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COMPARING TIMBRE ESTIMATION USING
AUDITORY MODELS WITH AND WITHOUT

HEARING LOSS

KLAUS FRIEDRICHS AND CLAUS WEIHS

Abstract. We propose a concept for evaluating signal transfor-
mations for music signals with respect to an individual hearing
deficit by using an auditory model. This deficit is simulated in the
model by changing specific model parameters. Our idea is extract-
ing the musical attributes rhythm, pitch, loudness and timbre and
comparing the modified model output to the original one. While
rhythm, pitch, and loudness estimation are studied in previous
works the focus in this paper concentrates on timbre estimation.
Results are shown for the original auditory model and three mod-
els, each simulating a specific hearing loss.

1. Introduction

For fitting and tuning a hearing aid for an individual patient as well
as for fundamental research of hearing aid algorithms a method for
automatic assessment based on a specific hearing deficit is very valu-
able. To take the knowledge of a specific hearing deficit into account
Meddis proposed implementing this deficit in a widely recognized com-
puter model of the human auditory periphery (Meddis et al., 2009). In
this paper we pursue this suggestion for evaluating arbitrary complex
hearing aid algorithms for music signals. This approach is shown in
Figure 1. Music signals are processed by an auditory model without
hearing loss and simultaneously by another model in which the simu-
lated hearing deficit is implemented. Since the auditory model output
can not be interpreted directly the musical information has to be ex-
tracted by an auralization procedure. Hence the recognized musical
attributes of the two models can be compared and an evaluation of
signal transformations is feasible.
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Figure 1. Assessment of Hearing Aid Algorithms for Music Signals

Here, auralization means a technique of decoding the auditory model
output into a representation which can be understood and evaluated
by humans. This can be an audio signal or in case of music the musical
attributes of the signal: rhythm, pitch, loudness and timbre. For sim-
plified auditory models the auralization task can be solved by using a
genuine model inversion (Feldbauer et al. 2005). Instead, in this study
an auralization approach for the model described in Meddis (2006)
is presented. This model enables a more realistic implementation of
different types of hearing impairments (Meddis et al., 2009). Since for
Meddis’ model an analytical inversion is not possible we have developed
a statistical auralization approach for music signals using classification
and regression methods to estimate the musical attributes: rhythm
(onsets), pitch (key tones), loudness and timbre.

Meddis’ auditory model is a computational simulation model of the
human auditory periphery. 40 auditory nerve fibres are simulated by
a 40 channels filter bank. Each channel has an individual best fre-
quency which defines which frequencies are stimulated the most. The
best frequency is between 250 Hz for the first and 7500 Hz for the 40th
channel. In Figure 2 an exemplary output of the model can be seen.
While the 40 channels are located on the vertical axis and the time
response on the horizontal axis, the color indicates the spiking activity
per second. For the auditory model with hearing loss we consider the
three examples, called hearing dummies, which are described in Med-
dis et al. (2009). These are modified models based on the auditory
model described above. The first hearing dummy simulates a bilateral
moderate-severe sensory-neural hearing loss with normal middle ear
function. In the model this is implemented by retaining the channel
with the best frequency of 250 Hz only and by disabling the nonlin-
ear path. The second hearing dummy simulates a bilateral, moderate,
sensory-neural, sloping hearing loss with normal middle ear function.
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For the model this means that the endocochlear potential is reduced
from -0.1 V to -0.09 V and the channels with best frequencies above
2700 Hz are disabled. The third hearing dummy is a moderate bi-
lateral, sensory-neural, ski-slope loss with normal middle ear function
but no detectable acoustic reflex. This is implemented by disabling all
channels with best frequencies above 1800 Hz.

Figure 2. Exemplary Output of Meddis Auditory Model (Normal Hearing)

2. Auralization approach

First the auditory model output has to be separated into the single
tones by using tone onset detection. Subsequently for each tone the
key tone frequency, the loudness and the timbre are estimated using
statistical learning procedures. During training mode the first step is
skipped and instead all onset times are known.

While onset detection and frequency and loudness estimation are
dealt in our previous works the focus of this paper is timbre estima-
tion. In Bauer et al. (2012) a tone onset detection using Meddis’ audi-
tory model is proposed and compared to another approach, which uses
the original signal instead. It is shown that both used representations
perform altogether roughly equal. In Weihs et al. (2012) an approach
for frequency detection based on Meddis’ model using classification
methods is introduced which solves the problem almost error free. Ad-
ditionally, a method for loudness estimation for each partial tone using
regression methods is presented. While in that work each partial tone is
estimated separately, for the improved approach described in this paper
we just need the key tone frequency and the loudness of the complete
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tone, since we want to estimate also timbre. This makes these other
tasks even somewhat easier.

