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ABSTRACT 

From both the structural and functional points of view, β-turns play important biological roles 
in proteins. In the present study, a novel two-stage hybrid procedure has been developed to 
identify β-turns in proteins. Binary logistic regression was initially used for the first time to 
select significant sequence parameters in identification of β-turns due to a re-substitution test 
procedure. Sequence parameters were consisted of 80 amino acid positional occurrences and 
20 amino acid percentages in sequence. Among these parameters, the most significant ones 
which were selected by binary logistic regression model, were percentages of Gly, Ser and the 
occurrence of Asn in position i+2, respectively, in sequence. These significant parameters 
have the highest effect on the constitution of a β-turn sequence. A neural network model was 
then constructed and fed by the parameters selected by binary logistic regression to build a 
hybrid predictor. The networks have been trained and tested on a non-homologous dataset of 
565 protein chains. With applying a nine fold cross-validation test on the dataset, the network 
reached an overall accuracy (Qtotal) of 74, which is comparable with results of the other β-turn 
prediction methods. In conclusion, this study proves that the parameter selection ability of bi-
nary logistic regression together with the prediction capability of neural networks lead to the 
development of more precise models for identifying β-turns in proteins.  
 
Keywords: β-turns, binary logistic regression, neural networks, secondary structure predic-
tion, sequence parameters 
 

 
INTRODUCTION 

Protein secondary structure prediction is 
a preceding step to the more complicated 
tertiary structure prediction (Richardson, 
1981). Among many structural elements, 
tight turns play an important role in protein 
folding and stability. They are classified as 
-turns, -turns, β-turns, -turns and π-
turns, depending on the number of residues 
forming the turn (Chou, 2000). β-turns are 
the most existing type of tight turns in pro-

teins and include almost 25 % of all resi-
dues in globular proteins (Kabsch and 
Sander, 1983). They consist of four consec-
utive residues defined by positions i, i+1, 
i+2 and i+3. The distance between C (i) 
and C (i+3) is less than 7 Ǻ (Chou, 2000). 
According to the Ø, ψ angles of the residues 
i+1 and i+2, β-turns can be classified into 9 
different types: I, I΄, II, II΄, IV, Via1, Via2, 
VIb and VIII.  
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Both from structural and functional 
points of view, β-turns play important bio-
logical roles in proteins. They tend to be 
found at solvent-exposed surfaces and 
therefore involve in molecular recognition 
processes between proteins, as well as in 
interactions between peptide substrates and 
receptors (Rose et al., 1985). β-turn for-
mation is a determining stage during the 
process of protein folding. Also, β-turns are 
responsible for the compact globular shape 
of proteins since they have the ability for 
reserving the alignment of protein chain 
(Takano et al., 2000). Hence, the develop-
ment of a precise method for analysis and 
prediction of β-turns (according to the ami-
no acid sequences) would be useful for pro-
tein folding studies as well as for predicting 
the overall three-dimensional structure of 
proteins. 

Many efforts have been made for analy-
sis and prediction of β-turns in proteins. 
They can be divided into two categories: 
statistics-based and machine learning-based 
methods. The majority of statistics-based 
methods used positional preferences of 
amino acids in β-turns (Lewis et al., 1973; 
Chou and Fasman, 1974; Wilmot and 
Thornton, 1988; Hutchinson and Thornton, 
1994; Zhang and Chou, 1997; Fuchs and 
Alix, 2005) .The second category includes 
neural network (NN) (McGregor et al., 
1989; Shepherd et al., 1999; Kaur and 
Raghava, 2003, 2004; Kirschner and 
Freshman, 2008; Petersen et al., 2010) as 
well as support vector machine (SVM) (Cai 
et al., 2003; Pham et al., 2003, 2005; Zhang 
et al., 2005; Zheng and Kurgan, 2008; Hu 
and Li, 2008 ; Liu et al., 2009; Meissner et 
al., 2009; Kountouris and Hirst, 2010; Shi 
et al., 2011; Tang et al., 2011) approaches. 
To compare main methods of β-turn predic-
tion, Kaur and Raghava (2002) have made 
an evaluation on the benchmark data set. 
They showed that neural network approach 
by Shepherd et al. (1999) presented the best 
prediction performance among other evalu-
ated methods. In a previous study based on 
a hybrid approach, we employed the multi-
nomial logistic regression as well as neural 
networks for analysis and identification of 

β-turn types (Asgary et al., 2007). More 
recently, Zheng and Kurgan (2008) used 
SVM for β-turn prediction getting the per-
formance of their method is the highest 
among all. As a result, machine learning 
methods (especially SVM approach) can be 
considered as the most accurate ones for 
prediction of β-turns. 

