdf

228 BIBLIOGRAPHY

Boris Düdder, Moritz Martens, Jakob Rehof, and PawelUrzyczyn. Using In-
habitation in Bounded Combinatory Logic with Intersection Types for Syn-
thesis. Technical Report 842, Department of Computer Science (TU Dort-
mund), 2012. http://www-seal.cs.tu-dortmund.de/seal/downloads/

research/cls/TR842-ITRS.pdf. (Cited on page 52)

Boris Düdder, Moritz Martens, and Jakob Rehof. Intersection Type Matching
with Subtyping. In Proceedings of TLCA’13, volume 7941 of Lecture Notes
in Computer Science, pages 125–139. Springer, 2013a. (Cited on pages 10, 14,

49, 57, 58, 59, 61, 131, and 221)

Boris Düdder, Moritz Martens, and Jakob Rehof. A Theory
of Staged Composition Synthesis (Extended Version). Techni-
cal Report 843, Department of Computer Science (TU Dort-
mund), 2013b. http://www-seal.cs.tu-dortmund.de/seal/downloads/
research/cls/TR843-SCS.pdf. (Cited on pages 112 and 159)

Boris Düdder, Moritz Martens, and Jakob Rehof. Staged Computation
Synthesis. In Zhong Shao, editor, Proceedings of 23rd European Symposium
on Programming (ESOP’14), volume 8410 of Lecture Notes in Computer
Science, pages 67–86. Springer, 2014a. (Cited on pages 14, 112, 115, 159, and 160)

Boris Düdder, Moritz Martens, and Jakob Rehof. Combinatory Process
Synthesis. In Radu Mateescu, editor, Proceedings of 12th International
Conference on Software Engineering and Formal Methods (SEFM’14), Lec-
ture Notes in Computer Science. Springer, 2014b. (Cited on pages 115

and 135)

José Luiz Fiadeiro, Antónia Lopes, and Michel Wermelinger. A Mathematical
Semantics for Architectural Connectors. In Roland Carl Backhouse and
Jeremy Gibbons, editors, Generic Programming, volume 2793 of Lecture
Notes in Computer Science, pages 178–221. Springer, 2003. ISBN 3-540-
20194-7. (Cited on page 144)

Roy Thomas Fielding. Architectural Styles and the Design of Network-based
Software Architectures. PhD thesis, University of California, Irvine, 2000.
(Cited on page 133)

Tim Freeman and Frank Pfenning. Refinement Types for ML. In Proceedings
of PLDI’91, pages 268–277. ACM, 1991. (Cited on page 48)

Dadid Garlan and Mary Shaw. An Introduction to Software Architecture. In
V. Ambriola and G. Tortora, editors, Advances in Software Engineering

http://www-seal.cs.tu-dortmund.de/seal/downloads/research/cls/TR842-ITRS.pdf
http://www-seal.cs.tu-dortmund.de/seal/downloads/research/cls/TR842-ITRS.pdf
http://www-seal.cs.tu-dortmund.de/seal/downloads/research/cls/TR843-SCS.pdf
http://www-seal.cs.tu-dortmund.de/seal/downloads/research/cls/TR843-SCS.pdf

BIBLIOGRAPHY 229

and Knowledge Engineering, volume I. River Edge, NJ: World Scientific
Publishing Company, 1993. (Cited on page 143)

David Garlan and Dewayne Perry. Introduction to the Special Issue on
Software Architecture. IEEE Transactions on Software Engineering, 21(4),
April 1995. (Cited on page 20)

David Garlan, Robert T. Monroe, and David Wile. Acme: An Architecture
Description Interchange Language. In Proceedings of CASCON’97, pages
169–183, Toronto, Ontario, November 1997. (Cited on pages 21 and 31)

Simon Gay. ICT COST Action IC1201, Behavioural Types for Reliable
Large-Scale Software Systems (BETTY). http://www.cost.eu/domains_
actions/ict/Actions/IC1201, 2012. Accessed: 2014-02-25. (Cited on

page 198)

Gregor Gößler and Joseph Sifakis. Composition for Component-based Model-
ing. Sci. Comput. Program., 55(1–3):161–183, 2005. (Cited on page 31)

Benjamin N. Grossof, Ian Horrocks, Raphael Volz, and Stefan Decker. De-
scription Logic Programs: Combining Logic Programs with Description
Logic. In Proceedings of WWW 2003, May 2003. (Cited on page 49)

Thomas R. Gruber. A Translation Approach to Portable Ontology Specifica-
tions. Knowledge Acquisition, 5(2):199–220, 1993. (Cited on page 32)

Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan.
Synthesis of Loop-free Programs. In Proceedings of PLDI’11, pages 62–73.
ACM, 2011. (Cited on page 48)

