
Limit theorems for radial random

walks on Euclidean spaces of high

dimensions

Waldemar Grundmann

Preprint 2012-10 Juni 2012

Fakultät für Mathematik
Technische Universität Dortmund
Vogelpothsweg 87
44227 Dortmund tu-dortmund.de/MathPreprints

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Eldorado - Ressourcen aus und für Lehre, Studium und Forschung

https://core.ac.uk/display/46911865?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Limit theorems for radial random walks on Euclidean spaces

of high dimensions

Waldemar Grundmann

e-mail: waldemar.grundmann@math.tu-dortmund.de

June 27, 2012

Abstract

Let ν ∈ M1([0,∞[) be a �xed probability measure. For each dimension p ∈ N,
let (Xp

n)n≥1 be i.i.d. Rp-valued random variables with radially symmetric distributions

and radial distribution ν. We investigate the distribution of the euclidean length of

Sp
n := Xp

1 + . . . + Xp
n for large parameters n and p. Depending on the growth of the

dimension p = pn on the number of steps n we derive by the method of moments two

complementary CLT's for the functional ‖Sp
n‖2 with normal limits, namely for n/pn →∞

and n/pn → 0. Moreover, we present a CLT for the case n/pn → c ∈]0,∞[. Thereby we

derive explicit formulas and asymptotic results for moments of radial distributed random

variables on Rp.

All limit theorems are considered also for orthogonal invariant random walks on the

space Mp,q(R) of p× q matrices instead of Rp for p→∞ and some �xed dimension q.

1 Introduction

The results in this paper are motivated by the following problem: Let ν ∈ M1([0,∞[) be
a �xed probability measure. Then for each dimension p ∈ N there is a unique rotation
invariant probability measure νp ∈ M1(Rp) with ϕp(νp) = ν, where ϕp(x) := ‖x‖2 is the
norm mapping. For each p ∈ N consider i.i.d. Rp-valued random variables Xp

k , k ∈ N, with
law νp as well as the associated radial random walks

(
Spn :=

n∑
k=1

Xp
k

)
n≥0

on Rp. We are interested in �nding central limit theorems for the [0,∞[-valued random
variables ‖Spn‖2 for n, p→∞ coupled in a suitable way. In this paper we derive the following
two associated central limit theorems under disjoint growth conditions for p = pn.

Theorem 1.1. Assume that ν ∈ M1([0,∞[) admits �nite moments rk(ν) :=
∫∞

0 xkdν(x) <
∞ for k ≤ 4. Let (pn)n be a sequence of dimensions with limn→∞ pn =∞.

(1) If lim
n→∞

n
pn

=∞, then
√
pn

n

(
‖Spnn ‖

2
2 − nr2(ν)

)
tends in distribution for n→∞ to the normal distribution N (0, 2r2(ν)2).
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(2) If lim
n→∞

n
pn

= c ∈ [0,∞[, then

1√
n

(
‖Spnn ‖

2
2 − nr2(ν)

)
tends in distribution for n→∞ to the normal distribution N (0, r4(ν)− (1−2c)r2(ν)2).

Parts of this theorem were derived in [13] by using completely di�erent methods. More
precisely, CLT's above were proven for sequences (pn)n with some strong restriction. The
�rst CLT with the restriction n/p3

n → ∞, i.e. n >> pn was identi�ed by M. Voit as an
obvious consequence of Berry-Esseen estimates on Rp with explicit constants depending on
the dimension p, which are due to Bentkus und Götze [1, 2]. The proof of the second CLT with
the restriction n2/pn → 0, i.e. n << pn was derived in [13] as a consequence of asymptotic
properties of so called Bessel convolutions (for a survey about the Bessel convolutions we
recomend [9]).

With the approach used in [13] one is not able to get rid of the strong conditions on the
growth of p = pn. In particular, the mixed case pn = c ·n for some constant c, which builds a
bridge between the CLT's with n << pn and n >> pn was stated there as an open problem.

Other associated limit theorems as laws of large numbers and large deviation principle
were studied in [10]. For example, there was proven that

1

n
‖Spnn ‖

2
2 −→

∫ ∞
0

x2dν(x) P - a.s.

under the condition that pn grows fast enough.
Theorem 1.1 will appear as special case of an extension wich concerns a matrix-valued

version. We consider the following geometric situation: For p, q ∈ N we will denote by Mp,q

the space of p × q-matrices over the �eld of real numbers R. Let further Hq be the space of
symmetric q × q-matrices. Moreover, we will denote by Πq the cone of positive semide�nite
q × q matrices in Hq We regard Mp,q as a real vector space of dimension pq, equipped with
the Euclidean scalar product 〈x, y〉 := tr(x′y) and norm ‖x‖ =

√
tr(x′x) where x′ is the

transpose of x and tr is the trace in Mq := Mq,q. In the square case p = q, ‖·‖ is just the
Frobenius norm. The orthogonal group Op acts on Mp,q by left multiplication,

Op ×Mp,q →Mp,q, (A, x) 7→ Ax. (1.1)

By uniqueness of the polar decomposition, two matrices x, y ∈ Mp,q belong to the same

Op-orbit if and only if x′x = y′y. Thus the space MOp
p,q of Op-orbits in Mp,q is naturally

parameterized by the cone Πq via the map

xOp 7→
√
x′x =: |x| , MOp

p,q → Πq,

where for r ∈ Πq, the matrix
√
r ∈ Πq denotes the unique positive semide�nite square root

of r. According to this, the map

ϕp : Mp,q → Πq, x 7→
√
x′x

will be regarded as the canonical projection Mp,q →MOp
p,q.

In the case q = 1 we have Mp,1
∼= Rp, H1 = R, Π1 = [0,∞[ and ϕp is the usual norm

mapping ‖·‖2 : Rp → [0,∞[. Let us now �x a parameter q ∈ N. By taking images of measures,
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ϕp induces a Banach space isomorphism between the spaceMOp
b (Mp,q) of all bounded radial

(i.e. Op invariant) Borel measures on Mp,q and the spaceMb(Πq) of bounded Borel measures
on the cone Πq. In particular, for each measure ν ∈ M1(Πq) and parameter p there is a
unique radial probability measure νp := νp,q ∈M1(Mp,q) with ϕp(νp) = ν.

Let ν ∈M1(Πq) be a �xed probability measure and q ∈ N. As in the case q = 1, we now
consider for each �dimension� p ∈ N the associated radial measures νp on Mp,q and the radial
random walks (Spn :=

∑n
k=1X

p
k)n≥0, i.e. X

p
k , k ∈ N are independent νp-distributed random

variables.
With this notations, we shall derive the following generalization of Theorem 1.1:

Theorem 1.2. Assume that ν ∈M1(Πq) with
∫

Πq
‖s‖4 dν(s) <∞. Let (pn)n∈N be a sequence

of dimensions with limn→∞ pn =∞.

(1) If lim
n→∞

n
pn

=∞, then the Πq-valued random variable

√
pn

n

(
ϕ2
pn(Spnn )− n

∫
Πq

s2dν(s)
)

tends in distribution to some normal distribution N (0, T 2(ν)) on the vector space Mq

with some covariance matrix T 2(ν), wich will be described in Theorem 3.1 precisely.

(2) If lim
n→∞

n
pn

= c ∈ [0,∞[, then the Πq-valued random variable

1√
n

(
ϕ2
pn(Spnn )− n

∫
Πq

s2dν(s)
)

tends in distribution to the normal distribution N (0,Σ2(ν)+cT 2(ν)) on the vector space

Mq where Σ2(ν) is the covariance matrix of the Πq-valued random variable ϕ2
pn(Xpn

1 ).
Note that Σ2(ν) depends only on ν and is independent of pn.

We shall derive Theorem 1.2 in this higher rank setting in Section 3. The proof will rely
on asymptotic results for moment functions of so called radial distributed random variables
on Mp,q for p→∞ as well as on some identities for matrix variate normal distributions.

The organization of the paper is a follows: In section 2, some preliminaries for the proof
of the main result 1.2 are presented. More precisely, in Subsection 2.1, after recalling some
basic facts about relevant matrix algebra we derive a generalization of so called permutation
equivalence property for Kronecker products. In 2.2 we generalize the multinomial theorem.
In Subsection 2.3, background on Bessel functions on the cone Πq is provided. Subsections
2.4-2.6 are devoted to the study on the moments of radial measures and of matrix variate
normal distributions respectively. In Section 3 our main result is formulated and proved.