In the year 2002, Kaur and Raghava 
suggested that combining a statistics meth-
od with a machine learning method may 
provide substantially better results than ei-
ther one alone (Kaur and Raghava, 2002). 
In the present study, we followed their rec-
ommendation by combining the binary lo-
gistic regression as statistical method with 
the neural network as machine learning one 
for identification of β-turns. 

The binary logistic regression method, 
which has not been applied for β-turn anal-
ysis so far, is useful when the presence or 
absence of a characteristic or an outcome 
based on a set of predictor variables is 
needed to be predicted. It is similar to a lin-
ear regression model but is suited to models 
with dichotomous dependent variable 
(Hosmer and Lemeshow, 2000). We used 
binary logistic regression to select the most 
effective set of parameters which then were 
fed into a well-established neural network. 
In this way, we increased the accuracy and 
reliability of neural networks, in β-turns 
identification.  

 
MATERIALS AND METHODS 

The dataset 
Our dataset consisted of 565 non-

homologous protein chains (Table 1). These 
protein chains were selected using the 
PDB-REPRDB server (Noguchi et al., 
2001). In this dataset, no two proteins have 
more than 25 % sequence uniformity. All 
proteins have reported X-ray structures with 
2.0 Å resolution or better. The program 
PROMOTIF (Hutchinson and Thornton, 
1996) was employed to identify β-turns in 
the proteins. Sequence parameters including 
80 amino acid positional occurrences as 
well as 20 amino acid percentages (of exist-
ence) in β-turn sequences were generated 
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using IF and COUNTIF functions of EX-
CEL software (2003), respectively. 
 

 
 