Christian Haack, Brian Howard, Allen Stoughton, and Joe B. Wells. Fully
Automatic Adaptation of Software Components Based on Semantic Specifi-
cations. In AMAST, volume 2422 of Lecture Notes in Computer Science,
pages 83–98. Springer, 2002. (Cited on pages 6, 9, 48, and 162)

George T. Heineman. A Model for Designing Adaptable Software Components.
ACM SIGSOFT Software Engineering Notes, 25(1):55–56, 2000. (Cited on

page 191)

George T. Heineman and William T. Councill, editors. Component-Based
Software Engineering: Putting the Pieces Together. Addison-Wesley, June
2001. (Cited on page 191)

Fritz Henglein. Dynamic Typing: Syntax and Proof Theory. Sci. Comput.
Program., 22(3):197–230, 1994. (Cited on page 198)

http://www.cost.eu/domains_actions/ict/Actions/IC1201
http://www.cost.eu/domains_actions/ict/Actions/IC1201

230 BIBLIOGRAPHY

J. Roger Hindley. The Simple Semantics for Coppo-Dezani-Sallé Types. In
International Symposium on Programming, volume 137 of Lecture Notes in
Computer Science, pages 212–226. Springer, 1982. (Cited on pages 38 and 77)

J. Roger Hindley and Jonathan P. Seldin. Lambda-calculus and Combinators,
an Introduction. Cambridge University Press, 2008. (Cited on pages 4, 5,

and 49)

Dan Hirsch, Sebastián Uchitel, and Daniel Yankelevich. Towards a Periodic
Table of Connectors. In Proceedings of COORDINATION ’99, volume 1594
of Lecture Notes in Computer Science. Springer, 1999. (Cited on pages 9, 11,

25, 32, 128, 129, 130, 175, 216, and 219)

C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, New
York, 1985. (Cited on page 22)

IEEE Architecture Working Group. IEEE Std 1471-2000, Recommended prac-
tice for architectural description of software-intensive systems. Technical
report, IEEE, 2000. (Cited on page 19)

Paola Inverardi and Massimo Tivoli. Automatic Synthesis of Modular Con-
nectors via Composition of Protocol Mediation Patterns. In Proceedings of
ICSE’13, pages 3–12. IEEE, 2013. (Cited on pages 32 and 144)

ISO/IEC/IEEE. Systems and software engineering – Architecture description.
ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007 and
IEEE Std 1471-2000), pages 1 –46, 1 2011. (Cited on page 21)

Daniel Jackson. Alloy: A Lightweight Object Modelling Notation. TOSEM,
11(2):256–290, 2002. (Cited on pages 143 and 164)

Dietmar Jannach and Klaus Leopold. Knowledge-based multimedia adapta-
tion for ubiquitous multimedia consumption. J. Network and Computer
Applications, 30(3):958–982, 2007. (Cited on page 49)

Neil D. Jones. An Introduction to Partial Evaluation. ACM Comput. Surv.,
28(3):480–503, 1996. (Cited on page 161)

Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial evaluation
and automatic program generation. Prentice Hall international series in
computer science. Prentice Hall, 1993. ISBN 978-0-13-020249-9. (Cited on

page 161)

BIBLIOGRAPHY 231

Christine Julien and Dewayne Perry. Composable Context-aware Architectural
Connectors. In Proceedings of SAM ’08, pages 43–45. ACM, 2008. (Cited

on pages 24 and 144)

Yukiyoshi Kameyama, Oleg Kiselyov, and Chung chieh Shan. Combinators
for Impure yet Hygienic Code Generation. In Wei-Ngan Chin and Jurriaan
Hage, editors, ACM SIGPLAN 2014 Workshop on Partial Evaluation and
Program Manipulation (PEPM 14), pages 3–14. ACM, 2014. (Cited on

page 191)

Raman Kazhamiakin, Annapaola Marconi, Marco Pistore, and Heorhi Raik.
Data-Flow Requirements for Dynamic Service Composition. In International
Conference on Web Services (ICWS), pages 243–250. IEEE, 2013. (Cited

on page 145)

Stephen Kell. Rethinking Software Connectors. In Proceedings of SYANCO
’07, pages 1–12. ACM, 2007. (Cited on pages 24 and 27)

Philippe Kruchten. An Ontology of Architectural Design Decisions in Software-
Intensive Systems. In Proceedings of the 2nd Groningen Workshop on
Software Variability Managment, 2004. (Cited on pages 9, 31, and 32)

Patrick Lam and Martin C. Rinard. A Type System and Analysis for the
Automatic Extraction and Enforcement of Design Information. In Luca
Cardelli, editor, ECOOP, volume 2743 of Lecture Notes in Computer
Science, pages 275–302. Springer, 2003. ISBN 3-540-40531-3. (Cited on

page 141)

