
SFB 
823 

Testing for change-points in 
long-range dependent time 
series by means of a self-
normalized Wilcoxon test 

D
iscussion P

aper 

 
Annika Betken 
 
 

 
Nr. 30/2014 

 
 
 
 
 
 
 
 



 



Testing for change-points in long-range
dependent time series by means of a

self-normalized Wilcoxon test

Annika Betken∗

Fakultät für Mathematik, Ruhr-Universität Bochum, 44780 Bochum, Germany.

Abstract

We propose a testing procedure based on the Wilcoxon two-sample test statistic in order to test
for change-points in the mean of long-range dependent data. We show that the corresponding
self-normalized test statistic converges in distribution to a non-degenerate limit under the hypothesis
that no change occurred and that it diverges to infinity under the alternative of a change-point with
constant height. Furthermore, we derive the asymptotic distribution of the self-normalized Wilcoxon
test statistic under local alternatives, that is under the assumption that the height of the level shift
decreases as the sample size increases. Regarding the finite sample performance, simulation results
confirm that the self-normalized Wilcoxon test yields a consistent discrimination between hypothesis
and alternative and that its empirical size is already close to the significance level for moderate
sample sizes.

Keywords: change-point problem; self-normalization; long-range dependence; Wilcoxon test; non-
parametric test

1 Introduction

We consider a data set generated by a stochastic process (Xi)i≥1,

Xi = µi + εi,

where (µi)i≥1 are unknown constants and where (εi)i≥1 is a stationary, long-range dependent (LRD, in
short) process with mean zero and finite variance. In particular, we assume that

εi = G(ξi), i ≥ 1, (1)

where (ξi)i≥1 is a stationary Gaussian process with mean 0, variance 1 and long-range dependence, that
is with autocovariance function ρ satisfying

ρ(k) ∼ k−DL(k), k ≥ 1,

where 0 < D < 1 (referred to as long-range dependence (LRD) parameter) and where L is a slowly varying
function. Furthermore, we suppose that G : R −→ R is a measurable function with E (G(ξi)) = 0.

Provided that the previous assumptions hold for the observations X1, . . . , Xn, we wish to test the
hypothesis

H : µ1 = . . . = µn

against the alternative

A : µ1 = . . . = µk 6= µk+1 = . . . = µn

∗annika.betken@rub.de
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for some k ∈ {1, . . . , n− 1}. Within this setting the location of the change-point is unknown under
the alternative. In order to motivate our choice of a change-point test, we temporarily assume that the
change-point location is known, i.e. for a given k ∈ {1, . . . , n− 1} we consider the alternative

Ak : µ1 = . . . = µk 6= µk+1 = . . . = µn.

For the test problem (H,Ak), the Wilcoxon two-sample rank test rejects the hypothesis of no change in
the mean for large absolute values of the test statistic

Wk,n =

k∑
i=1

n∑
j=k+1

(
1{Xi≤Xj} −

1

2

)
.

The Wilcoxon change-point test for the test problem (H,A) is defined by reference to the test statistic
Wk,n; see Dehling, Rooch and Taqqu (2013a). It rejects the hypothesis for large values of

max
1≤k≤n−1

|Wk,n| = max
1≤k≤n−1

∣∣∣∣∣∣
k∑
i=1

n∑
j=k+1

(
1{Xi≤Xj} −

1

2

)∣∣∣∣∣∣ .
With the objective of calculating the asymptotic distribution of the Wilcoxon test statistic under the

null hypothesis, Dehling, Rooch and Taqqu (2013a) consider the stochastic process

Wn(λ) =
1

ndn

bnrc∑
i=1

n∑
j=bnrc+1

(
1{Xi≤Xj} −

∫
R
F (x)dF (x)

)
, 0 ≤ λ ≤ 1,

where dn denotes an appropriate normalization. Assuming that (Xi)i≥1 has a continuous marginal
distribution function F , the asymptotic distribution of Wn can be derived from the empirical process
invariance principle of Dehling and Taqqu (1989) as shown in Dehling, Rooch and Taqqu (2013a). It
turns out that both, the limit of Wn and the normalization dn, depend on the Hermite expansion

1{G(ξi)≤x} − F (x) =

∞∑
q=1

Jq(x)

q!
Hq(ξi),

where Hq denotes the q-th order Hermite polynomial and where

Jq(x) = E
(
Hq(ξi)1{G(ξi)≤x}

)
.

The scaling factor dn is defined by

d2
n = Var

 n∑
j=1

Hm(ξj)

 ,

where m designates the Hermite rank of the class of functions
{

1{G(ξi)≤x} − F (x), x ∈ R
}

defined by

m := min {q ≥ 1 : Jq(x) 6= 0 for some x ∈ R} .

Presuming the previous conditions hold and the long-range dependence parameter D meets the condi-
tion 0 < D < 1

m , the process

Wn(λ) =
1

ndn

bnλc∑
i=1

n∑
j=bnλc+1

(
1{Xi≤Xj} −

∫
R
F (x)dF (x)

)
, 0 ≤ λ ≤ 1,

converges in distribution to

1

m!
(Zm(λ)− λZm(1))

∫
R
Jm(x)dF (x), 0 ≤ λ ≤ 1,
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where (Zm(λ))λ∈[0,1] is an m-th order Hermite process, which is self-similar with parameter H = 1−mD
2 ∈(

1
2 , 1
)
. If m = 1, the Hermite process Zm equals a standard fractional Brownian motion process with

Hurst parameter H = 1 − D
2 . We refer to Taqqu (1979) for a general definition of the Hermite process

Zm.
An application of the continuous mapping theorem to the process Wn yields the asymptotic distribution

of the Wilcoxon change-point test. More precisely, it has been proved by Dehling, Rooch and Taqqu
(2013a) that under the hypothesis of no change in the mean, the Wilcoxon test statistic

1

ndn
max

1≤k≤n−1

∣∣∣∣∣∣
k∑
i=1

n∑
j=k+1

(
1{Xi≤Xj} −

1

2

)∣∣∣∣∣∣
converges in distribution to

sup
0≤λ≤1

∣∣∣∣ 1

m!
(Zm(λ)− λZm(1))

∣∣∣∣ ∣∣∣∣∫
R
Jm(x)dF (x)

∣∣∣∣ .
Furthermore, Dehling, Rooch and Taqqu (2013b) investigate the asymptotic behaviour of the Wilcoxon

change-point test under the alternative with the objective of determining the height of the level shift in
such a way that the power of the self-normalized Wilcoxon test is non-trivial. For this purpose, they
consider local alternatives defined by

Aτ,hn : µi =

{
µ for i = 1, . . . , bnτc
µ+ hn for i = bnτc+ 1, . . . , n,

where 0 < τ < 1 and where hn ∼ cdnn , so that under the sequence of local alternatives Aτ,hn the height
of the level shift decreases if the sample size increases. Under the additional assumption that G(ξi) has
a continuous distribution function F with bounded density f , this guarantees that under the sequence of
alternatives Aτ,hn , the process

1

ndn

bnλc∑
i=1

n∑
j=bnλc+1

(
1{Xi≤Xj} −

1

2

)
, 0 ≤ λ ≤ 1,

converges in distribution to the limit process

1

m!
(Zm(λ)− λZm(1))

∫
R
Jm(x)dF (x) + cδτ (λ)

∫
R
f2(x)dx, 0 ≤ λ ≤ 1,

where δτ : [0, 1] −→ R is defined by

δτ (λ) =

{
λ(1− τ) for λ ≤ τ
(1− λ)τ for λ ≥ τ

.

By another application of the continuous mapping theorem it then follows that the Wilcoxon change-point
test converges in distribution to a non-degenerate limit process under the sequence of local alternatives
Aτ,hn ; see Dehling, Rooch and Taqqu (2013b).

2 Main Results

An application of the Wilcoxon change-point test to a given data set presupposes that the scaling factor dn
is known. Usually this is not the case in statistical practice so that in general the Wilcoxon change-point
test as proposed in Dehling, Rooch and Taqqu (2013a) depends on an unknown normalization. As an
alternative we propose a normalization that only depends on the given realizations and therefore is referred
to as self-normalization. The self-normalization approach we consider has originally been established in
another context; see Lobato (2001). It has been extended to the change-point testing problem by Shao
and Zhang (2010) in order to test for change-points in the mean of short-range dependent time series.
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These authors used the self-normalization method on the Kolmogorov-Smirnov test statistic, in doing
so also taking the change-point alternative into account. Lobato as well as Shao and Zhang considered
weak dependent processes only. Following the approach in Shao and Zhang an application to possibly
long-range dependent processes was introduced by Shao, who established a self-normalized version of the
CUSUM change-point test; see Shao (2011).

As the CUSUM test has the disadvantage of not being robust against possible outliers in the data, an
extension of the self-normalization idea to the Wilcoxon test statistic leads to a change-point test that not
only has the advantage of avoiding the choice of unknown parameters but also yields a robust alternative
to the CUSUM test.