2 Preliminaries

2.1 Kronecker and Hadamard products

In this section we collect some known facts about Kronecker and Hadamard products. The
material is taken from [7].

Let⊗ denotes the Kronecker product over the �eld of real numbers R, i.e. ⊗ is an operation
on two matrices of arbitrary size over R resulting in a block matrix. It gives the matrix of the

3



tensor product with respect to a standard choice of basis. With that the Kronecker product
of A = [aij ] ∈Mm,n and B = [bij ] ∈Mp,q is the block matrix

A⊗B := [aijB] ∈Mmp,nq.

The Kronecker product is bilinear and associative but not commutative. However, A⊗B and
B ⊗ A are permutation equivalent, meaning that there exist permutation matrices P and Q
such that

A⊗B = P · (B ⊗A) ·Q. (2.1)

If A and B are square matrices, then A⊗B and B⊗A are even permutation similar, meaning
that we can take P = Q′. If A, B, C and D are matrices of such size that one can form the
matrix products A · C and B ·D, then

(A⊗B) · (C ⊗D) = A · C ⊗B ·D. (2.2)

This is called the mixed-product property, because it mixes the ordinary matrix product and
the Kronecker product. If two matrices P and Q are permutation, orthogonal or positive
de�nite matrices then so is also the Kronecker product P ⊗Q.

The k-th Kronecker power A⊗k is de�ned inductively for all positive integers k by

A⊗1 = A and A⊗k = A⊗A⊗(k−1) for k = 2, 3, . . . .

This de�nition implies that for A ∈Mm,n, we have A
⊗k ∈Mmk,nk .

For a matrix X ∈Mm,n, vec(X) is the m · n× 1 vector de�ned as

vec(X) = (x′1, . . . , x
′
m)′ ∈Mm·n,1,

where xi, i = 1, . . . , n is the i-th column of X.
We now derive a generalization of permutation equivalence property, which will be required

for the proof of Theorem 3.1 below.

Lemma 2.1. Let Ai ∈ Mpi,qi (i = 1, . . . , k), p := p1 · . . . · pk and q := q1 · . . . · qk. Then,

for each permutation σ ∈ Sym({1, . . . , k}) there exist permutation matrices P ∈ Mp,p and

Q ∈Mq,q such that

Aσ(1) ⊗ . . .⊗Aσ(k) = P · (A1 ⊗ . . .⊗Ak) ·Q.

Proof. Without loss of generality we can assume that k = 4, for the Kronecker product is
associative. Since (1) ⊗M = M = M ⊗ (1) for any matrices M , it su�ces to show that
A1 ⊗ A3 ⊗ A2 ⊗ A4 is permutation equivalent to A1 ⊗ A2 ⊗ A3 ⊗ A4. For a matrix M let
IM and IM denote the identity matrices of such size that one can form the matrix products
IM ·M and M · IM . By the property (2.1) there exist permutation matrices P and Q with
A3 ⊗A2 = P (A2 ⊗A3)Q. Therefore, using (2.2) we obtain by an easy computation

A1 ⊗A3 ⊗A2 ⊗A4 = (IA1 ⊗ P ⊗ IA4) · (A1 ⊗A2 ⊗A3 ⊗A4) ·
(
IA1 ⊗Q⊗ IA4

)
.

Clearly, both IA1 ⊗P ⊗ IA4 and I
A1 ⊗Q⊗ IA4 are permutation matrices. This completes the

proof.

In the following, let A = [aij ], B = [bij ] ∈ Mp,q of the same dimensions. The Hadamard

product, also known as the entrywise product of A and B is denoted by A ◦B and is de�ned
to be the matrix

A ◦B := [aijbij ] ∈Mp,q.
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The Hadamard product is commutative, associative and distributive w.r.t. addition, and is a
principal submatrix of the Kronecker product.

For a matrix M , let us denote by 1M the 1-matrix of the same dimension as M , i.e.
1M = (cij)ij with cij = 1 for all i, j. We will write it simply 1 when no confusion will arise.
It is clear that

A⊗B = (A⊗ 1) ◦ (1⊗B) (2.3)

B ⊗A = (1⊗A) ◦ (B ⊗ 1) (2.4)

Let P and Q be permutation matrices of such size that one can form the matrix products
P ·A and A ·Q. It is easy to check that

P (A ◦B)Q = (PAQ) ◦ (PBQ) (2.5)

2.2 Permutations on a multiset

In this section, we generalize the multinomial theorem in terms of Kronecker product instead
of the usual multiplication. In order to do this, we �rst recall the notion of the permutation
on a multiset from [11, Chapter 1].

Let u ∈ N and k ∈ N0. We denote by C0(k, u) the set of all u-compositions of k, i.e.

C0(k, u) =
{
λ ∈ Nu0 : |λ| :=

u∑
i=1

λi = k
}
,

and write C(k, u) instead of C0(k, u) ∩ Nu. Moreover, we set Mu := {1, 2, . . . , u}. For a
λ ∈ C(k, u) a �nite multiset Mult(λ) on the ordered set Mu is a is a set, where i is contained
with the multiplicity λi for all i ∈ Mu. One regards λi as the number of repetitions of i. A
permutation π = (π1π2 . . . πk) on Mult(λ) can be de�ned as a linear ordering of the elements
of Mult(λ), i.e. an element i ∈ M appears exactly λi times in the permutation π. The set
of all permutation on Mult(λ) will be denoted by S(λ). A permutation π = (π1π2 · · ·πk) on
Mult(λ;M) can be regarded as a way to place k distinguishable balls in u distinguishable
boxes such that the i-th box contains λi balls. Indeed, if i (i = 1, . . . , u) appears in position
j ∈ {1, . . . , k} of the permutation π, then we put the �ball� πj into the box i. For instance
let u = 3, λ := (1, 3, 2) ∈ C(k, u) be a 3-composition of k = 6 and π = (2 1 2 3 3 2) =:
(π1 π2 . . . π6) be a permutation on Mult(λ) then we put π2 in the �rst box, π1, π3, π6 in the
second box and π4, π5 in the third box. It is clear that

|S(λ)| =
(

k

λ1, . . . , λu

)
:=

k!

λ1! . . . λu!
.

Let mi ∈ Mpi,qi (i = 1, . . . , u), λ ∈ C(k, u) and π = (π1, . . . , πk) ∈ S(λ). We will write
π(m1, . . . ,mu) instead of mπ1 ⊗mπ2 ⊗ · · · ⊗mπk . Moreover, we set

W (n, u) := {µ = (µ1, . . . , µu) ∈ {1, . . . , n}u : µ1 < µ2 < · · · < µu} .

In the following theorem, which will be used in Section 3 several times, we expand a Kronecker
power of a matrix sum in terms of powers of the terms in that sum.

Theorem 2.2. Let k ∈ N and x1, . . . , xn ∈Mp,q. Then( n∑
i=1

xi

)⊗,k
=

k∑
u=1

∑
λ∈C(k,u)

∑
µ∈W (n,u)

∑
π∈S(λ)

π(xµ1 , . . . , xµu). (2.6)
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For p = q = 1 the Kronecker product coincides with the usual multiplication on R and
therefore (2.6) generalizes multinomial formula. For indices u ∈ {1, . . . , k}, µ = (µ1, . . . , µn) ∈
W (n, u), λ ∈ C(k, u) and π ∈ S(λ) let us consider the associated summand

π(xµ1 , . . . , xµu) = xµπ1 ⊗ . . .⊗ xµπk (2.7)

from (2.6). It is clear that the di�erent matrices xµ1 , . . . , xµu , the numbers of their repetitions
and their exact positions in the Kronecker product (2.7) are described by µ = (µ1, . . . , µu) ∈
W (n, u), λ = (λ1, . . . , λu) ∈ C(k, u) and π = (π1, . . . , πk) ∈ S(λ) respectively.