Anna-Lena Lamprecht, Tiziana Margaria, Ina Schaefer, and Bernhard Steffen.
Synthesis-Based Variability Control: Correctness by Construction. In
Bernhard Beckert, Ferruccio Damiani, Frank S. de Boer, and Marcello M.
Bonsangue, editors, Formal Methods for Components and Objects, 10th
International Symposium, FMCO 2011, Turin, Italy, October 3-5, 2011,
Revised Selected Papers, volume 7542 of Lecture Notes in Computer Science,
pages 69–88. Springer, 2011. ISBN 978-3-642-35886-9, 978-3-642-35887-6.
(Cited on page 49)

Martin Lange and Carsten Lutz. 2-ExpTime lower bounds for propositional
dynamic logics with intersection. Journal of Symbolic Logic, 70(4):1072–
1086, 2005. (Cited on page 48)

Kung-Kiu Lau, Ling Ling, Vladyslav Ukis, and Perla Velasco Elizondo. Com-
posite Connectors for Composing Software Components. In Markus Lumpe

232 BIBLIOGRAPHY

and Wim Vanderperren, editors, Software Composition, volume 4829 of
Lecture Notes in Computer Science, pages 266–280. Springer, 2007. ISBN
978-3-540-77350-4. (Cited on page 144)

Mihai Letia, Nuno M. Preguiça, and Marc Shapiro. CRDTs: Consistency
without Concurrency Control. CoRR, abs/0907.0929, 2009. (Cited on

page 103)

Samuel Linial and Emil L. Post. Recursive Unsolvability of the Deducibility,
Tarski’s Completeness and Independence of Axioms Problems of Propo-
sitional Calculus. Bulletin of the American Mathematical Society, 55:50,
1949. (Cited on pages 5 and 34)

Barbara H. Liskov and Jeannette M. Wing. A Behavioral Notion of Subtyping.
ACM Trans. Program. Lang. Syst., 16:1811–1841, November 1994. ISSN
0164-0925. (Cited on page 193)

David C. Luckham, John J. Kenney, Larry M. Augustin, James Vera, Walter
Mann, Doug Bryan, and Walter Mann. Specification and Analysis of System
Architecture Using Rapide. IEEE Transactions on Software Engineering,
21(4):336–355, April 1995. (Cited on page 21)

Yoad Lustig and Moshe Y. Vardi. Synthesis from Component Libraries.
In FOSSACS, volume 5504 of Lecture Notes in Computer Science, pages
395–409. Springer, 2009. (Cited on pages 3, 13, and 47)

Jeff Magee, Naranker Dulay, Susan Eisenbach, and Jeff Kramer. Specifying
Distributed Software Architectures. In Proceedings of ESEC ‘95 – 5th
European Software Engineering Conference, volume 989 of Lecture Notes
in Computer Science, pages 137–153, Sitges, Spain, 25–28 September 1995.
Springer-Verlag, Berlin, Germany. (Cited on page 22)

Ivano Malavolta, Patricia Lago, Henry Muccini, Patrizio Pelliccione, and
Antony Tang. What Industry Needs from Architectural Languages: A
Survey. Software Engineering, IEEE Transactions on, 39(6):869–891, 2013.
(Cited on page 21)

Zohar Manna and Richard Waldinger. Fundamentals Of Deductive Program
Synthesis. IEEE Transactions on Software Engineering, 18:674–704, 1992.
(Cited on page 3)

Zohar Manna and Richard J. Waldinger. A Deductive Approach to Program
Synthesis. ACM Trans. Program. Lang. Syst., 2(1):90–121, 1980. (Cited on

page 3)

BIBLIOGRAPHY 233

Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Synthesis of Com-
ponent and Connector Models from Crosscutting Structural Views. In
Proceedings of FSE’13, pages 444–454. ACM, 2013. (Cited on pages 143

and 144)

Robert C. Martin. Agile Software Development: Principles, Patterns, and
Practices. Prentice Hall, 2002. ISBN 0135974445. (Cited on page 193)

Nenad Medvidovic and Richard N. Taylor. A Classification and Comparison
Framework for Software Architecture Description Languages. IEEE Trans.
Software Engineering, 26(1):70–93, 2000. ISSN 0098-5589. (Cited on page 21)

Nenad Medvidovic, Peyman Oreizy, and Richard N. Taylor. Reuse of off-the-
shelf components in c2-style architectures. In W. Richards Adrion, Alfonso
Fuggetta, Richard N. Taylor, and Anthony I. Wasserman, editors, ICSE,
pages 692–700. ACM, 1997. ISBN 0-89791-914-9. (Cited on page 21)

