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Abstract

Let X ,Y be two continuous random variables. Investigating the regres-

sion dependence ofY onX , respectively, ofX onY , we show that the two of

them can have almost opposite behavior. Indeed, given anyε > 0, we con-

struct a bivariate random vector(X ,Y ) such that the respective regression

dependence measuresr2|1(X ,Y ),r1|2(X ,Y ) ∈ [0,1] introduced in Dette et al.

(2013) satisfyr2|1(X ,Y ) = 1 as well asr1|2(X ,Y )< ε.

1 Introduction and results

Recently, Dette et al. (2013) presented a new approach to the problem ofor-

dering and measuring regression dependence in the bivariate case. Let (X ,Y )
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be a bivariate random vector. Since regression dependence is a directional

relationship, it is first necessary to specify the direction of interest. Without

loss of generality, consider the dependence ofY onX . The fundamental idea

behind regression is predictability – the more predictableY is from X , the

more regression dependent they are. It is straightforward to single outthe

two extreme cases: independence and almost sure functional dependence,

when there exists a Borel measurable functiong such thatY = g(X) with

probability one (Lancaster, 1963). In the former case,X provides no infor-

mation aboutY , whereas in the latter case there is perfect predictability ofY

from X .

Apart from the two extreme cases, however, there exists a variety of in-

termediate ones with a certain degree of regression dependence. In order to

measure the strength of dependence ofY on X , Dette et al. (2013) defined

a nonparametric measure of regression dependence,r2|1(X ,Y ) ∈ [0,1]. Be-

side being monotone in a regression dependence order, the measure takes

on its extreme values precisely at independence and almost sure functional

dependence, respectively, i.e., we have

(i) r2|1(X ,Y ) = 1 if and only ifY is a.s. a Borel function ofX .

(ii) r2|1(X ,Y ) = 0 if and only if X andY are independent.

Analogously, one can define a measurer1|2(X ,Y ) = r2|1(Y,X) measuring the

degree of dependence ofX onY .

We point out that it is important to have equivalences in both of the

properties (i) and (ii), because only then the valuer2|1(X ,Y ) can serve as a

genuine measure of how muchY is dependent onX . Indeed, if we only had

r2|1(X ,Y ) = 0 if (but not only if)X andY are independent, then an assertion

like r2|1(X ,Y )< ε would not imply thatY is ‘almost independent’ fromX .

The following is the main result of the present paper.

Theorem 1. For any given ε > 0, there is a random vector (X ,Y ) such that
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the following assertions hold:

1. r2|1(X ,Y ) = 1, i.e., Y is a.s. a Borel function of X.

2. r1|2(X ,Y )< ε .

The paper is organized as follows. In Section 2 we give a quick review

of the construction in Dette et al. (2013) of the nonparametric measurer2|1

of regression dependence. Section 3 then contains the proof of Theorem 1,

and relates this result to other problems in the literature.

2 Preliminaries

In this section we recall the basic notion of copula and the definition of the

nonparametric measure of regression dependence introduced in Dette etal.

(2013). A (two-dimensional) copula is a functionC : I2 → I with I := [0,1],

satisfying the following conditions:

1. C(x,0) =C(0,y) = 0 for all x,y ∈ I

2. C(x,1) = x andC(1,y) = y for all x,y ∈ I

3. C is 2-increasing, i.e.,C(x2,y2)−C(x2,y1)−C(x1,y2)+C(x1,y1)≥ 0

for all rectangles[x1,x2]× [y1,y2]⊂ I2.

These conditions imply further key properties. A copula is Lipschitz contin-

uous and increasing in each argument; therefore, its partial derivatives exist

a.e. onI2. We refer the reader to Nelsen (2006) for more information about

copulas.

Given two continuous random variablesX andY with corresponding

copulaC, the measure of regression dependencer2|1(X ,Y ) introduced in

Dette et al. (2013) is defined by

r2|1(X ,Y ) = 6‖∂1C‖2
2−2= 6

∫

I2
|∂1C(x,y)|2d(x,y)−2 (1)
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where∂1 denotes the partial derivative with respect to the first variable and‖·

‖2 is theL2-norm onI2. The quantityr2|1 measures the degree of dependence

of Y on X . It is a measure of regression dependence with respect to two

natural regression dependence orders, also introduced in Dette et al.(2013).

