
About the Exploration of
Data Mining Techniques using

Structured Features for
Information Extraction

Dissertation

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

der Technischen Universität Dortmund
an der Fakultät für Informatik

von

Felix Jungermann

Dortmund

2012

Tag der mündlichen Prüfung: 05.06.2012

Dekanin:
Prof. Dr. Gabriele Kern-Isberner

Gutachter:
Prof. Dr. Katharina Morik
Prof. Dr. Dietmar Jannach

2

Acknowledgements

Als erstes möchte ich mich ganz herzlich bei meiner Betreuerin Prof. Dr. Katharina
Morik bedanken. Sie hat mich nicht nur außerordentlich bei der Entwicklung dieser
Arbeit bestärkt und unterstützt, sie hat mich zudem auch immer wieder fachlich aufs
Neue beeindruckt. Die gemeinsame Arbeit mit ihr hat mich in meiner persönlichen
Entwicklung nicht nur sehr geprägt sondern auch gestärkt, wofür ich ihr nochmals
meinen größten Dank aussprechen möchte.

Mein Dank gilt zudem auch meinem Zweitbetreuer Prof. Dr. Dietmar Jannach, der
– auch wenn oder gerade weil er nicht hauptsächlich im Gebiet des maschinellen Ler-
nens aktiv ist – mir immer wieder hilfreiche Tipps und Anregungen zu meiner Arbeit
geben konnte.

Des Weiteren möchte ich mich bei allen aktuellen und ehemaligen Mitarbeitern am
LS8 für die tägliche Unterstützung, den Austausch und die Gespräche auf dem Flur
bedanken. Bei Nico bedanke ich mich besonders für die Implementierung und Ein-
weisung in CRFs auf GPUs. Herauszuheben seien weiterhin Anja, Sammy und An-
dreas, ohne die am LS8 wohl gar nichts ginge. Ein ganz besonderer Dank gilt Chris-
tian, Marco und Benjamin, die mehrere Jahre gemeinsam mit mir als WiMis am LS8
verbrachten.

Ich möchte hiermit auch der Deutschen Forschungsgesellschaft (DFG) meinen Dank
aussprechen, da sie meine Arbeit durch die Finanzierung zweier Sonderforschungs-
bereiche teilweise mitfinanziert hat. Es handelt sich bei besagten SFBs um den SFB
475 ”Komplexitätsreduktion in multivariaten Datenstrukturen” und um den SFB 876
”Verfügbarkeit von Information durch Analyse unter Ressourcenbeschränkung”.

Bedanken möchte ich mich auch bei meiner Familie, die nicht nur aus meinen Eltern
sondern auch aus meinen Schwestern, Cousinen, Onkel, Tanten, Schwiegereltern, etc.
besteht. Sie haben mich und meine Arbeit – auch wenn sie sie nicht verstanden haben
sollten – immer unterstützt. Insbesondere bedanke ich mich bei meinen Eltern, die
mein Studium finanziert haben. Dafür und für die Unterstützung in allen Lebenslagen
bin ich sehr, sehr dankbar.

Abschließend jedoch möchte ich mich bei meiner geliebten Frau Simone und meinen
beiden Kindern Rieke und Klaas bedanken. Ohne eure Hilfe in jedweder Form wäre
diese Arbeit sicherlich noch nicht fertig.

Ich liebe euch!

3

4

Contents

1 Introduction 17
1.1 Information Retrieval . 18
1.2 Information Extraction . 19

1.2.1 Named Entity Recognition 20
1.2.2 Relation Extraction . 21

1.3 The Tool for Information Extraction 22
1.3.1 Annotations . 23

1.4 Combination of Information Extraction and Data Mining 24
1.5 Outline . 25

2 Machine Learning for Information Extraction 27
2.1 Feature types . 28

2.1.1 Numerical Features . 28
2.1.2 Nominal Features . 29
2.1.3 Date Type Features . 29
2.1.4 Tree-structured Features . 29

2.2 Data preparation . 32
2.3 Particular Specialties for Information Extraction 34

2.3.1 Interdependent Features and Examples 34
2.4 Models . 35

2.4.1 Statistical Models . 35
2.4.2 Structured Models . 44
2.4.3 Binary Models for Multiple Classes 47
2.4.4 Model evaluation . 48

2.5 Summary . 52

3 Evolution of Information Extraction 55
3.1 Text Categorization . 56
3.2 Named Entity Recognition . 59

3.2.1 Data generation . 60
3.2.2 Methods . 60
3.2.3 Feature Space . 61

3.3 Experiments on Domain- and Language-independent NER 63
3.4 Summary . 65

5

CONTENTS

4 Linguistic Resources for Information Extraction Systems 69
4.1 Penn Treebank – An exemplary annotated corpus 70

4.1.1 Other Treebanks . 71
4.1.2 Graphical Access of Treebanks 72

4.2 DWDS – An exemplary lexicon for German 73
4.2.1 Morphological Analysis . 73
4.2.2 Part-of-speech tagging . 74
4.2.3 Dependency parsing . 74
4.2.4 The DWDS-website . 74
4.2.5 German Research Groups on Information Extraction 74
4.2.6 Lexical nets . 76

4.3 Summary . 76

5 Relation Extraction 79
5.1 Definition . 79
5.2 Feature space . 80
5.3 Applications . 82

5.3.1 Opinion Mining . 82
5.3.2 Biological Knowledge Acquisition 83

5.4 Kernel Usage . 83
5.4.1 Linear Kernels . 84
5.4.2 Subsequence Kernel . 85
5.4.3 Shortest Path Dependency Kernel 85
5.4.4 Convolution Kernels . 87
5.4.5 Composite Kernels . 87

5.5 Tree Kernels . 88
5.5.1 Tree Kernel by Collins and Duffy 88
5.5.2 Fast Tree Kernels . 90
5.5.3 Approximate Tree Kernels 91
5.5.4 Context-sensitive Tree Kernels 92
5.5.5 Related Tree Kernels . 92

5.6 Preparation of Trees . 94
5.6.1 Pruning trees . 94
5.6.2 Enriching trees by syntactic and semantic information 95

5.7 Summary . 98

6 Efficient Tree Kernel Usage 99
6.1 Related Work . 101
6.2 Compression of Tree Forests . 101

6.2.1 Merged Lists . 101
6.2.2 Directed Acyclic Graphs . 105

6.3 The Tree Kernel naı̈ve Bayes Approach 106
6.3.1 Using Tree Kernels as Distance Measure in naı̈ve Bayes Clas-

sifiers . 107
6.3.2 Calculation of probabilities using kernel-values 108
6.3.3 Pseudo-probabilities using kernel-values 110

6

CONTENTS

6.4 Perceptrons with Tree Kernels . 111
6.4.1 Kernel-based Perceptron . 111
6.4.2 Tree List Perceptron . 112

6.5 Experiments . 113
6.5.1 Datasets . 113
6.5.2 Evaluation of the Tree Kernel naı̈ve Bayes Approach 115
6.5.3 Evaluation of the Tree Kernel Perceptron Approach 124
6.5.4 Comparison of different internal data structures 128

6.6 Summary . 129

7 The Information Extraction Plugin for RapidMiner 131
7.1 RapidMiner . 132

7.1.1 Data Structure . 134
7.2 Information Extraction Plugin . 135

7.2.1 Retrieve . 135
7.2.2 Preprocessing . 137
7.2.3 Modeling . 140
7.2.4 Evaluation and Validation 140

7.3 Comparable Frameworks . 141
7.3.1 Historical Frameworks . 141
7.3.2 Annotation concept . 142
7.3.3 The UIMA standard . 143
7.3.4 The Apache UIMA Framework 144
7.3.5 The GATE Framework . 146

7.4 Summary . 149

8 Applications 151
8.1 The German Parliament Application 151

8.1.1 Services . 154
8.1.2 Targeted Information Retrieval 156
8.1.3 Related Research and Conclusion 162

8.2 Company Information Extraction from the Web 163
8.2.1 The Merger Relation Dataset 163
8.2.2 Experiments . 164
8.2.3 Visualization of Extracted Relations 166

8.3 Relation Graph Analysis . 168
8.3.1 Introduction . 168
8.3.2 Graphs representing n-ary Relations 172
8.3.3 Tensors . 176
8.3.4 Stream-based Clustering using Tensors 181
8.3.5 Experiments . 185
8.3.6 Summary . 188

8.4 Summary . 191

9 Conclusion 193

7

CONTENTS

A Operator Reference 217
A.1 Tokenizers . 217
A.2 Visualizer . 218
A.3 Preprocessing . 219

A.3.1 Named Entity Recognition 219
A.3.2 Relation Extraction . 222

A.4 Meta . 225
A.5 Data . 226
A.6 Learner . 226

A.6.1 Optimizer . 229
A.7 Validation . 229

8

List of Tables

2.1 An example set containing a nominal attribute 33
2.2 The example set shown in Table 2.1 converted into a numerical repre-

sentation . 33
2.3 Example set containing two examples and two features 36
2.4 Different kernel functions . 42
2.5 Two performances and its values for mean, variance and number of

iterations n . 51
2.6 The resulting values after performing an ANOVA test on the two mea-

surements shown in Table 2.5 . 52

3.1 Three different documents which shall be represented for text catego-
rization. 58

3.2 The three documents shown in Table 3.1 represented as bag-of-words
with binary weights. 58

3.3 The three documents shown in Table 3.1 represented as bag-of-bigrams
with binary weights. 59

3.4 The three documents shown in Table 3.1 represented as bag-of-stemmed-
bigrams with binary weights. 59

3.5 Exemplary information units extracted out of the sentence shown in
Figure 3.4 . 62

3.6 Substring representation features of [Roessler, 2006] for word ”Junger-
mann” . 63

3.7 The class-distribution of the JNLPBA dataset 64
3.8 The class-distribution of the CoNLL dataset (on the training set) . . . 65
3.9 Feature set used for the experiments extracted from the sentence shown

in Figure 3.4 . 66
3.10 Various results on NER datasets . 66

5.1 Features used for Relation Extraction by [Zhao and Grishman, 2005] . 81
5.2 Relation candidates and the corresponding shortest dependency paths 86
5.3 Relation candidates and the corresponding shortest dependency paths

stored as an example set . 86

6.1 List exposition of the tree shown in Figure 6.1 a) 102

9

LIST OF TABLES

6.2 List exposition of the tree shown in Figure 6.1 b) 103
6.3 List exposition of the tree shown in Figure 6.1 c) 103
6.4 List exposition of the merged trees 104
6.5 Comparison of results of the naı̈ve Bayes experiments on the SW dataset115
6.6 Results of various machine learning approaches on the SW and SQL

datasets (the values are arithmetic means and the corresponding stan-
dard deviations) . 122

6.7 Results of various machine learning approaches on the ACE dataset
(the runtime values are rounded) . 123

6.8 Runtime of ten-fold cross-validations on various datasets 124
6.9 Classification results on the ACE dataset using different machine learn-

ing techniques . 125
6.10 Classification results on the ACE dataset using different perceptron ap-

proaches . 125
6.11 Number of kernel calculations executed by the perceptron and the tree

list perceptron . 127
6.12 Results of the Perceptron approaches on SW 128
6.13 Results of the Perceptron approaches on SQL 128

7.1 Spreadsheet-like data structure internally used by RapidMiner 135
7.2 Spreadsheet data structure internally used by the Information Extrac-

tion Plugin . 136
7.3 Spreadsheet representation of a sentence. 138
7.4 Dataset of Table 7.3 enriched by contextual tokens 139
7.5 Exemplary data structure used by TIPSTER ([Grishman, 1996], p. 20) 148

8.1 Recommendation extraction for all requests 159
8.2 NEs in the examined document (printed papers (p.p.), plenary session

(p.s.)) . 159
8.3 Performance of Relation Extraction experiments on the merger relation

dataset using ten-fold cross validation. 165
8.4 Mean ofW (C) of different weights, comparing MFSTREAM and METAFAC186
8.5 Mean of W (C) with different update steps T 186