Nenad Medvidovic, David S. Rosenblum, David F. Redmiles, and Jason E.
Robbins. Modeling Software Architectures in the Unified Modeling Lan-
guage. ACM Trans. Softw. Eng. Methodol., 11(1):2–57, 2002. (Cited on

page 22)

Nikunj R. Mehta and Nenad Medvidovic. Composing architectural styles
from architectural primitives. In ESEC / SIGSOFT FSE, pages 347–350.
ACM, 2003. (Cited on page 30)

Nikunj R. Mehta, Nenad Medvidovic, and Sandeep Phadke. Towards a
Taxonomy of Software Connectors. In Proceedings of ICSE’00, pages
178–187. ACM, 2000. (Cited on pages 9, 11, 25, 27, 32, 130, and 175)

Bertrand Meyer. Object-Oriented Software Construction. International Series
in Computer Science, C.A.R. Hoare, Series Editor. Prentice Hall, 1988.
(Cited on pages 190 and 193)

Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform
Proofs as a Foundation for Logic Programming. Ann. Pure Appl. Logic, 51
(1–2):125–157, 1991. (Cited on pages 47 and 141)

Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer-Verlag, Berlin, 1980. (Cited on page 22)

Robin Milner. Communication and Concurrency. PHI Series in computer
science. Prentice Hall, 1989. (Cited on page 22)

234 BIBLIOGRAPHY

Robin Milner. Communicating and mobile systems - the Pi-calculus. Cam-
bridge University Press, 1999. ISBN 978-0-521-65869-0. (Cited on page 22)

J Strother Moore. Computational Logic: Structure Sharing and Proof of
Program Properties. PhD thesis, Department of Computational Logic,
University of Edinburgh, 1973. (Cited on page 81)

Mark Moriconi and Xiaolei Qian. Correctness and Composition of Software
Architectures. In Proceedings of FSE’94, pages 164–174. ACM, 1994. (Cited

on page 143)

Ulf Nilsson and Jan Maluszynski. Logic, Programming and Prolog. Wiley,
1990. ISBN 978-0-471-92625-2. (Cited on page 141)

Object Management Group (OMG). Unified Modeling Language (UML),
V2.0. http://www.omg.org/spec/UML/Current, 2005. Accessed: 2013-08-
16. (Cited on pages 21, 124, and 147)

Object Management Group (OMG). MetaObject Facility (MOF), V2.4.1.
http://www.omg.org/spec/MOF/, 2011. Accessed: 2014-01-06. (Cited on

page 148)

Object Management Group (OMG). Systems Modeling Language (SysML),
V1.3. http://www.omgsysml.org, 2012. Accessed: 2013-12-27. (Cited on

page 21)

Flavio Oquendo. pi-adl: an architecture description language based on the
higher-order typed pi-calculus for specifying dynamic and mobile software
architectures. ACM SIGSOFT Software Engineering Notes, 29(3):1–14,
2004. (Cited on page 22)

Flávio Oquendo. Dynamic Software Architectures: Formally Modelling
Structure and Behaviour with π-ADL. In ICSEA, pages 352–359. IEEE
Computer Society, 2008. (Cited on page 22)

Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
(Cited on pages 43 and 94)

John Penix. Deductive Synthesis of Event-Based Software Architectures. In
Proceedings of the ASE’99, pages 311–314, 1999. (Cited on page 144)

Dewayne E. Perry. Software Interconnection Models. In William E. Riddle,
Robert M. Balzer, and Kouichi Kishida, editors, ICSE, pages 61–71. ACM
Press, 1987. ISBN 0-89791-216-0. (Cited on page 29)

http://www.omg.org/spec/UML/Current
http://www.omg.org/spec/MOF/
http://www.omgsysml.org

BIBLIOGRAPHY 235

Dewayne E. Perry and Alexander L. Wolf. Foundations for the Study of
Software Architecture. SIGSOFT Softw. Eng. Notes, 17(4):40–52, 1992.
(Cited on pages 11, 20, and 119)

Andrew Pitts and Tim Sheard. On the Denotational Semantics of Staged
Execution of Open Code. In Nineteenth Annual IEEE Symposium On Logic
In Computer Science, pages 1–16. Springer Verlag, 2004. (Cited on page 191)

Steffen Plate. Automatische Generierung einer Konfiguration für virtuelle
Maschinen unter Zuhilfenahme eines Inhabitationsalgorithmus. Bachelor’s
thesis, Technical University of Dortmund, Department of Computer Science,
2013. (Cited on page 115)

Garrel Pottinger. A Type Assignment for the Strongly Normalizable Lambda-
Terms. In J. Roger Hindley and Johnathan P. Seldin, editors, To
H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formal-
ism, pages 561–577. Academic Press, 1980. (Cited on page 35)