Proof. We proceed by induction on k. For k = 1 there is nothing to proof. Next suppose as
induction hypothesis that (2.6) holds with k − 1 instead of k. It gives

( n∑
i=1

xi

)⊗,k
=

k−1∑
u=1

∑
λ∈C(k−1,u)

∑
µ∈W (n,u)

∑
π∈S(λ)

π(xµ1 , . . . , xµu)⊗
n∑
j=1

xj

=
n∑
j=1

k−1∑
u=1

∑
λ∈C(k−1,u)

∑
µ∈W (n,u)

∑
π∈S(λ)

π(xµ1 , . . . , xµu)⊗ xj . (2.8)

Consider a summand π(xµ1 , . . . , xµu) ⊗ xj of the sum above, i.e. j ∈ {1, . . . , n}, u ∈
{1, . . . , k − 1}, λ ∈ C(k − 1, u), µ ∈ W (n, u) and π ∈ S(λ). If there is β ∈ {1, . . . , u}
with j = µβ then it corresponds to a summand in (2.6) associated with indices ũ = u,
λ̃ = (λ1, . . . , λβ−1, λβ + 1, λβ+1, . . . , λu), µ̃ = µ and π̃ = (π1, . . . , πk−1, β). In the other case,
i.e. if j ∈ (µβ−1, µβ) for an β ∈ {1, . . . , u+ 1} with the convention µ0 := 0 and µu+1 =∞ the
term π(xµ1 , . . . , xµu)⊗xj corresponds to a summand in (2.6) associated with indices ũ = u+1,
λ̃ = (λ1, . . . , λβ−1, 1, λβ, . . . , λu), µ̃ = (µ1, . . . , µβ−1, j, µβ, . . . , µu) and π̃ = (π1, . . . , πk−1, β).
As the number of summands in both (2.6) and (2.8) is equal to nk, the induction step fol-
lows.

In the following we collect some known facts about multivariate Bessel functions on the
cone Πq, which will be needed later. The material is mainly taken from [9]. We also refer to
[4] and [6].

2.3 Bessel functions on the cone Πq

Let Zλ denote the zonal polynomials, which are indexed by partitions λ = (λ1 ≥ λ2 ≥ . . . ≥
λq) ∈ Nq0 (we write λ ≥ 0 for short) and normalized such that

tr(x)k =
∑
|λ|=k

Zλ(x) ∀ k ∈ N0;

see [4] for the construction of Zλ and further details. It is well known that the Zλ are
homogeneous polynomials which are invariant under conjugation by Uq and thus depend
only on the eigenvalues of their argument. More precisely, for x ∈ Hq with eigenvalues
ξ = (ξ1, . . . , ξq) ∈ Rq, one has

Zλ(x) = Cαλ (ξ) with α = 2

where the Cαλ are the Jack polynomials of index α in a suitable normalization (c.f. [4],[9]).
The Jack polynomials Cαλ are homogeneous of degree |λ| and symmetric in their arguments.
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Let α > 0 be a �xed parameter. For partitions λ = (λ1, . . . , λq) we introduce the generalized

Pochhammer symbol

(µ)αλ =

q∏
j=1

(
µ− 1

α
(j − 1)

)
λj

, µ ∈ C.

For an index µ ∈ C satisfying (µ)αλ 6= 0 for all λ ≥ 0 the matrix Bessel functions associated
with the cone Πq are de�ned as 0F1-hypergeometric series in terms of the Zλ, namely

Jµ(x) =
∑
λ≥0

(−1)|λ|

(µ)
d/2
λ |λ|!

Zλ(x). (2.9)

For a general background on matrix Bessel functions, the reader is referred to the fundamental
article [6]. If q = 1, then Πq = [0,∞[ and we have Jµ(x2/4) = jµ−1(x), where jκ(z) =

0F1(κ+ 1;−z2/4) is the usual modi�ed Bessel function in one variable.

2.4 Polynomials on Mp,q

Let p, q ∈ N. For κ = (κij)i,j ∈ Np×q0 (a composition) we set |κ| :=
∑

i,j κij and Ri(κ) :=∑q
j=1 κij , i = 1, . . . , p. Moreover, we write zκ :=

∏
i,j z

κij
ij . Clearly, zκ is a monomial of

degree |κ|. The spaces of polynomials and row-even polynomials are de�ned by

P := span
{
xκ : κ ∈ Np×q0

}
,

Pe := span
{
xκ : κ ∈ Np×q0 ,∀ i R(i) is even

}
respectively.

We shall need the following observation:

Lemma 2.3. Let r ∈ Πq, and κ ∈ Np×q0 . Then

Ψr,κ : Mp,q → R, Ψr,κ(z) := ((zr)′(zr))κ

is an even polynomial of degree 2|κ|.

Proof. Since the product of two row-even polynomials is also a row-even polynomial, the proof
follows easily by induction on n = |κ|.

2.5 Radial measures on Mp,q and their moments

In this section we study radial measures on the spaceMp,q. In particular, we derive asymptotic
results for their moments as p→∞. This results will play a key role in the proof of Theorem
3.1. We start with the de�nition of a radial measure on Mp,q.

De�nition 2.4. A measure νp on Mp,q is called radial if

A(νp) = νp ∀ A ∈ Op,

i.e. if it is invariant under the action (1.1). In particular, for q = 1 a measure νp on Rp is
radial if it is invariant under rotations.
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Remark 2.5. It is well known that for each probability measure ν ∈M1(Πq) and a dimension
p ∈ N there is a unique radial probability measure νp ∈ M1(Mp,q) with ν as its radial part,
i.e. ϕp(νp) = ν.

In order to study radial measures on Mp,q and their moments we need an analogue of a
sphere in our higher rank setting. For an r ∈ Πq we de�ne a sphere of radius r as the set

Σr
p,q =

{
x ∈Mp,q :

√
x′x = r

}
.

Clearly, Σr
p,q is the orbit of the block matrix σr := (r 0)′ ∈ Mp,q according to the operation

(1.1). For simplicity of notation, we write Σp,q instead of Σ
Iq
p,q, where Iq ∈ Rq×q denotes

the identity matrix. In the case q = 1 we identify Σr
p,1 with the Euclidean sphere of radius

r ∈ [0,∞[. Moreover, let us denote by U rp the uniform distribution on a sphere Σr
p,q.

One can easily show that a radial probability measure νp with its radial part ν ∈M1(Πq)
enables the decomposition

νp(·) =

∫
Mp,q

U
ϕp(x)
p (·)dνp(x) =

∫
Πq

U rp (·)dν(r) ∈M1(Mp,q). (2.10)

In the sense of Jewett [8], the formula above is an example of a decomposition of a measure
(here νp) according to so called orbital morphism (here ϕp). More precisely, ϕp is an orbital
mapping, that is a proper and open continuous surjection from Mp,q onto Πq. The mapping
r 7→ U rp from Πq to M1(Mp,q) is a recomposition of ϕp which means that each U rp is a
probability measure on Mp,q with support equal to ϕ−1

p (r) (here = Σr
p,q), and such that

νp =
∫
Mp,q

U
ϕp(x)
p dνp(x).

De�nition 2.6. Let Z be a Mp,q-valued random variable with distribution µ ∈ M1(Mp,q).

We say that µ ∈ M1(Mp,q) (or Z) admits a k-th moment (k ∈ N0) if
∫
Mp,q
‖z‖k dµ(z) < ∞,

and de�ne in this case the k-th moment of µ (or Z) by

Mk(µ) +Mk(Z) + E
(
Z⊗,k

)
∈Mpk,qk .

Let I = {(i1, j1), . . . , (ik, jk)} with iα ∈ {1, . . . , p} and jα ∈ {1, . . . , q} for α ∈ {1, . . . , k}.
Then the I-th component Mk(Z)I of Mk(Z) is given by

Mk(Z)I = E
(
Zi1,j1 · . . . · Zik,jk

)
.

Moreover, for an κ ∈ Np×q0 with |κ| = k we set

mκ(µ) :=

∫
Mp,q

zκdµ(z) ∈ R,

and call mκ(µ) also the κ-th moment of µ.

In the following µ̂ denote the characteristic function of a probability measure µ on Mp,q,
i.e.

µ̂(x) =

∫
Mp,q

exp(i 〈x, y〉)dµ(y).

Let k ∈ N0 and κ ∈ Np×q0 with |κ| = k. If µ admits a k-th moment then we have

mκ(µ) = (−i)|κ|Dκµ̂(x)|x=0, (2.11)
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where Dκ is the di�erential operator
∏
i,j

(
∂xij

)κij .
Here and subsequently, νp denotes a radial probability measure on Mp,q with the cor-

responding radial part ν ∈ M1(Πq) and X is a Mp,q-valued random variable with radial
distribution νp.

In the next lemmas we explore the covariance structure of X and compute the asymptotic
behaviour of the moments of νp for large dimensions p.