Table 1: The PDB (Protein Data Bank) codes of 565 protein chains 
 
1NWZA, 1P9GA, 1MUWA, 1V6PA, 1G66A, 1IQZA, 1L9LA, 1OK0A, 1GVKB, 4LZT_, 1NKIA, 1GQVA, 
1UG6A, 1P1XA, 1EB6A, 1LNIB, 1A6M_, 2ERL_, 1EXRA, 1R2MA, 1C7KA, 1QTWA, 1CC8A, 1LWBA, 
1PSRB, 1SFSA, 1UWCA, 1N62B, 1C5EA, 1QL0A, 1P5FA, 1SU8A, 1YFQA, 1RG8A, 1KT6A, 1I1XA, 
1K7CA, 1SAUA, 1TUKA, 1P6OB, 1OE3A, 1J0OA, 1HEUA, 1HG7A, 1M1NB, 1M1NA, 1C9OA, 
1CZPA, 1WKQA, 1T1EA, 1IFC_, 1ZBYA, 1I6TA, 1JBC_, 1ARB_, 2BMOA, 1TU9A, 1UAIA, 1X6IB, 
1AMM_, 2SN3_, 2PTH_, 1V8HA, 1HXHB, 1GNLA, 1MEXL, 1LXZA, 1QFTA, 1WDPA, 1MQKH, 
1VLBA, 1QKSA, 1C52_, 1RTTA, 1G61A, 1JR0F, 1OX0A, 1K3YA, 1LQ9A, 1WVFA, 1WKRA, 1SG4A, 
7FD1A, 1BXAA, 1RRO_, 1I0DA, 1S2PA, 1ISPA, 1F41A, 1ULRA, 1XEOA, 1V70A, 1NYKA, 1VF8A, 
1VH5A, 1U1WB, 1SJWA, 2LISA, 1FD3A, 1F1GA, 1BSMA, 1TZVA, 1MQOA, 1THM_, 1H2WA, 1LLFA, 
1GK8I, 1EZGA, 1L6RA, 1GG6B, 1GG6C, 1Y8AA, 1RKQA, 1QK8A, 1N13B, 3VUB_, 1N13E, 1YGE_, 
1YRCA, 1G8AA, 1NYCA, 1V37A, 1H2RL, 1FP2A, 1H2RS, 1JY2O, 1QH4A, 1XSZA, 1NOFA, 1MXRA, 
1PKHA, 1PP0B, 1E6UA, 1YYDA, 1O9RA, 1HZTA, 1QH5A, 1C1KA, 1V4PA, 1C8CA, 1O82A, 1JU2A, 
1SMOB, 1R7JA, 1GQIA, 1YXLA, 1ZD8A, 1XNB_, 1HBZA, 1HT6A, 1OFZA, 1G6SA, 1OFNB, 1NKGA, 
1QWOA, 1F1UA, 1DJ0A, 1CYO_, 1V5DA, 1KQ3A, 1OC2B, 1OFWA, 1UV4A, 1DQZA, 2BKVB, 
1IQQA, 1ISUA, 1MLA_, 1I1NA, 1UI0A, 1M2AA, 3EZMA, 1GUTA, 1WHI_, 1GD0B, 1P1MA, 1V5VA, 
1AH7_, 1QB7A, 1NP4A, 1I0RB, 1ROCA, 1F46B, 1AGI_, 1S67L, 1ZHLB, 1KPF_, 1IRQB, 1IO7A, 
1LLMC, 1KRHA, 1OMRA, 1Y1NA, 1YPYA, 1YME_, 1T6CA, 1USGA, 1RV9A, 1DLWA, 1SZNA, 
2CBA_, 3GRS_, 2BEMA, 1QQJA, 1NA3A, 1EDQA, 1ZG4A, 1U11B, 1U8YB, 1JKEC, 1UGIA, 1KQ1H, 
1SXRA, 1JOVA, 1IZ7A, 1RP0A, 1BFD_, 3PTE_, 1Y7BA, 1U8VA, 1E6YE, 1HFEL, 1HFES, 1KWGA, 
1LAM_, 1S9RA, 1RU4A, 2SIL_, 1T4BA, 1KEIA, 1YYAA, 1M44B, 1T92A, 1B3AA, 1JI1A, 1SMD_, 
1FS7A, 1MRP_, 1L9XA, 1CUOA, 1Q0GA, 1NC5A, 1QGIA, 1EG9B, 1CG5B, 1WS8B, 1KNT_, 
1QWKA, 1O26B, 1YW5A, 1MD6A, 1W0PA, 1NM8A, 1U0EA, 1IT2A, 1GY6A, 1U84A, 1FWXA, 
1HTRP, 1H63A, 1IWDA, 1G8KA, 1KAPP, 1X3KA, 1I9DA, 1YO3A, 3STDA, 1EZWA, 1DHN_, 1US6B, 
1WUBA, 3CHY_, 1E3UB, 1DOSA, 1B4KA, 1CZFA, 1EU3A, 1Y7YA, 1T0BH, 1AYX_, 1TXGA, 1Q8FA, 
1BKPB, 1DP0A, 1KNB_, 2MHR, 1CSS_, 1VCLA, 1JHDA, 1YOCB, 1MOLA, 1GOF_, 1MTYD, 1PMI_, 
1PB1A, 1MTYB, 1NE9A, 1AGJA, 1MTYG, 1UQRD, 1PBYA, 1WY2A, 1PXZA, 1NVMG, 1NVMB, 
1V58A, 1IS6A, 1B2PA, 1YGTA, 1V9FA, 1WAB_, 1MXIA, 1W4XA, 1R12A, 1FVAB, 1FZQA, 1NAQA, 
1SL8A, 1MK4A, 1TXLA, 1QSTA, 1Q2HB, 1P3QU, 1SF9A, 1DJEA, 1GXYA, 1B5FA, 1LTUA, 1K6WA, 
1T0TV, 1PZ3A, 1UMKA, 2BBKL, 1CQXA, 1NPYB, 1CHD_, 1CV8_, 1PM4A, 1WD3A, 1XX1A, 7YASA, 
1UDH_, 1KU8A, 1UJ8A, 1GTFA, 1GNUA, 1H4PA, 1R8NA, 1XKRA, 1ZAIA, 1C8KA, 1R4PB, 1QAZA, 
1AXN_, 1KHIA, 2BLFB, 1SVDA, 2NACA, 1NTFA, 2HVM_, 1PAMA, 1PT7A, 1MH9A, 1HPI_, 1VD5A, 
1FN9A, 1ML4A, 1J1QA, 1GBG_, 1H0HB, 1LENC, 1C44A, 1LENB, 1RYIA, 1RJDC, 1LD8A, 1JUEA, 
1DOZA, 1TML_, 1GBS_, 1RLHA, 1XXOA, 1LY2A, 1ULKA, 1J48A, 1EPTB, 1EPTA, 1QJDA, 1OWLA, 
1VFRA, 1G5TA, 1GDEA, 1LJ5A, 1MML_, 1L8FA, 1C02A, 1XTYA, 2SPCA, 1CMBA, 1V54H, 1FOBA, 
1KN3A, 1R9DA, 1GIQA, 1IG0B, 1IQCA, 1RWZA, 1G8EA, 3EIPA, 1V77A, 1H8UA, 1X8DA, 1GND_, 
1DMR_, 1V73A, 1RY9A, 1IYEA, 1EUHA, 1WNHA, 1QBA_, 1L9FB, 1IWBA, 1XS5A, 1M5SB, 1EX2A, 
1VLS_, 1J7DA, 1GAKA, 1DYR_, 1ONRA, 1XX2A, 1WF3A, 1QGDA, 2PII_, 1JFRA, 1OAOC, 1KV9A, 
1ODSA, 1GYCA, 1H7WD, 1TG7A, 1ON3E, 1UA4A, 1BGVA, 1B8AA, 1QGJA, 1BUDA, 1KEKA, 
1R8CA, 1UYPA, 1YKDA, 1CPO_, 1M0SA, 1QB5D, 1PNKB, 1F20A, 1SFTA, 1TM2A, 1ESGB, 1G0SB, 
1PNKA, 1K12A, 2CHSA, 1YEA_, 1TZYH, 1Q16A, 1IVUA, 1Q16B, 1EU8A, 1JK7A, 1J9JA, 1T06A, 
1JD5A, 1AGQD, 1MZL_, 1OTFA, 1EJJA, 1U1IA, 1UJ1B, 1B94A, 1Y7PB, 1QNXA, 1I5ZB, 1IAKB, 
1F5MB, 1F4QB, 1PU5A, 1STMA, 1DUTA, 1C8UA, 1DZFA, 1FW1A, 1QU1F, 1XXUA, 1Z6OM, 1FUA_, 
1K7HA, 1EKJG, 1KBLA, 1KX5C, 1LTSC, 1QHDA, 1FO6A, 1KLXA, 1GVNB, 1GVNC, 1NFVI, 1IHBA, 
1YNHB, 2HRVA, 1HCZ_, 7NN9_, 1BF2_, 1RQHA, 1CVRA, 2EBN_, 1TL2A, 1OBPA, 1ESL_, 1ECFB, 
2HPDA, 1FP3A, 1TVFA, 1NSYA, 1APYB, 1TGJ_, 1PMMA, 1VPNB, 1IGS_, 1UGQA, 1SR4C, 1UOK_, 
2PIA_, 1AOCA, 1WPBA, 1EVXA, 1YF9B, 1M4RA, 1R5TA, 1CDCA, 1CB6A, 1MW3A, 1OGSA, 
2PGD_, 1H8ED, 2PLC_, 1XCLA, 1XRJB, 1N3FA, 1COZA, 1VC1A, 1JS1X, 1A8P_, 1JWIB, 1A1X_, 
1HHSA, 1FNF_, 1NIJA, 1KCMA, 1OQWA, 1R7LA, 1LPJA, 1NFJA, 1K32A, 1IIPA. 
 