Vaughan Pratt and Jerzy Tiuryn. Satisfiability of Inequalities in a Poset.
Fundamenta Informaticae, 28(1–2):165–182, 1996. (Cited on page 78)

Jorge Enrique Pérez-Mart́ınez and Almudena Sierra-Alonso. UML 1.4 ver-
sus UML 2.0 as Languages to Describe Software Architectures. In Flavio
Oquendo, Brian C. Warboys, and Ron Morrison, editors, Software Archi-
tecture, volume 3047 of Lecture Notes in Computer Science, pages 88–102.
Springer Berlin Heidelberg, 2004. (Cited on page 22)

Jinghai Rao and Xiaomeng Su. A Survey of Automated Web Service Compo-
sition Methods. In Jorge Cardoso and Amit P. Sheth, editors, SWSWPC,
volume 3387 of Lecture Notes in Computer Science, pages 43–54. Springer,
2004. (Cited on page 145)

Jakob Rehof. The Complexity of Simple Subtyping Systems. PhD thesis,
DIKU, Department of Computer Science, 1998. (Cited on page 78)

Jakob Rehof. Towards Combinatory Logic Synthesis. In BEAT’13, 1st
International Workshop on Behavioural Types. ACM, January 22 2013.
(Cited on pages 3, 5, 7, 9, 10, 46, 48, 49, 112, 126, 138, 207, and 208)

Jakob Rehof and Torben Mogensen. Tractable Constraints in Finite Semilat-
tices. Science of Computer Programming, 35(2):191–221, 1999. (Cited on

page 78)

236 BIBLIOGRAPHY

Jakob Rehof and Pawel Urzyczyn. Finite Combinatory Logic with Intersection
Types. In Proceedings of TLCA’11, volume 6690 of Lecture Notes in
Computer Science, pages 169–183. Springer, 2011a. (Cited on pages 9, 10, 34,

36, 37, 41, 48, 49, 52, 78, 84, 87, and 169)

Jakob Rehof and Pawel Urzyczyn. Finite Combinatory Logic with Intersection
Types (Extended Version). Technical Report 834, Department of Computer
Science (TU Dortmund), 2011b. (Cited on page 87)

Jakob Rehof and Pawel Urzyczyn. The Complexity of Inhabitation with
Explicit Intersection. In Kozen Festschrift, volume 7230 of Lecture Notes
in Computer Science, pages 256–270. Springer, 2012. (Cited on pages 10, 34,

38, 48, and 142)

Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. Liquid Types.
In Rajiv Gupta and Saman P. Amarasinghe, editors, PLDI, pages 159–169.
ACM, 2008. (Cited on page 198)

Sylvain Salvati. Recognizability in the Simply Typed Lambda-Calculus. In
H. Ono, M. Kanazawa, and R. J. G. B. de Queiroz, editors, WoLLIC,
volume 5514 of Lecture Notes in Computer Science, pages 48–60. Springer,
2009. (Cited on page 35)

Sylvain Salvati, Giulio Manzonetto, Mai Gehrke, and Henk Barendregt. Loader
and Urzyczyn Are Logically Related. In Artur Czumaj, Kurt Mehlhorn,
Andrew M. Pitts, and Roger Wattenhofer, editors, ICALP (2), volume
7392 of Lecture Notes in Computer Science, pages 364–376. Springer, 2012.
ISBN 978-3-642-31584-8. (Cited on page 35)

Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and Source
Code in C. John Wiley & Sons, Inc., 2 edition, 1995. (Cited on pages 137

and 169)

Ehud Y. Shapiro. Alternation and the computational complexity of logic
programs. J. Log. Program., 1(1):19–33, 1984. (Cited on pages 73 and 75)

Marc Shapiro, Nuno M. Preguiça, Carlos Baquero, and Marek Zawirski.
Convergent and Commutative Replicated Data Types. Bulletin of the
EATCS, 104:67–88, 2011. (Cited on page 101)

Mary Shaw and David Garlan. Software Architecture - Perspectives on an
emerging discipline. Prentice Hall, 1996. (Cited on page 19)

BIBLIOGRAPHY 237

Joseph Sifakis. A Framework for Component-based Construction Extended
Abstract. In Bernhard K. Aichernig and Bernhard Beckert, editors, SEFM,
pages 293–300. IEEE Computer Society, 2005. (Cited on page 31)

Steven S. Skiena. The Algorithm Design Manual. Springer, 2nd edition,
August 2008. ISBN 1848000693. (Cited on page 78)

Morten H. Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard
Isomorphism, volume 149 of Studies in Logic and the Foundations of
Mathematics. Elsevier, 2006. (Cited on page 4)