A.1 Parameters for SentenceTokenizer 217
A.2 I/O-ports for SentenceTokenizer . 217
A.3 Parameters for ParseTreeVisualizer 218
A.4 I/O-ports for ParseTreeVisualizer . 218
A.5 Parameters for TextAnnotator . 219
A.6 I/O-ports for TextAnnotator . 219
A.7 Parameters for PrefixPreprocessing 220
A.8 I/O-ports for PrefixPreprocessing . 221
A.9 Parameters for TreeCreatorAndPreprocessor 222
A.10 I/O-ports for TreeCreatorAndPreprocessor 223
A.11 Parameters for WBNULLPreprocessing 223
A.12 I/O-ports for WBNULLPreprocessing 224

10

LIST OF TABLES

A.13 Parameters for Binary2MultiClassRelationLearner 226
A.14 I/O-ports for Binary2MultiClassRelationLearner 226
A.15 Parameters for Treekernel Naive Bayes 227
A.16 I/O-ports for Treekernel Naive Bayes 227
A.17 Additional parameters for TreeSVM 227
A.18 I/O-ports for TreeSVM . 228
A.19 Parameters for Kernel Perceptron . 228
A.20 I/O-ports for Kernel Perceptron . 228
A.21 Parameters for ConditionalRandomField 228
A.22 I/O-ports for ConditionalRandomField 229
A.23 Parameters for LBFGS optimizer . 229
A.24 I/O-ports for LBFGS optimizer . 229
A.25 Parameters for PerformanceEvaluator 230
A.26 I/O-ports for PerformanceEvaluator 230

11

LIST OF TABLES

12

List of Figures

1.1 A sentence containing opinions concerning entities. 17
1.2 The particular fields we will focus on in this work (red: current short-

comings; green: our work). 18
1.3 A search result for the request ’great’ + ’hard drive’. 19
1.4 A sentence containing two types of annotated entities. 21
1.5 A sentence containing dependency relations 21
1.6 A message from the blogging-platform twitter. The message can be

interpreted as a quaternary relation between message, user, tag and url. 25

2.1 The constituent parse tree of the sentence ”Felix went to New York to
visit the statue of liberty.” . 31

2.2 The dependency parse tree of the sentence ”Felix went to New York to
visit the statue of liberty.” . 32

2.3 The tree representation of an HTML document 33
2.4 The example set shown in Table 2.3 visualized in R2 37
2.5 An intuitively optimal hyperplane separating the example set shown in

Table 2.3 . 38
2.6 The separating hyperplane and the two parallel hyperplanes crossing

the negative and positive examples of the set shown in Table 2.3 . . . 39
2.7 A sub-optimal hyperplane and several examples violating the definition

of an optimal hyperplane . 40
2.8 An example set not being linearly separable which is transformed to

become linearly separable . 41

3.1 An exemplary document of the shared task of the third Message Un-
derstanding Conference ([Sundheim, 1991], p. 8) 56

3.2 The template to be filled by the participants of the third Message Un-
derstanding Conference and the corresponding informational units for
the document shown in Figure 3.1 ([Sundheim, 1991], p. 8) 57

3.3 Important information marked in the text shown in Figure 3.1 58
3.4 A sentence containing three entity mentions. 61

4.1 An annotated sentence (skeletal analysis) of the Penn treebank ([Mar-
cus et al., 1993], p. 325) . 71

13

LIST OF FIGURES

4.2 A parse tree mapped on a German sentence ([Skut et al., 1997], p. 2) . 72
4.3 The result presented for a requested word on the DWDS website . . . 75

5.1 A sentence containing two target features (blue) and two sentiment
words (red). 83

5.2 A relation candidate as used by the subsequence kernel by [Bunescu
and Mooney, 2006] . 85

5.3 A sentence containing dependency relations 85
5.4 The production rules of a particular subtree root node (NE) for different

m values ([Had et al., 2009], p. 5) 93
5.5 Pruning methods as presented by [Zhang et al., 2006] 95
5.6 Pruning methods as presented by [Zhou et al., 2010] 96
5.7 Word stems provided at different depth-levels in the parse tree ([Had

et al., 2009],p.9) . 97

6.1 Three tree-structures . 102
6.2 A DAG containing the information given by the tree-structures shown

in Figure 6.1 . 106
6.3 Optimization experiments for SW 119
6.4 Optimization experiments for SQL 121
6.5 Runtime of the perceptron efficiently storing the trees in a list in con-

trast to a perceptron calculating the tree kernel values for each tree of
the set. 126

6.6 Runtime for a cross-validation using different data structures using a
perceptron on SQL . 129

7.1 RapidMiner graphical user interface 133
7.2 Exemplary process in RapidMiner 134
7.3 Retrieving a document for Information Extraction in RapidMiner . . . 137
7.4 Annotating operator for RapidMiner 139
7.5 String representation of the constituent parse tree shown in Figure 2.1 140
7.6 Stand-off annotations: the original document is separated from the an-

notations which only reference it. 143
7.7 CAS Visual Debugger output ([UIMA Community, 2010], p. 53) . . . 146
7.8 The graphical user interface of GATE 147

8.1 The system design for targeted Information Extraction using RapidMiner156
8.2 An event of type request in XML-format 160
8.3 A decision tree which is trained on extracted request events of the Ger-

man parliament . 161
8.4 A parse tree for a German sentence containing a merger-relation ([Had

et al., 2009] p. 2) . 164
8.5 A company and all involved persons visualized. ([Had et al., 2009], p. 7)166
8.6 Two companies related by a merge. Former relations are revealed, too.

([Had et al., 2009], p. 7) . 167
8.7 Example tweet of the Twitter platform 169

14

LIST OF FIGURES

8.8 A MetaGraph for Twitter ([Bockermann and Jungermann, 2010a], p. 3) 174
8.9 CP tensor decomposition ([Bockermann and Jungermann, 2010a], p. 4) 178
8.10 CP tensor decomposition incorporating weights ([Bockermann and Junger-

mann, 2010a], p. 4) . 179
8.11 W (C) for MFSTREAM compared to the METAFAC clusterings ([Bock-

ermann and Jungermann, 2010b], p. 11) 187
8.12 Relative W (C) of MFSTREAM using different update step sizes T

([Bockermann and Jungermann, 2010b], p. 11) 187
8.13 Relative runtime of MFSTREAM using different numbers of relations

for update ([Bockermann and Jungermann, 2010b], p. 11) 189
8.14 W (C)/V of MFSTREAM using different sizes of models ([Bocker-

mann and Jungermann, 2010b], p. 11) 189

15

LIST OF FIGURES

16

Chapter 1

Introduction

The World Wide Web is a huge source of information. The amount of information
being available in the World Wide Web becomes bigger and bigger every day. It is
impossible to handle this amount of information by hand. Special techniques have to
be used to deliver smaller excerpts of information which become manageable. Un-
fortunately, these techniques like search engines, for instance, just deliver a certain
view of the information’s original appearance. The delivered information is present
in various types of files like websites, text documents, video clips, audio files and the
like. The extraction of relevant and interesting pieces of information out of these files
is very complex and time-consuming. Special techniques which allow for an auto-
matic extraction of interesting informational units will be analyzed in this work. Such
techniques are based on machine learning methods. In contrast to traditional machine
learning tasks the processing of text documents in this context needs certain techniques.
The structure of natural language contained in text document poses constraints which
should be respected by the machine learning method. These constraints and the spe-
cially tuned methods respecting them are another important aspect in this work.

In this introduction we will define the research questions which we will solve in this
work. We will give an intuitive example which shall be used during the whole intro-
duction to identify the particular research questions. That certain example is sentiment
analysis [Liu, 2010] (see Section 5.3.1). Sentiment analysis or opinion mining is used
for the identification and extraction of opinions concerning particular entities. Those
entities are products in most of the practical use-cases in which sentiment analysis is
employed. Figure 1.1 shows an exemplary sentence which can be found somewhere

The computer is great but the hard drive is disgusting.

Figure 1.1: A sentence containing opinions concerning entities.

in the World Wide Web (WWW), e.g. in a forum. The goal of sentiment analysis is
to extract the entities and the corresponding opinions. The presented example contains
the opinion that a ’computer’ (entity) is ’great’ (sentiment), and the other opinion is

17

CHAPTER 1. INTRODUCTION

that the ’hard drive’ (entity) is ’disgusting’ (sentiment).

By using this simple example we will present our research goals in the following para-
graphs. The particular fields we will focus on in this work are presented in Figure 1.2.
Each block of the figure is presented in a certain section in this introduction. The short-

Information
Retrieval

Retrieval based
on finding of
similar words.

Enhance
retrieval by
Information
Extraction and
Data mining.

Information Extraction Tools for
Information
Extraction

For Information
Extraction pur-
poses only.

Embed Infor-
mation Ex-
traction into
a Data mining
framework for
collaboration
of both areas.

Combination of Information Extraction
and Datamining

Present particular applications which benefit from the collaboration of
Information Extraction and Datamining.

Named Entity
Recognition

Best results
are based on
Domain-dependent
features.

Present
Experiments
using CRFs and
a general featureset
delivering good
results for nearly
every NER dataset.

Relation Extraction

Tree kernels for
Relation Extraction
are computationally
complex.

Use tree kernels in
approaches which
do not have to be
exhaustively
optimized in order
to reduce tree kernel
calculations.

Annotations

Figure 1.2: The particular fields we will focus on in this work (red: current shortcom-
ings; green: our work).

comings of current approaches are written in red letters and our provided solutions are
written in green letters.

1.1 Information Retrieval
Common search engines such as Google are efficiently making the data of the WWW
accessible by compressing and indexing the original data. They deliver text documents,
videos, pictures and other document types which are related to a previously given user-
query.

Search engines have to crawl the WWW. After that, they have to efficiently index the
information which is available in the WWW. Finally, they have to make the indexed in-
formation accessible in a very suitable manner. The field of scientific research address-
ing these needs of search engines is known as Information Retrieval [Van-Rijsbergen,
1979].

18

1.2. INFORMATION EXTRACTION

Information Retrieval has one shortcoming: it mostly delivers just an index-look-up
for the user query. A common search engine requested by a user, given a certain query,
will deliver documents, websites, videos and so on, containing the requested phrase. A
user just gets a link to the files containing the whole request or parts of it. In most cases
the user is not guided to the position in the delivered document or file the requested in-
formation is located at, and, no more additional pieces of information related to the
request are given. No semantical knowledge is offered because it is only checked if the
requested words occur in particular documents.

[Lancaster, 1968] defines Information Retrieval as follows: An information retrieval
system does not inform (i.e. change the knowledge of) the user on the subject of his
inquiry. It merely informs on the existence (or non-existence) and whereabouts of doc-
uments relating to his request.

If a user requests a common search engine using the terms ’great’ and ’hard drive’
a possible response will be a document containing the sentence presented in Figure
1.3. Although a document is presented which contains the requested search terms, the
received result is the complete opposite of the result the user probably assumed to get.
The user was probably looking for a great hard drive but the search result is a docu-
ment mentioning a great computer and a disgusting hard drive in the same context.

The computer is great but the hard drive is disgusting.

Figure 1.3: A search result for the request ’great’ + ’hard drive’.

The example above has shown that the task of sentiment analysis cannot be solved
by traditional Information Retrieval because of the fact that semantical knowledge
is neither used in the analysis of the request nor in the analysis of the documents
which are delivered to the user. We will improve the task of Information Retrieval
by the combination of Information Retrieval on the one hand and Data Mining
and Information Extraction on the other hand. Our application representing the
improvement of Information Retrieval are presented in Section 8.1.

