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ABSTRACT
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Second, we stress the importance of testing the property of independent and identically distributed (i.i.d.) VaR-

exceedances and propose a simple approach that explicitly tests for the presence of clusters in VaR-violation processes.

Results from a simulation study indicate that our tests significantly outperform competing backtests in several distinct

settings. In addition, the empirical analysis of a unique data set consisting of asset returns of an asset manager’s

portfolios underline the usefulness of our new backtests especially in times of market turmoil.



1 Introduction

Over the last two decades, Value-at-Risk (VaR) has become the de facto standard tool for

measuring and managing risk in the financial services industry. Defined as the p-quantile of a

relevant profit and loss (P/L) distribution where p is regularly set to 1% or 5%, it is now widely

used by commercial banks and insurers as well as firms outside the financial industry to assess the

risk exposure of single investments and portfolios.1 A simple reason for this importance of VaR for

the financial industry is given by the fact that under the 1996 Market Risk Amendment to the first

Basel Accord, banks were allowed to employ internal VaR-models to calculate capital charges for

their risky investments. Despite its popularity with practicioners, however, VaR has also received

criticism from academia due to its lack of subadditivity (and thus coherence, see Artzner et al.,

1999) in case of non-gaussian P/L distributions.2 Even more importantly, commentators have

blamed VaR in part for the severity of the recent financial crisis as the industry-wide use of VaR

capital constraints enabled externalities to spread in financial markets through the pricing of risk

(see Shin, 2010).3 Consequently, both regulators and financial risk managers have recently taken

an increased interest in model validation and backtests of VaR-forecasts.

Despite its importance for bank regulation, VaR-backtesting has received relatively little at-

tention in the financial econometrics literature compared to the numerous studies on the estima-

tion and forecasting of VaR. One of the first formal statistical backtests for VaR was proposed

by Kupiec (1995) who tests the sequence of VaR-violations for the correct number of violations

(i.e., unconditional coverage). Christoffersen (1998) and Christoffersen and Pelletier (2004) ex-

tend these first tests of unconditional coverage by additionally testing for the independence of the

sequence of VaR-violations yielding a combined test of conditional coverage. Recently, an inte-

grated framework for VaR-backtesting that includes the previously mentioned tests was proposed

1 Extensive discussions of the properties of VaR and its use in practice are given, e.g., by Dowd (1998), Jorion
(2006), and Alexander (2008).

2 Note, however, that evidence by Danı́elsson et al. (2005) points out the subadditivity of VaR for most practical
applications.

3 Similar arguments in favor of a destabilizing effect of bank regulation based on VaR on the economy are stated
by Leippold et al. (2006) and Basak and Shapiro (2001).
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by Berkowitz et al. (2011). Further examples of the few backtests for VaR that are available to regu-

lators are due to Berkowitz (2001), Engle and Manganelli (2004), Haas (2005) and Candelon et al.

(2011), although the test of unconditional coverage continues to be the industry standard mostly

due to the fact that it is implicitly incorporated in the framework for backtesting internal models

proposed by the Basel Committee on Banking Supervision (BCBS) (1996).4

In this paper, we propose a new set of backtests for VaR-forecasts that significantly im-

prove upon existing formal VaR-backtests like, e.g., the benchmark models proposed by

Christoffersen and Pelletier (2004). We first restate the definitions of the unconditional coverage

property and propose a new test of the correct number of VaR-exceedances. Extending the current

state-of-the-art, our new test can be used for both directional and non-directional testing and is

thus able to test separately whether a VaR-model is too conservative or underestimates the actual

risk exposure. Second, we stress the importance of testing both for the property of independent as

well as the property of identically distributed VaR-exceedances and propose a simple approach for

testing for both properties. While it has been noted in previous studies that VaR-violations should

ideally be i.i.d., standard backtests focus solely on the independence of the violations.5 In this

paper, we argue that the property of identically distributed VaR-exceedances is of vital importance

to regulators and risk managers. In particular, we show that traditional VaR-backtests that center

around first-order autocorrelation in violation processes are often not able to detect misspecified

VaR-models during calm boom and highly volatile bust cycles. The new test of the i.i.d. property

of VaR-violations explicitly tests for the presence of clusters in VaR-violation processes. This new

feature is highly economically relevant as our test for violation clusters can identify VaR-models

that yield inaccurate risk forecasts when they are most undesirable: during economic busts and fi-

nancial crises when extreme losses on investments cluster due to a persistent increase in the volatil-

ity level. Finally, we also propose a weighted backtest of conditional coverage that simultaneously

tests for a correct number and the i.i.d. property of VaR-violations. Our proposed weighted back-

4 A review of backtesting procedures that have been proposed in the literature is given by Campbell (2007).
5 In fact, previous Markov- and duration-based tests of Christoffersen (1998), Christoffersen and Pelletier (2004)

and Candelon et al. (2011) only consider autocorrelation in VaR-violations as one possible reason why VaR-
violations could be clustered.
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test is in the spirit of the original backtest of conditional coverage by Christoffersen and Pelletier

(2004), but generalizes it by allowing the user to choose the weight with which the test of uncon-

ditional coverage enters the joint test of conditional coverage. Our newly proposed set of backtests

are directly based on i.i.d. Bernoulli random variables making them very intuitive and easy to

implement. By construction, these tests automatically keep their level, even for very small sample

sizes as they are often found in VaR-backtesting.

We employ our proposed backtests in a simulation study using several sets of simulated data

that mimic real-life settings in which the simulated data violate the unconditional coverage, i.i.d.,

and conditional coverage properties to different degrees. The results indicate that our tests sig-

nificantly outperform competing backtests in several distinct settings. In addition, we present an

empirical application of the new tests using a unique data set consisting of the asset returns of an

asset manager’s portfolios.

The paper is organized as follows. Section 2 introduces the notation, defines the properties of

VaR-violations, and describes our new set of backtests. Section 3 evaluates the performance of the

newly proposed backtests as well as several benchmark procedures for backtesting VaR-forecasts

in a simulation study. Section 4 presents results from our empirical application study. Section 5

concludes the paper.

2 Methodology

In this section, we introduce the notation used throughout the paper, redefine the desirable

properties of VaR-violations that are frequently discussed in the literature and present our new

backtests.

2.1 Notation and VaR-Violation Properties

Let {yt}nt=1 be a sample of a time series yt corresponding to daily observations of the returns on

an asset or a portfolio. We are interested in the accuracy of VaR-forecasts, i.e., an estimation of
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confidence intervals. We denote the VaR-forecasts by VaRt|t−1(p), where p is the VaR coverage

probability. In practice, the coverage probability p is typically chosen to be either 1% or 5% (see

Christoffersen, 1998). This notation implies that information up to time t − 1 is used to obtain

a forecast for time t. Moreover, we define the indicator variable It(p) for a given VaR-forecast

VaRt|t−1(p) as

It(p) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0, if yt ≥ VaRt|t−1(p);

1, if yt < VaRt|t−1(p).

(1)

If this indicator variable is equal to 1, we will call it a VaR-violation.

To backtest a given sequence of VaR-violations, Christoffersen (1998) state three desirable

properties that the VaR-violation process should possess. First, the VaR-violations are said to have

unconditional coverage (uc thereafter) if the probability of a VaR-violation is equal to p, i.e.,

P[It(p) = 1] = E[It(p)] = p. (2)

Second, the independence (ind thereafter) property requires that the variable It(p) has to be inde-

pendent of It−k(p),∀k � 0. Finally, the uc and ind properties are combined via E[It(p)− p|Ωt−1] = 0

to the property of conditional coverage (cc thereafter). In detail, a sequence of VaR-forecasts is

defined to have correct cc if

{It(p)} i.i.d.∼ Bern(p),∀t. (3)

While we agree with the formulation of the cc property, we point out that the uc and the ind

properties as defined above suffer from some serious restrictions. The uc property requires a test

whether the expected coverage is p for each day t individually. To be more precise, the equation

P[It(p) = 1] = E[It(p)] = p holds only true if P[It(p) = 1] = p holds for all t. However, it is not

feasible to verify if this assumption holds true for all t individually by means of a statistical test

of uc. Moreover, it is quite likely that the sequence of VaR-violations is not stationary and that

the actual p varies across different market phases even if 1
n

∑n
t=1 It equals p for the total sequence.
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Evidence for this conjecture is found by Escanciano and Pei (2012). The practical relevance of this

feature is demonstrated in our empirical study (see Section 4). Consequently, we redefine the uc

property simply as

E

⎡⎢⎢⎢⎢⎢⎣1
n

n∑
t=1

It(p)

⎤⎥⎥⎥⎥⎥⎦ = p. (4)

With respect to the ind property, it is interesting to note that the current state-of-the-art backtests

in the financial econometrics literature completely neglect the necessity to test the property of

VaR-violations being identically distributed. In fact, the sequence {It(p)} could exhibit clusters of

violations while still possessing the property of independence as defined above. In fact, unexpected

temporal occurrences of clustered VaR-violations may have several potential reasons. On the one

hand, {It(p)} may be not identically distributed and p could vary over time. On the other hand,

It(p) may not be independent of It−k(p),∀k � 0. We therefore reformulate the ind property as the

i.i.d. property (i.i.d. thereafter). The hypothesis of i.i.d. VaR-violations holds true if

{It(p̃)} i.i.d.∼ Bern(p̃),∀t, (5)

where p̃ is an arbitrary probability.

In the following, we describe our new set of backtests that includes separate tests for all men-

tioned properties of VaR-violation processes. Pseudocode for all our new backtests is given in

Appendix A.

2.2 A New Test of Unconditional Coverage

At this point, we are interested in testing the null hypothesis E
[

1
n

∑n
t=1 It(p)

]
= p against the

alternative E
[

1
n

∑n
t=1 It(p)

]
� p. In fact, as we will see later, our new test statistic also allows us

to separately test against the alternatives E
[

1
n

∑n
t=1 It(p)

]
≥ p and E

[
1
n

∑n
t=1 It(p)

]
≤ p. The most

intuitive and commonly used test statistic for the test of uc is given by (see Christoffersen, 1998):

LRkup
uc = −2 log[L(p; I1, I2, ..., In)/L(p̃; I1, I2, ..., In)]

asy∼ χ2(1), (6)
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where p̃ = n1
n1+n0

, n1 is the number of violations and n0 = n − n1. Moreover, we have

L(p; I1, I2, ..., In) = pn1 (1 − p)n0 (7)

and

L(p̃; I1, I2, ..., In) = p̃n1(1 − p̃)n0 . (8)

Candelon et al. (2011) recently introduced an alternative test for the uc hypothesis us-

ing orthonormal polynomials and the GMM test framework proposed by Bontemps (2006),

Bontemps and Meddahi (2005) and Bontemps and Meddahi (2012). Their test statistic is given

by

Juc = Jcc(1) =

⎛⎜⎜⎜⎜⎜⎝ 1√
m

m∑
i=1

M1(di; p)

⎞⎟⎟⎟⎟⎟⎠
2

asy∼ χ2(1), (9)

where M1 is an orthonormal polynomial associated with a geometric distribution with a success

probability p and di denotes the duration between two consecutive violations (see Candelon et al.,

2011, for more details).

However, both tests suffer from significant drawbacks. First, without modifications, it is not

possible to construct one-sided confidence intervals and to test separately if a VaR-estimation is

too conservative or underestimates the actual risk exposure. Such an additional feature, on the

other hand, would be of particular interest to bank regulators and risk-averse investors who are

primarily interested in limiting downside risk. The second drawback is concerned with the be-

haviour of the tests in finite samples. As we deal with tail forecasts based on binary sequences,

the number of violations is comparatively small and discrete. Hence, ties between the sample

test value and those obtained from Monte Carlo simulation under the null hypothesis need to be

broken. Christoffersen and Pelletier (2004) propose to use the Dufour (2006) Monte Carlo test-

ing technique to break ties between test values. As their approach, however, is computationally

demanding and unnecessarily complex, we propose a different tie breaking procedure.

We address the latter problem by exploiting an idea used, among others, by
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Podolskij and Ziggel (2009) and propose to use the test statistic

MCS uc =

n∑
t=1

It(p) + ε, (10)

where ε is a small and continuously distributed random variable that serves to break ties between

test values.6 Critical values of the test statistic are computed via Monte Carlo simulations (MCS)

as is done for all other backtests throughout this paper. For fixed n and p, the distribution of the

test statistic is known. We then simulate a large number of realizations of the test statistic under

the respective null hypothesis and use the resulting quantile for testing the uc hypothesis. Adding

the random variable ε guarantees that the test exactly keeps its size if the number of Monte Carlo

simulations for obtaining the critical value tends to infinity.7 Note that without the addition of the

random variable ε, the test statistic would have a discrete distribution and not all possible levels

could be attained. Additionally, note that the choice of ε is not crucial for testing the uc hypothesis.

Consequently, it is intuitive to use normally distributed random variables for ε. Nevertheless, one

needs to assure that the test statistic for v − 1 violations is smaller then the test statistic for v

violations. Followingly, we set ε ∼ 0.001 · N(0, 1) in our simulation study. Finally, it is instructive

to see that our new approach allows for one-sided and two-sided testing for every desired test level.

Critical values for all our tests are then computed via MCS instead of, e.g., making use of

explicit expressions of the exact or asymptotic distributions. Basically, all test statistics we consider

are given as a sum of a discrete random variable (determined by Bernoulli distributed random

variables) and a continuous random variable with known distribution that is independent from the

discrete random variable. Thus, on the one hand, the distributions of the test statistics are uniquely

determined for fixed n and p and additionally it is basically useful to consider MCS. On the other

hand, due to the continuous part, the test statistics are also continuously distributed. This follows

from the general fact that, for a discrete random variable X with support MX and a continuous

6 Podolskij and Ziggel (2009) employ the idea of adding a small random variable to a test statistic to construct a
new class of tests for jumps in semimartigale models.

