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1

Introduction

In this chapter, we present the motivation of the thesis by a general introduction about the least-
squares finite element method. In addition, we summarize the contents of the following chapters.

1.1. Introduction and Motivation

Least-squares variational principles have been recognized as a new tool to solve elliptic partial
differential equations [6, 52, 55]. Least-squares finite element methods (LSFEM) can be viewed
as an attempt at retaining the advantages of the Rayleigh-Ritz setting. A Rayleigh-Ritz approxi-
mation is defined by minimizing the functional over a family of finite-dimensional subspaces. An
FEM results when these spaces consist of piecewise polynomial functions defined with respect to
a family of grids. When applied to problems such as linear elasticity or the Poisson equation, the
Rayleigh-Ritz setting gives rise to FEMs with several advantageous features that led to their great
success and popularity [55]:

1. general regions and boundary conditions are relatively easy to treat in a systematic manner

2. the conformity of the finite element spaces suffices to guarantee the stability and optimal
accuracy of the approximate solutions

3. all variables can be approximated using a single type of finite element space, e.g., the same
degree piecewise polynomials defined with respect to a same grid

4. the resulting linear systems are a) sparse; b) symmetric; c) positive definite.

LSFEMs possess two additional advantageous features that other FEMs, even in the Rayleigh-
Ritz setting, do not possess. First, least-squares functionals provide an easily computable residual
error indicator that can be used for adapting grids. Second, the treatment of general boundary
conditions, including non-homogeneous ones, is greatly facilitated because boundary condition
residuals can be incorporated into the least-square functional [55]. These properties can yield the
following notable computational advantages and simplifications when properly accounted for in
the algorithmic design of least-squares finite element methods [6]:

1. finite element spaces of equal interpolation order, defined with respect to the same triangu-
lation, can be used for all unknowns;

2. algebraic problems can be solved using standard and robust iterative methods, such as con-
jugate gradient methods.

These benefits hold even for problems like the Navier-Stokes (NS) equations, which yield a saddle-
point problem and indefinite linear systems for mixed finite element methods [71]. Besides the
above advantages, any LSFEM must also meet additional practicality criteria [55]:

1



2 Introduction

1. bases for conforming subspaces are easily constructed

2. linear systems are easily assembled

3. linear systems are relatively well conditioned.

Unfortunately, naively defined LSFEMs often fail to meet one or more of the practicality criteria.
A standard framework (known as the L2 least-squares FEM) for achieving practical finite element
methods should adhere to the following guidelines:

1. Write the system in first-order form

2. Define L2-norm least-squares functionals

3. Discretize with C0 finite elements.

The L2 LSFEM not only recovers all the good properties of the Rayleigh Ritz setting, but also
satisfies all three practicality criteria. We can choose standard finite element spaces for which
bases are easily constructed. Furthermore, since the functional only involves L2 inner products,
the assembly of the matrix system is accomplished in a standard manner. Finally, it can be shown
that the condition number of the matrix system is O(h−2).

Owing to its computational advantages, the LSFEM has been extensively used for the nu-
merical solution of a wide range of partial differential equations (PDE), see [6, 33, 52, 55]. One
important class of the problems which are studied by many investigators is the general transport
equations of heat transfer and fluid flow [52]. Different first-order formulations as well as differ-
ent stabilization techniques have been introduced and analyzed generally in the book by Bochev
and Gunzburger [52] and specifically by other investigators in [1, 2, 15, 26, 38, 60, 65, 78, 79].
Although many theoretical analysis and error estimates have been developed for this class of
problems, the investigation of the pros and cons of the proposed LSFEMs deserves a systematic
computational study. We systematically split the general transport equations into three important
sub-equations, namely the Poisson equation, the diffusion-reaction equation and the advection-
diffusion equation. We analyze different first-order systems for each of the sub-equations. The
accuracy of the different formulations along with the efficiency of the solvers such as multigrid
and conjugate gradient for the solution of the discrete systems are specifically addressed in this
work. We perform extensive numerical simulations which involve parametric studies with respect
to the various problem-dependent parameters. Moreover, we study the effect of the different finite
elements of low and higher order on the overall solution process. In addition, we study the effect
of scaling (weighting) techniques on the accuracy of the results and the robustness of the solvers.
Such weighting parameters have been traditionally used by many other investigators in the LS-
FEM literature mostly for analysis purposes [52]. In this direction, we propose a new first-order
formulation for the advection-diffusion equations. We provide the coercivity and the a priori error
estimates for the new formulation. We show through many numerical examples that the proposed
first-order formulation performs well even for the advection-dominated flows. In other words, the
stabilized LSFEM [60] which is based on the streamline diffusion or more generally the Galerkin
least-squares stabilization technique, does not performs better than the scaled LSFEM for the range
of applications that is used in our work. Unlike the stabilized LSFEM, the proposed LSFEM is
parameter independent. We provide a complete literature review on these transport problems later
in chapter 3.

Recently, there has been substantial interest in the use of least-squares finite element meth-
ods for the numerical solution of the Stokes and the Navier-Stokes equations [33, 52]. As it is
mentioned earlier, the least-squares based finite element formulations offer several theoretical and
computational advantages. Most notably, such formulations circumvent the inf-sup condition of
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Ladyzhenskaya-Babuska-Brezzi (LBB). So, the choice of approximating spaces is not subject to
any condition, and a single continuous piecewise polynomial space can be used for the approxi-
mation of all unknowns [73]. They also yield symmetric positive-definite coefficient matrix and
robust iterative solvers can be used to solve resulting system of linear equations. However, these
benefits do not come without some drawbacks. The following two are the most significant issues
reported in the literature [34]:

• when popular C0 finite elements are used, the number of dependent variables typically in-
creases over the original formulation (by a factor of 2 to 3 in many cases);

• lack of mass conservation for inflow-outflow problems;

• poor approximation quality when using lower-order finite elements.

The computational advantages associated with the LSFEM are usually sufficient to overcome the
first drawback, especially as problems become larger due to the scalability of multigrid solvers
which are often used in conjunction with least-squares methods [34, 79]. Heys et al. studied
the LSFEM solution of the Stokes equation [28] and the NS equations [34–36] with an algebraic
multigrid preconditioned CG method. A geometric multigrid preconditioned CG solver was used
by Ranjan and Reddy [64] for the Spectral/hp LSFEM solution of the NS equations. They demon-
strated superior convergence of the multigrid solver compared to the Jacobi preconditioning. We
extend the multigrid-preconditioned CG (MPCG) solver to the vorticity-based [46] and the stress-
based [50, 69] NS formulations. In addition, we use a CG pre/post-smoother to obtain efficient
and parameter-free smoothing sweeps. We investigate the performance of the MPCG solver for a
wide range of parameters.
By changing the least-squares functional, conservation of mass can be improved at the expense of
the other terms in the functional [37, 62]. An additional expense of improving mass conservation
is that the performance of standard multigrid solvers may degrade [29, 79]. The use of reduced
integration can result in a collocation method and a zero residual for mass conservation [13, 33],
although this also results in the loss of positive definiteness of the operator, which has a strong
negative impact on a standard multigrid solver [37]. Another remedy for the lack of mass con-
servation of the 2D problems is to use higher order finite elements [40]. We additionally use this
technique to improve the approximation quality of the LSFEM results [69]. Use of the alterna-
tive first-order formulations is demonstrated to provide improved mass conservation over existing
methods, see e.g. the work of Heys et al. [35] in which mass conservation is improved because
of the pressure-velocity coupling along the inflow and outflow boundaries. We investigate the
following techniques to analyze the mass conservation of the LSFEMs:

• weighting of the continuity equation

• use of higher order finite elements

• use of alternative first-order formulations.

We perform extensive numerical studies to investigate the effects of these methods on the mass
conservation of the LSFEM solutions. In addition, we study the effects of these techniques on
the accuracy of the momentum equation approximation and on the performance of the multigrid
solvers.

As an important application, we extend the current least-squares finite element framework to
the solution of the non-Newtonian fluid flow problems. The non-Newtonian fluids are investigated
in the literature using the different first-order formulations [4, 11, 16, 20, 21, 24, 74]. We design
a physically motivated weighted least-squares method to provide robust solutions for the non-
Newtonian power law and the Carreau law fluid flows. We extend the multigrid-preconditioned
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conjugate gradient (MPCG, see [45, 46, 50]) solver to efficiently solve the stress-based formulation
of the non-Newtonian fluids. This is for the first time that a multigrid solver is used for the LSFEM
solution of the non-Newtonian fluid flow problems. We study the Newton and the fixed-point
linearization methods and analyze the performance of the MPCG solver for these methods.

1.2. Thesis Outline

We are mainly concerned with the LSFEM solution of the advection-diffusion-reaction equation
and the incompressible NS equations for both the Newtonian and the non-Newtonian fluid flow
problems. In this thesis, each of the following chapters provides its own introduction and conclu-
sion.

In chapter 2, we present the basic idea of the least-squares finite element method (LSFEM)
for the solution of the abstract linear and nonlinear partial differential equations (PDE). We define
the general framework for the continuous and the discrete least-squares minimization problems,
based on which we design the LSFEM techniques for the solution of different model PDEs in
the following chapters. We use a nonlinear basic iteration in combination with the least-squares
minimization technique for the solution of the non-linear PDEs. In addition, we briefly explain the
different solvers used for the solution of the discrete least-squares systems. These solvers include
specifically the conjugate gradient method, the geometric multigrid method and the multigrid-
preconditioned conjugate gradient method.

In chapter 3, we focus on the application of the LSFEM to the general transport equations of
heat transfer and fluid flow. We design efficient and robust LSFEMs for the transport equations
which include the main transport mechanisms of the Navier-Stokes equations. In addition, we
investigate accurate multigrid solvers for the solution of the discretized systems arising from such
equations. We propose a new first-order formulation for the solution of the advection-diffusion
equations and prove the uniqueness and a priori error estimates for this formulation. Moreover, we
analyze the effect of the weighting techniques on the accuracy and the robustness of the LSFEM
method.

In chapter 4, we study two first-order formulations of the stationary incompressible Navier-
Stokes equations. For the discrete systems, we use a conjugate gradient (CG) solver accelerated
with a geometric multigrid preconditioner for the complete system. In addition, we employ a
Krylov space smoother inside of the multigrid which allows a parameter-free smoothing. Combin-
ing this linear solver with the Newton linearization, we construct a non-linear solver. We perform
systematic parametric studies to investigate the robustness and efficiency of the solver. Moreover,
we analyze different strategies to enhance the mass conservation of the least-squares method for
the inflow-outflow problems. In order to quantitatively analyze the proposed LSFEMs, we perform
extensive numerical simulations on different flow configurations of benchmarking character.

In chapter 5, we present the numerical simulation of the non-Newtonian power law and the
Carreau law fluid flow problems. Both the shear thinning and the shear thickening fluids are in-
vestigated. We design a physically motivated weighted least-squares method to provide robust
solutions for the non-Newtonian fluid flows. We extend the multigrid-preconditioned conjugate
gradient solver to efficiently solve the stress-based formulation of the non-Newtonian fluids. We
study the Newton and the fixed-point linearization methods and analyze the performance of the
MPCG solver for these methods. We compare the accuracy of the numerical solutions with avail-
able analytic solutions.

In chapter 6, we summarize the LSFEM methods studied in this work and present some future
works as an outlook of the current research.
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The Least-squares Finite Element Method

After a short introduction of the notation used, we present the basic idea of the least-squares
finite element method (LSFEM) for the solution of linear partial differential equations (PDE).
We define the general framework for the continuous and the discrete least-squares minimization
problems, based on which we design the LSFEM techniques for the solution of different model
PDEs in the following chapters. We show that the least-squares finite element model yields a
convex, unconstrained minimization problem with a unique minimizer that coincides with the best
approximate solution to the linear PDE model in a well defined norm. In addition, we show that
the resulting discrete algebraic system has a symmetric positive definite coefficient matrix. We
further extend the abstract framework to the nonlinear PDEs. We use a nonlinear basic iteration
in combination with the least-squares minimization technique. Moreover, we briefly explain the
different solvers used for the solution of the discrete least-squares systems. These solvers include
specifically the conjugate gradient method, the geometric multigrid method and the multigrid-
preconditioned conjugate gradient method.

2.1. Notation

We consider an open bounded domain Ω ⊂ Rd with a piecewise smooth boundary Γ, where d =
1,2,3, is the space dimension. For different boundary conditions the boundary segment will be
distinguished by a subscript, e.g. ΓD and ΓN for the Dirichlet and the Neumann parts of the
boundary, respectively.

We use an operator notation to display the PDE problems and the least-squares systems in the
continuous form. The gradient, divergence and the Laplace operators are uniquely defined as ∇,
∇· and ∆, respectively. The curl operator has two different interpretations. When applied to a
scalar u, it gives a vector as follows

∇×u =

(
∂u
∂y
− ∂u

∂x

)
, (2.1.1)

and when applied to a vector u = (u1, u2)
T , it gives a scalar

∇×u =
∂u2

∂x
− ∂u1

∂y
. (2.1.2)

The standard notation for the Sobolev spaces is used as in [68]. The space of square integrable
functions defined on the domain Ω is denoted by L2(Ω) and has the scalar product

(u,v)0 =
∫

Ω

uv dΩ u,v ∈ L2(Ω), (2.1.3)

5



6 The Least-squares Finite Element Method

which induces the following L2-norm

||u||0 = (u,u)1/2
0 =

(∫
Ω

|u|2 dΩ

)1/2

(2.1.4)

A subspace of L2(Ω) functions with zero-mean value is defined as

L2
0(Ω) =

{
q ∈ L2(Ω) |

∫
Ω

q dΩ = 0
}
. (2.1.5)

For any non-negative integer m, we define the Sobolev space Hm(Ω) and the associated inner
product and norm are denoted by (· , ·)m and ||· ||m, respectively. Therefore, the H1 space is defined
as follows

H1(Ω) =
{

q ∈ L2(Ω) | ∇q ∈ L2(Ω)
}
, (2.1.6)

which has the inner product
(p,q)1 = (p,q)0 +(∇p,∇q)0 , (2.1.7)

and the associated norm is given by

||q||21 = ||q||
2
0 + ||∇q||20 . (2.1.8)

Under some assumptions on Ω, functions in H1(Ω) have well-defined traces in H1/2(Γ). The norm
on H1/2(Γ) can be defined as follows

||φ||1/2,Γ = inf
ψ∈H1(Ω),ψ=φ on Γ

||ψ||1 . (2.1.9)

Further, we define the H(div,Ω) space

H(div,Ω) =
{

v ∈ [L2(Ω)]2 | ∇ ·v ∈ L2(Ω)
}
, (2.1.10)

which is a Hilbert space with inner product

(u,v)div = (u,v)0 +(∇ ·u,∇ ·v)0 , (2.1.11)

and its corresponding norm is defined as

||v||2div = ||v||
2
0 + ||∇ ·v||

2
0 . (2.1.12)

Also we define the Hilbert space H(curl,Ω)

H(curl,Ω) =
{

v ∈ [L2(Ω)]2 | ∇×v ∈ L2(Ω)
}
, (2.1.13)

with the inner product
(u,v)curl = (u,v)0 +(∇×u,∇×v)0 , (2.1.14)

and the respective norm is defined as

||v||2curl = ||v||
2
0 + ||∇×v||20 . (2.1.15)

We further define the following Hilbert spaces

H1
g,D(Ω) =

{
q ∈ H1(Ω) | q = gD on ΓD

}
, (2.1.16)

Hg,N(div,Ω) = {v ∈ H(div,Ω) | v ·n = gN on ΓN} , (2.1.17)
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Hg,D(curl,Ω) = {v ∈ H(curl,Ω) | v×n = gD on ΓD} , (2.1.18)

which are the subspaces of H1(Ω), H(div,Ω) and H(curl,Ω), respectively. We denote by H−1(Ω)
the dual of H1(Ω) associated with the norm

||p||−1 = sup
q∈H1(Ω)

〈p,q〉Ω
||q||1

, (2.1.19)

where 〈·, ·〉Ω denotes the dual pairing:

〈p,q〉Ω =
∫

Ω

p ·q dΩ . (2.1.20)

The Gâteaux derivative D of functional F(u) with respect to v is also required:

DF(u)[v] =
∂F(u+ tv)

∂t

∣∣∣∣
t=0

(2.1.21)

2.2. Continuous Least-squares Principle

We present the basic idea of the least-squares FEM in this section. The main materials are based
on the book by Jiang [33], the book by Bochev and Gunzburger [52] and the book by Turek [71].
Throughout this section, L denotes a linear first-order differential operator that acts on functions
defined on some bounded, open domain Ω and R denotes a linear operator which is applied to
functions defined on the boundary Γ of Ω. Both L and R may depend on the spatial variable x.
We consider an abstract boundary value problem{

Lu = f in Ω

Ru = g on Γ,
(2.2.1)

where f and g denote the data functions. Concerning (2.2.1), we make the following assumptions.

A.1 There exist Hilbert spaces X = X(Ω), Y = Y (Ω), Z = Z(Γ) such that the mapping
u→ (Lu,Ru) is a homeomorphism X → Y ×Z.

A.2 The operator (Lu,Ru) is of Fredholm type, i.e. it has a closed range and both the kernel
and the co-range are finite dimensional.

These assumptions are sufficiently general to include a wide range of partial differential equation
problems. An important consequence of the above assumptions is the existence of two positive
constants C1 and C2 whose values are independent of u and such that

C2 ||u||X ≤ ||Lu||Y + ||Ru||Z ≤C1 ||u||X . (2.2.2)

The inequalities in (2.2.2) describe a relation between the solution and data of a boundary value
problem that is fundamental to least-squares principles. It defines the proper balance between the
solution “energy” and the residual “energy”.

The continuous least-squares principle (CLSP) for (2.2.1) stems directly from the solution-data
balance defined by (2.2.2). The data spaces Y and Z provide the norms for measuring the “energy”
of the residuals while the solution space X serves as a trial space for candidate minimizers of the
“energy” functional. Specifically, we define the artificial, quadratic, convex least-squares “energy”
functional

J(u; f,g) = ||Lu− f||2Y + ||Ru−g||2Z , (2.2.3)



8 The Least-squares Finite Element Method

and the continuous least-squares principle for the problem

find u ∈ X such that u = argmin
v∈X

J(v; f,g) . (2.2.4)

The minimizer of the problem (2.2.4) is the solution of the variational problem

find u ∈ X such that A(u;v) = F(v) ∀v ∈ X , (2.2.5)

where bilinear form A(·; ·) and the linear functional F(·) are given by

A(u;v) =
(
Lu,Lv

)
Y +

(
Ru,Rv

)
Z (2.2.6)

and
F(v) =

(
f,Lv

)
Y +

(
g,Rv

)
Z, (2.2.7)

respectively. Following from the assumptions A.1 and A.2 it can be shown that the continuous
least-squares principle (2.2.4) is well posed and the unique minimizer of (2.2.3) coincides with the
unique solution u ∈ X of (2.2.1), see [52] for further details.

The boundary conditions can be treated in two different ways. Either the functional (2.2.3) is
used directly for minimization, or the function space X , in which the solution is sought, is replaced
by:

Xg(Ω) = {u ∈ X(Ω) | Ru(x) = g(x) ∀x ∈ Γ} . (2.2.8)

Functions in Xg already satisfy the desired boundary conditions and hence the residuum of the
boundary conditions in equation (2.2.1) will automatically be zero. In this thesis, we use the
former technique for the Neumann boundary conditions, while the later technique is used for the
implementation of the Dirichlet boundary conditions.

2.2.1. Operator form of the CLSP

It is worth noticing that, for sufficiently smooth u and f, (2.2.5) is equivalent to

find u ∈ X such that
(
L∗Lu,v

)
Y +

(
R∗Ru,v

)
Z =

(
L∗f,v

)
Y +

(
R∗g,v

)
Z ∀v ∈ X , (2.2.9)

where L∗ and R∗ represent the formal adjoint of L and R, respectively. It is common then, to look
at the formal normal operators, L∗L and R∗R, for insight into the nature of the linear system that
results from the least-squares discretization. Note that, in general, the formal normal least-squares
operators are self-adjoint and nonnegative, a quality that the original continuum operators may not
have.

2.3. Discrete Least-squares Principle

The discrete least-squares principle (DLSP) is obtained by restricting (2.2.5) to discrete, e.g. finite
element, space Xh of the finite dimensional space X . This process leads to the discrete variational
problem given by

find uh ∈ Xh such that Ah(u;v) = Fh(vh) ∀vh ∈ Xh . (2.3.1)

We proceed to define a discrete problem by choosing appropriate finite element spaces for each of
the components of the vector valued function u. There are no restrictive compatibility conditions
on the discrete spaces, so we are able to choose the same finite element subspaces for each of the
primary variables.
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2.3.1. Optimality Conditions of the LSFEM

The ultimate goal is to use (2.3.1) to compute the approximate solution to (2.2.1). The least-
squares functional is consistent in the sense that for sufficiently smooth data f, g and smooth
solutions u of (2.2.1), we have

J(u; f,g) = 0 . (2.3.2)

Furthermore, by construction, the least-squares functional is convex and positive. Which allows
us to define an energy inner product

((·, ·))E : X×X → R , (2.3.3)

and an associated energy norm

||·||E = J(·;0,0)1/2 : X → R . (2.3.4)

Having “energy” functional with the above characteristics and taking Xh ⊂ X , i.e. working with
conforming finite elements, leads to the following important results

1. the variational problem (2.3.1) has a unique solution given by uh ∈ Xh, and

2. uh is the orthogonal projection of u with respect to the energy inner product (2.3.3), and
thus represents the best approximation solution in the energy norm (2.3.4), i.e.

||u−uh||E = inf
vh∈Xh

||u−vh||E . (2.3.5)

To clarify the first result above, let φh
i denotes a basis for Xh so that uh = ∑

N
i=1Uiφ

h
i . It is clear that

(2.3.1) is a linear system of algebraic equations for unknown vector U. The matrix and the right
hand side of this system are

Ai j = ((φh
j ,φ

h
i ))E and Fi = ((u,φh

i ))E .

Matrix A is symmetric and from the positivity assumption of the functional we conclude that A is
also positive definite. As a result, the system AU = F has a unique solution.
For the conforming finite element methods, the optimality result (2.3.5) can be deduced based on
the a priori estimate (2.2.2) with the help of arguments from the standard finite element theory.

2.3.2. Practicality Conditions of the LSFEM

Another very important concern in designing LSFEMs is that of practicality. Here, we refer to
obtaining a linear system of equations which is computable and whose solution is no more difficult
to find than that of other numerical discretization techniques. The computability concern can
generally be enforced by requiring the spaces Y and Z to be Sobolev spaces of integer order.
Further, the space X should be discretized with standard finite elements, i.e. C0 finite element
spaces. Finally, the condition number of the resulting system should not grow (as a function
of h) faster than that of a more traditional finite element method. All of these requirements for
practicality can influence whether or not the estimate (2.2.2) can be shown to be satisfied.

A standard framework (known as the L2 least-squares FEM) for achieving practical finite ele-
ment methods should adhere to the following guidelines:

• Write the system in first-order form.

• Set the space X to be a product of H1 spaces.
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• Set the spaces Y and Z to be products of L2 spaces.

• Discretize with C0 finite elements.

When this framework allows estimate (2.2.2), the least-squares finite element method is optimal
and practical. When the satisfaction of (2.2.2) can not be shown, modifications may need to be
made to achieve optimality, and careful choices will need to be made to retain practicality. Some
common changes include the following:

• Use intermediate spaces such as H1/2 or weaker spaces such as H−1.

• Reformulate the system of equations.

• Replace impractical norms by weighted L2 norms in the discrete problem.

• Use a non-conforming discretization.

Throughout this work we always use the basic L2 least-squares finite element framework.
Although, in some cases the use of L2-norms for the residual energy does not necessarily lead
to mathematically correct energy balances and the resulting methods cannot be proved as math-
ematically optimal. However, thanks to the generality of the assumptions on the least-squares
functionals (the consistency (2.3.2) and the positivity conditions) one can satisfy these two condi-
tions almost automatically by any sensible definition of a least-squares functional. These methods
are generally categorized as non-equivalent least-squares techniques. The non-equivalent LSFEM
has been by a wide margin the most commonly used technique in the least-squares context. The
reason for this is the fact that combination of first-order systems with L2-norms to measure the
residual energy leads to a very simple and easy to implement scheme.

2.4. LSFEM for Nonlinear Problems

There are two main steps in the numerical solution of every nonlinear PDE, namely the lineariza-
tion and the discretization steps. Depending on the order in which these steps are used to solve
the nonlinear problem, two approaches can be considered. The first approach is to discretize the
nonlinear equations and then to apply the linearization method to the discrete systems. The sec-
ond approach is to linearize the nonlinear differential operator on the continuous level and then to
proceed with the discretization. These two approaches yield to similar system of equations in the
context of the Galerkin variational principle. However, for the least-squares finite element method
these approaches produce different results, see [41] for further discussions. In this work we use
the second approach.

2.4.1. Nonlinear Basic Iteration

Consider an arbitrary first-order nonlinear partial differential operator T(·)

T(u)u = f in Ω , (2.4.1)

which is assumed to be Frećhet differentiable. We solve the equation (2.4.1) with a nonlinear
basic iteration, see Turek [71], which can be formulated as the following three-step algorithm 2.1.

In the first step, we calculate the nonlinear system residual dn based on the known values un from
the previous iteration superscripted by n, see equation (2.4.2). Next, we approximate the nonlinear
operator T(un) with T̃(un) and solve the auxiliary system (2.4.3) for the solution update δun. The
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Algorithm 2.1 Basic nonlinear iteration
Given: Iterate un

Perform: The following three substeps to obtain un+1

1. Calculate the nonlinear residual dn,

dn = T(un)un− f . (2.4.2)

2. Solve an auxiliary subproblem for δun with right hand side dn

T̃(un)δun = dn . (2.4.3)

3. Update un via the auxiliary solution δun and the relaxation parameter β, and obtain un+1,

un+1 = un−βδun . (2.4.4)

operator T̃(un) represents an approximation of the Frećhet derivative of T with respect to the last
iterate un and allows different resulting schemes. If we choose T̃(un) to be the exact Frećhet
derivative, we obtain the standard Newton iteration scheme

T̃(un)δun =DT(un)[δun] . (2.4.5)

This method is known to be quadratically converging. Since the convergence radius of the Newton
method is small, a very good initial iterate u0 is required to obtain a convergent scheme. Other
possibility for T̃(un) leads to the so-called fixed point scheme. The approximate Frećhet derivative
may be chosen as the operator itself

T̃(un) = T(un) . (2.4.6)

The corresponding scheme has a larger convergence radius as compared to the Newton method,
thus it is not very sensitive to the choice of the initial iterate. Moreover, the fixed point method has
only linear or super-linear convergence which means more nonlinear iterations are required for
convergence. Finally, we update un via the auxiliary solution δun to obtain the new solution un+1,
see equation (2.4.4). Here, β is the damping parameter which has to be chosen appropriately, see
Turek [71] for further details.

We may stop the iteration if the maximum number of nonlinear iterations is performed, n ≥
Nmax, or if the nonlinear residual is sufficiently small in a certain norm,∣∣∣∣T(un+1)un+1− f

∣∣∣∣≤ TOL . (2.4.7)

In order to optimize the convergence behavior of the Newton method with respect to the initial
guess, one possibility is to start the nonlinear iterations with the fixed point method, and to use
the solution as an initial guess for the Newton method. Another possibility to improve the Newton
method’s convergence is to perform homotopy-type successive Newton runs. For example, in the
solution of the Navier-Stokes equations the Reynolds number determines the degree of nonlin-
earity of the problem. One may start with a lower Reynolds number problem and then use the
solution as an initial guess for the same problem with a slightly increased Reynolds number. This
procedure will be continued until the solution of the problem at the desired Reynolds number is
obtained. We employ both of the above methods in this research. For a detailed review of the
least-squares researches with both methods refer to [41].
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2.4.2. Least-Squares Principles for the Nonlinear Problems

The second step in the nonlinear iteration (Algorithm 2.1) involves the solution of a linear system
of equations (2.4.3). We use the least-squares minimization method to solve the system. As
it is previously explained for the linear PDE problems, the least-squares “energy” functional is
obtained from the residual of the equation (2.4.3) as follows

J(δu;d) =
∣∣∣∣T̃(u)δu−d

∣∣∣∣
Y . (2.4.8)

The first variation of the above functional leads to the following variational problem in every
nonlinear iteration

find δu ∈ X such that A(δu;v) = F(v) ∀v ∈ X , (2.4.9)

where the bilinear form A(·; ·) and the linear functional F(·) are given by

A(δu;v) =
(
T̃(u)δu, T̃(u)v

)
Y (2.4.10)

and
F(v) =

(
d, T̃(u)v

)
Y . (2.4.11)

Following the standard LSFEM procedure of the previous section, we restrict the variational
problem (2.4.9) to the finite dimensional spaces. The resulting algebraic system matrix, which is
obviously symmetric, will be solved in every nonlinear iteration to obtain δu.