Romina Spalazzese and Paola Inverardi. Components Interoperability through
Mediating Connector Patterns. In Javier Cámara, Carlos Canal, and Gwen
Salaün, editors, WCSI, volume 37 of EPTCS, pages 27–41, 2010. (Cited on

page 32)

Bridget Spitznagel and David Garlan. A Compositional Approach for Con-
structing Connectors. In Proceedings of WICSA’01, pages 148–157. IEEE,
2001. (Cited on pages 11, 24, 125, 140, and 144)

Bridget Spitznagel and David Garlan. A Compositional Formalization of
Connector Wrappers. In Proceedings of ICSE’03, pages 374–384. IEEE,
2003. (Cited on page 11)

Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. From Program
Verification to Program Synthesis. In Manuel V. Hermenegildo and Jens
Palsberg, editors, POPL, pages 313–326. ACM, 2010. ISBN 978-1-60558-
479-9. (Cited on page 48)

Richard Statman. Intuitionistic Propositional Logic Is Polynomial-space
Complete. Theoretical Computer Science, 9:67–72, 1979. (Cited on pages 4,

33, 34, and 35)

Bernhard Steffen, Tiziana Margaria, and Michael von der Beeck. Automatic
Synthesis of Linear Process Models from Temporal Constraints: An Incre-
mental Approach. In In ACM/SIGPLAN Int. Workshop on Automated
Analysis of Software (AAS’97), 1997. (Cited on pages 49 and 126)

Andrew James Stothers. On the Complexity of Matrix Multiplication. Univer-
sity of Edinburgh, 2010. (Cited on page 78)

Misha Strittmatter and Lucia Kapová Happe. Compositional performance
abstractions of software connectors. In David R. Kaeli, Jerry Rolia, Lizy K.
John, and Diwakar Krishnamurthy, editors, ICPE, pages 275–278. ACM,
2012. ISBN 978-1-4503-1202-8. (Cited on page 31)

238 BIBLIOGRAPHY

Walid Taha and Tim Sheard. MetaML and multi-stage programming with
explicit annotations. Theor. Comput. Sci., 248(1–2):211–242, 2000. (Cited

on page 191)

Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. Software
Architecture: Foundations, Theory and Practice. Addison-Wesley, 2010.
(Cited on pages 11, 20, 21, 22, 23, 26, 27, 28, 29, 32, 119, 126, 130, 131, 132, 133, 140,

144, and 216)

Jerzy Tiuryn. Subtype Inequalities. In Proceedings of LICS’92, pages 308–315.
IEEE Computer Society, 1992. (Cited on page 78)

Jonathan Traugott. Deductive Synthesis of Sorting Programs. J. Symb.
Comput., 7(6):533–572, 1989. (Cited on page 3)

Heikki Tuominen. Elementary net systems and dynamic logic. In Grzegorz
Rozenberg, editor, European Workshop on Applications and Theory in Petri
Nets, volume 424 of Lecture Notes in Computer Science, pages 453–466.
Springer, 1988. ISBN 3-540-52494-0. (Cited on page 48)

Pawel Urzyczyn. The Emptiness Problem for Intersection Types. Journal of
Symbolic Logic, 64(3):1195–1215, 1999. (Cited on pages 33, 34, and 35)

Pawel Urzyczyn. Inhabitation of Low-Rank Intersection Types. In Proceedings
of TLCA’09, volume 5608 of Lecture Notes in Computer Science, pages
356–370. Springer, 2009. (Cited on page 34)

Moshe Y. Vardi. From Verification to Synthesis. In Natarajan Shankar and
Jim Woodcock, editors, VSTTE, volume 5295 of Lecture Notes in Computer
Science, page 2. Springer, 2008. ISBN 978-3-540-87872-8. (Cited on page 48)

Anna Vasileva. Synthese von Orchestrationscode für Cloud-basierte Dien-
ste. Diploma thesis, Technical University of Dortmund, Department of
Computer Science, 2013. (Cited on page 115)

Richard J. Waldinger. Tutorial on Program-Synthetic Deduction. In Mark E.
Stickel, editor, CADE, volume 449 of Lecture Notes in Computer Science,
page 684. Springer, 1990. (Cited on page 3)

Chris Walshaw, Mark Cross, and Martin G. Everett. Parallel Dynamic
Graph Partitioning for Adaptive Unstructured Meshes. J. Parallel Distrib.
Comput., 47(2):102–108, 1997. (Cited on page 89)

Stephen Warshall. A Theorem on Boolean Matrices. Journal of the ACM, 9
(1):11–12, 1962. (Cited on page 79)

BIBLIOGRAPHY 239

Robert Waters and Gregory D. Abowd. Architectural Synthesis: Integrating
Multiple Architectural Perspectives. In WCRE, pages 2–12, 1999. (Cited

on page 145)