7 The theoretical foundation of our approach is given by Dufour (2006) who considers a more general context and
solves this problem by introducing randomized ranks according to a uniform distribution.
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random variable Y such that X and Y are independent,

P(X + Y ≤ a) =
∑
x∈MX

P(x + Y ≤ a|X = x)P(X = x) =
∑
x∈MX

P(Y ≤ a − x)P(X = x).

Thus, the cumulative distribution function of X+Y can be written as a countable sum of continuous

functions so that it is continuous as well. Using a result from Dufour (2006), the empirical critical

values then yield a test that exactly keeps its size if the number of MCS tends to infinity.8

2.3 A New Test of I.I.D. VaR-Violations

As stated in Christoffersen (1998), testing solely for correct uc of a VaR-model neglects the

possibility that violations might cluster over time. Consequently, Christoffersen (1998) propose

a test of the violations being independent against an explicit first-order Markov alternative. The

resulting test statisic is given by:

LRmar
iid = −2 log[L(Π̃2; I1, I2, ..., In)/L(Π̃1; I1, I2, ..., In)]

asy∼ χ2(1). (11)

Here, the likelihood functions are given by:

L(Π̃1; I1, I2, ..., In) =

(
1 − n01

n00 + n01

)n00
(

n01

n00 + n01

)n01
(
1 − n11

n10 + n11

)n10
(

n11

n10 + n11

)n11

(12)

and

L(Π̃2; I1, I2, ..., In) =

(
1 − n01 + n11

n00 + n10 + n01 + n11

)n00+n10
(

n01 + n11

n00 + n10 + n01 + n11

)n01+n11

, (13)

8 Instead of using MCS, one could basically also derive the exact distribution functions of the test statistics, al-
though this would indubitably be a cumbersome task. It would also be possible to derive asymptotic results if the
test statistics are appropriately standardized (for example by 1/n) and if one imposes additional moment assump-
tions on the continuous random variable. However, this is not necessary in our setting as in practice, n and p are
fixed. Since one typically deals with a low number of VaR violations, one could moreover expect the asymptotic
approximation to be highly inaccurate, which is confirmed by several studies (see, e.g., Berkowitz et al., 2011).
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where ni j is the number of observations with value i followed by j. Note that this first-order Markov

alternative has only limited power against general forms of clustering. Moreover, as shown in

Christoffersen and Pelletier (2004), this test is not suited for several settings and has a poor be-

haviour in finite samples. The test can then be combined with the test of uc presented in the previ-

ous subsection to yield a full test of conditional coverage. Despite the aforementioned shortcom-

ings, however, it is still one of the most frequently used backtests in practice (see Candelon et al.,

2011).

In a subsequent work, Christoffersen and Pelletier (2004) introduce more flexible tests which

are based on durations between the violations. The intuition behind these tests is that the clustering

of violations will induce an excessive number of relatively short and long no-hit durations. Under

the null hypothesis, the no-hit durations D should then be exponentially distributed with

fexp(D; p) = pe−pD, (14)

where D is the no-hit duration. In their work, Christoffersen and Pelletier (2004) employ the

Weibull and the gamma distribution to test for an exponential distribution of the no-hit durations.

Nevertheless, we will only consider the Weibull test in our simulation study as it yields consid-

erably better results than the gamma test (see Haas, 2005). In addition to the mentioned tests,

the literature on VaR backtesting also includes the standard Ljung-Box test, the CAViaR test of

Engle and Manganelli (2004) and spectral density tests. However, the level of most of these tests

is poor for finite samples and therefore critical values need to be calculated based on the Dufour

Monte Carlo testing technique (see Berkowitz et al., 2011).

Recently, Candelon et al. (2011) introduced a new test for the i.i.d. hypothesis. As described

above, this test is based on orthonormal polynomials and the GMM test framework. The test

statistic is given by

Jiid(q) =

⎛⎜⎜⎜⎜⎜⎝ 1√
m

m∑
i=1

M(di; p̃)

⎞⎟⎟⎟⎟⎟⎠
T ⎛⎜⎜⎜⎜⎜⎝ 1√

m

m∑
i=1

M(di; p̃)

⎞⎟⎟⎟⎟⎟⎠ asy∼ χ2(q), (15)
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where M(di; p̃) denotes a (q, 1) vector whose components are the orthonormal polynomials

Mj(di; p̃), for j = 1, ..., q, evaluated for the true violation rate p̃.

To introduce our new test statistic, we first define the set of points in time on which a VaR-

violation occurs via

V = {t|It = 1} = (t1, ..., tm). (16)

The test statistic for our new i.i.d. hypothesis is then given by

MCS iid,m = t2
1 + (n − tm)2 +

m∑
i=2

(ti − ti−1)2 + ε. (17)

Basically, the idea behind this test statistic follows the principle of the Run-Test proposed by

Wald and Wolfowitz (1940). To be more precise, the sum of the squared durations between two

violations is minimal if the violations are exactly equally spread across the whole sample period.

If the violations are clustered and occur heaped, this sum increases. Additionally, MCS iid,m also

allows to test for a too systematic occurrence of violations. For example, the process of VaR-

violations could exhibit an undesirable cyclical or seasonal behaviour that is detected by our new

test of the i.i.d. property.9 However, for the purpose of this study we concentrate on testing for

clustered VaR-violations.

As before, we waive a formal derivation of the distribution of our test statistic. Instead, we

obtain the critical values of the test statistic by means of a Monte Carlo simulation (thus inspiring

the abbreviation MCS iid,m). The simulation is straightforward as only n and p have to be adapted

to the specific situation. Note that the critical values need to be simulated separately for each value

of m as we are solely interested in the durations between the violations and not in the absolute

number of it. Again, we use a small continuously distributed random variable ε to break ties and

for the MCS to yield a valid test. Moreover, the computational complexity of the test is negligible.

9 This feature is of particular interest, e.g., in commodity and weather risk management.
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2.4 A New Test of Conditional Coverage

We now describe our new test of conditional coverage that combines the two new tests for

the uc and the i.i.d. property. Starting point is again the standard test of conditional coverage as

proposed by Christoffersen (1998) which utilizes the test statistic

LRmar
cc = −2 log[L(p; I1, I2, ..., In)/L(Π̃1; I1, I2, ..., In)]

asy∼ χ2(2), (18)

and which is based on the first-order Markov alternative described above. In a related study,

Berkowitz et al. (2011) extend their Weibull test for the i.i.d. property and derive an alternative

test of conditional coverage. They postulate a Weibull distribution for the duration variable D with

distribution

h(D; a, b) = abbDb−1e−(aD)b
, (19)

with E[D] = 1/p. Then, the null hypothesis of their test of conditional coverage is given by

H0,cc : b = 1, a = p. (20)

Using orthonormal polynomials and the GMM test framework, Candelon et al. (2011) propose

a competing test of the cc hypothesis. Their test statistic is given by

Jcc(q) =

⎛⎜⎜⎜⎜⎜⎝ 1√
m

m∑
i=1

M(di; p)

⎞⎟⎟⎟⎟⎟⎠
T ⎛⎜⎜⎜⎜⎜⎝ 1√

m

m∑
i=1

M(di; p)

⎞⎟⎟⎟⎟⎟⎠ asy∼ χ2(q). (21)

Again, M(di; p) denotes a (q, 1) vector whose entries are the orthonormal polynomials M j(di; p),

for j = 1, ..., q.

A drawback of both mentioned backtests is that neither allows for a weighting of the influence

of the unconditional and i.i.d. tests in the combined test of conditional coverage. From the per-

spective of a risk manager, however, such a feature could be highly desirable as more weight could

be assigned to one of the components of the test of conditional coverage. Hence, we are interested
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in a test of the form

MCS cc,m = a · f (MCS uc) + (1 − a) · g(MCS iid,m), 0 ≤ a ≤ 1, (22)

where a is the weight of the test of uc in the combined cc test. The first component of our new cc

test is then given by

f (MCS uc) =

∣∣∣∣∣∣
(ε +

∑n
t=1 It)/n − p

p

∣∣∣∣∣∣ . (23)

This term measures (in percent) the deviation between the expected and observed proportion of

violations. To allow for a one-sided testing within the uc component, the above term is multiplied

by 1{∑n
t=1 It/n≥p} or 1{∑n

t=1 It/n≤p}, respectively.

The second component in the cc test in (22) is defined as

g(MCS iid,m) =
MCS iid,m − r̂

r̂
· 1{MCS iid,m≥r̂}, (24)

where r̂ is an estimator of the expected value of the test statistic MCS iid,m under the null hypothesis,

i.e., for E(MCS iid,m|H0) =: r (see below and Appendix A for details). The second component

measures the deviation (in percent) between the expected and observed sum of squared durations.

Again, we use random variables ε to break ties. In line with the new uc and i.i.d. tests, we abstain

from a formal derivation of the distribution of our test statistic and obtain the critical values by

means of a Monte Carlo simulation for each combination of sample size n and weighting factor a.

Note that the estimator r̂ is calculated in a prior step before calculating the actual test statistics

and deriving critical values (cf. the pseudocode in Appendix A). Thus, for MCS cc,m, the arguments

regarding the correctness of the MCS from the end of Section 2.2 are also applicable.

As the weighting factor a can be chosen arbitrarily, a natural question to ask is how a should be

chosen. On the one hand, small test samples (e.g., 250 days) and small values of p (e.g. p = 1%)

lead to a small expected number of VaR-violations. In these cases, a risk manager (or regulator)

might be more interested in backtesting the VaR-violation frequency rather than the i.i.d. property
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of, for instance, only two or three violations. On the other hand, large test samples (e.g., 1,000

days) may include calm bull and volatile bear markets. A VaR-model which is not flexible enough

to adapt to these changes may lead to non-identically distributed VaR-violations while at the same

time yielding a correct uc. Therefore, risk managers could be inclined to select a lower level of a

to shift the sensitivity of the cc test to the test of the i.i.d. property. The selection of the optimal

weighting facor a thus seems to be a practical rather than a mathematical task.

2.5 Multivariate Extension

In the last part of this section, we follow Christoffersen (1998) and Berkowitz et al. (2011)

and shortly discuss the backtesting of multivariate VaR-forecasts. The extension of our newly

proposed backtests to the multivariate case is straightforward and we again exploit the fact that our

test statistics are considerably less computationally demanding than competing testing approaches

(thus enabling the use of MCS). Here, we concentrate on exemplifying the extension of the test of

uc to a multivariate setting (the extension of the other proposed tests works analogously). Assume

that we are given a sample of an h-variate time series {Yt}nt=1 as well as h sequences of VaR-

forecasts, VaRt,i|t−1(p), and VaR-violations, It,i(p), i = 1, ..., h, respectively. Then, the multivariate

two-sided test for the uc hypothesis is defined by

MCS m−uc,h = ε +

h∑
i=1

∣∣∣∣∣∣
(
∑n

t=1 It,i)/n − p

p

∣∣∣∣∣∣ . (25)

MCS m−uc,h is simply the sum of the single deviations (in percent) between the expected and ob-

served proportion of violations. Multiplying each summand by 1 {∑n
t=1 It,i/n≥p} or 1{∑n

t=1 It,i/n≤p}, respec-

tively, again yields a directional test. Moreover, simulation is straightforward as only n, h and p

need to be specified in an empirical application.
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3 Simulation Study

To examine the performance of our newly proposed backtests in finite samples, we perform

a comprehensive simulation study in which we compare our new backtests to several different

benchmark tests.

3.1 Tests of Unconditional Coverage

We analyze the performance of the different tests of uc by simulating 10, 000 samples and using

different parameter combinations for p, γ, and n to analyze the size and power of the backtests in

more detail. We directly simulate sequences of VaR-violations using the data generating process

(DGP)

It ∼ Bern(γ · p), t = 1, ..., n. (26)

To determine the size of the tests, we set the coverage parameter γ = 1.0. For the analysis of the

tests’ power, we increase the violation probability and set γ = 1.1, 1.25, 1.50 and 2.00.10 Each

sequence It of simulated VaR-violations is then backtested using the new upper-tail MCS ut
uc and the

two-tailed MCS tt
uc backtest as described in Section 2.2. To evaluate each test’s power, we compute

the fraction of simulations in which the test is rejected (hereafter referred to as rejection rate).

Critical values of the test statistics for different parameters p and n are computed using 10, 000

MC simulations. Complementing our new backtests, we also apply the LRkup
uc test of Christoffersen

(1998) and the GMMuc test of Candelon et al. (2011) to the simulated violation sequences and

compare the results of the tests. The results of the simulation study on the performance of the tests

of uc are presented in Table I.

- Insert Table I about here -

Not surprisingly, due to the fact that the critical values for each of the tests are determined via

simulation, the rejection frequencies for the setting γ = 1.0 are close to the nominal size of the

10 We calculate but do not report results for the setting γ < 1 and concentrate on the more practically relevant
scenario of a VaR-model underestimating risk.
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tests. With respect to the power of the uc tests, the results of the LRkup
uc test, the GMMuc test, and the

two-tailed MCS tt
uc test are very similar. Only in a few cases do the results of the GMMuc test deviate

from the rejection rates of the LRkup
uc test and the two-tailed MCS tt

uc test in a positive or negative

direction. However, all of the three analyzed two-tailed tests are outperformed by the one-sided

MCS ut
uc test in the vast majority of settings. Consequently, in addition to being of high practical

relevance to regulators, our new directional test of uc offers an increased test power compared to

standard VaR-backtests from the literature.

3.2 Tests of the I.I.D. Property

As discussed in Section 2.1, a correctly specified VaR-model should yield i.i.d. violations.