2.5. Solution of the Discrete Least-squares Systems

The discrete linear system of equations resulting from the least-squares finite element method
always has a symmetric and positive definite (SPD) coefficient matrix. Therefore, it is appropriate
to take full advantage of the symmetric positive definiteness by using solvers specially designed
for such systems. In addition, the resulting system matrix is sparse due to the properties of the
interpolation functions used in the finite element discretization. For the large sparse linear systems
of equations we encounter in this thesis, direct methods become impractical. In such cases, storage
space may be limited in terms of available computer memory and solving times become non-
optimal in terms of CPU time. The main focus will be then on the iterative solvers. In this section
we briefly discuss the conjugate gradient method as a Krylov subspace solver suitable for SPD
systems, and multigrid as a highly efficient defect correction scheme for sparse linear systems
arising in the discretization of (elliptic) partial differential equations. A combination of these two
iterative linear solvers is then considered to improve the overall efficiency of the solution method.
The main material and the notations of this chapter are based on [27, 67, 75], in which detailed
theoretical results about the methods are discussed.

2.5.1. Conjugate Gradient Solver

Let us denote the linear system of equations with

Ax = f (2.5.1)

where A ∈ Rn×n is a sparse symmetric positive definite matrix and f ∈ Rn is the right hand side
vector resulting from the least-squares finite element method.

The conjugate gradient (CG) method derives its name from the fact that it generates a sequence
of conjugate (or orthogonal) vectors. These vectors are the residuals of the iterates. They are also
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the gradients of a quadratic functional, the minimization of which is equivalent to solving the
linear system. The CG is an extremely effective method when the coefficient matrix is symmetric
positive definite, since storage for only a limited number of vectors is required. The popularity of
the CG method is due to its attractive properties:

• the method will give the exact solution after at most n steps in the absence of roundoff errors,

• the rate of convergence can be significantly improved with various preconditioning tech-
niques,

• the method is parameter-free, i.e. the user is not required to empirically choose parameters.

Given an initial guess x(0) and the initial residual r(0) = f−Ax(0), the Krylov subspace Km(A,r(0))
is the m-dimensional vector space defined as

Km(A,r(0)) = span{r(0),Ar(0), ...,Am−1r(0)}. (2.5.2)

The unpreconditioned conjugate gradient method constructs the i iterate x(i) as an element of
x(0)+Ki(A,r(0)) so that (x(i)− x̂)T A(x(i)− x̂) is minimized, where the x̂ is the exact solution of
Ax = f. This minimum is guaranteed to exist in general only if A is symmetric positive definite.
The preconditioned version of the method uses a different subspace for constructing the iterates,
but it satisfies the same minimization property, although over this different subspace. It requires
in addition that the preconditioner M is symmetric and positive definite. The pseudocode for the
preconditioned CG method is presented in Algorithm 2.2.

Algorithm 2.2 Preconditioned conjugate gradient method

Compute r(0) = f−Ax(0) with an initial guess x(0)
for i = 1,2, ... do

solve the preconditioned system Mz(i−1) = r(i−1)

ρi−1 = ri−1T z(i−1)

if i = 1 then
p(1) = z(0)

else
βi−1 = ρi−1/ρi−2
p(i) = z(i−1)+βi−1p(i−1)

end if
q(i) = Ap(i)

αi = ρi−1/(p(i)T q(i))
x(i) = x(i−1)+αip(i)

r(i) = r(i−1)−αiq(i)

check the convergence
∣∣∣∣r(i)/r(0)

∣∣∣∣< ε

end for

2.5.2. Multigrid Solver

Another efficient alternative for the solution of large and sparse linear systems is to use the multi-
grid or multilevel methods (see for instance [27, 67, 75]). These methods were mainly developed
for linear systems arising from the discretization of elliptic PDEs and later on extended to han-
dle other types of PDEs, including nonlinear ones. In the subject of numerical analysis, these
methods form a group of algorithms for the solution of differential equations using a hierarchy of
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discretizations. Multigrid solvers are regarded as the most efficient solvers for solving the large
sparse linear systems, in particular for those arising from the discretization of PDEs where the
conditions number of the system matrix deteriorates with increasing the problem size.

In contrast to the other iterative solvers these solvers converge independent of the mesh size
and require only a linear amount of operations with respect to the number of unknowns. The effi-
ciency and the robustness of these solvers crucially depend on the smoothing operator. Multigrid
methods can be classified into two categories:

• Algebraic Multigrid Methods (AMG)

• Geometric Multigrid Methods (GMG)

The primary difference between the algebraic and geometric multigrid algorithms is that the AMG
methods require only a single mesh information and the system matrices of the coarse grids are
constructed by using algebraic operations [67]. On the other hand, the GMG generates the coarser
levels by using the hierarchy of mesh refinements. The multigrid methods have become quite pop-
ular for the solution of discretized linear systems due to their convergence behavior. Throughout
this thesis, we will restrict to the geometric multigrid methods (see [27, 44, 75] for more details).

We formulate the standard multigrid algorithm by considering the linear system of equations
in (2.5.1) where n = n(k) denotes the number of degrees of freedom on the mesh level k; k =
1, ...,L ∈ N. Let

Ik
k−1 : Rn(k−1) 7→ Rn(k) (2.5.3)

denotes the prolongation operator and

Ik−1
k : Rn(k) 7→ Rn(k−1) (2.5.4)

the corresponding restriction.
We assume the existence of a hierarchy of levels k,k = 1, ...,L created by using standard refine-

ment scheme [71] of a coarse mesh. On each of these levels k, we have to assemble the discrete
problem matrix Ak and the corresponding right hand side fk. The right hand side f is specified
on the finest level N only, while all other fk are generated during the multigrid algorithm. Then,
a standard geometric multigrid algorithm MG(x̃,x, f,k) for the solution of 2.5.1 is described in
Algorithm 2.3.

Algorithm 2.3 Standard Multigrid Algorithm

Recursive linear multigrid algorithm MG(x̃,x, f,k)
if k = 1 then

S(x̃,x, f, ·,k)
else

S(x̃,x, f,ν1,k)
rk = fk−Akxk

fk−1 = Ik−1
k rk

xk−1 = 0
for i = 1,2, ...,γ do

MG(x̃,x, f,k−1)
x̃k−1 = xk−1

end for
xk = xk + Ik

k−1xk−1

S(x,x, f,ν2,k)
end if
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In Algorithm 2.3, S(x̃,x, f,ν,k) is the smoothing step defined on each grid k. S changes an
initial guess x̃k into an improved approximation xk with the right-hand side fk by νk iterations
with a suitable smoothing method. The number of pre/post-smoothing iterations is denoted by ν1
and ν2, respectively. The appropriate smoothers for the LSFEM systems will be discussed in the
next sub-section. We denote the coarse-grid solution by S(x̃,x, f, ·,1), where we omit the number
of iterations because of the possible use of exact coarse-grid solvers. The multigrid schedule is
determined by the number of coarse-grid visits in every multigrid iteration and denoted by γ in the
Algorithm 2.3, see [75] for further information on different multigrid cycles.

Other components of every multigrid method are intergrid restriction and prolongation oper-
ators. We use the canonical grid transfer operators based on FEM space which treat all solution
components separately. In the case of conforming Q2 finite elements for example, the prolonga-
tion operator is constructed by using a biquadratic interpolation. The restriction operator is then
set up as the adjoint of the prolongation operator, i.e., the matrices associated to prolongation and
restriction are exactly transposed to each other [44].

2.5.3. Multigrid-preconditioned Conjugate Gradient solver

The rate of convergence of the CG method can be significantly improved with various precondi-
tioning techniques [67]. Jacobi preconditioned CG solver has been widely used for the solution
of the first-order system least-squares FEM, see [33]. On the other hand, the multigrid method
has shown to be a rather effective preconditioner for the CG solver [34–36, 64]. For example,
Ranjan and Reddy [64] has investigated a geometric multigrid preconditioned CG solver for the
Spectral/hp LSFEM solution of the Navier-Stokes (NS) equations. They demonstrated that the
convergence rate of the CG solver improved when replacing the Jacobi preconditioner with a
multigrid solver. With due consideration of the success of the above solution techniques, we
use CG as the main linear system solver and accelerate it with the multigrid preconditioning, i.e.
multigrid-preconditioned conjugate gradient (MPCG) solver.

In this work, we use the geometric multigrid method, in contrast to the algebraic multigrid
method which is widely used in the LSFEM community. As it is discussed in the previous section,
in a geometric multigrid method a hierarchy of classically refined grids [43] are generated and
the system of equations are discretized on all grids, see [27] for further details. Since the most
important part of the multigrid method is the smoothing, the efficiency and robustness depend
in many cases on the smoothing algorithms. Besides using the preconditioned CG method as
stand-alone solver, the CG method can also be applied as smoother in the multigrid method to
accelerate the convergence and to improve the robustness (see [22], [42]). We use CG as pre/post-
smoother which appropriately determines the size of the solution updates at each smoothing step
[76]. Therefore, the CG smoothing leads to efficient and particularly parameter-free smoothing
sweeps. In addition, we accelerate the smoothing process by using a SSOR preconditioner, which
in this context requires no damping parameter in case of symmetric Gauß-Seidel sweeps. It is
worth noting that the possibility of using standard smoothers for the solution of the NS equations is
another advantage of the LSFEM over the mixed Galerkin methods that require specially designed
smoothers [71].

The MPCG solver is summarized as follows

1. Direct Gaussian elimination (UMFPACK [18]) as coarse-grid solver

2. SSOR-preconditioned CG smoother with 4 pre/post-smoothing steps

3. F-cycle as the multigrid cycle
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4. Intergrid transfer and coarse grid correction based on the underlying mesh hierarchy and the
properties of the chosen conforming finite elements [71].



3

Advection-Diffusion-Reaction Equations

In this chapter we focus on the application of the LSFEM to the general transport equations of heat
transfer and fluid flow. Our aim in this research is then twofold. On the one hand, we analyze the
performance of the LSFEM for the solution of the scalar elliptic PDEs and on the other hand, we
obtain all the necessary requirements to extend our work to the mass and momentum conservation
equations, i.e. Navier-Stokes equations. In other words, we design efficient and robust LSFEMs
for the transport equations which include the main transport mechanisms of the Navier-Stokes
equations. In addition, we investigate accurate multigrid solvers for the solution of the discretized
systems arising from such equations.

3.1. The Governing Equations

Some of the most common examples of transport analysis in engineering are seen in the fields
of process, chemical, and mechanical engineering, but the subject is a fundamental component
of the curriculum in all disciplines involved in any way with fluid mechanics, heat transfer, and
mass transfer [23]. It is now considered to be a part of the engineering discipline as much as
thermodynamics [3], mechanics, and electromagnetism [32].

The generic scalar transport equation is a general partial differential equation that describes
heat transfer, mass transfer, fluid dynamics (momentum transfer), etc. The conservative form of
the scalar advection-diffusion-reaction equation is presented as follow

∂p
∂t
−∇ · (ε∇p−βp)+ cp = f in Ω

p = gD on ΓD

n ·∇p = gN on ΓN

p = p0 in Ω, t = t0

(3.1.1)

where Ω ⊂ R2 is a bounded domain. The first term in equation (3.1.1) is the time variation of
variable p, −ε∇p is the diffusive flux and βp is the advective flux, ε is the diffusion coefficient, β

is the advecting velocity field, n is the unit outward vector normal to the boundary, c is the reaction
coefficient and f is the source term. The Dirichlet and Neumann part of the boundary are defined
by ΓD and ΓN , and the gD and gN are the respective boundary conditions. The p0 is the initial
value specified at initial time t = t0.

3.2. LSFEM for the Poisson Equation

We restrict the general advection-diffusion-reaction equation to simple diffusion (Poisson) equa-
tion. Therefore, in equation (3.1.1) we set ε = 1, β = 0, c = 0 and assume homogeneous Dirichlet

17
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boundary conditions on the whole boundary Γ. We only consider the steady state diffusion equa-
tion (Poisson). The Poisson equation in a two-dimensional domain then reads{

−∆p = f in Ω

p = 0 on Γ .
(3.2.1)

We further assume that f is a smooth function defined in Ω. With the help of this introductory
example, we present the least-squares solution method which is described in chapter 2. Moreover,
we discuss the finite element spaces and the iterative solvers which are used in this research.

The Poisson equation (3.2.1) is a second order elliptic problem. We discussed earlier in chapter
2 that one of the requirements of having a practical least-squares method is to work with first-order
equations. In deed, the straightforward application of the LSFEM to the original Poisson equation
(3.2.1) leads to a variational setting that requires C1 finite elements [52]. Therefore, we transform
the original Poisson equation into equivalent first order systems. A reasonable practice to obtain
an equivalent first-order system is to introduce new variables based on the primary unknowns of
the original PDE. These new variables may be some physically important quantities such as fluxes
which may be of crucial practical interest.

3.2.1. First-order Poisson Equations

We introduce the definition of the fluxes into the Poisson equation (3.2.1) and obtain the following
first-order systems:

grad−div system
grad−div−curl system.

We explain the properties of each system and use the LSFEM to solve the Poisson equation based
on both first-order systems.

The grad−div System

The most straightforward strategy to reformulate the second order Poisson equation (3.2.1) to an
equivalent first order system is to introduce the gradient of the p as a new variable. The new
grad−div system then reads 

∇ ·u = f in Ω

∇p+u = 0 in Ω

p = 0 on Γ

, (3.2.2)

which is a first-order system of equations with p and u as unknowns.

The grad−div−curl System

The first order system of equations in (3.2.2) can also be augmented with additional curl constraint

∇×u = 0 in Ω (3.2.3)

and additional boundary condition
n×u = 0 on Γ . (3.2.4)

To see how these equations are obtained, we apply the curl operator ∇× to the second equation in
(3.2.2) and we obtain

∇× (∇p+u) = 0 . (3.2.5)

In addition, for every sufficiently smooth scalar function p we have the following identity

∇×∇p = 0 . (3.2.6)
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Using equations (3.2.5) and (3.2.6), the extra curl equation (3.2.3) is obtained. Moreover, since we
have p = 0 on the boundary Γ then n×∇p = 0 which together with the second equation in (3.2.2)
leads to the boundary condition (3.2.4). Finally, we summarize the following set of equations as
the grad−div−curl system: 

∇ ·u = f in Ω

∇×u = 0 in Ω

∇p+u = 0 in Ω

p = 0 on Γ

n×u = 0 on Γ

(3.2.7)

Carey et al. [26] compared the effect of adding the curl equation (3.2.3) and the boundary
condition(3.2.4) on the performance of an iterative method for the solution of non-self adjoint
elliptic problems. They observed that adding these additional equations leads to optimal L2 and
H1 error estimates for the flux variable u. Similar conclusions have been made for the solution of
the Poisson equation in the LSFEM literature, see [54] and [12] for further details. We will show
that, by adding equations (3.2.3) and (3.2.4) one obtains optimal error estimates for both the scalar
and the flux variables. These statements are supported by our numerical investigations in section
3.2.5 which are in accordance with the theoretical a priori error estimates too.

3.2.2. Continuous Least-squares Principle

We define the space of admissible functions for the grad−div and grad−div−curl systems based
on the notation of the spaces introduced earlier in chapter 2. We define the following spaces for
the flux variables u

Va = H(div,Ω) (3.2.8)

Vb = H(div,Ω)∩H0,D(curl,Ω) , (3.2.9)

where Va and Vb are the admissible spaces of the grad−div and grad−div−curl systems, re-
spectively. In order to have a unified definition for the space of the flux variables we further set
V := Va/b. Next, we define the space W which represents the scalar variable p in both systems:

W = H1
0,D(Ω) . (3.2.10)

Here, we impose the Dirichlet boundary conditions through the definition of the test spaces. There-
fore, there is no need to include the boundary conditions in the least-squares energy functional.

We define the L2-norm least-squares energy functionals Ja/b : V×W � R based on the resid-
uals of the first-order grad−div system as follows

Ja(v,q; f ) = ||∇ ·v− f ||20 + ||v+∇q||20 ∀(v,q) ∈ V×W (3.2.11)

and for the grad−div−curl system as follows

Jb(v,q; f ) = ||∇ ·v− f ||20 + ||v+∇q||20 + ||∇×v||20 ∀(v,q) ∈ V×W . (3.2.12)

The least-squares minimization problem associated with the L2-norm functionals in (3.2.11) and
(3.2.12) is then: find (u, p) ∈ V×W such that

(u, p) = argmin
(v,q)∈V×W

Ja/b(v,q; f ) , (3.2.13)

which leads to the variational problem: find (u, p) ∈ V×W such that

Aa/b(u, p;v,q) = F(v,q) ∀(v,q) ∈ V×W , (3.2.14)
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where Aa/b is a bilinear form defined on (V×W )× (V×W )→ R and F is a linear functional
defined on V×W → R. The variational problem for the grad−div system is given by

Aa(u, p;v,q) := (∇ ·u,∇ ·v)0 +(u+∇p,v+∇q)0 , (3.2.15)

and the variational problem related to the grad−div−curl system reads

Ab(u, p;v,q) := (∇ ·u,∇ ·v)0 +(u+∇p,v+∇q)0 +(∇×u,∇×v)0 . (3.2.16)

The linear functional F is the same for both of the first-order systems and reads

F(v,q) := ( f ,∇ ·v)0 . (3.2.17)

Existence and Uniqueness of the Solution

The solvability and uniqueness of the problem (3.2.14) depends on the coercivity and boundedness
estimates of the bilinear form Aa/b and the boundedness of the linear form F. Therefore, we recall
the following important theorem from [54].

Theorem 3.2.1. For all (v,q) ∈ V×W, there exists constants C1,C2 > 0 such that
for the grad−div system

C1

(
||q||21 + ||v||

2
div

)
≤ Ja(v,q;0)≤C2

(
||q||21 + ||v||

2
div

)
(3.2.18)

and, for the grad−div−curl system

C1

(
||q||21 + ||v||

2
1

)
≤ Jb(v,q;0)≤C2

(
||q||21 + ||v||

2
1

)
. (3.2.19)

The proof of this theorem can be found in [54] and the references therein. It should be noted
that Ja/b(v,q;0) in these estimates is equivalent to Aa/b(v,q;v,q). Therefore, the above a priori
estimates together with the Lax-Milgram lemma imply that the variational problem (3.2.14) has a
unique solution (u, p) ∈ V×W for the both first-order systems.

Operator form of the Problem

To analyze the properties of the least-squares problem, let us write the variational problem (3.2.14)
as follows

Aa/b(u, p;v,q) =
(
L(u, p),L(v,q)

)
, (3.2.20)

where L is a linear operator. For the grad−div system the operator L is given by

L=

 ∇· 0

I ∇

 , (3.2.21)

and for the grad−div−curl system is given by

L=


∇· 0

I ∇

∇× 0

 . (3.2.22)
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where I is the identity tensor. Restricting our test spaces to the C∞
0 (Ω) function spaces, infinitely

differentiable functions that have a compact support in Ω, we rewrite the bilinear form (3.2.20) as

Aa/b(u, p;v,q) =
(
L∗L(u, p),(v,q)

)
(3.2.23)

where L∗ is the formal adjoint of L. The least-squares operator L∗L of the grad−div system is
given by

L∗L =

 −∇ I

0 −∇·

 ∇· 0

I ∇

 =

 −∇∇ ·+I ∇

−∇· −∆

 , (3.2.24)

and the operator form of the grad−div−curl system is given by

L∗L =

 −∇ I ∇×

0 −∇· 0




∇· 0

I ∇

∇× 0

 =

 −∆+ I ∇

−∇· −∆

 . (3.2.25)

The first obvious observation about the first-order least-squares systems (3.2.24) and (3.2.25) is
that both systems have symmetric and (positive) definite coefficient matrices. The use of Krylov
subspace methods like conjugate gradient (CG) for the solution of the discretized systems is then
justified. Moreover, the elements on the main diagonal of the system (3.2.25), corresponding
to the grad−div−curl first-order system, are Laplace operators which are strongly elliptic and
therefore facilitate the use of efficient and standard preconditioners like Jacobi, Gauß-Seidel or
SOR (successive overrelaxation) to accelerate the iterative solution of the corresponding discrete
system.

3.2.3. Discrete Least-squares Principle

We introduce the finite element counterparts of the continuous variational problems here. Let the
bounded domain Ω ⊂ R2 be partitioned by a grid Th consisting of elements K ∈ Th which are
assumed to be open quadrilaterals such that

Ω = int
( ⋃

K∈Th

K
)
. (3.2.26)

For an element K ∈ Th, we denote by hK the diameter of the element K. The mesh size h of Th is
given by

h := max
K∈Th

hK . (3.2.27)

We introduce the approximation spaces Va
h, Vb

h and Wh, which consist of piecewise polyno-
mials of order less or equal r (r ≥ 0 is integer). Let Vh := Va/b

h and consider the approximation
problem

find (uh, ph) ∈ Vh×Wh such that

A
a,b
h (uh, ph;vh,qh) = Fh(vh,qh) ∀(vh,qh) ∈ Vh×Wh (3.2.28)

where Aa/b
h is a bilinear form defined on (Vh×Wh)× (Vh×Wh)→R, and has the following form

for the grad−div system

Aa
h(uh, ph;vh,qh) := ∑

K∈Th

(uh +∇ph,vh +∇qh)0,K + ∑
K∈Th

(∇ ·uh,∇ ·vh)0,K , (3.2.29)
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and for the grad−div−curl system as follows

Ab
h(uh, ph;vh,qh) := ∑

K∈Th

(uh +∇ph,vh +∇qh)0,K + ∑
K∈Th

(∇ ·uh,∇ ·vh)0,K

+ ∑
K∈Th

(∇×uh,∇×vh)0,K .
(3.2.30)

The linear functional Fh is defined on Vh×Wh→ R by

Fh(vh,qh) := ∑
K∈Th

( f ,∇ ·vh)0,K . (3.2.31)

It should be noted that (·, ·)0,K is the restriction of an L2 inner product on an element K of the
triangulation.

If Vh ⊂ V and Wh ⊂W then Aa/b
h

= Aa/b and Fh = F. As a result of the coercivity estimates
(3.2.18) and (3.2.19) the problem (3.2.28) has unique solution (uh, ph) ∈ Vh×Wh.

Error Estimates in the Energy Norm

With the help of the coercivity estimates (3.2.18) and (3.2.19) we are able to derive the a pri-
ori error estimates based on the energy norms H1

0 (Ω)×H(div,Ω) for the grad−div system and
H1

0 (Ω)×H(div,Ω)∩H0,D(curl,Ω) for the grad−div−curl system.Therefore, we recall the follow-
ing theorem from [54].

Theorem 3.2.2. Assume that the Poisson problem has a sufficiently regular solution (u, p) ∈ V×
W ∩ [Hr+1(Ω)]3. Then, the approximate problem (3.2.28) has a unique solution (uh, ph)∈Vh×Wh
and satisfies the following error estimates: there exists a constant C independent of h such that

for the grad−div system

||u−uh||div + ||p− ph||1 ≤Chr(||u||r+1 + ||p||r+1) (3.2.32)

and for the grad−div−curl system

||u−uh||1 + ||p− ph||1 ≤Chr(||u||r+1 + ||p||r+1) . (3.2.33)

Here, r is the order of the polynomial functions and we have assumed that both unknowns are
approximated by equal-order polynomials. For the proof of the theorem 3.2.2 see [54] and the
references therein.

Error Estimates in the L2 norm

For equal-order continuous nodal finite element spaces, one can also prove optimal L2-error
convergence for the scalar variable p. However, showing optimal L2-error convergence for the
fluxes u has been only possible for the grad−div−curl first-order system. In fact, numerical evi-
dence strongly suggests that nodal continuous flux approximations do not posses optimal L2 accu-
racy. Although, optimal L2-error rates for the fluxes can be achieved without the curl constraint,
provided that one uses the div-conforming family of Brezzi-Douglas-Marini or Brezzi-Douglas-
Duran-Fortin elements [54].

In order to use the duality argument, it is assumed in [54] that the solution of the problem{
−∆φ = η in Ω

φ = 0 on Γ
(3.2.34)
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satisfies the regularity estimate

||φ||s+2 ≤ ||η||s for s = 1,2 and ∀η ∈ Hs(Ω). (3.2.35)

The additional regularity is necessary since the L2-error estimates are based on the duality argu-
ment [54].

The optimal L2-error estimates for the scalar variable p can be obtained based on both first-
order formulations [54]. However, as it is mentioned, the optimal L2-error for the flux variable
depends on the curl constraint [12], [54]. Therefore, the following error estimate holds only for
the grad−div−curl system.

Theorem 3.2.3. Assume that the regularity estimate (3.2.35) and the assumptions of the Theorem
3.2.2 hold. Then the approximate problem (3.2.28) has a unique solution (uh, ph) ∈ Vh×Wh and
satisfies the following error estimate: there exists a constant C independent of h such that

for the grad−div−curl system

||u−uh||0 + ||p− ph||0 ≤Chr+1(||u||r+1 + ||p||r+1) . (3.2.36)

Proof of this theorem can be found in [12]. In the next section, we will numerically study the
error estimates presented in this section. We will clarify the differences between the two first-order
formulations on issues related to the efficiency of the iterative solvers and the optimality of the a
priori error estimates.

3.2.4. Finite Element Approximation

We use bilinear Q1 and biquadratic Q2 conforming finite elements for both scalar and vector
variables. The definition of these quadrilateral elements is given below.

Bilinear Element: Q1

The bilinear element Q1 consists of four degrees of freedom, which coincide with the vertices of
the quadrilateral as shown in the left picture in Fig. 3.1 (see [14]). To construct the local shape

Figure 3.1: Conforming finite elements in physical coordinates; (left) bilinear Q1 element; (right)
biquadratic Q2 element

functions on an arbitrary physical element Ωk, we make use of a reference coordinate system. A
local coordinate system (ξ,η) introduced. Let Ω̂k = [−1,1]2 be the reference element located at
the center of this coordinate system (ξ,η). A one-to-one bilinear mapping between the physical
and the reference element is referred to Fk : Ω̂k→Ωk. Once the basis functions have been defined
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on the reference element in terms of reference coordinates, the inverse mapping F−1
k : Ωk → Ω̂k

can be employed to get back to the physical space. Figure 3.1 illustrates the bilinear element in
the physical coordinate system. In this case, there are four shape functions associated with the
vertices. The nodal shape functions in the reference coordinate system are defined locally such
that the basis function φ̂ j is one at the node j and vanishes at all other nodes

φ̂ j(x̂i) = δi j (3.2.37)

where x̂i ∈ Ω̂k represent the ith node in Ω̂k, i.e., vertices. In general, these four shape functions are
bilinear polynomials, a linear combination of the following monomials

{1,ξ,η,ξη}

where −1≤ ξ, η≤ 1. Then, the space Q1(Ωk) on the physical element is defined as follows

Q1(Ωk) =
{

q◦F−1
k : q ∈ span{1,x,y,xy}

}
. (3.2.38)

We refer the interested reader to [14] for more details.