Lemma 2.7. Let X = (Xij)i,j be Mp,q-valued random variable with radial distribution νp ∈
M1(Mp,q). Then

E (X) = 0 and E (XjiXlk) = δj,lE (X1iX1k) (2.12)

Proof. For r ∈ R\{0} letMj,r and Si,j be p×p matrices produced by multiplying all elements
of row j of the identity matrix by r and by exchanging row i and row j of the identity matrix
respectively. As Si,j is a symmetric involution on Mp, we have Si,j ∈ Op. For r = ±1 the
matrix Mj,r is also orthogonal. By assumption, X and AX are identically distributed for any
A ∈ Op. Therefore we have

E (X)ij = E (Mj,−1X)ij = −E (X)ij .

So the �rst equality in (2.12) holds.
Choose i, k ∈ {1, . . . , q} and j, l ∈ {1, . . . , p} with j 6= l. We conclude from

E (XjiXlk) = E ((Mj,−1X)1i(Mj,−1X)1k) = −E (XjiXlk)

that E(XjiXlk) = 0. We now turn to the case j = l. The transformation Mp,q → Mp,q,
A 7→ Si,jA, switches all matrix elements on row i with their counterparts on row j. Therefore,
from radiality of PX = νp it follows that

E (XjiXjk) = E
(

(Sj,1X)ji (Sj,1X)jk

)
= E (X1iX1k) for i, k ∈ {1, . . . , q}.

Now let us denote by xi the i-th row of X. According to the lemma above, we have

cov(xi, xj) = δi,j · E(x1x
′
1) =: Tp ∈Mq.

Therefore, we obtain

cov(X) := cov(vec(X ′)) = Ip ⊗ Tp ∈Mq·p.

Lemma 2.8. The characteristic function for the uniform distribution U rp on the sphere Σr
p,q

of radius r ∈ Πq is given by

Û rp (z) = Jµ

(
1

4
(zr)∗(zr)

)
, (z ∈Mp,q) (2.13)

where µ = p
2 and Jµ is the Bessel function of index µ of Eq. (2.9).

Proof. Let r ∈ Πq. Consider the map

Tr : Σp,q → Σr
p,q, y 7→ yr.

9



Since Tr(U
Iq
p ) = U rp , we get by substitution formula

Û rp (z) =

∫
Mp,q

ei〈z,y〉dU rp (y) =

∫
Σp,q

ei〈z,yr〉dU
Iq
p (y).

On the other side, according to Proposition XVI.2.3. of [4] we have for x ∈Mp,q the identity∫
Σp,q

ei〈y,x〉dU
Iq
p (y) = Jµ

(
1

4
x∗x

)
, µ =

p

2
.

By taking these two identities above into account, (2.13) follows as claimed.

Lemma 2.9. Let κ ∈ Np×q0 , l := |κ|/2 and µ = p
2 . The κ-th moment mκ(U rp ) of the uniform

distribution on Σr
p,q is given as follows:

(a) If Ri(κ) =
∑q

j=1 κij is even for all i = 1, . . . , p, then l ∈ N0 and

mκ(U rp ) =
1

4l |κ|!
∑

λ∈C0(l,q)

1

(µ)
d/2
λ

Dκ

(
Zλ
(
(zr)∗(zr)

))∣∣z=0
. (2.14)

(b) If Ri(κ) is not even for some i = 1, . . . , p, then mκ(U rp ) = 0.

Proof. By the Identity (2.11), the preceding lemma and (2.9) we have

mκ(U rp ) = (−i)|κ|
∞∑
j=0

(−1)j

j!

∑
λ∈C0(j,q)

1

(µ)
d/2
λ

Dκ

(
Zλ

(
1

4
(zr)∗(zr)

))∣∣z=0

. (2.15)

Let λ ∈ Nq0 and pr : z 7→ Zλ ((zr)∗(zr)). Since Zλ is a homogeneous polynomial of degree |λ|,
Lemma 2.3 shows that pr is a homogeneous, row-even polynomial of degree 2 |λ|. Therefore
each term on the right-hand side of (2.15) vanishes if κ ∈ Np×q0 with Ri(κ) is odd for some
i ∈ {1, . . . , p} or if |κ| 6= 2 |λ|. This proves the assertion.

Theorem 2.10. Let κ ∈ Np×q0 , l := |κ|/2, ν ∈ M1(Πq) and νp ∈ M1(Mp,q) be the corre-

sponding radial probability measure on Mp,q which admits a κ-th order moment. Then the

κ-th moment mκ(νp) of νp exists in R and has the following asymptotic as p→∞:

(a) If Ri(κ) is even for all i = 1, . . . , p, then mκ(νp) = O
(

1
pl

)
.

(b) If Ri(κ) is not even for some i = 1, . . . , p, then mκ(νp) = 0.

Proof. The existence of mκ(νp) is clear. By the decomposition (2.10) we obtain

mκ(νp) =

∫
Πq

mκ(U rp )dν(r),

where U rp is the uniform distribution on Σr
p,q. Therefore the assertion (b) follows immediately

from Lemma 2.9 (a). Now we turn to the case (a). Since the λ-th term in the sum (2.14)
is a homogeneous polynomial in the variable r11, r12, . . . , rqq of degree 2 |λ| which is also
independent of p, Lemma 2.9 (a) leads to

mκ(νp) =
∑

λ∈C0(l,q)

∫
Πq

O

(
1

pl

)
dν(r) = O

(
1

pl

)
.
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2.6 Matrix variate normal distribution and their moments

In this section we derive some results concerning the class of matrix variate normal distribution
on Mq, to which belongs the limiting distribution in our main result 1.2.

Let Z = (zij)1≤i,j≤q be a real matrix variate normal distributed variable with mean matrix
µ ∈Mq and symmetric covariance matrix

Σ2 =
(
Σ2

(i,j),(l,k)

)
1≤i,j,l,k≤q=

(
Σ2

(l,k),(i,j)

)
1≤i,j,l,k≤q∈Mq2

∼= Mq ⊗Mq. (2.16)

We write Z ∼ N (µ,Σ2) for short. This means that vec(Z ′) is N (vec(µ′),Σ2)-distributed.
In order to prove some formulas for moments Mk(Z) = E(Z⊗k) of Z, which we will use in
Section 3, we need the following notations. Let u ∈ N, k := 2u, I = ((i1, j1), . . . , (ik, jk)) ∈
({1, . . . , q}2)k, λ = (2, . . . , 2) ∈ C(k, u) and π = (π1, . . . , πk) ∈ S(λ). For a tuple v =
(v1, . . . , vn) we will write {v} instead of the set {v1, . . . , vn}. Consider the sets

π(I)i = {(iµ, jµ) ∈ {I} : πµ = i} (i = 1, . . . , u).

Obviously π(I)i (i = 1, . . . , u) forms a partition of {I} with |π(I)i| = 2. We de�ne for π, I
and a symmetric covariance matrix Σ2 as in (2.16),

π(Σ2)I :=

u∏
i=1

Σ2
(αi,βi),(γi,δi)

where {(αi, βi), (γi, δi)} = π(I)i.

For instance let u = 2, I = {(2, 1), (2, 2), (3, 2), (2, 1)}, λ := (2, 2) ∈ C(4, 2) and π =
(1 2 1 2) =: (π1 . . . π4); then we have π(I)1 = {(2, 1), (3, 2)}, π(I)2 = {(2, 2), (2, 1)} and
π(Σ2)I = Σ2

(2,1),(3,2) · Σ
2
(2,2),(2,1).

The moment formulas Mk(Z) for multivariate normal distributed random vector Z ∼
N (µ,Σ2) are well studied in the literature (see [12] and [5]). In [12, Theorem 1] we �nd
moment formulas for centered Gaussian distribution Z, which are derived in a relative fast
and elegant way. This formula can be easely translated in our setting. Namely, the I-th
component of k-th order moment of a N (0,Σ2)-distributed random matrix Z is given by

Mk(Z)I =

0, if k is odd,
1
u!

∑
π∈S(λ)

π(Σ2)I , if k = 2u, λ = (2, . . . , 2) ∈ C(k, u). (2.17)

In the most classical case q = 1 , i.e. Z is centered gaussian distribution on R with covariance
σ2 > 0 the identity (2.17) reduces to the well known formula

E(Zk) =

{
0, if k is odd,

σk(k − 1)(k − 3) · . . . · 3 · 1 if k is even.
(2.18)

The following two simple observations concerning the k-th moment of normal distributed
random matrix and a sum of two independent, normal distributed random matrices respec-
tively will be needed for the proof of Theorem 3.1.