In this part of the simulation study, we analyze the power of the new backtests of i.i.d. VaR-

violations using two data generating processes. First, we investigate the power of our new backtests

and competing benchmark tests using dependent violations. Second, we repeat this analysis for

non-identically distributed violation processes. In both settings, we perform the MCS iid test and

compare its finite sample behavior to that of the LRmar
iid test of Christoffersen (1998), the LRwei

iid test

of Christoffersen and Pelletier (2004) and the GMMiid test of Candelon et al. (2011).11 Because

clustering implies the occurance of at least two VaR-violations, the i.i.d. tests are not performed

on samples where this minimum number is not achieved. To be more precise,
∑n

t=1 İt ≥ 2 holds

true for each of the samples simulated by the procedures below, where İt denotes a simulated VaR-

violation sequence. Basically, each of the utilized tests are feasible under this condition. Only the

LRwei
iid test statistic cannot be computed for some simulated samples containing two violations (for

more details see Candelon et al., 2011). We classify these cases as not rejected.

11 As suggested in Candelon et al. (2011) we set q = 3 for p = 5% and q = 5 for p = 1% throughout the simulation
study. Critical values for the MCS iid test are obtained as outlined in Section 2.3 using 10, 000 MC simulations.
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3.2.1 Independent VaR-Violations

In the first setting, we generate sequences of dependent VaR-violations with the degree of

dependence inherent in the violation processes varying over time. For each λ and each n, we draw

10, 000 simulations from the distribution

ẏt =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
∼ zt, t = 1;

∼ σtzt, t > 1,

(27)

where

σ2
t = λσ

2
t−1 + (1 − λ)z2

t−1, 0 ≤ λ ≤ 1, (28)

and zt ∼ N(0, 1),∀t. The distribution of ẏt is based on the well-known exponentially weighted

moving average (EWMA) type process. This approach allows for an easy regulation of the degree

of dependence by determining λ as the single decay factor. To be more precise, λ controls the half-

life interval of the observation weights (i.e., the interval in which the weight of an observed σ2

decreases to half its original value) by log(0.5)/log(λ). We apply the backtests to several different

levels of λ representing half-life intervals of 5, 10, 20, 40, 60, and 80 days of data. This range of

half-life intervals covers typical volatility persistence of asset return series.12 Table II shows the

half-life intervals and the corresponding λ level used to compute the power of the backtests.

- Insert Table II about here -

Dependent VaR-violations are ensured by setting a constant VaR for all i = 1, . . . , n. For each

decay factor λ the VaR is determined separately by the empirical p-quantile of 10, 000 random

values simulated by Equation (27). The simulated VaR-violations İt are computed as defined by

Equation (1).

12 The EWMA approach can be used for VaR-forecasting purposes (RiskMetrics) whereas λ is typically set to 0.94
for one-day and 0.97 for one-month forecasts (see Mina et al., 2001). This corresponds to half-life intervals of
11 and 23 days. Furthermore, Berkowitz et al. (2011) estimated variance persistences for actual desk-level daily
P/Ls from several business lines from a large international bank. The determined values are 0.9140, 0.9230,
0.9882 and 0.9941 which correspond to half-life intervals of 8, 9, 58, and 117 days.
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Table III shows the results of the power study concerning the independence property of VaR-

violations. We apply each test to 60 different combinations of coverage probability p, decay factor

λ and sample size n. Together with the three significance levels of 1%, 5%, and 10%, we thus

obtain 180 different settings in our simulation study.

- Insert Table III about here -

In total, the MCS iid test outperforms the remaining tests in 104 out of the 180 test settings. Com-

pared to the other test methods, this test possesses a high statistical power in settings in which

the half-life interval is relatively large. Furthermore, the superiority of the MCS iid test increases

with the significance level. The GMM test shows the best statistical power in almost one third of

the considered settings. Compared to the remaining tests, the test performs well particularly for

half-life intervals up to 20 days and for small significance levels. The LRmar
iid test yields the best

statistical power in 21 out of 150 settings. This result should be interpreted cautiously due to the

fact that the vast majority of the top results are concentrated at the very short half-life interval of

five days. It is to be expected that the LRmar
iid test performs well in such circumstances, because

short decay intervals lead to frequent occurrences of successive VaR-violations. Consequently, the

power of this test deteriorates as the decay interval increases. For none of the 180 different settings

does the LRwei
iid test lead to the best statistical power of all analyzed test methods. Furthermore,

for p = 5% and a half-life interval larger than 10 days, the test yields a statistical power below

its nominal size and shows the undesired behavior of decreasing rejection rates as the sample size

increases.
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3.2.2 Identically Distributed VaR-Violations

The data generating process for the second part of the simulation study is given by:

İt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i.i.d.∼ Bern(p − 2δ), 1 ≤ t ≤ n
4 ;

i.i.d.∼ Bern(p + δ), n
4 < t ≤ n

2 ;

i.i.d.∼ Bern(p − δ), n
2 < t ≤ 3n

4 ;

i.i.d.∼ Bern(p + 2δ), 3n
4 < t ≤ n.

(29)

Here, we choose δ = 0p to analyze the size of a test and δ = 0.1p, 0.2p, 0.3p, 0.4p and

0.5p for the power study. This setting leads to variations in the probability of obtaining a VaR-

violation between the four equal-sized subsamples. Consequently, the violations will occur un-

equally distributed. Note that the probability variations are determined in a way which ensures

E

(∑n
t=1 İt

)
= n · p. The setup of this part of the simulation study covers a realistic scenario in which

a VaR-model does not, or not fully, incorporate changes from calm market phases to highly volatile

bear markets or financial crises and vice versa. This in turn leads to clustered VaR-violations re-

gardless of the question whether the data might show signs of autocorrelation.

Alternatively, non-stationary VaR-violations could be identified by splitting a sample into sev-

eral subsamples and applying the test for uc to each subsample. However, this approach suffers

from two main drawbacks. First, for small subsamples the power of uc tests is relatively low (see

Table I). Second, it remains unclear at which points real data samples have to be split into two or

more subsamples.

Table IV shows the results of the power study concerning the property of identically distributed

VaR-violations. We apply each test to 50 different combinations of coverage probability p, prob-

ability variation factor δ, and sample size n. Furthermore, we compute rejection rates for signifi-

cance levels of 1%, 5%, and 10% which leads to a total of 150 different test settings.

- Insert Table IV about here -
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In total, the MCS iid test possesses a high statistical power regarding non-identically distributed

VaR-violations and its test results are comparable to or better than the performance of the remaining

three approaches for 130 out of the 150 settings. Particularly for significance levels of 5% and 10%,

it outperforms the competing tests in almost all cases, irrespective of the degree of probability

variation or sample size. The GMM test yields rejection rates which are equal or better than

the results of the competing models for 30 of the 150 simulation settings. The test particularly

achieves its top results for a significance level of 1%. The LRmar
iid test is able to match the results

of the competing tests in only seven cases which are restricted to settings in which p = 1% and

δ = 0.1p. The results of the LRwei
iid test falls short of the performance of the remaining tests in almost

all settings. Finally, it is striking that the power of the LRmar
iid test and the LRwei

iid test significantly

exceed the nominal size only for large shifts in the VaR-violation probability, i.e. δ ≥ 0.4p.

3.3 Conditional Coverage

Table VII illustrates the behavior of the MCS cc test considering different levels of the weighting

parameter a.

- Insert Table VII about here -

For reasons of space we present results only for a single parameter combination for each of the

two settings. This includes n = 1000, a half-life interval of 20 days, and γ = 1.25 for setting 1

and n = 1000, δ = 0.3p, γ = 1.25 for setting 2. Depending on the setting, the VaR probability p,

and the significance level, the test yields the highest rejection rates for values of a between 0.5 and

0.8. This is consistent with our expectation that the maximum of the statistical power is achieved

when 0 < a < 1, i.e., when the cc test addresses both the unconditional coverage as well as the

i.i.d. property of the violations.

We continue with a comparison of the size and the power of the conditional coverage test

MCS cc to the LRmar
cc test of Christoffersen (1998), the LRwei

cc test of Christoffersen and Pelletier

(2004) and the GMMcc test of Candelon et al. (2011). For this purpose, we combine each of the

19



two settings described in Section 3.2 with increased probabilities of a VaR-violation outlined in

Section 3.1. Note that we use the two-tailed uc component and set the weighting factor to a = 0.5

in the entire study. For the determination of critical values we perform the procedure as explained

in Section 2.4 using 10, 000 MC simulations. In line with the settings above, for each combination

of γ, δ, volatility half-life, and n we repeat the simulation of VaR-violation sequences 10, 000

times. We present the results of the simulation study concerning an increased probability of a

VaR-violation combined with non-independent occurrence of violations (setting 1) in Table V, and

combined with non-identically distributed violations (setting 2) in Table VI. 13

- Insert Tables V and VI about here -

Regarding both settings, the MCS cc test yields the best rejection rates for the vast majority of test

settings. To be precise, the MCS cc test shows similar or better results compared to the competing

tests in 157 out of 180 parameter combinations for setting 1 and 116 out of 150 parameter com-

binations for setting 2. With respect to setting 1, the LRmar
cc test and the GMMcc test achieve or

exceed the rejection rates of the MCS cc test in some cases in which the nominal VaR-level is set

to 1%. The LRwei
cc test does not achieve top rejection rates for any of the parameter combinations.

Regarding setting 2, and parameter combinations for which the VaR-violation probability varia-

tion parameter is set to δ = 0.1p, the LRmar
uc test shows some superior results. In many cases, the

rejection rates of the GMMcc test show evidence of a good performance, but only in very few cases

does it yield top results. For none of the reported parameter combinations does the LRwei
cc test lead

to results above the rejection rates of the remaining tests.

4 Empirical Application

To investigate the behavior of the new set of backtests and to illustrate their usefulness in a

realistic risk management setting, we perform an empirical study using actual returns on a set of

managed portfolios.
13 To save space, we do not present the rejection rates of all parameter combinations. The complete results are

available from the authors upon request.

20



4.1 Data and Forecasting Scheme

We apply the new tests to a unique data set provided by a German asset manager.14 The data

set consists of 5,740 daily log-returns for each of four portfolios and covers a time period of 22

years (January 1, 1991 to December 31, 2012). While we exclude weekend days from our sample,

it is not possible to easily eliminate holidays as well, because the portfolio assets are invested

internationally and non-business days differ widely across the countries in our sample. To this end,

we add the returns of these days (e.g., accrued interest) to the next trading day. Table VIII presents

summary statistics for the portfolio log-returns we use in our empirical study.

- Insert Table VIII about here -

The summary statistics in Table VIII show evidence of the usual stylized facts of returns on fi-

nancial assets. In addition to having negligible (daily) mean returns, the portfolio returns exhibit

signs of typical properties like negative skewed and leptokurtic asset returns indicating fat tails

particularly on the downside. Nevertheless, overall portfolio risk over the complete sample pe-

riod appears to be only moderate as evidenced by the estimates of the (unconditional) return series

volatility with all four portfolios having significant positive annualized returns.

We calculate the one-day VaRs for each portfolio by the use of two different VaR-models.

First, we choose standard historical simulation as the most widely used model in practice (see

Pérignon and Smith, 2010). This concept assumes no particular distribution of the returns. The

VaR is rather estimated solely based on historical returns. For each VaR-estimation, we use the

value of the 1% and 5% quantile of the last 250 data points as an estimate for the portfolio’s

VaR. Second, we employ a GARCH(1,1) process as a parametric model to forecast the VaR using

the estimated conditional variance of the GARCH model. Compared to historical simulation, the

GARCH model is more flexible because it accounts for autocorrelations in the return series’ vari-

ances. We choose the simple GARCH(1,1) model rather than more sophisticated GARCH model

specifications because Hansen and Lunde (2005) show that the GARCH(1,1) model is hard to beat

14 Due to confidentiality reasons, the asset manager wishes to remain anonymous.
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in terms of volatility forecasting accuracy. For the sake of simplicity, we fit the GARCH param-

eter for each portfolio separately to the total sample of 5,740 log-returns.15 The next-day VaR is

then calculated simply by the quantile of a normal distribution with a zero mean and the standard

deviation forecasted by the GARCH model on the basis of the last 250 log-returns. Figure 1 plots

the daily portfolio returns together with the corresponding VaR-forecasts of the historical VaR and

the GARCH model.

- Insert Figure 1 about here -

In addition to the time-varying volatility of the returns, the charts illustrate the differences in the

forecasts of the unconditional historical VaR approach and the conditional GARCH model. How-

ever, it can be seen for both models that the VaR-violations cluster to some degree during certain

subsamples.

After calculating the VaR-violation sequence It(p), we validate the VaR-estimation by making

use of the new set of MCS tests to compute p-values and check the uc, i.i.d. and cc hypotheses

separately. With respect to the MCS cc test, we use the two-tailed uc component and opt for a

weighting factor of a = 0.5. For comparison purposes, we additionally present p-values of the uc,

i.i.d., and cc version of the GMM test as the results of our simulation study indicate that the set

of GMM tests is a suitable benchmark. Moreover, we repeat our analysis for four separate time

periods. For the first time period, we include 5,740 log-returns of the whole available time span

(January 1, 1991 - December 31, 2012). We then focus on a distinct market phase around the

volatility shift from the highly volatile bear market at the later stage of the dotcom-bubble burst

(250 log-returns from April 16, 2002 to March 31, 2003) to the early stage of the subsequent calm

bull market (250 log-returns from April 1, 2003 to March 15, 2004). Additionally, we apply the

tests to the 500 log-returns of the combination of the latter two periods from April 16, 2002 to

March 15, 2004.

15 Of course, this procedure does not comply to the principle of out-of-sample forecasting. Nevertheless, as we
focus on the performance of the backtests, the issue of optimally fitting the GARCH parameters to the data is not
relevant for the purpose of this study.
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4.2 Results

The results of applying the backtests to the total period data set are shown in Table IX.