Biquadratic Element: Q2

On each quadrilateral, the biquadratic element Q2 is defined by introducing the four additional
mid-side node points, together with a ninth node at the center as shown in the right picture in
figure 3.1 (see [14]). Figure 3.1 illustrates the biquadratic element in the physical coordinate
system. In this case, there are nine shape functions, four associated with the vertices, four with the
edge mid-points and one internal (or bubble) function. The nodal shape functions in the reference
coordinate system possess the same property as described in equation 3.2.37. In general, these nine
shape functions are biquadratic polynomials, a linear combination of the following monomials

{1,ξ,η,ξη,ξ2,η2,ξ2
η,ξη

2,ξ2
η

2}

where −1≤ ξ, η≤ 1. Then, the space Q2(Ωk) on the physical element is defined as follows

Q2(Ωk) =
{

q◦F−1
k : q ∈ span{1,x,y,xy,x2,y2,x2y,xy2,x2y2}

}
. (3.2.39)

We refer the interested reader to [14] for more details.

3.2.5. Numerical Results and Discussion

To investigate the LSFEMs for the solution of the Poisson equation (3.2.1), a unit square Ω =
[0,1]2 is considered. Two different grid types (regular and perturbed) are used which are shown in
Fig. 3.2. In the case of regular grids, the next levels are obtained by applying recursive uniform
refinements starting from the coarsest grid which consists of just one element. The irregular grids
however, are obtained after construction of regular grids of each level, by applying a perturbation
filter based on the grid size h. Information regarding computational grids, Number of Elements
(NE) and Degrees of Freedom (DoF), for both least-squares and standard finite element methods
is summarized in Table (3.1).

Two different analytical functions are considered for the scalar variable p, and the convergence
rates of both scalar and vector variables are investigated. The functions are defined as follows

p = 16xy(1− x)(1− y) (3.2.40)

p = sin(πx)sin(πy) . (3.2.41)
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Figure 3.2: Sample regular grid (left), perturbed grid 0.1 (middle) and perturbed grid 0.2 (right)

Table 3.1: General mesh information, Poisson problem in a unit square

Number of DoF
LSFEM Standard

Level NE Q1 Q2 Q1 Q2

6 1 024 3 267 12 675 1 089 4 225
7 4 096 12 675 49 923 4 225 16 641
8 16 384 49 923 198 147 16 641 66 049
9 16 384 49 923 198 147 16 641 66 049

We call these two functions, example one and example two, respectively. We extensively compare
the results with those of the standard Galerkin FEM.

In order to validate the theoretical error estimate in Theorem 3.2.3, the L2-errors along with
the rate of convergence for the scalar variable p and the vector variable u are presented in Table 3.2
to 3.7. In Table 3.2 and Table 3.3 the grad−div system is solved using Q1 elements for examples
one and two, respectively. The same results are summarized for the grad−div−curl system in
Table 3.4 and Table 3.5. The errors for the solution of example two based on the Q2 element are
also presented in Table 3.6 and Table 3.7 for both first-order systems. In all test cases the LSFEM
results are compared with those of the Galerkin finite element method. For the case of regular grid,
both the grad−div and the grad−div−curl systems perform well for the first example and optimal
L2-error convergence is achieved for all variables. However, for the second example, optimal L2-
error convergence for the vector variables is obtained just by using the grad−div−curl system.
This observation is widely reported in the LSFEM literature [54]. The reason behind the optimal
error in the first example is that the analytical function is inherently satisfying the curl constraint.

Increasing the mesh perturbation, all discretization errors are increased when compared to the
results of the regular grids at the same level for both systems and examples. However, similar
to the case of regular grids, optimal convergence rate for the vector variable is achieved after
augmenting the first-order system with the curl constraint. All of the numerical results of Table
3.2 to Table 3.7 are obtained using a CG linear solver.

To investigate the effects of the additional equations (3.2.3) and (3.2.4) on the linear solver con-
vergence, we compare the number of iterations required for the CG solver in Table 3.8. We choose
example two and compare the results for the grad−div (gd-LSFEM) and the grad−div−curl (gdc-
LSFEM) formulations. An additional case is also considered here by solving the set of equations
in (3.2.7) without boundary condition (3.2.4). This case is denoted by LSFEM∗ in Table 3.8. We
observe that the gd-LSFEM has the largest number of iterations for both Q1 and Q2 elements. The
number of iterations considerably reduces for the gdc-LSFEM as compared to the gd-LSFEM.
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Table 3.2: L2-error using Q1 element for the grad−div system, example one

LSFEM Standard FEM
Level ||p− ph||0 rate ||u−uh||0 rate ||p− ph||0 rate ||u−uh||0 rate
regular grid

5 2.435e-03 4.00 2.704e-03 4.00 2.370e-03 4.01 1.492e-01 2.00
6 6.086e-04 4.00 6.760e-04 4.00 5.921e-04 4.00 7.455e-02 2.00
7 1.521e-04 4.00 1.691e-04 4.00 1.480e-04 4.00 3.727e-02 2.00
8 3.804e-05 4.00 4.236e-05 4.00 3.700e-05 4.00 1.863e-02 2.00

perturbed grid 0.1
5 2.810e-03 3.96 1.523e-02 1.88 2.673e-03 4.01 1.566e-01 2.00
6 7.207e-04 3.90 5.552e-03 2.74 6.874e-04 3.89 7.922e-02 1.98
7 1.800e-04 4.00 2.305e-03 2.41 1.716e-04 4.00 3.961e-02 2.00
8 4.530e-05 3.97 1.019e-03 2.26 4.320e-05 3.97 1.985e-02 2.00

perturbed grid 0.2
5 3.869e-03 3.86 3.280e-02 1.65 3.551e-03 3.98 1.785e-01 1.97
6 1.042e-03 3.71 1.181e-02 2.78 9.634e-04 3.69 9.289e-02 1.92
7 2.601e-04 4.01 5.351e-03 2.21 2.399e-04 4.01 4.643e-02 2.00
8 6.613e-05 3.93 2.144e-03 2.50 6.103e-05 3.93 2.339e-02 1.98

However, the results of Table 3.8 show that the exclusion of the extra curl boundary condition de-
teriorates the convergence behavior of the CG solver. In addition, the number of iterations for the
LSFEM solvers are grid-dependent and are larger than the number of iterations for the standard
Galerkin solver.

In order to get grid-independent linear solver behavior, we use a multigrid solver as explained
in the previous chapter, see 2.5.2. Performance of the multigrid solver is investigated for the
grad−div−curl system. A CG smoother with a total of four pre-smoothing and post-smoothing
steps is used at each level of the multigrid. A direct Gaussian elimination solver (UMFPACK [18])
is used for the coarse-grid solution. The number of iterations of the multigrid solver are presented
in Table 3.9. The linear solver shows grid-independent convergence behavior. A second test case
is also examined, in which we use a preconditioned-CG smoother for the multigrid. The number
of smoothing steps are four for each level and the results are summarized in Table 3.10. A little
improvement over the unpreconditioned CG smoother is observed for this solver setup.

Multigrid performance is further studied for the grad−div system in Table 3.11. In this case,
a CG smoother with 4 pre/post-smoothing steps is used inside the multigrid. Performance of the
multigrid solver is highly degraded and the number of iterations are increased depending on the
grid level. This justifies the use of the additional curl constraints.
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Table 3.3: L2-error using Q1 element for the grad−div system, example two

LSFEM Standard FEM
Level ||p− ph||0 rate ||u−uh||0 rate ||p− ph||0 rate ||u−uh||0 rate
regular grid

5 2.534e-03 3.78 9.208e-02 2.50 1.901e-03 4.00 1.259e-01 2.00
6 6.527e-04 3.88 3.360e-02 2.74 4.752e-04 4.00 6.295e-02 2.00
7 1.656e-04 3.94 1.198e-02 2.81 1.188e-04 4.00 3.148e-02 2.00
8 4.172e-05 3.97 4.243e-03 2.82 2.970e-05 4.00 1.574e-02 2.00

perturbed grid 0.1
5 2.907e-03 3.69 8.702e-02 2.59 2.186e-03 3.90 1.329e-01 1.97
6 7.582e-04 3.83 3.084e-02 2.82 5.649e-04 3.87 6.734e-02 1.97
7 1.920e-04 3.95 1.044e-02 2.95 1.415e-04 3.99 3.372e-02 2.00
8 4.834e-05 3.97 3.287e-03 3.18 3.547e-05 3.99 1.688e-02 2.00

perturbed grid 0.2
5 3.991e-03 3.54 7.535e-02 2.70 3.017e-03 3.77 1.537e-01 1.92
6 1.067e-03 3.74 2.530e-02 2.98 8.219e-04 3.67 8.015e-02 1.92
7 2.684e-04 3.98 8.568e-03 2.95 2.056e-04 4.00 4.017e-02 2.00
8 6.765e-05 3.97 2.588e-03 3.31 5.175e-05 3.97 2.015e-02 1.99

Table 3.4: L2-error using Q1 element for the grad−div−curl system, example one

LSFEM Standard FEM
Level ||p− ph||0 rate ||u−uh||0 rate ||p− ph||0 rate ||u−uh||0 rate
regular grid

5 3.141e-03 3.99 4.929e-03 4.29 2.370e-03 4.01 1.492e-01 2.00
6 7.859e-04 4.00 1.194e-03 4.13 5.921e-04 4.00 7.455e-02 2.00
7 1.967e-04 4.00 2.953e-04 4.04 1.480e-04 4.00 3.727e-02 2.00
8 4.949e-05 4.00 7.358e-05 4.01 3.700e-05 4.00 1.863e-02 2.00

perturbed grid 0.1
5 3.588e-03 3.92 5.790e-03 4.07 2.673e-03 4.01 1.566e-01 2.00
6 9.180e-04 3.91 1.461e-03 3.96 6.874e-04 3.89 7.922e-02 1.98
7 2.298e-04 4.00 3.656e-04 4.00 1.716e-04 4.00 3.961e-02 2.00
8 5.770e-05 3.98 9.073e-05 4.03 4.320e-05 3.97 1.985e-02 2.00

perturbed grid 0.2
5 4.955e-03 3.73 8.370e-03 3.63 3.551e-03 3.98 1.785e-01 1.97
6 1.323e-03 3.75 2.174e-03 3.85 9.634e-04 3.69 9.289e-02 1.92
7 3.317e-04 3.99 5.555e-04 3.91 2.399e-04 4.01 4.643e-02 2.00
8 8.379e-05 3.96 1.374e-04 4.04 6.103e-05 3.93 2.339e-02 1.98
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Table 3.5: L2-error using Q1 element for the grad−div−curl system, example two

LSFEM Standard FEM
Level ||p− ph||0 rate ||u−uh||0 rate ||p− ph||0 rate ||u−uh||0 rate
regular grid

5 3.441e-03 3.98 6.187e-03 4.00 1.901e-03 4.00 1.259e-01 2.00
6 8.614e-04 4.00 1.547e-03 4.00 4.752e-04 4.00 6.295e-02 2.00
7 2.154e-04 4.00 3.868e-04 4.00 1.188e-04 4.00 3.148e-02 2.00
8 5.386e-05 4.00 9.670e-05 4.00 2.970e-05 4.00 1.574e-02 2.00

perturbed grid 0.1
5 3.919e-03 3.87 7.287e-03 3.93 2.186e-03 3.90 1.329e-01 1.97
6 9.987e-04 3.92 1.838e-03 3.96 5.649e-04 3.87 6.734e-02 1.97
7 2.502e-04 3.99 4.602e-04 4.00 1.415e-04 3.99 3.372e-02 2.00
8 6.264e-05 3.99 1.151e-04 4.00 3.547e-05 3.99 1.688e-02 2.00

perturbed grid 0.2
5 5.408e-03 3.64 1.044e-02 3.76 3.017e-03 3.77 1.537e-01 1.92
6 1.428e-03 3.79 2.666e-03 3.91 8.219e-04 3.67 8.015e-02 1.92
7 3.584e-04 3.98 6.694e-04 3.98 2.056e-04 4.00 4.017e-02 2.00
8 8.987e-05 3.99 1.675e-04 4.00 5.175e-05 3.97 2.015e-02 1.99

Table 3.6: L2-error using Q2 element for the grad−div system, example two

LSFEM Standard FEM
Level ||p− ph||0 rate ||u−uh||0 rate ||p− ph||0 rate ||u−uh||0 rate
regular grid

5 2.572e-05 7.96 2.068e-03 4.09 2.572e-05 7.97 3.191e-03 4.00
6 3.218e-06 7.99 5.135e-04 4.03 3.218e-06 7.99 7.979e-04 4.00
7 4.024e-07 8.00 1.282e-04 4.01 4.024e-07 8.00 1.995e-04 4.00
8 5.030e-08 8.00 3.208e-05 4.00 5.030e-08 8.00 4.987e-05 4.00

perturbed grid 0.1
5 3.134e-05 7.89 2.257e-03 3.51 3.135e-05 7.89 3.747e-03 3.91
6 3.875e-06 8.09 6.121e-04 3.69 3.875e-06 8.09 9.315e-04 4.02
7 4.879e-07 7.94 1.330e-04 4.60 4.879e-07 7.94 2.334e-04 3.99
8 6.105e-08 7.99 3.133e-05 4.25 6.105e-08 7.99 5.840e-05 4.00

perturbed grid 0.2
5 4.875e-05 7.66 2.813e-03 3.66 4.873e-05 7.65 5.304e-03 3.71
6 5.908e-06 8.25 6.663e-04 4.22 5.907e-06 8.25 1.310e-03 4.05
7 7.542e-07 7.83 1.364e-04 4.89 7.542e-07 7.83 3.301e-04 3.97
8 9.448e-08 7.98 2.907e-05 4.69 9.447e-08 7.98 8.261e-05 4.00
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Table 3.7: L2-error using Q2 element for the grad−div−curl system, example two

LSFEM Standard FEM
Level ||p− ph||0 rate ||u−uh||0 rate ||p− ph||0 rate ||u−uh||0 rate
regular grid

5 2.572e-05 7.97 8.147e-05 8.10 2.572e-05 7.97 3.191e-03 4.00
6 3.218e-06 7.99 1.014e-05 8.04 3.218e-06 7.99 7.979e-04 4.00
7 4.024e-07 8.00 1.265e-06 8.01 4.024e-07 8.00 1.995e-04 4.00
8 5.030e-08 8.00 1.581e-07 8.00 5.030e-08 8.00 4.987e-05 4.00

perturbed grid 0.1
5 3.140e-05 7.92 9.441e-05 8.04 3.135e-05 7.89 3.747e-03 3.91
6 3.877e-06 8.10 1.212e-05 7.79 3.875e-06 8.09 9.315e-04 4.02
7 4.880e-07 7.95 1.540e-06 7.87 4.879e-07 7.94 2.334e-04 3.99
8 6.105e-08 7.99 1.920e-07 8.02 6.105e-08 7.99 5.840e-05 4.00

perturbed grid 0.2
5 4.897e-05 7.75 1.364e-04 8.00 4.873e-05 7.65 5.304e-03 3.71
6 5.916e-06 8.28 1.847e-05 7.38 5.907e-06 8.25 1.310e-03 4.05
7 7.545e-07 7.84 2.393e-06 7.72 7.542e-07 7.83 3.301e-04 3.97
8 9.448e-08 7.99 2.973e-07 8.05 9.447e-08 7.98 8.261e-05 4.00

Table 3.8: Number of iterations with CG linear solver, grad−div (gd-LSFEM), grad−div−curl
(gdc-LSFEM) and grad−div−curl system without n×u = 0 on Γ (gdc-LSFEM∗), example two

gd-LSFEM gdc-LSFEM gdc-LSFEM∗ Standard FEM
Level Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2

regular grid
5 108 512 28 78 43 198 2 3
6 252 1 034 54 139 98 549 2 3
7 484 2 266 109 200 250 1 457 2 3
8 982 3 902 175 414 621 3 407 2 3

perturbed grid 0.1
5 201 1 075 50 113 134 493 28 84
6 409 2 158 78 214 303 1 170 48 121
7 733 4 379 152 425 550 1 758 83 251
8 1357 8 820 281 823 926 3 996 164 469

perturbed grid 0.2
5 252 1 354 55 136 320 625 35 86
6 421 2 872 89 255 147 1 197 56 159
7 890 6 979 172 496 594 2 784 103 275
8 1 506 13 162 322 1 003 1 113 6 006 189 573



30 Advection-Diffusion-Reaction Equations

Table 3.9: Number of iterations of the multigrid solver, CG smoother with 4 pre/post-smoothing
steps, grad−div−curl, example two

W-cycle F-cycle
Level Q1 Q2 Q1 Q2

5 4 5 4 5
6 4 5 4 5
7 5 5 5 5
8 5 5 4 5

Table 3.10: Number of iterations of the multigrid solver, preconditioned-CG smoother with 4
pre/post-smoothing steps, grad−div−curl, example two

W-cycle F-cycle
Level Q1 Q2 Q1 Q2

5 3 3 3 3
6 4 4 4 4
7 3 4 3 4
8 3 3 3 3

Table 3.11: Number of iterations of the multigrid solver, CG smoother with 4 pre/post-smoothing
steps, grad−div, example two

W-cycle F-cycle
Level Q1 Q2 Q1 Q2

3 5 31 5 31
4 11 127 11 126
5 19 474 19 477
6 41 * 42 *
7 145 * 145 *
8 * * * *

* The solver is still converging with a very low rate
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3.3. LSFEM for the Diffusion-Reaction Equation

We investigate the numerical solution of the diffusion-reaction equation in this section. Therefore,
we set ε = 1, β = 0, c = k2 in equation (3.1.1). We assume homogeneous Dirichlet boundary
conditions on the whole boundary Γ. The diffusion-reaction equation reads{

−∆p+ k2 p = f in Ω

p = 0 on Γ
(3.3.1)

where k is a real constant and Ω⊂R2 is a bounded domain with boundary Γ. Also we assume that
f is a smooth function defined in Ω. This special problem is considered to investigate the Least-
squares finite element method for the solution of the steady state diffusion-reaction equation. In
addition, equation (3.3.1) can be viewed as a semi-discretized time dependent Poisson problem.
In this case, the coefficient k2 serves as the inverse of the time step which normally appears in a
temporal discretization of the transient Poisson equation.

3.3.1. First-order Systems

Since the diffusion-reaction equation (3.3.1) is second order, we use the following techniques to
obtain the equivalent first-order systems.

The grad−div System

The most straightforward strategy to reformulate the second order equation (3.3.1) to an equivalent
first order system is to introduce the gradient of the p as a new variable. The new grad−div system
is as follows 

∇ ·u+ k2 p = f in Ω

u+∇p = 0 in Ω

p = 0 on Γ .

(3.3.2)

The grad−div−curl System

In a similar manner to the Poisson equation, the first order system of equations (3.3.2) representing
the diffusion-reaction equation can be augmented with the curl equation (3.2.3) and the additional
boundary condition (3.2.4). So, we use the following set of equations as the grad−div−curl system

∇ ·u+ k2 p = f in Ω

∇×u = 0 in Ω

u+∇p = 0 in Ω

p = 0 on Γ

n×u = 0 on Γ .

(3.3.3)

3.3.2. Continuous Least-squares Principle

We use the previous definitions, as defined in equations (3.2.8), (3.2.9) and (3.2.10), for the space
of admissible functions V and W . We define the continuous least-squares energy functionals
Ja/b : V×W � R based on the L2-norm of the residuals of the extended first order systems. The
energy functionals are defined as follows for the grad−div system (3.3.2)

Ja(v,q; f ) =
∣∣∣∣α(∇ ·v+ k2q− f )

∣∣∣∣2
0 + ||v+∇q||20 ∀(v,q) ∈ V×W (3.3.4)
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and for the grad−div−curl system (3.3.3)

Jb(v,q; f ) =
∣∣∣∣α(∇ ·v+ k2q− f )

∣∣∣∣2
0 + ||v+∇q||20 + ||α(∇×v)||20 ∀(v,q) ∈ V×W . (3.3.5)

In the above energy functionals, we appropriately scale the equations with α = 1/k. This will give
us better energy balances and the resulting least-squares methods exhibit an interesting splitting
property as explained by Bochev and Gunzburger [52].

The least-squares problem for (3.3.1) in the vector-operator setting (3.3.4, 3.3.5 is the mini-
mization problem: find (u, p) ∈ V×W such that

(u, p) = argmin
(v,q)∈V×W

Ja/b(v,q; f ,g) . (3.3.6)

The corresponding variational problem is to find (u, p) ∈ V×W such that

Aa/b(u, p;v,q) = F(v,q) ∀(v,q) ∈ V×W (3.3.7)

where the bilinear form for the grad−div system is given by

Aa(u, p;v,q) :=
1
k2 (∇ ·u+ k2 p,∇ ·v+ k2q)0 +(u+∇p,v+∇q)0 (3.3.8)

and the bilinear form for the grad−div−curl system reads

Ab(u, p;v,q) :=
1
k2 (∇ ·u+ k2 p,∇ ·v+ k2q)0 +(u+∇p,v+∇q)0 +

1
k2 (∇×u,∇×v)0 . (3.3.9)

The linear form of the problem for both first-order systems reads

F(v,q) :=
1
k2 (∇ ·u+ k2 p, f )0. (3.3.10)

Operator form of the Problem

Let us write the variational problem (3.3.7) as follows

Aa/b(u, p;v,q) =
(
L(u, p),L(v,q)

)
, (3.3.11)

where L is the linear operator. Restricting our test spaces to the C∞
0 (Ω) function spaces, infinitely

differentiable functions that have a compact support in Ω, we rewrite the bilinear form (3.3.11) as

Aa/b(u, p;v,q) =
(
L∗L(u, p),(v,q)

)
(3.3.12)

where L∗ is the formal adjoint of L. The least-squares operator of the grad−div system is given by

L∗L=

 − 1
k2 ∇∇ ·+ I 0

0 −∆+ k2

 (3.3.13)

and for the the grad−div−curl system is given by

L∗L=

 − 1
k2 ∆+ I 0

0 −∆+ k2

 (3.3.14)

where I is the identity matrix, ∇, ∇· and ∆ are the nabla, divergence and Laplace operators, re-
spectively. This is a remarkable "splitting" property of the LSFEM that provides exactly the same
solution for the scalar variable as that of standard Galerkin finite element method [52]. In addition,
the grad−div−curl system has strong elliptic Laplace operators on the diagonals of the system
matrix. This leads to better convergence properties of the iterative solvers for the grad−div−curl
system as compared to the grad−div system.
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3.3.3. Discrete Least-Squares Principle

The finite element approximation of the problem (3.3.7) is presented here. We introduce the
approximation spaces Va

h, Vb
h and Wh. Let Vh×Wh := Va/b

h ×Wh and consider the approximation
problem

find (uh, ph) ∈ Vh×Wh such that

A
a,b
h (uh, ph;vh,qh) = Fh(vh,qh) ∀(vh,qh) ∈ Vh×Wh. (3.3.15)

A Priori Error Estimates

Let Vh ⊂ V and Wh ⊂W be conforming approximation spaces which consist of piecewise poly-
nomials of order less or equal r (r ≥ 0 is integer), then Aa/b

h
= Aa/b and Fh = F. As a result of

the coercivity and the boundedness of the bilinear form, the problem (3.3.7) has unique solution
(u, p) ∈ V×W and (uh, ph) ∈ Vh×Wh.

The same error estimates of the Poisson equation, Theorems 3.2.2 and 3.2.3, hold true for the
diffusion-reaction equation [54].

3.3.4. Numerical Results and Discussion

We consider a unit square Ω = [0,1]2 as the computational domain in order to investigate the
solution of the diffusion-reaction equation. We use conforming elements of Q1 and Q2 type for
both the scalar and the vector variables. The same computational grids of the Poisson equation
will be used in our simulation. Since we have observed the poor performance of the grad−div
system in the Poisson problem, we only investigate the grad−div−curl system.

The following analytical functions is assumed for the scalar variable p,

p = sin(πx)sin(πy) (3.3.16)

which leads to the following right hand side function f

f = (2π
2 + k2)sin(πx)sin(πy). (3.3.17)

Discretization errors along with the rate of convergence for the scalar variable p and the vector
variable u are calculated based on the L2-norm. The results for different values of k2 are pre-
sented in Table 3.12 and Table 3.13 for Q1 and Q2 elements, respectively. The LSFEM results are
compared with those of the standard Galerkin FEM. The results match very well with the a priori
error estimates. The important remark is that the error reductions of both the scalar and the vector
variables are optimal for the LSFEM. The optimality of the vector variable approximation is not
achieved with the standard Galerkin FEM.

Next, the performance of the multigrid solver is investigated for this problem. A preconditioned-
CG smoother is used for pre/post-smoothing inside the multigrid. The UMFPACK solver is used
for the coarse grid solution. We summarize the number of linear solver iterations for both element
types for a wide range values of parameter k and for different grid levels in Table 3.14. We observe
a perfect grid-independent solver behavior for Q1 and Q2 elements. Moreover, we observe that the
number of iterations is smaller for larger values of k2.
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Table 3.12: L2-error using Q1 element, the LSFEM based on grad−div−curl system and the
standard finite element

LSFEM Standard
Level ||p− ph||0 Rate ||u−uh||0 Rate ||p− ph||0 Rate ||u−uh||0 Rate
k2 =1e-4

5 1.901e-03 4.00 5.971e-03 4.00 1.901e-03 4.00 1.259e-01 2.00
6 4.752e-04 4.00 1.493e-03 4.00 4.752e-04 4.00 6.295e-02 2.00
7 1.188e-04 4.00 3.732e-04 4.00 1.188e-04 4.00 3.148e-02 2.00
8 2.970e-05 4.00 9.330e-05 4.00 2.970e-05 4.00 1.574e-02 2.00

k2 = 0.0 (Poisson equation)
5 3.441e-03 3.98 6.187e-03 4.00 1.901e-03 4.00 1.259e-01 2.00
6 8.614e-04 4.00 1.547e-03 4.00 4.752e-04 4.00 6.295e-02 2.00
7 2.154e-04 4.00 3.868e-04 4.00 1.188e-04 4.00 3.148e-02 2.00
8 5.386e-05 4.00 9.670e-05 4.00 2.970e-05 4.00 1.574e-02 2.00

k2 =1.0
5 1.836e-03 4.00 5.768e-03 4.00 1.836e-03 4.00 1.259e-01 2.00
6 4.589e-04 4.00 1.442e-03 4.00 4.589e-04 4.00 6.295e-02 2.00
7 1.147e-04 4.00 3.604e-04 4.00 1.147e-04 4.00 3.148e-02 2.00
8 2.868e-05 4.00 9.011e-05 4.00 2.868e-05 4.00 1.574e-02 2.00

k2 =1e+4
5 1.021e-03 4.06 3.207e-03 4.05 1.021e-03 4.06 1.261e-01 2.01
6 2.543e-04 4.01 7.989e-04 4.01 2.543e-04 4.01 6.298e-02 2.00
7 6.352e-05 4.00 1.995e-04 4.00 6.352e-05 4.00 3.148e-02 2.00
8 1.588e-05 4.00 4.987e-05 4.00 1.588e-05 4.00 1.574e-02 2.00

Table 3.13: L2-error using Q2 element, the LSFEM based on grad−div−curl system and the
standard finite element

LSFEM Standard
Level ||p− ph||0 Rate ||u−uh||0 Rate ||p− ph||0 Rate ||u−uh||0 Rate
k2 =1e-4

5 2.572e-05 7.97 8.148e-05 8.11 2.572e-05 7.97 3.191e-03 4.00
6 3.218e-06 7.99 1.014e-05 8.04 3.218e-06 7.99 7.979e-04 4.00
7 4.024e-07 8.00 1.265e-06 8.01 4.024e-07 8.00 1.995e-04 4.00
8 5.030e-08 8.00 1.581e-07 8.00 5.030e-08 8.00 4.987e-05 4.00

k2 = 0.0 (Poisson equation)
5 2.572e-05 7.97 8.147e-05 8.10 2.572e-05 7.97 3.191e-03 4.00
6 3.218e-06 7.99 1.014e-05 8.04 3.218e-06 7.99 7.979e-04 4.00
7 4.024e-07 8.00 1.265e-06 8.01 4.024e-07 8.00 1.995e-04 4.00
8 5.030e-08 8.00 1.581e-07 8.00 5.030e-08 8.00 4.987e-05 4.00

k2 =1.0
5 2.572e-05 7.96 8.146e-05 8.10 2.572e-05 7.96 3.191e-03 4.00
6 3.218e-06 7.99 1.014e-05 8.04 3.218e-06 7.99 7.979e-04 4.00
7 4.024e-07 8.00 1.265e-06 8.01 4.024e-07 8.00 1.995e-04 4.00
8 5.030e-08 8.00 1.581e-07 8.00 5.030e-08 8.00 4.987e-05 4.00

k2 =1e+4
5 2.555e-05 7.81 8.018e-05 7.79 2.555e-05 7.81 3.209e-03 4.06
6 3.213e-06 7.95 1.009e-05 7.95 3.213e-06 7.95 7.991e-04 4.02
7 4.022e-07 7.99 1.263e-06 7.99 4.022e-07 7.99 1.996e-04 4.00
8 5.029e-08 8.00 1.580e-07 8.00 5.029e-08 8.00 4.988e-05 4.00
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Table 3.14: Number of iterations with multigrid solver, preconditioned-CG as smoother with 4
pre/post smoothing steps, the grad−div−curl system

k2 =1e-4 k2 =1 k2 =1e+4
Level Q1 Q2 Q1 Q2 Q1 Q2

5 2 3 2 3 1 1
6 3 3 3 3 1 1
7 3 3 3 3 1 1
8 3 3 3 3 1 1
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3.4. LSFEM for the Advection-Diffusion-Reaction Equation

There is a vast amount of literature devoted to the application of the LSFEM for the solution
of advection-diffusion-reaction problems. We consider the steady state form of the advection-
diffusion-reaction equation 3.1.1 defined as

−∇ · (ε∇p−βp)+ cp = f in Ω

p = gD on ΓD

n ·∇p = gN on ΓN .