Analogously, one can define a measure

r1|2(X ,Y ) = 6‖∂2C‖2
2−2= r2|1(Y,X)

such that this quantity measures the degree of dependence ofX onY .

3 Two proofs of Theorem 1

In this section, we will construct two sequences(Xn,Yn) of bivariate random

vectors such that

r2|1(Xn,Yn) = 1 for all n, (2)

lim
n→∞

r1|2(Xn,Yn) = 0. (3)

This proves Theorem 1. In fact, we will construct sequences of copulas

Cn rather than the random variables themselves. This is sufficient because

the measuresr2|1 andr1|2 depend only on the corresponding copula. For the

construction of these copulas, we use the so-called gluing method developed

in Siburg and Stoimenov (2008a). For the convenience of the reader, we

quickly recall its definition.

Given two copulasC1,C2 and a parameterθ ∈ (0,1), we define the func-

tion

(C1⊛x=θ C2)(x,y) =











θC1
(

x
θ ,y

)

if 0 ≤ x ≤ θ

(1−θ)C2
(

x−θ
1−θ ,y

)

+θy if θ ≤ x ≤ 1
(4)

Thus,C1⊛x=θ C2 corresponds to gluing the two copulasC1 andC2: it equals

C1, rescaled and fit into the rectangle[0,θ ]× I, and equalsC2+θy, rescaled

4



0 1

1

x

y

q

Figure 1:The support of the singular copulaC in Example 1

and fit into[θ ,1]× I. It is shown in Siburg and Stoimenov (2008a) that the

gluing process yields a copula again, i.e.,C1 ⊛x=θ C2 is a copula for any

parameterθ . For later purposes, we need also the gradient of the resulting

copula which is given by

∇(C1⊛x=θ C2)(x,y)

=















(

∂C1
∂x

(

x
θ ,y

)

,θ ∂C1
∂y

(

x
θ ,y

)

)

if 0 ≤ x ≤ θ

(

∂C2
∂x

(

x−θ
1−θ ,y

)

,(1−θ) ∂C2
∂y

(

x−θ
1−θ ,y

)

+θ
)

if θ ≤ x ≤ 1

(5)

Let us first illustrate the glueing construction with a fundamental ex-

ample. Recall that a copulaC is called singular if its density∂ 2C/∂x∂y

vanishes almost everywhere inI2. Moreover, the support of a copulaC is

defined as the complement of the union of all (relatively) open subsets ofI2

whose measure, induced byC, is zero. We refer to Nelsen (2006) for more

details.

Example 1. Let θ ∈ (0,1), and suppose that the probabilityθ is uniformly

distributed along the line segment joining(0,0) and(θ ,1), and the proba-

bility 1 − θ is uniformly distributed along the segment between(θ ,1) and
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(1,0). Consider the resulting singular copulaCθ whose support consists

of these two line segments; see Figure 1. It follows (see (Nelsen, 2006,

Ex. 3.3)) that

Cθ (x,y) =



























x if x ≤ θy

θy if θy < x < 1− (1−θ)y

x+ y−1 if 1− (1−θ)y ≤ x.

Note thatCθ can be written as the gluing

Cθ =C+
⊛x=θ C−

whereC+(x,y) = min(x,y) andC−(x,y) = max(x+ y−1,0) are the upper

and lower Fŕechet-Hoeffding bound, respectively.

Since the support ofCθ is a graph over thex-axis, this copula links ran-

dom variablesX andY whereY is completely dependent onX . This follows

from Dette et al. (2013, Prop. 1) and the fact that a function is Borel mea-

surable if and only if its graph is Borel measurable and has probability one

(Buckley, 1974). On the other hand,X is not completely dependent onY

because the support ofCθ is not a graph over they-axis.

This example will serve as a fundamental building block for our final

construction of copulasCn satisfying (2) and (3).