Given observations X1, . . . , Xn, we consider the rank statistics defined by

Ri = rank(Xi) =

n∑
j=1

1{Xj≤Xi}

for i = 1, . . . , n. An extension of the self-normalization approach to the Wilcoxon change-point test is
based on an application of the CUSUM change-point test in terms of the rank statistics Ri. Note that
due to the identity

max
k

∣∣∣∣∣
k∑
i=1

Ri −
k

n

n∑
i=1

Ri

∣∣∣∣∣ = max
k

∣∣∣∣∣∣
k∑
i=1

n∑
j=k+1

(
1{Xi≤Xj} −

1

2

)∣∣∣∣∣∣ ,
the CUSUM test statistic of the ranks equals the Wilcoxon change-point test statistic. Instead of dividing
the test statistic (which is the maximum taken among every possible outcome of the Wilcoxon two-sample
rank test) by the unknown quantity ndn we consider a normalization factor that depends on the location
of a potential change-point and which therefore is different for every possible outcome of the Wilcoxon
two-sample rank test.

We define

Gn(k) =

∣∣∣∣ k∑
i=1

Ri − k
n

n∑
i=1

Ri

∣∣∣∣{
1
n

k∑
t=1

S2
t (1, k) + 1

n

n∑
t=k+1

S2
t (k + 1, n)

} 1
2

,

where

St(j, k) =

t∑
h=j

(
Rh − R̄j,k

)
,

R̄j,k =
1

k − j + 1

k∑
t=j

Rt.

The self-normalized Wilcoxon test rejects the hypothesis H : µ1 = . . . = µn for large values of the test
statistic

Tn(τ1, τ2) = sup
k∈[bnτ1c,bnτ2c]

Gn(k),

where 0 < τ1 < τ2 < 1.
Note that the proportion of the data that is included in the calculation of the supremum is restricted

by the choice of τ1 and τ2. This is important as the choice of τ1 and τ2 influences the properties of the
test. Structural breaks at the beginning or the end of a sample are hard to detect since there is a lack of
information concerning the behaviour of the time series before or after a potential break point. Hence,
the interval [τ1, τ2] must be small enough for the critical values not to get too large on the one hand, yet
large enough to include potential break points on the other hand. A common choice is τ1 = 1−τ2 = 0.15;
see Andrews (1993).

The following theorem states the asymptotic distribution of the test statistic Tn(τ1, τ2) under the
hypothesis of no change in the mean.
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Theorem 1. Suppose that (Xi)i≥1 is a stationary process with continuous distribution function F defined
by

Xi = µi +G(ξi)

for unknown constants (µi)i≥1 and a stationary, long-range dependent Gaussian process (ξi)i≥1 with mean

0, variance 1 and LRD parameter 0 < D < 1
m , where m denotes the Hermite rank of the class of functions

1{G(ξi)≤x}−F (x), x ∈ R. Moreover, assume that
∫
R Jm(x)dF (x) 6= 0 and that G : R −→ R is a measurable

function. Then, under the hypothesis of no change in the mean, it follows that Tn(τ1, τ2)
D−→ T (m, τ1, τ2),

where

T (m, τ1, τ2) = sup
λ∈[τ1,τ2]

|Zm(λ)− λZm(1)|{∫ λ
0

(Vm(r; 0, λ))
2
dr +

∫ 1

λ
(Vm(r;λ, 1))

2
dr
} 1

2

with

Vm(r; r1, r2) = Zm(r)− Zm(r1)− r − r1

r2 − r1
{Zm(r2)− Zm(r1)}

for r ∈ [r1, r2], 0 < r1 < r2 < 1.

As consistency under fixed alternatives is considered as a fundamental characteristic of appropriate
hypothesis testing, we aim at proving Theorem 2, which implies that if there is a change-point in the
mean of constant height, the empirical power of the self-normalized Wilcoxon test tends to 1. For this
purpose, we suppose that under the alternative

Xi =

{
µ+G(ξi), i = 1, . . . , k∗,

µ+ ∆ +G(ξi), i = k∗ + 1, . . . , n,
(2)

where k∗ = bnτc and ∆ 6= 0 is fixed.

Theorem 2. Suppose that (ξi)i≥1 is a stationary, long-range dependent Gaussian process with mean 0,
variance 1 and LRD parameter D. Moreover, let G : R −→ R be a measurable function and assume that
G(ξi) has a continuous distribution function F . Given that the parameter D satisfies 0 < D < 1

m , where
m denotes the Hermite rank of the class of functions 1{G(ξi)≤x} − F (x), x ∈ R, Tn(τ1, τ2) diverges in
probability to ∞ under fixed alternatives, i.e. if (Xi)i≥1 satisfies (2).

Furthermore, we wish to study the asymptotic behaviour of the self-normalized Wilcoxon change-point
test under local alternatives defined by

Aτ,hn(n) : µi =

{
µ for i = 1, . . . , bnτc,
µ+ hn for i = bnτc+ 1, . . . , n,

where 0 < τ < 1 and hn −→ 0. The following theorem confirms that the self-normalized Wilcoxon test
statistic converges to a non-degenerate limit under the sequence of local alternatives Aτ,hn .

Theorem 3. Suppose that (ξi)i≥1 is a stationary Gaussian process with mean 0, variance 1 and autoco-
variance function

ρ(k) ∼ k−DL(k),

where L is a slowly varying function and where 0 < D < 1
m . Moreover, let G : R −→ R be a mea-

surable function. We assume that G(ξi) has a continuous distribution function F with bounded density
f . Let m denote the Hermite rank of the class of functions 1{G(ξi)≤x} − F (x), x ∈ R, and suppose

that
∫
R Jm(x)dF (x) 6= 0. Then, under the sequence of alternatives Aτ,hn with hn ∼ cdnn , it follows that

Tn(τ1, τ2) converges in distribution to

T (m, τ1, τ2) = sup
λ∈[τ1,τ2]

∣∣ 1
m!

∫
R Jm(x)dF (x)(Zm(λ)− λZm(1)) + cδτ (λ)

∫
R f

2(x)dx
∣∣{∫ λ

0
(Vm,τ (r; 0, λ))

2
dr +

∫ 1

λ
(Vm,τ (r;λ, 1))

2
dr
} 1

2

,
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where

Vm,τ (r; 0, λ) =
1

m!

∫
R
Jm(x)dF (x)

(
Zm(r)− r

λ
Zm(λ)

)
+ c

∫
R
f2(x)dx

(
δτ (r)− r

λ
δτ (λ)

)
,

Vm,τ (r;λ, 1) =
1

m!

∫
R
Jm(x)dF (x)

{
Zm(r)− Zm(λ)− r − λ

1− λ
(Zm(1)− Zm(λ))

}
+ c

∫
R
f2(x)dx

(
δτ (r)− 1− r

1− λ
δτ (λ)

)
.

3 Simulation studies

We will now investigate the finite sample performance of the self-normalized Wilcoxon test statistic. For
this purpose, we take G(t) = t so that (Xi)i≥1 is a Gaussian process. Since G is strictly increasing,
the Hermite coefficient J1(x) is not equal to 0 for all x ∈ R; see Dehling, Rooch and Taqqu (2013a).
Therefore, it holds that m = 1, where m denotes the Hermite rank of 1{G(ξi)≤x} − F (x), x ∈ R. As a
result, Tn(τ1, τ2) has approximately the same distribution as

sup
λ∈[τ1,τ2]

|BH(λ)− λBH(1)|{∫ λ
0

(VH(r; 0, λ))
2
dr +

∫ 1

λ
(VH(r;λ, 1))

2
dr
} 1

2

VH(r; r1, r2) = BH(r)−BH(r1)− r − r1

r2 − r1
{BH(r2)−BH(r1)} ,

where BH is a fractional Brownian motion process with Hurst parameter H = 1− D
2 .

We set critical values on the basis of 10, 000 simulations of fractional Brownian motion time series for
different Hurst parameters H and different levels of significance; see Table 1.

10% 5% 1%
H = 0.6 6.182835 7.276568 9.785915
H = 0.7 6.847260 8.190125 11.380584
H = 0.8 7.767277 9.495194 13.021080
H = 0.9 8.520039 10.333602 14.544094

Table 1: Simulated critical values for the distribution of T (1, τ1, τ2) when [τ1, τ2] = [0.15, 0.85]. The
sample size is 1000, the number of replications is 10, 000.

The calculation of the relative frequency of false rejections under the hypothesis is based on 10, 000
realizations of fractional Gaussian noise time series with varying length; see Table 2.

n H=0.6 H=0.7 H=0.8 H=0.9
10 0.057 0.052 0.036 0.026
50 0.048 0.050 0.046 0.052

100 0.049 0.055 0.050 0.053
500 0.053 0.050 0.049 0.054

1000 0.053 0.053 0.050 0.052

Table 2: Level of the self-normalized Wilcoxon change-point test for fractional Gaussian noise time series
of length n with Hurst parameter H. The level of significance is 5%. The calculations are based
on 10, 000 simulation runs.

The simulation results suggest that the self-normalized Wilcoxon test performs well under the hypoth-
esis since empirical size and asymptotic significance level are already close for moderate sample sizes. In
particular, it is notable that the size of the self-normalized Wilcoxon change-point test differs considerably
from the size of the original Wilcoxon change-point test when H = 0.9, that means when we have very
strong dependence. In that case, the convergence of the Wilcoxon change-point test statistic appears to
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∆ = 0.5 ∆ = 1 ∆ = 2
10% 5% 10% 5% 10% 5%

H = 0.6 n = 100 0.474 0.348 0.956 0.916 1.000 1.000
n = 500 0.941 0.898 1.000 1.000 1.000 1.000

H = 0.7 n = 100 0.355 0.239 0.801 0.696 1.000 0.999
n = 500 0.655 0.530 0.992 0.985 1.000 1.000

H = 0.8 n = 100 0.281 0.177 0.652 0.526 0.993 0.984
n = 500 0.405 0.297 0.872 0.802 1.000 1.000

H = 0.9 n = 100 0.426 0.287 0.744 0.628 0.992 0.983
n = 500 0.412 0.280 0.786 0.689 0.998 0.997

Table 3: Empirical power of the self-normalized Wilcoxon change-point test for fractional Gaussian noise
of length n = 100 and n = 500 with Hurst parameter H and a level shift in the mean of height
∆ after a proportion τ = 0.5. The calculations are based on 5, 000 simulation runs.

be rather slow under the hypothesis (see Dehling, Rooch and Taqqu (2013a), Table 2), whereas the size
of the self-normalized Wilcoxon change-point test is still close to the corresponding level of significance.