 
 
 
 
 
 



EXCLI Journal 2012;11:346-356 – ISSN 1611-2156 
Received: March 05, 2012, accepted: July 04, 2012, published: July 05, 2012 

 

349 

Model design 
Initially, binary logistic regression 

serves as a non-linear model on the dataset 
to select significant parameters due to the 
''Re-substitution Test''. This test is absolute-
ly necessary because it reflects the self-
consistency of an identification method, 
especially for its algorithm part. Certainly, 
a prediction algorithm cannot be deemed as 
a good one if its self-consistency is poor. In 
other words, the re-substitution test is nec-
essary but not sufficient for evaluating an 
identification method. When this test was 
implemented, each tetra peptide in the da-
taset concerned is in turn identified using 
the rule parameters derived from the same 
dataset, the so-called training dataset. After 
using the binary logistic regression in this 
manner, the NNs (which act non-linearly in 
the last stage of this hybrid procedure) were 
fed by the outputs of binary logistic regres-
sion to predict β-turns. The NN method has 
been trained and tested using 9-fold cross-
validation techniques, whereby the dataset 
is divided into nine subsets (i.e. 8 subsets 
containing 62 protein chains, 1 subset con-
taining 61 protein chains). The method has 
been trained on eight subsets and the per-
formance was calculated on the remaining 
ninth subset. This procedure was repeated 
nine times, once for each subset. Actually, 
the ''Cross-validation Test'' can reflect the 
effectiveness of an identification method in 
practical application. 
 