3. Timbre estimation

Timbre is a combination of all acoustical attributes by which two mu-
sical tones which are identical in pitch, loudness and length can be dis-
tinguished (Emiroglu et al., 2007). While there are many approaches
for mathematical representations for timbre many of them are highly
controversial. Thus, an objective definition of timbre appears to be
problematic. Therefore, we simplify timbre definition: Here, timbre
distiguishes the tones of different instruments identical in pitch, loud-
ness and length. By this we can define timbre estimation as a classifica-
tion task, which can also be compared with human auditory perception.

3.1. Experimental Design. We use randomly generated tone sequences
with known onset times which contain tones of two different musical
instruments from RWC data base (Goto et al., 2003). The classifica-
tion task is to identify for each tone which instrument is playing. We
considered three classification tasks with different level of difficulty:
piano versus clarinet, clarinet versus trumpet and piano versus guitar.
While piano and clarinet can be distinguished relatively easy, the clas-
sification task for piano versus guitar is even for humans a very hard
challenge, at least for the tones used in this study. For each classifica-
tion task 10 randomly generated tone sequences are used. Each tone
sequence consists of 20 tones, thus altogether we have 200 observations
per experiment. All tones have the same duration of 0.5 seconds while
the sound itensities and the pitches are randomly chosen using uniform
distributions. The sound intensities have a range of [70,90] in MIDI-
coding. The pitch range is dependent on the common pitch range of
the respective instruments. This means [466, 4187] Hz for piano vs.
clarinet, [523, 3730] Hz for clarinet vs. trumpet and [261, 2093] Hz for
piano vs. guitar. For each tone one of the two instruments is randomly
chosen.

All tone sequences are separately processed through Meddis’ audi-
tory model respectively each of the three hearing dummies described
in Section 1. Since past observations have a significant impact on the
auditory model output the same tones at different locations often pro-
duce significant different model outputs. Figure 3 shows an exemplary



TIMBRE ESTIMATION WITH AND WITHOUT HEARING LOSS 5

output of a tone sequence piano vs. clarinet using the auditory model
without hearing loss.

Figure 3. Exemplary Auditory Output of Piano vs. Clarinet (Normal Hearing)

3.2. Feature Generation. Contrary to other instrument recognition
experiments which are based on the acoustic signal, here an additional
issue is combining the outputs of up to 40 channels. In this study a rel-
atively simple approach is chosen by using only two channel combining
features. All other features are generated for each channel indepen-
dently. For further simplification features are computed over the whole
tone. Possibly, better results can be achieved by windowing, thereby,
e.g., distinguishing the attack time from the rest. The two combining
features are the average firing rate over all channels and the variance
of the mean firing rates of the channels. While the first one should
be more connected to loudness, the second one should be more related
to pitch. Both, however, might also include some information about
timbre, e.g. the amount of high frequency.

From each channel output the following features are generated. They
all originate from music information retrieval for analyzing acoustic
signals with respect to timbre (Lartillot et al., 2007). Thus, we can not
say for sure that all of them are also an indicator for predicting timbre
on the auditory model output.

a) Shannon Entropy
The entropy H(X) is defined as:

H(X) = −
N∑

i=1

p(xi)log2p(xi),

where X is the Discrete Fourier Transform of a signal and p(xi)

is the energy share of the i-th frequency component. Shannon’s
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entropy is a measure of randomness in an acoustic signal and
often proposed as a measure for music complexity (Madsen et
al., 2006). By calculating the entropy of each channel output it
can be estimated if the firing activity is just random or if it is
stimulated by certain frequencies.

b) Zero-cross (Here: “One-cross”)
Zero-cross is an indicator for noisiness of an acoustic signal by

counting how often it changes the sign. Since the channels’ firing
activities are of cause always positive, we count how often each
channel output crosses the 1-value, which might also indicate the
noisiness to some degree.

c) Roll-off 85
Roll-off 85 is defined as the minimal value R such that

R∑
i=1

xi ≥ 0.85
N∑

i=1

xi,

where xi is the amplitude of the i-th frequency component. It
estimates the amount of high frequency in an acoustic signal by
calculating the frequency below which 85% of the total energy
is contained. Since each channel can be considered simply as a
bandpass filter, this feature might be very noisy for the auditory
model output.

d) Brightness
This is another feature estimating the amount of high fre-

quency in a signal. It calculates the amount of energy above
1500 Hz with respect to the total energy:

N∑
i=f1500

xi/
N∑

i=1

xi,

where xf1500 is the 1500 Hz frequency component. This mea-
sure should be discussed in the same way als Roll-off 85.

e) Irregularity
Irregularity measures the degree of variation of adjoining par-

tials in a tone:
N∑

k=1

(ak − ak+1)
2/

N∑
k=1

a2
k,

where ak is the amplitude of the k-th partial and aN+1 is sup-
posed to be zero. Since the ratio of adjoining partial tones can
also be seen very clearly in the auditory model output (Weihs et
al., 2012), Irregularity should also indicate timbre in the auditory
model output.
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f) Mel-Frequency Cepstral Coefficients (MFCCs)
MFCCs describe the spectral shape of the sound (Davis et al.,

1980). For this study the first 13 cepstral coefficients are taken
as features from each channel output. However, like Roll-off 85
and Brightness, MFCCs might be very noisy due to the bandpass
characteristic of the channels.

