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Indirect Addition: Theoretical, Methodological and 
Educational Considerations 
The development of fundamentally important arithmetic principles related 
to the four basic operations, and of arithmetic strategies that are based on 
these principles, is an intriguing and important element of psychological, 
mathematical and math educational research. As far as addition and 
subtraction are concerned, we have, for instance, the following principles: 
(a) the commutativity principle, which says that the order of the addends is 
irrelevant to their sum (a + b = b + a); (b) the principle prescribing that if 
nothing is added to or removed from a collection its cardinal value remains 
unchanged (a + 0 = 0; a - 0 = a); (c) the principle that adding an amount to 
a collection can be undone by subtracting the same amount and vice versa 
(a + b - b = a or a - b + b = a); and (d) the principle that if a + b = c, then 
c-b = a or c - a = b. Previous theorizing and research shows that 
understanding these principles plays an important role in children’s 
construction of the additive composition of number and in additive 
reasoning. Moreover, the implicit or explicit application of these principles 
can also considerably facilitate people’s arithmetic performance by 
eliminating computational effort and increasing solution efficiency 
(Baroody, Torbeyns, & Verschaffel, 2009). For example, the first principle 
underlies the well-known computation shortcut for solving additions 
starting with the smaller given number (like 2 + 9 or 4 + 58), that consists 
of reversing the order of operands and adding the smaller addend to the 
larger one. The fourth principle underlies the computation shortcut for 
solving subtractions involving a small difference between the two integers 
(like 11 - 9 or 61 - 59), by determining how much has to be added to the 
smaller integer to make the larger one. Whereas the first three above-
mentioned principles and their accompanying computational shortcut 
strategies have already received a great amount of research attention 
(Verschaffel, Greer, & De Corte, 2007), the fourth principle has not. In this 
contribution, we will present a series of closely related studies in the 
domain of elementary subtraction that we have done so far on this fourth 
principle and its accompanying computational shortcut, namely indirect 
addition (IA). We will use the term direct subtraction (DS) for the more 
common straightforward strategy for doing subtraction whereby the smaller 
number is directly taken away from the smaller one. 

Use of IA in Young Adults 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Eldorado - Ressourcen aus und für Lehre, Studium und Forschung

https://core.ac.uk/display/46914109?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


In our first study, 25 university students solved a series of three-digit 
subtractions (Torbeyns, Ghesquière, & Verschaffel, 2009). We made a 
distinction among three types of subtractions on the basis of the difference 
between the two given numbers, i.e., subtractions with a small (812 - 783), 
medium (821 - 475), and large difference (813 - 176). Adopting the 
choice/no-choice method (Siegler & Lemaire, 1997), all participants were 
instructed to solve these subtractions individually in one choice and two 
no-choice conditions. In the choice condition, participants could choose 
between IA or DS. In the first no-choice condition participants were 
instructed to solve all subtractions with IA; in the second no-choice 
condition they always had to apply DS. In all three conditions, they had to 
verbally report the strategy used after each trial. We registered the accuracy 
and speed of responding in each condition on a trial-by-trial basis. 

When we analyzed the data from the choice condition, we found that 
participants solved about half of the subtractions with IA. The data from 
the two no-choice conditions revealed that, as expected, IA was 
significantly quicker than DS on the small-difference subtractions. 
However, we unexpectedly also found that this speed advantage of IA did 
also hold for medium- and even large-difference subtractions. In other 
words, IA was executed faster than DS not only when there was a small 
difference between the two integers, but also on the two other subtraction 
types where the computational advantage of using IA seems less clear. 

Because we were surprised by the efficiency results of this first study, we 
replicated it in a follow-up study with a similar group of students and with 
a similar design (Torbeyns, Ghesquière, et al., 2009). The only important 
difference was that only subtractions with small to medium differences 
were presented, divided into four problem types on the basis of the size of 
the difference. The results of this follow-up study were similar to those 
from the first study, except that the results for the no-choice conditions 
revealed that IA was not only executed faster but also more accurately than 
DS. Furthermore, IA was (again) executed more efficiently than DS on the 
subtractions with a very small difference between the two integers as well 
as on the other problem types for which the computational advantage of 
solving the subtraction by IA seems less straightforward. 