(3.4.1)

Different first-order formulations as well as different stabilization techniques have been in-
troduced and analyzed generally in the book by Bochev and Gunzburger [52] and specifically by
other investigators in [1, 2, 15, 26, 38, 60, 65, 78, 79].

The first step of every least-squares finite element method is the reformulation of the second-
order equation into a set of first-order equations. Two different formulations are generally used
in the LSFEM literature for the solution of advection-diffusion-reaction equations. The first one
is based on the introduction of the diffusive fluxes as new variables and the second reformulation
takes the total fluxes as new variables.

Carey et al. in [1, 2, 26] and Cai et al. in [78] studied least-squares mixed finite element
methods for the advection-diffusion-reaction problem based on the diffusive flux formulation. In
[1, 2, 26, 78], the ellipticity and the optimal error estimates in H(div,Ω)×H1(Ω) have been
proved, while no optimal L2-norm error estimate was provided.

Cai et al. [79] modified the least-squares energy functionals by adding a compatible curl
constraint and imposing additional boundary conditions to the original n-dimensional problem.
The resulting functional is proved to be elliptic in (H1)n+1 which implies optimal error estimates
in standard finite element subspaces of (H1)n+1. Followed by the work of Cai et al. in [78, 79],
Fiard et al. introduced an exponentially weighted LSFEM for the solution of advection-dominated
flow problems [38].

Using a different formulation, Yang [15] introduced total fluxes as new variables to recast the
second-order advection-diffusion equation into a set of first-order equations. An optimal L2 error
estimate is developed by Yang [15] for both the scalar and the vector variables provided that the
finite element spaces of the fluxes are one of the classical mixed elements, such as Raviart-Thomas
elements [51], and the L2-norm functionals are properly scaled.

Lazarov et al. [65] introduced the streamline diffusion LSFEM to obtain more stable solutions
to the advection-dominated flow problems. Hsieh and Yang [60] studied different stabilization
techniques, such as Galerkin least-squares stabilization and streamline diffusion stabilization [65],
combined with the LSFEM based on the diffusive flux formulation. Optimal error estimates have
been proved in H(div,Ω)×H1(Ω) and different interior and boundary layer advection-dominated
flow problems have been investigated [60].

We introduce both first-order systems based on the diffusive and the total fluxes. The additional
curl equation and boundary conditions are added to the first-order equations for both formulations.
To the best knowledge of the author, this is the first time to add the curl equation to the total flux
formulation. The analysis of this new first-order set of equations is one of the new contributions
of this work. We provide the coercivity and the a priori error estimates for the new formulation.

Moreover, we study the weighted norm (scaled) LSFEM. Finally, the stabilization techniques
of least-squares type as in Hsieh and Yang [60] are studied.

3.4.1. First-order Systems

In this problem, we introduce two different techniques to reformulate the second-order PDE into
a set of first-order equations.
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Diffusive Flux Formulation

We define the new variables, the diffusive fluxes, as follows

u =−ε∇p. (3.4.2)

Introducing equation (3.4.2) to the general advection-diffusion-reaction equation (3.4.1) leads to
the following first-order system of equations

∇ ·u+∇ · (βp)+ cp = f in Ω

u+ ε∇p = 0 in Ω

p = gD on ΓD

u ·n = εgN on ΓN .

(3.4.3)

Equation (3.4.3) can be further augmented with the following equations
∇×u = 0 in Ω

u×n = ε
∂gD

∂τ
on ΓD

(3.4.4)

where ∂

∂τ
is the tangential derivative on ΓD.

Total Flux Formulation

In this case the total fluxes, the sum of the diffusive and the advective fluxes, are considered as
new variables. The new variables read

u =−ε∇p+βp. (3.4.5)

Using equation (3.4.5) and equation (3.4.1) one can easily obtain the following system of equations
∇ ·u+ cp = f in Ω

u+ ε∇p−βp = 0 in Ω

p = gD on ΓD

u ·n = εgN on ΓN .

(3.4.6)

Equation (3.4.6) can be further augmented with the following equations
∇× (u−βp) = 0 in Ω

u×n = ε
∂gD

∂τ
on ΓD.

(3.4.7)

3.4.2. Continuous Least-squares Principles

Let us proceed with homogeneous Dirichlet problem where ΓD 6= /0. We define the space of admis-
sible functions for the grad−div and the grad−div−curl systems. First, we define the following
spaces for the flux variables u

Va = H0,N(div,Ω) (3.4.8)

Vb = H0,N(div,Ω)∩H0,D(curl,Ω) , (3.4.9)

where Va and Vb are the test spaces of the grad−div and the grad−div−curl systems, respectively.
We define the space W which represents the scalar variable p in both systems:

W = H1
0,D(Ω) . (3.4.10)
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Let V := Va/b
0 for consistency. Define the L2-norm least-squares energy functional Ja/b : V×W �

R for the extended first-order system (3.4.3), (3.4.4), based on the diffusive flux, as follows

Ja(v,q; f ,g) = ||∇ ·v+∇ · (βq)+ cq− f ||20 + ||v+ ε∇q||20 ∀(v,q) ∈ V×W (3.4.11)

Jb(v,q; f ,g) = ||∇ ·v+∇ · (βq)+ cq− f ||20 + ||v+ ε∇q||20 + ||∇×v||20
∀(v,q) ∈ V×W

(3.4.12)

and for the first-order system (3.4.6), (3.4.7), based on the total flux, as follows

Ja(v,q; f ,g) = ||∇ ·v+ cq− f ||20 + ||v+ ε∇q−βq||20 ∀(v,q) ∈ V×W (3.4.13)

Jb(v,q; f ,g) = ||∇ ·v+ cq− f ||20 + ||v+ ε∇q−βq||20 + ||∇× (v−βq)||20
∀(v,q) ∈ V×W

(3.4.14)

The least square problem for (3.4.1) in the vector-operator setting (3.4.11, 3.4.12, 3.4.13,
3.4.14) is the minimization problem: find (u, p) ∈ V×W such that

(u, p) = argmin
(v,q)∈V×W

Ja/b(v,q; f ,g) (3.4.15)

The variational problem associated with the minimization problem (3.4.15) is to find (u, p) ∈
V×W such that

Aa/b(u, p;v,q) = F(v,q) ∀(v,q) ∈ V×W (3.4.16)

where Aa/b is a bilinear form defined on (V×W )× (V×W )→R, and has the following form for
the diffusive flux formulation

Aa(u, p;v,q) := (∇ ·u+∇ · (βp)+ cp,∇ ·v+∇ · (βq)+ cq)0

+(u+ ε∇p,v+ ε∇q)0
(3.4.17)

Ab(u, p;v,q) := (∇ ·u+∇ · (βp)+ cp,∇ ·v+∇ · (βq)+ cq)0

+(∇×u,∇×v)0 +(u+ ε∇p,v+ ε∇q)0
(3.4.18)

and F is a linear form defined, on V×W → R, by

F(v,q) := ( f ,∇ ·v+∇ · (βq)+ cq)0 (3.4.19)

The bilinear form for the total flux formulation defined, on (V×W )× (V×W )→ R, by

Aa(u, p;v,q) := (u+ ε∇p−βp,v+ ε∇q−βq)0

+(∇ ·u+ cp,∇ ·v+ cq)0
(3.4.20)

Ab(u, p;v,q) := (u+ ε∇p−βp,v+ ε∇q−βq)0

+(∇ ·u+ cp,∇ ·v+ cq)0

+(∇× (u−βp),∇× (v−βq))0

(3.4.21)

and F is defined, on V×W → R, by

F(v,q) := ( f ,∇ ·v+ cq)0. (3.4.22)
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Diffusive Flux in Operator form

Let us write Aa/b(u, p;v,q) =
(
La/b(u, p),La/b(v,q)

)
0 where La/b is the block form operator given

by

La =

 I ε∇

∇· ∇ ·β+ c

 (3.4.23)

and

Lb =


I ε∇

∇· ∇ ·β+ c

∇× 0

 . (3.4.24)

Restricting to the C∞
0 (Ω) functions, we can rewrite the bilinear form Aa/b as

Aa/b(u, p;v,q) =
(
La/b∗La/b(u, p),(v,q)

)
0 (3.4.25)

where La/b∗ is the formal adjoint of La/b. The least-squares operator La∗La for the diffusive flux
formulation is given by

La∗La =

 I −∇

−ε∇· −β ·∇+ c

 I ε∇

∇· ∇ ·β+ c



=

 I−∇∇· ∇[(ε− c)I−∇ ·β]

−[(ε− c)I+(β ·∇)]∇· −ε24+ c(∇ ·β−β ·∇)− (β ·∇)∇ ·β+ c2

 .

(3.4.26)
Consequently, the least-squares operator Lb∗Lb for the diffusive flux formulation with additional
curl equations reads

Lb∗Lb =

 I −∇ (∇×)∗

−ε∇· −β ·∇+ c 0




I ε∇

∇· ∇ ·β+ c

∇× 0



=

 I−4 ∇[(ε− c)I−∇ ·β]

−[(ε− c)I+(β ·∇)]∇· −ε24+ c(∇ ·β−β ·∇)− (β ·∇)∇ ·β+ c2

 .

(3.4.27)

Total Flux in Operator form

The Linear Operators La/b for the diffusive flux are given by

La
ε =

 I ε∇−β

∇· c

 (3.4.28)
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and

Lb =


I ε∇−β

∇· c

∇× −∇×β

 (3.4.29)

The least-squares operator La∗La for the total flux formulation is given by

La∗La =

 I −∇

−ε∇ ·−β· c

 I ε∇−β

∇· c



=

 I−∇∇· (ε− c)∇−β

−(ε− c)∇ ·−β· −ε24+ ε∇ ·β− εβ ·∇+ ||β||2 + c2


(3.4.30)

and for the total flux formulation with additional curl equations is defined as

Lb∗Lb =

 I −∇ (∇×)∗

−ε∇ ·−β· c T ∗




I ε∇−β

∇· c

∇× T



=

 I−4 (ε− c)∇−β+(∇×)∗T

−(ε− c)∇ ·−β ·+T ∗∇× −ε24+ ε∇ ·β− εβ ·∇+ ||β||2 + c2 +T ∗T


(3.4.31)

where T :=−∇×β and its adjoint operator is defined as T ∗ := (−∇×β)∗.
We simplify the operator forms presented in (3.4.26), (3.4.27) and (3.4.30), (3.4.31) by consid-

ering the case of one dimensional advection-diffusion equation without reaction term, i.e. c = 0,
and take the advecting vector β = 1. Therefore, the continuous form of the least-squares problem
for the diffusive flux reads

L∗L =

 1− ∂2

∂x2 ε
∂

∂x −
∂2

∂x2

−ε
∂

∂x −
∂2

∂x2 −(1+ ε2) ∂2

∂x2

 . (3.4.32)

Similarly, the simplified continuous form of the least-squares problem for the total flux system
reads

L∗L =

 1− ∂2

∂x2 ε
∂

∂x −1

−ε
∂

∂x −1 −ε2 ∂2

∂x2 +1

 . (3.4.33)

It should be noted that the additional curl equations do not appear in the above one dimensional
formulations. The operator forms show that the system is always symmetric. In addition, the
total flux formulation is differentially diagonal dominant. This property helps to design efficient
multigrid solvers for the solution of the discrete system with higher order finite elements [28].

3.4.3. Existence and Uniqueness of the Solution

The unique solution of the problem (3.4.16) depends on the coercivity and boundedness estimates
of bilinear form Aa/b. It should be noted that Ja/b(v,q;0,0) =Aa/b(v,q;v,q).
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Diffusive Flux

For the diffusive flux formulation (3.4.3) without the reaction term, i.e. c = 0, the following
estimate can be found in [60]:

Theorem 3.4.1. There exists constants C1,C2 > 0 independent of ε such that

C1

(
ε

2 ||q||21 + ε
2 ||v||2div

)
≤ Ja(v,q;0,0)≤C2

(
||q||21 + ||v||

2
div

)
(3.4.34)

for all (v,q) ∈ V×W .

For the diffusive flux formulation (3.4.3) which is augmented by the curl equation (3.4.4) and
with c = 0, the following estimate holds [31]:

Theorem 3.4.2. There exists constants C1,C2 > 0 independent of ε such that

C1

(
ε

2 ||q||21 + ε
2 ||v||21

)
≤ Jb(v,q;0,0)≤C2

(
||q||21 + ||v||

2
1

)
(3.4.35)

for all (v,q) ∈ V×W .

For the proofs of the Theorems (3.4.1) and (3.4.2) one may refer to [60] and [31], respectively.

Total Flux

The coercivity and boundedness estimates of bilinear forms Aa/b for the total flux formulation
(3.4.6) and the total flux with the curl equation (3.4.7) are discussed here.

Theorem 3.4.3. There exist constants C3,C4 > 0 independent of ε such that

C3

(
ε

2 ||q||21 + ε
2 ||v||2div

)
≤ Ja(v,q;0,0)≤C4

(
||q||21 + ||v||

2
div

)
C3

(
ε

2 ||q||21 + ε
2 ||v||21

)
≤ Jb(v,q;0,0)≤C4

(
||q||21 + ||v||

2
1

) (3.4.36)

for all (v,q) ∈ V×W.

Before we proceed with the proof of the Theorem (3.4.3), let us introduce the Poincaré-
Friedrichs inequality [68]

||q||0 ≤C ||∇q||0 (3.4.37)

where, C > 0 is a constant. We also assume that there exist a constant γ0 ≥ 0 such that

c+
1
2

∇ ·β≥ γ0 inΩ. (3.4.38)

Proof. The boundedness estimate can be easily proved. We proceed to show the validity of the
coercivity, namely, the left hand sides of Theorem (3.4.3). We have

Ja(v,q;0,0) = ||∇ ·v+ cq||20 + ||v+ ε∇q−βq||20 (3.4.39)

Jb(v,q;0,0) = ||∇ ·v+ cq||20 + ||v+ ε∇q−βq||20
+ ||∇× (v−βq)||20

(3.4.40)
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lower bound with ||q||1
Let α be a positive constant that will be determined later. Applying the Poincaré-Friedrichs in-
equality (3.4.37),

Ja/b(v,q;0,0)≥||∇ ·v+ cq||20 + ||v+ ε∇q−βq||20
= ||∇ ·v+ cq−αq||20−α

2 ||q||20 +2αc ||q||20
+2α(∇ ·v,q)0

+ ||v+ ε∇q−βq−α∇q||20−α
2 ||∇q||20

+2α(v,∇q)0 +2αε ||∇q||20−2α(βq,∇q)0

= ||∇ ·v+ cq−αq||20−α
2 ||q||20 +2α(c+

1
2

∇ ·β) ||q||20

+ ||v+ ε∇q−βq−α∇q||20−α
2 ||∇q||20 +2αε ||∇q||20

≥−α
2C2 ||∇q||20 +2αε ||∇q||20−α

2 ||∇q||20

(3.4.41)

with α = ε/1+C2 we get

Ja/b(v,q;0,0)≥ ε2

1+C2 ||∇q||20 (3.4.42)

furthermore, we have

||q||21 = ||q||
2
0 + ||∇q||20 ≤ (1+C2) ||∇q||20 (3.4.43)

then

J
a/b
ε (v,q;0,0)≥ ε2

(1+C2)2 ||q||
2
1 (3.4.44)

lower bound with ||v||div and ||v||curl

||v||20 ≤2
(
||v+ ε∇q−βq||20 + ||ε∇q−βq||20

)
≤2Ja/b(v,q;0,0)+C ||q||21 ≤

C
ε2 J

a/b(v,q;0,0)
(3.4.45)

||∇ ·v||20 ≤2(||∇ ·v+ cq||20 + ||cq||20)

≤2Ja/b(v,q;0,0)+C ||q||21 ≤
C
ε2 J

a/b(v,q;0,0)
(3.4.46)

||∇×v||20 ≤2(||∇× (v−βq)||20 + ||∇× (βq)||20)

≤2Jb(v,q;0,0)+C ||q||21 ≤
C
ε2 J

b(v,q;0,0)
(3.4.47)

then, using the equivalence of the norm
√
||∇ ·v||20 + ||∇×v||20 and ||v||1 on H1(Ω), see [52], we

get

Ja(v,q;0,0)≥Cε
2 ||v||2div

Jb(v,q;0,0)≥Cε
2 ||v||21

(3.4.48)

This completes the proof.
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3.4.4. Discrete Least-squares Principles

We consider the approximation of the problem (3.4.16) with the finite element. Let the bounded
domain Ω ⊂ Rd be partitioned by a grid Th consisting of elements K ∈ Th which are assumed to
be open quadrilaterals or hexahedrons such that Ω = int

(⋃
K∈Th

K
)
. For an element K ∈ Th, we

denote by hK the diameter of the element K. The mesh size h of Th is given by h := maxK∈Th hK .
We introduce the approximation spaces Va

h, Vb
h and Wh. Let Vh×Wh :=Va/b

h ×Wh and consider
the approximation problem

find (uh, ph) ∈ Vh×Wh such that

A
a,b
h (uh, ph;vh,qh) = Fh(vh,qh) ∀(vh,qh) ∈ Vh×Wh (3.4.49)

where Aa/b
h is a bilinear form defined on (Vh×Wh)× (Vh×Wh)→R, and has the following form

for the diffusive flux formulation

Aa
h(uh, ph;vh,qh) := ∑

K∈Th

(uh + ε∇ph,vh + ε∇qh)0,K

+ ∑
K∈Th

(∇ ·uh +∇ · (βph)+ cph,∇ ·vh +∇ · (βqh)+ cqh)0,K
(3.4.50)

Ab
h(uh, ph;vh,qh) := ∑

K∈Th

(uh + ε∇ph,vh + ε∇qh)0,K

+ ∑
K∈Th

(∇ ·uh +∇ · (βph)+ cph,∇ ·vh +∇ · (βqh)+ cqh)0,K

+ ∑
K∈Th

(∇×uh,∇×vh)0,K

(3.4.51)

and Fh is a linear form defined, on Vh×Wh→ R, by

Fh(vh,qh) := ∑
K∈Th

( f ,∇ ·vh +∇ · (βqh)+ cqh)0,K . (3.4.52)

The bilinear form for the total flux formulation defined, on (Vh×Wh)× (Vh×Wh)→ R , by

Aa
h(uh, ph;vh,qh) := ∑

K∈Th

(uh + ε∇ph−βph,vh + ε∇qh−βqh)0,K

+ ∑
K∈Th

(∇ ·uh + cph,∇ ·vh + cqh)0,K
(3.4.53)

Ab
h(uh, ph;vh,qh) := ∑

K∈Th

(uh + ε∇ph−βph,vh + ε∇qh−βqh)0,K

+ ∑
K∈Th

(∇ ·uh + cph,∇ ·vh + cqh)0,K

+ ∑
K∈Th

(∇× (uh−βph),∇× (vh−βqh))0,K

(3.4.54)

and Fh for this system defined, on Vh×Wh→ R, by

Fh(vh,qh) := ∑
K∈Th

( f ,∇ ·vh + cqh)0,K . (3.4.55)

In the above formulas the inner product (·, ·)0,K is the restriction of the (·, ·)0 to a finite element K.



44 Advection-Diffusion-Reaction Equations

Conforming LSFEM

Let Vh ⊂ V and Wh ⊂W be the approximating spaces consist of piecewise polynomials of order
less or equal r (r ≥ 0 is integer), then Aa/b

h
= Aa/b and Fh = F. As a result of the coercivity

the problems (3.4.16) and (3.4.49) have unique solutions (u, p) ∈ V×W and (uh, ph) ∈ Vh×Wh.
Moreover, the error has the orthogonality property

Aa/b (u−uh, p− ph;vh, ph) = 0 ∀(vh,qh) ∈ Vh×Wh (3.4.56)

and have the following error estimates:

Theorem 3.4.4. Assume that the problem has a sufficiently regular solution (u, p) ∈ V×W ∩
(Hr+1(Ω))d+1. Then the approximate problem (3.4.49) has a unique solution (uh, ph) ∈ Vh×Wh
and satisfies the following error estimate: there exists a constant C independent of ε and h such
that

for grad−div system

ε ||u−uh||div + ε ||p− ph||1 ≤Chr(||u||r+1 + ||p||r+1) (3.4.57)

and for grad−div−curl system

ε ||u−uh||1 + ε ||p− ph||1 ≤Chr(||u||r+1 + ||p||r+1) (3.4.58)

Proof. From the interpolation theory we have

||p− pI||1 ≤Chr ||p||r+1 and ||u−uI||div ≤Chr ||u||r+1 (3.4.59)

where uI ∈Vh and pI ∈Wh are standard interpolants of u and p. We define A :=Aa/b for the sake
of simplicity. Based on the orthogonality property (3.4.56), we have

A(uh−uI, ph− pI;uh−uI, ph− pI)

=A((uh−u, ph− p)+(u−uI, p− pI) ;uh−uI, ph− pI)

=A(u−uI, p− pI;uh−uI, ph− pI)

≤A
1
2 (u−uI, p− pI;u−uI, p− pI)

×A
1
2 (uh−uI, ph− pI;uh−uI, ph− pI)

(3.4.60)

and therefore
A

1
2 (uh−uI, ph− pI;uh−uI, ph− pI)

≤A
1
2 (u−uI, p− pI;u−uI, p− pI)

(3.4.61)

Now, using the inequality (3.4.61), the interpolation property (3.4.59) and the coercivity estimates
in Theorems (3.4.1)-(3.4.3), we have

for grad−div system

ε ||uh−uI||div + ε ||ph− pI||1 ≤Chr(||u||r+1 + ||p||r+1) (3.4.62)

and for grad−div−curl system

ε ||uh−uI||1 + ε ||ph− pI||1 ≤Chr(||u||r+1 + ||p||r+1) (3.4.63)

We apply triangle inequality for the grad−div system

ε ||u−uh||div + ε ||p− ph||1
≤ ε(||u−uI||div + ||p− pI||1)+ ε(||uI−uh||div + ||pI− ph||1)
≤Chr(||u||r+1 + ||p||r+1)

(3.4.64)
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and for the grad−div−curl system

ε ||u−uh||1 + ε ||p− ph||1
≤ ε(||u−uI||1 + ||p− pI||1)+ ε(||uI−uh||1 + ||pI− ph||1)
≤Chr(||u||r+1 + ||p||r+1)

(3.4.65)

This completes the proof.

3.4.5. Continuous Least-Squares Principle with Scaling

In this section, the least-squares variational principles introduced earlier are slightly modified. The
idea is to scale the energy functionals to obtain a more balanced variational problem [15, 78]. We
introduce the following least-squares L2-norm functionals for the diffusive flux

Ja
ε(v,q; f ,g) = ||∇ ·v+∇ · (βq)+ cq− f ||20 +

1
ε
||v+ ε∇q||20 ∀(v,q) ∈ V×W (3.4.66)

Jb
ε(v,q; f ,g) = ||∇ ·v+∇ · (βq)+ cq− f ||20 +

1
ε
||v+ ε∇q||20 + ||∇×v||20

∀(v,q) ∈ V×W
(3.4.67)

and the following functionals for the total flux

Ja
ε(v,q; f ,g) = ||∇ ·v+ cq− f ||20 +

1
ε
||v+ ε∇q−βq||20 ∀(v,q) ∈ V×W (3.4.68)

Jb
ε(v,q; f ,g) = ||∇ ·v+ cq− f ||20 +

1
ε
||v+ ε∇q−βq||20 + ||∇× (v−βq)||20

∀(v,q) ∈ V×W .
(3.4.69)

In the above scaled functionals, the inverse of the diffusion coefficient 1
ε

is used as a wighting
parameter. The associated variational problem, after minimizing the energy functional, is to find
(u, p) ∈ V×W such that

A
a/b
ε (u, p;v,q) = Fε(v,q) ∀(v,q) ∈ V×W (3.4.70)

The bilinear and the linear forms are specifically denoted by a superscript ε in order to distinguish
between the scaled LSFEM and the primitive LSFEM formulations. The definition of these bi-
linear and linear forms are very similar to the previous formulations and is not repeated here for
brevity.

Diffusive Flux in Operator form

Restricting for simplicity to the C∞
0 (Ω) functions, then we can rewrite the bilinear form A

a/b
ε as

A
a/b
ε (u, p;v,q) =

(
L

a/b∗
ε L

a/b
ε (u, p),(v,q)

)
0 (3.4.71)

where L
a/b∗
ε is the formal adjoint of La/b

ε and the least-squares operator La/b∗
ε L

a/b
ε is given by

La
ε

∗La
ε =

 I√
ε

−∇

−
√

ε∇· −β ·∇+ c

 I√
ε

√
ε∇

∇· ∇ ·β+ c



=

 I
ε
−∇∇· ∇[(1− c)I−∇ ·β]

−[(1− c)I+(β ·∇)]∇· −ε4+ c(∇ ·β−β ·∇)− (β ·∇)∇ ·β+ c2


(3.4.72)
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and

Lb∗
ε Lb

ε =

 I√
ε

−∇ (∇×)∗

−
√

ε∇· −β ·∇+ c 0




I√
ε

√
ε∇

∇· ∇ ·β+ c

∇× 0



=

 I
ε
−4 ∇[(1− c)I−∇ ·β]

−[(1− c)I+(β ·∇)]∇· −ε4+ c(∇ ·β−β ·∇)− (β ·∇)∇ ·β+ c2


(3.4.73)

for the diffusive flux and the diffusive flux with the additional curl equations, respectively.

Total Flux in Operator form

Similarly, the least-squares operator La/b∗
ε L

a/b
ε for the total flux is given by

La
ε

∗La
ε =


I√
ε

−∇

−
√

ε∇ ·− β·√
ε

c


 I√

ε

√
ε∇− β√

ε

∇· c



=

 I
ε
−∇∇· (1− c)∇− β

ε

−(1− c)∇ ·−β·
ε

−ε4+∇ ·β−β ·∇+ ||β||
2

ε
+ c2


(3.4.74)

and

Lb
ε

∗
Lb

ε =


I√
ε

−∇ (∇×)∗

−
√

ε∇ ·− β·√
ε

c T ∗




I√
ε

√
ε∇− β√

ε

∇· c

∇× T



=


I
ε
−4 (1− c)∇−β+(∇×)∗T

−(1− c)∇ ·−β·
ε
+T ∗∇× −ε4+∇ ·β−β ·∇+ ||β||

2

ε
+ c2 +T ∗T

 .