1.2 Information Extraction

If a user does not only want to find trivial information like who was an actor in the
movie called ’Star Wars’, the user might be especially interested in deeper insights
concerning the given request. If a user is searching for informational units concern-
ing a famous person, for example, he will not want to read complete articles about the
person. The user would probably like to get a condensed biography of the person. A
user does not want to search the requested information in many delivered documents.
A user wants to be directly guided to the interesting and relevant positions inside of
the delivered documents. Additionally, a user wants the request to be interpreted. The

19

CHAPTER 1. INTRODUCTION

perfect result is an exact and condensed piece of information which answers the ques-
tion the user asked by using a particular request. To create such condensed information
the delivered files have to be shortened not to contain needless content. Although, the
shortened version still must contain all relevant information. The interesting and rel-
evant pieces of information have to be extracted. Delivering just a bunch of extracted
relevant pieces of information would help a user, but if only the pieces of information
are delivered without contextual information the user is more confused than aided. It
has to be tested if some of the extracted pieces of information are related. Extracting
such relations together with the informational units itself delivers further semantical
knowledge which allows the user to gain knowledge without the necessity to study
contextual information in detail.

Interesting and classifiable tokens in text documents are called named entities. The
task of classifying tokens in text documents is called Named Entity Recognition (NER).
The extraction of relations between formerly extracted named entities is called Rela-
tion Extraction (RE) [Grishman, 2003].

The extraction of such interesting or relevant information which is not achievable by
standard IR-techniques is hard and can be very time-consuming if it is done by hand.
NER and RE go far beyond Information Retrieval (IR). This field of research is called
Information Extraction (IE).
By saying that ”Information Extraction is the automatic identification of selected types
of entities, relations, or events in free text.” [Grishman, 2003] defines Information Ex-
traction as the extraction of informational units of previously defined types. [Cardie,
1997] defines Information Extraction in a different way as she says ”An Information
Extraction system takes as input a text and ”summarizes” the text with respect to a
previously specified topic or domain of interest: ...”.

1.2.1 Named Entity Recognition
Named Entity Recognition (see Section 3.2) is the task to extract interesting and classi-
fied information out of documents. The fact that the extracted information is classified
makes the task of Named Entity Recognition to a task which explicitly delivers seman-
tical pieces of information concerning the document. In the task of sentiment analysis
Named Entity Recognition is a preprocessing step for the extraction of the certain opin-
ions and the entities which are connected to these opinions. Unfortunately, traditional
Named Entity Recognition only focuses on the extraction on very trivial entities like
person names, organization names, location names, and so on. The possibility to ex-
tract more complicated entities becomes more and more important in nowadays fields
of research. In the biological domain, for instance, it is crucial that a particular system
can extract gene names, names of amino acids, and so forth. For the task of sentiment
analysis particular opinions and target entities like products, parties, and many more
must be extracted.

Methods for Named Entity Recognition are very helpful for the application of senti-
ment analysis tasks. Figure 1.4 shows a sentence in which two types of entities have

20

1.2. INFORMATION EXTRACTION

been extracted. In the particular case one type of the entities is an opinion (red) and
the other type is a computer-related product (blue). For this specific domain the entity-
types to be extracted by the Named Entity Recognition-system are not trivial because
they are from a special domain.

The computer is great but the hard drive is disgusting.

Figure 1.4: A sentence containing two types of annotated entities.

For such domains which are more complicated in case of Named Entity Recogni-
tion it is necessary that the used system relies on domain-dependent lexicons or
gazetteers to achieve very good results. These domain-dependent resources are
not easily to deliver for certain new tasks. We will focus on different Named En-
tity Recognition tasks, and we will only use domain-independent and orthographic
features. We will show that current machine learning approaches only working
on domain-independent features are delivering results which are nearly as good as
the results achieved by approaches relying on domain-dependent features in Sec-
tion 3.3. This allows the usage of one certain feature set directly for the application
of different Named Entity Recognition tasks.

1.2.2 Relation Extraction
Relation Extraction (see Chapter 5) is the task which follows on Named Entity Recog-
nition. After having extracted all entities of a particular sentence the possible relations
between those entities are analyzed. For the task of sentiment analysis Relation Ex-
traction can be used to determine whether a relation between two entities is present
and which type of relation the two entities are part of. The example shown in Figure
1.5 presents two relations. The first is between the entities ’like’ and ’computer’ and
the second one is between ’hard drive’ and ’disgusting’. The types of the two relations
is different because the first one is describing a positive sentiment and the second rela-
tion is describing a negative one.

The computer is great but the hard drive is disgusting.

Figure 1.5: A sentence containing dependency relations

The extraction of relations is not obvious because sometimes the relation is indicated
by trigger-words like great or disgusting as shown in Figure 1.5. Sometimes the re-
lation is just indicated by the construction of the sentence, and sometimes both, the

21

CHAPTER 1. INTRODUCTION

information about the appearing words as far as the structures are indicating particular
relations. It is becoming apparent that the extraction of relations in contrast to the ex-
traction of entities – which sometimes is just a look-up in a lexicon – again, is more
complex and requires special techniques.

It is shown in Chapter 5 that for the analysis of relations the state-of-the-art
techniques are based on structured features (see Section 2.1.4). Unfortunately,
the analysis of structured features is computationally hard – especially for huge
datasets. For sufficiently good results of sentiment analysis a huge amount of data
has to be analyzed. We will show that approaches not relying on complex opti-
mization can be used for the analysis of structured features. In addition, we show
that those approaches on the one hand are delivering results which are nearly as
good as results achieved by optimized methods, and on the other hand they are
significantly faster compared to those methods.

1.3 The Tool for Information Extraction
For the extraction of interesting parts of information in text documents the documents
are split into smaller parts of text [Grishman, 1997]. The sequential order of these parts
is being conserved. This is important because on the one hand the later extraction of
relations between the extracted interesting parts of the document needs the structural
information, and on the other hand particular methods are directly processing a whole
batch of such parts and the structural information defines these batches. The splitting
is called tokenizing and the resulting parts are called tokens. A token is always just a
fragment of the original document and it is not restricted to single words.

The single tokens have to be classified in the task of Named Entity Recognition, for
instance. In the context of machine learning the particular tokens can be handled like
data points in every usual Data Mining task. By following this assumption we are able
to use Data Mining tools for the application of documents for Information Extraction
purposes. Unfortunately, usual Data Mining approaches treat the data points in an
independent manner. This means that dependencies between neighboring tokens, for
instance, are usually not taken into account for the inference mechanisms.

It has been shown that traditional machine learning approaches are to be optimized
for Information Extraction tasks. In NER, for instance, current approaches like condi-
tional random fields (CRF) are taking the structure of the sentence, the word occurs in,
into account [Lafferty et al., 2001, Sutton and McCallum, 2007, Tsochantaridis et al.,
2005]. These approaches are achieving more accurate prediction performance than tra-
ditional approaches in this field. Relation Extraction in contrast profits from structured
attributes which can be used by traditional approaches [Moschitti et al., 2008].

A tool is needed which allows to analyze documents in order to perform Informa-
tion Extraction. This tool should enable the transformation of documents into a for-
mat which will be readable and processable by Information Extraction methods. In

22

1.3. THE TOOL FOR INFORMATION EXTRACTION

addition, Information Extraction methods should be available for the analysis of the
documents. To create sufficiently good analysis the document has to be enriched by
additional features which aid the analyzing process. The tool should therefore provide
preprocessing operators which enrich the documents. The features which are used for
enriching the documents are manifold. The features can be numerical or nominal but
they also can be of a structure. The tool should maintain those features for a sufficient
feature set. The tool should be able to statistically evaluate and validate analysis in
order to compare different learning methods for the same dataset. This comparison
allows the selection of the best performing technique for particular datasets.

Usual frameworks for Information Extraction are constructed for the simple ap-
plication of Information Extraction approaches. Unfortunately, these approaches
are not based on the principles of Data Mining and machine learning. Frame-
works for Data Mining are, for instance, offering methods for the evaluation and
validation of significant results on data mining tasks. We will present an exten-
sion to the open-source Data Mining framework RapidMiner which combines on
the one hand Information Extraction techniques and on the other hand all the par-
ticular infrastructure which is important for Data Mining. Our extension allows
the comparison of traditional Data Mining and certain Information Extraction ap-
proaches in a statistically significant way. Additionally, our framework provides
arbitrary features for the analysis process which, amongst others, allows the us-
age of tree-structured features. Finally, the embedding of Information Extraction
into a Data Mining framework allows the easy analysis of extracted information
by Data Mining methods to gain further insights which is not provided by any
other Information Extraction framework.

1.3.1 Annotations
The creation of classified data is crucial for machine learning techniques. Due to the
fact that every supervised machine learning method needs classified data those data has
to be delivered. If the data is not yet classified, the data must be manually classified.
In the context of Information Extraction classified datasets are called annotated. A
sufficiently annotated dataset is needed for the application of machine learning meth-
ods on tokens which represent documents. To create such dataset it is needed that a
sufficient amount of documents is manually annotated. The persons annotating texts
are called annotators. The documents an annotator is processing should belong to one
particular domain not to stress the annotator too much. If an annotator is familiar with
such domain, he will have no problem to annotate the texts. Unfortunately, this work
is very time-consuming especially if a huge amount of documents has to be processed.
Additionally, if the annotator is not familiar with the domain he possibly will create
mistakes during the annotation process.

Machine learning can help in this context to shorten the assignment of human annota-
tors. Just the training set has to be annotated by hand. The amount of tokens which
has to be manually tagged can be reduced by active learning [Tomanek, 2010]. The
rest of the data can be annotated automatically by using a machine learning method

23

CHAPTER 1. INTRODUCTION

which was trained during a former training phase. The annotation process in the con-
text of machine learning is called tagging because an additional information is tagged
to the particular token in the text. As it is shown in Figure 1.5 some entity-types can be
tagged only by using a lexicon access. More complicated or ambiguous words require
more complex methods.

We will provide a graphical interface which allows users to easily annotate to-
kens. These tokens are later on used train Information Extraction methods for an
automatic annotation process.

1.4 Combination of Information Extraction and Data
Mining

The close collaboration of Information Extraction and Data Mining methods is a major
achievment of our extension. Other approaches do not offer such close collaboration.
Information Extraction tasks do not only benefit from Data Mining validation or eval-
uation methods. This collaboration furthermore allows the analysis of pieces of infor-
mation which have been extracted by Information Extraction tasks. We will present
particular real-world tasks which give reasons for the combination of Information Ex-
traction and Data Mining methods. One of these tasks is the analysis of extracted
relations.

A recent extension for the extraction of relations is the representation of these rela-
tions in a graph. This representation first of all offers an intuitive view on the extracted
information which aids users to gain further insights. Additionally, the graph itself can
be used to extract more information concerning the related entities. Although such
graph can store relations which have been extracted by an Information Extraction sys-
tem, the graph also can be a set of entities which are related because of some reasons.

In the WWW, for instance, such relation graphs already are presented in various ways.
Well-known and popular examples of such relation graphs are social networks like
facebook and twitter. These networks are offering a huge amount of entities on the one
hand (for instance users, messages, photos and so on) and relations between these en-
tities on the other hand (for instance message from user A to user B, user A likes photo
C and so on). These relations and entities do not have to be extracted in a complicated
way – they just have to be crawled. Figure 1.6 shows a message (called Tweet) from a
user of the blogging platform twitter.

This Tweet contains a tag – indicated by the preceding # – and a url. By using
these pieces of information we can construct a quaternary relation connecting the au-
thor, tag, url and the tweet itself. Extracting all or just some of the relations apparent in
such networks allows us to create a relation graph. An analysis of entities in the graph
without having information about the entity itself is possible by just focusing on the
relations in the graph.

24

1.5. OUTLINE

Figure 1.6: A message from the blogging-platform twitter. The message can be inter-
preted as a quaternary relation between message, user, tag and url.

Extracted entities and relations can be combined to form some kind of event like, for
instance, the acceptance of a request which has been discussed in the parliament (see
Section 8.1). If these Information Extraction task is finished the extracted events, again,
can be used to extract additional knowledge.

The explicit collaboration of Data Mining and Information Extraction techniques
is not possible in any of the popular frameworks for Information Extraction. We
closed this gap by the development of an Information Extraction extension for the
Data Mining framework RapidMiner. We will present particular real-world ap-
plications which exactly profit by such collaboration in Chapter 8.

1.5 Outline
The work is organized as follows.
Chapter 2 is about the definition of all needed formalisms of machine learning which
are used in this work. Additionally, multiple approaches of machine learning applica-
ble to the fields of Information Extraction are presented.