- Insert Table IX about here -

First, we compute the VaR-violation ratios of each portfolio for each VaR-forecasting method and

the nominal VaR levels of 5% and 1%. We define the VaR-violation ratio as the VaR-violation

frequency divided by the number of VaR-forecasts. Both the historical VaR and the GARCH

approach lead to VaR-violation ratios which deviate from the nominal VaR level of 5% and 1% to

some degree. The p-values of the one-tailed MCS lt
uc and MCS ut

uc tests indicate that each of these

deviations are statistically significant. However, some of the p-values yielded by the two-tailed

MCS tt
uc and the GMMuc tests remain above the 10% significance level.

The MCS iid test and the GMMiid test reject the i.i.d. hypothesis for the violation sequences

generated by the historical simulation VaR-model for the 5% and 1% VaR level. We expect a large

sample like ours that consists of 22 years of data to suffer significantly from the stylized facts

of financial returns (i.e., series of absolute or squared returns show profound serial correlation,

volatility appears to vary over time, and extreme returns appear in clusters). Consequently, an

inflexible and unconditional VaR-model like historical simulation should lead to non-i.i.d. VaR-

violations. However, the p-values for the more flexible GARCH model suggest clustered VaR-

violations only for the 5% VaR level. These findings are confirmed by significant p-values obtained

for the MCS cc and GMMcc tests.

The test results for the bear and the bull market as well as for the combination of both market

phases are reported in Table X. We restrict the presentation of the results to the VaR level of 5%,

because it vividly illustrates the effects of a shift from a bear to a bull market.

- Insert Table X about here -

The differences in the VaR-violation ratios between the bear and the bull market are significant.

On average, for the bear market the historical VaR approach yields VaR-violations in 8.45% of the
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days whereas for the bull market the ratio amounts to 1.70%. Consequently, for both the bear and

the bull market, the p-values of the relevant one-sided and the two-sided MCS uc tests as well as the

GMMuc test are statistically significant in the vast majority of cases. With respect to the combined

500 trading days sample, the underestimated VaR of the bear market and the overestimated VaR

of the bull market compensate each other and lead to an average VaR-violation ratio of 5.08%.

Because this is very close to the nominal VaR level of 5%, all applied backtests imply a correct uc.

This result underpins our redefinition of the uc property, because the backtests show no significant

p-values although the probability for a VaR-violation is not equal to the nominal level p for all

days t.

The i.i.d. tests show a remarkable behavior. Because the GARCH model accounts for auto-

correlated volatility, it can be assumed that the VaR-violations are less dependent compared to

the VaRs estimated with historical simulation. Consequently, the p-values regarding the GARCH

model during the bear market and the bull market separately are statistically significant in only four

out of twelve cases. These results are contrasted by the p-values for the sample where the bear and

bull market are combined. Here, the i.i.d. tests attain p-values below the 1% level of significance

in six out of eight cases. This result could be due to the large shift in the VaR-violation ratio. Only

the p-values for Portfolio two reveal no significance which can be explained by a smaller drop of

the violation ratio from the bear to the bull market compared to the remaining portfolios. This out-

come demonstrates the necessity of testing the independence as well as the identical distribution

hypothesis using a powerful test. Finally, the results of the cc tests reflect the implications of the

corresponding uc and i.i.d. tests.

5 Conclusion

Comparatively little attention has been paid in the literature to the development of proper tools

for backtesting VaR-forecasts. This paper provides three main contributions to the issue of back-

testing the performance of VaR-models. First, we extend the discussion of the desirable properties
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of violations originating from a correct VaR-model and restate the unconditional coverage property

of a VaR-violation process. Furthermore, we stress the need to require the VaR-violations to be

identically distributed to adequately backtest models across different market phases.

Second, we propose a new set of backtests that test VaR-violation processes for unconditional

coverage, the i.i.d. property as well as conditional coverage. Compared to existing standard ap-

proaches, these backtests contain new desirable features like directional testing for unconditional

coverage and a test of conditional coverage that allows for different weightings of the uc and i.i.d.

parts. The new backtesting procedures are based on i.i.d. Bernoulli random variables obtained by

Monte Carlo Simulation techniques and are very intuitive.

Third, we perform a simulation study using generated VaR-violation samples that specifically

violate the uc, i.i.d., and cc property to different controllable degrees. Compared to existing clas-

sical and state-of-the-art backtests, the new backtests outperform these benchmarks in several dis-

tinct settings. In addition, we use the new backtests in an empirical application study using a

unique dataset consisting of four portfolio return series provided by a German asset manager. We

apply the backtests to samples of calm boom and highly volatile bust cycles. The obtained results

demonstrate the need for a backtest that accounts for non-identically distributed VaR-violations

and, moreover, support the reformulation of the uc hypotheses.

25



References

Alexander, C. (2008): Market Risk Analysis, Value at Risk Models, vol. 4, Chichester: John Wiley
& Sons Ltd.

Artzner, P., F. Delbaen, J.-M. Eber, and D. Heath (1999): “Coherent Measures of Risk,” Mathe-
matical Finance, 9, 203–228.

Basak, S. and A. Shapiro (2001): “Value-at-Risk-Based Risk Management: Optimal Policies and
Asset Prices,” Review of Financial Studies, 14, 371–405.

Basel Committee on Banking Supervision (BCBS) (1996): “Supervisory framework for the use of
’backtesting’ in conjunction with the internal models approach to market risk capital require-
ments,” http://www.bis.org/publ/bcbs22.pdf .

Berkowitz, J. (2001): “Testing Density Forecasts, with Applications to Risk Management,” Jour-
nal of Business and Economic Statistics, 19, 465–474.

Berkowitz, J., P. Christoffersen, and D. Pelletier (2011): “Evaluating Value-at-Risk Models
with Desk-Level Data,” Management Science, 57, 2213–2227.

Bontemps, C. (2006): “Moment-based tests for discrete distributions,” Working Paper.

Bontemps, C. and N. Meddahi (2005): “Testing normality: A GMM approach,” Journal of Econo-
metrics, 124, 149–186.

——— (2012): “Testing distributional assumptions: A GMM approach,” Journal of Applied
Econometrics, 27(6), 978–1012.

Campbell, S. (2007): “A review of backtesting and backtesting procedures,” Journal of Risk, 9(2),
1–18.

Candelon, B., G. Colletaz, C. Hurlin, and S. Tokpavi (2011): “Backtesting Value-at-Risk: A
GMM Duration-based Test,” Journal of Financial Econometrics, 9(2), 314–343.

Christoffersen, P. (1998): “Evaluating Interval Forecasts,” International Economic Review, 39,
841–862.

Christoffersen, P. and D. Pelletier (2004): “Backtesting Value-at-Risk: A Duration-Based Ap-
proach,” Journal of Financial Econometrics, 2(1), 84–108.

Danı́elsson, J., B. N. Jorgensen, M. Sarma, G. Samorodnitsky, and C. G. de Vries (2005): “Sub-
additivity Re-Examined: the Case for Value-at-Risk,” Discussion paper 549, LSE Financial
Markets Group.

Dowd, K. (1998): Beyond Value at Risk: The New Science of Risk Management, Wiley Frontiers
in Finance, Chichester: John Wiley & Sons Ltd.

26

http://www.bis.org/publ/bcbs22.pdf


Dufour, J.-M. (2006): “Monte Carlo Tests with Nuisance Parameters : A General Approach to
Finite-Sample Inference and Nonstandard Asymptotics in Econometrics,” Journal of Economet-
rics, 133, 443–477.

Engle, R. and S. Manganelli (2004): “CAViaR: Conditional Autoregressive Value-at-Risk by Re-
gression Quantiles,” Journal of Business and Economic Statistics, 22, 367–381.

Escanciano, J. C. and P. Pei (2012): “Pitfalls in backtesting Historical Simulation VaR models,”
Journal of Banking & Finance, 36, 2233–2244.

Haas, M. (2005): “Improved duration-based backtesting of Value-at-Risk,” Journal of Risk, 8(2),
17–36.

Hansen, P. R. and A. Lunde (2005): “A forecast comparison of volatility models: does anything
beat a GARCH (1, 1)?” Journal of applied econometrics, 20, 873–889.

Jorion, P. (2006): Value at Risk: The New Benchmark for Managing Financial Risk, Chicago:
McGraw-Hill Professional, 3 ed.

Kupiec, P. (1995): “Techniques for Verifying the Accuracy of Risk Measurement Models,” Journal
of Derivatives, 3, 73–84.

Leippold, M., F. Trojani, and P. Vanini (2006): “Equilibrium impact of value-at-risk regulation,”
Journal of Economic Dynamics and Control, 30, 1277–1313.

Mina, J., J. Y. Xiao, et al. (2001): “Return to RiskMetrics: the evolution of a standard,” RiskMet-
rics Group.

Pérignon, C. and D. R. Smith (2010): “The level and quality of Value-at-Risk disclosure by com-
mercial banks,” Journal of Banking & Finance, 34, 362–377.

Podolskij, M. and D. Ziggel (2009): “New tests for jumps in semimartigale models,” Statistical
Inference for Stochastic Processes, 13(1), 15–41.

Shin, H. S. (2010): Risk and Liquidity, Clarendon Lectures in Finance, New York: Oxford Univer-
sity Press Inc.

Wald, A. and J. Wolfowitz (1940): “On a Test Whether Two Samples are from the Same Popula-
tion,” The Annals of Mathematical Statistics, 11(2), 147–162.

27



Figures and Tables

28



Table I: Unconditional Coverage - Size and Power of Tests

The table presents rejection rates obtained by applying unconditional coverage tests to 10,000 samples of Bernoulli
simulated VaR-violation sequences. The VaR level p for panel A and B is set to 5% and 1%, respectively. Results are
presented for various sets of sample sizes n and γ-factors which multiplies the probability of a VaR-violation by 1, 1.1,
1.25, 1.5, and 2. The results for γ = 1p correspond to the evaluation of the size of the test. LR kup

uc and GMMuc refers
to the unconditional coverage tests of Kupiec (1995) and Candelon et al. (2011). MCS tt

uc and MCS ut
uc refer to the new

two-tailed and upper-tail Monte-Carlo-Simulation based tests. Top results are highlighted in bold type.

Significance level: 1% Significance level: 5% Significance level: 10%

y · p n LRkup
uc GMMuc MCS tt

uc MCS ut
uc LRkup

uc GMMuc MCS tt
uc MCS ut

uc LRkup
uc GMMuc MCS tt

uc MCS ut
uc

Panel A: 5% VaR

252 0.010 0.010 0.009 0.009 0.049 0.049 0.049 0.049 0.100 0.099 0.100 0.100
500 0.011 0.011 0.010 0.010 0.049 0.049 0.050 0.047 0.099 0.103 0.099 0.097

5.00% 1,000 0.010 0.010 0.012 0.012 0.054 0.050 0.055 0.053 0.106 0.099 0.105 0.102
1,500 0.010 0.012 0.009 0.009 0.047 0.052 0.049 0.048 0.098 0.099 0.097 0.101
2,500 0.009 0.009 0.010 0.012 0.048 0.048 0.050 0.051 0.106 0.101 0.102 0.102

252 0.015 0.005 0.015 0.024 0.062 0.059 0.064 0.102 0.111 0.128 0.124 0.178
500 0.022 0.010 0.023 0.036 0.075 0.068 0.080 0.128 0.144 0.133 0.147 0.223

5.50% 1,000 0.033 0.020 0.034 0.059 0.105 0.099 0.118 0.180 0.195 0.190 0.191 0.289
1,500 0.047 0.030 0.045 0.076 0.134 0.127 0.140 0.215 0.227 0.216 0.221 0.345
2,500 0.083 0.055 0.082 0.126 0.201 0.186 0.204 0.306 0.336 0.296 0.310 0.445

252 0.047 0.011 0.045 0.072 0.137 0.120 0.146 0.223 0.203 0.223 0.230 0.338
500 0.089 0.048 0.095 0.143 0.211 0.215 0.240 0.343 0.331 0.331 0.346 0.487

6.25% 1,000 0.197 0.142 0.195 0.281 0.386 0.385 0.408 0.530 0.540 0.535 0.530 0.667
1,500 0.342 0.268 0.328 0.423 0.549 0.542 0.560 0.679 0.672 0.666 0.679 0.796
2,500 0.571 0.515 0.569 0.661 0.769 0.762 0.779 0.859 0.873 0.853 0.859 0.922

252 0.196 0.061 0.192 0.269 0.377 0.349 0.396 0.518 0.481 0.510 0.519 0.651
500 0.418 0.282 0.422 0.516 0.620 0.614 0.643 0.754 0.746 0.740 0.754 0.852

7.50% 1,000 0.761 0.700 0.769 0.840 0.894 0.898 0.907 0.948 0.951 0.950 0.948 0.975
1,500 0.933 0.898 0.931 0.958 0.978 0.976 0.981 0.992 0.991 0.989 0.992 0.997
2,500 0.996 0.993 0.996 0.998 0.999 1.000 0.999 0.999 1.000 1.000 0.999 1.000

252 0.709 0.447 0.698 0.777 0.859 0.845 0.869 0.922 0.910 0.920 0.922 0.960
500 0.961 0.924 0.961 0.975 0.988 0.988 0.988 0.995 0.996 0.996 0.995 0.998

10.00% 1,000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1,500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2,500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Panel B: 1% VaR

252 0.010 0.012 0.009 0.010 0.051 0.050 0.049 0.050 0.101 0.103 0.100 0.104
500 0.009 0.012 0.010 0.009 0.049 0.052 0.048 0.048 0.073 0.101 0.099 0.096

1.00% 1,000 0.014 0.009 0.012 0.011 0.048 0.050 0.053 0.051 0.105 0.102 0.103 0.107
1,500 0.011 0.009 0.009 0.010 0.050 0.050 0.048 0.051 0.095 0.103 0.101 0.101
2,500 0.010 0.008 0.010 0.011 0.054 0.047 0.052 0.051 0.106 0.099 0.100 0.100