(3.4.75)
for the total flux and the total flux with the additional curl equations, respectively. Simplify-
ing the operator forms presented in (3.4.72)-(3.4.75) by considering the case of one dimensional
advection-diffusion equation without reaction term, i.e. c = 0 and taking the advecting vector
β = 1, we obtain the following system of equations for the diffusive flux

L∗εLε =

 1
ε
− ∂2

∂x2
∂

∂x −
∂2

∂x2

− ∂

∂x −
∂2

∂x2 −(1+ ε) ∂2

∂x2

 (3.4.76)

and correspondingly for the total flux

L∗εLε =

 1
ε
− ∂2

∂x2
∂

∂x −
1
ε

− ∂

∂x −
1
ε

−ε
∂2

∂x2 +
1
ε

 . (3.4.77)



3.4. LSFEM for the Advection-Diffusion-Reaction Equation 47

Existence and Uniqueness of the Solution

The unique solution of the problem (3.4.70) depends on the coercivity and boundedness estimates
of bilinear form A

a/b
ε .

Theorem 3.4.5. There exist constants C5,C6 > 0 depending on ε such that
for the grad−div system

C5

(
ε

2 ||q||21 + ε
2 ||v||2div

)
≤ J

a/b
ε (v,q;0,0)≤C6

(
||q||21 + ||v||

2
div

)
(3.4.78)

and for the grad−div−curl system

C5

(
ε

2 ||q||21 + ε
2 ||v||21

)
≤ J

a/b
ε (v,q;0,0)≤C6

(
||q||21 + ||v||

2
1

)
(3.4.79)

for all (v,q) ∈ V×W.

Proof. The proof is similar to that of Theorem (3.4.3).

3.4.6. Discrete Least-Squares Principle with Scaling

The discrete counterpart of the variational principle in (3.4.70) reads

A
a/b
ε,h (uh, ph;vh,qh) = Fε,h(vh,qh) ∀(vh,qh) ∈ Vh×Wh. (3.4.80)

Assuming the conformity of the finite element spaces and the condition of Theorem (3.4.4),
the following error estimate holds for the scaled LSFEMs:

Theorem 3.4.6. Solution of the approximate problem (3.4.80) has a unique solution (uh, ph) ∈
Vh×Wh and satisfies the following error estimate: there exists a constant Cε independent of h
such that

for grad−div system

ε ||u−uh||div + ε ||p− ph||1 ≤Cεhr(||u||r+1 + ||p||r+1) (3.4.81)

and for grad−div−curl system

ε ||u−uh||1 + ε ||p− ph||1 ≤Cεhr(||u||r+1 + ||p||r+1) (3.4.82)

Proof. The proof is similar to that of Theorem (3.4.4). We omit the details for brevity.

Remark 3.4.7. The constant Cε in Theorem (3.4.6) depends on the diffusion coefficient ε which is
in contrast to the constant C (ε-independent) in the a priori error estimate of the primitive LSFEM
in Theorem (3.4.4). Based on this fact, we expect better results out of the scaled system for all flow
regimes including highly convection-dominated flows with very small ε.

3.4.7. Stabilized LSFEM

In this section, the idea of the stabilized LSFEM is introduced. The main goal of this setting is to
achieve more stable numerical solutions for the advection-diffusion equation in highly advection-
dominated flows [60]. The following materials on the stabilization are based on the work by Hsieh
and Yang [60].

It should be noted that, Hsieh and Yang [60] have taken the diffusive flux formulation as the
basis of their analysis; however, in this work we extend the stabilization idea to the total flux
formulation as well.
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Stabilization Technique

In this type of stabilization, the primitive least-squares functionals (3.4.11) and (3.4.13) are taken
and some stabilization terms, as in the Galerkin Least-Squares method, are added to them. Due to
the low regularity of the functions in the space V×W , the additional terms in the energy functional
are restricted and defined on the finite element space Vh×Wh. Therefore, the modified least-
squares functional is as follows:

for the diffusive flux formulation

Ja
δ,h(vh,qh; f ,g) = ||∇ ·vh +∇ · (βqh)+ cqh− f ||20 + ||vh + ε∇qh||20

+ ∑
K∈Th

δK ||−ε∆qh +∇ · (βqh)+ cqh− f ||20,K ∀(vh,qh) ∈ Vh×Wh
(3.4.83)

and for the total flux formulation

Jb
δ,h(vh,qh; f ,g) = ||∇ ·vh + cqh− f ||20 + ||vh + ε∇qh−βqh||20

+ ∑
K∈Th

δK ||−ε∆qh +∇ · (βqh)+ cqh− f ||20,K ∀(vh,qh) ∈ Vh×Wh
(3.4.84)

where ||·||0,K denotes the L2-norm restricted to the finite element K and δK is a stabilization param-
eter which should be chosen appropriately. Taking the first variation of the functionals (3.4.83)
and (3.4.84), we setup the following stabilized LSFEM problem: find (uh, ph)∈Vh×Wh such that

A
a/b
δ,h (uh, ph;vh,qh) = Fδ,h(vh,qh) ∀(vh,qh) ∈ Vh×Wh (3.4.85)

The modified bilinear form for the diffusive flux formulation is defined as follows

Aa
δ,h(uh, ph;vh,qh) := ∑

K∈Th

(uh + ε∇ph,vh + ε∇qh)0,K

+ ∑
K∈Th

(∇ ·uh +∇ · (βph)+ cph,∇ ·vh +∇ · (βqh)+ cqh)0,K

+ ∑
K∈Th

δK (−ε∆ph +∇ · (βph)+ cph,−ε∆qh +∇ · (βqh)+ cqh)0,K .

(3.4.86)

The modified linear form for the diffusive flux formulation then reads

Fδ,h(ψ,v) := ∑
K∈Th

( f ,∇ ·vh +∇ · (βqh)+ cqh)0,K

+ ∑
K∈Th

δK( f ,−ε∆qh +∇ · (βqh)+ cqh)0,K .
(3.4.87)

The modified bilinear form for the total flux formulation is defined as follows

Ab
δ,h(uh, ph;vh,qh) := ∑

K∈Th

(uh + ε∇ph−βph,vh + ε∇qh−βqh)0,K

+ ∑
K∈Th

(∇ ·uh + cph,∇ ·vh + cqh)0,K

+ ∑
K∈Th

δK (−ε∆ph +∇ · (βph)+ cph,−ε∆qh +∇ · (βqh)+ cqh)0,K

(3.4.88)

and the linear form in this case reads

Fδ,h(ψ,v) := ∑
K∈Th

( f ,∇ ·vh + cqh)0,K

+ ∑
K∈Th

δK( f ,−ε∆qh +∇ · (βqh)+ cqh)0,K .
(3.4.89)

Remark 3.4.8. The error estimate for the stabilized LSFEM based on the diffusive flux formulation
of the advection-diffusion equation, i.e. c = 0 in equation (3.4.1), can be found in [60]. Similarly,
one may derive the error estimate for the total flux formulation.
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3.4.8. Numerical Results and Discussion

In this section, we consider the solution of the advection-diffusion equation, i.e. c = 0 in equation
(3.4.1), with different variations of the LSFEM.

In the first example, the theoretical error estimates of the Theorems 3.4.4 and 3.4.6 are in-
vestigated using a manufactured analytical solution. Both the grad−div and the grad−div−curl
systems are considered.

In the next two examples, the behavior of the different LSFEM formulations for the solution of
advection-dominated flows are studied. The results are graphically presented and compared with
those of the standard Galerkin finite element method.

The effect of variations of the diffusion coefficient and the advecting velocity field on the
behavior of the solution can be better analyzed with the local non-dimensional Peclet number (Pe)
defined as following

Pe =
||β||hK

2ε
(3.4.90)

where ||·|| represents the L2 norm and hK is the characteristic element length. Pe number represents
the balance of the two transport mechanisms, namely the convection transport and the diffusion
transport mechanisms. In other words, the Pe number is the ratio of the convection to the diffusion
transport phenomena. In a convection-dominated flow, for example for large convecting velocity
fields or for small diffusion coefficients, the Pe number is very large. Pe number can be defined
globally for the flow, in which the local element size hK in equation 3.4.90 should be replaced with
the flow length scale h. In this study, we use the local Pe number.

Analytic Solution: Example I

The problem domain is a unit square which is subjected to the homogeneous Dirichlet boundary
conditions. We assume a constant advecting velocity field defined by β = [1,1]T . The value of
the diffusion coefficient varies in order to obtain different Pe numbers and hence different flow
regimes. An analytic manufactured solution which is independent of ε is considered as follows

p = xy(1− x)(1− y)e−x. (3.4.91)

Substituting the equation (3.4.91) into the main governing equation (3.4.1), we obtain the source
term f . We use equal-order finite elements for the vector and the scalar variables.

Using the Q1 finite elements, the relative L2-error results are presented in Table 3.15 and 3.16
for the primitive LSFEM and in Table 3.17 and 3.18 for the LSFEM with scaling. The numerical
results of Table 3.15 to Table 3.18 show that both scaled LSFEM systems perform very well with
respect to the scalar variable p even in the highly advection-dominated flows. The total flux results
of the scaled LSFEM, Table 3.18, show optimal L2-error convergence of the fluxes for all values
of ε. For the diffusive flux formulation of the scaled LSFEM, the convergence rates of the fluxes
degrade in advection-dominated flows, see Table 3.17.

As we observed for the Q1 elements, the scaled LSFEM performs better than the primitive
LSFEM. Therefore, for the Q2 elements we only analyze the scaled formulation. We summarize
the results of the scaled LSFEM for the Q2 elements in Table 3.19 and 3.20. The approximation of
the scalar and the vector variables in the total flux formulation remains optimal for different flow
regimes.

Next, we investigate the performance of the stabilized LSFEM and compare the results with
those of the scaled LSFEM for the Q1 elements in Tables 3.21 and 3.22 and for the Q2 elements
in Tables 3.23 and 3.24. Different values of the stabilization parameter δ are investigated for both
the diffusive and the total flux formulations. The results indicate that the scaled LSFEM performs
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Table 3.15: Primitive LSFEM, diffusive flux u =−ε∇p, Q1 elements, example I

LSFEM Standard
Level ||p− ph||0 Rate ||u−uh||0 Rate ||p− ph||0 Rate ||u−uh||0 Rate
ε = 1

6 1.221e-03 − 7.311e-04 − 1.504e-03 − 3.706e-02 −
7 3.042e-04 4.01 1.766e-04 4.14 3.762e-04 4.00 1.853e-02 2.00
8 7.599e-05 4.00 4.381e-05 4.03 9.404e-05 4.00 9.265e-03 2.00
9 1.899e-05 4.00 1.094e-05 4.00 2.351e-05 4.00 4.633e-03 2.00

ε = 1e−2
6 2.742e-02 − 1.582e-01 − 2.148e-03 − 3.721e-02 −
7 1.399e-02 1.96 6.348e-02 2.49 5.364e-04 4.00 1.855e-02 2.01
8 5.888e-03 2.38 2.171e-02 2.92 1.341e-04 4.00 9.268e-03 2.00
9 1.988e-03 2.96 6.427e-03 3.38 3.352e-05 4.00 4.633e-03 2.00

ε = 1e−6
6 2.790e-02 − 1.597e+03 − 3.542e-01 − 6.008e+00 −
7 1.551e-02 1.80 6.762e+02 2.36 2.234e-02 15.85 7.523e-01 7.99
8 8.135e-03 1.91 2.614e+02 2.59 1.440e-03 15.52 9.453e-02 7.96
9 4.150e-03 1.96 9.622e+01 2.72 1.026e-04 14.03 1.271e-02 7.44

The curl constraint is also added to the LSFEM equations.

much better for small diffusion coefficients and very robust for the whole range of flow regimes.
The stabilized LSFEM is unable to produce optimal convergence rates for the fluxes.

Interior Layer Flow: Example II

In this example, our computational domain is a unit square. An advecting velocity β = [ 1√
2
, 1√

2
]T

is considered, the source term is f = 0 and the diffusion constant is ε = 10−4, i.e. Pe = 78. Equal-
order finite elements and a computational mesh of 64×64 elements are used. Boundary conditions
are defined as follows

p = 0 on {(x,y) : 0 < x≤ 1,y = 1}∪{(x,y) : x = 0,0≤ y≤ 1} (3.4.92)

p = 1 on {(x,y) : 0≤ x≤ 1,y = 0}∪{(x,y) : x = 1,0≤ y < 1} . (3.4.93)

This is an interior layer problem due to the discontinuity of the boundary data and is highly
convection-dominated with Pe = 78. The p contour plots for the different LSFEMs are com-
pared with the standard Galerkin FEM in Fig. 3.3 and 3.4 for Q1 and Q2 elements, respectively.
Since the diffusive and the total flux formulations qualitatively produce the same results, only one
set of the results is depicted here. The Q1 element result of the standard Galerkin FEM is very
oscillatory as it is expected from the flow Peclet number. The primitive LSFEM is also very dif-
fusive although there is no over/under shoot in the result. The scaled and the stabilized LSFEM
methods perform much better than the primitive LSFEM and the standard Galerkin methods. Al-
though, some over/under shoots can be observed in the results. By increasing the degree of our
finite element spaces, Q2 elements, all LSFEM variations perform well. The standard Galerkin
FEM result is also reasonably good for the Q2 elements.
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Table 3.16: Primitive LSFEM, total flux u =−ε∇p+βp, Q1 elements, example I

LSFEM Standard
Level ||p− ph||0 Rate ||u−uh||0 Rate ||p− ph||0 Rate ||u−uh||0 Rate
ε = 1

6 1.493e-03 − 6.222e-03 − 1.504e-03 − 3.544e-02 −
7 3.620e-04 4.13 1.999e-03 3.11 3.762e-04 4.00 1.772e-02 2.00
8 8.877e-05 4.08 6.648e-04 3.01 9.404e-05 4.00 8.858e-03 2.00
9 2.196e-05 4.04 2.269e-04 2.93 2.351e-05 4.00 4.429e-03 2.00

ε = 1e−2
6 9.630e-02 − 9.863e-02 − 2.148e-03 − 2.466e-03 −
7 3.405e-02 2.83 3.493e-02 2.82 5.364e-04 4.00 8.082e-04 3.05
8 9.081e-03 3.75 9.463e-03 3.69 1.341e-04 4.00 3.305e-04 2.45
9 2.226e-03 4.08 2.392e-03 3.96 3.352e-05 4.00 1.547e-04 2.14

ε = 1e−6
6 1.283e-01 − 1.294e-01 − 3.542e-01 − 3.542e-01 −
7 7.343e-02 1.76 7.355e-02 1.76 2.234e-02 15.85 2.234e-02 15.85
8 4.044e-02 1.82 4.043e-02 1.82 1.440e-03 15.52 1.440e-03 15.52
9 2.160e-02 1.87 2.159e-02 1.87 1.026e-04 14.03 1.026e-04 14.03

Table 3.17: LSFEM with scaling, diffusive flux u =−ε∇p, Q1 elements, example I

LSFEM Standard
Level ||p− ph||0 Rate ||u−uh||0 Rate ||p− ph||0 Rate ||u−uh||0 Rate
ε = 1e−2

6 1.992e-03 − 4.388e-03 − 2.148e-03 − 3.721e-02 −
7 5.875e-04 3.39 1.257e-03 3.49 5.364e-04 4.00 1.855e-02 2.01
8 1.590e-04 3.69 3.289e-04 3.82 1.341e-04 4.00 9.268e-03 2.00
9 4.089e-05 3.89 8.338e-05 3.94 3.352e-05 4.00 4.633e-03 2.00

ε = 1e−6
6 1.435e-03 − 1.497e-02 − 3.542e-01 − 6.008e+00 −
7 3.600e-04 3.99 5.051e-03 2.96 2.234e-02 15.85 7.523e-01 7.99
8 9.012e-05 3.99 1.726e-03 2.93 1.440e-03 15.52 9.453e-02 7.96
9 2.254e-05 4.00 5.935e-04 2.91 1.026e-04 14.03 1.271e-02 7.44

The curl constraint is also added to the LSFEM equations.

Table 3.18: LSFEM with scaling, total flux u =−ε∇p+βp, Q1 elements, example I

LSFEM Standard
Level ||p− ph||0 Rate ||u−uh||0 Rate ||p− ph||0 Rate ||u−uh||0 Rate
ε = 1e−2

6 2.128e-03 − 2.192e-03 − 2.148e-03 − 2.466e-03 −
7 6.097e-04 3.49 6.339e-04 3.46 5.364e-04 4.00 8.082e-04 3.05
8 1.610e-04 3.79 1.710e-04 3.71 1.341e-04 4.00 3.305e-04 2.45
9 4.092e-05 3.93 4.529e-05 3.77 3.352e-05 4.00 1.547e-04 2.14

ε = 1e−6
6 1.435e-03 − 1.435e-03 − 3.542e-01 − 3.542e-01 −
7 3.600e-04 3.99 3.600e-04 3.99 2.234e-02 15.85 2.234e-02 15.85
8 9.012e-05 3.99 9.012e-05 3.99 1.440e-03 15.52 1.440e-03 15.52
9 2.254e-05 4.00 2.254e-05 4.00 1.026e-04 14.03 1.026e-04 14.03
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Table 3.19: LSFEM with scaling, diffusive flux u =−ε∇p, Q2 elements, example I

LSFEM Standard
Level ||p− ph||0 Rate ||u−uh||0 Rate ||p− ph||0 Rate ||u−uh||0 Rate
ε = 1

6 5.906e-06 − 3.388e-06 − 5.865e-06 − 3.152e-04 −
7 7.345e-07 8.04 4.178e-07 8.11 7.333e-07 8.00 7.880e-05 4.00
8 9.170e-08 8.01 5.202e-08 8.03 9.166e-08 8.00 1.970e-05 4.00

ε = 1e−2
6 1.180e-05 − 1.638e-04 − 5.865e-06 − 3.152e-04 −
7 1.073e-06 11.00 1.291e-05 12.69 7.333e-07 8.00 7.880e-05 4.00
8 1.056e-07 10.16 8.842e-07 14.60 9.166e-08 8.00 1.970e-05 4.00

ε = 1e−6
6 5.874e-06 − 1.393e-03 − 2.501e-02 − 7.748e-01 −
7 7.336e-07 8.01 3.537e-04 3.94 1.572e-03 15.91 9.691e-02 8.00
8 9.168e-08 8.00 8.898e-05 3.97 1.007e-04 15.62 1.214e-02 7.98

The curl constraint is also added to the LSFEM equations.

Table 3.20: LSFEM with scaling, total flux u =−ε∇p+βp, Q2 elements, example I

LSFEM Standard
Level ||p− ph||0 Rate ||u−uh||0 Rate ||p− ph||0 Rate ||u−uh||0 Rate
ε = 1

6 5.865e-06 − 4.858e-06 − 5.865e-06 − 3.013e-04 −
7 7.333e-07 8.00 6.072e-07 8.00 7.333e-07 8.00 7.534e-05 4.00
8 9.166e-08 8.00 7.589e-08 8.00 9.166e-08 8.00 1.884e-05 4.00

ε = 1e−2
6 1.184e-05 − 1.013e-05 − 9.300e-06 − 1.444e-05 −
7 1.037e-06 11.41 9.473e-07 10.69 8.638e-07 10.77 2.758e-06 5.23
8 1.033e-07 10.05 1.007e-07 9.41 9.603e-08 9.00 6.525e-07 4.23

ε = 1e−6
6 5.874e-06 − 5.873e-06 − 2.501e-02 − 2.501e-02 −
7 7.336e-07 8.01 7.336e-07 8.01 1.572e-03 15.91 1.572e-03 15.91
8 9.168e-08 8.00 9.168e-08 8.00 1.007e-04 15.62 1.007e-04 15.62

Table 3.21: Diffusive flux u =−ε∇p, Q1 elements at ε = 1e−6, example I

Method p/u hK = 1/32 hK = 1/64 hK = 1/128 hK = 1/256 ≈ Rate
Scaled LSFEM p 1.435e-03 3.600e-04 9.012e-05 2.254e-05 3.99

u 1.497e-02 5.051e-03 1.726e-03 5.935e-04 2.93
Stabilized LSFEM
δK = 0 p 2.790e-02 1.551e-02 8.135e-03 4.150e-03 1.89

u 1.597e+03 6.762e+02 2.614e+02 9.622e+01 2.93

δK = h2
K p 2.207e-02 1.250e-02 6.596e-03 3.365e-03 1.88

u 1.342e+03 5.914e+02 2.327e+02 8.628e+01 2.51

δK = 0.1h2
K p 2.712e-02 1.510e-02 7.926e-03 4.043e-03 1.89

u 1.565e+03 6.653e+02 2.577e+02 9.492e+01 2.55
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Table 3.22: Total flux u =−ε∇p+βp, Q1 elements at ε = 1e−6, example I

Method p/u hK = 1/32 hK = 1/64 hK = 1/128 hK = 1/256 ≈ Rate
Scaled LSFEM p 1.435e-03 3.600e-04 9.012e-05 2.254e-05 3.99

u 1.435e-03 3.600e-04 9.012e-05 2.254e-05 3.99
Stabilized LSFEM
δK = 0 p 1.283e-01 7.343e-02 4.044e-02 2.160e-02 1.81

u 1.294e-01 7.355e-02 4.043e-02 2.159e-02 1.82

δK = h2
K p 4.339e-02 2.352e-02 1.234e-02 6.360e-03 1.90

u 4.873e-02 2.477e-02 1.264e-02 6.431e-03 1.96

δK = 0.1h2
K p 9.807e-02 5.511e-02 2.984e-02 1.574e-02 1.84

u 1.004e-01 5.554e-02 2.992e-02 1.576e-02 1.86

Table 3.23: Diffusive flux u =−ε∇p, Q2 elements at ε = 1e−6, example I

Method p/u hK = 1/32 hK = 1/64 hK = 1/128 ≈ Rate
Scaled LSFEM p 5.874e-06 7.336e-07 9.168e-08 8.00

u 1.393e-03 3.537e-04 8.898e-05 3.95
Stabilized LSFEM
δK = 0 p 1.738e-04 3.661e-05 7.969e-06 4.67

u 1.466e+01 3.502e+00 8.572e-01 4.14

δK = h2
K p 6.547e-05 1.526e-05 3.655e-06 4.24

u 8.281e+00 2.010e+00 4.943e-01 4.10

δK = 0.1h2
K p 1.393e-04 3.056e-05 6.885e-06 4.50

u 1.350e+01 3.248e+00 7.972e-01 4.11

Table 3.24: Total flux u =−ε∇p+βp, Q2 elements at ε = 1e−6, example I

Method p/u hK = 1/32 hK = 1/64 ≈ Rate
Scaled LSFEM p 5.874e-06 7.336e-07 8.00

u 5.873e-06 7.336e-07 8.00
Stabilized LSFEM
δK = 0 p 3.940e-04 1.002e-04 3.93

u 3.274e-04 8.380e-05 3.91

δK = h2
K p 1.441e-05 3.324e-06 4.33

u 1.229e-05 2.798e-06 4.39

δK = 0.1h2
K p 1.441e-05 3.324e-06 4.33

u 1.229e-05 2.798e-06 4.39
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primitive LSFEM Standard Galerkin FEM

Stabilized LSFEM, δK = 1.0 LSFEM with Scaling

Figure 3.3: Comparison of p contour plots between the LSFEMs and the standard Galerkin FEM
at Pe = 78 using the Q1 elements, example II

primitive LSFEM Standard Galerkin FEM

Stabilized LSFEM, δK = 1.0 LSFEM with Scaling

Figure 3.4: Comparison of p contour plots between the LSFEMs and the standard Galerkin FEM
at Pe = 78 using the Q2 elements, example II
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Boundary Layer Flow: Example III

We consider the transport of the scalar variable p inside a unit square domain. A circular cylinder
with non-homogeneous boundary condition is placed in the middle of the domain. The schematic
flow configuration and the boundary conditions are depicted in Fig. 3.5. The constant velocity
field is β = [1,0]T , the source term is f = 0 and the diffusion constant varies between ε = 10−4

and ε = 10−6.
When the flow reaches the circular cylinder, the inhomogeneity of the boundary condition

across the cylinder induces a boundary layer to the flow. This boundary layer then will be carried
with the flow to the downstream. The numerical methods which have no special treatment for the
convective terms, will show spurious oscillations when the flow becomes convection-dominated.
We investigate the solution of this particular problem with our LSFEMs and compare the results
with those obtained by the standard Galerkin FEM.

 0

 1

 0  1

p=0

p=0

p=0

Outflowp=1p=0

 0

 1

 0  1

p=0

p=0

p=0

Outflowp=1p=0

Figure 3.5: Domain configuration and the boundary conditions, transport of a scalar source term
in a boundary layer flow, example III

We analyze the behavior of the scalar variable p by plotting it over the outflow boundary. The
scaled (LSFEM Dif. and LSFEM Tot.) and the stabilized (LSFEM Dif. Sta. and LSFEM Tot. Sta.)
LSFEMs have been compared with the standard Galerkin FEM (Std. Galerkin) for ε = 1e−4 and
ε = 1e−6 in Fig. 3.6 and 3.7, respectively. Two grids have been used for every solution in order
to show that the grid-independent results are obtained. The stabilization parameter is δk = 1 for
all test cases. Both the scaled and the stabilized LSFEM formulations produce similar results. The
LSFEM results do not possess spurious oscillations of the standard Galerkin FEM for all values
of the ε used here. However, there are some under/over shoots near the discontinuity region, very
close to the circular cylinder, in the domain.

3.5. Summary and Conclusion

We have shown that, by adding the extra curl equations to the Poisson equation optimal error
estimates for both the scalar and the flux variables can be obtained. These statements are supported
by our numerical investigation in section 3.2.5 which are in accordance with the theoretical a priori
error estimates. Robust grid-independent multigrid performance is obtained only for the grad-div-
curl system.

Solving the diffusion-reaction equations, optimal error estimates for the scalar and the vector
variables are achieved with the grad-div-curl system. We observed a perfect grid-independent
multigrid solver behavior for the Q1 and the Q2 finite elements. Moreover, we observed that the
number of iterations is smaller for larger values of the reaction coefficient k.
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Figure 3.6: Outflow profile for the Q1 elements at (top): ε = 1e−4 and (bottom): ε = 1e−6; on
(left): a 32×32 grid; and (right): a 128×128 grid, example III

A new first-order formulation based on the total flux is introduced for the advection-diffusion
equation. The uniqueness and a priori error estimates have been derived and proved. We have
shown through many numerical examples that the scaled LSFEM performs well even for the
advection-dominated flows. The scaled LSFEM is very robust for the whole range of flow regimes.
In addition, unlike the stabilized LSFEM which its performance highly depends on the proper
choice of the stabilization parameter, the scaled LSFEM is parameter-independent and performs
well for all problems studied here.

Both of the scaled LSFEM systems for the advection-diffusion equation provide optimal L2-
error estimates for the scalar variable p even in the highly advection-dominated flows. The total
flux results of the scaled LSFEM show optimal L2-error convergence of the fluxes for all flow
regimes. For the diffusive flux formulation of the scaled LSFEM, the convergence rates of the
fluxes degraded in advection-dominated flows. These observations are valid for both the Q1 and
the Q2 finite elements. On the other hand, the stabilized LSFEM is unable to produce optimal
convergence rates for the scalar and the vector variables.

The scaled LSFEM performs reasonably good for the interior and the boundary layer problems
at high Peclet numbers, further revealing the fact that no stabilization is required for the solution
of the advection-diffusion flows with LSFEM.
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Figure 3.7: Outflow profile for the Q2 elements at (top): ε = 1e−4 and (bottom): ε = 1e−6; on
(left): a 32×32 grid; and (right): a 64×64 grid, example III
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4

Incompressible Navier-Stokes Equations

We solve two first-order formulations of the stationary incompressible Navier-Stokes equations
based on the least-squares finite element method. These first-order formulations have different
properties and offer accurate approximations of some physical quantities of interest, e.g. the vor-
ticity and the stress in fluid flow applications. For the discrete systems, we use a conjugate gradient
(CG) solver accelerated with a geometric multigrid preconditioner for the complete system. In ad-
dition, we employ a Krylov space smoother inside of the multigrid which allows a parameter-free
smoothing. Combining this linear solver with the Newton linearization, we construct a very ro-
bust and efficient solver. We use quadratic finite elements to enhance the mass conservation of
the least-squares method for the inflow-outflow problems and to obtain highly accurate results.
We demonstrate the advantages of using the higher order finite elements and the grid independent
solver behavior through the solution of three stationary laminar flow problems of benchmarking
character.