Still somewhat puzzled by these findings on the overall superior efficiency 
of IA compared to DS, we conducted a second replication study wherein 
we administered another set of subtractions in a similar group of young 
adults, again using the choice/no-choice method (Torbeyns, De Smedt, 
Peters, Ghesquière, & Verschaffel, 2009). Participants were offered two 
types of three-digit subtractions, namely subtractions with a very small 



difference (713 - 695) and subtractions with an extremely large difference, 
i.e., subtractions with a three-digit minuend and a two-digit subtrahend 
(756 - 78). We reasoned that the latter subtractions would favor DS par 
excellence and that it (thus) would be really striking if participants still 
solved these subtractions more efficiently with IA than with DS. 
Unexpectedly, we again observed that participants solved both subtraction 
types - even the subtractions with extremely large differences - more 
quickly and more accurately by means of IA than with DS. In other words, 
the results from our first three studies indicate that adults use IA frequently 
and highly efficiently on multi-digit subtractions, even on subtractions 
where the computational advantage of using IA is less clear. 

Development and Use of IA in Children 

Given both the results of our studies in adults and the fact that many math 
educators make a plea for giving IA a prominent place in elementary 
school children’s mental arithmetic lessons, we next investigated children’s 
use of this strategy. It is important to know that in Flanders children are, 
from the second grade on, intensively confronted with symbolically 
presented multi-digit subtractions of the form a - b = ?, which they are 
supposed to solve mentally (before they start learning the written 
algorithms). Mathematics instruction in mental subtraction typically 
focuses on the routine mastery of DS, with little or no systematic attention 
to IA. So, most Flemish teachers do not systematically teach IA and only 
allow children to apply alternative solution strategies such as IA as long as 
they can also demonstrate perfect mastery of the school-taught DS strategy 
and as long as they do not disturb the teacher’s regular whole-class 
teaching with their alternative (self-discovered) strategies. 

In line with this instructional tradition, 195 Flemish children who had not 
received systematic instruction in IA participated in our first study on 
children’s use of IA (Torbeyns, De Smedt, Ghesquière, & Verschaffel, 
2009a). Seventy-one second-, 71 third-, and 53 fourth-graders individually 
completed two tasks: (a) a Spontaneous Strategy Use Task (SST), 
consisting of different problem types designed to assess the use of diverse 
shortcut strategies, incl. two-digit small-difference subtractions (41 - 39) 
which can be efficiently solved with IA; children were instructed to solve 
each item as accurately and as fast as possible with their preferred strategy, 
and to verbally report both the answer and the strategy used immediately 
after solving each item; (b) a Variability on Demand Task (VDT), also 
consisting of various problem types, incl. small-difference subtractions; 
children had to solve each item with at least two different strategies and 
verbally report each strategy; the experimenter kept asking for another 



possible strategy until the child had either reported IA, stated that (s)he did 
not know any other strategy, or reported five other alternative solution 
methods. 

This study had two main findings. First, the analysis of children’s strategy 
repertoire in the SST revealed that less than 10% of the second- and third-
graders and only 15% of the fourth-graders spontaneously applied IA at 
least once to answer the small-difference subtractions. Thus, children 
hardly used IA, even on items where this strategy can be considered to be 
extremely efficient. Second, all children reported various strategies for 
solving the small-difference items from the VDT, but only a minority of 
them reported IA as an alternative strategy, suggesting that IA was no part 
of the strategy repertoire of most children. In sum, these results indicate 
that elementary school children who did not receive systematic instruction 
in IA do not apply this strategy (even not small-difference subtractions) and 
are unable to generate IA as an alternative for their standard (DS) strategy. 