252 0.013 0.017 0.014 0.016 0.049 0.074 0.057 0.066 0.089 0.138 0.109 0.127
500 0.010 0.014 0.015 0.019 0.046 0.054 0.062 0.080 0.082 0.135 0.115 0.148

1.10% 1,000 0.014 0.006 0.013 0.023 0.061 0.058 0.065 0.089 0.097 0.117 0.120 0.166
1,500 0.015 0.010 0.017 0.028 0.069 0.058 0.070 0.102 0.136 0.132 0.127 0.184
2,500 0.016 0.012 0.018 0.036 0.072 0.078 0.083 0.130 0.147 0.151 0.146 0.221

252 0.026 0.029 0.020 0.029 0.058 0.108 0.076 0.111 0.095 0.187 0.134 0.192
500 0.018 0.026 0.027 0.039 0.066 0.072 0.086 0.136 0.115 0.189 0.153 0.234

1.25% 1,000 0.032 0.003 0.039 0.063 0.112 0.119 0.131 0.198 0.164 0.207 0.207 0.310
1,500 0.044 0.027 0.057 0.091 0.141 0.139 0.166 0.253 0.268 0.260 0.260 0.371
2,500 0.082 0.050 0.087 0.134 0.220 0.219 0.232 0.342 0.334 0.335 0.344 0.476

252 0.059 0.060 0.045 0.069 0.094 0.181 0.131 0.192 0.134 0.281 0.206 0.305
500 0.054 0.081 0.072 0.103 0.137 0.160 0.186 0.276 0.220 0.339 0.282 0.406

1.50% 1,000 0.132 0.020 0.159 0.220 0.304 0.297 0.341 0.447 0.377 0.435 0.448 0.580
1,500 0.194 0.140 0.227 0.315 0.401 0.401 0.439 0.562 0.573 0.569 0.563 0.686
2,500 0.374 0.296 0.404 0.506 0.617 0.613 0.641 0.747 0.739 0.737 0.747 0.848

252 0.182 0.194 0.143 0.194 0.238 0.405 0.291 0.401 0.281 0.518 0.405 0.538
500 0.239 0.292 0.292 0.358 0.419 0.437 0.490 0.605 0.542 0.667 0.605 0.721

2.00% 1,000 0.533 0.213 0.583 0.662 0.747 0.749 0.778 0.852 0.810 0.845 0.852 0.914
1,500 0.736 0.665 0.768 0.831 0.888 0.887 0.900 0.941 0.951 0.946 0.941 0.969
2,500 0.944 0.911 0.947 0.969 0.988 0.984 0.987 0.994 0.992 0.993 0.994 0.998
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Table II: Half-Life Interval and α-Level

The half-life interval is computed by log(0.5)/log(α) and refers to the time interval over which the weight of an
observation decrease to one-half its original value. The corresponding λ refers to the decay factor of the EWMA type
process of computing σt.

Half-Life Interval 5 10 20 40 60 80
λ 0.8706 0.9330 0.9659 0.9828 0.9885 0.9914
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Table III: I.I.D. VaR-Violations - Setting 1: Independence - Power of Tests

The table presents rejection rates obtained by applying tests for i.i.d. VaR-violations to 10,000 samples of non-
independent VaR-violation sequences simulated by Equation ( 27). The VaR level p for panel A and B is set to 5% and
1%, respectively. Results are presented for various sets of sample sizes n and half-life intervals which serve as a proxy
for the degree of dependence. LRmar

iid , LRwei
iid and GMMiid refers to the independence tests of Christoffersen (1998),

Christoffersen and Pelletier (2004) and Candelon et al. (2011). MCS iid refers to the new Monte-Carlo-Simulation
based test. Top results are highlighted in bold type.

Half-Life Significance level: 1% Significance level: 5% Significance level: 10%
Interval n LRmar

iid LRwei
iid GMMiid MCS iid LRmar

iid LRwei
iid GMMiid MCS iid LRmar

iid LRwei
iid GMMiid MCS iid

Panel A: 5% VaR

252 0.067 0.005 0.108 0.072 0.146 0.033 0.213 0.220 0.195 0.075 0.270 0.339
500 0.093 0.016 0.186 0.142 0.170 0.081 0.362 0.354 0.224 0.153 0.451 0.499

5 1,000 0.126 0.047 0.308 0.264 0.217 0.160 0.591 0.552 0.308 0.260 0.689 0.695
1,500 0.155 0.077 0.423 0.393 0.325 0.233 0.741 0.684 0.451 0.358 0.823 0.807
2,500 0.308 0.170 0.614 0.611 0.515 0.396 0.905 0.858 0.631 0.535 0.948 0.933

252 0.037 0.005 0.086 0.063 0.104 0.026 0.173 0.188 0.153 0.064 0.227 0.296
500 0.047 0.006 0.143 0.120 0.098 0.038 0.281 0.293 0.145 0.080 0.357 0.423

10 1,000 0.049 0.014 0.214 0.211 0.104 0.065 0.454 0.469 0.168 0.122 0.556 0.612
1,500 0.051 0.021 0.295 0.315 0.151 0.085 0.593 0.600 0.246 0.158 0.695 0.732
2,500 0.096 0.033 0.425 0.503 0.234 0.134 0.775 0.774 0.338 0.223 0.860 0.872

252 0.026 0.005 0.061 0.054 0.084 0.029 0.129 0.149 0.131 0.066 0.176 0.236
500 0.029 0.005 0.095 0.092 0.073 0.029 0.195 0.231 0.112 0.062 0.262 0.340

20 1,000 0.025 0.004 0.135 0.142 0.067 0.027 0.300 0.332 0.119 0.058 0.392 0.460
1,500 0.018 0.005 0.169 0.202 0.077 0.029 0.392 0.438 0.151 0.058 0.494 0.578
2,500 0.034 0.005 0.228 0.327 0.107 0.027 0.536 0.591 0.181 0.055 0.645 0.727

252 0.022 0.005 0.052 0.042 0.077 0.031 0.115 0.128 0.117 0.069 0.162 0.210
500 0.022 0.008 0.079 0.077 0.064 0.030 0.163 0.196 0.103 0.068 0.226 0.297

40 1,000 0.018 0.003 0.095 0.099 0.052 0.024 0.219 0.251 0.103 0.051 0.293 0.363
1,500 0.012 0.002 0.107 0.129 0.060 0.014 0.265 0.307 0.117 0.037 0.354 0.430
2,500 0.017 0.002 0.128 0.180 0.073 0.010 0.324 0.397 0.132 0.025 0.424 0.531

252 0.020 0.008 0.041 0.042 0.071 0.037 0.099 0.130 0.107 0.082 0.141 0.211
500 0.023 0.005 0.085 0.080 0.059 0.032 0.164 0.198 0.095 0.070 0.224 0.297

60 1,000 0.016 0.005 0.093 0.100 0.049 0.024 0.204 0.246 0.098 0.049 0.275 0.350
1,500 0.012 0.003 0.106 0.119 0.063 0.017 0.234 0.280 0.120 0.040 0.314 0.396
2,500 0.016 0.001 0.110 0.146 0.065 0.009 0.269 0.331 0.122 0.026 0.363 0.459

252 0.022 0009 0.032 0.036 0.072 0.041 0.089 0.117 0.107 0.086 0.130 0.200
500 0.020 0.006 0.085 0.083 0.051 0.035 0.167 0.206 0.085 0.073 0.224 0.305

80 1,000 0.016 0.003 0.113 0.119 0.047 0.026 0.224 0.263 0.093 0.057 0.297 0.371
1,500 0.014 0.002 0.113 0.128 0.065 0.021 0.250 0.289 0.122 0.045 0.323 0.400
2,500 0.015 0.003 0.108 0.150 0.065 0.013 0.267 0.323 0.118 0.028 0.350 0.436

Panel B: 1% VaR

252 0.055 0.004 0.068 0.048 0.181 0.035 0.136 0.141 0.237 0.095 0.186 0.226
500 0.065 0.010 0.073 0.047 0.198 0.065 0.152 0.148 0.252 0.132 0.212 0.241

5 1,000 0.114 0.038 0.099 0.055 0.230 0.137 0.211 0.182 0.346 0.224 0.285 0.296
1,500 0.141 0.087 0.116 0.064 0.283 0.219 0.265 0.212 0.388 0.322 0.361 0.328
2,500 0.193 0.179 0.149 0.083 0.384 0.362 0.363 0.255 0.482 0.475 0.470 0.393

252 0.037 0.005 0.076 0.059 0.156 0.034 0.141 0.147 0.217 0.080 0.192 0.227
500 0.039 0.009 0.078 0.051 0.151 0.051 0.156 0.150 0.225 0.104 0.211 0.239

10 1,000 0.064 0.026 0.100 0.058 0.152 0.100 0.205 0.187 0.265 0.173 0.281 0.297
1,500 0.072 0.055 0.111 0.067 0.174 0.161 0.250 0.212 0.266 0.254 0.343 0.327
2,500 0.094 0.117 0.140 0.098 0.236 0.275 0.340 0.273 0.324 0.384 0.453 0.404

252 0.026 0.005 0.084 0.066 0.158 0.031 0.147 0.156 0.227 0.075 0.192 0.237
500 0.028 0.008 0.076 0.052 0.114 0.049 0.144 0.147 0.198 0.099 0.194 0.235

20 1,000 0.040 0.020 0.083 0.067 0.103 0.078 0.173 0.187 0.209 0.137 0.244 0.287
1,500 0.042 0.035 0.098 0.069 0.124 0.113 0.216 0.202 0.192 0.189 0.296 0.320
2,500 0.048 0.071 0.114 0.084 0.149 0.181 0.283 0.258 0.225 0.271 0.380 0.388

252 0.020 0.004 0.079 0.065 0.199 0.027 0.142 0.155 0.266 0.063 0.193 0.238
500 0.023 0.010 0.078 0.070 0.107 0.048 0.135 0.151 0.204 0.093 0.187 0.222

40 1,000 0.031 0.026 0.089 0.068 0.083 0.077 0.154 0.176 0.181 0.136 0.216 0.265
1,500 0.032 0.035 0.087 0.072 0.099 0.099 0.182 0.195 0.156 0.158 0.253 0.295
2,500 0.031 0.050 0.097 0.088 0.119 0.126 0.223 0.238 0.180 0.195 0.308 0.348

252 0.017 0.005 0.077 0.052 0.257 0.026 0.136 0.149 0.330 0.062 0.188 0.230
500 0.024 0.010 0.088 0.074 0.116 0.045 0.142 0.157 0.212 0.095 0.189 0.229

60 1,000 0.031 0.030 0.089 0.073 0.081 0.084 0.155 0.170 0.174 0.135 0.213 0.251
1,500 0.031 0.039 0.092 0.082 0.092 0.095 0.174 0.189 0.143 0.155 0.241 0.280
2,500 0.029 0.052 0.093 0.091 0.109 0.118 0.199 0.218 0.162 0.183 0.277 0.327

252 0.014 0.004 0.064 0.037 0.302 0.025 0.131 0.127 0.374 0.054 0.181 0.204
500 0.023 0.006 0.081 0.071 0.112 0.039 0.135 0.159 0.211 0.084 0.182 0.231

80 1,000 0.030 0.031 0.096 0.083 0.083 0.085 0.157 0.181 0.171 0.135 0.211 0.262
1,500 0.027 0.046 0.090 0.088 0.083 0.103 0.163 0.193 0.133 0.159 0.224 0.279
2,500 0.033 0.054 0.097 0.102 0.116 0.118 0.194 0.220 0.175 0.177 0.265 0.315
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Table IV: I.I.D. VaR-Violations - Setting 2: Identical Distribution - Size and Power of Tests

The table presents rejection rates obtained by applying tests for i.i.d. VaR-violations to 10,000 samples of non-
identically distributed VaR-violation sequences simulated by Equation ( 29). The VaR level p for panel A and B is set
to 5% and 1%, respectively. Results are presented for various sets of sample sizes n and probability variation factors
δ. Results for δ = 0p correspond to the evaluation of the size of the test. LR mar

iid , LRwei
iid and GMMiid refers to the

independence tests of Christoffersen (1998), Christoffersen and Pelletier (2004) and Candelon et al. (2011). MCS iid

refers to the new simulation based i.i.d. test. Top results are highlighted in bold type.