4.1. Introduction

In this chapter, we solve the incompressible Navier-Stokes (NS) equations with the LSFEM. Di-
rect application of the LSFEM to the second-order NS equations requires the use of quite im-
practical C1 finite elements [52]. Therefore, we introduce two equivalent first-order systems. The
first formulation under consideration is the well-known div-curl-grad first-order velocity-vorticity-
pressure (V-V-P) formulation. Here all unknowns are approximated in H1(Ω). The second formu-
lation is a div-grad first-order system resulting in a three-field formulation with stresses, velocities,
and pressure as unknowns. This S-V-P formulation is approximated in H1(Ω)×H1(Ω)×L2(Ω).

The discrete V-V-P and S-V-P LSFEM systems are symmetric and positive definite [52]. This
permits the use of the conjugate gradient (CG) method and efficient multigrid solvers for the solu-
tion of the discrete systems. In order to improve the efficiency of the solution method, the multigrid
and the Krylov subspace method, here CG, can be combined with two different strategies. The
first strategy is to use the multigrid as a preconditioner for the Krylov method [28]. The advan-
tage of this scheme is that the Krylov method reduces the error in eigenmodes that are not being
effectively reduced by multigrid. The second strategy is to employ Krylov methods as multigrid
smoother. The Krylov methods appropriately determine the size of the solution updates at each
smoothing step [76]. This leads to smoothing sweeps which, in contrast to the standard SOR or
Jacobi smoothing, are free from predefined damping parameters.

Heys et al. studied the LSFEM solution of the Stokes equation [28] and the NS equations [34–
36] with an algebraic multigrid preconditioned CG method. A geometric multigrid preconditioned
CG solver was used by Ranjan and Reddy [64] for the Spectral/hp LSFEM solution of the NS
equations. They demonstrated superior convergence of the multigrid solver compared to the Jacobi
preconditioning. More interestingly, Köster [42] and Wobker [76] used preconditioned BiCGStab
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as smoother in a geometric multigrid method as well as an outer solver around it to solve the
Poisson equation with standard Galerkin finite element method. They reported higher numerical
stability and lower total costs of the solution process compared to the standalone multigrid or
BiCGStab solvers.

We extend the multigrid-preconditioned CG (MPCG) solver to the V-V-P and S-V-P NS sys-
tems. In addition, we use a CG pre/post-smoother to obtain efficient and parameter-free smoothing
sweeps. We investigate the performance of the MPCG solver for a wide range of parameters. We
demonstrate a robust and grid independent behavior for the solution of different flow problems
with both linear and quadratic finite elements for the V-V-P [46] and the S-V-P [50, 69] formula-
tions.

Despite the advantages of the LSFEM, the lack of local mass conservation of this method
is one of its drawbacks. Different strategies have been employed to overcome this deficiency.
For very recent techniques and also an overview of the previous efforts we refer to the works
by Bochev et al. [56, 57]. One remedy for 2D problems is to use higher order finite elements
[40]. Weighting the continuity equation more strongly [37] is another well-known method to
recover mass conservation. We analyze both of these methods in this work. We show, through the
Poiseuille flow and the flow around cylinder problems, that quadratic finite elements satisfy the
mass conservation to a great extent without the need to further weight the continuity equation.

The classical least-squares methods yield poor approximation quality when using lower-order
finite elements, see e.g. [70]. The lower-order LSFEMs provide a suboptimal performance. In-
deed, there are some contributions with lower-order elements with a satisfying performance in
fluid dynamics or solid mechanics, see e.g. [13] and [70], but these approaches are modified least-
squares formulations, which may introduce other drawbacks. An illustrative example for the poor
solution of lower-order interpolation was given in [61] for the driven cavity problem. A possible
solution for this problem, see e.g. [62] and [61], is the application of higher-order interpolation
combinations. We show that accurate results can be obtained with the both LSFEM formula-
tions provided that higher order finite elements are used. We demonstrate this with a quantitative
analysis of the flow around cylinder and the lid-driven cavity problems.

4.2. Governing Equations

The incompressible NS equations for a stationary flow are given by
u ·∇u−∇ · (2νD(u))+∇p = f in Ω

∇ ·u = 0 in Ω

u = gD on ΓD

n ·σ = gN on ΓN

(4.2.1)

along with the zero mean pressure constraint∫
Ω

p = 0 (4.2.2)

where Ω ⊂ R2 is a bounded domain, u is the velocity, p is the normalized pressure p = P/ρ,
ν = µ/ρ is the kinematic viscosity, σ is the Cauchy stress tensor, f is the source term, gD is
the value of the Dirichlet boundary conditions on the Dirichlet boundary ΓD, gN is the prescribed
traction on the Neumann boundary ΓN , n is the outward unit normal on the boundary, Γ = ΓD∪ΓN

and ΓD∩ΓN = /0. The kinematic viscosity and the density of the fluid are assumed to be constant.
The symmetric part of the deformation tensor is defined as

D(u) =
1
2
(
∇u+∇uT ) . (4.2.3)
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The first equation in (4.2.1) is the momentum equation where velocities u = [u , v]T and pressure
p are the unknowns and the second equation represents the continuity equation.

The straightforward application of the LSFEM to the second-order NS equations requires C1

finite elements [52]. To avoid the practical difficulties in the implementation of such FEMs, we
first recast the second-order equation to a system of first-order equations. Another important
reason for not using the straightforward LSFEM is that the resulting system matrix will be ill-
conditioned [55].

4.3. Vorticity-Velocity-Pressure Formulation

A common strategy to reformulate the second-order NS equations to an equivalent first-order
system is to introduce the vorticity, ω, as a new variable [52]. In two-dimensional problems the
vorticity is a scalar and defined as

ω = ∇×u. (4.3.1)

Using the NS equations (4.2.1) and the vorticity equation (4.3.1) we obtain the first-order Vorticity-
Velocity-Pressure (V-V-P) system of equations

u ·∇u+∇p+ν∇×ω = f in Ω

∇ ·u = 0 in Ω

ω−∇×u = 0 in Ω

u = gD on ΓD

n ·σ = gN on ΓN .

(4.3.2)

To obtain the V-V-P system (4.3.2), we use the following vector identity

∇×∇×u =−4u+∇(∇ ·u) (4.3.3)

and the incompressibility constraint ∇ ·u= 0. It is easy to show that the first-order V-V-P equations
and the NS equations are equivalent [33]. Therefore, based on the analysis provided in the book
by Jiang [33] and by Ouazzi [47], we impose no extra boundary conditions for the vorticity.

The classical V-V-P formulation has been investigated by many authors, for instance by Bochev [5],
Jiang [33] and Bochev and Gungburger [52] and with further modifications by Heys et al. [30, 35,
36]. We use the classical V-V-P formulation in our work and develop a multigrid-preconditioned
CG solver for the solution of the discrete systems.

4.3.1. Linearization of the Convective Terms

The nonlinear convective term u ·∇u in the momentum equations, first equation in (4.3.2), needs
to be linearized. As it was discussed in chapter 2, section 2.4, we linearize the convective term
before applying the least-squares technique. We adapt the nonlinear basic iteration algorithm 2.1
to solve the V-V-P system of equations. Therefore, the final solution is obtained from the following
iterations

Un+1 =Un−βδUn (4.3.4)

where U = (u, p,ω)T , β is the damping parameter, and the superscripts n and n+ 1 denote the
values corresponding to the previous and the current iterations. We obtain the solution update δUn

from the following equation
T̃vvp(Un)δUn = dn (4.3.5)
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where dn is the residual vector defined by

dn =

 un ·∇un +∇pn +ν∇×ωn− f
∇ ·un

ωn−∇×un

 . (4.3.6)

Depending on the choice of the linearization technique, T̃vvp(Un)δUn is approximated for the
Newton method as follows

DTvvp(Un)[δUn] =

 un ·∇δun +δun ·∇un +∇δpn +ν∇×δωn

∇ ·δun

δωn−∇×δun

 . (4.3.7)

The linear operator for the fixed point method is simply obtained by removing the term δun ·∇un

from the equation (4.3.7).
Solving equation (4.3.5) for δUn, we update the solution Un+1 in every nonlinear iteration. We

terminate the nonlinear iterations when the relative errors, in the Euclidean norm, of the unknowns
drop below a certain tolerance ε ∣∣∣∣Un+1−Un

∣∣∣∣
2

||Un+1||2
< ε. (4.3.8)

The nonlinear iterations are further controlled by monitoring the Euclidean norm of the residual
vector

||dn||2 < εd (4.3.9)

where εd is an error tolerance.

4.3.2. Continuous Least-Squares Principles

We define the least-squares variational problem based on the residuals of the system of equations
(4.3.5). For this system, we define the following L2-norm least-squares energy functionals

J(v,q,ξ;dn) = ||un ·∇v+v ·∇un +∇q+ν∇×ξ−dn
1||

2
0

+α ||∇ ·v−dn
2 ||

2
0 + ||ξ−∇×v−dn

3 ||
2
0 ∀(v,q,ξ) ∈ V

(4.3.10)

and
Jν(v,q,ξ;dn) =

1
ν
||un ·∇v+v ·∇un +∇q+ν∇×ξ−dn

1||
2
0

+α ||∇ ·v−dn
2 ||

2
0 + ||ξ−∇×v−dn

3 ||
2
0 ∀(v,q,ξ) ∈ V

(4.3.11)

where V is the space of admissible functions

V =
{
(v,q,ξ) ∈H1

g,D(Ω)×H1(Ω)∩L2
0(Ω)×H1(Ω)

}
. (4.3.12)

and dn
1, dn

2 and dn
3 are the components of the residual vector dn. α is a scaling parameter aimed

to improve the mass conservation of the LSFEM formulation [37, 58, 59]. The Jν functional,
hereafter referred to as the weighted functional W-LSFEM, is obtained by scaling the momentum
balance equations with the inverse kinematic viscosity. Such weighting parameters have been tra-
ditionally used by many other investigators in the LSFEM literature mostly for analysis purposes
[52]. Here, our main concern is the investigation of the effects of weighting parameters on the
overall accuracy and robustness of the Navier-Stokes LSFEM.

The minimization problem associated with the least-squares functionals in (4.3.10) and (4.3.11)
is to find (δu,δp,δω) ∈ V such that

(δu,δp,δω) = argmin
(v,q,ξ)∈V

J(v,q,ξ; f ) (4.3.13)
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where the functional J in equation (4.3.13) refers to both the standard and the weighted functionals.
The variational problem based on the optimality condition of the minimization problem (4.3.13)

is to find (δu,δp,δω) ∈ V such that

A(δu,δp,δω ; v,q,ξ) = F(v,q,ξ) ∀(v,q,ξ) ∈ V (4.3.14)

where A is a bilinear form defined on V×V→ R

A(δu,δp,δω ; v,q,ξ) :=α(∇ ·δu,∇ ·v)+(δω−∇×δu,ξ−∇×v)
+(un ·∇δu+δu ·∇un,un ·∇v+v ·∇un +∇q+ν∇×ξ)

+(∇δp+ν∇×δω,un ·∇v+v ·∇un +∇q+ν∇×ξ)

(4.3.15)

and F is a linear form defined on V→ R

F(v,q,ξ) :=(dn
1,u

n ·∇v+v ·∇un +∇q+ν∇×ξ)+α(dn
2 ,∇ ·v)+(dn

3 ,ξ−∇×v) . (4.3.16)

For clarity, the bilinear form of the weighted functional (4.3.11) is subscripted with ν as follows

Aν(δu,δp,δω ; v,q,ξ) :=α(∇ ·δu,∇ ·v)+(δω−∇×δu,ξ−∇×v)

+
1
ν
(un ·∇δu+δu ·∇un,un ·∇v+v ·∇un +∇q+ν∇×ξ)

+
1
ν
(∇δp+ν∇×δω,un ·∇v+v ·∇un +∇q+ν∇×ξ) .

(4.3.17)

The corresponding linear form for the weighted functional reads

Fν(v,q,ξ) :=
1
ν
(dn

1,u
n ·∇v+v ·∇un +∇q+ν∇×ξ)+α(dn

2 ,∇ ·v)+(dn
3 ,ξ−∇×v) . (4.3.18)

4.3.3. Operator form of the Problem

To analyze the properties of the least-squares problem, let us write

A(δu,δp,δω ; v,q,ξ) =
(
L(δu,δp,δω),L(v,q,ξ)

)
(4.3.19)

where L is the operator given by

L=


0 ∇ ν∇×

√
α∇· 0 0

−∇× 0 I

 . (4.3.20)

It should be noted that the nonlinear terms are omitted for simplicity. Restricting to the C∞
0 (Ω)

functions, we rewrite the bilinear form (4.3.19) as

A(δu,δp,δω ; v,q,ξ) =
(
L∗L(δu,δp,δω),(v,q,ξ)

)
(4.3.21)
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where L∗ is the formal adjoint of L, and the least-squares operator L∗L is given by

L∗L =


0 −

√
α∇ −∇×

−∇· 0 0

ν∇× 0 I




0 ∇ ν∇×

√
α∇· 0 0

−∇× 0 I



=


−α∇∇ ·+∇×∇× 0 −∇×

0 −∇ ·∇ 0

−∇× 0 I +ν2∇×∇×

 .

(4.3.22)

We repeat the same procedure (the derivation is skipped) to obtain the following least-squares
operator L∗νLν corresponding to the weighted formulation

L∗νLν =


−α∇∇ ·+∇×∇× 0 −∇×

0 − 1
ν
∇ ·∇ 0

−∇× 0 I +∇×∇×

 . (4.3.23)

The resulting system matrices, from equations (4.3.22) and (4.3.23), are symmetric and positive
definite. So, after discretization, we are able to use the CG method to efficiently solve the system
of equations. In addition, both of the least-squares systems are differentially diagonal dominant.
This property, combined with the use of higher order finite elements, leads to efficient multigrid
solver performance [35]. Our aim is to design an efficient solver which exploits the properties of
the least-squares system with respect to both the CG and the multigrid methods. Therefore, we use
CG as the main solver and accelerate it with the multigrid preconditioning, which is the previously
mentioned MPCG solver.

Also, we use CG as pre/post-smoother which appropriately determines the size of the solution
updates at each smoothing step [76]. Therefore, the CG smoothing leads to efficient and particu-
larly parameter-free smoothing sweeps. In addition, we accelerate the smoothing process by using
a SSOR preconditioner, which in this context requires no damping parameter in case of symmetric
Gauß-Seidel sweeps.

It is worth noting that the possibility of using standard smoothers for the solution of the NS
equations is another advantage of the LSFEM over the mixed Galerkin methods that require spe-
cially designed smoothers [71].

4.3.4. Discrete Least-Squares Principles

We introduce the approximation space Vh, restrict our variational problem (4.3.14) to finite di-
mensional spaces, and consider the following approximation problem

Ah(δuh,δph,δωh ; vh,qh,ξh) = Fh(vh,qh,ξh) ∀(vh,qh,ξh) ∈ Vh. (4.3.24)

Choosing appropriate basis functions for the finite dimensional space Vh, we obtain a discrete
system of equations for the unknown LSFEM variables, namely (δuh,δph,δωh). Here we use
conforming finite elements, therefore we set Vh ⊂ V. The typical LBB condition for mixed for-
mulations leading to compatibility constraints for the involved function spaces is naturally satis-
fied for the LSFEM [52]. Therefore, we use equal-order finite elements in the V-V-P least-squares
method.
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4.4. Stress-Velocity-Pressure Formulation

In this section, we define another equivalent first-order system of equations for the incompressible
NS equations. We define the Cauchy stress tensor as

σ =−pI+2νD(u), (4.4.1)

which in combination with the NS equations (4.2.1) gives the following first-order Stress-Velocity-
Pressure (S-V-P) system 

u ·∇u−∇ ·σ = f in Ω

∇ ·u = 0 in Ω

σ+ pI−2νD(u) = 0 in Ω

u = gD on ΓD

n ·σ = gN on ΓN .

(4.4.2)

Compared to the V-V-P system, the S-V-P system has two more unknowns (a total of 6 unknowns
in 2D). At first glance, the S-V-P system might look computationally more expensive than the
V-V-P system. However, the properties of the S-V-P system matrix may differ from those of the
V-V-P system. In addition, the solution of the S-V-P system directly provides the stress values
which are of great practical interest.

The analysis of the Stokes equations using the S-V-P system has been considered by Bochev
and Gunzburger [53] and by Chang et al. [10]. Cai et al. [9] has investigated the S-V-P formu-
lation of the NS equations and proved optimal error estimates for the conforming finite element
approximations. The numerical study of the S-V-P NS equations has been done by Ding et al.
[19]. They used Jacobi-preconditioned conjugate gradient method for the solution of the discrete
systems. Although, the S-V-P LSFEM has been considered in some other few works, see [41, 52],
no extensive computational study has been done on the S-V-P NS system. To the best of our
knowledge, the solution of the S-V-P system has never been done with the multigrid method in the
literature. In this work we extend our MPCG solver for the solution of the discrete least-squares S-
V-P systems [50, 69]. We extensively study the computational aspects of the system and compare
the results with those of the V-V-P NS formulation.

4.4.1. Linearization of the Convective Terms

The convective flux in the momentum equations should be linearized in a similar manner to the
V-V-P system linearization technique. The final solution based on the nonlinear basic iteration
algorithm is obtained through the following iterations

Un+1 =Un−βδUn (4.4.3)

where U = (u, p,σ)T . We obtain the solution update δUn from the following equation

T̃svp(Un)δUn = dn (4.4.4)

where dn is the residual vector of the S-V-P system (4.4.2) defined by

dn =

 un ·∇un−∇ ·σn− f
∇ ·un

σn + pnI−2νD(un)

 . (4.4.5)

Depending on the choice of the linearization technique, T̃svp(Un)δUn is approximated for the
Newton method as follows

DTsvp(Un)[δUn] =

 un ·∇δun +δun ·∇un−∇ ·δσn

∇ ·δun

δσn +δpnI−2νD(δun)

 . (4.4.6)
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The linear operator for the fixed point method is simply obtained by removing the term δun ·∇un

from the equation (4.4.6).
Solving equation (4.4.4) for δUn, we update the solution Un+1 in every nonlinear iteration.

We use the same stopping criteria, see equation (4.3.8) and equation (4.3.9), for controlling the
nonlinear iterations.

4.4.2. Continuous Least-Squares Principles

We define the L2-norm least-squares energy functionals based on the residuals of the first-order
system (4.4.4) as follows

J(v,q,τ;dn) = ||un ·∇v+v ·∇un +∇ · τ−dn
1||

2
0

+α ||∇ ·v−dn
2 ||

2
0 +

1
ν
||τ+qI−2νD(v)−dn

3 ||
2
0 ∀(v,q,τ) ∈ V

(4.4.7)

where V is the space of admissible functions

V =
{
(v,q,τ) ∈H1

g,D(Ω)×H1(Ω)∩L2
0(Ω)×Hg,N(div,Ω)

}
, (4.4.8)

The weighted functional is obtained by scaling the momentum balance equations with the inverse
kinematic viscosity. The minimization problem associated with the least-squares functional (4.4.7)
is to find (δu,δp,δσ) ∈ V such that

(δu,δp,δσ) = argmin
(v,q,τ)∈V

J(v,q,τ; f ). (4.4.9)

The variational problem based on the optimality condition of the minimization problem (4.4.9) is
to find (δu,δp,δσ) ∈ V such that

A(δu,δp,δσ ; v,q,τ) = F(v,q,τ) ∀(v,q,τ) ∈ V (4.4.10)

where A is a bilinear form defined on V×V→ R

A(δu,δp,δσ ; v,q,τ) :=α
(
∇ ·δu,∇ ·v

)
+
(
un ·∇δu+δu ·∇un−∇ ·δσ , un ·∇v+v ·∇un−∇ · τ

)
+

1
ν

(
δσ+δpI−2νD(δu) , τ+qI−2νD(v)

) (4.4.11)

and F is a linear form defined on V→ R

F(v,q,τ) :=
(
dn

1 , un ·∇v+v ·∇un−∇ · τ
)
+α
(
dn

2 ,∇ ·v
)
+

1
ν

(
dn

3 , τ+qI−2νD(v)
)
. (4.4.12)

4.4.3. Operator form of the Problem

Restricting to the C∞
0 (Ω) functions, the variational problem (4.4.10) can be written as

A(δu,δp,δσ ; v,q,τ) =
(
L∗L(δu,δp,δσ),(v,q,τ)

)
(4.4.13)
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where L∗ is the formal adjoint of L, and the least-squares operator L∗L after neglecting the nonlin-
ear terms is given by

L∗L =


0 −

√
α∇

2ν√
ν
∇·

0 0 1√
ν
I :

∇ 0 1√
ν




0 0 −∇·

√
α∇· 0 0

− 2ν√
ν
D(·) 1√

ν
I 1√

ν



=


−4ν∇ ·D(·)−α∇∇· 2∇ 2∇·

−2∇· 2
ν

1
ν
I :

−2D(·) 1
ν
I 1

ν
−∇∇·

 .

(4.4.14)

The system matrix of the S-V-P formulation (4.4.14) is symmetric similar to the V-V-P system.
However, in contrast to the vorticity-based operator forms (4.3.22) and (4.3.23) the stress-based
formulation leads to the system matrices which are not differentially diagonal dominant. This
property is a key factor in designing efficient multigrid solvers when higher order finite elements
are used. In the numerical results section, we show that the multigrid solver for the V-V-P LSFEM
outperforms that of the S-V-P LSFEM especially when the quadratic finite elements are used for
all variables.

4.4.4. Discrete Least-Squares Principles

We introduce the approximation space Vh, restrict our variational problem (4.4.10) to finite di-
mensional spaces, and consider the following approximation problem

Ah(δuh,δph,δσh ; vh,qh,τh) = Fh(vh,qh,τh) ∀(vh,qh,τh) ∈ Vh. (4.4.15)

Choosing appropriate basis functions for the finite dimensional space Vh, we obtain a discrete
system of equations for the unknown LSFEM variables, namely (δuh,δph,δσh). Here we use
conforming finite elements, therefore we set Vh ⊂ V. We use equal-order finite elements in the
S-V-P least-squares method.

4.5. Numerical Results and Discussions

We analyze the following problems: First, we design an analytic polynomial solution to study the
error estimates and the convergence rates of the least-squares primary variables, the velocity and
the pressure, and the introduced vorticity and stress variables. Next, we study three steady state
flow problems, i.e. the Poiseuille flow, the flow around cylinder and the lid-driven cavity flow, with
both LSFEM formulations. We compare our results with the results of the mixed finite element
method (MFEM) produced by FEATFLOW (see www.featflow.de and [17]), and with available
benchmark solutions in the literature. We use the following configurations for all flow simulations
unless it is specifically stated:

1. Q1 (linear) or Q2 (quadratic) finite elements for all unknowns

2. The MPCG solver for the solution of the linearized system of equations

3. Relative stopping criterion ε = 1E-6

4. Absolute stopping criterion εd = 1E-6.
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4.5.1. Polynomial Solution

In this example, we analyze the L2-error estimates and the convergence rates of the least-square
solutions. The solution domain is a unit square−1≤ x,y≤ 1. We assume no body force, i.e. f= 0.
The Reynolds number is Re = 1. We take the following polynomial solutions for the velocities
and the pressure

u(x,y) = 2x2(1− x)2 (y(1− y)2− y2(1− y)
)

v(x,y) =−2y2(1− y)2 (x(1− x)2− x2(1− x)
)

p(x,y) = c(x3− y3)

(4.5.1)

where c is a constant. Using the definition of the velocity and the pressure functions in equa-
tion (4.5.1), the vorticity equation (4.3.1) and the stress equation (4.4.1), we obtain the following
expressions for the additional variables

ω(x,y) = −2x2(1− x)2 (6y2−6y+1
)
−2y2(1− y)2 (6x2−6x+1

)
σxx(x,y) = − c

(
x3− y3)+8xy(2x−1)(2y−1)(x−1)(y−1)

σxy(x,y) = 2x2(1− x)2 (6y2−6y+1
)
−2y2(1− y)2 (6x2−6x+1

)
.

(4.5.2)

We summarize the results in Table 4.1 and Table 4.2 for the V-V-P and the S-V-P formulations,
respectively. We observe asymptotic convergence toward the analytical solution for all unknowns.
The pressure error for the S-V-P system is not optimal as compared to the V-V-P system. In both
of the LSFEM methods, the velocity error increases with the increase in the pressure norm.

Table 4.1: V-V-P LSFEM, L2 errors for different finite elements at Re = 1

Level ||u−uh||0 rate ||p− ph||0 rate ||ω−ωh||0 rate
Q1 elements, c = 1

6 4.1338E-05 3.99 2.6736E-04 4.00 2.3374E-04 4.01
7 1.0344E-05 4.00 6.6855E-05 4.00 5.8387E-05 4.00
8 2.5867E-06 4.00 1.6715E-05 4.00 1.4593E-05 4.00

Q1 elements, c = 10
6 1.4636E-04 3.97 2.6736E-03 4.00 2.1478E-03 4.02
7 3.6664E-05 3.99 6.6855E-04 4.00 5.3632E-04 4.00
8 9.1707E-06 4.00 1.6715E-04 4.00 1.3403E-04 4.00

Q2 elements, c = 1
6 2.8081E-07 8.00 1.2459E-06 8.00 1.2868E-06 7.97
7 3.5099E-08 8.00 1.5573E-07 8.00 1.6093E-07 8.00
8 4.3873E-09 8.00 1.9467E-08 8.00 2.0113E-08 8.00

Q2 elements, c = 10
6 2.8084E-07 8.00 1.2458E-05 8.00 1.5346E-06 9.09
7 3.5100E-08 8.00 1.5573E-06 8.00 1.7708E-07 8.67
8 4.3874E-09 8.00 1.9467E-07 8.00 2.1147E-08 8.37

4.5.2. Poiseuille Flow

We study a laminar Poiseuille flow at Reynolds number Re = 100 in a square domain of Ω =
[0,1]× [0,1]. The two horizontal solid walls have no-slip boundary conditions. The inflow velocity
boundary condition is given by

[u,v] = [y(1− y),0]. (4.5.3)
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Table 4.2: S-V-P LSFEM, L2 errors for different finite elements at Re = 1

Level ||u−uh||0 rate ||p− ph||0 rate ||σxx−σxx,h||0 rate ||σxy−σxy,h||0 rate
Q1 elements, c = 1

6 6.7409E-04 2.39 1.1854E-02 1.90 1.0189E-02 1.91 5.2672E-03 2.07
7 2.6903E-04 2.51 6.0189E-03 1.97 5.1315E-03 1.99 2.4297E-03 2.17
8 9.6392E-05 2.79 2.4956E-03 2.41 2.1471E-03 2.39 9.1563E-04 2.65

Q1 elements, c = 10
6 5.9967E-03 2.61 7.7006E-02 2.57 6.1438E-02 2.53 3.7395E-02 2.62
7 1.9747E-03 3.04 2.7978E-02 2.75 2.2669E-02 2.71 1.3642E-02 2.74
8 6.0428E-04 3.27 9.9265E-03 2.82 8.0952E-03 2.80 4.9735E-03 2.74

Q2 elements, c = 1
6 7.6457E-07 6.84 8.2350E-05 4.17 4.7586E-05 4.74 1.3197E-05 6.14
7 1.0041E-07 7.61 1.9762E-05 4.17 1.0558E-05 4.51 2.1300E-06 6.20
8 1.1808E-08 8.50 4.8567E-06 4.07 2.5428E-06 4.15 3.4245E-07 6.22

Q2 elements, c = 10
6 4.9232E-06 7.92 2.6937E-04 5.47 2.3102E-04 5.64 1.2292E-04 5.98
7 5.9994E-07 8.21 4.8704E-05 5.53 4.0245E-05 5.74 2.0428E-05 6.02
8 6.2968E-08 9.53 9.2245E-06 5.28 7.3693E-06 5.46 3.3480E-06 6.10

The exact pressure solution for this problem is

p(x) = 2ν(L− x) (4.5.4)

where L = 1 is the length of the domain.