We consider fractional Gaussian noise time series with a level shift of height ∆ after a proportion τ of
the data in order to analyse the behaviour of the test statistic under the alternative. We have done so
for several choices of ∆ and τ and for sample sizes n = 100 and n = 500.

∆ = 0.5 ∆ = 1 ∆ = 2
10% 5% 10% 5% 10% 5%

H = 0.6 n = 100 0.321 0.204 0.813 0.690 1.000 1.000
n = 500 0.795 0.678 1.000 0.999 1.000 1.000

H = 0.7 n = 100 0.222 0.125 0.570 0.401 0.989 0.968
n = 500 0.437 0.309 0.948 0.891 1.000 1.000

H = 0.8 n = 100 0.195 0.106 0.417 0.265 0.931 0.839
n = 500 0.264 0.164 0.682 0.530 0.999 0.995

H = 0.9 n = 100 0.339 0.198 0.578 0.403 0.961 0.889
n = 500 0.312 0.186 0.612 0.442 0.989 0.966

Table 4: Empirical power of the self-normalized Wilcoxon change-point test for fractional Gaussian noise
of length n = 100 and n = 500 with Hurst parameter H and a level shift in the mean of height
∆ after a proportion τ = 0.25. The calculations are based on 5, 000 simulation runs.

The simulations of the empirical power confirm that the rejection rate becomes higher when ∆ increases.
Comparing the empirical power for different Hurst parameters H, we note that the test tends to have
less power as H becomes large. This seems natural since when there is very strong dependence, i.e. H
is large, the variance of the series increases, so that it becomes harder to detect a level shift of a fixed
height. In addition, change-points that are located in the middle of the sample are detected more often
than change-points that are located close to the boundary of the testing region determined by [τ1, τ2].
Furthermore, Table 4 and Table 3 show that an increasing sample size goes along with an increase of
the empirical power. This result confirms that the self-normalized Wilcoxon change-point test yields a
consistent discrimination between hypothesis and alternative.
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4 Proofs

In order to simplify notation, we write

J(x) =
1

m!
Jm(x),

Z(λ) = Zm(λ).

Proof of Theorem 1. The essential step in the proof of Theorem 1 is to find a representation for the
test statistic Tn(τ1, τ2) as a functional of the Wilcoxon process

Wn(λ) =
1

ndn

bnλc∑
i=1

n∑
j=bnλc+1

(
1{Xi≤Xj} −

1

2

)
, 0 ≤ λ ≤ 1.

For this purpose, rewrite

Gn(k) =

∣∣∣∣∣ k∑i=1

n∑
j=k+1

(
1{Xi≤Xj} − 1

2

)∣∣∣∣∣{
1
n

k∑
t=1

S2
t (1, k) + 1

n

n∑
t=k+1

S2
t (k + 1, n)

} 1
2

=

1
ndn

∣∣∣∣∣ k∑i=1

n∑
j=k+1

(
1{Xi≤Xj} − 1

2

)∣∣∣∣∣
1
ndn

{
1
n

k∑
t=1

S2
t (1, k) + 1

n

n∑
t=k+1

S2
t (k + 1, n)

} 1
2

.

As we have

1

ndn

∣∣∣∣∣∣
k∑
i=1

n∑
j=k+1

(
1{Xi≤Xj} −

1

2

)∣∣∣∣∣∣ = |Wn(λ)|

for the numerator of Gn(k) if k = bnλc, it remains to show that the denominator of Gn(k) can be
represented as a functional of Wn. Since

Ri = n+ 1−
n∑
j=1

1{Xi≤Xj}

almost surely, it follows that

St(1, k) =−
t∑

h=1

 n∑
j=1

1{Xh≤Xj} −
1

k

k∑
i=1

n∑
j=1

1{Xi≤Xj}


=−

{
t∑
i=1

n∑
j=t+1

(
1{Xi≤Xj} −

1

2

)
+

t∑
i=1

t∑
j=1

(
1{Xi≤Xj} −

1

2

)

− t

k

k∑
i=1

n∑
j=k+1

(
1{Xi≤Xj} −

1

2

)
− t

k

k∑
i=1

k∑
j=1

(
1{Xi≤Xj} −

1

2

)}

almost surely. Moreover, it is well known that

l∑
i=1

l∑
j=1

1{Xi≤Xj} =
l(l + 1)

2
. (3)

Hence,

l∑
i=1

l∑
j=1

(
1{Xi≤Xj} −

1

2

)
=
l(l + 1)

2
− l2

2
=
l

2
,
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so that

St(1, k) = −

{
t∑
i=1

n∑
j=t+1

(
1{Xi≤Xj} −

1

2

)
+
t

2
− t

k

k∑
i=1

n∑
j=k+1

(
1{Xi≤Xj} −

1

2

)
− t

k

k

2

}

= −

{
t∑
i=1

n∑
j=t+1

(
1{Xi≤Xj} −

1

2

)
− t

k

k∑
i=1

n∑
j=k+1

(
1{Xi≤Xj} −

1

2

)}

almost surely. Thus, if λ ∈ [τ1, τ2],

∫ λ

0

bnrc∑
i=1

n∑
j=bnrc+1

(
1{Xi≤Xj} −

1

2

)
− bnrc
bnλc

bnλc∑
i=1

n∑
j=bnλc+1

(
1{Xi≤Xj} −

1

2

)2

dr

=

bnλc∑
t=0

∫ t+1
n

t
n

bnrc∑
i=1

n∑
j=bnrc+1

(
1{Xi≤Xj} −

1

2

)
− bnrc
bnλc

bnλc∑
i=1

n∑
j=bnλc+1

(
1{Xi≤Xj} −

1

2

)2

dr

−
∫ bnλc+1

n

λ

bnrc∑
i=1

n∑
j=bnrc+1

(
1{Xi≤Xj} −

1

2

)
− bnrc
bnλc

bnλc∑
i=1

n∑
j=bnλc+1

(
1{Xi≤Xj} −

1

2

)2

dr,

where

bnrc∑
i=1

n∑
j=bnrc+1

(
1{Xi≤Xj} −

1

2

)
− bnrc
bnλc

bnλc∑
i=1

n∑
j=bnλc+1

(
1{Xi≤Xj} −

1

2

)
= 0

for r ∈
[
λ, bnλc+1

n

)
. Therefore, the integral over that interval equals 0. Consequently,

∫ λ

0

bnrc∑
i=1

n∑
j=bnrc+1

(
1{Xi≤Xj} −

1

2

)
− bnrc
bnλc

bnλc∑
i=1

n∑
j=bnλc+1

(
1{Xi≤Xj} −

1

2

)2

dr

=

bnλc∑
t=0

∫ t+1
n

t
n

bnrc∑
i=1

n∑
j=bnrc+1

(
1{Xi≤Xj} −

1

2

)
− bnrc
bnλc

bnλc∑
i=1

n∑
j=bnλc+1

(
1{Xi≤Xj} −

1

2

)2

dr

=
1

n

k∑
t=0

 t∑
i=1

n∑
j=t+1

(
1{Xi≤Xj} −

1

2

)
− t

k

k∑
i=1

n∑
j=k+1

(
1{Xi≤Xj} −

1

2

)2

=
1

n

k∑
t=1

S2
t (1, k)

almost surely in case k = bnλc.
For the second term in the denominator of Gn(k) the following equations hold almost surely

St(k + 1, n) =−

{
t∑

h=k+1

 n∑
j=1

1{Xh≤Xj} −
1

n− k

n∑
i=k+1

n∑
j=1

1{Xi≤Xj}

}

=−

{
t∑
i=1

n∑
j=t+1

(
1{Xi≤Xj} −

1

2

)
+

t∑
i=1

t∑
j=1

(
1{Xi≤Xj} −

1

2

)

−
k∑
i=1

n∑
j=k+1

(
1{Xi≤Xj} −

1

2

)
−

k∑
i=1

k∑
j=1

(
1{Xi≤Xj} −

1

2

)

− t− k
n− k

n∑
i=k+1

k∑
j=1

(
1{Xi≤Xj} −

1

2

)
− t− k
n− k

n∑
i=k+1

n∑
j=k+1

(
1{Xi≤Xj} −

1

2

)}
.
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By (3) we get

n∑
i=k+1

n∑
j=k+1

(
1{Xi≤Xj} −

1

2

)
=

(n− k)(n− k + 1)

2
− (n− k)2

2
=
n− k

2
.