Significance level: 1% Significance level: 5% Significance level: 10%
δ n LRmar

iid LRwei
iid GMMiid MCS iid LRmar

iid LRwei
iid GMMiid MCS iid LRmar

iid LRwei
iid GMMiid MCS iid

Panel A: 5% VaR

252 0.010 0.010 0.011 0.010 0.048 0.053 0.049 0.053 0.095 0.104 0.101 0.101
500 0.011 0.010 0.013 0.011 0.050 0.048 0.052 0.048 0.101 0.095 0.102 0.102

0p 1,000 0.009 0.010 0.010 0.008 0.046 0.046 0.046 0.050 0.097 0.096 0.097 0.097
1,500 0.011 0.010 0.010 0.009 0.048 0.045 0.048 0.049 0.099 0.094 0.099 0.099
2,500 0.010 0.009 0.009 0.010 0.051 0.049 0.049 0.051 0.101 0.102 0.101 0.101

252 0.011 0.009 0.014 0.009 0.052 0.048 0.058 0.060 0.101 0.094 0.105 0.111
500 0.011 0.009 0.015 0.015 0.050 0.044 0.054 0.068 0.100 0.087 0.102 0.128

0.1p 1,000 0.011 0.006 0.019 0.018 0.048 0.032 0.066 0.074 0.099 0.073 0.116 0.136
1,500 0.009 0.007 0.021 0.020 0.047 0.036 0.071 0.082 0.094 0.076 0.124 0.146
2,500 0.009 0.008 0.021 0.023 0.049 0.037 0.078 0.093 0.100 0.072 0.131 0.170

252 0.015 0.008 0.019 0.015 0.060 0.037 0.068 0.074 0.111 0.075 0.117 0.144
500 0.014 0.005 0.033 0.035 0.057 0.025 0.094 0.124 0.106 0.058 0.147 0.208

0.2p 1,000 0.011 0.002 0.055 0.065 0.049 0.020 0.140 0.190 0.094 0.044 0.204 0.291
1,500 0.011 0.002 0.072 0.090 0.051 0.014 0.177 0.238 0.106 0.033 0.250 0.344
2,500 0.012 0.001 0.096 0.140 0.057 0.008 0.243 0.326 0.111 0.019 0.329 0.452

252 0.015 0.004 0.037 0.030 0.061 0.023 0.105 0.130 0.112 0.053 0.156 0.227
500 0.020 0.003 0.094 0.097 0.061 0.018 0.202 0.258 0.106 0.050 0.275 0.377

0.3p 1,000 0.016 0.003 0.212 0.241 0.054 0.024 0.386 0.456 0.106 0.058 0.471 0.579
1,500 0.015 0.005 0.297 0.358 0.063 0.028 0.504 0.591 0.130 0.068 0.593 0.704
2,500 0.022 0.008 0.450 0.549 0.085 0.038 0.697 0.771 0.148 0.075 0.783 0.856

252 0.027 0.001 0.079 0.053 0.080 0.017 0.181 0.209 0.131 0.043 0.240 0.346
500 0.033 0.006 0.273 0.283 0.078 0.049 0.452 0.540 0.125 0.112 0.535 0.664

0.4p 1,000 0.032 0.043 0.613 0.638 0.079 0.164 0.783 0.828 0.140 0.275 0.838 0.894
1,500 0.029 0.114 0.781 0.838 0.105 0.284 0.908 0.943 0.181 0.410 0.940 0.971
2,500 0.053 0.248 0.942 0.971 0.158 0.482 0.987 0.993 0.250 0.616 0.993 0.997

252 0.041 0.002 0.158 0.113 0.104 0.028 0.317 0.378 0.148 0.074 0.400 0.552
500 0.053 0.040 0.688 0.729 0.109 0.213 0.863 0.944 0.157 0.376 0.915 0.982

0.5p 1,000 0.057 0.436 1.000 1.000 0.124 0.794 1.000 1.000 0.201 0.910 1.000 1.000
1,500 0.061 0.892 1.000 1.000 0.186 0.986 1.000 1.000 0.299 0.998 1.000 1.000
2,500 0.138 1.000 1.000 1.000 0.311 1.000 1.000 1.000 0.425 1.000 1.000 1.000

Panel B: 1% VaR

252 0.010 0.007 0.010 0.012 0.056 0.042 0.052 0.050 0.108 0.089 0.102 0.103
500 0.009 0.009 0.009 0.011 0.050 0.050 0.048 0.053 0.101 0.097 0.099 0.101

0p 1,000 0.010 0.010 0.009 0.011 0.048 0.046 0.049 0.051 0.100 0.096 0.102 0.101
1,500 0.010 0.010 0.010 0.010 0.047 0.047 0.050 0.052 0.098 0.095 0.100 0.096
2,500 0.009 0.010 0.012 0.011 0.049 0.047 0.050 0.053 0.099 0.098 0.099 0.105

252 0.011 0.008 0.009 0.009 0.054 0.042 0.049 0.050 0.104 0.087 0.099 0.098
500 0.009 0.009 0.009 0.012 0.048 0.047 0.047 0.054 0.097 0.093 0.096 0.103

0.1p 1,000 0.011 0.011 0.012 0.012 0.053 0.049 0.054 0.056 0.102 0.099 0.107 0.113
1,500 0.013 0.009 0.012 0.011 0.053 0.048 0.052 0.059 0.104 0.095 0.102 0.113
2,500 0.013 0.008 0.012 0.013 0.055 0.042 0.056 0.064 0.104 0.088 0.111 0.121

252 0.010 0.007 0.011 0.014 0.052 0.038 0.048 0.056 0.102 0.079 0.097 0.106
500 0.010 0.009 0.011 0.012 0.058 0.042 0.052 0.053 0.105 0.086 0.098 0.105

0.2p 1,000 0.012 0.008 0.015 0.013 0.053 0.041 0.060 0.065 0.107 0.087 0.107 0.126
1,500 0.012 0.007 0.016 0.016 0.056 0.039 0.064 0.082 0.114 0.085 0.122 0.151
2,500 0.013 0.008 0.027 0.031 0.058 0.042 0.094 0.120 0.111 0.087 0.152 0.204

252 0.013 0.006 0.014 0.015 0.057 0.033 0.054 0.060 0.105 0.073 0.102 0.115
500 0.013 0.006 0.017 0.017 0.062 0.033 0.055 0.067 0.110 0.066 0.101 0.124

0.3p 1,000 0.015 0.005 0.022 0.020 0.064 0.034 0.076 0.091 0.123 0.078 0.132 0.173
1,500 0.014 0.008 0.033 0.034 0.063 0.041 0.101 0.143 0.121 0.088 0.168 0.250
2,500 0.017 0.011 0.077 0.090 0.070 0.058 0.193 0.242 0.125 0.119 0.278 0.360

252 0.015 0.005 0.017 0.017 0.063 0.026 0.055 0.070 0.111 0.061 0.104 0.121
500 0.016 0.003 0.023 0.022 0.069 0.023 0.066 0.075 0.114 0.057 0.111 0.145

0.4p 1,000 0.018 0.005 0.038 0.028 0.076 0.035 0.114 0.138 0.139 0.079 0.181 0.253
1,500 0.020 0.014 0.074 0.073 0.074 0.065 0.191 0.257 0.139 0.129 0.280 0.407
2,500 0.021 0.040 0.226 0.259 0.081 0.150 0.424 0.522 0.146 0.251 0.518 0.645

252 0.018 0.001 0.022 0.024 0.069 0.011 0.066 0.081 0.114 0.039 0.108 0.131
500 0.017 0.001 0.031 0.030 0.082 0.014 0.091 0.091 0.132 0.045 0.140 0.164

0.5p 1,000 0.025 0.007 0.079 0.053 0.087 0.051 0.197 0.225 0.157 0.113 0.277 0.377
1,500 0.024 0.032 0.174 0.163 0.085 0.142 0.354 0.487 0.164 0.249 0.467 0.670
2,500 0.027 0.167 0.597 0.694 0.099 0.437 0.822 0.926 0.172 0.602 0.893 0.975

32



Table V: Conditional Coverage - Setting 1: Independence - Power of Tests

The table presents rejection rates obtained by applying cc tests to 10,000 samples of non-independent VaR-violation
sequences simulated by Equation (27) with an increased violation probability. The VaR level p for panel A and B is
set to 5% and 1%, respectively. Results are presented for various sets of sample sizes n, γ-factors which increase the
probability of a VaR-violation, and decay intervals which serve as a proxy for the degree of dependence. LR mar

cc , LRwei
cc

and GMMcc refers to the cc tests of Christoffersen (1998), Christoffersen and Pelletier (2004) and Candelon et al.
(2011). MCS cc refers to the new simulation based test. Top results are highlighted in bold type.

Decay Significance level: 1% Significance level: 5% Significance level: 10%
Interval p n LRmar

cc LRwei
cc GMMcc MCS cc LRmar

cc LRwei
cc GMMcc MCS cc LRmar

cc LRwei
cc GMMcc MCS cc

Panel A: 5% VaR

252 0.052 0.028 0.044 0.093 0.103 0.088 0.212 0.237 0.193 0.154 0.318 0.344
500 0.059 0.033 0.063 0.150 0.128 0.108 0.287 0.340 0.208 0.177 0.415 0.463

10 5.50% 1,000 0.074 0.047 0.107 0.251 0.166 0.142 0.435 0.493 0.231 0.218 0.571 0.613
1,500 0.104 0.061 0.183 0.371 0.199 0.168 0.558 0.613 0.280 0.256 0.686 0.721
2,500 0.152 0.095 0.360 0.565 0.290 0.226 0.767 0.783 0.377 0.331 0.857 0.860

252 0.204 0.109 0.060 0.235 0.302 0.222 0.364 0.457 0.433 0.307 0.488 0.555
500 0.353 0.259 0.144 0.417 0.493 0.429 0.565 0.661 0.599 0.526 0.693 0.762

10 7.50% 1,000 0.591 0.524 0.387 0.704 0.747 0.693 0.825 0.878 0.804 0.770 0.893 0.929
1,500 0.795 0.708 0.669 0.886 0.878 0.847 0.939 0.967 0.915 0.899 0.970 0.984
2,500 0.946 0.909 0.932 0.985 0.979 0.961 0.994 0.998 0.988 0.980 0.997 0.999

252 0.096 0.060 0.047 0.128 0.160 0.142 0.227 0.285 0.258 0.215 0.335 0.382
500 0.127 0.083 0.052 0.182 0.218 0.178 0.285 0.372 0.306 0.253 0.418 0.486

20 6.25% 1,000 0.179 0.137 0.096 0.299 0.318 0.264 0.438 0.539 0.393 0.345 0.572 0.651
1,500 0.272 0.191 0.175 0.451 0.403 0.343 0.575 0.680 0.486 0.437 0.699 0.776
2,500 0.409 0.300 0.388 0.678 0.591 0.475 0.771 0.853 0.666 0.577 0.856 0.907

252 0.142 0.119 0.094 0.166 0.201 0.212 0.280 0.308 0.289 0.290 0.385 0.404
500 0.156 0.124 0.075 0.189 0.234 0.219 0.289 0.366 0.314 0.287 0.404 0.471

40 6.25% 1,000 0.200 0.174 0.098 0.267 0.329 0.292 0.399 0.490 0.399 0.367 0.525 0.604
1,500 0.279 0.216 0.150 0.372 0.399 0.354 0.495 0.597 0.473 0.445 0.618 0.700
2,500 0.397 0.301 0.289 0.552 0.571 0.460 0.669 0.765 0.643 0.552 0.775 0.838

252 0.223 0.224 0.256 0.220 0.310 0.374 0.458 0.406 0.416 0.466 0.546 0.535
500 0.173 0.175 0.193 0.224 0.252 0.288 0.391 0.395 0.335 0.369 0.486 0.505

80 5.50% 1,000 0.129 0.124 0.149 0.217 0.215 0.207 0.357 0.394 0.275 0.277 0.456 0.502
1,500 0.122 0.104 0.139 0.223 0.194 0.183 0.343 0.401 0.253 0.248 0.446 0.510
2,500 0.126 0.092 0.142 0.250 0.219 0.163 0.376 0.454 0.278 0.223 0.483 0.557

252 0.278 0.249 0.218 0.292 0.336 0.348 0.423 0.449 0.413 0.417 0.513 0.542
500 0.326 0.294 0.220 0.362 0.404 0.388 0.473 0.540 0.474 0.452 0.577 0.633

80 7.50% 1,000 0.491 0.477 0.313 0.564 0.625 0.614 0.676 0.764 0.685 0.681 0.770 0.837
1,500 0.696 0.626 0.478 0.713 0.789 0.762 0.821 0.874 0.839 0.821 0.888 0.919
2,500 0.908 0.874 0.807 0.927 0.957 0.937 0.966 0.981 0.970 0.960 0.982 0.991

Panel B: 1% VaR

252 0.038 0.017 0.093 0.094 0.140 0.066 0.198 0.191 0.335 0.128 0.273 0.266
500 0.047 0.023 0.092 0.091 0.174 0.081 0.201 0.191 0.274 0.144 0.267 0.274

10 1.10% 1,000 0.044 0.037 0.023 0.088 0.158 0.129 0.194 0.227 0.242 0.210 0.303 0.313
1,500 0.051 0.066 0.025 0.094 0.180 0.167 0.220 0.253 0.275 0.264 0.343 0.359
2,500 0.057 0.120 0.042 0.125 0.194 0.271 0.304 0.304 0.326 0.383 0.457 0.426

252 0.072 0.031 0.154 0.162 0.216 0.109 0.291 0.297 0.455 0.186 0.377 0.380
500 0.127 0.059 0.177 0.202 0.341 0.147 0.327 0.343 0.466 0.220 0.402 0.436

10 1.50% 1,000 0.167 0.113 0.034 0.229 0.367 0.244 0.314 0.426 0.467 0.340 0.441 0.528
1,500 0.225 0.210 0.048 0.288 0.439 0.366 0.413 0.518 0.568 0.476 0.553 0.619
2,500 0.350 0.418 0.116 0.424 0.606 0.600 0.575 0.672 0.728 0.694 0.712 0.771

252 0.069 0.040 0.141 0.135 0.182 0.104 0.245 0.238 0.380 0.168 0.317 0.312
20 500 0.067 0.034 0.118 0.130 0.214 0.093 0.231 0.233 0.311 0.154 0.297 0.316

1.25% 1,000 0.074 0.051 0.023 0.128 0.207 0.133 0.219 0.282 0.289 0.207 0.329 0.377
1,500 0.080 0.078 0.023 0.150 0.212 0.178 0.247 0.321 0.327 0.259 0.375 0.423
2,500 0.107 0.141 0.038 0.194 0.277 0.284 0.324 0.403 0.409 0.389 0.466 0.526

252 0.129 0.085 0.183 0.183 0.227 0.158 0.273 0.271 0.387 0.213 0.336 0.335
500 0.099 0.064 0.135 0.144 0.230 0.124 0.228 0.233 0.307 0.183 0.294 0.306

40 1.25% 1,000 0.091 0.072 0.041 0.146 0.212 0.146 0.209 0.271 0.285 0.213 0.311 0.356
1,500 0.095 0.089 0.035 0.148 0.206 0.172 0.221 0.302 0.312 0.247 0.334 0.397
2,500 0.111 0.126 0.044 0.190 0.273 0.248 0.273 0.377 0.380 0.341 0.397 0.491