In Chapter 3 we describe the historical development from first approaches of Infor-
mation Extraction over Named Entity Recognition to the point of Relation Extraction.

Chapter 4 gives an overview about the possibilities to use linguistic resources for the
creation of feature sets for Information Extraction purposes.

In Chapter 5 we show how Relation Extraction is formally defined. We additionally
show what kind of methods are used for Relation Extraction in machine learning.

In Chapter 6 we are focusing on Relation Extraction techniques which benefit on the
one hand from minimum optimization and on the other hand from efficient data struc-
ture.

Most of our experiments and implementations were done using the open source frame-
work for Data Mining RapidMiner. To apply this framework on IE tasks we developed
an extension called Information Extraction Plugin. We describe the extension in Chap-
ter 7. To give an overview of software to be used for IE which is slightly comparable

25

CHAPTER 1. INTRODUCTION

to our extension we present two software packages in Section 7.3.

Chapter 8 presents applications which explicitly benefit from the collaboration of Data
Mining and Information Extraction. In Section 8.1 we present the usage of Data Mining
techniques on pieces of information which have been formerly extracted by Informa-
tion Extraction methods, and in Section 8.3 we present the analysis of graphs which
contain extracted relations by only using the relational data instead of using informa-
tion contained in the related entities itself.

We conclude our work in Chapter 9.

26

Chapter 2

Machine Learning for
Information Extraction

In this chapter we will present the basic techniques and methods for the later chap-
ters. The methods we are presenting here are used in most of the following chapters.
Machine learning [Mitchell, 1997] describes the ability of computer programs to learn
from data. Learning means that the certain computer programs are extracted or cre-
ated out of some set of data. The resulting program should be general enough to make
decisions on data not belonging to the set the model was created on. The data to be
analyzed in this context is manifold. Typical application areas are fraud detection,
spam detection, marketing analysis and image analysis. These areas of course are just
a small excerpt of the wide range of applicable tasks. We will call the program a model
in the following as it is modeling the data.

Definition 1. A model is a program that is created from a set of data. It is used to
make decisions based on the set used for the creation of the model.

Definition 2. The set of data used for creating a model is called training set because
the model is trained according to this set.

Following the definition of [Hastie et al., 2003] the field of machine (or statisti-
cal) learning is split into 2 subtasks: supervised and unsupervised learning. For both
learning schemes the data is represented by a set of features. One data point and its
particular assignment of the features is called an example. The data which contains
many examples is called example set.

Definition 3. A data point is called example. Lowercase and bold letters like x, for
instance, indicate examples.

Definition 4. An example contains attributes which are called features. Features are
indicated by indexed lowercase (not bold) letters xi.

The characteristics of a feature are remarkable. We distinguish between flat and
structured features in this work.

27

CHAPTER 2. MACHINE LEARNING FOR INFORMATION EXTRACTION

Definition 5. A feature will be called flat if its value is of nominal or numerical type.

Definition 6. A feature will be called structured if it is not flat and if its value is a
structured type like a tree, for instance.

Definition 7. A set of examples x is called example set X .

For supervised learning the learned program is used to predict a certain output
variable (called label) given the feature assignments. The labels usually are categorical
or quantitative. The program is created during a training phase. During the training
phase an example set is used to tune the program. The examples of this set must contain
a label. After creating the program it can be used to predict the label of examples using
only the feature assignments. The latter phase is called testing phase.

Definition 8. Examples can contain a special output variable indicating the class or
category of the example. This output variable is called label and it is indicated by y.

Definition 9. The set of data a model is applied to is called test set because the already
trained model is making predictions on this set without knowing the correct labels of
the set.

For unsupervised learning the resulting program is created by only using the feature
assignments. Approaches of unsupervised learning, for instance, are used to categorize
the example set into different groups whereas similar examples are grouped together.

2.1 Feature types

In this Section we want to define the different types of features which can be used for
machine learning tasks. The following listing is not complete, certainly, but we try to
show the differences and similarities between the various types of features. Especially
the tree-structured features which are presented in Section 2.1.4 are often used in this
work and therefore they are very important. Numerical, nominal (and date) features
are flat features (see Definition 5) and tree-structured features are structured features
(see Definition 6).

2.1.1 Numerical Features

Numerical features xi ∈ R contain real-valued numbers which are advantageous for
the case of machine learning. An example x containing numerical features, only, can
mathematically be processed – using the dot-product, for instance. In addition, numeri-
cal features are naturally ordered which is sufficient for the calculation of most distance
measures. A special case are numerical features representing categorical values c ∈ N
which are not necessarily ordered. These features cannot directly be used for many
vector calculations.

28

2.1. FEATURE TYPES

2.1.2 Nominal Features
Nominal features xi ∈ Cn contain nominal values like Strings. Cn represents a se-
quence of characters. These features do not contain numbers which makes them not to
be processed by vector calculus functions directly. The crucial task for nominal fea-
tures is to convert them into a numerical representation to make them applicable by
machine learning methods. The trivial approach to convert nominal features into a nu-
merical representation is to exchange every individual value of the nominal feature by
an individual numberm ∈ N. Unfortunately, this will end up in a categorical numerical
feature having the disadvantage not to be ordered in a useful way (see Section 2.1.1).
Another approach is to convert every nominal feature into multiple binary numerical
features. We assume that the nominal feature xi has k different values on the data set.
k binary numerical features will be created, each for one of the nominal values. After
that the values of the k features will be set to 1 or 0. A feature will be set to 1 if the
feature xi contained the particular nominal value. Otherwise, the feature will be set
to 0. k − 1 of the resulting k features will contain a 0 and one feature will contain a
1. Although the number of features will increase if this approach is used, the resulting
representation of the examples can be used by vector calculation methods directly.

2.1.3 Date Type Features
A date is a special kind of nominal feature because on the one hand it is ordered and
on the other hand this ordering cannot be used easily in the case of vector calculation
methods. The date values have to be converted into real-valued numbers before a cal-
culation using these values is possible. The date feature type can be neglected for this
work, but it is mentioned here because numerical, nominal and date features are the
three possible feature types in RapidMiner which is the software we are using for most
of our experiments (see Chapter 7).

2.1.4 Tree-structured Features
A structured feature is more complex in contrast to the three formerly presented feature
types. In this work we will only use structured features containing a tree structure. The
complexity of the structured features becomes apparent in different facts. Like nominal
features the structured features do not contain any trivial order. Additionally, tree-
structured features mostly are representing great formations like sentences, websites
and so on (see Section 2.1.4). This fact makes it unlikely for two equal trees to occur
together in a dataset, and therefore it is not useful to convert a tree-structured feature
into binary numerical features. If, for instance, a tree-structured feature xi contains a
unique tree for each example it is not helpful in its original form because it does not
give any impact for the task of machine learning. Another important point according
tree structures is their recursive nature. The root node of a tree (mostly) has children
node which, again, are the root nodes of trees.

Definition 10. A tree is a graph T = (V,E) containing set of nodes V and a set of
edges E. One special node er ∈ E does not have parent-nodes. This node is called
root-node. Every other node e ∈ E|e 6= er has one parent-node. If a node has

29

CHAPTER 2. MACHINE LEARNING FOR INFORMATION EXTRACTION

no children nodes it will be called leaf-node or terminal (node). A node which only
contains terminal nodes as children nodes is called preterminal (node). Every node
e ∈ E is the root-node of a subtree T ′ of T , where T ′ ⊆ T .

Definition 11. The production of a particular node e ∈ E is a special representation
of the node consisting of the node e itself and the corresponding children nodes of e.

Tree structures

We will use several tree-structured features in this work. We are presenting three tree
structures we are using in this work to give the reader an idea of the manifold occur-
rences of trees in machine learning datasets. The trees we are presenting are parse
trees which are representing the syntactical analysis of a given token-sequence accord-
ing to a grammar. Non-leaf-nodes are tagged as non-terminal symbols of the grammar,
whereas leafs are tagged as terminal symbols. The methods used for creating parse
trees are called parsers.

Constituent parse trees A constituent parse tree is a tree structure which splits sen-
tences into phrases and word types according to a grammar of natural languages. To
give the reader an example we parsed the sentence ”Felix went to New York to visit the
statue of liberty.”. The resulting parse tree is shown in Figure 2.1. The sentence is split
into a noun phrase (NP) ”Felix” and into a verb phrase (VP) ”went to New York...”. Ac-
cording to grammatical rules for certain languages the phrases, which are represented
as subtrees in the parse tree, are split recursively. The words of the sentence are present
in the leafs of the constituent parse tree. The constituent parse tree is very helpful in
the sense that groups of words, which syntactically belong together, are represented in
parse trees.

Dependency parse trees The dependency parse tree contains the words of a sentence
as nodes and labeled edges between the nodes are representing the dependencies which
are present between the words. The same sentence we already used for visualizing the
constituent parse tree is used to show an exemplary dependency parse tree in Figure
2.2. It becomes visible that the sentence is split into three major parts which depend
from the word ”went”. A dependency parse tree can even better be used to extract
semantical knowledge from the sentence. In Figure 2.2 the dependency parse tree easily
can be used to answer the questions ”Who ’went’?”, ”Where did someone ’go’?” and
”Why?”. The answers are given by the three subtrees ”Felix ’went’!”, ”S.o. ’went’ to
New York!” and ”To visit the statue of liberty!”. In addition, the dependency parse tree
is very helpful for specific languages containing long-distance relationships like for the
German language [Kübler and Prokic, 2006].

Machine-readable language trees Machine-readable languages like XML and HTML
can easily be converted into a tree representation. If the particular documents are well
formed the tags between an opening and a closing tag will form a new subtree. Figure
2.3 shows the tree representation of an HTML document.
Other machine-readable languages like SQL, for instance, are parsed in a more compli-

30

2.1. FEATURE TYPES

Figure 2.1: The constituent parse tree of the sentence ”Felix went to New York to visit
the statue of liberty.”

cated way. Although parsing SQL statements is more complicated than parsing XML, it
is much easier than parsing natural languages because the vocabulary of SQL is small
in contrast to the vocabulary of a natural language.

String Representation of Trees Trees can always be represented as strings. Follow-
ing the bracketing approach of the Penn treebank [Marcus et al., 1993] (see Section
4.1) each subtree of a tree is encapsulated in brackets – “(” for the beginning of the
subtree and “)” for the end. This is done for every subtree available in the original tree.

The string representation of the tree shown in Figure 2.1 is:
(ROOT (S (NP (NNP Felix)) (VP (VBD went) (PP (TO to) (NP (NNP New) (NNP York)))
(S (VP (TO to) (VP (VB visit) (NP (NP (DT the) (NN statue)) (PP (IN of) (NP (NN lib-
erty)))))))) (. .)))

31

CHAPTER 2. MACHINE LEARNING FOR INFORMATION EXTRACTION

Figure 2.2: The dependency parse tree of the sentence ”Felix went to New York to visit
the statue of liberty.”

2.2 Data preparation
The original data which is converted into an example set can contain different pieces
of information which are impractical for the modeling process. The task of data prepa-
ration [Pyle, 1999] focuses on all the efforts needed to convert the original data into
examples to be sufficiently handled by a modeling process. Data preparation does not
only reconvert the data which could be of different formats as it is extracted from sen-
sor networks or databases, for instance. Many reasons are crucial for data preparation.
We present the three major reasons:

• The feature set contains defective features like noise, outliers or null-values.

• The feature set is too huge and its processing is computationally too expensive.

• The feature set contains features which are not applicable by certain models.

The feature set has to be analyzed in order to find defective features. Defective fea-
tures can extremely affect the performance of certain models. If defective features are
found they should be removed or replaced. The computational complexity of particular
models relies on the dimension of the feature set. If the dimension of the feature set is

32

2.2. DATA PREPARATION

Figure 2.3: The tree representation of an HTML document

too great the calculation of the model becomes computationally complex. It is useful
to reduce the number of features without losing (too much) information. In addition
to removing all correlated features a feature selection can be applied to select a subset
of features which delivers nearly as good results as the complete feature set. Some
models can only handle specific types of features. Support Vector Machines (SVM),
for instance, are only able to handle numerical features. If follows that the feature set
has to be prepared for certain models in order to contain the correct types of features.
Nominal features can be converted into numerical features as shown in Tables 2.1 and
2.2.