Joe B. Wells and Boris Yakobowski. Graph-Based Proof Counting and Enu-
meration with Applications for Program Fragment Synthesis. In LOPSTR
2004, volume 3573 of Lecture Notes in Computer Science, pages 262–277.
Springer, 2005. (Cited on pages 6, 9, and 48)

Patrick Wolf. Entwicklung einer Adapters mit VI Scripting (LabVIEW) zur
Synthese von LEGO R⃝ NXT-VIs aus einem Repository. Bachelor’s thesis,
Technical University of Dortmund, Department of Computer Science, 2013.
(Cited on page 115)

Daniel Yellin and Robert E. Strom. Protocol Specifications and Component
Adaptors. ACM Transactions on Programming Languages and Systems, 19
(2):292–333, 1997. (Cited on page 144)

240 BIBLIOGRAPHY

Index

∅MQ, 108

ADL, 21
π-ADL, 22
AADL, 21
Acme, 21
Darwin, 22
PADL, 22
Rapide, 21
Wright, 21
xADL, 22

Algorithm
Coppersmith&Winograd, 78
Warshalls, 79

Alloy, 164
Applicability, 190
Architecture

Communication integrity, 164
Component, 23
Conformance, 139
Connector, 23
Continuous improvement, 192
Description Language, see ADL
Evolution, 191
Pattern

Adapter, 29
Broker, 170

Style, 20
Representational State Transfer,

134
ArchiType, 147

Code generation, 152

Composition Language, 154
Implementation, 162

ArchJava, 164

Building block, 122
Adapter, 124
Atomic, 122
Classification, 122
Complex, 123
Container, 123, 151

C&C Architecture, 22
C&C type environment, 126, 152
Calculus

λ�→e , 160
π, 22
CSP, 21

CALM theorem, 198
Combinatory Logic, 33

Bounded, 33, 39
Finite, 34, 41

Combinatory Logic Connector Synthe-
sis, 25, 136

Connector Synthesis Goal, 134
Generation, 25, 135
Specification, 25, 139
Synthesis, 25, 134
Synthesize and Generate, 136

Commutative replicated data type, 101,
108, 198

Component-based development, 13
Components

241

242 INDEX

Adaptable, 191
Concurreny, 100
Connector type, 120
Control-centric, 72

Data-centric, 71

Execution graph
Group node, 73
Inhabitation node, 73

Export
Direct Graph Markup Language,

112
DOT, 112

Expressiveness, 189

Finite
Function, 142
Quantification, 143

Generation, 135

Hygienic code generation, 191

I-connector, 23
Inhabitants reconstruction, 105
Inhabitation, 41

Direct, 43
Inhabitation node

Child, 73
Failed, 74
Parent, 73
Successful, 74

Inhabitation problem
Normal, 4, 41
Relativized, 41

Interconnection, 29
Models, 29
Semantic, 30
Syntactic, 30
Unit, 29

Interface automata, 144
Interface type, 23

Limitations, 193
Logic programming, 46

Meta-programming, 191
MetaML, 191
Microsoft

T4 Text Templating, 148, 156
Visual Studio, 147
Windows Communication Foun-

dation, 148, 166
Model-driven engineering, 148

Normalization, 77

Ontology, 31, 32
Optimization

Atomic substitution, 79
Atomic subtyping relation, 78
Bounded substitutions, 79
Caches, 80
Concurrency, 100
Cycle detection, 84
Execution Graph, 72
Graph compression, 81
Normalization, 77
Parallel computation, 87
Transitive closure on subtypes, 78
Type environment organization,

79

Packaging component, 151
Partial evaluation, 161
Polymorphism

Implicit, 34
Typical ambiguity, 34

Principle
Interface segregation, 194
Liskov substitution, 193
Open/closed, 193
Single responsibility, 193
SOLID, 194

Prolog, 46, 73

INDEX 243

Protocol
REST, 107, 134
WS-SOAP, 107, 134, 137

Queue, 88
Work-stealing, 101

Ramp-up Costs, 191
Repository, see type environment46
Resudialization, 161

Scattering, 89
Scheduler, 88

Rolling Queue Strategy, 88
Term Complexity Partitioner, 89

Security
Authentication, 169
Encryption, 137, 166
Kerberos, 169
NT LAN Manager, 169
Public key infrastructure, 167

Semaphore, 100
Shared memory, 101
Signal, 100
SLD resolution, 46
Software architecture, 19

Definition of, 19
IEEE1471-2000, 19

Software connector, 26
Communicator, 28
Converter, 29
Coordinator, 28
Faciliator, 29
Roles, 28