Binary logistic regression model  

This model is used only when the de-
pendent variable is dichotomous, that is, 
there are only two possible answers for the 
dependent variable. Let the dependent vari-
able be Y. Since it is dichotomous, it takes 
on 0 or 1 for failure and success, respective-
ly. The logistic regression model can be ex-
pressed as follows (Hosmer and Lemeshow, 
2000):  

Log [p/(1-p)] = β0 + β1x1 + β2x2 + … +βnxn, 

where p is the probability of Y=1, β0 is 
a constant, and β1 – βn are unknown logistic 
regression coefficients of independent vari-
ables x1-xn (amino acid occurrences or per-

centages in β-turn sequence). The ratio p/1-
p takes on values between 0 and plus infini-
ty. Therefore, the logarithm of this ratio 
(logit) is a continuous variable that takes on 
values between minus infinity and plus in-
finity. Using this equation, the value of 
logit is determined. Then a cutoff should be 
taken to recode logit values into two possi-
ble states of dependent variable (i.e. non-β-
turn sequence and β-turn sequence) (Hos-
mer and Lemeshow, 2000). The optimized 
cutoff value in this research was 0.5. 

Several different options are available 
during the creation of logistic regression 
model. Independent variables can be en-
tered into the model in the order specified 
by the researcher and logistic regression 
can test the fit of the model after each coef-
ficient is added or deleted, called ''stepwise 
regression''. Stepwise regression is used in 
the exploratory phase of research. We used 
the Backward Wald (stepwise) binary lo-
gistic regression routine in SPSS program 
to develop our model. This routine appears 
to be the preferred method of exploratory 
analysis, where the analysis begins with a 
full or saturated model and independent 
variables are eliminated from the model in 
an iterative process. The fit of the model is 
tested after the elimination of each inde-
pendent variable to ensure that the model 
still adequately fits the data. When no more 
independent variables can be eliminated 
from the model, the analysis has been com-
pleted. The measure for model fitness in 
each step is an index called -2 Log Likeli-
hood. In general, as the model becomes bet-
ter, this index (-2LL) will decrease in mag-
nitude. In fact, in backward Wald routine, 
the first step has the minimum value of -2 
log likelihood and hence its reported result 
(i.e. Parameter Estimates Table) is the 
main output of binary logistic regression 
model (Hosmer and Lemeshow, 2000). 
 
Neural network model  

The neural network (NN) was utilized 
as a robust non-linear predictor in hybrids 
with the binary logistic regression. In this 
way, the selected variables from binary lo-
gistic regression model were used as input 
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nodes of neural network. This is supposed 
to decrease the number of input nodes, sim-
plify the network architecture and shorten 
the time needed for model building. We 
used feed-forward back propagation net-
works with a single hidden layer. Using 
such algorithm, the parameters related to 
the training cases were fed into the net-
works. The final outputs estimated by the 
networks were compared with the actual 
type of cases; generating a mean of the sum 
of square error (MSE). This quantity was 
propagated back into the networks to adjust 
the randomly chosen weights. The training 
cases were then tested with new weights 
and the procedure repeated. Through such 
process, the MSE was minimized. 

Three layer networks were used in this 
study. Each unit in the input layer was fed 
by one independent variable which has 
been selected by binary logistic regression 
model. The output layer included two units 
which represented 1 0 and 0 1 for β-turn 
and non-β-turn sequence, respectively. 

The MSE was utilized as an index of 
network efficiency in determining the opti-
mized number of hidden units (Hayatshahi 
et al., 2005). To do so, the number of hid-
den units was changed in every network in 
order to develop networks producing the 
minimal MSE. At last, after such optimiz-
ing process, the number of units for hidden 
layer reached 8. 

The final neural network structure was 
consisted of 33 units in input layer, 8 units 
in hidden layer and 2 units in output layer. 
The activation function of hidden layer 
units was logsig. We used the Quasi-
Newton training function in this research. 
This training function is prior to simple 
'batch' gradient-descent and lead to signifi-
cantly better solutions requiring fewer train-
ing steps. Besides, this method does not 
suffer from the specification problem of the 
learning rate parameter which is crucial for 
the performance of the gradient-descent 
method (Likas and Stafylopatis, 2000). 

Training has been done for 1000 epochs 
for nine networks. The value of the learning 
rate parameter has been set to 0.2. The 
software employed to build neural networks 

was in-house written in the MATLAB pro-
gramming language. 
 