... nominal
attribute

...

... red ...

... blue ...

... blue ...

Table 2.1: An example set contain-
ing a nominal attribute

... numerical at-
tribute red

numerical at-
tribute blue

...

... 1 0 ...

... 0 1 ...

... 0 1 ...

Table 2.2: The example set shown in Table 2.1 con-
verted into a numerical representation

Although, the task of data preparation seems to be trivial 60% of the time needed for
the complete Data Mining task is used for data preparation [Pyle, 1999]. We only
present an overview of the possibilities of data preparation because it would go beyond
the scope of this work to present this huge area completely.

33

CHAPTER 2. MACHINE LEARNING FOR INFORMATION EXTRACTION

2.3 Particular Specialties for Information Extraction
In contrast to traditional Data Mining performed on data which is available in databases
or data warehouses, Information Extraction is facing an amount of unstructured infor-
mation which first of all has to be converted into a example set comparable to example
sets used in traditional Data Mining approaches. This means that, for instance, one
document has to be split into a set of examples. In addition, these examples have to
be enriched by a set of features. This extraction does not have to be performed in
traditional Data Mining tasks because the example set and the according features are
inherently given by the relations and the attributes in the database.

Definition 12. The splitting of unstructured information in Information Extraction is
called tokenizing. The resulting parts are called tokens.

Although these tokens can be seen as an example set like it is used in traditional
Data Mining, they contain inherent structures which contain additional information.
Two relations of a database normally do not relate to each other, unless they share
several attribute values. Two tokens extracted from one document or from one sentence
may relate to each other in a stronger way. This behavior is described in the following
section.

2.3.1 Interdependent Features and Examples
It is very important for Information Extraction to respect the original structure of the
tokens. The preceding and following tokens for a certain token are indicating particular
knowledge for that token. On the one hand the information contained in the surround-
ing tokens can be used to enrich the feature set for the current token. On the other hand
the structure of the tokens itself can be used by the inference mechanisms like it is done
by structured models (as presented in Section 2.4.2). It is indispensable that the struc-
ture of the tokens is preserved during the complete Information Extraction process. If
this is respected the set of tokens can be used like an example set by traditional Data
Mining approaches – for the comparison of Information Extraction with Data Mining
methods, for instance.

Tokens are not restricted to single words. In contrast, an interesting information to be
extracted is not restricted to a single token. If, for instance, each word of a document
is used as a token the interesting information sometimes will cover more than one to-
ken. A person’s name consisting of name and surname mostly is covering two or three
tokens. It follows that the evaluation of a machine learning approach for Information
Extraction is not as trivial as for traditional approaches (see Section 2.4.4). A dataset
containing many informational units covering multiple tokens sometimes is tagged us-
ing the so called IOB-tagging [Ramshaw and Marcus, 1995]. The beginning token of
an informational unit is prefixed by a “B-” (which means that a new informational unit
begins). The following tokens of the the same informational unit are prefixed by “I-”
(which means that these tokens are inside of an informational unit). Every token which
does not belong to an informational unit is tagged by an “O” (meaning that this is a
token outside of the informational units). This approach ensures that two neighboring

34

2.4. MODELS

tokens can be tagged as two or one informational units. If for instance the two tokens
should be tagged as two person names, the tags should be B-PER B-PER. If the tokens
should be tagged as one person name the tags should be B-PER I-PER.

2.4 Models
In this Section we will show what kind of models can be used for Information Extrac-
tion. Rule-based models are historical methods which are too inflexible to be chosen
for domain-independent Information Extraction. A short paragraph about rule-based
models is written in Section 3.2.2. Especially statistical and structured models have to
be preferred. Although structured models deliver the better results in cases of precision,
recall and accuracy, statistical models should be chosen to achieve shorter runtime.

2.4.1 Statistical Models
Statistical models are based on the statistics of the training set. Some of these models
are exhaustively optimized in a training phase whereas lazy models are memorizing the
training data and the calculation which is relevant for the decision exclusively happens
during the prediction phase. We split the statistical models into the group of Lazy
Models, Optimized Models and models which cannot be put into one of both groups.

Lazy Models

[Aha, 1997] defines lazy learning methods by three characteristics:

• The inputs are memorized for future use. They will only be processed if a request
for information is received.

• Responses for requests are given by combining the stored data (inputs).

• The response and any calculated results are discarded.

[Aha, 1997] in contrast mentions eager learning algorithms which ”greedily compile
their inputs into an intensional concept description”. Both approaches have advan-
tages and disadvantages. Although lazy models have less computational costs during
training, they often require more storage and do have more computational costs during
prediction than eager models. In this Section we present k-Nearest Neighbors which
are a typical lazy learning approach.

k-Nearest Neighbors The k-Nearest Neighbors approach (kNN) [Hastie et al., 2003]
stores all the examples from the training set for future use. If an example x should be
predicted by kNN k examples from the training set which are most similar to x will be
used for the prediction. Therefore, the k most similar examples have to be found. After
that the class which is most frequent for these examples is chosen for the prediction of
x. An odd number which does not equal the number of classes mostly is chosen for
k to assure that one class gets the majority of the k examples. The kNN approach is
computationally complex during the prediction phase as the new example x has to be

35

CHAPTER 2. MACHINE LEARNING FOR INFORMATION EXTRACTION

compared with every example x′ from the training set. The distance measure which
is used to select the k most similar examples compared to x often is the Euclidean
distance which uses every feature of the examples for the calculation of the distance
measure. If the training set contains n examples having m features the complexity of
each prediction is O(mn). In addition to the complexity of the prediction phase the
storage complexity which is needed to keep the complete training set is significant.

Optimized Models

Although [Aha, 1997] already mentioned eager models in contrast to lazy models we
would like to focus especially on the types of models which build an optimized decision
model. In this context we assume that an optimized decision model only contains a
subset of the training set which in addition is weighed according to emphasize the
important parameters. In this Section we present Support Vector Machines which are a
heavily optimized approach.

Support Vector Machine A Support Vector Machine (SVM) [Vapnik, 1995] is a ma-
chine learning approach that creates a separating hyperplane in the feature space of the
examples to split the set of the positive examples from the set of negative examples. It
becomes obvious that an SVM is a model which only can handle binary datasets. Using
a certain strategy (see Section 2.4.3) allows to apply SVMs to multi-class datasets. The
example set shown in Table 2.3 contains two features (weight and height) and a label
(gender) containing two different values (m and w). The examples of that example set
are located in the feature space R2. Figure 2.4 visualizes the example set in R2.

A linear model [Hastie et al., 2003] is calculating a prediction ŷ given an example

ID WEIGHT HEIGHT GENDER

1 90 190 M
2 60 170 W

Table 2.3: Example set containing two examples and two features

x by equation 2.1.

ŷ = β̂0 +

p∑
j=1

xj β̂j (2.1)

ŷ = β̂0 + xT β̂ (2.2)

The optimal β̂ is the one resulting in the minimum RSS(β̂) (see equation (2.3)).

36

2.4. MODELS

height
200160

weight

90

60

Figure 2.4: The example set shown in Table 2.3 visualized in R2

RSS(β) =

N∑
i=1

(yi − xTi β)2 (2.3)

A linear model can be seen as an optimal separating hyperplane in the feature space.
Figure 2.5 contains such hyperplane. An intuitively optimal hyperplane separates the
positive from the negative examples and has the greatest distance to the nearest positive
and negative examples.

Let the positive examples get the label-value 1 and let the negative examples get
the label-value −1. Following this assumption equation 2.1 can be rewritten like in
equation (2.4) and (2.5) for the two label-values.

1 ≤ β̂0 + xTi β̂, for yi = 1 (2.4)

−1 ≥ β̂0 + xTi β̂, for yi = −1 (2.5)

Three parallel hyperplanes are available, now. Two of them are crossing the positive
and negative examples which are nearest to each other and the third one is between the
other two ones having the same distance to both of them. The hyperplanes are shown
in Figure 2.6.

The distance between the two hyperplanes located at the outer sides is 2
‖β‖ and it

is called margin. For the achievement of the optimal separating hyperplane the margin

37

CHAPTER 2. MACHINE LEARNING FOR INFORMATION EXTRACTION

height
200160

weight

90

60

Figure 2.5: An intuitively optimal hyperplane separating the example set shown in
Table 2.3

should be maximized. To maximize the margin 2
‖β‖ it is possible to minimize ‖ β ‖.

For mathematical reasons 1
2 ‖ β

2 ‖ will be minimized. Equations (2.4) and (2.5) gen-
erally can be written like shown in equation (2.6).

1 ≤ yi
(
β̂0 + xTi β̂

)
(2.6)

Given equation (2.6) as a side condition for the optimization problem min 1
2 ‖ β

2 ‖
makes the optimization to be solved by Lagrange multipliers [Hazewinkel, 2002]. The
Lagrange optimization problem (in its primal form) is presented in equation (2.7)

LP =
1

2
‖β‖2 −

N∑
i=1

αi[yi(x
T
i β + β0)− 1] (2.7)

αi ≥ 0 are the Lagrange multipliers. To find the optimum the primal optimization
problem is differentiated with respect to β0 and β.

38

2.4. MODELS

height
200160

weight

90

60

Figure 2.6: The separating hyperplane and the two parallel hyperplanes crossing the
negative and positive examples of the set shown in Table 2.3

∂LP
∂β

= 0 (2.8)

=⇒ 0 = β −
N∑
i=1

αiyixi (2.9)

=⇒ β =

N∑
i=1

αiyixi (2.10)

∂LP
∂β0

= 0 (2.11)

=⇒ 0 =

N∑
i=1

αiyi (2.12)

If we insert equations (2.10) and (2.12) into equation (2.7) we will receive the dual
optimization problem LD which is shown in equation (2.13).

LD =

N∑
i=1

αi −
1

2

N∑
i=1

N∑
i′=1

αiαi′yiyi′x
T
i xi′ (2.13)

In the prediction phase the optimized values for β and β0 are used to predict new ex-
amples like it is shown in equation (2.2). Equations (2.10) and (2.12) show that only

39

CHAPTER 2. MACHINE LEARNING FOR INFORMATION EXTRACTION

examples xi getting an αi > 0 during optimization are used for calculating β and β0.
These examples are called support vectors because only these examples are taken into
account for the model which is used for later prediction. The remaining examples can
be neglected.

It could happen that not all examples are to be classified correctly. Some might be
located on the wrong side of the separating hyperplane and some might lie on the cor-
rect side but inside of the margin. Figure 2.7 shows three examples which are not
located correctly. Those examples should be punished during optimization to achieve
a most optimal separating hyperplane.

Every example xj that is not positioned correctly according to the hyperplane will

height
200160

weight

90

60

Figure 2.7: A sub-optimal hyperplane and several examples violating the definition of
an optimal hyperplane

get an error-term εj > 0. Examples xj which are located correctly will get a value
εj = 0. The optimization problem is changed to min 1

2 ‖ β
2 ‖ +C

∑N
j=1 εj . C is a

parameter which is used to leverage the impact of erroneous examples. It follows that
0 ≤ αj ≤ C ∀ 0 ≤ j ≤ N .

The optimization of an SVM is done by finding the most optimal values for αj∀0 ≤
j ≤ N . [Platt, 1999] presented an optimization approach which is called sequential
minimal optimization (SMO). In contrast to optimizing all α-values together his ap-
proach is used to sequentially optimize the smallest number of α-values. Respecting
equation (2.12) it follows that the smallest number of α-values to be optimized together
is 2. Optimizing just one αj would change the value for that αj and equation (2.12)
would not be valid anymore. We will not present the optimization process in detail

40

2.4. MODELS

because it is out of the scope of this work.