Software engineering
Component-based, 191

Synthesis, 47
AI Planning, 49, 145
Candidate space, 47
Church-style, 12
Combinatory Logic, 5, 46
Combinatory Process, 115

Component-based, 12
Composition, 3
Curry-style, 12
Deductive, 3
Functional, 47
Mixins, 14, 115
Reactive, 47
SLTL, 49
Staged Computation, 115, 159
Temporal, 47
Web service composition, 145

Semantic, 145

Taxonomy, 31, 126
Tree, 126

Thread-safe, 101
Turing machine

Alternating, 43
Acceptance, 43
Eventual acceptance, 43

Deterministic, 94
Non-deterministic, 94

Type
Applicative term, 40
Assignment, 40
Assumptions, 40
Behavioral, 193
Dynamic typing, 198
Environment, 40
Higher-order, 139, 173
Implementation type correctness,

6, 161
Inhabitation, 3, 4, 34, 44
Intersection, 35
Kind, 39, 70, 79, 124, 125
Levels, 40
Liquid, 198
Matching, 57, 59
Modal, 159
Organized, 38, 77
Path, 38

244 INDEX

Refinement, 48
Rules, 41
Simple, 40
Substitution, 34, 39, 40, 79

Level-k, 40
Subtyping, 36, 49, 78
Unique specification, 87

UML, 21
Component diagram, 147
Meta-Object Facility, 148
Packaging component, 147
Stereotypes, 148

Utilization, 90
Ratio, 90

Watchdog, 100
Web Service Description Language,

166
Worker threads, 100

	Introduction
	Composition Synthesis and Inhabitation
	Combinatory Logic Synthesis
	Example for Combinatory Logic Synthesis
	Combinatory Logic Synthesis and Software Connectors
	Why does this problem matter?
	Synthesizing from Components
	Contributions
	Publications & Delimitations
	Theoretical Contributions
	Technical Contributions
	Interconnections between Contributions

	Organization

	Software Architecture
	What is Software Architecture?
	Describing Software Architectures
	Components and Connectors
	Software Connector Roles
	Software Interconnection Models
	Composing Basic Connectors

	Synthesizing Software Architectures
	Ontologies in Software Architecture

	Bounded Combinatory Logic
	Combinatory Logic
	Intersection Types
	Types
	Subtyping
	Paths
	Substitutions

	Bounded Combinatory Logic
	Type Assignment
	Relativized Inhabitation Problem

	Alternating Turing Machines
	Deciding Relativized Inhabitation
	Combinatory Logic Synthesis
	Related Work on Synthesis

	Optimization of CLS
	Theoretical Algorithm
	Restricting Intersections in Substitutions
	Intersection Type Matching
	Matching Optimization
	Lookahead Optimization
	Experimental Evaluation

	Algorithmic Optimization
	Execution Graph
	Term Level Optimization
	Elimination of Redundant Calculations
	Parallel Computation

	A Distributed Algorithm for BCL0(,) Inhabitation

	Combinatory Logic Synthesizer
	Reconstructing Inhabitants
	Implementation
	(CL)S Input Specification
	(CL)S Output Specification
	Additional Applications and Extensions

	Synthesis of Software Architectures
	Software Connectors
	Type-theoretic Model
	Component
	Connector
	Building Blocks
	C&C Type Environment
	Taxonomy

	Combinatory Logic Connector Synthesis
	Synthesis of Connector
	Generation of a Connector
	Combinatory Logic Connector Synthesis Method
	Example for Combinatory Logic Connector Synthesis
	Synthesis of Behavior
	Designing C&C Type Repositories and Templates

	Related Work

	ArchiType
	UML2 Extension
	User Interface
	Synthesizing Connectors in UML2
	Code Generation
	ArchiType Composition Language
	Staged Composition Synthesis
	Implementation Type Correctness

	Implementation
	Related Work

	Applications and Experiments
	Secure Connectors
	Setup
	Execution of the Experiment
	Results
	Analysis and Discussion

	Detailed Broker Pattern Example
	Setup
	Execution
	Results, Analysis, and Discussion

	Enterprise Resource Planning Scenario
	Setup
	Execution
	Results

	e-Commerce Scenario
	Setup
	Execution
	Results
	Analysis and Discussion

	Collective Analysis and Discussion
	Expressiveness
	Applicability
	Adaptability
	Costs and Effort
	Usability
	Limitations

	Conclusion
	Selected implementation details
	Grammar of (CL)S's input language
	Example in the Listing in ArchiType CL
	Example Template in T4
	Algorithm Listings
	Inhabitation Algorithm (data-centric part)

	Experiments
	Compiler
	Compiler Flags

	Benchmark Problems
	Configuration of the Test Systems
	Test System I - Desktop PC
	Test System II - Compute Server

	Acronyms
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography
	Index