252 0.243 0.192 0.296 0.296 0.342 0.273 0.373 0.374 0.470 0.329 0.424 0.427
500 0.139 0.105 0.167 0.174 0.226 0.172 0.244 0.244 0.277 0.243 0.307 0.307

80 1.10% 1,000 0.109 0.103 0.085 0.135 0.198 0.190 0.242 0.236 0.278 0.263 0.330 0.321
1,500 0.088 0.101 0.074 0.128 0.178 0.178 0.233 0.248 0.277 0.250 0.330 0.339
2,500 0.077 0.098 0.068 0.138 0.182 0.183 0.222 0.266 0.260 0.257 0.320 0.364

252 0.263 0.209 0.302 0.316 0.355 0.289 0.385 0.388 0.480 0.344 0.442 0.441
500 0.198 0.141 0.217 0.234 0.316 0.209 0.308 0.313 0.386 0.267 0.367 0.378

80 1.50% 1,000 0.195 0.151 0.095 0.222 0.318 0.243 0.285 0.352 0.384 0.304 0.378 0.440
1,500 0.213 0.172 0.078 0.242 0.351 0.272 0.296 0.417 0.464 0.351 0.409 0.507
2,500 0.313 0.288 0.102 0.331 0.515 0.432 0.407 0.560 0.621 0.528 0.538 0.658
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Table VI: Conditional Coverage - Setting 2: Identical Distribution - Size and Power of Tests

The table presents rejection rates obtained by applying cc tests to 10,000 samples of non-identically distributed VaR-
violation sequences simulated by Equation (29) with an increased violation probability. The VaR level p for panel
A and B is set to 5% and 1%, respectively. Results are presented for various sets of sample sizes n and γ-factors
which increase the probability of a VaR-violation, and probability variation factors δ. The results for δ = 0 correspond
to the evaluation of the size of the test. LRmar

cc , LRwei
cc and GMMcc refers to the cc tests of Christoffersen (1998),

Christoffersen and Pelletier (2004) and Candelon et al. (2011). MCS iid refers to the new simulation based test. Top
results are highlighted in bold type.

Significance level: 1% Significance level: 5% Significance level: 10%
δ p n LRmar

cc LRwei
cc GMMcc MCS cc LRmar

cc LRwei
cc GMMcc MCS cc LRmar

cc LRwei
cc GMMcc MCS cc

Panel A: 5% VaR

252 0.010 0.010 0.009 0.011 0.049 0.049 0.051 0.051 0.093 0.099 0.103 0.100
500 0.010 0.010 0.008 0.011 0.048 0.053 0.046 0.051 0.105 0.103 0.098 0.100

0p 5.00% 1,000 0.011 0.009 0.010 0.011 0.052 0.046 0.053 0.052 0.104 0.100 0.105 0.098
1,500 0.011 0.009 0.009 0.011 0.049 0.047 0.052 0.053 0.098 0.101 0.102 0.102
2,500 0.010 0.009 0.009 0.012 0.052 0.049 0.049 0.054 0.101 0.097 0.100 0.102

252 0.016 0.008 0.004 0.011 0.061 0.044 0.046 0.065 0.115 0.086 0.096 0.124
500 0.019 0.015 0.005 0.015 0.066 0.056 0.045 0.078 0.129 0.105 0.108 0.148

0.1p 5.50% 1,000 0.020 0.016 0.006 0.021 0.082 0.068 0.058 0.103 0.138 0.129 0.123 0.186
1,500 0.030 0.021 0.008 0.033 0.092 0.084 0.071 0.125 0.154 0.148 0.151 0.218
2,500 0.036 0.034 0.011 0.048 0.129 0.107 0.106 0.174 0.198 0.181 0.209 0.281

252 0.147 0.073 0.008 0.103 0.280 0.193 0.220 0.330 0.431 0.296 0.372 0.442
500 0.309 0.230 0.028 0.180 0.488 0.442 0.399 0.501 0.622 0.569 0.589 0.659

0.1p 7.50% 1,000 0.609 0.563 0.151 0.464 0.802 0.775 0.733 0.801 0.868 0.855 0.864 0.902
1,500 0.847 0.808 0.407 0.733 0.932 0.928 0.896 0.942 0.962 0.961 0.961 0.976
2,500 0.979 0.974 0.853 0.958 0.996 0.993 0.994 0.997 0.997 0.998 0.998 0.999

252 0.038 0.010 0.003 0.043 0.100 0.048 0.095 0.166 0.193 0.096 0.187 0.258
500 0.061 0.027 0.012 0.101 0.151 0.097 0.174 0.291 0.252 0.169 0.308 0.419

0.3p 6.25% 1,000 0.112 0.066 0.051 0.237 0.273 0.188 0.348 0.492 0.373 0.285 0.508 0.634
1,500 0.199 0.113 0.114 0.402 0.367 0.281 0.515 0.670 0.477 0.402 0.670 0.779
2,500 0.374 0.236 0.306 0.667 0.617 0.456 0.765 0.873 0.710 0.593 0.864 0.929

252 0.017 0.002 0.014 0.088 0.045 0.023 0.177 0.260 0.105 0.060 0.298 0.382
500 0.024 0.029 0.165 0.477 0.068 0.115 0.602 0.733 0.134 0.209 0.733 0.824

0.5p 5.50% 1,000 0.039 0.180 0.778 0.892 0.105 0.414 0.947 0.963 0.161 0.561 0.967 0.981
1,500 0.063 0.429 0.951 0.980 0.148 0.682 0.992 0.995 0.230 0.791 0.997 0.998
2,500 0.117 0.775 0.999 1.000 0.259 0.911 1.000 1.000 0.347 0.953 1.000 1.000

252 0.137 0.044 0.022 0.206 0.256 0.148 0.320 0.469 0.418 0.240 0.478 0.589
500 0.306 0.199 0.125 0.491 0.493 0.408 0.618 0.759 0.628 0.532 0.756 0.853

0.5p 7.50% 1,000 0.621 0.541 0.491 0.849 0.805 0.772 0.918 0.961 0.871 0.856 0.965 0.983
1,500 0.864 0.794 0.820 0.974 0.939 0.924 0.987 0.996 0.965 0.959 0.996 0.999
2,500 0.984 0.973 0.991 1.000 0.996 0.993 1.000 1.000 0.999 0.998 1.000 1.000

Panel B: 1% VaR

252 0.009 0.008 0.010 0.009 0.046 0.041 0.048 0.051 0.175 0.083 0.101 0.102
500 0.011 0.012 0.009 0.010 0.061 0.052 0.050 0.053 0.115 0.098 0.094 0.105

0p 1.00% 1,000 0.012 0.011 0.009 0.010 0.048 0.053 0.048 0.050 0.091 0.102 0.098 0.100
1,500 0.010 0.009 0.011 0.008 0.042 0.046 0.048 0.052 0.101 0.096 0.098 0.101
2,500 0.010 0.009 0.011 0.010 0.047 0.046 0.051 0.050 0.093 0.097 0.103 0.104

252 0.012 0.007 0.014 0.016 0.056 0.043 0.064 0.066 0.211 0.090 0.122 0.124
500 0.012 0.007 0.013 0.018 0.082 0.043 0.058 0.065 0.153 0.092 0.106 0.125

0.1p 1.10% 1,000 0.015 0.008 0.006 0.012 0.062 0.041 0.038 0.066 0.110 0.086 0.090 0.128
1,500 0.013 0.009 0.006 0.015 0.059 0.043 0.039 0.071 0.125 0.090 0.095 0.134
2,500 0.013 0.011 0.005 0.015 0.069 0.050 0.041 0.078 0.142 0.102 0.099 0.145

252 0.029 0.014 0.053 0.053 0.124 0.074 0.152 0.158 0.385 0.140 0.247 0.247
500 0.055 0.015 0.050 0.073 0.257 0.071 0.167 0.203 0.394 0.128 0.233 0.309

0.1p 1.50% 1,000 0.095 0.037 0.002 0.084 0.283 0.129 0.120 0.259 0.387 0.221 0.241 0.408
1,500 0.148 0.081 0.001 0.097 0.355 0.217 0.155 0.343 0.528 0.335 0.317 0.488
2,500 0.251 0.222 0.006 0.170 0.563 0.445 0.269 0.506 0.708 0.576 0.457 0.646

252 0.013 0.007 0.027 0.026 0.073 0.048 0.098 0.097 0.269 0.095 0.171 0.168
500 0.021 0.007 0.023 0.036 0.129 0.040 0.097 0.116 0.225 0.082 0.152 0.198

0.3p 1.25% 1,000 0.028 0.008 0.002 0.039 0.115 0.047 0.062 0.146 0.185 0.096 0.141 0.238
1,500 0.031 0.015 0.002 0.050 0.124 0.065 0.078 0.188 0.234 0.125 0.171 0.293
2,500 0.046 0.033 0.006 0.093 0.188 0.122 0.129 0.285 0.312 0.203 0.253 0.413

252 0.007 0.003 0.022 0.019 0.054 0.022 0.082 0.077 0.212 0.055 0.141 0.133
500 0.011 0.004 0.029 0.029 0.087 0.025 0.102 0.105 0.167 0.059 0.161 0.176

0.5p 1.10% 1,000 0.010 0.006 0.008 0.060 0.062 0.037 0.119 0.183 0.117 0.088 0.219 0.272
1,500 0.012 0.023 0.012 0.127 0.068 0.087 0.190 0.321 0.133 0.163 0.327 0.450
2,500 0.010 0.082 0.109 0.439 0.077 0.238 0.551 0.700 0.162 0.365 0.715 0.807

252 0.025 0.009 0.055 0.059 0.125 0.051 0.162 0.170 0.380 0.105 0.256 0.262
500 0.058 0.011 0.075 0.094 0.258 0.060 0.206 0.224 0.394 0.111 0.279 0.332

0.5p 1.50% 1,000 0.091 0.033 0.006 0.150 0.293 0.118 0.199 0.366 0.395 0.201 0.339 0.493
1,500 0.149 0.092 0.011 0.250 0.352 0.234 0.290 0.518 0.521 0.352 0.457 0.641
2,500 0.263 0.258 0.046 0.458 0.569 0.474 0.500 0.735 0.719 0.605 0.674 0.829
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Table VII: Conditional Coverage - Power of the MCS cc Test under Different Level of a

The table presents rejection rates obtained by applying the MCS cc test to 10,000 samples of non-i.i.d. distributed VaR-
violation sequences. Panel A and B contain rejection rates for sequences simulated by Equation ( 27) and Equation
(29) with an increased violation probability. The parameter combinations used for the simulations are described at the
top of each panel. The top result for each combination of a, VaR level, and significance level is highlighted in bold
type.

5% VaR 1% VaR

Significance level: Significance level:
a 1% 5% 10% 1% 5% 10%

Panel A: n = 1, 000 / γ = 1.25 / half-life interval = 20 days

0 0.107 0.294 0.440 0.056 0.171 0.283
0.1 0.123 0.329 0.482 0.053 0.184 0.295
0.2 0.149 0.376 0.535 0.068 0.219 0.337
0.3 0.169 0.449 0.607 0.082 0.232 0.356
0.4 0.231 0.511 0.649 0.106 0.265 0.378
0.5 0.310 0.550 0.664 0.128 0.277 0.372
0.6 0.350 0.545 0.641 0.150 0.289 0.379
0.7 0.366 0.539 0.621 0.144 0.254 0.340
0.8 0.343 0.511 0.604 0.140 0.256 0.330
0.9 0.318 0.468 0.553 0.149 0.264 0.342
1 0.306 0.455 0.536 0.125 0.224 0.300

Panel B: n = 1, 000 / γ = 1.25 / δ = 0.3p

0 0.105 0.264 0.393 0.014 0.074 0.151
0.1 0.108 0.290 0.433 0.013 0.081 0.164
0.2 0.124 0.336 0.479 0.015 0.093 0.183
0.3 0.146 0.383 0.548 0.019 0.098 0.192
0.4 0.188 0.453 0.604 0.023 0.121 0.221
0.5 0.232 0.509 0.636 0.036 0.140 0.234
0.6 0.294 0.542 0.657 0.053 0.153 0.236
0.7 0.299 0.519 0.631 0.059 0.158 0.233
0.8 0.285 0.505 0.617 0.067 0.163 0.238
0.9 0.256 0.463 0.570 0.064 0.161 0.236
1 0.239 0.441 0.553 0.064 0.159 0.234
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Table VIII: Summary Statistics

Summary statistics of the portfolio data set used for the empirical application of the MCS and GMM tests. The data
set consists of 5,740 log-returns for each of the four portfolios covering a period from January 1, 1991 to December
31, 2012. Mean Return p.a. and Volatility p.a. are annualized with 250 days.

Portfolio 1 2 3 4

Minimum -2.691% -3.086% -3.473% -2.805%
5% quantile -0.651% -0.531% -0.657% -0.638%

Median Return 0.016% 0.011% 0.016% 0.016%
Mean Return 0.025% 0.020% 0.026% 0.027%
95% quantile 0.657% 0.564% 0.683% 0.648%

Maximum 3.705% 2.683% 3.621% 3.745%
Volatility 0.417% 0.369% 0.426% 0.425%
Skewness -0.133 -0.467 -0.300 0.083

Kurtosis 6.67 8.94 6.85 7.80

Mean Return p.a. 6.24% 4.95% 6.43% 6.84%
Volatility p.a. 6.59% 5.84% 6.73% 6.71%

Maximum Drawdown -23.46% -24.51% -23.80% -24.62%
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Table IX: Empirical Application - Total Period

The table contains Violation Ratios (i.e., VaR-violation frequency divided by the number of VaR-forecasts) of the
total period consisting of 5,490 VaR-forecasts for each portfolio (17.12.1991 to 31.12.2012). In addition, the table
contains p-values for the unconditional coverage tests MCS lt

uc (lower tail), MCS ut
uc (upper tail), MCS tt

uc (two tailed),
and GMMuc, for the i.i.d. tests MCS iid and GMMiid , and for the conditional coverage tests MCS cc and GMMcc. The
extensions *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level.