Furthermore,

1{Xi≤Xj} −
1

2
= 1− 1{Xj<Xi} −

1

2
= −

(
1{Xj≤Xi} −

1

2

)
almost surely if i 6= j. This yields

St(k + 1, n) =−

{
t∑
i=1

n∑
j=t+1

(
1{Xi≤Xj} −

1

2

)
+
t

2
−

k∑
i=1

n∑
j=k+1

(
1{Xi≤Xj} −

1

2

)
− k

2

− t− k
n− k

n∑
i=k+1

k∑
j=1

(
1{Xi≤Xj} −

1

2

)
− t− k
n− k

n− k
2

}

=−

{
t∑
i=1

n∑
j=t+1

(
1{Xi≤Xj} −

1

2

)
− n− t
n− k

k∑
i=1

n∑
j=k+1

(
1{Xi≤Xj} −

1

2

)}
.

We obtain for λ ∈ [τ1, τ2]

∫ 1

λ

bnrc∑
i=1

n∑
j=bnrc+1

(
1{Xi≤Xj} −

1

2

)
− n− bnrc
n− bnλc

bnλc∑
i=1

n∑
j=bnλc+1

(
1{Xi≤Xj} −

1

2

)2

dr

=

n−1∑
t=bnλc+1

∫ t+1
n

t
n

bnrc∑
i=1

n∑
j=bnrc+1

(
1{Xi≤Xj} −

1

2

)
− n− bnrc
n− bnλc

bnλc∑
i=1

n∑
j=bnλc+1

(
1{Xi≤Xj} −

1

2

)2

dr

+

∫ bnλc+1
n

λ

bnrc∑
i=1

n∑
j=bnrc+1

(
1{Xi≤Xj} −

1

2

)
− n− bnrc
n− bnλc

bnλc∑
i=1

n∑
j=bnλc+1

(
1{Xi≤Xj} −

1

2

)2

dr

almost surely, where

bnrc∑
i=1

n∑
j=bnrc+1

(
1{Xi≤Xj} −

1

2

)
− n− bnrc
n− bnλc

bnλc∑
i=1

n∑
j=bnλc+1

(
1{Xi≤Xj} −

1

2

)
= 0

if r ∈
[
λ, bnλc+1

n

)
. Therefore, the integral over that interval equals 0. For k = bnλc this implies

∫ 1

λ

bnrc∑
i=1

n∑
j=bnrc+1

(
1{Xi≤Xj} −

1

2

)
− n− bnrc
n− bnλc

bnλc∑
i=1

n∑
j=bnλc+1

(
1{Xi≤Xj} −

1

2

)2

dr

=
1

n

n−1∑
t=k+1

 t∑
i=1

n∑
j=t+1

(
1{Xi≤Xj} −

1

2

)
− n− t
n− k

k∑
i=1

n∑
j=k+1

(
1{Xi≤Xj} −

1

2

)2

=
1

n

n−1∑
t=k+1

S2
t (k + 1, n)

=
1

n

n∑
t=k+1

S2
t (k + 1, n).

Due to the previous considerations, the properly normalized denominator of Gn(k) can (almost surely)
be represented as follows

1

ndn

{
1

n

k∑
t=1

S2
t (1, k) +

1

n

n∑
t=k+1

S2
t (k + 1, n)

} 1
2
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=

{∫ λ

0

(
Wn(r)− cn(r)

cn(λ)
Wn(λ)

)2

dr +

∫ 1

λ

(
Wn(r)− 1− cn(r)

1− cn(λ)
Wn(λ)

)2

dr

} 1
2

,

where cn(λ) = bnλc
n for λ ∈ [0, 1]. All in all, this yields

Tn(τ1, τ2) = sup
λ∈[τ1,τ2]

|Wn(λ)|{∫ λ
0

(
Wn(r)− cn(r)

cn(λ)Wn(λ)
)2

dr +
∫ 1

λ

(
Wn(r)− 1−cn(r)

1−cn(λ)Wn(λ)
)2

dr

} 1
2

.

The foregoing characterization of the self-normalized Wilcoxon test statistic points out that a repre-
sentation of Tn(τ1, τ2) as a functional of the process

Wn(λ) =
1

ndn

bnλc∑
i=1

n∑
j=bnλc+1

(
1{Xi≤Xj} −

1

2

)
, 0 ≤ λ ≤ 1,

also depends on the function series (cn)n∈N in D [0, 1] defined by cn(λ) = bnλc
n , 0 ≤ λ ≤ 1. Since

sup
λ∈[0,1]

∣∣∣∣bnλcn − λ
∣∣∣∣ = sup

λ∈[0,1]

(
λ− bnλc

n

)
≤ sup
λ∈[0,1]

(
λ− nλ− 1

n

)
=

1

n
−→ 0,

the sequence cn, n ∈ N, converges with respect to the supremum norm to c ∈ D [0, 1] defined by c(λ) = λ
for λ ∈ [0, 1]. To simplify subsequent calculations, we treat cn and c as random variables with values in
the closure of

M =

{
f ∈ D [0, 1] | f(λ) =

bnλc
n

for some n ∈ N, n ≥ 1

τ1

}
.

Note that

hn =

(
cn
Wn

)
D−→
(

c
W ∗m

)
,

where

W ∗m(λ) = (Z(λ)− λZ(1))

∫
R
J(x)dF (x), 0 ≤ λ ≤ 1. (4)

Obviously, the self-normalized Wilcoxon test statistic can be represented as a functional of the random
vector hn. Hence, an application of the continuous mapping theorem just requires the definition of an
appropriate function G : M×D [0, 1] −→ R that maps hn on Tn(τ1, τ2) = G(hn). For λ ∈ [τ1, τ2] consider
the function Gλ : M ×D [0, 1] −→ R that maps an element h = (h1, h2) on

|h2(λ)|{∫ λ
0

(
h2(r)− h1(r)

h1(λ)h2(λ)
)2

dr +
∫ 1

λ

(
h2(r)− 1−h1(r)

1−h1(λ)h2(λ)
)2

dr

} 1
2

,

provided that the function F : M ×D [0, 1] −→ R defined by

F (h) = inf
λ∈[τ1,τ2]

{∫ λ

0

(
h2(r)− h1(r)

h1(λ)
h2(λ)

)2

dr +

∫ 1

λ

(
h2(r)− 1− h1(r)

1− h1(λ)
h2(λ)

)2

dr

} 1
2

does not equal 0 in h. Given that h ∈ F−1 ({0}), we set Gλ(h) = −1.
Since Tn(τ1, τ2) = supλ∈[τ1,τ2]Gλ(hn), we intend to apply the continuous mapping theorem to the

function G : M × D [0, 1] −→ R, where G(h) = supλ∈[τ1,τ2]Gλ(h). Thus, we have to verify that the
function G complies with the requirements of the continuous mapping theorem, i.e. we have to prove the
following assertions:

1) The function G is measurable with respect to the uniform product metric on M ×D [0, 1].

11



2) We have P (h ∈ DG) = 0, where DG denotes the set of discontinuities of G.

In order to show that G is measurable, we consider the restrictions of G to
(
M ×D [0, 1]

)
\ F−1({0})

and F−1({0}), respectively. Both restrictions are continuous with respect to the uniform metric. In
particular, both restrictions are Borel measurable. Since the restricted domains are Borel measurable
subsets of M ×D [0, 1], the measurability of the restrictions implies the measurability of G.

It remains to show that P (h ∈ DG) = 0. Again, consider the restriction of G to
(
M ×D [0, 1]

)
\

F−1({0}). Because of the continuity of the restriction, G is continuous at every h ∈
(
M ×D [0, 1]

)
\

F−1({0}) as F−1({0}) is a closed subset of M ×D [0, 1]. Therefore, DG is a subset of F−1({0}). Conse-
quently, it suffices to show that P (h ∈ F−1({0})) = 0 in order to prove that P (h ∈ DG) = 0.

The random vector h = (c,W ∗m) is an element of F−1({0}) if and only if the expression

inf
λ∈[τ1,τ2]

{∫ λ

0

(
f(r)− r

λ
f(λ)

)2

dr +

∫ 1

λ

(
f(r)− 1− r

1− λ
f(λ)

)2

dr

} 1
2

(5)

vanishes when f = W ∗m.
Note that

W ∗m(r)− r

λ
W ∗m(λ) =

∫
J(x)dF (x)

{
(Z(r)− rZ(1))− r

λ
(Z(λ)− λZ(1))

}
=

∫
J(x)dF (x)

{
Z(r)− r

λ
Z(λ)

}
(6)

and

W ∗m(r)− 1− r
1− λ

W ∗m(λ) =

∫
J(x)dF (x)

{
(Z(r)− rZ(1))− 1− r

1− λ
(Z(λ)− λZ(1))

}
=

∫
J(x)dF (x)

{
Z(r)− Z(λ)− r − λ

1− λ
(Z(1)− Z(λ))

}
. (7)

Therefore, and as Z ∈ C [0, 1] almost surely (see Maejima and Tudor (2007)), the term in formula (5)
vanishes if for some λ ∈ [τ1, τ2]{∫ λ

0

(Vm(r; 0, λ))
2
dr +

∫ 1

λ

(Vm(r;λ, 1))
2
dr

} 1
2

= 0,

where

Vm(r; r1, r2) = Z(r)− Z(r1)− r − r1

r2 − r1
(Z(r2)− Z(r1)) .