Lemma 2.11. Let Z be N (0,Σ2)-distributed random variable and Z1, Z2, . . . independent
copies of Z. The k-th order moment of Z is given by

Mk(Z) =

0, if k is odd,
1
u!

∑
π∈S(λ)

E (π(Z1, . . . , Zu)) , if k = 2u

where λ = (2, . . . , 2) ∈ C(2u, u).
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Proof. Let k ∈ N and I = ((i1, j1), . . . , (ik, jk)) ∈ ({1, . . . , q}2)k. If k is odd, then it follows
by (2.17) that Mk(Z)I = 0. Suppose that k = 2u, (u ∈ N). For π ∈ S(λ), λ = (2, . . . , 2) ∈
C(k, u) and I as above, we have π(Z1, . . . , Zu)I = (Zπ1 ⊗ . . .⊗ Zπk)I . Let {(αi, βi), (γi, δi)} =
π(I)i, i = 1, . . . , u. By independence it follows

E (π(Z1, . . . , Zu)I) = E ((Zπ1 ⊗ . . .⊗ Zπk)I) =
u∏
i=1

E
(
Zi ⊗ Zi

)
(αi,βi),(γi,δi)

=
u∏
i=1

π(Σ2)(αi,βi),(γi,δi) = π(Σ2)I .

The lemma is now a consequence of Eq. (2.17).

Lemma 2.12. Let Zi (i = 1, 2) be independent random variables with distributions N (0,Σi).
Then

E
((
Z1 + Z2

)⊗,k)
=

k∑
l=0

∑
π∈S((l,k−l))

E (π(Z1, 1)) ◦ E (π(1, Z2)) . (2.19)

Proof. By the de�nition of ◦-product and independence of Z1 and Z2 we have

E
(

(Z1 + Z2)⊗,k
)

=
k∑
l=0

∑
π∈S((l,k−l))

E (π(Z1, Z2))

=
k∑
l=0

∑
π∈S((l,k−l))

E (π(Z1, 1) ◦ π(1, Z2))

=
k∑
l=0

∑
π∈S((l,k−l))

E (π(Z1, 1)) ◦ E (π(1, Z2)) .

Since Z1 + Z2 is N (0,Σ1 + Σ2) distributed, the assertion (2.19) follows.

3 Radial limit theorems on Mp,q for p→∞

Let ν ∈M1(Πq) be a �xed probability measure such that
∫

Πq
‖x‖4 dν(x) <∞. Then for each

dimension p ∈ N there is a unique radial probability measure νp ∈ M1(Mp,q) with ν as its
radial part, i.e., ν = ϕp(νp). Let X = (xij)ij be νp distributed random matrix on Mp,q. We
de�ne

r2(ν) := E
(
ϕ2
p(X)

)
= p · Tp ∈ Πq,

Σ2(ν) := cov(ϕ2
p(X)) = cov(vec(ϕ2

p(X)′)) ∈ Πq2
∼= Πq ⊗Πq.

Clearly, r2(ν) and Σ2(ν) are independent from p. Now, we consider for each p ∈ N i.i.d.
Mp,q-valued random variables

Xk :=
(
X

(i,j)
k

)
1≤i≤p, 1≤j≤q

, k ∈ N

with law νp as well as the random variables

Ξpn(ν) := ϕp(S
p
n)2 − nr2(ν), (3.1)
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where Spn :=
∑n

k=1Xk. Let (pn)n∈N ⊂ N be a sequence with limn→∞ pn = ∞. In this
section, we derive the following two complementary CLTs for Mq-valued random variables
Ξn(ν) := Ξpnn (ν) under disjoint growth conditions for the dimensions pn.

Theorem 3.1. Assume that ν ∈M1(Πq) admits �nite fourth moment.

CLT I: If lim
n→∞

n
pn

=∞, then
√
pn
n ·Ξn(ν) tends in distribution to the centered matrix variate

normal distribution N (0, T 2(ν)) with covariance matrix T 2(ν) := T 2
1 + T 2

2 where

(T 2
1 )(i,j),(k,l) = r2(ν)i,kr2(ν)j,l and (T 2

2 )(i,j),(k,l) = r2(ν)i,lr2(ν)j,k. (3.2)

CLT II: If lim
n→∞

n
pn

= c ∈ [0,∞[, then 1√
n
·Ξn(ν) tends in distribution to the centered matrix

variate normal distribution N (0,Σ2(ν) + cT 2(ν)) (where T 2(ν) is given as in CLT I.)

Notice that for q = 1 we obviously have ν ∈ M1([0,∞[), r2(ν) =
∫∞

0 x2dν(x), T 2(ν) =
2r2(ν)2 and Σ2(ν) =

∫∞
0 x4dν(x) − r2(ν)2. Therefore Theorem 3.1 completely agrees with

Theorem 1.1.
The proof of Theorem 3.1 will be divided into two main steps: In the �rst step we prove

a reduced form of Theorem 3.1 assuming that ν has a compact support. In the second step
we will show how to get rid of the support condition for ν. Both steps are based on the
decomposition of Ξn(ν) via

Ξn(ν) = An(ν) + Bn(ν),

where

An(ν) :=

n∑
i=1

Ai, with Ai := ϕpn(Xi)
2 − r2(ν), (3.3)

and Bn(ν) :=

pn∑
i=1

Bi, with Bi :=
∑

α,β=1,...,n; α 6=β

[
X(i,j)
α X

(i,l)
β

]
1≤j,l≤q

. (3.4)

We compute the covariance structure of An(ν) and Bn(ν): Since the random variables Ai
(i = 1, 2, . . .) are independent and identically distributed, it is easily seen that

E(Ak) = 0, cov(Ai, Aj) = δi,jΣ
2(ν). (3.5)

This gives

1

n
cov(An(ν)) =

1

n

n∑
k=1

cov(Ak) = Σ2(ν). (3.6)

By the independence of random variables Xk, k ∈ N and Lemma 2.7 we obtain

E(Bk) = 0, cov(Bi, Bj) = δi,j
n(n− 1)

p2
n

T 2(ν). (3.7)

We thus get

lim
n→∞

pn
n2
cov(Bn(ν)) = lim

n→∞

pn
n2

pn∑
i=1

cov(Bi) = T 2(ν). (3.8)

In the following we will establish convergence in distribution of the random variables An and
Bn (after appropriate scaling) by the method of moments [3, Theorem 30.2], which can be
easily adapted to our general situation. As we are sure that the result is well-known, we omit
the proof.
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Theorem 3.2 (Method of moments). Let Y, Y1, Y2, . . . be Mp,q valued random variables. Sup-

pose that the distribution of Y is determined by its moments Mk(Y ) (k ∈ N), that the Yn have

moments Mk(Yn) of all orders, and that

lim
n→∞

Mk(Yn) = Mk(Y )

for k = 1, 2, . . .. Then the sequence (Yn)n converges to Y in distribution.

Remark 3.3. Each matrix variate normal distribution N (M,Σ2) on Mp,q or distribution
with compact support are determined by its moments.

De�nition 3.4. Let (Dn)n∈N, (dn)n∈N be a sequences of matrices from Mq and positive real
numbers respectively. We write Dn = O(dn) as n → ∞, if and only if ‖Dn‖∞ = O(dn) as
n→∞.

Proposition 3.5. Assume that ν ∈ M1(Πq) has compact support. Then the asymptotic

behavior of An := An(ν) is given as follows:

(a) If n
pn
→ c ∈ [0,∞[ as n→∞, then 1√

n
An tends in distribution to N (0,Σ2(ν)).

(b) If n
pn
→∞ as n→∞, then

√
pn
n An tends in distribution to δ0.

Proof. If we prove that for all k ∈ N0, the k-th order moments

1

nk/2
E
(
A⊗,kn

)
and

p
k/2
n

nk
E
(
A⊗,kn

)
(3.9)

tend to the k-th order moment of the corresponding limit distribution in the case (a) and (b)
respectively, the assertion follows by the method of moments 3.2. Therefore we calculate (3.9)
as n → ∞. Since the random variables Aj are identically distributed, Theorem 2.2 shows
that

E
(
A⊗,kn

)
=

k∑
u=1

∑
λ∈C(k,u)

(
n

u

) ∑
π∈S(λ)

E
(
π
(
A1, . . . , Au

))
.