Outflow Boundary Conditions

We analyze two different boundary conditions for the outflow boundary. The first one, which
comes from the exact solution for the velocity, is to set the same boundary condition as the inflow,
i.e. equation (4.5.3). This is an essential boundary condition, so it is treated in a strong manner
by filtering the system matrix and the right-hand side vector appropriately. The other boundary
condition is to prescribe the zero-normal stress on the outflow [39, 40, 64]. Therefore the outflow
boundary condition reads

σ ·n = (−pI+ν∇u) ·n = 0 on Γout (4.5.5)

where n is the outward unit vector normal to the outflow boundary Γout . Considering the fact that
we have a vertical outflow section, n = [1 , 0]T , equation (4.5.5) simplifies to

−p+ν
∂u
∂x

= 0 on Γout

ν
∂v
∂x

= 0 on Γout .

(4.5.6)

We incorporate the boundary conditions in equation (4.5.6) into the variational problem (in a weak
manner) using the L2-norm functionals acting on the outflow boundary. Therefore, for the V-V-P
formulation the energy functional (4.3.10) changes to

J(v,q,ξ;dn) = ||un ·∇v+v ·∇un +∇q+ν∇×ξ−dn
1||

2
0 +α ||∇ ·v−dn

2||
2
0

+ ||ξ−∇×v−dn
3||

2
0 + ||(−qI+ν∇v) ·n||20,Γout

∀(v,q,ξ) ∈ V.
(4.5.7)
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We use a similar treatment to add the boundary conditions to the weighted V-V-P functional
(4.3.11) and to the S-V-P functional (4.4.7). However, adding the boundary term to the func-
tional (4.4.7) requires extra regularity for the stress to be well defined in the L2(Ω). Therefore, the
space of admissible functions for the S-V-P problem, see (4.4.8), is modified to the following

V =
{
(v,q,τ) ∈H1

g,D(Ω)×H1(Ω)∩L2
0(Ω)×Hg,N(div,Ω)∩Hs(Ω)

}
, (4.5.8)

where s≤ 1.

Remark 4.5.1. In the case of zero-normal stress boundary conditions, we obtain the exact pres-
sure, equation (4.5.4), from the LSFEM simulations. In other words, the zero stress boundary
condition helps to make the pressure field unique. This is due to the fact that the pressure exists in
the zero-normal stress boundary condition. However, when we apply Dirichlet velocity boundary
conditions on the outflow, we fix the pressure in one point to make the pressure field unique.

The computational grid contains one quadrilateral element on the first level, level 1, and finer
grids are obtained based on the multilevel grid refinement. In the multilevel refinement, every
element from the coarse grid is divided into four fine elements by connecting the midpoints of the
opposite edges [43]. Then we use the hierarchy of the multilevel grids in our geometric multigrid
preconditioner.

In order to investigate the mass conservation, we measure the Global Mass Conservation
(GMC) in terms of the fractional change of mass flow rate, defined as

GMC =

∫
Γi

ρ(n ·u)dΓi−
∫

Γo
ρ(n ·u)dΓo∫

Γi
ρ(n ·u)dΓi

×100 (4.5.9)

where Γi is the inflow boundary of the domain and Γo is any vertical section between the inflow
and the outflow boundaries, including the outflow.

Using Q1 elements, we present the GMC values between the inflow and the different vertical
cross-sections of the domain for the LSFEM and the W-LSFEM variations of the V-V-P formula-
tion in Table 4.3 and Table 4.4, respectively. The results show that mass conservation improves
with mesh refinement and is admittedly satisfied throughout the domain at finer grids. The GMC
values are further reduced when a scaling parameter, α > 1, is employed at each level. In addi-
tion, the results of the Dirichlet outflow boundary condition show slightly better mass conservation
compared to those of the zero-normal stress boundary condition. The results of Table 4.3 and Table
4.4 show that on coarse grids less mass conservation is achieved with the W-LSFEM in compar-
ison with the standard LSFEM. However, the difference between the two formulations becomes
negligible with further grid refinement.

The S-V-P LSFEM results are presented in Table 4.5. The direct comparison of the S-V-P
results of Table 4.5 with those of the V-V-P LSFEM in Table 4.3 and Table 4.4 show that the
mass conservation is very well satisfied using the former formulation. Further, we observe that
the GMC values obtained by the S-V-P formulation do not considerably change with α. In deed,
a one-by-one comparison of the values between the two LSFEM methods reveals that the GMC
values of the S-V-P method with α = 1 are almost equal to the GMC values of the V-V-P method
with α = 100. Moreover, the type of the outflow boundary condition does not play a role in the
mass conservation of the S-V-P method.

In the case of Q2 finite elements, the obtained velocity field is exact and the GMC values are
zero, up to the iteration error, everywhere in the domain. This is due to the fact that the Poiseuille
flow’s parabolic velocity field can be fully represented by the quadratic finite element. Therefore,
we skip here the Q2 element results for the both LSFEM formulations.
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Table 4.3: V-V-P LSFEM, absolute values of the GMC in vertical cross-sections of the Poiseuille
flow at Re = 100 with Q1 elements

α = 1.0 α = 10 α = 100
Level x = 0.3 x = 0.8 x = 0.3 x = 0.8 x = 0.3 x = 0.8

zero-normal stress
5 1.540063 2.435800 0.520126 0.614301 0.406549 0.416399
6 0.447549 0.722513 0.134901 0.162917 0.101985 0.104672
7 0.138748 0.238623 0.036068 0.046048 0.025626 0.026484
8 0.044002 0.082468 0.009900 0.013754 0.006470 0.006803

Dirichlet boundary condition
5 0.967960 0.858946 0.457747 0.446324 0.398668 0.397421
6 0.283028 0.250209 0.117297 0.114153 0.099898 0.099585
7 0.082833 0.074349 0.030338 0.029532 0.025029 0.024955
8 0.023621 0.022299 0.007861 0.007731 0.006275 0.006262

Table 4.4: V-V-P W-LSFEM, absolute values of the GMC in vertical cross-sections of the
Poiseuille flow at Re = 100 with Q1 elements

α = 1.0 α = 10 α = 100
Level x = 0.3 x = 0.8 x = 0.3 x = 0.8 x = 0.3 x = 0.8

zero-normal stress
5 2.057919 3.740288 0.627447 0.881192 0.414364 0.438957
6 0.722934 0.140562 0.172234 0.258356 0.105095 0.113889
7 0.215425 0.433627 0.044964 0.069519 0.026494 0.029075
8 0.057796 0.119313 0.011419 0.017906 0.006644 0.007322

Dirichlet boundary condition
5 1.094678 1.100044 0.490521 0.485411 0.400358 0.399665
6 0.331548 0.348048 0.126444 0.127463 0.100521 0.100554
7 0.091683 0.098458 0.031871 0.032484 0.025170 0.025223
8 0.023839 0.025854 0.007953 0.008146 0.006291 0.006309
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Table 4.5: S-V-P LSFEM, absolute values of the GMC in vertical cross-sections of the Poiseuille
flow at Re = 100 with Q1 elements

α = 1.0 α = 10 α = 100
Level x = 0.3 x = 0.8 x = 0.3 x = 0.8 x = 0.3 x = 0.8

zero-normal stress
5 0.399466 0.409600 0.391435 0.392230 0.390704 0.390778
6 0.100250 0.103484 0.097889 0.098142 0.097678 0.097699
7 0.025112 0.025998 0.024478 0.024557 0.024419 0.024426
8 0.006282 0.006509 0.006121 0.006143 0.006105 0.006107

Dirichlet boundary condition
5 0.393767 0.393793 0.390901 0.390909 0.390652 0.390653
6 0.098572 0.098625 0.097737 0.097740 0.097664 0.097664
7 0.024657 0.024679 0.024436 0.024438 0.024416 0.024416
8 0.006165 0.006171 0.006109 0.006110 0.006104 0.006104
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4.5.3. Flow around Cylinder

In this section, we present the simulation of a laminar steady state flow passed a circular cylinder.
The geometry of the benchmark configuration consists of a simple channel of length 2.2 and height
0.41. At [x,y] = [0.2,0.2] a cylinder with diameter D = 0.1 is placed. The kinematic viscosity of
the fluid is ν = 0.001 and Re = 20 which is defined as

Re =
UmeanD

ν
(4.5.10)

where Umean is the average velocity of the inflow stream and defined as

Umean =
2
3

Umax. (4.5.11)

We refer to [72] and www.featflow.de/en/benchmarks.html for further details concerning this bench-
mark.

Boundary Conditions

The horizontal upper and lower walls and the cylinder have no-slip boundary conditions. The
inflow velocity boundary conditions are defined as

[u,v] =
[

1.2y(0.41− y)
0.412 ,0

]
. (4.5.12)

For the outflow boundary, we impose the zero-normal stress boundary condition defined in equa-
tion (4.5.5).

We present the computational mesh of the coarsest level, level 1, in Figure 4.1. Correspond-
ingly, Table 4.6 summarizes the information regarding the number of elements and the number of
degrees of freedom.

Figure 4.1: Flow around cylinder, computational grid of level 1

First, we analyze the accuracy of the LSFEM methods by calculating the lift and drag co-
efficients and the pressure drop across the cylinder. For the definition of these flow parameters
one should refer to [72]. In the V-V-P method we obtain the stress, by post-processing, from the
calculated pressure and velocities, see [45] for the definition. In the S-V-P method however, we
calculate the stress as a separate variable and therefore we can directly calculate the body forces
as (

FD

FL

)
=

∫
S

σn dS (4.5.13)

where S denotes the surface of the cylinder and n is the normal vector of S. We present the lift
and drag coefficients and the pressure drop across the cylinder at Reynolds number Re = 20 for
the V-V-P and the S-V-P formulations in Table 4.7 and Table 4.8, respectively. Here we present
the W-LSFEM results of the V-V-P formulation. A comprehensive comparison between the scaled
and the unscaled formulations can be found in our previous work [45]. The Q2-element results
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Table 4.6: Mesh information for the flow around cylinder problem, the number of elements (NEL)
and the number of degrees of freedom.

Level NEL Degrees of freedom
V-V-P S-V-P

Q1 Q2 Q1 Q2

1 346 1,564 5,896 2,346 8,844
2 1,384 5,896 22,864 8,844 34,296
3 5,536 22,864 90,016 34,296 135,024
4 22,144 90,016 357,184 135,024 535,776
5 88,576 357,184 1,422,976 535,776 2,134,464
6 354,304 1,422,976 2,134,464

are much more accurate than the Q1-element results, and those pertained to α = 1 are in excellent
agreement with the benchmark solutions. Departing from the α = 1 case, the accuracy of the
flow parameters is degraded especially for the Q1 elements. The quadratic element results are
less sensitive to the α variations compared to the linear element results. Using higher order finite
elements, both methods show excellent convergence toward the reference solution. We observe a
slight improvement for the predicted lift and drag coefficients of the S-V-P method over the V-V-P
formulation.

We present the GMC values on the outflow (at x = 2.2) in Table 4.7 and Table 4.8. The Q1-
element V-V-P LSFEM results show that the mass conservation is not well satisfied, even for the
fine grids, throughout the domain with α = 1. Similar severe mass loss of the LSFEM, when
piecewise linear finite elements are used, has been reported by Chang and Nelson [13], Deang and
Gunzburger [37] and Bolton and Thatcher [58] for the Stokes flow and by Bolton and Thatcher [59]
for the NS equations in the literature. The S-V-P method shows much better mass conservation as
compared to the V-V-P method. However, by using α = 100 mass conservation is also improved
in the V-V-P method. Moreover, this weighting does not have a pronounced effect on the accuracy
of the drag and lift coefficients and the pressure drop especially for the Q2 element results.

Next, we analyze the performance of the MPCG solver for the solution of the scaled V-V-P
and the S-V-P problems using the conforming nodal finite elements Q1 and Q2. A comprehensive
comparison between the scaled and the unscaled V-V-P formulations can be found in our previous
work [45]. We have shown that the former formulation behaves more robust than the later one
with respect to the variations in α. Table 4.9 shows the number of nonlinear iterations and the
corresponding averaged linear solver (MPCG solver) iterations for different levels. We observe a
grid-independent convergence behavior and a constant number of iterations with grid refinement
at each α for the V-V-P method. The optimal number of iterations is obtained at α = 1. The
number of the linear solver iterations increases when we depart from α = 1. The S-V-P method
shows a grid-independent solution behavior as well. However, in this case the solver requires more
iterations to reach the same convergence criteria. An explanation could be that the S-V-P method,
unlike the V-V-P method as has been shown by [45], does not yield a differentially diagonally
dominant system matrix. It is shown in the literature that having this property is a key factor in
obtaining efficient multigrid solver performance, see [35]. An important remark about the results
of Table 4.9 is that the MPCG solver remains efficient for both low and high order finite elements.
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Table 4.7: V-V-P W-LSFEM: flow parameters in the flow around cylinder at Re= 20.

Level Drag coefficient Lift coefficient Pressure drop GMC-value
CD CL 4p at x = 2.2

Q1, α = 1
3 3.8910464 0.0023588 0.0771009 32.458835
4 4.8914483 0.0043424 0.1009819 12.828753
5 5.3687854 0.0086759 0.1124486 3.871370
6 5.5234496 0.0101034 0.1161682 1.025463

Q2, α = 1
2 5.4639017 0.0092029 0.1148151 1.212050
3 5.5668223 0.0104928 0.1172298 0.114906
4 5.5779343 0.0106055 0.1174841 0.010779
5 5.5792792 0.0106169 0.1175144 0.001096

Q1, α = 100
3 4.7949823 0.0474048 0.0893839 3.577138
4 5.2716595 0.0245279 0.1044718 1.053974
5 5.4769244 0.0132686 0.1128306 0.283655
6 5.5500584 0.0109745 0.0116144 0.073273

Q2, α = 100
2 4.9640652 0.0047990 0.1050202 0.267959
3 5.4744825 0.0094397 0.1157215 0.035024
4 5.5620013 0.0104345 0.1172938 0.004049
5 5.5762393 0.0105925 0.1174909 0.000473

ref.: CD = 5.57953523384, CL = 0.010618948146,4p = 0.11752016697

4.5.4. Lid-driven Cavity Flow

We simulate the regularized lid-driven cavity flow problem in this section. The flow domain is
a unit square which has no-slip boundary conditions on the vertical and lower horizontal walls.
The upper wall, the lid, has zero vertical velocity and a horizontal velocity, i.e., the lid velocity.
Normally, the lid velocity is taken to be constant which leads to the singularities on the two up-
per corners of the domain. To remove these singularities, we prescribe a regularized horizontal
velocity [8], defined as

ulid = [−16x2(1− x)2,0]. (4.5.14)

We fix the pressure in one point, p = 0, in the middle of the lower cavity wall.
In addition to the conventional local velocity profiles, we investigate two other global quanti-

ties as defined in [8]. The first one is the kinetic energy defined as

E =
1
2
||uh||20,Ω (4.5.15)

and the other quantity is the enstrophy defined as follows

Z =
1
2
||wh||20,Ω (4.5.16)

where ||·||0,Ω is the L2 norm.
For this test case, we compare the least-squares FEM results with the reference solutions ob-

tained from mixed finite element method, FEATFLOW solver [17]. Two pairs of LBB-stable mixed
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Table 4.8: S-V-P LSFEM: flow parameters in the flow around cylinder at Re= 20 and α = 1.

Level Drag coefficient Lift coefficient Pressure drop GMC-value
CD CL 4p at x = 2.2

Q1
3 4.6026594 0.0365479 0.0856446 3.896641
4 5.1716353 0.0210522 0.0103135 1.114501
5 5.4440131 0.0142939 0.1117922 0.299773
6 5.5415463 0.0117584 0.1152451 0.077866

Q2
2 5.4404341 0.0076287 0.1124827 0.228281
3 5.5588883 0.0101360 0.1165546 0.022791
4 5.5769755 0.0105355 0.1173265 0.003022
5 5.5792424 0.0106064 0.1174766 0.000556

ref.: CD = 5.57953523384, CL = 0.010618948146,4p = 0.11752016697

Table 4.9: The number of nonlinear iterations and the corresponding averaged number of linear
solver iterations for flow around cylinder at Re= 20, nonlinear and linear solver relative changes
are kept below 1E-6 and 1E-3, respectively.

V-V-P S-V-P
Level Q1 Q2 Q1 Q2

α 1.0 10 100 1.0 10 100 - -

3 8/4 8/4 8/6 6/5 6/6 6/10 7/19 6/12
4 8/4 8/4 8/6 6/5 6/6 6/9 7/17 6/12
5 7/4 7/4 8/6 6/5 6/6 6/9 7/17 6/12

finite elements are used for comparison, namely conforming Q2Pdisc
1 (see [7]) and nonconform-

ing Q̃1Q0 see [63]. The discontinuous finite element Pdisc
1 consists of linear functions with the

function value and both partial derivatives, located in the center of the quadrilateral, as its three
local degrees of freedom. The Q̃1 finite element consists of rotated bilinear shape functions. Local
degrees of freedom are the mean values over the element edges. Finally, the Q0 finite element has
a piecewise constant shape function and its only degree of freedom is the function value in the
center of the quadrilateral.

Here we use the same computational grid as for the Poiseuille flow problem. Table 4.10 shows
the mesh information of the two LSFEM formulations with different finite element combinations.

We present the percent error of the horizontal velocity through the vertical centerline of the
cavity for different Re in Tables 4.11, 4.12 and 4.13. We obtain the percent errors by comparing
the W-LSFEM results with the converged reference solutions of the FEATFLOW solver [17] on a
highly refined grid as follows

percent error =
uW-LSFEM−uref.

uref.
×100 . (4.5.17)

At each Re, we use three different computational grids to ensure that grid-independent results are
obtained. Results show a very good agreement with the reference solutions at all Re.

We compare the kinetic energy values of the V-V-P and S-V-P LSFEMs with the mixed finite
element method (MFEM) results obtained from FEATFLOW for different Re. We present the V-V-
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Table 4.10: Mesh information for the regularized driven cavity, the number of elements (NEL)
and the number of degrees of freedom.

Level NEL Degrees of freedom
V-V-P S-V-P

Q1 Q2 Q1 Q2

5 256 1,156 4,356 1,734 6,534
6 1,024 4,356 16,900 6,534 25,350
7 4,096 16,900 66,564 25,350 99,846
8 16,384 66,564 264,196 99,846 396,294
9 65,536 264,196 1,052,676 396,294 1,579,014

Table 4.11: Percent error, equation (4.5.17), of the horizontal velocity through the vertical center-
line of the cavity at Re = 1, W-LSFEM with Q2 elements and MFEM with Q2Pdisc

1 elements

W-LSFEM on Lev. MFEM [17]
Coord. 7 8 9 ref. value

0.1 0.07 0.01 0.00 4.702885E-02
0.2 0.01 0.00 0.00 8.265610E-02
0.3 0.01 0.00 0.00 1.146949E-01
0.4 0.02 0.00 0.00 1.441905E-01
0.5 0.01 0.00 0.00 1.654724E-01
0.6 0.09 0.01 0.00 1.638459E-01
0.7 0.16 0.05 0.00 1.114928E-01
0.8 0.80 0.27 0.00 -3.903038E-02
0.9 0.22 0.03 0.00 -3.658718E-01

P formulation results for α= 1 and α= 100 in Table 4.14. The results accurately converge towards
the reference solution with mesh refinement at the different Re numbers assuring that higher order
elements are used. As in the last example, accurate results are obtained by the higher-order V-
V-P formulation. This clearly shows the demand for higher-order interpolations in LSFEMs. In
addition, we present the nodal element S-V-P formulation results in Table 4.15. The accuracy of
the results are similar to those obtained with the V-V-P formulation at α= 1. The poor performance
of the Q1 finite elements is improved by using higher-order Q2 elements.

We compare the accuracy of the Q2 element results of the W-LSFEM with those of Bruneau
and Saad [8], obtained with a finite difference method, and also the MFEM reference results [17]
for the kinetic energy and the enstrophy. We make this comparison at Re = 1000 and summarize
the results in Table 4.16. Both global quantities E and Z converge to the MFEM reference solution
with grid refinement. Also, Table 4.16 shows that our least-squares solution is more accurate than
the solution provided by Bruneau and Saad [8].

4.6. Summary

We used the least-squares FEM to solve two different formulations of the incompressible Navier-
Stokes equations. The first-order system for the first formulation is introduced using the vorticity,
velocity and pressure, known as the V-V-P formulation, and for the second formulation using the
stress, velocity and pressure, known as the S-V-P formulation. Equal order linear and quadratic
finite elements are used for the discrete systems. In combination with the Newton technique to treat
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Table 4.12: Percent error, equation (4.5.17), of the horizontal velocity through the vertical center-
line of the cavity at Re = 400, W-LSFEM with Q2 elements and MFEM with Q2Pdisc

1 elements

W-LSFEM on Lev. MFEM [17]
Coord. 7 8 9 ref. value

0.1 0.75 0.05 0.00 9.447373E-02
0.2 0.50 0.03 0.00 1.817027E-01
0.3 0.11 0.01 0.00 2.335708E-01
0.4 0.30 0.03 0.00 1.967821E-01
0.5 0.68 0.05 0.00 1.040445E-01
0.6 6.35 0.81 0.05 5.466929E-03
0.7 0.68 0.04 0.00 -8.760763E-02
0.8 0.30 0.01 0.00 -1.682347E-01
0.9 0.52 0.06 0.00 -2.365439E-01

Table 4.13: Percent error, equation (4.5.17), of the horizontal velocity through the vertical center-
line of the cavity at Re = 1000, W-LSFEM with Q2 elements and MFEM with Q2Pdisc

1 elements

W-LSFEM on Lev. MFEM [17]
Coord. 7 8 9 ref. value

0.1 4.57 0.37 0.04 1.787746E-01
0.2 6.10 0.24 0.02 2.767111E-01
0.3 11.35 0.40 0.02 2.128689E-01
0.4 21.37 0.82 0.06 1.275674E-01
0.5 24.31 0.85 0.07 5.190039E-02
0.6 43.34 2.19 0.12 -2.592104E-02
0.7 28.17 1.32 0.09 -1.093997E-01
0.8 18.72 0.89 0.06 -1.985532E-01
0.9 10.37 0.50 0.04 -2.637121E-01

the nonlinearity, we developed an efficient multigrid-preconditioned CG solver for the solution of
the symmetric and positive definite least-squares systems. Also, a preconditioned CG smoother is
used inside of the multigrid solver to obtain parameter-free smoothing.

Three incompressible steady-state laminar flow problems are studied. In the Poiseuille flow,
we studied the mass conservation of the LSFEM formulations. Different outflow boundary con-
ditions are studied for this problem. In the flow around cylinder test case, the flow accuracy and
the mass conservation of the LSFEM formulations are investigated. In the lid-driven cavity test
case, the results are analyzed with the help of global quantities, namely the kinetic energy and the
enstrophy. We summarize the numerical results as follows:

1. The mass conservation is investigated on one hand with respect to the different formulations
and on the other hand with respect to the order of the interpolation functions. The results show
that the S-V-P formulation delivers better mass conservation as compared to the V-V-P formula-
tion. The mass conservation of the V-V-P system is enhanced with the help of an extra weighting
parameter, but this comes with a negative side effect on the linear solver performance. We observe
that in both formulations using higher order finite elements effectively improves the mass conser-
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Table 4.14: V-V-P W-LSFEM: Convergence of the kinetic energy for the regularized cavity prob-
lem and comparison with MFEM results by [17].

LSFEM MFEM
α = 1 α = 100

Level Q1 Q2 Q1 Q2 Q2P1

Re= 1
6 1.651709E-02 1.861622E-02 1.893533E-02 1.862734E-02 1.862452E-02
7 1.767995E-02 1.862353E-02 1.870948E-02 1.862458E-02 1.862439E-02
8 1.831566E-02 1.862432E-02 1.864614E-02 1.862439E-02 1.862438E-02
9 1.853055E-02 1.862438E-02 1.862980E-02 1.862438E-02 1.862438E-02

Re= 400
6 2.895209E-02 2.183378E-02 2.909173E-02 2.165057E-02 2.133880E-02
7 3.556316E-02 2.133053E-02 2.500721E-02 2.133948E-02 2.131707E-02
8 3.104720E-02 2.131581E-02 2.240941E-02 2.131695E-02 2.131547E-02
9 2.394639E-02 2.131537E-02 2.159989E-02 2.131546E-02 2.131529E-02

Re= 1000
6 2.927195E-02 5.338288E-02 3.602868E-02 2.692410E-02 2.289971E-02
7 1.714473E-02 2.552796E-02 3.600000E-02 2.298482E-02 2.277778E-02
8 2.962952E-02 2.287704E-02 2.939236E-02 2.278109E-02 2.276761E-02
9 3.334635E-02 2.277389E-02 2.465346E-02 2.276780E-02 2.276582E-02

vation.
2. The linear MPCG solver performs efficiently for both of the LSFEM formulations with

continuous nodal finite elements. We have obtained a grid-independent solver behavior with low
and higher order finite elements for the V-V-P as well as the S-V-P formulations. However, the
MPCG solver outperforms for the V-V-P system in comparison to the S-V-P system. The reason
could be that the V-V-P system is differentially diagonally dominant while the S-V-P system lacks
this property.

We conclude that, highly accurate results are obtained with higher order finite elements. More
importantly, we have obtained more accurate results with the higher-order finite elements with less
number of degrees of freedom as compared to the lower-order elements. This obviously leads to
less computational costs. Thus, the accuracy of the V-V-P and the S-V-P LSFEM formulations
depends mainly on the order of the interpolation functions. Regarding the efficiency aspects, the
MPCG solver performs efficiently for both of the LSFEM formulations with continuous nodal
finite elements.
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Table 4.15: S-V-P LSFEM: Convergence of the kinetic energy for the regularized cavity problem.
LSFEM MFEM

Level Q1 Q2 Q̃1Q0 Q2Pdisc
1

Re= 1
6 1.624891E-02 1.861560E-02 1.855267E-02 1.862449E-02
7 1.658091E-02 1.862344E-02 1.860621E-02 1.862439E-02
8 1.769969E-02 1.862426E-02 1.861982E-02 1.862438E-02
9 1.831796E-02 1.862437E-02 1.862324E-02 1.862438E-02

Re= 400
6 3.242921E-02 2.201041E-02 2.136749E-02 1.688675E-02
7 2.849125E-02 2.136759E-02 2.148649E-02 2.131707E-02
8 2.385371E-02 2.131884E-02 2.136484E-02 2.131547E-02
9 2.200378E-02 2.131558E-02 2.132812E-02 2.131529E-02

Re= 1000
6 3.754829E-02 3.222452E-02 2.768789E-02 2.290234E-02
7 3.853200E-02 2.347606E-02 2.409799E-02 2.277778E-02
8 3.431037E-02 2.281841E-02 2.305179E-02 2.276761E-02
9 2.746944E-02 2.277026E-02 2.282649E-02 2.276582E-02

Table 4.16: Convergence of the kinetic energy E and the enstrophy Z for the regularized cavity
problem at Re = 1000, comparison between W-LSFEM with Q2 elements, MFEM with Q2Pdisc

1
elements and the finite difference method in [8]

Method grid E Z

W-LSFEM 64×64 0.025528 4.806740
128×128 0.022877 4.827331
256×256 0.022774 4.830225

MFEM [17] 64×64 0.022778 4.829535
128×128 0.022768 4.830403
256×256 0.022766 4.830499

Ref. [8] 64×64 0.021564 4.645800
128×128 0.022315 4.771100
256×256 0.022542 4.812300
512×512 0.022607 4.824300
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Non-Newtonian Fluid Flows

The numerical simulation of the non-Newtonian power law and the Carreau law fluid flow prob-
lems are considered in this chapter. Both the shear thinning and the shear thickening fluids are
investigated. We design a physically motivated weighted least-squares method to provide robust
solutions for the non-Newtonian fluid flows. We extend the multigrid-preconditioned conjugate
gradient (MPCG, see [45, 46]) solver to efficiently solve the stress-based formulation of the non-
Newtonian fluids. We study the Newton and the fixed-point linearization methods and analyze the
performance of the MPCG solver for these methods.