VaR Model Historical VaR GARCH approach
Portfolio 1 2 3 4 1 2 3 4

Panel A: 5% VaR

Viol. Ratio 5.43% 5.37% 5.50% 5.66% 4.37% 4.12% 4.54% 4.12%
MCS lt

uc 0.923 0.901 0.956 0.987 0.013** 0.001*** 0.054* 0.001***
MCS ut

uc 0.077* 0.099* 0.044** 0.013** 0.987 0.999 0.946 0.999
MCS tt

uc 0.155 0.197 0.088* 0.025** 0.025** 0.002*** 0.108 0.002***
GMMuc 0.133 0.221 0.091* 0.035** 0.025** 0.002*** 0.107 0.002***

MCS iid 0.000*** 0.000*** 0.000*** 0.000*** 0.014** 0.000*** 0.001*** 0.001***
GMMiid 0.000*** 0.000*** 0.000*** 0.000*** 0.005*** 0.001*** 0.005*** 0.004***

MCS cc 0.000*** 0.000*** 0.000*** 0.000*** 0.002*** 0.000*** 0.000*** 0.000***
GMMcc 0.001*** 0.000*** 0.001*** 0.001*** 0.002*** 0.001*** 0.004*** 0.001***

Panel B: 1% VaR

Viol. Ratio 1.20% 1.22% 1.35% 1.35% 1.53% 1.48% 1.46% 1.33%
MCS lt

uc 0.924 0.949 0.994 0.992 1.000 1.000 0.999 0.994
MCS ut

uc 0.076* 0.052* 0.006*** 0.008*** 0.000*** 0.001*** 0.001*** 0.006***
MCS tt

uc 0.151 0.103 0.012*** 0.016*** 0.000*** 0.001*** 0.001*** 0.013**
GMMuc 0.124 0.114 0.020** 0.020** 0.002*** 0.003*** 0.005*** 0.026**

MCS iid 0.022** 0.007*** 0.003*** 0.003*** 0.130 0.204 0.578 0.057*
GMMiid 0.022** 0.007*** 0.004*** 0.006*** 0.439 0.012** 0.311 0.019**

MCS cc 0.019** 0.006*** 0.001*** 0.001*** 0.004*** 0.009*** 0.026** 0.011**
GMMcc 0.034** 0.017** 0.008*** 0.006*** 0.019** 0.019** 0.051* 0.022**
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Table X: Empirical Application - Bear, Bull, and Bear + Bull Market

For each portfolio, the table contains Violation Ratios (i.e., number of VaR-violations divided by VaR-forecasts) of
the bear market period (250 VaR-forecasts from 16.04.2002 to 31.03.2003), the bull market period (250 VaR-forecasts
from 01.04.2003 to 15.03.2004), and the combination of the bear and bull market period (500 VaR-forecasts from
16.04.2002 to 15.03.2004). The VaR level is set to 5%. In addition, the table contains the corresponding p-values for
the unconditional coverage tests MCS lt

uc (lower tail), MCS ut
uc (upper tail), MCS tt

uc (two tailed), and GMMuc, for the
i.i.d. tests MCS iid and GMMiid , and for the conditional coverage tests MCS cc and GMMcc. The extensions *, **, and
*** indicate statistical significance at the 10%, 5%, and 1% level.

VaR Model Historical VaR GARCH(1,1)
Portfolio 1 2 3 4 1 2 3 4

Panel A: Bear Market / 5% VaR

Viol. Ratio 7.60% 7.60% 8.40% 9.20% 8.80% 8.00% 9.20% 8.80%
MCS lt

uc 0.967 0.964 0.988 0.998 0.995 0.982 0.998 0.995
MCS ut

uc 0.033** 0.036** 0.012** 0.002*** 0.005*** 0.018** 0.002*** 0.005***
MCS tt

uc 0.065* 0.073* 0.023** 0.004*** 0.011** 0.036** 0.003*** 0.010**
GMMuc 0.131 0.120 0.050* 0.019** 0.040** 0.064* 0.017** 0.045**

MCS iid 0.000*** 0.008*** 0.025** 0.010** 0.033** 0.047** 0.207 0.051*
GMMiid 0.000*** 0.005*** 0.042** 0.010** 0.078* 0.197 0.819 0.256

MCS cc 0.001*** 0.005*** 0.007*** 0.003*** 0.006*** 0.015** 0.015** 0.007***
GMMcc 0.014** 0.037** 0.044** 0.020** 0.039** 0.090* 0.048** 0.048**

Panel B: Bull Market / 5% VaR

Viol. Ratio 1.20% 2.00% 1.20% 1.60% 1.60% 2.80% 1.60% 1.60%
MCS lt

uc 0.001*** 0.007*** 0.001*** 0.004*** 0.002*** 0.046** 0.004*** 0.004***
MCS ut

uc 0.999 0.993 0.999 0.996 0.998 0.954 0.996 0.996
MCS tt

uc 0.003*** 0.013** 0.001*** 0.007*** 0.004*** 0.093* 0.007*** 0.008***
GMMuc 0.001*** 0.007*** 0.001*** 0.001*** 0.004*** 0.080* 0.003*** 0.004***

MCS iid 0.424 0.545 0.428 0.204 0.259 0.540 0.255 0.258
GMMiid 0.657 0.634 0.659 0.787 0.770 0.643 0.757 0.761

MCS cc 0.044** 0.095* 0.044** 0.025** 0.040** 0.237 0.036** 0.035**
GMMcc 0.003*** 0.013** 0.003*** 0.003*** 0.003*** 0.193 0.005*** 0.004***

Panel C: Bear + Bull Market / 5% VaR

Viol. Ratio 4.40% 4.80% 4.80% 5.40% 5.20% 5.40% 5.40% 5.20%
MCS lt

uc 0.269 0.404 0.457 0.687 0.580 0.666 0.684 0.591
MCS ut

uc 0.731 0.596 0.543 0.313 0.420 0.334 0.316 0.409
MCS tt

uc 0.538 0.807 0.914 0.627 0.841 0.668 0.633 0.818
GMMuc 0.666 0.932 0.923 0.681 0.702 0.542 0.542 0.684

MCS iid 0.003*** 0.034** 0.004*** 0.001*** 0.003*** 0.116 0.005*** 0.003***
GMMiid 0.001*** 0.007*** 0.003*** 0.001*** 0.003*** 0.160 0.003*** 0.005***

MCS cc 0.003*** 0.112 0.009*** 0.004*** 0.012** 0.306 0.011** 0.013**
GMMcc 0.007*** 0.030** 0.014** 0.010** 0.014** 0.374 0.024** 0.018**
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A Appendix: Pseudocode

A.1 Test of Unconditional Coverage

(i) Generate the violation sequence resulting from the observed returns and the corresponding
VaR forecasts by

Ii(p) =

⎧⎪⎪⎨⎪⎪⎩
1, if yi < VaRi|i−1(p);

0, else.

(ii) Draw l + 1 random variables by

ε j ∼ N(0, 1) · 0.001, j = 1, ..., l + 1.

(iii) Calculate the test statistic for the observed violation sequence by

MCS uc = εl+1 +

n∑
i=1

Ii.

(iv) Simulate violation sequences by drawing l-times n random variables with distribution

Î j,i(p) ∼ Bern(p), i = 1, ..., n, j = 1, ..., l.

(v) Calculate the test statistic for each simulated violation sequence by

ˆMCS uc, j = ε j +

n∑
i=1

Îi, j.

(vi) Sort the resulting values of the simulated statistic ˆMCS uc, j in descending order.

(vii) Compute the quantiles for the desired significance level and compare the test statistic for the
observed violation sequence to the resulting critical values.

40



A.2 Test of the I.I.D. Property

(i) Generate the violation sequence resulting from the observed returns and the corresponding
VaR forecasts by

Ii(p) =

⎧⎪⎪⎨⎪⎪⎩
1, if yi < VaRi|i−1(p);

0, else.

(ii) Calculate the sum of observed VaR violations by

m =
n∑

i=1

Ii.

(iii) Identify the time indexes where an observed VaR violation occurred by

V = {i|Ii = 1} = (t1, ..., tm).

(iv) Draw l + 1 random variables by

ε j ∼ N(0, 1) · 0.001, j = 1, ..., l + 1.

(v) Calculate the test statistic for the observed violation sequence by

MCS iid,m = t2
1 + (n − tm)2 +

m∑
s=2

(ts − ts−1)2 + εl+1.

(vi) Simulate violation sequences by drawing l-times n random variables with distribution

Îi, j(p) ∼ Bern(p), i = 1, ..., n, j = 1, ..., l,

under the condition that
∑n

i=1 Îi, j = m, ∀ j.

(vii) For each simulated violation sequence, identify the set of time indexes of the violations by

V̂ j = {t j|Îi, j = 1} = (t j,1, ..., t j,m).

(viii) Calculate the test statistic for the simulated violation sequences by

ˆMCS iid,m, j = t2
j,1 + (n − t j,m)2 +

m∑
s=2

(t j,s − t j,s−1)2 + ε j.

(ix) Sort the resulting values of the simulated statistic ˆMCS iid,m, j in descending order.

(x) Compute the quantile for the desired significance level and compare the test statistic for the
observed violation sequence to the resulting critical value.
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A.3 Test of Conditional Coverage

(i) Simulate violation sequences by drawing l-times n random variables with distribution

Îi, j(p) ∼ Bern(p), i = 1, ..., n, j = 1, ..., l,

under the condition that
∑n

i=1 Îi, j > 1, ∀ j.

(ii) For each simulated violation sequence, identify the set of time indexes of the violations by

V̂ j = {t̂ j|Î j,i = 1} = (t̂ j,1, ..., t̂ j,m).

(iii) Draw l + 1 random variables by

ε j ∼ N(0, 1) · 0.001, j = 1, ..., l + 1.

(iv) Calculate the violation frequency of each of the simulated sequences

m̂ j =

n∑
i=1

Îi, j.

(v) Define m̂ = (m̂1, ..., m̂l) and set m̂min = max(2,min(m̂)) and m̂max = max(m̂) for the lower and
upper bound of possible VaR violation frequencies.

(vi) For each k = m̂min, m̂min+1, . . . , m̂max, simulate violation sequences by drawing l∗-times n ran-
dom variables with distribution

Ĩi, j(k/n) ∼ Bern(k/n), i = 1, ..., n, j = 1, ..., l∗,

under the condition that
∑n

i=1 Ĩi, j(k/n) = k, ∀ j.

(vii) For k and each simulated violation sequence, identify the set of time indexes of the violations
by

Ṽ j,k = {t̃ j,k|Ĩi, j,k = 1} = (t̃ j,1, ..., t̃ j,k).

(viii) For each k, calculate rk, an estimator for E(MCS iid,k|H0), by

rk =
1
l∗
·

l∗∑
j=1

⎛⎜⎜⎜⎜⎜⎝t̃2
j,1 + (n − t̃ j,k)

2 +

k∑
s=2

(t̃ j,s − t̃ j,s−1)2

⎞⎟⎟⎟⎟⎟⎠ .

(ix) Calculate the test statistic for each violation sequence simulated in step (i) by

ˆMCS cc,k, j = a f ( ˆMCS uc, j) + (1 − a)g( ˆMCS iid,k, j), 0 ≤ a ≤ 1,

where

f ( ˆMCS uc, j) =

∣∣∣∣∣∣∣∣
(
ε j +

∑n
i=1 Îi

)
/n − p

p

∣∣∣∣∣∣∣∣ ,
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and

g( ˆMCS iid,k, j) =
ˆMCS iid,k, j − rk

rk
· 1{ ˆMCS iid,k, j≥rk}, k =

n∑
i=1

Îi, j.

(x) Sort the resulting values of the simulated statistic ˆMCS cc,k, j in descending order.

(xi) Compute the quantile for the desired significance level.

(xii) Generate the violation sequence resulting from the observed returns and the corresponding
VaR forecasts by

Ii(p) =

⎧⎪⎪⎨⎪⎪⎩
1, if yi < VaRi|i−1(p);

0, else.

(xiii) Calculate the sum of observed VaR violations by

m =
n∑

i=1

Ii.

(xiv) Identify the set of time indexes where an observed VaR violation occurred by

V = {t|Ii = 1} = (t1, ..., tm).

(xv) If m � [m̂min, m̂min+1, . . . , m̂max], determine rm by repeating steps (vi) to (viii) where k is
replaced by m.

(xvi) Calculate the test statistic for the observed violation sequence by

MCS cc,m = a f (MCS uc) + (1 − a)g(MCS iid,m), 0 ≤ a ≤ 1,

where

f (MCS uc) =

∣∣∣∣∣∣
(εl+1 +

∑n
i=1 Ii)/n − p

p

∣∣∣∣∣∣ ,
and

g(MCS iid,m) =
MCS iid,m − rm

rm
· 1{MCS iid,m≥rm}.

(xvii) Compare the test statistic for the observed violation sequence to the critical value.

43



 



 



 


	Introduction
	Methodology
	Notation and VaR-Violation Properties
	A New Test of Unconditional Coverage
	A New Test of I.I.D. VaR-Violations
	A New Test of Conditional Coverage
	Multivariate Extension

	Simulation Study
	Tests of Unconditional Coverage
	Tests of the I.I.D. Property
	Independent VaR-Violations
	Identically Distributed VaR-Violations

	Conditional Coverage

	Empirical Application
	Data and Forecasting Scheme
	Results

	Conclusion
	Appendix: Pseudocode
	Test of Unconditional Coverage
	Test of the I.I.D. Property
	Test of Conditional Coverage