It suffices to show that the sample paths of W ∗m do not belong to the set of continuous functions f that
satisfy {∫ λ

0

(
f(r)− r

λ
f(λ)

)2

dr +

∫ 1

λ

(
f(r)− f(λ)− r − λ

1− λ
(f(1)− f(λ))

)2

dr

} 1
2

= 0 (8)

for some λ ∈ [τ1, τ2]. The above equation only holds if the integrands vanish almost surely on the
corresponding intervals. In particular, a continuous function f ∈ D [0, 1] that meets formula (8) satisfies

f(r) =
1

λ
f(λ)r

if r ∈ [0, λ] and

f(r) = f(λ) +
r − λ
1− λ

{f(1)− f(λ)}

= f(λ)− λ

1− λ
{f(1)− f(λ)}+

1

1− λ
{f(1)− f(λ)} r

12



if r ∈ [λ, 1]. Consequently, the set of continuous functions which lie in F−1({0}) corresponds to the class
of functions

A =
{
f ∈ D [0, 1] | for some λ ∈ [τ1, τ2] and a, b ∈ R

f(r) =
1

λ
ar on [0, λ] and

f(r) = a− λ

1− λ
{b− a}+

1

1− λ
{b− a} r on [λ, 1]

}
.

It follows that P (Z ∈ A) = 0 because the sample paths of the Hermite process Z are nowhere differentiable
with probability 1 (see Mikosch (1998)), whereas an element in A is differentiable almost everywhere.
This implies P (h ∈ DG) = 0.

Having verified the preconditions of the continuous mapping theorem we are now able to conclude that
the test statistic Tn(τ1, τ2) converges in distribution to

T (m, τ1, τ2) = sup
λ∈[τ1,τ2]

|W ∗m(λ)|{∫ λ
0

(
W ∗m(r)− r

λW
∗
m(λ)

)2
dr +

∫ 1

λ

(
W ∗m(r)− 1−r

1−λW
∗
m(λ)

)2

dr

} 1
2

.

Due to (6) and (7), the limit process T (m, τ1, τ2) equals

sup
λ∈[τ1,τ2]

|Z(λ)− λZ(1)|{∫ λ
0

(Vm(r; 0, λ))
2
dr +

∫ 1

λ
(Vm(r;λ, 1))

2
dr
} 1

2

.

Thus, we have established Theorem 1. �

In the proof of Theorem 2 we make use of preliminary results stated in Lemma 1, Lemma 2 and
Corollary 1. The line of argument that verifies Lemma 1 and Lemma 2 is a modification of the proof
that establishes Theorem 3.1 in Dehling, Rooch and Taqqu (2013b).

Lemma 1. Suppose that (ξi)i≥1 is a stationary, long-range dependent Gaussian process with mean 0,

variance 1 and LRD parameter 0 < D < 1
m , where m denotes the Hermite rank of the class of functions

1{G(ξi)≤x} − F (x), x ∈ R. Moreover, assume that (G(ξi))i≥1 has a continuous distribution function F
and that G : R −→ R is a measurable function. Then, if ∆ ∈ R,

1

n2

bnλc∑
i=1

n∑
j=bnτc+1

1{G(ξi)≤G(ξj)+∆}
P−→ λ(1− τ)

∫
R
F (x+ ∆)dF (x),

1

n2

bnτc∑
i=1

n∑
j=bnλc+1

1{G(ξi)≤G(ξj)+∆}
P−→ τ(1− λ)

∫
R
F (x+ ∆)dF (x)

for fixed τ , uniformly in λ ≤ τ and λ ≥ τ , respectively.

Proof of Lemma 1. We give a proof for the first assertion only as the convergence of the second term
follows by an analogous argumentation.

Let Fk and Fk+1,n denote the empirical distribution functions of the first k and last n− k realizations
of G(ξ1), . . . , G(ξn), i.e.

Fk(x) =
1

k

k∑
i=1

1{G(ξi)≤x},

Fk+1,n(x) =
1

n− k

n∑
i=k+1

1{G(ξi)≤x}.

For λ ≤ τ this yields the following representation:

bnλc∑
i=1

n∑
j=bnτc+1

1{G(ξi)≤G(ξj)+∆} = (n− bnτc) bnλc 1

n− bnτc

n∑
j=bnτc+1

Fbnλc(G(ξj) + ∆)
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= (n− bnτc) bnλc
∫
R
Fbnλc(x+ ∆)dFbnτc+1,n(x)

Since n−bnτc
n −→ 1 − τ , it suffices to show that bnλc

∫
R Fbnλc(x + ∆)dFbnτc+1,n(x) converges to

λ
∫
R F (x+ ∆)dF (x). For this purpose, we consider the inequality

sup
0≤λ≤τ

∣∣∣∣ 1nbnλc
∫
R
Fbnλc(x+ ∆)dFbnτc+1,n(x)− λ

∫
R
F (x+ ∆)dF (x)

∣∣∣∣ (9)

≤ sup
0≤λ≤τ

∣∣∣∣ 1n
∫
R
bnλcFbnλc(x+ ∆)dFbnτc+1,n(x)− bnλc

n

∫
R
F (x+ ∆)dFbnτc+1,n(x)

∣∣∣∣
+ sup

0≤λ≤τ

∣∣∣∣bnλcn
∫
R
F (x+ ∆)dFbnτc+1,n(x)− λ

∫
R
F (x+ ∆)dFbnτc+1,n(x)

∣∣∣∣
+ sup

0≤λ≤τ

∣∣∣∣λ ∫
R
F (x+ ∆)dFbnτc+1,n(x)− λ

∫
R
F (x+ ∆)dF (x)

∣∣∣∣
and we will show that each of the three terms on its right-hand side converges to 0.

For the third summand we get

sup
0≤λ≤τ

∣∣∣∣λ ∫
R
F (x+ ∆)dFbnτc+1,n(x)− λ

∫
R
F (x+ ∆)dF (x)

∣∣∣∣
= sup

0≤λ≤τ

∣∣∣∣λ(1−
∫
R
Fbnτc+1,n(x)dF (x+ ∆)−

(
1−

∫
R
F (x)dF (x+ ∆)

))∣∣∣∣
= τ

∣∣∣∣∫
R

(
Fbnτc+1,n(x)− F (x)

)
dF (x+ ∆)

∣∣∣∣
≤ τ sup

x∈R

∣∣Fbnτc+1,n(x)− F (x)
∣∣

as a consequence of integration by parts. Furthermore, we have

sup
x∈R
|Fn(x)− F (x)| −→ 0 a.s.

by an application of the Glivenko-Cantelli theorem (see Krengel and Brunel (1985)) to the stationary
and ergodic process (G(ξi))i≥1. So as to deduce an analogous result for Fbnτc+1,n we rewrite

Fbnτc+1,n(x) =
n

n− bnτc
Fn(x)− bnτc

n− bnτc
Fbnτc(x)

and we may therefore conclude∣∣Fbnτc+1,n(x)− F (x)
∣∣ ≤ ∣∣∣∣ n

n− bnτc

∣∣∣∣ |Fn(x)− F (x)|+
∣∣∣∣ bnτcn− bnτc

∣∣∣∣ ∣∣Fbnτc(x)− F (x)
∣∣ .

Thus,

sup
x∈R

∣∣Fbnτc+1,n(x)− F (x)
∣∣ −→ 0 a.s. (10)

which implies that the third term on the right-hand side of (9) converges to 0 almost surely.
Regarding the second term on the right-hand side of (9), we obtain

sup
0≤λ≤τ

∣∣∣∣bnλcn
∫
R
F (x+ ∆)dFbnτc+1,n(x)− λ

∫
R
F (x+ ∆)dFbnτc+1,n(x)

∣∣∣∣
= sup

0≤λ≤τ

∣∣∣∣bnλcn − λ
∣∣∣∣ ∣∣∣∣∫

R
F (x+ ∆)dFbnτc+1,n(x)

∣∣∣∣ .
The right-hand side of this equation converges to 0 since

∣∣∫
R F (x+ ∆)dFbnτc+1,n(x)

∣∣ is bounded by 1,
and as

sup
0≤λ≤τ

∣∣∣∣bnλcn − λ
∣∣∣∣ −→ 0.
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In order to show that the first term in (9) converges to 0 as well, we consider the following inequality:

sup
0≤λ≤τ

∣∣∣∣ 1n
∫
R
bnλcFbnλc(x+ ∆)dFbnτc+1,n(x)− bnλc

n

∫
R
F (x+ ∆)dFbnτc+1,n(x)

∣∣∣∣ (11)

= sup
0≤λ≤τ

∣∣∣∣ 1n
∫
R
bnλc

(
Fbnλc(x+ ∆)− F (x+ ∆)

)
dFbnτc+1,n(x)

∣∣∣∣
≤ sup

0≤λ≤τ

∣∣∣∣dnn
∫
R
d−1
n bnλc

(
Fbnλc(x+ ∆)− F (x+ ∆)

)
− J(x+ ∆)Z(λ)dFbnτc+1,n(x)

∣∣∣∣
+ sup

0≤λ≤τ

∣∣∣∣dnn Z(λ)

∫
R
J(x+ ∆)dFbnτc+1,n(x)

∣∣∣∣
In what follows, we will prove that both terms on the right-hand side of (11) converge to 0. For this

purpose, we make use of the empirical process non-central limit theorem of Dehling and Taqqu (1989)
which states that (

d−1
n bnλc(Fbnλc(x)− F (x))

)
x∈[−∞,∞],λ∈[0,1]

D−→ J(x)Z(λ),

where “
D−→” denotes convergence in distribution with respect to the σ-field generated by the open balls

in D ([−∞,∞]× [0, 1]), equipped with the supremum norm.
Due to the Dudley-Wichura version of Skorohod’s representation theorem (see Shorack and Wellner