5.1. Introduction

A non-Newtonian fluid is one whose flow curve (shear stress versus shear rate) is non-linear or
does not pass through the origin, i.e. where the apparent viscosity, shear stress divided by shear
rate, is not constant at a given temperature and pressure but is dependent on flow conditions such
as flow geometry, shear rate, etc. and sometimes even on the kinematic history of the fluid element
under consideration [66]. One important group of such materials is known as “time independent”
or “generalized Newtonian fluids”. They are defined as the fluids for which the rate of shear at any
point is determined only by the value of the shear stress at that point at that instant [66]. We study
the solution of the time independent fluids in this work.

The time independent fluids are investigated in the literature using the different first-order for-
mulations. Vallala et al. [74] studied the non-Newtonian fluids (based on the Power-Law model)
with the vorticity-based as well as the stress-based LSFEM. Both the shear thinning and the shear
thickening fluids have been studied by varying the Power-Law index from 0.25 to 1.5. A least-
squares finite element method is presented by Chen et al. [11] for the generalized Newtonian
(Carreau fluid model) fluid flows. The numerical results indicate that with carefully chosen non-
linear weighting functions, the least-squares solution achieves an optimal convergence rate in the
L2-norm for all dependent variables. Surana et al. [4, 20, 21] presented a p-version LSFEM for
two-dimensional, incompressible, non-Newtonian (power-law model) fluid flows under isothermal
and non-isothermal conditions. A set of first-order differential equations using pressure, velocities,
temperature, non-Newtonian stresses and heat fluxes as auxiliary variables is used. The lineariza-
tion is accomplished after the least-squares minimization by using Newton method with a line
search. Similar three-dimensional LSFEM simulations are presented for power law model and
temperature dependent viscosity by Dalimunthe and Surana [16] and for isothermal power law
and Carreau-Yasuda models by Feng and Surana [24].

We develop a least-squares finite element method for the solution of the power law and the
Carreau law fluid flow problems. The solution of the discrete systems is performed with the
multigrid-preconditioned conjugate gradient method. To the best of our knowledge, this is for the
first time that a multigrid solver is used for the LSFEM solution of the non-Newtonian fluid flow

81
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problems.

5.2. Governing Equations

The non-Newtonian fluid equations are given by

u ·∇u−∇ ·σ = f in Ω

∇ ·u = 0 in Ω

σ+ pI−2ν(DII(u)) D(u) = 0 in Ω

u = gD on ΓD

n ·σ = gN on ΓN

(5.2.1)

where Ω⊂ R2 is a bounded domain, u is the velocity, p is the normalized pressure p = P/ρ, σ is
the Cauchy stress tensor, f is the source term, gD is the value of the Dirichlet boundary conditions
on the Dirichlet boundary ΓD, gN is the prescribed traction on the Neumann boundary ΓN , n is
the outward unit normal on the boundary, Γ = ΓD ∪ΓN , ΓD ∩ΓN = /0 and ν(·) is the (nonlinear)
viscosity. The symmetric part of the deformation tensor is defined as

D(u) =
1
2
(
∇u+∇uT ) (5.2.2)

and the second invariant of the deformation rate tensor as

DII(u) =
1
2
(
2D(u) :2D(u)

)
. (5.2.3)

Depending on the chosen viscosity function ν(·) the following prototypical non-Newtonian fluid
models are considered [48]:

1. Carreau law
ν(z) = ν∞ +(ν0−ν∞)(1+λz)

n−1
2 (νo > ν∞ ≥ 0,λ > 0), (5.2.4)

2. Power law
ν(z) = νoz

n−1
2 (νo > 0). (5.2.5)

The index n in the above equations distinguishes between different types of fluids. For n = 1
the Newtonian fluid (constant viscosity) is recovered. The choice of n > 1 and n < 1 leads to
the shear-thickening (viscosity increases with increase in shear rate) and shear-thinning (viscosity
decreases with increase in shear rate) fluids, respectively.

5.2.1. Linearization Technique

We use the Newton and the fixed-point methods to replace the nonlinear convective term u ·∇u and
the nonlinear viscosity term−2ν(DII(u)) D(u) in the governing equations (5.2.1) with appropriate
linear forms. The effect of the linearization before and after the least-squares minimization is
investigated by Vallala et al. [74]. We apply the linearization at the operator level before the
minimization.

Using the nonlinear basic iteration algorithm, the final solution is obtained through the fol-
lowing iterations

Un+1 =Un−βδUn (5.2.6)

where U = (u, p,σ)T . We obtain the solution update δUn from the following equation

T̃(Un)δUn = dn (5.2.7)
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where dn is the residual vector of the system of equations (5.2.1) defined by

dn =

 un ·∇un−∇ ·σn− f
∇ ·un

σn + pnI−2ν(DII(un)) D(un)

 . (5.2.8)

For the Newton method, T̃(Un)δUn is approximated as follows [49]

DT(Un)[δUn] =

 un ·∇δun +δun ·∇un−∇ ·δσn

∇ ·δun

δσn +δpnI−2ν(DII(un))D(δun)−8ν′(DII(un)) [D(δun) :D(un)]D(un)


(5.2.9)

where ν′ is the derivative of the viscosity with respect to a scalar function. The approximation of
T̃(Un)δUn using the fixed-point method reads

T(Un)δUn =

 un ·∇δun−∇ ·δσn

∇ ·δun

δσn +δpnI−2ν(DII(un))D(δun)

 . (5.2.10)

Solving equation (5.2.7) for δUn, we update the solution Un+1 in every nonlinear iteration. We use
the same stopping criteria, see equation (4.3.8) and equation (4.3.9) in chapter 4, for controlling
the nonlinear iterations.

5.3. Continuous Least-Squares Principle

We define the L2-norm least-squares energy functionals based on the residuals of the system
(5.2.7). Considering the Newton approximation (5.2.9) we define the following functional

J(v,q,τ;d) = ||un ·∇v+v ·∇un +∇ · τ−dn
1||

2
0 +α ||∇ ·v−dn

2 ||
2
0

+
1
ν

∣∣∣∣τ+qI−2νD(v)−8ν
′ [D(v) :D(un)]D(un)−dn

3
∣∣∣∣2

0

∀(v,q,τ) ∈ V

(5.3.1)

where V is the space of admissible functions

V =
{
(v,q,τ) ∈ H1

g,D(Ω)×H1(Ω)∩L2
0(Ω)×Hg,N(div,Ω)

}
, (5.3.2)

α is a scaling parameter to improve the mass conservation of the LSFEM formulation [37, 58],
ν = ν(DII(un)) and ν′ = ν′(DII(un)) are short forms used for the sake of simplicity. The third
term is weighted by the inverse of the nonlinear viscosity. Such nonlinear weighting technique
is used for the solution of the non-Newtonian fluid flows by Chen et al. [11]. They have shown
that with carefully chosen nonlinear weighting functions, the least-squares solution achieves an
optimal convergence rate in the L2-norm for the approximation to all dependent variables. Here
we use the nonlinear viscosity as the weighting parameter. The nonlinear weight is deferred using
the solutions of the previous iteration (or the initial guess in the beginning of the iterations) and
hence is a known quantity in every iteration.

The minimization problem associated with the functional (5.3.1) is to find (δu,δp,δσ) ∈ V
such that

(δu,δp,δσ) = argmin
(v,q,τ)∈V

J(v,q,τ; f ). (5.3.3)

The variational problem based on the optimality condition of the minimization problem (5.3.3) is
to find (δu,δp,δσ) ∈ V such that

A(δu,δp,δσ ; v,q,τ) = F(v,q,τ) ∀(v,q,τ) ∈ V (5.3.4)
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where A is a bilinear form defined on V×V→ R

A(δu,δp,δσ ; v,q,τ) :=α
(
∇ ·δu,∇ ·v

)
+
(
un ·∇δu+δu ·∇un−∇ ·δσ , un ·∇v+v ·∇un−∇ · τ

)
+

1
ν

(
δσ+δpI , τ+qI−2νD(v)−8ν

′ [D(v) :D(un)]D(un)
)

− 1
ν

(
2νD(δu) , τ+qI−2νD(v)−8ν

′ [D(v) :D(un)]D(un)
)

− 1
ν

(
8ν
′ [D(δun) :D(un)]D(un) , τ+qI−2νD(v)

)
+

1
ν

(
8ν
′ [D(δun) :D(un)]D(un) , 8ν

′ [D(v) :D(un)]D(un)
)

(5.3.5)

and F is a linear form defined on V→ R

F(v,q,τ) :=
(
dn

1 , un ·∇v+v ·∇un−∇ · τ
)
+α
(
dn

2 ,∇ ·v
)

+
1
ν

(
dn

3 , τ+qI−2νD(v)−8ν
′ [D(v) :D(un)]D(un))

)
.

(5.3.6)

5.3.1. Operator form of the Problem

We present the operator form of the least-squares problem for the non-Newtonian fluids. The
least-squares operator form is defined as follows

L=


un ·∇+(∇un)T 0 −∇·

√
α∇· 0 0

C 1√
ν
I 1√

ν

 (5.3.7)

where

C(v) =− 2ν√
ν

D(v)− 8ν′√
ν
(D(un) :D(v)) D(un). (5.3.8)

To obtain the corresponding dual operator we define

A�∇ · τ =

 ai j
∂τi j
∂x

ai j
∂τi j
∂y

 (5.3.9)

and

〈〈σ , τ〉〉A = (A : σ , A : τ) (5.3.10)

where A is a second rank tensor and ai j are its components. Using (5.3.9) and (5.3.10), we obtain
the dual operator C∗ as follows

〈C(u),τ〉=〈− 2ν√
ν

D(u) , τ〉+ 〈− 8ν′√
ν

D(un) :D(u) , D(un) :τ〉

=
2ν√

ν
〈u , ∇ · τ〉+ 8ν′√

ν
〈〈u , I�∇ · τ〉〉D(un).

(5.3.11)
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The operator L∗ then reads

L∗ =


−un ·∇+(∇un)T ∗ −

√
α∇ C∗

0 0 1√
ν
I :

∇ 0 1√
ν

 (5.3.12)

where

C∗(τ) =
2ν√

ν
∇ · τ+ 8ν′√

ν
I�∇ · τ . (5.3.13)

Finally, the operator form of the least-squares system matrix (5.3.4) reads

L∗L =


−un ·∇+(∇un)T ∗ −

√
α∇ C∗

0 0 1√
ν
I :

∇ 0 1√
ν




un ·∇+(∇un)T 0 −∇·

√
α∇· 0 0

C 1√
ν
I 1√

ν


(5.3.14)

where we have

(L∗L)1,1 = [−un ·∇+(∇un)T ∗][un ·∇+(∇un)T ](·)−α∇∇ ·+C∗C

(L∗L)1,2 =
1√
ν

C∗I

(L∗L)1,3 = −[−un ·∇+(∇un)T ∗]∇ ·+ 1√
ν

C∗

(L∗L)2,1 =
1√
ν

I :C

(L∗L)2,2 =
2
ν

(L∗L)2,3 =
1
ν

I :

(L∗L)3,1 = ∇[un ·∇+(∇un)T ](·)+ 1√
ν

C

(L∗L)3,2 =
1
ν

I

(L∗L)3,3 =
1
ν
−∇∇·

(5.3.15)

The least-squares system matrix for the non-Newtonian fluids (5.3.15) is symmetric but not dif-
ferentially diagonal dominant, which motivates the study of the multigrid solvers for these type of
systems.

5.4. Discrete Least-Squares Principle

We introduce the approximation space Vh, restrict our variational problem (5.3.4) to finite dimen-
sional spaces, and consider the following approximation problem

Ah(uh, ph,σh;vh,qh,τh) = Fh(vh,qh,τh) ∀(vh,qh,τh) ∈ Vh. (5.4.1)

Choosing appropriate basis functions for the finite dimensional space Vh, we obtain a discrete
system of equations for the unknown LSFEM variables, namely (uh, ph,σh). We use conforming
finite elements, therefore we set Vh ⊂ V.
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5.5. Numerical Results: Power Law

In this section, we take the power law model for the viscosity and investigate two non-Newtonian
flow problems. We consider both the shear thickening and the shear thinning fluids with varying
the power law index n. For the solution of the discrete systems, we use a multigrid-preconditioned
conjugate gradient (MPCG) solver. We analyze the performance of the solver with respect to
the Newton and the fixed-point linearization methods. The results are compared to the analytic
solutions and the grid-independency of the solutions is studied with grid refinement.

5.5.1. Fully Developed Flow between Parallel Plates

For the first test case, we solve a fully developed power law fluid flow between parallel plates
with infinite width. Figure 5.1 shows the flow domain and the boundary conditions. Due to the
symmetry, we consider only the upper half of the domain.

u = u
fd

v = 0

[0,−1]

[1,1]u = 0 ,  v = 0

σ
xy

 = 0 , v = 0
σ

xx
 = 0

v=0

Figure 5.1: Fully developed power law fluid flow between parallel plates

The analytical velocity profile for this flow is obtained as

u
uavg

=
2n+1
n+1

(
1− y

n+1
n

)
, y = [0,1] (5.5.1)

where uavg is the average velocity of the fluid and n is the power law index [66]. We impose the
velocity profile defined in equation (5.5.1) for the inflow boundary condition and set the vertical
velocity to zero. The upper edge has no-slip boundary condition, the lower edge is a symmetry
line with zero shear-stress σxy = 0 and zero vertical velocity v = 0, and the outflow has a zero
normal-stress boundary condition σxx = 0 and a zero vertical velocity v = 0.

We use the power law model (5.2.5) for the viscosity and set ν0 = 1. We solve the problem on
a 32×32 grid and use biquadratic finite elements, Q2, for all variables. We compare our numerical
results with the analytical solution (5.5.1) and also the Newtonian fluid flow, i.e. power law with
index n = 1. Figure 5.2 shows the horizontal velocity profiles along the outflow of the domain for
both the shear thinning and the shear thickening fluids. The velocity field is non-dimensionalized
with the average velocity uavg. The results compare very well with the analytical solution for all
power law indices corresponding to the shear thinning and the shear thickening fluids.

In addition to the graphical comparison of the LSFEM solution with the analytic solution, we
calculate the L2-norm of the velocity vector for different mesh levels and present the results in
Table 5.1. We observe asymptotic error reduction with the grid refinement for all values of n. This
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Figure 5.2: Fully developed flow of a power law fluid between parallel plates, horizontal velocity
plot along the outflow of the domain on a 32×32 grid

shows the convergence of the numerical method. Further investigations need to be done in order
to confirm the a priori error estimates for the non-Newtonian fluid flow problems.

5.5.2. Flow around Circular Cylinder

We simulate a steady state flow passed a circular cylinder with the LSFEM. Figure 5.3 shows the
computational mesh of the coarsest level in the multi-level grid hierarchy of the MPCG solver. We
present the corresponding mesh information in Table 5.2.

Figure 5.3: Flow around cylinder, computational grid of level 1

We use power law model (5.2.5) for the viscosity with ν0 = 1E-3. We impose a parabolic
velocity profile with average velocity uavg = 0.2 with the vertical velocity v = 0 on the inflow
boundary. The walls and the cylinder surface has no-slip boundary conditions. The zero normal-
stress σxx = 0 and the zero vertical velocity v = 0 boundary conditions are imposed on the outflow.

Using a mapping between the flow domains of the previous test case and the flow around
cylinder, the analytical fully developed velocity profile for this flow configuration is obtained as

u
uavg

=
2n+1
n+1

(
1− (

2y
0.41

−1)
n+1

n

)
, y = [0.205,0.41]. (5.5.2)

We calculate the lift and drag coefficients and the pressure drop across the cylinder and present
the results in Table 5.3. The results show excellent convergence with grid refinement for different
values of n. In addition, the values of the lift and drag coefficients and the pressure gradient
increase with the power law index. This is true because with the increase in n the fluid becomes
more viscose. Consequently, due to the additional resistance of the fluid passing the cylinder the
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Table 5.1: Error analysis for the fully developed power law flow, the L2-error of the velocity vector
is calculated for different mesh levels at different power law index n

Level ||u−uh||0 rate ||u−uh||0 rate
n = 3.0 n = 0.25

5 7.524704E-04 - 5.985903E-05 -
6 1.506990E-04 4.99 6.305550E-06 9.49
7 3.074508E-05 4.90 6.613849E-07 9.53

n = 2.5 n = 0.45
5 3.164163E-04 - 1.534263E-05 -
6 6.158173E-05 5.14 2.206184E-06 6.95
7 1.202308E-05 5.12 2.810948E-07 7.85

n = 1.5 n = 0.65
5 2.946439E-05 - 9.421272E-06 -
6 5.819850E-06 5.06 1.137591E-06 8.28
7 1.195208E-06 4.87 1.446111E-07 7.87

Table 5.2: Mesh information for the flow around cylinder problem, the number of elements (NE)
and the number of degrees of freedom (NDoF)

Lev. NE NDoF
1 346 8,844
2 1,384 34,296
3 5,536 135,024
4 22,144 535,776
5 88,576 2,134,464

hydrodynamic forces and the pressure gradient increase. The flow parameters obtained for n = 1,
corresponds to Reynolds number Re = 20 of a Newtonian fluid flow, compare very well with the
reference results of the benchmark solution presented by Turek and Schäfer [72].

Moreover, we present the GMC values on the outflow boundary of the domain in Table 5.3.
The GMC values decrease with grid refinement for all values of n. This shows that mass conser-
vation is satisfied for the range of non-Newtonian fluids considered in this work.

In Table 5.4 we present the number of nonlinear iterations and the corresponding averaged
linear solver (MPCG solver) iterations for both the Newton and the fixed point linearization meth-
ods. The total number of iterations for the Newton method is significantly smaller than the number
of iterations required for the fixed point method. The MPCG solver for the Newton linearization
method shows grid-independent behavior for different values of n. Although the number of iter-
ations increase for the non-Newtonian fluids as compared with the Newtonian fluids. In addition,
the number of iterations for the shear thickening fluids is smaller than that of the shear thinning
fluids at every level. We do not achieve grid-independent solver behavior for the fixed point lin-
earization method specially for the shear thinning fluids.

Finally, we assume that the channel length and the flow Re allow that the flow reaches a fully
developed state before it leaves the domain. We study the validity of this assumption by plotting
the horizontal velocity over different cross sections of the domain in Figure 5.4. We compare the
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Table 5.3: Flow parameters in the power law fluid flow around cylinder

Level Drag coefficient Lift coefficient Pressure drop GMC-value
CD CL 4p at x = 2.2

n = 2.0
3 17.9926513 0.5489032 0.2535041 0.015534
4 18.0040212 0.5486968 0.2544319 0.001813
5 18.0058110 0.5486194 0.2545056 0.000213

n = 1.5
3 9.6539394 0.1319938 0.1593145 0.011602
4 9.6600104 0.1320131 0.1599435 0.001311
5 9.6607101 0.1320204 0.1600681 0.000153

n = 1.0
3 5.5588883 0.0101360 0.1165546 0.022791
4 5.5769755 0.0105355 0.1173265 0.003022
5 5.5792424 0.0106064 0.1174766 0.000556

n = 0.5
3 2.9516453 -0.0289013 0.0892782 0.168400
4 3.0070574 -0.0184097 0.0932435 0.035874
5 3.0208002 -0.0152413 0.0942107 0.006660

Table 5.4: The number of nonlinear iterations and the corresponding averaged number of linear
solver iterations for flow around cylinder, nonlinear and linear solver relative errors are kept below
1E-6 and 1E-3, respectively

Newton Fixed point
Level \ n 0.5 1.0 1.5 0.5 1.0 1.5

2 14/15 6/12 6/10 18/12 10/8 10/16
3 14/15 6/12 6/10 18/15 10/10 10/25
4 14/15 6/12 6/10 18/17 10/16 10/25

results of level 5 with the fully developed analytical solution (5.5.2). The velocity profiles for
all values of n develop toward the analytical solution as we approach the outflow boundary. The
velocity profiles of the shear thickening fluids have a better match with the analytical solution.
The reason is that the Reynolds number decreases with the increase in the viscosity of the shear
thickening fluids and therefore the flow has a better chance to become fully developed throughout
the channel. This analysis also serves as a validation of the LSFEM numerical solutions.

5.6. Summary

A least-squares finite element method is developed for the solution of the power law and the
Carreau law fluid flow problems. The governing equations are described in a three-field variable
form, i.e. the velocity, the pressure and the stress. Therefore, the resulting set of equations are first-
order and well suited for the application of the LSFEM method. We have used conforming finite
elements for the FEM approximations. The resulting discrete system is symmetric and positive
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Figure 5.4: Horizontal velocity profile at different cross sections of the flow around cylinder on
level 5, comparison with the fully developed analytical solution

definite. However, the system is not differentially diagonal dominant. We have extended the
multigrid preconditioned conjugate gradient solver for the solution of the system of equations.
Performance of the multigrid solver has been investigated with respect to the different linearization
methods. Grid independent behavior is obtained for the Newton linearization for different non-
Newtonian fluids. The number of iterations increase for the non-Newtonian fluids as compared
with the Newtonian fluids. In addition, the number of iterations for the shear thickening fluids is
smaller than that of the shear thinning fluids at every level. The accuracy of the results is confirmed
by performing systematic grid refinement and also by comparing the available solutions with the
analytic solutions. Further investigations need to be done in order to confirm the a priori error
estimates for the non-Newtonian fluid flow problems approximated by the least-squares FEM.
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Summary and Outlook

This chapter will summarize the findings of the previous chapters and provide a short outlook on
possible future directions for the least-squares FEM applied to the advection-diffusion-reaction,
Newtonian and non-Newtonian fluid flow problems.

6.1. Conclusion

We study the least-squares finite element solution of the advection-diffusion-reaction equation and
the incompressible Navier-Stokes equations for both the Newtonian and the non-Newtonian fluid
flow problems. The main focus of the thesis has been on the one hand on efficient multigrid
techniques for the solution of the discrete least-squares systems and on the other hand on compu-
tational analysis of different first-order system of equations. We have done extensive numerical
simulations for the above mentioned equations considering various scaling techniques and broad
range of parameters in each case. In particular, the main results of the current work have been
summarized in the following paragraphs.

We have shown that, by adding the extra curl equations to the advection-diffusion-reaction
equation optimal error estimates for both the scalar and the flux variables can be obtained. These
statements are supported by our extensive numerical investigations for the Poisson equation, the
diffusion-reaction equation and the advection-diffusion equation which are in accordance with the
theoretical a priori error estimates.

Robust grid-independent multigrid performance is obtained for the augmented grad-div-curl
system for the Poisson and the diffusion-reaction equations. The advantages of using conjugate
gradient smoothers for the multigrid solver are shown through systematic grid refinement studies.
We have shown grid-independent multigrid behavior for the linear and quadratic conforming finite
elements.

A new first-order formulation based on the total flux is introduced for the advection-diffusion
equation. The uniqueness and a priori error estimates have been derived and proved. Moreover,
we have used a physically motivated scaling technique to enhance the stability of the proposed
formulation. The new formulation provides optimal L2-error estimates for the scalar variable
p and the flux variables even in the highly advection-dominated flows. While for the already
available diffusive flux formulation in the literature, the convergence rate of the fluxes degrades in
advection-dominated flows. These observations are true for both the Q1 and the Q2 finite elements.

We have shown through many numerical examples that the scaled LSFEM performs well even
for the advection-dominated flows. In addition, unlike the stabilized LSFEM which its perfor-
mance highly depends on the proper choice of the stabilization parameter, the scaled LSFEM is
parameter-independent. The stabilized LSFEM however, is unable to produce optimal conver-
gence rates for the scalar and the vector variables.

We used the least-squares FEM to solve two different formulations of the incompressible
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Navier-Stokes equations. The first-order system for the first formulation is introduced using the
vorticity, velocity and pressure, known as the V-V-P formulation, and for the second formulation
using the stress, velocity and pressure, known as the S-V-P formulation. Equal order linear and
quadratic finite elements are used for the discrete systems. In combination with the Newton tech-
nique to treat the nonlinearity, we developed an efficient multigrid-preconditioned CG solver for
the solution of the least-squares systems. Also, a preconditioned CG smoother is used inside of
the multigrid solver to obtain parameter-free smoothing. The linear MPCG solver performs effi-
ciently for both LSFEM formulations with continuous nodal finite elements. We have obtained
grid-independent solver behavior with low and higher order finite elements for the V-V-P as well
as the S-V-P formulations. However, the MPCG solver outperforms for the V-V-P system in com-
parison with the S-V-P system.

The mass conservation of the V-V-P and the S-V-P formulations is investigated on one hand
with respect to the weighting parameter α and on the other hand with respect to the order of the
interpolation functions. The results show that the S-V-P formulation delivers better mass conser-
vation as compared to the V-V-P formulation. We observe that using higher order finite elements
effectively improves the mass conservation in both formulations. Therefore, the continuity equa-
tion weighting technique which has side effects on the solver performance is not necessary for the
two-dimensional flow problems.

In addition, we conclude that highly accurate LSFEM solutions of the NS equations are ob-
tained provided that the higher order finite elements are used.

Finally, a least-squares finite element method is developed for the solution of the power law
and the Carreau law fluid flow problems. Both the shear thinning and the shear thickening fluid
models are investigated. We have extended the multigrid preconditioned conjugate gradient solver
for the solution of the system of equations. Performance of the multigrid solver has been inves-
tigated with respect to the different linearization methods. Grid independent behavior is obtained
for the Newton linearization method for different non-Newtonian fluids. The number of iterations
increase for the non-Newtonian fluids as compared with the Newtonian fluids. In addition, the
number of iterations for the shear thickening fluids is smaller than that of the shear thinning fluids
at every grid level. Accurate results are obtained for the fully developed flow and the flow around
cylinder problems. Further investigations need to be done to obtain a priori error estimates for the
non-Newtonian fluid flow equations approximated by the least-squares FEM.

6.2. Outlook

The numerical solution of the two-dimensional stationary advection-diffusion-reaction equations
and the Newtonian and non-Newtonian fluid flows has been presented in this work. The main
directions for the future works is listed here.

The generalization of the proposed least-squares FEMs to the three-dimensional flow problems
is trivial. Given the efficiency of the proposed MPCG solver, the numerical solutions of the 3D
flow problems can be easily obtained within the current framework.

In order to obtain time dependent solutions of the flow problems, the governing equations can
be extended to the non-stationary PDEs. The general framework for the time-dependent LSFEM
solutions has been developed by many investigators, see e.g. [33, 41], and can be easily adapted
to the presented LSFEM methods.

The NS LSFEM solver can be augmented with the level-set equations for the solution of
multiphase flow problems. We have shown that the LSFEM is inherently stable for the solution of
the advection-dominated flows. Therefore, the LSFEM is an appropriate candidate for the solution
of the level-set equation and hence the multiphase flow problems [33].

The possibility of using “arbitrary” finite elements for the approximation of the different
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flow variables can be used to extend the current LSFEM methods to the non-conforming, div-
conforming and discontinuous finite elements. The inclusion of these FEMs could provide the
LSFEM with very uniques features. One example is the improved mass conservation of the Stokes
equations using non-conforming FEMs [56, 57]. Another example could be the use of discon-
tinuous finite elements for the solution of the two-phase flow problems. In these problems, the
pressure field is discontinuous due to the jump in the pressure across the different phases. The ex-
tension of the proposed multigrid solvers to the above mentioned FEMs can also be investigated.
Given the symmetry and the positive-definiteness of the discrete least-squares systems, the success
of such solver studies is very promising.

In this work we have studied the “time-independent” non-Newtonian fluid flow problems. Two
other important classes of the non-Newtonian fluid flows are the “time-dependent fluids” and the
“visco-elastic fluids”. The former class includes more complex fluids for which the relation be-
tween shear stress and shear rate depends, in addition, upon the duration of shearing and their
kinematic history. The latter class describes substances exhibiting characteristics of both ideal
fluids and elastic solids and showing partial elastic recovery after deformation. Numerical solu-
tion of these non-Newtonian fluids is very challenging, see [11, 25, 77], and the current LSFEM
framework with its unique features could help the development and design of efficient numerical
solutions.
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