Performance measures  

Four different parameters have been 
used to measure the performance of predic-
tion methods. These four parameters can be 
derived from the four scalar indices: TP 
(true positives: number of correctly classi-
fied β-turns), TN (true negatives: number of 
correctly classified non-β-turns), FP (false 
positives: number of non-β-turns incorrect-
ly classified as β-turns) and FN (false nega-
tives: number of β-turns incorrectly classi-
fied as non-β-turns). Using the following 
formulas which have been previously re-
ported in the published material, we calcu-
lated these parameters for the output of bi-
nary Logistic Regression and NN models. 

(1)  Qtotal = 100










FNFPTNTP

TNTP
 

which is the fraction of correctly predicted 
β-turns and non-β-turns among all predic-
tions. 

(2)   Qpredicted = 100







 FPTP

TP
    

which is the percentage of correctly pre-
dicted β-turns. 

(3)  Qobserved = 100







 FNTP

TP
  

which is the percentage of observed β-turns 
that are correctly predicted. 
 
(4)  Matthews correlation coefficient 
(MCC): We used MCC as a more robust 
measure to evaluate the reliability of the 
established method (Matthews, 1975). The 
MCC is defined by 
 

))()()((

))(())((

FNTNFPTNFNTPFPTP

FNFPTNTP
MCC




  

 
The MCC is a limited number 

tween -1 and 1. If there is no relationship 
between the predicted values and the actual 
values, the MCC should be 0 or very low 
(the predicted values are not better than 
random numbers). In contrast, the MCC 
value would increase as the strength of the 
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relationship between the predicted values 
and actual values increases. It is obvious 
that a perfect fit gives a coefficient of 1.0. 
Furthermore, the higher MCC indicates the 
better performance of the prediction for the 
model.  

Statistical analysis was performed using 
SPSS 13 for Windows (SPSS Inc., Chicago, 
USA). 

 
RESULTS 

Binary logistic regression analysis 
Binary logistic regression model was 

runned on the dataset using the re-
substitution test. One of output tables of 
binary logistic regression model was 
''Omnibus Tests of Model Coefficients'' 
(Table 2). This table reports significance 
levels by the traditional chi-square method 
and is an alternative to the ''Hosmer-
Lemeshow Test'' (Hosmer and Lemeshow, 
2000). Among 24 steps, the only positive 
chi-square value (i.e. significant) can be 
seen in step 1 which is 6429.548 (P-value= 
0.000) (Table 2). Since the probability of 
the first step chi-square was less than the 
significance level (0.05), the existence of a 
relationship between independent variables 
(100 structural parameters) and the depend-
ent variable (β-turn and non-β-turn se-
quences) was supported. 

Also, according to ''Model summary'' 
table in the output of binary logistic regres-
sion model (Table 3), we see that -2 log 
likelihood index has its minimum value in 
the first step of the model (47450.373). The 
lowest value of this index indicates the best 
step of the model (Hosmer and Lemeshow, 
2000). Therefore, the first step was recog-
nized as the reference step.  
 
Table 2: Omnibus tests of model coefficients 

Step Chi-square Sig. 
1 6429.548 0.000 
2 -0.008 0.928 
3 -0.005 0.943 
4 -0.014 0.905 
5 -0.010 0.921 
6 -0.025 0.875 
7 -0.100 0.752 
8 -0.222 0.637 

Step Chi-square Sig. 
9 -0.255 0.613
10 -0.294 0.588
11 -0.386 0.534
12 -0.242 0.623
13 -0.571 0.450
14 -0.590 0.443
15 -0.845 0.358
16 -1.319 0.251
17 -1.558 0.212
18 -1.669 0.196
19 -2.003 0.157
20 -2.358 0.125
21 -2.485 0.115
22 -2.430 0.119
23 -1.042 0.307
24 -2.149 0.143

 
Table 3: Model summary 

Step -2 Log likelihood 

1 47450.373
2 47450.381
3 47450.387
4 47450.401
5 47450.411
6 47450.435
7 47450.536
8 47450.758
9 47451.013
10 47451.307
11 47451.694
12 47451.936
13 47452.507
14 47453.096
15 47453.941
16 47455.260
17 47456.819
18 47458.488
19 47460.491
20 47462.849
21 47465.334
22 47467.764
23 47468.807
24 47470.955