To test the generalizability of these findings to children from other 
instructional backgrounds, we set up a new study wherein we compared the 
strategy performance of children from two Flemish schools that did not 
provide instruction in IA (= DS-oriented schools) with children from a third 
school in which IA did receive special instructional attention (= IA-
oriented school) (Torbeyns, De Smedt, Ghesquière, & Verschaffel, 2009b). 
Children from the IA-oriented school were instructed to use IA when the 
difference between the two given numbers was small (i.e., a difference 
smaller than 10). The textbook also introduced a specific notation for the 
IA strategy: a little arrow or arc from the subtrahend to the minuend. In 
total, 54 second-, 54 third- and 49-fourth graders participated in this study. 
The number of children from the IA-oriented school and the two DS-
oriented schools was, respectively, 53 and 104. All children completed a 
paper-and-pencil test with 16 two-digit subtractions. Half the items had a 
difference smaller than 10 (81 - 79), while the other half had a difference 
between 10 and 20 (72 - 58). Children were instructed to solve the 
subtractions in whatever way they wanted and to write down their solution 
strategy in the scrap paper area below each problem. 

The major result of this study was surprising and, from an instructional 
perspective, quite disappointing. While children from the IA-favoring 
school used IA slightly more frequently than children from the two other 
schools, the frequency of IA was generally extremely low in all schools: 
7.53% for the IA-oriented school and 0.19% for the DS-oriented schools. 
Because we could not exclude that the unexpectedly low number of IA 
strategies in this study was due to the technique being used to identify the 



children’s solution strategies, namely a paper-and-pencil test, we set up a 
follow-up study with the same children and the same item set, but this time 
strategy performance was assessed during an individual interview. The 
overall frequency of reported IA increased only marginally - from 0.19% in 
the initial study to 2.43% in the follow-up study - implying that the type of 
data-gathering method used was clearly not a major cause of the 
remarkably low frequency of IA observed in the initial study. 

In retrospect, the unexpectedly low frequency of IA strategies in the IA-
oriented school was probably due to the weak instruction in IA as provided 
by the textbook and as implemented by the teachers, both from a 
quantitative and a qualitative perspective. Therefore, we conducted a third 
study with children, in which we tried to accelerate the emergence and 
further development of IA, using the microgenetic method (De Smedt, 
Torbeyns, Stassens, Ghesquière, & Verschaffel, 2010). The sample 
consisted of 35 third-graders who did not receive any previous instruction 
in IA and who did not apply IA on any subtraction during the initial test 
session. These 35 children were divided into the two groups on the basis of 
their general mathematical achievement level, resulting in two groups of 
equal mathematical ability: 20 children participated in the strong 
instruction (SI) group and 15 children in the weak instruction (WI) group. 
All children were individually administered three test sessions, four 
practice sessions, one transfer session, and one retention session. The test 
sessions, practice sessions, and retention session each consisted of a series 
of symbolic subtractions in the number domain 20-100. In the transfer 
session, children were offered two tasks: a symbolic subtraction task in the 
number domain up to 1000 and a subtractive word problem task in the 
number domain 20-100. In each session, three item types were included: 
items with a small, medium, or large difference between the minuend and 
the subtrahend. 

The children from the SI group solved the same series of items as the 
children from the WI group. All sessions, except the practice sessions, were 
exactly the same for both experimental groups. In the three test sessions, 
the transfer session, and the retention sessions, all children were asked to 
mentally solve all items with their preferred strategy. In the four practice 
sessions, the SI group was explicitly instructed to mentally solve each item 
once with DS and once with IA, while children of the WI group mentally 
solved each item twice with their preferred strategy without any further 
instruction. In the SI group, the IA strategy was also briefly demonstrated 
at the beginning of each practice session, and, if necessary, support with the 
execution of the IA strategy was provided during the practice session. In 



the WI group, the only extra instruction during practice sessions was an 
unusually large number of subtractions with a very small difference 
between the integers, compared to children’s regular instructional practice 
at school, which typically contains little or no such problems. 

In each session, children were asked to mentally solve each item as good 
and as fast as possible. Accuracy and speed of responding were registered 
per child and per item; children had to verbally report their strategy during 
(practice session) or immediately after (test, transfer, and retention 
sessions) solving each item. The exact sequence of the different sessions 
was: test 1, practice 1, practice 2, test 2, practice 3, practice 4, test 3, 
transfer, retention. Test, practice and transfer sessions were separated at 
least two days in time for each child. One month after the transfer session, 
children were offered the materials from the retention session. 