First proof of Theorem 1. We start with the copulaC+
⊛x=θ C− from Ex-

ample 1 where, in order to simplify calculations, we setθ = 1/2. Then we

defineCn inductively by

C1 =C+
⊛x=1/2C−

Cn+1 =Cn ⊛x=1/2Cn

for n ≥ 1. We claim that

∫

I2
|∂1Cn(x,y)|

2d(x,y) =
1
2

(6)
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Figure 2:The gradient of the copulaC3 in the first proof of Theorem 1

for all n ≥ 1, as well as

∫

I2
|∂2Cn(x,y)|

2d(x,y)→
1
3

(7)

asn → ∞. These relations imply that

r2|1(X ,Y ) = 6
∫

I2
|∂1Cn(x,y)|

2d(x,y)−2= 1

for all n, as well as

r1|2(X ,Y ) = 6
∫

I2
|∂2Cn(x,y)|

2d(x,y)−2→ 0

asn → ∞, which are precisely the assertions (2) and (3) that we wanted to

prove.

For the proof of (6) and (7), we have to calculate the gradient∇Cn. Us-

ing (5) and the fact that 1− θ = θ = 1/2, we see that∂Cn/∂x = 1 in the

upper and∂Cn/∂x = 0 in the lower triangles formed by the line segments

of the support ofCn, and the second component∂Cn/∂y takes the values

0,1/2n,2/2n, . . . ,(2n−1)/2n,1 respectively; see Figure 2 for the casen = 3.

Since the gradient ofCn is constant on each triangle, the integration re-

duces to multiplying the square of the respective constant with the area of
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the corresponding triangle. Thus, considering the first component of the

gradient, we obtain
∫

I2
|∂1Cn(x,y)|

2d(x,y) =
1
2

for eachn ≥ 1, proving (6).

The integral for the second component amounts to

∫

I2
|∂2Cn(x,y)|

2d(x,y) =

[2n−1

∑
i=1

( i
2n

)2
·

1
2n

]

+12 ·
1

2n+1

where the last term stems from the triangle containing the vertex(1,1)which

is just half as big as the other ones. Using the formula

k−1

∑
i=1

i2 = k3/3+O(k2)

we conclude that

∫

I2
|∂2Cn(x,y)|

2d(x,y) =
1

2n+1 +
( 1

2n

)3
·

2n−1

∑
i=1

i2 =
1
3
+O

( 1
2n

)

asn → ∞, proving also our claim (7).

We conclude this section with a second proof of Theorem 1 where we

use an even simpler building block than in the previous one.

Second proof of Theorem 1. ChoosingC+ as a building block instead ofC+
⊛x=1/2

C−, we consider the copulas

C1 =C+

Cn+1 =Cn ⊛x=1/2Cn

for n ≥ 1. We claim that both (6) and (7) hold also for this choice of copula

Cn.

Settingθ = 1/2 in (5), one sees that∂1Cn takes the values 0 and 1, each

in 2n−1 triangles of area 1/2n; compare Figure 3 indicating the gradient of

C3 = (C+
⊛x=1/2C+)⊛x=1/2 (C

+
⊛x=1/2C+).
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Figure 3:The gradient of the copulaC3 in the second proof of Theorem 1

Therefore,
∫

I2
|∂1Cn(x,y)|

2d(x,y) =
1
2

for eachn ≥ 1, proving (6).

The second component∂2Cn takes the values 0,1/2n−1,2/2n−1, . . . ,(2n−1−

1)/2n−1,1 respectively, so that we obtain

∫

I2
|∂2Cn(x,y)|

2d(x,y) =

[2n−1

∑
i=1

( i
2n

)2
·

1
2n

]

+12 ·
1

2n+1

=
1

2n+1 +
( 1

2n

)3
·

2n−1

∑
i=1

i2

=
1
3
+O

( 1
2n

)

for n → ∞, proving also (7).

Finally, we would like to point out that these examples also provide

a positive answer to a question stated in Siburg and Stoimenov (2008b).

Namely, for both our examples above we have

lim
n→∞

∫

I2
|∇Cn(x,y)|

2d(x,y) =
1
2
+

1
3
=

5
6
, (8)

which shows that the bound 5/6 given in Siburg and Stoimenov (2008b,

Thm. 18(ii)) and Siburg and Stoimenov (2010, Thm. 4.3(ii)) is sharp.
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