 
Table 4 shows parameter estimates (β), 

standard errors, Wald statistic, p-values 
and corresponding odds ratios for selected 
parameters among 100 ones, for β-turns in 
contrast to non-β-turns as reference group 
of the backward-Wald binary logistic re-
gression procedure. This information is re-
lated to the first step of the model. Among 
sequence parameters, 13 amino acid per-
centages and 35 amino acid positional oc-
currences were found to be significant in 
determining β-turns and non-β-turns. 
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Table 4: Parameter estimates, indicating statistical results for the significant parameters in the output 
of binary logistic regression procedure (β-turns in contrast to non-β-turns (as reference group)) 
 

Variable Parameter 
estimates (β) 

Standard 
errors 

Wald 
statistics 

P-values odds ratios 
{Exp (β)} 

step1 constant - 3.068 0.100 935.030 0.000 0.047 
Arg (%) 1.052 0.285 13.645 0.000 2.864 
Asn (%) 1.377 0.275 25.076 0.000 3.962 
Asp (%) 1.439 0.261 30.435 0.000 4.217 
Cys (%) 1.197 0.396 9.141 0.002 3.309 
Gln (%) 0.809 0.295 7.496 0.006 2.246 
Gly (%) 3.779 0.229 272.766 0.000 43.762 
His (%) 1.204 0.340 12.545 0.000 3.334 
Ile (%) - 0.882 0.288 9.414 0.002 0.414 

Leu (%) - 0.889 0.260 11.659 0.001 0.411 
Lys (%) 1.152 0.265 18.933 0.000 3.165 
Pro (%) 1.280 0.277 21.408 0.000 3.598 
Ser (%) 1.509 0.256 34.775 0.000 4.522 
Thr (%) 1.264 0.262 23.368 0.000 3.540 
Asn (i) 0.499 0.096 27.067 0.000 1.648 
Asp (i) 0.739 0.090 66.749 0.000 2.094 
Cys (i) 0.346 0.140 6.054 0.014 1.413 
Gln (i) - 0.238 0.110 4.710 0.030 0.788 
Gly (i) - 0.473 0.084 31.460 0.000 0.623 
Leu (i) 0.302 0.092 10.729 0.001 1.353 
Phe (i) 0.313 0.106 8.711 0.003 1.368 
Pro (i) 0.708 0.095 55.227 0.000 2.031 
Ser (i) 0.379 0.090 17.597 0.000 1.461 
Thr (i) 0.185 0.094 3.916 0.048 1.203 

Ala (i+1) 0.348 0.090 15.038 0.000 1.416 
Arg (i+1) 0.242 0.103 5.544 0.019 1.273 
Asn (i+1) 0.194 0.099 3.841 0.050 1.214 
Asp (i+1) 0.366 0.092 15.693 0.000 1.441 
Cys (i+1) - 0.409 0.153 7.117 0.008 0.665 
Glu (i+1) 0.761 0.094 65.065 0.000 2.141 
Gly (i+1)  ـ 0.496 0.085 33.945 0.000 0.609 
Leu (i+1) 0.218 0.094 5.355 0.021 1.244 
Lys (i+1) 0.468 0.094 24.534 0.000 1.597 
Pro (i+1) 1.306 0.093 195.250 0.000 3.691 
Ser (i+1) 0.256 0.092 7.718 0.005 1.291 
Arg (i+2) 0.428 0.107 15.889 0.000 1.534 
Asn (i+2) 1.440 0.098 216.433 0.000 4.223 
Asp (i+2) 1.214 0.094 166.228 0.000 3.367 
Gln (i+2) 0.268 0.113 5.626 0.018 1.308 
Glu (i+2) 0.665 0.101 43.474 0.000 1.945 
Gly (i+2) 0.853 0.086 97.801 0.000 2.347 
His (i+2) 0.773 0.124 39.088 0.000 2.166 
Leu (i+2) 0.311 0.100 9.590 0.002 1.365 
Lys (i+2) 0.373 0.101 13.718 0.000 1.453 
Phe (i+2) 0.618 0.111 30.815 0.000 1.855 
Ser (i+2) 0.515 0.097 28.287 0.000 1.674 
Thr (i+2) 0.516 0.098 27.589 0.000 1.675 
Trp (i+2) 0.447 0.152 8.631 0.003 1.563 
Tyr (i+2) 0.606 0.111 29.820 0.000 1.833 
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Percentages of Gly, Ser, Asp, Asn, Pro, 
Thr, His, Cys, Lys, Arg and Gln, respective-
ly, have the most positive parameter esti-
mate values among percentages of other 
amino acids. Therefore the probability of 
the sequence to be β-turn increases as in-
creasing their values. On the other hand, 
percentages of Ile and Leu, respectively, 
have the most negative parameter estimate 
values among percentages of other amino 
acids and hence the probability of the se-
quence to be non-β-turn will increase as 
increasing values.  