For u ∈ {1, . . . , k} and λ ∈ C(k, u) we consider

T (λ) :=

(
n

u

) ∑
π∈S(λ)

E
(
π
(
A1, . . . , Au

))
∈Mqk . (3.10)

If λα = 1 for some α, i.e Aα appears exactly once in π
(
A1, . . . , Au

)
, then each summand

in (3.10) vanishes, which is due to the facts that E(Aα) = 0 ∈ Mq and that the Ai are
independent.

Suppose that λα ≥ 2 for each α and λα > 2 for some α. Then k > 2u, and since

T (λ) = O(nu) as n → ∞, it follows that (1/nk/2) · T (λ) and (p
k/2
n /nk) · T (λ) in the cases

n/pn → c ∈ [0,∞[ and n/pn →∞ respectively tend to zero as n→∞.
Now we turn to the case λ = (2, . . . , 2), in particular k = 2u. Let Z1, . . . , Zu be indepen-

dent and N (0,Σ2(ν)) distributed random variables. By Lemma 2.1, for any π ∈ S(λ) there
exist permutation matrices Pπ and Qπ with

PπE
(
π(A1, . . . , Au)

)
Qπ = E

(
A1 ⊗A1 ⊗ . . .⊗Au ⊗Au

)
= Σ2(ν)⊗ . . .⊗ Σ2(ν)

= E
(
Z1 ⊗ Z1 ⊗ . . .⊗ Zu ⊗ Zu

)
= PπE

(
π(Z1, . . . , Zu)

)
Qπ,
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and hence
E
(
π(A1, . . . , Au)

)
= E

(
π(Z1, . . . , Zu)

)
∀ π ∈ S(λ).

Therefore, according to the Lemma 2.11 we have

T (λ) =

(
n

u

) ∑
π∈S(λ)

E
(
π
(
Z1, . . . , Zu

))
=

n!

(n− u)!
Mk(Z1).

This proves that the moments in (3.9) converge to those of N (0,Σ2(ν)) and the Dirac distri-
bution δ0 respectively.

Now we introduce some notations: Let k, n ∈ N and Ik,n the set of all 2k-tuples
(i1, j1, . . . , ik, jk) of positive integers less or equal n such that iα 6= jα for all α = 1, . . . , k.
For an I ∈ Ik,n and π = (π1, . . . , πk) ∈ Nk we set

S(I, π) :=
[
X

(π1,α1)
i1

X
(π1,β1)
j1

]
1≤α1,β1≤q

⊗ . . .⊗
[
X

(πk,αk)
ik

X
(πk,βk)
jk

]
1≤αk,βk≤q

. (3.11)

Each entry of S(I, π) ∈Mqk is a product with k factors and corresponds to the tuple(
(i1, π1, α1), (j1, π1, β1), . . . , (ik, πk, αk), (jk, πk, βk)

)
. (3.12)

For (3.12) and two integers a, b we de�ne

multI,π(a, b) = |{τ ∈ {1, . . . , k} : (iτ , πτ , ατ ) = (a, b, ατ ) or (jτ , πτ , βτ ) = (a, b, βτ )}| .

It is clear thatmultI,π(a, b) does not depend on the indices ατ and βτ . Therefore,multI,π(a, b)
is the number of factors in an arbitrary entry of the matrix S(I, π) which are coming from
the b-th row of Xa. Moreover, we write d(I) for the number of distinct elements in {I}. For
an m ∈ {2, . . . , 2k} and M $ {1, . . . , n} with |M | ≤ k we consider following subsets of Ik,n

Jm := {I ∈ Ik,n : d(I) = m} ,
J̃m := {I ∈ Jm : {I} ⊂ {1, . . . ,m}} ,

J ∃k (M) := {I ∈ J2 ∪ . . . ∪ Jk : {I} ∩M 6= ∅} ,
J ∀k (M) := {I ∈ J2 ∪ . . . ∪ Jk : m ∈ {I} ∀ m ∈ M} ,
J o(π) := {I ∈ Ik,n : ∃ a, b ∈ N : multI,π(a, b) is odd} .

It is easily checked that for the cardinalities of Jm, J ∃k (M) and J∀k (M) we have

|Jm| ≤ Cnm,
∣∣∣J ∃k (M)

∣∣∣ ≤ Cnk−1,
∣∣∣J ∀k (M)

∣∣∣ ≤ Cnk−|M | (3.13)

with some constant C = C(k).

Proposition 3.6. Assume that ν ∈ M1(Πq) has compact support. Then the asymptotic

behavior of Bn := Bn(ν) is given as follows:

(a) If n
pn
→ 0 as n→∞, then 1√

n
Bn tends in distribution to δ0.

(b) If n
pn
→ c ∈]0,∞] as n → ∞, then

(√
pn
n

)
Bn tends in distribution to the normal

distribution N (0, T 2(ν)).
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Proof. According to the Theorem 3.2 it su�ces to show that the k-th moments

1

nk/2
E
(
B⊗,kn

)
and

p
k/2
n

nk
E
(
B⊗,kn

)
(3.14)

tend to the corresponding ones of the limiting distributions as n→∞. By using very similar
arguments as in the proof of the Lemma 2.7 it is easily seen thatBi (i = 1, 2, . . .) are identically
distributed. From this and Theorem 2.2 we conclude

E
(
B⊗,kn

)
=

k∑
v=1

∑
µ∈C(k,v)

(
pn
v

) ∑
π∈S(µ)

E
(
π
(
B1, . . . , Bv

))
.

For an v ∈ {1, . . . , k}, λ ∈ C(k, v) and π ∈ S(µ) we consider π(B1, . . . , Bv). The de�nition
of Ba (a ∈Mv) in (3.4) enables us to write

π(B1, . . . , Bv) = Bπ1 ⊗ . . .⊗Bπk =
∑
I∈Ik,n

S(I, π), (3.15)

where each term S(I, π) with I = (i1, j1, . . . , ik, jk) is given by (3.11). For a selected index
a ∈ Mn, each entry of S(I, π) may be regarded as a monomial in the variables Xa (i.e. in

X
(α,β)
a with α ∈ Mpn , β ∈ Mq) while the random variables coming from other indices are

considered as constant. In this view, for any I ∈ J o(π), each entry of S(I, π) is for some
a ∈ Mn and b ∈ Mv a monomial in the variable Xa which is not even in row b. And hence
Theorem 2.10 clearly forces

E(S(I, π)) = 0 ∀ I ∈ J o(π). (3.16)

Therefore, since Jm ⊂ J o(π) for m > k, we conclude from (3.15) that

E (π(B1, . . . , Bv)) =

k∑
m=2

∑
I∈Jm

E (S(I, π)) . (3.17)

According to (3.13) and Theorem 2.10 the number of terms in the last sum is at most of the
order O(nm) and each of them of the order O(1/pkn) (uniform in each entry) as n→∞. We
thus get

E (π(B1, . . . , Bv)) =
∑
I∈Jk

E (S(I, π)) +O

(
nk−1

pkn

)
= O

(
nk

pkn

)
. (3.18)

For v ∈ {1, . . . , k} and µ ∈ C(k, v) let us consider

T (µ) :=

(
pn
v

) ∑
π∈S(µ)

E
(
π
(
B1, . . . , Bv

))
. (3.19)

If µα = 1 for some α, i.e for any π ∈ S(µ) the factor Bα appears exactly once in
the product π

(
B1, . . . , Bv

)
, and therefore each I ∈ Ik,n from the Representation (3.15) of

π
(
B1, . . . , Bv

)
is necessarily from J o(π), and hence (3.16) gives T (µ) = 0.

Suppose that µα ≥ 2 for each α and µα > 2 for some α, i.e. in particular k > 2v. From
(3.18) we conclude that

1

nk/2
T (µ) = O

(
nk/2

pk−vn

)
and

p
k/2
n

nk
T (µ) = O

(
1

p
k/2−v
n

)
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uniformly in each matrix entry tends to 0 in the case (a) n
pn
→ 0 and case (b) pn

n → 0
respectively as n→∞.

We now turn to the case µ = (2, . . . , 2), in particular k = 2v. By Eq. (3.18) it follows (in
the case a)) that 1

nvT (µ) = O( npn ) and hence that 1
nvT (µ) converges to zero as n→∞.

Since X1, X2, . . . are i.i.d., we have∑
I∈Jk

E (S(I, π)) =

(
n

k

) ∑
I∈J̃k

E (S(I, π)) . (3.20)

Therefore, by using Eq. (3.18),

T (µ) =
pn!

(pn − v)!

n!

(n− k)!

1

v!

∑
π∈S(µ)

1

pkn

pkn
k!