Altogether this means that we consider 2 + 40 ∗ 18 = 722 features in
case of the original auditory model (without hearing loss).

3.3. Results. Using the features described above classification meth-
ods can be applied. In this study this is done by a Linear Support
Vector Machine (SVM). Ten times repeated ten-fold cross validation
is performed for getting significant results. These results are listed in
Table 1.

Table 1. Misclassification rates (10 times repeated 10-fold cross validation):

Piano vs. Clarinet Clarinet vs. Trumpet Piano vs. Guitar
Normal Hearing 0.0% 0.7% 4.2%
Hearing Dummy 1 31.4% 32.0% 31.5%
Hearing Dummy 2 0.6% 2.4% 6.0%
Hearing Dummy 3 2.0% 6.2% 13.4%

As expected the smallest classification error appears for the model
without hearing loss and the worst one for the first hearing dummy
which simulates a very strong hearing loss. Since the second hearing
dummy scores better than the third one it can be supposed that a re-
duced endocochlear potential does not have a high impact on timbre
estimation. Furthermore, the difficulties of the level of the three clas-
sification tasks is consistent with informal listening tests for all models
except for the first hearing dummy, for which all tasks remarkably have
nearly the same bad results.

4. Conclusion

In this paper an approach for timbre estimation respectively music
instrument recognition using an auditory model is proposed. The uti-
lized features, which are almost all originally developed for analyzing
acoustic signals instead of auditory model outputs, seem already to be
sufficient to produce satisfactory results. Nevertheless, we suppose that
results could even be better with improved features which give more
regard to the auditory model output. Additionally, in future studies we
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will optimize the classification by conducting feature selection and test-
ing different classification methods. While subsequently, a comparison
with state of the art instrument recognition systems could be very in-
teresting, our primary intention is to generate a method for automatic
assessment for hearing aid algorithms. Therefore, the classifier does
not need to be perfect as long as the results are consistent with the
human auditory perception. However, this has to be proven by a lis-
tening test which measures the degree of correlation between statistical
learning and human perception. Finally, our purpose is combining the
timbre estimation with our previous studies about onset detection and
pitch and loudness estimation to an overall measure, thereby gaining a
method for evaluating hearing aid algorithms for music signals.

acknowledgement

This work was supported by the Collaborative Research Center "Sta-
tistical modeling of nonlinear dynamic processes" (SFB 823) of the
German Research Foundation (DFG).

References

N. Bauer, K. Friedrichs, D. Kirchhoff, J. Schiffner and C. Weihs (2012):
"Tone onset detection using an auditory model", SFB 823 Discussion
Paper 50/12, TU Dortmund.

S.B. Davis und P. Mermelstein (1980): "Comparison of Parametric
Representations for Mono-syllabic Word Recognition in Continu-
ously Spoken Sentences", IEEE Transactions on Acoustics, Speech,
and Signal Processing 28/4, 357-366.

S. Emiroglu, B. Kollmeier (2007): "Timbre discrimination in normal-
hearing and hearing-impaired listeners under different noise condi-
tions", Brain Res.

C. Feldbauer, G. Kubin and W.B. Kleijn (2005): "Anthropomorphic
Coding of Speech and Audio: A Model Inversion Approach", in
EURASIP Journal on Applied Signal Processing, Volume 2005.

M. Goto, H. Hashiguch, T. Nishimura, and R. Oka (2003): "RWC
Music Database: Music Genre Database and Musical Instrument
Sound Database", Proceedings of the 4th International Conference
on Music Information Retrieval (ISMIR 2003), 229-230.



TIMBRE ESTIMATION WITH AND WITHOUT HEARING LOSS 9

O. Lartillot, P. Toiviainen (2007): "MIR in Matlab (II): A toolbox for
musical feature extraction from audio", in International Conference
on Music Information Retrieval.

S. T. Madsen, G. and Widmer (2006): "Music complexity measures
predicting the listening experience", in Proceedings of the 9th Inter-
national Conference on Music Perception and Cognition, Bologna.

R. Meddis (2006): "Auditory-nerve first-spike latency and auditory
absolute threshold: A computer model", Journal of the Acoustical
Society of America 119, 406-417.

R. Meddis, W. Lecluyse, C.W. Tan, and M.R. Panda (2009): "Be-
yond the audiogram: identifying and modelling patterns of hearing
deficits", in The Neurophysiological Bases of Auditory Perception,
Proc. of the International Symposium on Hearing.

C. Weihs, K. Friedrichs und B. Bischl (2012): "Statistics for hearing
aids: Auralization", in J. Pociecha, R. Decker (Hrsg.): Data Analysis
Methods and its Applications, 183-196.

Chair of Computational Statistics, TU Dortmund
E-mail address: {friedrichs, weihs} @statistik.tu-dortmund.de



 



 



 