Kernels By definition an original SVM is only creating models which can sep-
arate examples by a hyperplane. This is only possible if the examples are linearly
separable. Unfortunately, some example sets are not linearly separable. Figure 2.8, for
instance, shows a typical example set not being linearly separable. A possible approach
to make this example set separable by a SVM is to convert the example set into another
feature space. Every example xj is converted using a mapping function φ(·) : S → F .
Equation (2.13) has to be changed in order to handle the converted examples φ(xj).
The new dual Lagrangian is shown in equation (2.14).

φ

Figure 2.8: An example set not being linearly separable which is transformed to be-
come linearly separable

LD =

N∑
i=1

αi −
1

2

N∑
i=1

N∑
i′=1

αiαi′yiyi′φ(xi)
Tφ(xi′) (2.14)

The conversion and the calculation of the dot product which can be seen as a calcula-
tion of a similarity measure of the converted examples can be done in one step by using
a kernel function [Hofmann et al., 2008].

k(xi,xi′) = φ(xi)
Tφ(xi′) (2.15)

Equation (2.15) shows how kernel functions implicitly work. Although it seems as if
the examples will be transformed into a feature space F the transformation does not
really have to be performed. This so called kernel trick becomes obvious by having a
look four typical kernel functions used for nonlinear problems in Table 2.4 presented
by [Müller et al., 2001].

41

CHAPTER 2. MACHINE LEARNING FOR INFORMATION EXTRACTION

Gaussian RBF k(x,x′) = exp −‖x−x
′‖2

c

Polynomial k(x,x′) = ((x · x′) + θ)d

Sigmoidal k(x,x′) = tanh(κ(x · x′) + θ)
inverse multiquadratic k(x,x′) = 1√

‖x−x′‖2+c2

Table 2.4: Different kernel functions

Non-optimized, non-lazy Models

We presented optimized and lazy learning models in the previous Sections. Neverthe-
less, some kind of models are similar to both groups but they cannot be put exactly
in one of them. In this Section we present Perceptrons and Naı̈ve Bayes Classifiers.
Although Perceptrons rely approximately on the same decision function like Support
Vector Machines they are not really optimized because they are an iterative approach
greedily collecting the relevant inputs for the decision function. Naı̈ve Bayes Classi-
fiers are no lazy learning approach following the definition of [Aha, 1997]. Anyway,
they are comparable to lazy learning as they use the complete training set and only will
calculate decisions if requests are coming in during the test phase.

Perceptron The perceptron classifier has been proposed by Rosenblatt [Rosenblatt,
1958] as a scheme for determining a separating hyperplane H within some feature
space. It is an error driven learning algorithm, which calculates a hyperplane based on
misclassified examples. The decision function fw can be written as

fw(x) = sign (〈β,x〉+ β0)

The training of a simple perceptron is a collecting of misclassified examples to deter-
mine β and β0. Algorithm 1 outlines the pseudo-code for the training of a perceptron
where the parameter ρ determines a learning rate. Please note that the collection of
misclassified examples as set M is not required in the original perceptron learner, but
included here for later use. The result is a decision model by means of

β =
∑

(x,y)∈M

ρyx β0 =
∑

(x,y)∈M

ρy (2.16)

The learning rate ρ can be chosen in different ways, where ρ = 1 reveals the perceptron
as originally stated by Rosenberg and ρ = 1

t leads to a behavior comparable to a simple
neural network (t being the number of training samples seen so far).

Naı̈ve Bayes Classifier Naı̈ve Bayes classifiers [Hastie et al., 2003] are well-known
machine learning techniques. Based on the Bayes theorem the naı̈ve Bayes classifiers
deliver very good results for many machine learning tasks in practical use [Domingos
and Pazzani, 1997].

42

2.4. MODELS

Algorithm 1 Perceptron Algorithm
procedure TRAINPERCEPTRON

Input: Example set T ⊂ X × Y
Output: weight vector β, bias β0, example subset M
Initialize β := 0, β0 := 0,M := ∅
for all (x, y) ∈ T do

if fw(x) 6= y then
β := β + ρyx
β0 := β0 + ρy
M := M ∪ {x}

end if
end for
return β, β0,M

end procedure

Many machine learning techniques like Support Vector Machines (SVMs), for instance,
are suffering from a complex training phase. Naı̈ve Bayes classifiers do not have this
disadvantage because the training phase just consists of storing the training data effi-
ciently. In this way a naı̈ve Bayes classifier memorizes the training data. Although,
naı̈ve Bayes classifiers are not optimized, they deliver good results. Their ability to de-
liver good results while not needing exhaustive training makes naı̈ve Bayes classifiers a
good choice in resource-aware settings like mobile devices [Fricke et al., 2011, Morik
et al., 2010]. The Naı̈ve Bayes classifier (NBC) [Hastie et al., 2003] assigns labels
y ∈ Y to examples x ∈ X . Each example is a vector of m attributes written as xi,
where i ∈ {1, ...,m}. The probability of a label given an example is, according to the
Bayes Theorem:

p(y|x1, x2, ..., xm) =
p(y)p (x1, x2, ..., xm|y)

p (x1, x2, ..., xm)
(2.17)

By assuming that the features xi are conditionally independent (naı̈ve Bayes assump-
tion) equation (2.17) is rewritten to create the naı̈ve Bayes classifier as shown in equa-
tion 2.18. Domingos and Pazzani [Domingos and Pazzani, 1996] are calling it the
Simple Bayes Classifier (SBC):

p(y|x1, x2, ..., xm) =
p(y)

p (x1, x2, ..., xm)

m∏
j=1

p (xj |y) (2.18)

The classifier calculates the most probable class y ∈ Y for a given example x =
x1, . . . , xm:

arg max
y

p(y|x1, x2, ..., xm) =
p(y)

p (x1, x2, ..., xm)

m∏
j=1

p (xj |y) (2.19)

The term p (x1, x2, ..., xm) can be neglected in equation (2.19) because it is the same
constant for every class y ∈ Y . The decision for the most probable class y for a given

43

CHAPTER 2. MACHINE LEARNING FOR INFORMATION EXTRACTION

example x only depends on p(y) and p (xi|y) for i ∈ {1, . . . ,m}. The expected values
for the probabilities are used which are calculated on the training data. The values can
be calculated after one run on the training data. The training runtime is O(n), where
n is the number of examples in the training set. The number of probabilities to be
stored during training are |Y |+

(∑m
j=1 |Xj ||Y |

)
for nominal attributes, where |Y | is

the number of classes and |Xj | is the number of different values of the jth attribute
[Mitchell, 2010]. If the attributes are numerical, just two values for mean and standard
deviation have to be stored resulting in O (m|Y |) probabilities.

Most implementations of naı̈ve Bayes classifiers deliver the class y which results in
the highest outcome for equation (2.19) for a given example x. It is not stringently
required to use values between 0 and 1 for y or during the calculation of the most
probable y. This becomes important in Section 6.3.3. It has often been shown that
SBC or NBC perform quite well for many Data Mining tasks [Domingos and Pazzani,
1996, Huang et al., 2003].

2.4.2 Structured Models
The kinds of models we presented in the former Sections all are independently creat-
ing decisions for examples. That means that the decision is only conditioned by the
particular example. For some learning tasks the examples might depend each other
and the labels of these examples might depend each other, too. Structured models
like Conditional Random Fields [Lafferty et al., 2001] and Structured Support Vector
Machines [Tsochantaridis et al., 2004] respect this dependencies and they do not only
predict examples because of their feature assignments but also because of predictions
for other examples already made or to be made. A current approach by [Fernandes
and Brefeld, 2011] uses partially annotated sequences for the training of a transduc-
tive perceptrons. We will present Conditional Random Fields in detail in the following
Paragraph because we are using these models in several experiments in this work.

Conditional Random Fields Conditional Random Fields (CRF) [Lafferty et al., 2001]
are a special form of the Markov Random Fields (MRF) [Kindermann and Snell, 1980].

Definition 13. A MRF is a set of random variables Z with respect to an undirected
acyclic graph G = (V,E) containing vertices v ∈ V and edges e ∈ E, where Z is
indexed by V (Zv ∈ Z ∀ v ∈ V). The Markovian property has to be satisfied by Z .

The variable set Z internally is connected by an undirected graph. It follows that
the calculation of conditional probabilities for certain variables Zv cannot be calcu-
lated using an antecessor. In addition, not only one but several variables Zv′ can be
connected to Zv . The Markovian property (see equation (2.20)) states that the proba-
bility of a certain variable Zv only is conditioned by all its neighbors.

p(Zv|Zw∀v 6= w) = p(Zv|Zw∀w ∈ ne(v)) (2.20)

44

2.4. MODELS

where ne(·) is the set of neighbors of a certain node.

A clique (see Definition 14) is a subset of nodes where each node is connected to
every other node of the subset.

Definition 14. A clique is a set Y ⊆ V , where (y, y′) ∈ E ∀y, y′ ∈ Y.

In the case of machine learning and Data Mining the random variables are ded-
icated to labels of particular examples. It follows that the prediction process has to
work on the complete set of variables (and respectively labels) instead of predicting
one label independently at a time. Let a certain assignment of the set of vertices V be
z. Potential functions are used for the calculation of the probability of an assignment
z.

Definition 15. A potential function φci(·) : Aci → R+ converts the assignments of a
clique ci into real-valued positive numbers. The set of all potential functions is φ.

The probability of an assignment z now can be calculated by clique factorization
like in equation (2.21).

p(z) =
1

Z

∏
∀φc∈φ

φc(zc1 , · · · , zc|c|) (2.21)

Z =
∏
∀φc∈φ

∏
∀z′ for φc

φc(z
′
c1 , · · · , z

′
c|c|

) (2.22)

where zc1 , · · · , zc|c| is the particular clique-assignment of z for the potential function
φc. Z is a normalization factor which is needed because the result of the potential
functions (see definition (15)) is a real-valued number and has to be normalized to a
probability. Z is the product of all potential functions using all possible assignments z′

for each potential function φc.

The crucial part is the creation or selection of the potential functions to be used. The
potential functions should model the observations made by visiting the training set. We
will focus on this creation later on.

Definition 16. A Conditional Random Field is a MRF that is conditioned by observa-
tions x.

Conditional Random Fields (CRF) focus especially on the process of the construc-
tion of the potential functions using observations (examples) x.

Describing the handling of arbitrary graphs would go beyond the scope of this work.
We will focus on very trivial graphs being used for NER (see Section 3.2). In NER the

45

CHAPTER 2. MACHINE LEARNING FOR INFORMATION EXTRACTION

examples and labels respectively are ordered sequentially. Additionally, sentences are
building blocks. Each of these blocks can be seen as a CRF (MRF), where the labels
y1, . . . , yn are the random variables and the examples x1, . . . ,xn are used to build the
potential functions. Potential functions are defined on cliques. In a sequence every two
neighboring nodes are building a clique. Neighboring nodes are edges contained in
the set E. The potential functions on these edges are now denoted with f(·) as shown
in equation (2.23). In addition, [Lafferty et al., 2001] are presenting the creation of
potential functions not only for edges but for every single node, too. These functions
are denoted with g(·), and they are shown in equation (2.24).

f(y, y′|x)∃(y, y′) ∈ E (2.23)
g(y|x)∃y ∈ V (2.24)

We assume that for reasons of simplicity the two kinds of potential functions are in
the set of potential functions φ. For the case of a sequence of the random variables
the calculation of the conditional probability (equation (2.21)) can be rewritten like in
equation (2.25).

p(z) =
1

Z

∏
∀φc∈φ

n∑
i=1

φc(yi, yi+1) (2.25)

Following the Hammersley-Clifford-Theorem [Hammersley and Clifford, 1971] equa-
tion (2.25) could be formed to equation (2.26) if the graph structuring the variables is
a tree.

p(z) =
1

Z
exp[

∑
∀φc∈φ

n∑
i=1

φc(yi, yi+1)] (2.26)

Afterwards we separate the particular potential functions into the state features
g(v ∈ V) and the transition features f(e ∈ E) generating the following equation:

p(z) =
1

Z
exp[

∑
∀f∈F

n∑
i=1

fc(yi, yi+1) +
∑
∀g∈G

n∑
i=1

gc(yi)] (2.27)

The potential functions f(·) and g(·) are extracted from the training set. F repre-
sents the set of potential functions f(·) and G represents the set of potential functions
g(·). The definition for transition features f(·) is presented in Definition 17. The def-
inition for state features g(·) is presented in Definition 18. The potential functions
can be created out of the attributes of the training set. Each potential function gets
a weighting-factor which is adjusted during training. These factors according to the
potential functions are the CRF-model θ. The probability corresponding to θ for a
particular assignment z is calculated by:

pθ(z) =
1

Z
exp[

∑
∀fc∈F

n∑
i=1

λcfc(yi, yi+1) +
∑
∀gc∈G

n∑
i=1

µcgc(yi)] (2.28)

46

2.4. MODELS

Definition 17. The transition features are defined by f(e ∈ E, x, i) = b(x, i) if y ∈ e
and y′ ∈ e fulfill particular conditions. These conditions, for example, could be that
y = class A and y′ = class B. b(x, i) = 1 if an attribute of the i-th example xi has a
certain value. b(x, i) = 1 if, for instance, the i-th word of a sentence is Germany.