The major results of the microgenetic study can be summarized as follows. 
First, as far as strategy frequency is concerned, IA was, quite surprisingly, 
not used on a single trial by any child from the WI group during any 
session. But also in the SI group, IA was used rather infrequently during 
the second and the third test session. Second, as far as the efficiency of IA 
in the SI group is concerned, we compared the accuracy and speed of this 
newly learnt and quite rarely used IA strategy with the accuracy of the 
familiar DS strategy. It turned out that as soon as children from the SI 
group started to apply the new IA strategy, they immediately did so more 
accurately and more quickly than the DS strategy, although only the greater 
accuracy in favor of IA reached significance. 

Conclusion and discussion 

Our research program on IA strategy use in children and adults has yielded 
quite an interesting contrast, which demands further research and 
reflection. Whereas young adults use IA frequently, efficiently, and 
adaptively to solve symbolically presented multi-digit subtractions, IA is 
almost completely absent in the strategy repertoire of 6- to 9-year-olds. 
Even when children were confronted with problems for which the 
computational advantage seems overwhelming or with an explicit 
invitation to demonstrate strategy variety, even when they reportedly got 
math education using a book that pays systematic attention to IA, even 
when they participated in an experiment wherein they actually got 
instruction and practice in IA, the number of IA strategies remained 
remarkably low. At the same time, children who (begin to) use IA 
immediately seem to demonstrate relatively high levels of accuracy and 
speed, compared to the efficiency of the systematically taught and 



intensively practiced DS strategy. Therefore, more research is needed to 
unravel why so many elementary school children stick so strongly and 
stubbornly to the DS strategy and move so slowly and reluctantly in the 
direction of IA strategy use. In our view, this is a result of a mixture of 
factors, educational as well as cognitive-psychological ones. 

First of all, there are the math educational factors. One could argue that IA 
will only show up in children when this strategy has received intensive and 
high-quality instructional attention. Although the children from the strong 
instruction group in the last (microgenetic) study did receive intensive 
instruction in IA, it presumably was not of a high quality, given that it was 
completely individual, purely procedurally oriented, and not building on 
children’s prior knowledge (their physical experiences and social 
interactions that lie at the roots of inversion; their knowledge of addition-
based strategies for solving subtraction word problems of the missing 
addend type, etc.). Second, at a more general level, the children who 
participated in our studies all had received math education in a broader 
math education culture and practice that can be characterized as aiming at 
routine rather than at adaptive expertise (Baroody & Dowker, 2003). More 
particularly, they all had been immersed in a classroom practice and culture 
that values routine mastery of one single (taught) strategy rather than 
flexible use of various (self-invented) strategies. Aiming for such adaptive 
expertise would require a classroom climate and culture that systematically, 
from a very young age on, teaches for strategy variety and flexibility. 

Besides these educational explanations for why elementary school children 
move so slowly and reluctantly in the direction of IA strategy use, there are 
also some explanatory factors that are of a more cognitive-psychological 
nature. First, there is the conceptual knowledge of the mathematical 
principle that underlies the meaningful use of IA, i.e., the inverse principle, 
which may be particularly difficult for children of that age, who are still in 
the transition from the pre-operational to the concrete-operational stage of 
their cognitive development. However, a proper test of this hypothesis 
would require a test of children’s understanding of the underlying inverse 
principle, independent of their procedural knowledge of IA. A second 
possible cognitive factor relates to children’s limited metacognitive or self-
regulatory capacities, which may make it very difficult for them to suppress 
or inhibit certain tendencies, such as the tendency to execute the (direct) 
subtraction operation when confronted with a problem that contains the 
minus sign. These two intrinsically (meta)cognitive factors may explain 
why IA apparently originates and develops so slowly and laboriously in the 
vast majority of children of that age group, whereas other shortcut 



strategies for doing addition and subtraction, such as disregarding addend 
order when doing addition, seem to develop much earlier and easier. 

From the above list of explanations, it becomes clear that there is probably 
no single explanation for the absence of IA in many children’s repertoire of 
strategies for doing symbolic subtraction. Most probably, the phenomenon 
is the result of the complex interaction of various factors, psychological 
and educational. 
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