∑
I∈J̃k

E (S(I, π)) +O

(
nk−1

pk−vn

)
. (3.21)

Let Z1, . . . , Zv be independent and N (0, T 2(ν)) distributed random variables. By Lemma
3.7, which is proven below, we obtain

lim
n→∞

pvn
nk
T (µ) =

1

v!

∑
π∈S(µ)

E (π(Z1, . . . , Zv)) .

The required result then follows from Lemma 2.11 and method of moments 3.2.

Lemma 3.7. Let v ∈ N, k = 2v, µ = (2, . . . , 2) ∈ C(k, v), π ∈ S(µ) and Z1, . . . , Zv be

independent N (0, T 2(ν)) distributed random variables. Then

E (π(Z1, . . . , Zv)) =
pkn
k!

∑
I∈J̃k

E (S(I, π)) =: R(π).

Proof. According to the Lemma 2.1 there is no loss of generality in assuming that π =
(1, 1, 2, 2, . . . , v, v). We set

Jk,π :=
{

(i1, j1, . . . , ik, jk) ∈ J̃k : {iα, jα} = {iβ, jβ} if πα = πβ

}
.

It is easy to check that J̃k \ Jk,π ⊂ Jo(π). Therefore, by Eq. (3.16),∑
I∈J̃k

E (S(I, π)) =
∑

I∈Jk,π

E (S(I, π)) .

For a permutation σ ∈ Sk and ε = (ε1, . . . , εu) ∈ Zv2 we consider the following functions

ϕσ :Jk,π −→ Jk,π, (i1, j1, . . . , ik, jk) 7→ (σ(i1), σ(j1), . . . , σ(ik), σ(jk))

θε :Jk,π −→ Jk,π, (i1, j1, . . . , ik, jk) 7→ (r1, t1, . . . , rk, tk),

where (r1, t1, . . . , rk, tk) is de�ned as follows: for any α, β ∈Mk with α < β and πα = πβ ∈Mv

we have

(rα, tα, rβ, tβ) =

{
(iα, jα, iβ, jβ), if επα = 0,

(iα, jα, jβ, iβ), if επα = 1.
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It is easily seen that ϕσ and θε are well de�ned. Let I0 := (1, 2, 1, 2, . . . , k−1, k, k−1, k) ∈ Jk,π.
By standard veri�cation we obtain a one-to-one correspondence between Sk × Zv2 and Jk,π
via the map Ψ : (σ, ε) 7→ ϕσ

(
θε(I0)

)
. Since X1, X2, . . . are i.i.d. we have for all σ ∈ Sk

E (S(ϕσ(I), π)) = E (S(I, π)) ∀ I ∈ Jk,π. (3.22)

For an ε ∈ Z2 we consider the algebraic operation

ε(a, b) =

{
a, if ε = 0,

b, if ε = 1.

By Equation (3.22) it follows that

R(π) =
1

k!

∑
(σ,ε)∈Sk×Zv2

pknE (S(Ψ(σ, ε), π)) =
∑
ε∈Zv2

pknE (S(Ψ(id, ε), π))

=
∑
ε∈Zv2

ε1(T 2
1 , T

2
2 )⊗ . . .⊗ εv(T 2

1 , T
2
2 ) = E (π(Z1, . . . , Zv))

where T 2
1 and T 2

2 are de�ned as in (3.2).
Now, in order to prove Theorem 3.1 for sequences pn with pn/n→ c ∈]0,∞[ we show that

An := An(ν) and Bn := Bn(ν) are asymptotically independent.

Proposition 3.8. Assume that ν ∈ M1(Πq) has compact support and that lim
n→∞

n
pn

=: c ∈
]0,∞[. Then the random variables An and Bn are asymptotically independent, i.e. for all

0 ≤ l ≤ k and all σ ∈ S((l, k − l))

F (n;σ) :=
1

nk/2
[Eσ(An, 1) ◦ Eσ(1,Bn)− Eσ(An,Bn)]

tends to zero as n→∞.

Proof. According to the Lemma 2.1 there is no loss of generality in assuming that σ =
(1, . . . 1, 2, . . . , 2). From Theorem 2.2, by using symmetry argument, we conclude

F (n;σ) =
1

nk/2

(
E
(
A⊗,ln

)
⊗E
(
B⊗,k−ln

)
−E
(
A⊗,ln ⊗B⊗,k−ln

))
=

1

nk/2

l∑
u=1

k−l∑
v=1

∑
λ∈C(l,u)

∑
µ∈C(k−l,v)

(
n

u

)(
pn
v

) ∑
π∈S(λ)

∑
π′∈S(µ)

H(π, π′),

with

H(π, π′) = E
(
π
(
A1, . . . , Au

))
⊗E
(
π′
(
B1, . . . , Bv

))
−E
(
π
(
A1, . . . , Au

)
⊗ π′

(
B1, . . . , Bv

))
.

If µα = 1 for some α ∈ {1, . . . , v}, then each entry of π′(B1, . . . , Bv) is not an even
polynomial and thus so is π(A1, . . . , Au)⊗ π′(B1, . . . , Bv) neither. Therefore H(π, π′) = 0 by
Theorem 2.10.

Suppose that µα ≥ 2 for each α. By Eq. (3.17) we have

H(π, π′) =
∑

I∈J2∪...∪Jk−l

(
Eπ
(
A1, . . . , Au

)
⊗ ES(I, π′)− E

(
π(A1, . . . , Au)⊗ S(I, π′)

))
.

(3.23)
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Let M := {1, . . . , u} and G := {α ∈M : λα = 1}. We consider the I-th term in the sum
above, which will be denoted by T (I). Is I /∈ J ∃k−l(M), i.e. {I}∩M = ∅, and thus A1, . . . , Au
are independent from S(I, π′). This clearly forces T (I) = 0. Is I /∈ J ∀k−l(G), i.e. there exists
τ ∈ G with τ /∈ {I}, and therefore Aτ is independent from Ai (i ∈M \ {τ}) and S(I, π′). We
thus get T (I) = 0 from (3.5).

Taking (3.13) into account, we see that the number of nonzero summands in (3.23) is
bounded above min(nk−l−1, nk−l−|G|). On the other side, Lemma 2.10 yields that each of
them is bounded above C/pk−ln where C > 0 is a suitable global constant. Summarized we
get ∥∥H(π, π′)

∥∥ ≤ C ·min(n−1, n−|G|). (3.24)

Since µ ∈ C(k − l, v) with µα ≥ 2 for all α ∈ {1, · · · , v} we have that k − l ≥ 2v. Moreover,
since λ ∈ C(l, u) we get l ≥ 2u − |G|. And hence, by straightforward calculation using
n/pn → c ∈]0,∞[ we conclude from (3.24) that for suitable constants Ci,

‖F (n, σ)‖ ≤ C1

nk/2

l∑
u=1

k−l∑
v=1

∑
λ∈C(l,u)

∑
µ∈C(k−l,v)

(
n

u

)(
pn
v

)
min(n−1, n−|G|)

≤ C2

nk/2

l∑
u=1

k−l∑
v=1

∑
λ∈C(l,u)

nu+v min(n−1, n−|G|) ≤ C3√
n
.

This completes the proof.

Proof of Theorem 3.1 for ν ∈M1(Πq) with compact support.

If n/pn → ∞ then
√
pn
n An

d→ δ0 and
√
pn
n Bn

d→ N (0, T 2(ν)) according to Propositions 3.5

and 3.6. This clearly forces
√
pn
n Ξn(ν)

d→ N (0, T 2(ν)) by Slutsky's Theorem. Suppose that

n/pn → 0. Then we get as above 1√
n

Ξn(ν)
d→ N (0,Σ2(ν)). It remains only to check the

convergence in the case n/pn → c ∈]0,∞[. Let k ∈ N. By Theorem 2.2,

Mk(Ξn(ν)) = E
(

(An + Bn)⊗k
)

=

k∑
l=0

∑
π∈S((l,k−l))

E (π(An,Bn)) .

Therefore, by Proposition 3.8,

lim
n→∞

Mk

( 1√
n

Ξn(ν)
)

= lim
n→∞

1

nk/2

k∑
l=0

∑
π∈S((l,k−l))

E (π(An, 1)) ◦ E (π(1,Bn)) .