(1986), Theorem 2.3.4), we may assume without loss of generality that

sup
λ,x

∣∣d−1
n bnλc

(
Fbnλc(x)− F (x)

)
− J(x)Z(λ)

∣∣ −→ 0

almost surely; see Dehling, Rooch and Taqqu (2013a). As a consequence, the first summand in (11)
converges to 0 since

sup
0≤λ≤τ

∣∣∣∣dnn
∫
R
d−1
n bnλc

(
Fbnλc(x+ ∆)− F (x+ ∆)

)
− J(x+ ∆)Z(λ)dFbnτc+1,n(x)

∣∣∣∣
=
dn
n

sup
0≤λ≤τ,x

∣∣d−1
n bnλc

(
Fbnλc(x+ ∆)− F (x+ ∆)

)
− J(x+ ∆)Z(λ)

∣∣
and as dn

n converges to 0 as well.
For the second summand we get the following inequality:

sup
0≤λ≤τ

∣∣∣∣dnn Z(λ)

∫
R
J(x+ ∆)dFbnτc+1,n(x)

∣∣∣∣ ≤ dn
n

sup
0≤λ≤τ

|Z(λ)|
∣∣∣∣∫

R
J(x+ ∆)dFbnτc+1,n(x)

∣∣∣∣
Note that

J(x) =

∫
R

1{G(y)≤x}Hm(y)ϕ(y)dy

=

∫
R
Hm(y)ϕ(y)dy −

∫
R

1{x≤G(y)}Hm(y)ϕ(y)dy

= −
∫
R

1{x≤G(y)}Hm(y)ϕ(y)dy,

where ϕ denotes the standard normal density function, since∫
R
Hm(y)ϕ(y)dy = 0.

For this reason, we have∫
R
J(x+ ∆)dFbnτc+1,n(x) = −

∫
R

∫
R

1{x+∆≤G(y)}Hm(y)ϕ(y)dydFbnτc+1,n(x)

= −
∫
R

∫
R

1{x+∆≤G(y)}dFbnτc+1,n(x)Hm(y)ϕ(y)dy
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= −
∫
R
Fbnτc+1,n(G(y)−∆)Hm(y)ϕ(y)dy

and ∫
R
J(x+ ∆)dF (x) = −

∫
R

∫
R

1{x+∆≤G(y)}Hm(y)ϕ(y)dydF (x)

= −
∫
R

∫
R

1{x+∆≤G(y)}dF (x)Hm(y)ϕ(y)dy

= −
∫
R
F (G(y)−∆)Hm(y)ϕ(y)dy.

Regarding the difference of these terms, we obtain∣∣∣∣∫
R
J(x+ ∆)dFbnτc+1,n(x)−

∫
R
J(x+ ∆)dF (x)

∣∣∣∣
=

∣∣∣∣∫
R

(
F (G(y)−∆)− Fbnτc+1,n(G(y)−∆)

)
Hm(y)ϕ(y)dy

∣∣∣∣
≤
∫
R

∣∣F (G(y)−∆)− Fbnτc+1,n(G(y)−∆)
∣∣ |Hm(y)|ϕ(y)dy

≤ sup
y∈R

∣∣F (G(y)−∆)− Fbnτc+1,n(G(y)−∆)
∣∣ ∫

R
|Hm(y)|ϕ(y)dy,

where
∫
R |Hm(y)|ϕ(y)dy <∞ because of Hölder’s inequality and where

sup
y∈R

∣∣F (G(y)−∆)− Fbnτc+1,n(G(y)−∆)
∣∣ −→ 0 a.s.

by (10). As a result,
∫
R J(x + ∆)dFbnτc+1,n(x)

D−→
∫
R J(x + ∆)dF (x), so that in the end the second

summand in (11) converges to 0 almost surely, too.
All in all, the third term on the right-hand side of (9) converges to 0 almost surely as it is dominated

by the sum of two expressions which both converge to 0 with probability 1. This completes the proof of
the first assertion in Lemma 1. �

Corollary 1. Suppose that (ξi)i≥1 is a stationary, long-range dependent Gaussian process with mean 0,

variance 1 and LRD parameter 0 < D < 1
m , where m denotes the Hermite rank of the class of functions

1{G(ξi)≤x} − F (x), x ∈ R. Moreover, assume that (G(ξi))i≥1 has a continuous distribution function F
and that G : R −→ R is a measurable function. Then

1

n2

bnτc∑
i=1

n∑
j=bnτc+1

1{G(ξi)≤G(ξj)+∆}
P−→ τ(1− τ)

∫
R
F (x+ ∆)dF (x)

for fixed τ .

Proof of Corollary 1. Consider the function G : D [0, τ ] −→ R, f 7→ f(τ). As G is continuous with
respect to the supremum norm on D [0, τ ], Corollary 1 follows from Lemma 1 and the continuous mapping
theorem �

Lemma 2. Suppose that (ξi)i≥1 is a stationary, long-range dependent Gaussian process with mean 0,

variance 1 and LRD parameter 0 < D < 1
m , where m denotes the Hermite rank of the class of functions

1{G(ξi)≤x} − F (x), x ∈ R. Moreover, assume that (G(ξi))i≥1 has a continuous distribution function F
and that G : R −→ R is a measurable function. Then

1

n2

bnτc∑
i=1

bnλc∑
j=bnτc+1

1{G(ξi)≤G(ξj)+∆}
P−→ τ(λ− τ)

∫
R
F (x+ ∆)dF (x)

for fixed τ , uniformly in λ ≥ τ .
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Proof of Lemma 2. Let Fk+1,t denote the empirical distribution function of G(ξk+1), . . . , G(ξt), i.e.

Fk+1,t(x) =
1

t− k

t∑
i=k+1

1{G(ξi)≤x}.

We may therefore rewrite

bnτc∑
i=1

bnλc∑
j=bnτc+1

1{G(ξi)≤G(ξj)+∆} = (bnλc − bnτc) bnτc 1

(bnλc − bnτc)

bnλc∑
j=bnτc+1

Fbnτc(G(ξj) + ∆)

= (bnλc − bnτc) bnτc
∫
R
Fbnτc(x+ ∆)dFbnτc+1,bnλc(x).

Furthermore, repeated application of the triangle inequality yields

sup
τ≤λ≤1

∣∣∣∣ 1n (bnλc − bnτc)
∫
R
Fbnτc(x+ ∆)dFbnτc+1,bnλc(x)− (λ− τ)

∫
R
F (x+ ∆)dF (x)

∣∣∣∣ (12)

≤ sup
τ≤λ≤1

∣∣∣∣ 1n (bnλc − bnτc)
∫
R

(
Fbnτc(x+ ∆)− F (x+ ∆)

)
dFbnτc+1,bnλc(x)

∣∣∣∣
+ sup
τ≤λ≤1

∣∣∣∣ 1n (bnλc − bnτc)
∫
R
F (x+ ∆)dFbnτc+1,bnλc(x)− 1

n
(bnλc − bnτc)

∫
R
F (x+ ∆)dF (x)

∣∣∣∣
+ sup
τ≤λ≤1

∣∣∣∣ 1n (bnλc − bnτc)
∫
R
F (x+ ∆)dF (x)− (λ− τ)

∫
R
F (x+ ∆)dF (x)

∣∣∣∣ .
In order to prove that the stochastic process considered in Lemma 2 converges to the given limit process,

it is sufficient to show that the expressions on the right-hand side of the above inequality converge to 0.
We consider each of the three summands separately.

Apparently, the third term converges to 0 since

sup
τ≤λ≤1

∣∣∣∣ 1n (bnλc − bnτc)
∫
R
F (x+ ∆)dF (x)− (λ− τ)

∫
R
F (x+ ∆)dF (x)

∣∣∣∣
= sup
τ≤λ≤1

∣∣∣∣ 1n (bnλc − bnτc)− (λ− τ)

∣∣∣∣ ∫
R
F (x+ ∆)dF (x)

and as supτ≤λ≤1

∣∣ 1
n (bnλc − bnτc)− (λ− τ)

∣∣ −→ 0.
We have

sup
τ≤λ≤1

∣∣∣∣ 1n (bnλc − bnτc)
∫
R

(
Fbnτc(x+ ∆)− F (x+ ∆)

)
dFbnτc+1,bnλc(x)

∣∣∣∣
≤ sup

x∈R

∣∣Fbnτc(x+ ∆)− F (x+ ∆)
∣∣ sup
τ≤λ≤1

∣∣∣∣ 1n (bnλc − bnτc)
∣∣∣∣

for the first summand. As supx∈R
∣∣Fbnτc(x+ ∆)− F (x+ ∆)

∣∣ converges to 0 almost surely by the
Glivenko-Cantelli theorem, so does the right-hand side of the above inequality.