Otherwise, b(x, i) = 0.

Definition 18. The state features are defined by g(v ∈ V, x, i) = b(x, i) if y = v
fulfills a particular condition. This condition, for example, could be that y = class A.
b(x, i) = 1 if an attribute of the i-th example xi has a certain value. b(x, i) = 1 if, for

instance, the i-th word of a sentence is Berlin. Otherwise, b(x, i) = 0.

During the training phase of a CRF the parameters λi and µi are adjusted to most
optimally fit the potential features to the training set. This fitting is done by maxi-
mizing the log-likelihood function [Fisher, 1997]. The logarithms of the conditional
probabilities of all subsets (for instance sentences) of the training set are summed up
to build the log-likelihood (see equation (2.29)).

L(θ) =
∑
S⊆T

log p(yS |xS) (2.29)

The certain values for θ (λi and µi) have to be changed until the result of the log-
likelihood function is maximal. This can be done by using multiple techniques. [Laf-
ferty et al., 2001] present two approaches based on iterative scaling [Della Pietra et al.,
1997]. [Wallach, 2002] has shown that numerical optimization techniques do find the
optimal setting for θ faster than iterative methods. An often used numerical optimiza-
tion technique is L-BFGS [Nocedal, 1980]. L-BFGS is a quasi-newton optimization
technique approximating the optimization step by a Taylor series of second order. This
technique uses the first and second derivative of the function to be optimized. The
second derivative – the Hessian – is approximated by a Taylor approximation avoid-
ing the computational complex calculation of the Hessian. [Vishwanathan et al., 2006]
have shown that stochastic gradient methods in general and particularly stochastic meta
descent (SMD) are more efficient for CRF training than L-BFGS. State of the art im-
plementations for CRFs are based on the usage of general-purpose computation on
graphical processing units for a parallel and therefore very efficient computation [Pi-
atkowski, 2011, Piatkowski and Morik, 2011]. We used such implementation for the
experiments we present in Section 3.3.

2.4.3 Binary Models for Multiple Classes
Binary models only can be used to classify binary problems which are datasets con-
taining only two types of label-values. It is not straightforward to apply such models
on multi-class datasets which contain more than two classes. To apply binary models

47

CHAPTER 2. MACHINE LEARNING FOR INFORMATION EXTRACTION

to such datasets a certain strategy has to be chosen. Some strategies are possible for
this task. All of the strategies are remapping the original dataset to several datasets
containing only two classes. Multiple binary models are applied on these datasets,
afterwards. The decisions of these models are finally combined to a global decision
containing multiple classes. During the combination of the models there can be several
predictions for only one example. In this case only the most confident prediction is
chosen.

In this work we will only focus on the so called one-against-all (1-vs-all) strategy.
This strategy creates a binary learner for each class. The learners are trained by us-
ing the training set containing the relevant class (the class the learner is used for) as
positive class and all other classes as negative class. ”The one-vs-all scheme is con-
ceptually simple, and has been independently discovered numerous times by different
researchers.”, [Rifkin and Klautau, 2004] stated.

Another strategy which exemplarily should be mentioned here is the one-against-one
strategy. Using this strategy will create a model for each combination of pairs of classes
from the original dataset. All examples having a class not belonging to that pair will
be neglected for training the particular model.

2.4.4 Model evaluation
The created models should be precise in cases of prediction or grouping performance.
In the case of supervised learning the precision has to be achieved for the training set
and the test set. This is remarkable because the test set usually does not contain labels,
yet. The predictions made by the learned model cannot be evaluated because they
would have to be compared with the true labels. The distribution of the training set is
supposed to be the same as for the test set. That means that a model created on the
training set delivering good results on that set should also create good results on the
test set. The calculated (evaluated) performance for a model delivered for the training
set is nearly the same for the test set. If the model delivers bad results the parameters
of the model or the feature set should be changed. Nevertheless, creating a model of
the training set and determining its performance is not trivial.

Validating models

If we would use the same set for creating the model and for the determination of the
performance it would be easy to create a perfect model by just memorizing the set
used for training. As the set used for determining the performance does only con-
tain examples already seen during training the model would be able to predict all the
labels correctly. This is not the case for practical purposes. In practical supervised ap-
proaches, some examples are labeled and they can be used for training a model. Most
of the examples are not labeled and should be predicted by the created model. The set
used for training the model and the set which is used for determining the performance
have to be different. To evaluate the performance which probably will be achieved by
the created models on the unlabeled examples the parts of the training set can be used

48

2.4. MODELS

to compare made predictions with correct labels. We present two often used methods
for creating different sets out of the training set to be used for training and evaluating a
model.

Split validation A split validation splits the training set into two parts. One part is
used for training a model and the second part is used to evaluate the trained model. The
labels of the second set are compared with the predictions made by the created model
by using particular evaluation metrics which are presented in the following paragraphs.
The disadvantage of this approach is the possibility of creating a biased split. The two
sets could result in models which deliver too optimistic results on the second set.

Cross validation A cross validation splits the training set into n parts. During n
iterations over these n parts n − 1 parts are used for training a model and 1 part is
used to evaluate the model. In every iteration another part of the n parts is used for
evaluating the model. Finally, the mean and standard deviation of the n performance
values are calculated. This approach avoids the possibility that a split could be created
resulting in too optimistic performance values. Typically, a value of n = 10 is chosen.
If a value of n = m is chosen, where m is the number of examples in the complete
training set, the validation is called leave-one-out.

Overfitting

Overfitting (see [Hastie et al., 2003]) describes the behavior of a model which is ex-
tremely fitted to a given training set leading to a low prediction error on the training set,
but, unfortunately, the prediction error on the test set is high. The model is not general
enough to achieve good results on the test set. Not fitting the model to the training set
too extremely would lead to lower prediction error on the test set. Validating models
already during the training phase as it is done by split and cross validation can help to
avoid overfitting.

Evaluation metrics

Different evaluation metrics can be used to evaluate the performance of the created
models. As we are focusing mostly on classification tasks we therefore only are pre-
senting evaluation metrics which are used for classification in this section. An example
could be correctly predicted – the prediction equals the label – or the example could be
falsely predicted.

The evaluation metrics presented in the following are meant to be used for the eval-
uation of the correctness of single tokens. In concrete Information Extraction tasks it
is remarkable that the informational units to be extracted sometimes contain more than
one token. Person’s names, for instance, mostly contain two or three tokens. [De Sitter
et al., 2004] define a framework for two different evaluations for Information Extrac-
tion. The All Occurrences approach is used to evaluate if all informational units are
located and classified correctly in the document. This approach can be compared to
and used for Named Entity Recognition (see Section 3.2). The One Best per Document

49

CHAPTER 2. MACHINE LEARNING FOR INFORMATION EXTRACTION

approach is used to evaluate slot-filling approaches like for Information Extraction pre-
sented at the beginning of Section 3. Following this approach it is not important to find
all informational units but to find the best unit requested in the particular task.

In this work we only use the following evaluation metrics. If we analyze datasets
containing informational units containing more than one token, we will either assume
that each of the tokens is one informational unit or we will use the approach presented
for the CoNLL 2002 shared task by [Tjong Kim Sang, 2002]. The latter approach is
comparable to the All Occurrences approach, but it is very strict because an informa-
tional unit only is correctly predicted if all its tokens are correctly predicted.

Let the example set used for evaluation be S. S contains the predictions for every
example made by a certain model. Let n+ be the number of correctly predicted exam-
ples. Particular evaluation metrics are focusing on the correct and wrong predictions
for certain classes. Let nc+ be the number of correctly predicted examples containing
label c. Furthermore, let ncc̄ be the number of examples containing label c which are
wrongly predicted, and let nc̄c be the number of examples not containing the label c but
containing the prediction c.

Accuracy Accuracy is the fraction of correctly predicted examples and the number
of all examples like stated in equation (2.30).

accuracy(S) =
n+

|S|
(2.30)

Precision Precision is always calculated for a particular class c. It is the fraction of
correctly predicted examples of class c and the number of all examples of class c like
stated in equation (2.31).

precisionc(S) =
nc+

nc+ + ncc̄
(2.31)

Recall Recall is always calculated for a particular class c. It is the fraction of cor-
rectly predicted examples of class c and the number of all examples of class c like
stated in equation (2.32).

recallc(S) =
nc+

nc+ + nc̄c
(2.32)

F-Measure F-Measure is the harmonic mean of precision and recall as it is stated in
equation (2.33). To give precision and recall different impacts f-measureβ as shown in
equation (2.34) is used.

f-measurec(S) = 2 precisionc(S)recallc(S)
precisionc(S)+recallc(S) (2.33)

f-measurecβ(S) = (1 + β2) precisionc(S)recallc(S)
(β2precisionc(S))+recallc(S) (2.34)

50

2.4. MODELS

ANOVA test

After evaluating the model performance it has to be shown if the achieved results
are significant compared to performances of other models. The analysis of variance
(ANOVA) [Cooper, 2003] is a well-known statistical test which can be used to proof
if an evaluated performance is significantly better than another performance. The eval-
uated performance is given by its mean value µ, its variance ω and by the number of
evaluations n (in a ten-fold cross-validation n is 10, for instance).

Let two exemplary performances be given by the values presented in Table 2.5.

performance µ ω n

1 0.9 0.01 100
2 0.8 0.001 100

Table 2.5: Two performances and its values for mean, variance and number of iterations
n

The sum of squares between (SB) is calculated by

SB = n ∗
(
µ1 ∗ 2

µ1 + µ2

)
+ n ∗

(
µ2 ∗ 2

µ1 + µ2

)
The degree of freedom between the groups (fb) is calculated by

fb = m− 1

where m is the number of groups, which is 2 in this case. The sum of squares within
(SW) is calculated by

SW = (n− 1) ∗ (ω1 + ω2)

The degree of freedom within the groups (fw) is calculated by

fw = m(n− 1)

where m is the number of groups, which is 2 in this case. The mean squares value
between and within are calculated by

MSB =
SB
fb

MSW =
SW
fw

The F − ratio, finally, is calculated by

F =
MSB
MSW

51

CHAPTER 2. MACHINE LEARNING FOR INFORMATION EXTRACTION

ratio value
SB 0.5
fb 1
SW 1.089
fw 198
MSB 0.5
MSW 0.006

F − ratio 90.909
p− value ≈ 0.0

Table 2.6: The resulting values after performing an ANOVA test on the two measure-
ments shown in Table 2.5

Using this F − ratio allows the calculation of a p− value which will state if a perfor-
mance value is significantly better or worse than another one. The resulting values are
shown in Table 2.6.
In this example the first performance achieved is significantly better than the second
one if we assume a significance level of 5%. All results leading to a p − value which
is smaller than the significance level can be seen as statistically significant.

2.5 Summary

In this section we gave a sufficient overview on machine learning methods. We pre-
sented the basic techniques which will be consistently used in this work. First of all,
we defined the formal notations of elements used in the domain of machine learning.