Consider independent random variables Z1, Z2 and Z with distributionsN (0,Σ2(ν)),N (0, cT 2(ν))
and N (0,Σ2(ν) + cT 2(ν)) respectively. Propositions 3.5, 3.6 and Lemma 2.12 now lead to

lim
n→∞

Mk(Ξn(ν)) =

k∑
l=0

∑
π∈S((l,k−l))

E (π(Z1, 1)) ◦ E (π(1, Z2)) = Mk(Z).
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In order to get rid of the assumption that supp(ν) is compact, we introduce for an a > 0
the truncated Mpn,q-valued random variables

Xk,a :=

{
Xk, if ‖ϕpn(Xk)‖ ≤ a,
0, otherwise

k = 1, 2, . . .

Let us denote by νa the distribution of ϕpn(X1,a) (which is not dependent on pn). Obviously,
the sequenceXk,a, k ∈ N, are i.i.d. with the radial law νpn,a ∈M(Mpn,q) which corresponds to
νa. We de�ne Ξn(νa), An(νa), Aj,a (j = 1, . . . , n), Bn(νa) and Bj,a (j = 1, . . . , pn) according
to (3.1), (3.3) and (3.4) respectively, by taking Xk,a instead of Xk, k ∈ N. Clearly, we have
Ξn(νa) = An(νa) + Bn(νa).

In the following we show Ξn(νa) is a �good� approximation of Ξn(ν). To formulate this
exactly, we �rst �x some δ > 0 and a sequence (pn)n; we then introduce the sequence (δn)n
by

δn :=

{
δ ·
√
n, if n

pn
→ c ∈ [0,∞[,

δ · n√
pn
, if n

pn
→∞.

(3.25)

In the next lemmas we show that the events

{‖An(νa)− An(ν)‖ > δn} and {‖Bn(νa)−Bn(ν)‖ > δn}

have arbitrary small probabilities for an a and n large enough.

Lemma 3.9. For all ε > 0, δ > 0 there exist a0, n0 ∈ N such that for all n, a ∈ N with

a ≥ a0 and n ≥ n0

P (‖An(ν)− An(νa)‖ > δn) ≤ ε. (3.26)

Proof. Let δ > 0 and (δn)n be a sequence as in (3.25). Since (Ai − Ai,a), (i = 1, 2, . . .) are
i.i.d., it follows by Chebychev inequality that

P (‖An(ν)− An(νa)‖ ≥ δn) ≤ n

δ2
n

E
(
‖A1 −A1,a‖2

)
. (3.27)

Using triangle inequality we obtain

sup
a∈N
‖A1,a‖2 ≤

(∥∥ϕ2
pn(X1)

∥∥+ ‖r2(ν)‖
)2 ∈ L1(Ω),

Therefore, the set {‖A1,a‖2 : a ∈ N} is uniformly integrable. On the other side, since the
random variable ‖A1‖ is almost surely �nite, ‖A1,a‖2 converges a.s. to ‖A1‖2 as a→∞. We
thus get

‖A1,a‖2 −→ ‖A1‖2 in L1. (3.28)

By taking (3.27) and (3.28) into account, the lemma follows.

Lemma 3.10. For all ε > 0, δ > 0 there exist a0, n0 ∈ N such that for all n, a ∈ N with

a ≥ a0 and n ≥ n0

P (‖Bn(ν)−Bn(νa)‖ > δn) ≤ ε. (3.29)
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Proof. Let δ > 0 and (δn)n be a sequence as in (3.25). By Chebychev inequality it follows
that

P (‖Bn(ν)−Bn(νa)‖ ≥ δn) ≤ 1

δ2
n

pn∑
j,i=1

E (〈Bi −Bi,a, Bj −Bj,a〉) . (3.30)

Using Lemma 2.7 one can easily compute that

E (〈Bi, Bj〉) = δij ·
n(n− 1)

p2
n

q∑
l,k=1

r2(ν)l,lr2(ν)k,k + r2(ν)l,kr2(ν)l,k (3.31)

E (〈Bi,a, Bj,a〉) = δij ·
n(n− 1)

p2
n

q∑
l,k=1

r2(νa)l,lr2(νa)k,k + r2(νa)l,kr2(νa)l,k (3.32)

With the notation
r̃2(a;n) :=

(
E
(
X

(1,l)
1,a X

(1,k)
1

))
1≤l,k≤q

we see at once that

E (〈Bi, Bj,a〉) = δijn(n− 1)

q∑
l,k=1

r̃2(a;n)l,lr̃2(a;n)k,k + r̃2(a;n)l,kr̃2(n; a)l,k.

For l, k ∈ {1, . . . , q} we obtain

r̃2(a;n)l,k =
1

pn
r2(ν)l,k −

∫
{‖X1‖>a}

X
(1,l)
1 X

(1,k)
1 dP. (3.33)

By Cauchy-Schwarz inequality and straightforward calculation we get

0 ≤
∣∣∣∫
{‖X1‖>a}

X
(1,l)
1 X

(1,k)
1 dP

∣∣∣≤ c

apn
, a→∞

uniformly in n with some constant c > 0. From this and (3.33) we deduce

pnr̃2(a;n) = r2(ν) +O

(
1

a

)
and hence

∀ ε > 0 ∃ M > 0 ∀ n ≥M, ∀ a ≥M : 0 ≤ p2
n

n2
E (‖Bi −Bi,a‖) ≤ ε.

Finally, this and (3.30) lead to the claim.

Corollary 3.11. For all ε > 0, δ > 0 there exist a0, n0 ∈ N such that for all n, a ∈ N with

a ≥ a0 and n ≥ n0

P (‖Ξn(ν)− Ξn(νa)‖ > δn) ≤ ε, (3.34)

where δn = δ
√
n if n/pn → c ∈ [0,∞[ and δn = δ n√

pn
if n/pn →∞.

Proof. For an δ > 0 we observe

P (‖Ξn(ν)− Ξn(νa)‖ > δn) ≤ P
(
‖An − An,a‖ >

δn
2

)
+P
(
‖Bn −Bn,a‖ >

δn
2

)
.

Combining this with Lemmas 3.9 and 3.10, the corollary follows.
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Proof of Theorem 3.1.

Let us �rst prove the CLT I. In this case the normalisation is given by
√
pn
n and for the

growth of pn we have the condition n/pn → ∞ as n → ∞. We set ξn :=
√
pn
n Ξn(ν) and

ξn,a =
√
pn
n Ξn(νa) and denote their distributions by µn and µn,a respectively. Moreover, we

write τν instead of N (0, T 2(ν)). Using triangle inequality, we deduce that∣∣∣ ∫ fdµn −
∫
fdτν

∣∣∣ ≤ ∣∣∣ ∫ fdµn −
∫
fdµn,a

∣∣∣+ (3.35)

+
∣∣∣ ∫ fdµn,a −

∫
fdτνa

∣∣∣+
∣∣∣ ∫ fdτνa −

∫
fdτν

∣∣∣.
Let ε > 0, f ∈ Cub (Πq) be a bounded uniformly continuous function on Πq and Aδ :=
{‖ξn − ξn,a‖ ≤ δ} (δ > 0). It follows that

∃ δ > 0 :

∫
Aδ

|f ◦ ξn − f ◦ ξn,a| dP ≤ ε.

On the other hand, by Corollary 3.11,

∃ a0, n0 > 0 :

∫
Ω\Aδ

|f ◦ ξn − f ◦ ξn,a| dP ≤ 2ε ‖f‖∞ ∀ a ≥ a0, n ≥ n0.

This gives us the following estimation for the �rst summand in (3.35):

∃ a0, n0 > 0 :
∣∣∣ ∫ fdµn −

∫
fdµn,a

∣∣∣ ≤ ε(1 + 2 ‖f‖∞) ∀ a ≥ a0, n ≥ n0. (3.36)

Since νa has a compact support, we conclude from 3.1 that µn,a weakly converges to τνa
(a > 0), hence that

∀ a > 0 ∃ n0 > 0 :
∣∣∣ ∫ fdµn,a −

∫
fdτνa

∣∣∣ ≤ ε ∀ n ≥ n0. (3.37)

Finally, it is evident that

∃ a0 > 0 :
∣∣∣ ∫ fdτνa −

∫
fdτν

∣∣∣ ≤ ε ∀ a ≥ a0. (3.38)

Taking (3.36), (3.37) and (3.38) into account, we obtain

∃ n0 > 0 :
∣∣∣ ∫ fdµn −

∫
fdτν

∣∣∣ ≤ ε(3 + 2 ‖f‖∞) ∀ n ≥ n0,

which completes the proof of CLT I in Theorem 3.1. The same proof works for CLT II.
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