Finally, consider the second term on the right-hand side of (12). We have

sup
τ≤λ≤1

∣∣∣∣ 1n (bnλc − bnτc)
∫
R
F (x+ ∆)dFbnτc+1,bnλc(x)− 1

n
(bnλc − bnτc)

∫
R
F (x+ ∆)dF (x)

∣∣∣∣
= sup
τ≤λ≤1

∣∣∣∣ 1n (bnλc − bnτc)
∫
R
F (x+ ∆)d

(
Fbnτc+1,bnλc − F

)
(x)

∣∣∣∣
= sup
τ≤λ≤1

∣∣∣∣ 1n (bnλc − bnτc)
∫
R

(
Fbnτc+1,bnλc(x)− F (x)

)
dF (x+ ∆)

∣∣∣∣
=
dn
n

sup
τ≤λ≤1

∣∣∣∣∫
R
d−1
n (bnλc − bnτc)

(
Fbnτc+1,bnλc(x)− F (x)

)
− J(x) (Z(λ)− Z(τ)) dF (x+ ∆)

∣∣∣∣
+ sup
τ≤λ≤1

∣∣∣∣dnn (Z(λ)− Z(τ))

∫
R
J(x)dF (x+ ∆)

∣∣∣∣
17



≤ dn
n

sup
τ≤λ≤1,x∈R

∣∣d−1
n (bnλc − bnτc)

(
Fbnτc+1,bnλc(x)− F (x)

)
− J(x) (Z(λ)− Z(τ))

∣∣
+
dn
n

sup
τ≤λ≤1

|Z(λ)− Z(τ)|
∣∣∣∣∫

R
J(x)dF (x+ ∆)

∣∣∣∣ .
It follows from integration by parts that∫

R
F (x+ ∆)dFbnτc+1,bnλc(x)−

∫
R
F (x+ ∆)dF (x)

=

∫
R
F (x)dF (x+ ∆)−

∫
R
Fbnτc+1,bnλc(x)dF (x+ ∆).

Furthermore,

(bnλc − bnτc)
(
Fbnτc+1,bnλc(x)− F (x)

)
=

bnλc∑
i=bnτc+1

1{G(ξi)≤x} − (bnλc − bnτc)F (x)

= bnλcFbnλc(x)− bnτcFbnτc(x)− bnλcF (x) + bnτcF (x)

= bnλc
(
Fbnλc(x)− F (x)

)
− bnτc

(
Fbnτc(x)− F (x)

)
.

As a result,

sup
τ≤λ≤1,x∈R

∣∣d−1
n (bnλc − bnτc)

(
Fbnτc+1,bnλc(x)− F (x)

)
− J(x) (Z(λ)− Z(τ))

∣∣
= sup
τ≤λ≤1,x∈R

∣∣d−1
n

(
bnλc

(
Fbnλc(x)− F (x)

)
− bnτc

(
Fbnτc(x)− F (x)

))
− J(x) (Z(λ)− Z(τ))

∣∣
≤ sup
τ≤λ≤1,x∈R

∣∣d−1
n bnλc

(
Fbnλc(x)− F (x)

)
− J(x)Z(λ)

∣∣
+ sup
τ≤λ≤1,x∈R

∣∣d−1
n bnτc

(
Fbnτc(x)− F (x)

)
− J(x)Z(τ)

∣∣ .
Again, we may assume without loss of generality that

sup
λ,x

∣∣d−1
n bnλc

(
Fbnλc(x)− F (x)

)
− J(x)Z(λ)

∣∣ −→ 0

almost surely, as pointed out in the proof of Lemma 1. Since dn
n −→ 0 by definition of dn, we may

conclude that the third summand on the right hand side of (12) converges to 0, too. This completes the
proof of Lemma 2. �

Proof of Theorem 2. We have

Tn(τ1, τ2) = sup
k∈[bnτ1c,bnτ2c]

Gn(k)

≥ Gn(k∗),

where

Gn(k∗) =

∣∣∣∣∣ k
∗∑

i=1

n∑
j=k∗+1

(
1{Xi≤Xj} − 1

2

)∣∣∣∣∣{
1
n

k∗∑
t=1

S2
t (1, k∗) + 1

n

n∑
t=k∗+1

S2
t (k∗ + 1, n)

} 1
2

and where k∗ = bnτc denotes the location of the change-point. Thus, it suffices to show that Gn(k∗)
P−→

∞. For this purpose, we rewrite

Gn(k∗) =

1
n2

∣∣∣∣∣ k
∗∑

i=1

n∑
j=k∗+1

(
1{Xi≤Xj} − 1

2

)∣∣∣∣∣
1
n2

{
1
n

k∗∑
t=1

S2
t (1, k∗) + 1

n

n∑
t=k∗+1

S2
t (k∗ + 1, n)

} 1
2

.
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We will prove that the numerator of Gn(k∗) converges to a positive constant, whereas the denominator
tends to 0 in order to show divergence to ∞.

First, we turn to the denominator, which equals

1

n2

{∫ τ

0

S2
bnrc(1, k

∗)dr +

∫ 1

τ

S2
bnrc(k

∗ + 1, n)dr

} 1
2

.

Note that for i ≤ k∗

n∑
j=1

1{Xi≤Xj} =

k∗∑
j=1

1{µ+G(ξi)≤µ+G(ξj)} +

n∑
j=k∗+1

1{µ+G(ξi)≤µ+G(ξj)+∆}

=

n∑
j=1

1{G(ξi)≤G(ξj)} +

n∑
j=k∗+1

1{G(ξj)<G(ξi)≤G(ξj)+∆}.

Therefore,

St(1, k
∗) = −

t∑
h=1

 n∑
j=1

1{Xh≤Xj} −
1

k∗

k∗∑
i=1

n∑
j=1

1{Xi≤Xj}


= −

t∑
h=1

 n∑
j=1

1{G(ξh)≤G(ξj)} −
1

k∗

k∗∑
i=1

n∑
j=1

1{G(ξi)≤G(ξj)}


−

t∑
h=1

 n∑
j=k∗+1

1{G(ξj)<G(ξh)≤G(ξj)+∆} −
1

k∗

k∗∑
i=1

n∑
j=k∗+1

1{G(ξj)<G(ξi)≤G(ξj)+∆}

 .

We treat the expression St(1, k
∗) as sum of the following terms

Ŝt(1, k
∗) = −

t∑
h=1

 n∑
j=1

1{G(ξh)≤G(ξj)} −
1

k∗

k∗∑
i=1

n∑
j=1

1{G(ξi)≤G(ξj)}

 ,

S̃t(1, k
∗) = −

t∑
h=1

 n∑
j=k∗+1

1{G(ξj)<G(ξh)≤G(ξj)+∆} −
1

k∗

k∗∑
i=1

n∑
j=k∗+1

1{G(ξj)<G(ξi)≤G(ξj)+∆}

 .

For the first summand we get

Ŝt(1, k
∗) = −

t∑
h=1

 n∑
j=1

1{G(ξh)≤G(ξj)} −
1

k∗

k∗∑
i=1

n∑
j=1

1{G(ξi)≤G(ξj)}


= −

t∑
i=1

t∑
j=1

1{G(ξi)≤G(ξj)} −
t∑
i=1

n∑
j=t+1

1{G(ξi)≤G(ξj)}

+
t

k∗

k∗∑
i=1

k∗∑
j=1

1{G(ξi)≤G(ξj)} +
t

k∗

k∗∑
i=1

n∑
j=k∗+1

1{G(ξi)≤G(ξj)}

= − t(t+ 1)

2
−

t∑
i=1

n∑
j=t+1

1{G(ξi)≤G(ξj)} +
t

k∗
k∗(k∗ + 1)

2
+

t

k∗

k∗∑
i=1

n∑
j=k∗+1

1{G(ξi)≤G(ξj)}

= − t
2

2
−

t∑
i=1

n∑
j=t+1

1{G(ξi)≤G(ξj)} +
tk∗

2
+

t

k∗

k∗∑
i=1

n∑
j=k∗+1

1{G(ξi)≤G(ξj)}.

We have

1

n2

bnλc∑
i=1

n∑
j=bnλc+1

1{G(ξi)≤G(ξj)}
P−→ λ(1− λ)

2
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uniformly in λ because

1

ndn

bnλc∑
i=1

n∑
j=bnλc+1

(
1{G(ξi)≤G(ξj)} −

1

2

)
D−→ (Z(λ)− λZ(1))

∫
R
J(x)dF (x)

uniformly in λ by Theorem 1.1 in Dehling, Rooch and Taqqu (2013a) and as dn
n −→ 0. We may conclude

from this and Corollary 1 that 1
n2 Ŝbnλc(1, bk∗c)

P−→ 0 uniformly in λ ≤ τ .
Because of

1{G(ξj)<G(ξi)≤G(ξj)+∆} = 1{G(ξi)≤G(ξj)+∆} − 1{G(ξi)≤G(ξj)},

the second summand can be written as

S̃t(1, k
∗) = −

t∑
h=1

 n∑
j=k∗+1

1{G(ξj)<G(ξh)≤G(ξj)+∆} −
1

k∗

k∗∑
i=1

n∑
j=k∗+1

1{G(ξj)<G(ξi)≤G(ξj)+∆}


= −

t∑
i=1

n∑
j=k∗+1

1{G(ξi)≤G(ξj)+∆} +
t

k∗

k∗∑
i=1

n∑
j=k∗+1

1{G(ξi)≤G(ξj)+∆}

+

t∑
i=1

n∑
j=k∗+1

1{G(ξi)≤G(ξj)} −
t

k∗

k∗∑
i=1

n∑
j=k∗+1

1{G(ξi)≤G(ξj)}.

Due to Lemma 1 and Corollary 1, 1
n2 S̃bnλc(1, k

∗) converges in probability to 0, as well.
All in all, the previous considerations yield∫ τ

0

{
1

n2
Sbnrc(1, k

∗)

}2

dr
P−→ 0

as G : D [0, τ ] −→ R, f 7→
∫ τ

0
(f(s))

2
ds, is continuous with respect to the supremum norm on D [0, τ ].