Occurrences of Asp, Pro, Asn, Ser, Cys, 
Phe, Leu and Thr respectively in position i 
of sequence have the most positive logit 
coefficients (or parameter estimates) among 
occurrences of other amino acids in the 
same position and support of β-turn se-
quence. Vice versa, occurrences of Gln and 
Gly respectively in position i of β-turn se-
quence have the most negative logit coeffi-
cients among occurrences of other amino 
acids in that position and support of non-β-
turn sequence. 

In analysis of position i+1 of sequence, 
occurrences of Pro, Glu, Lys, Asp, Ala, Ser, 
Arg, Leu and Asn, respectively, have the 
highest logit coefficients and occurrences of 
Cys and Gly have the most negative logit 
coefficients among others. Obtained results 
can be interpreted like above-mentioned 
sentences. 

Ultimately, the final position of se-
quence which is highlighted in the table is 
i+2. Occurrences of Asn, Asp, Gly, His, 
Glu, Phe, Tyr, Thr, Ser, Trp, Arg, Lys, Leu 
and Gln, respectively, have the highest pa-

rameter estimates among others and hence 
they support the sequence to be β-turn.  

The result of re-substitution {Self-
Consistency} test was evaluated by the per-
formance measures. The results shown in 
Table 5 are obtained according to the output 
of the model. 
 
Neural network  

We fed our neural networks with 33 
significant parameters selected in the re-
substitution binary logistic regression pro-
cedure to a build two-stage hybrid model. 
The number of units in the hidden layer was 
optimized in networks regarding the least 
MSE rate (refer you to Materials and 
Methods section). The final MSE rate was 
0.13 (with the eight units in the hidden lay-
er) which was the lowest among different 
examined numbers of units in the hidden 
layer. Ultimately, we ended to an optimal 
neural network architecture with 33 input 
units and a single hidden layer with 8 units 
for our binary prediction (i.e. be β-turn or 
non-β-turn). A nine fold cross-validation 
procedure was used for prediction of β-
turns. The performance of the model was 
evaluated by averaging the mentioned 
measures over nine sets. 

The prediction results using neural net-
works are presented in Table 5. With apply-
ing a nine fold cross-validation test on the 
dataset, it would be found that the network 
reached an overall accuracy (Qtotal) of 74. 
Also, the network yielded Qpredicted value of 
45 and Qobserved value of 30. Ultimately, the 
value of MCC for the network was 0.21.  

 
 

 
Table 5: Prediction results of our two-stage hybrid procedure 

Qtotal Qpredicted Qobserved MCC Test 

77.2 59.4 21 0.25 Re-substitution 

    (Binary logistic regression) 

74 45 30 0.21 Cross-validation 

        (neural networks) 
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DISCUSSION 

An important advantage for using lo-
gistic regression model is its capability of 
determining weights of each selected signif-
icant parameter, which highlights its priori-
ty of importance in clarifying the sequence-
structure relationship. This study shows that 
this parameter selection ability of binary 
logistic regression in combination to the 
prediction ability of neural networks leads 
to the development of more precise models. 

Binary logistic regression analysis 
showed that only 48 structural parameters 
among 100 ones were significant in identi-
fication of β-turns. Percentage of Gly in se-
quence was the most important parameter 
with the parameter estimate (β) value of 
3.779 and the odds ratio value of 43.762. 
The second major parameter was the per-
centage of Ser with the parameter estimate 
and odds ratio values of 1.509 and 4.522, 
respectively. The third important parameter 
was the occurrence of Asn in positions i+2 
of the sequence. Consequently, these three 
parameters have the highest effect on the 
constitution of β-turn sequence, among oth-
ers. On the other hand, the percentage of 
Leu in sequence had the most negative pa-
rameter estimate value (i.e. –0.889). Thus 
this parameter has the highest effect on the 
constitution of non-β-turn sequence, among 
others. 

In conclusion, our research highlighted 
the efficiency of using the statistical model 
of binary logistic regression as a preproces-
sor in determining effective parameters. 
Besides, the optimal structure of neural 
network can be simplified by a preproces-
sor in the first stage of hybrid approach, 
which in turn causes decreasing the time 
needed for neural network training proce-
dure in the second stage.  
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