In analogy to the previous argumentation it can be shown that∫ 1

τ

{
1

n2
Sbnrc(k

∗ + 1, n)

}2

dr
P−→ 0.

For this purpose, note that, if i > k∗,

n∑
j=1

1{Xi≤Xj} =

k∗∑
j=1

1{µ+G(ξi)+∆≤µ+G(ξj)} +

n∑
j=k∗+1

1{µ+G(ξi)+∆≤µ+G(ξj)+∆}

=

n∑
j=1

1{G(ξi)≤G(ξj)} −
k∗∑
j=1

1{G(ξi)≤G(ξj)<G(ξi)+∆}.

Therefore,

St(k
∗ + 1, n) = −

t∑
h=k∗+1

 n∑
j=1

1{Xh≤Xj} −
1

n− k∗
n∑

i=k∗+1

n∑
j=1

1{Xi≤Xj}


= −

t∑
h=k∗+1

 n∑
j=1

1{G(ξh)≤G(ξj)} −
1

n− k∗
n∑

i=k∗+1

n∑
j=1

1{G(ξi)≤G(ξj)}


+

t∑
h=k∗+1

 k∗∑
j=1

1{G(ξh)≤G(ξj)<G(ξh)+∆} −
1

n− k∗
n∑

i=k∗+1

k∗∑
j=1

1{G(ξi)≤G(ξj)<G(ξi)+∆}

 .

Hence, we consider St(k
∗ + 1, n) as sum of the expressions below

Ŝt(k
∗ + 1, n) = −

t∑
h=k∗+1

 n∑
j=1

1{G(ξh)≤G(ξj)} −
1

n− k∗
n∑

i=k∗+1

n∑
j=1

1{G(ξi)≤G(ξj)}

 ,
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S̃t(k
∗ + 1, n) =

t∑
h=k∗+1

 k∗∑
j=1

1{G(ξh)≤G(ξj)<G(ξh)+∆} −
1

n− k∗
n∑

i=k∗+1

k∗∑
j=1

1{G(ξi)≤G(ξj)<G(ξi)+∆}

 .

The following representation arises from rather simple transformations

Ŝt(k
∗ + 1, n) = −

t∑
h=k∗+1

 n∑
j=1

1{G(ξh)≤G(ξj)} −
1

n− k∗
n∑

i=k∗+1

n∑
j=1

1{G(ξi)≤G(ξj)}


= −

t∑
i=1

n∑
j=t+1

1{G(ξi)≤G(ξj)} −
t∑
i=1

t∑
j=1

1{G(ξi)≤G(ξj)}

+

k∗∑
i=1

n∑
j=k∗+1

1{G(ξi)≤G(ξj)} +

k∗∑
i=1

k∗∑
j=1

1{G(ξi)≤G(ξj)}

+
t− k∗

n− k∗
n∑

i=k∗+1

k∗∑
j=1

1{G(ξi)≤G(ξj)} +
t− k∗

n− k∗
n∑

i=k∗+1

n∑
j=k∗+1

1{G(ξi)≤G(ξj)}

= −
t∑
i=1

n∑
j=t+1

1{G(ξi)≤G(ξj)} −
t(t+ 1)

2
+

k∗∑
i=1

n∑
j=k∗+1

1{G(ξi)≤G(ξj)} +
k∗(k∗ + 1)

2

+
t− k∗

n− k∗
n∑

i=k∗+1

k∗∑
j=1

(
1− 1{G(ξj)≤G(ξi)}

)
+
t− k∗

n− k∗
(n− k∗)(n− k∗ + 1)

2

= −
t∑
i=1

n∑
j=t+1

1{G(ξi)≤G(ξj)} −
t(t+ 1)

2
+

k∗∑
i=1

n∑
j=k∗+1

1{G(ξi)≤G(ξj)} +
k∗(k∗ + 1)

2

+ (t− k∗)k∗ − t− k∗

n− k∗
k∗∑
j=1

n∑
i=k∗+1

1{G(ξj)≤G(ξi)} +
(t− k∗)(n− k∗ + 1)

2
.

Based on Lemma 1 and Corollary 1, the argumentation that also established 1
n2 Ŝbnλc(1, k

∗)
P−→ 0 yields

1
n2 Ŝbnλc(k

∗ + 1, n)
P−→ 0 uniformly in λ ≥ τ .

Likewise, it can be shown that 1
n2 S̃bnλc(k

∗ + 1, n)
P−→ 0. First of all, we note that

1{G(ξi)≤G(ξj)<G(ξi)+∆} = 1{G(ξj)≤G(ξi)+∆} − 1{G(ξj)≤G(ξi)}

almost surely if i 6= j. Thereby,

S̃t(k
∗ + 1, n) =

t∑
h=k∗+1

 k∗∑
j=1

1{G(ξh)≤G(ξj)<G(ξh)+∆} −
1

n− k∗
n∑

i=k∗+1

k∗∑
j=1

1{G(ξi)≤G(ξj)<G(ξi)+∆}


=

k∗∑
j=1

t∑
i=k∗+1

1{G(ξj)≤G(ξi)+∆} −
t− k∗

n− k∗
k∗∑
j=1

n∑
i=k∗+1

1{G(ξj)≤G(ξi)+∆}

−
k∗∑
j=1

t∑
i=k∗+1

1{G(ξj)≤G(ξi)} +
t− k∗

n− k∗
k∗∑
j=1

n∑
i=k∗+1

1{G(ξj)≤G(ξi)}.

As a result, we have 1
n2 S̃bnλc(k

∗ + 1, n)
P−→ 0 by Lemma 2 and Corollary 1.

As both terms, 1
n2 Ŝbnλc(k

∗+ 1, n) as well as 1
n2 S̃bnλc(k

∗+ 1, n), converge in probability to 0 uniformly
in λ ≥ τ , it follows that ∫ 1

τ

{
1

n2
Sbnrc(k

∗ + 1, n)

}2

dr
P−→ 0.

On the basis of the previous considerations we may conclude that the denominator of Gn(k∗) converges
in probability to 0.

21



In order to prove the consistency of the self-normalized Wilcoxon change-point test, it therefore remains
to show that the numerator of Gn(k∗), given by

1

n2

∣∣∣∣∣∣
k∗∑
i=1

n∑
j=k∗+1

(
1{Xi≤Xj} −

1

2

)∣∣∣∣∣∣ ,
converges to a non-negative constant.

We have

1

n2

∣∣∣∣∣∣
k∗∑
i=1

n∑
j=k∗+1

(
1{Xi≤Xj} −

1

2

)∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1

n2

k∗∑
i=1

n∑
j=k∗+1

1{G(ξi)≤G(ξj)+∆} −
1

n2

k∗(n− k∗)
2

∣∣∣∣∣∣ .
Therefore,

1

n2

∣∣∣∣∣∣
k∗∑
i=1

n∑
j=k∗+1

(
1{Xi≤Xj} −

1

2

)∣∣∣∣∣∣ P−→ τ(1− τ)

∫
R

(F (x+ ∆)− F (x)) dF (x) (13)

by Corollary 1 and since 1
n2

k∗(n−k∗)
2 −→ τ(1−τ)

2 . As the limit in (13) does not vanish, Gn(k∗) diverges
to ∞ and we thus have proved Theorem 2. �

Proof of Theorem 3. Note that because of the corresponding sample path properties of the stochastic
process Z, the sample paths of

W ∗m,τ (λ) = (Z(λ)− λZ(1))

∫
R
J(x)dF (x) + cδτ (λ)

∫
R
f2(x)dx, 0 ≤ λ ≤ 1,

are almost surely continuous and nowhere differentiable.
The same argument as in the proof of Theorem 1 shows that Tn(τ1, τ2) converges in distribution to

sup
λ∈[τ1,τ2]

∣∣W ∗m,τ (λ)
∣∣{∫ λ

0

(
W ∗m,τ (r)− r

λW
∗
m,τ (λ)

)2
dr +

∫ 1

λ

(
W ∗m,τ (r)− 1−r

1−λW
∗
m,τ (λ)

)2

dr

} 1
2

.

The numerator of the limit process equals∣∣∣∣∫
R
J(x)dF (x) (Z(λ)− λZ(1)) + cδτ (λ)

∫
R
f2(x)dx

∣∣∣∣ .
Moreover, for the quantities in the denominator it holds that

W ∗m,τ (r)− r

λ
W ∗m,τ (λ) = (Z(r)− rZ(1))

∫
R
J(x)dF (x) + cδτ (r)

∫
R
f2(x)dx

− r

λ

(
(Z(λ)− λZ(1))

∫
R
J(x)dF (x) + cδτ (λ)

∫
R
f2(x)dx

)
=

∫
R
J(x)dF (x)

(
Z(λ)− r

λ
Z(λ)

)
+ c

∫
R
f2(x)dx

(
δτ (r)− r

λ
δτ (λ)

)
and

W ∗m,τ (r)− 1− r
1− λ

W ∗m,τ (λ) = (Z(r)− rZ(1))

∫
R
J(x)dF (x) + cδτ (r)

∫
R
f2(x)dx

− 1− r
1− λ

{
(Z(λ)− λZ(1))

∫
R
J(x)dF (x) + cδτ (λ)

∫
R
f2(x)dx

}
=

∫
R
J(x)dF (x)

{
Z(r)− rZ(1)− 1− r

1− λ
(Z(λ)− λZ(1))

}
+ c

∫
R
f2(x)dx

(
δτ (r)− 1− r

1− λ
δτ (λ)

)
.

�
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