A very crucial point is the feature set which is needed for the learning process. The
feature types are split into four groups: nominal, numerical, date and (tree-)structured.
Especially the tree-structured features will be used very often in the later sections. In
addition to the description of tree-structured features, we gave certain examples of tree
structures which occur in Information Extraction or Data Mining tasks.

We gave an overview about data preparation which is done for several reasons. These
reasons might be: defective feature set, huge feature set, or a feature set which is not
applicable by the currently used models.

Additionally, we have presented particular specialties which should be respected by
Information Extraction methods, and therefore these specialties also have to be re-
spected by the feature set and by the methods which create this feature set.

The concrete task of learning from datasets is called modeling. We presented the
techniques used for modeling datasets. In most of this work we focus on supervised
learning techniques because these are the methods mostly needed for Information Ex-

52

2.5. SUMMARY

traction. We split the family of supervised learning methods into rule-based, statistical
and structured models. We particularly split the group of statistical methods into lazy
learning and optimized methods to visualize the differences between both subgroups.
We additionally present methods which are not described by one of the two groups.

We are especially focusing on three certain techniques which are support vector ma-
chines, perceptrons and naı̈ve Bayes classifiers. Perceptrons and naı̈ve Bayes classi-
fiers are not optimized during the training phase which makes them not delivering any
guarantees for the performance achieved by these approaches in case of accuracy. Al-
though a good performance in case of accuracy is not guaranteed for perceptrons and
naı̈ve Bayes classifiers, the application of each of these methods delivers good results
in practical. If the examples are separable either linearly or by the use of particular
kernel functions, a support vector machine will find an optimal solution for that ex-
ample set. Finding an optimal solution is computationally costly during the training
phase which leads to a longer training runtime of support vector machines compared
to perceptrons and naı̈ve Bayes classifiers. We will empirically analyze these methods
in the following sections.

Finally, we have shown how to validate and evaluate the created models. We defined
the evaluation measures which will be used in most of the experiments we will present
in the later sections, and we presented possibilities to validate models in order to ensure
the significance of the achieved results.

53

CHAPTER 2. MACHINE LEARNING FOR INFORMATION EXTRACTION

54

Chapter 3

Evolution of Information
Extraction

In this chapter we will focus on the historical development of Information Extraction.
The Message Understanding Conferences (MUC) [Grishman and Sundheim, 1996]
were the first conferences in which the topic of Information Extraction became appar-
ent. Participants of the shared task of each conference had to extract predefined types
of information out of documents from a particular domain. The MUCs were initiated
by the Defense Advanced Research Projects Agency (DARPA) which is a military orga-
nization, for this reason the domains, the documents were extracted from, mostly were
military ones. Although, beside Fleet operations and Terrorism another domain of the
documents to be analyzed was Joint Ventures. Since the second MUC the task became
a template-filling one. A template containing the most interesting informational types
concerning the specific domain were predetermined and should be extracted by the sys-
tems/methods developed by the participants. Figure 3.1 shows an exemplary document
of the third MUC [Sundheim, 1991].

A template containing 18 slots concerning particular types of information was given.
The participants had to fill these slots in a most precise way. The certain template of
the third MUC and the correctly extracted informational units for the document shown
in Figure 3.1 is shown in Figure 3.2. We annotated the parts to be extracted out of the
document in Figure 3.3.

Most of the subtasks it has been worked on during or after the MUCs have been
processed by ”handcrafted systems” that were based on many handcrafted rules. The
systems became very domain-dependent. Additionally, heavy effort of linguists was
needed to analyze the domains and to create the rules. These systems of course are
very inflexible and therefore were replaced by statistical and machine learning meth-
ods. Machine learning methods are more domain independent. They are not as good
but nearly as good as handcrafted systems. The achievements in flexibility make these
methods more applicable. Although Information Extraction became apparent in the

55

CHAPTER 3. EVOLUTION OF INFORMATION EXTRACTION

Figure 3.1: An exemplary document of the shared task of the third Message Under-
standing Conference ([Sundheim, 1991], p. 8)

late 1980s, [Daelemans et al., 1997] still stated in 1997 that insufficient efforts are be-
ing made to use empirical (machine) learning in Information Extraction tasks.

To help message-understanding systems by providing special entities, which hopefully
will be needed in every MU-task, the Named Entity Recognition (NER) were provided
as a task in the 6th MUC in 1995. The task was to discover general entities in texts like
persons, locations and organizations (see Section 3.2). In contrast to NER which ana-
lyzes the particular parts of a document, text mining (see Section 3.1) is a marginally
related task. In text mining the whole document is classified. Although no informa-
tional units are extracted out of the documents during the text mining process, it can
be used to determine the relevant documents out of a greater amount of documents to
be used for Information Extraction purposes. Named Entity Recognition is a compel-
lent step for Relation Extraction (see Chapter 5). Relation Extraction focuses on pairs
of Named entities to decide if the two entities in such pairs are related. Therefore, it
is very crucial to precisely extract the named entities. Wrongly extracted entities will
result in mistakes during the Relation Extraction process.

3.1 Text Categorization
The term Text Categorization (also: Text Classification or Text mining) describes the
automatic classification of complete documents. Although text categorization is not
used for the extraction of informational units from documents, text categorization can
be used to extract relevant documents for Information Extraction in a preprocessing
step. Statistical machine learning methods like Support Vector Machines are the most
popular tools for the classification of text documents [Joachims, 2002]. Following the
notation of [Hastie et al., 2003] each document is described by observations xi. For all

56

3.1. TEXT CATEGORIZATION

Figure 3.2: The template to be filled by the participants of the third Message Un-
derstanding Conference and the corresponding informational units for the document
shown in Figure 3.1 ([Sundheim, 1991], p. 8)

documents the indexes of each vector have to contain the same type of information. If
for instance the second entry of a vector of observations for a particular document con-
tains the number of verbs in the document, the second entries of each other document
have to contain the number of verbs of those documents, too. To represent documents
by a well-suited vector of observations is a crucial task. Two particular subtasks have
to be respected: the first one is to extract the types of observations which are used
for representing the text (representation). The second subtask is to set the values for
the certain types of observations (weighting). The vector containing the corresponding
values for the represented text is called feature vector.

The most popular representation of documents for text categorization is the Bag of
Words (BOW) representation. This representation originally is from the Information
Retrieval community [Salton et al., 1975]. Each unique word in a document-collection
(index term) is becoming an entry in the vector of observations. Finally, a document
represented in the BOW representation has a value of 1 for every index term it contains.
If an index term is not contained in a particular document, the document has a value of
0 for that term. Using a binary weighting by storing just 1 or 0 for each attribute is the
most simple case of the BOW representation.

In addition to just using unique words for the feature vector, much research has been
done on extracting multi-word sequences (n-grams) to be used in the feature vector, too
(see [Fürnkranz, 1998]). [Bekkerman and Allan, 2004] furthermore defined n-grams
as n unigrams which appear as a permutation in the document. The unigrams are de-
fined as stems of words in the permutation which additionally can contain stop words
making their approach more flexible.

57

CHAPTER 3. EVOLUTION OF INFORMATION EXTRACTION

Figure 3.3: Important information marked in the text shown in Figure 3.1

Table 3.1 shows three exemplary sentences which are used as documents, here. Table
3.2 shows the feature vectors for the three documents represented as a binary bag-of-
words model. Using two-grams will result in a representation as shown in Table 3.3.
The approach presented by [Bekkerman and Allan, 2004] using only stemmed bigrams
will result in the representation shown in Table 3.4.

1 Felix goes to work.
2 Felix goes to IBM.
3 Felix will go to IBM.

Table 3.1: Three different documents which shall be represented for text categorization.

Felix goes to work . IBM will go
1 1 1 1 1 1 0 0 0
2 1 1 1 0 1 1 0 0
2 1 0 1 0 1 1 1 1

Table 3.2: The three documents shown in Table 3.1 represented as bag-of-words with
binary weights.

It is remarkable that for mostly every document collection the number of entries in the
feature vector become very huge. [Joachims, 1998] has shown that a support vector
machine can handle many features sufficiently. Nevertheless, [Caropreso et al., 2001]
state that feature selection should be performed because of two reasons. Firstly, the
runtime of most approaches for text categorization depend on the number of features,

58

3.2. NAMED ENTITY RECOGNITION

Felix
Felix
goes

goes
to

to
work

work
.

. to
IBM

IBM
.

Felix
will

will
go

go
to

1 1 1 1 1 1 1 0 0 0 0 0
2 1 1 1 0 0 1 1 1 0 0 0
3 1 0 0 0 0 1 1 1 1 1 1

Table 3.3: The three documents shown in Table 3.1 represented as bag-of-bigrams with
binary weights.

Felix go go work go IBM
1 1 1 0
2 1 0 1
3 1 0 1

Table 3.4: The three documents shown in Table 3.1 represented as bag-of-stemmed-
bigrams with binary weights.

therefore, the lesser the number of features the better. The second reason to perform
feature selection is for the avoidance of overfitting. Only the most relevant features
should be selected. To calculate the relevance of each feature of the feature vector
[Caropreso et al., 2001, Sebastiani, 2005] repeat the feature selection methods most
often used in literature. These feature selection methods are Information Gain, Chi
Square, Gain Ratio, Odds Ratio and Document Frequency.

[Joachims, 1998] is following the suggestion of [Yang and Pedersen, 1997] who recom-
mend to use Information Gain. After selecting the most relevant features by selecting
the ones having the highest Information Gain [Joachims, 1998] is using the Term Fre-
quency - Inverse Document Frequency (TFIDF [Salton and Buckley, 1988]) weighting
to weigh the particular features.

3.2 Named Entity Recognition

Named Entity Recognition (NER) is the task to detect and classify mentions of for-
merly defined entity types out of texts or documents. An entity is a unique token
describing a particular element of the given entity type. There might be multiple oc-
currences of entities in a document or in a text. These references of particular entities
are called entity mentions. In the shared task of the MUC-7 [Chinchor, 1998] the NER
task is split into three subtasks. The first task is to extract named entities (organiza-
tions, persons, locations), the second task is to extract temporal expressions (dates,
times), and the third task is to extract number expressions (monetary values, percent-
ages). In the shared task of the ConLL 2002 Named Entity Recognition is defined as
follows: ”Named entities are phrases that contain the names of persons, organizations,
locations, times and quantities” [Tjong Kim Sang, 2002]. Following these two defi-
nitions, it is getting clear that the most typical entities are organizations, persons and
locations. Many Named Entity Recognition systems are trained to extract these typical

59

CHAPTER 3. EVOLUTION OF INFORMATION EXTRACTION

entities. Unfortunately, for different domains different named entities are representa-
tive and therefore they are interesting. In a biomedical domain for instance, it is more
relevant to extract genes and amino-acids than to extract organizations and locations.
It is necessary to train the named entity recognition systems for certain domains con-
taining special entities of interest. For sufficient training it is important to have enough
(manually) annotated data.

3.2.1 Data generation
We assume that a document which should be used for learning or training a machine
learning technique for Information Extraction purposes is given. After having done
a morphological analysis (see Chapter 4) to split the documents into sequences of to-
kens, the tokens have to be labeled somehow. The task of labeling tokens is called
annotation. The tools for annotation are called annotators. Exemplary annotators are
PALinkA1 and GATE2 (see Section 7.3.5). We present an annotation tool for our plu-
gin, too (see Section 7.2.2).

If no training data, which should be used by machine learning approaches, is avail-
able for a particular domain, a sufficient amount of data has to be annotated for the
creation of a training set. If, in addition, the task to create the annotations is done by
several annotators, the resulting annotations might differ from annotator to annotator.
Each annotation has to be done by multiple annotators and a so called inter-annotator
agreement is calculated [Cohen, 1960]. The inter-annotator agreement is meant to be
a measure indicating if the different annotators are annotating in a similar way. If the
annotations are trustworthy they can be used for labeling the tokens. And finally, the
tokens can be used as a training set for machine learning approaches.

3.2.2 Methods
The methods to be used for NER are manifold. The usage of particular learning meth-
ods need certain preprocessing of the texts. Although, for the extraction of tokens
representing entity mentions it is mandatory to split the documents or texts into tokens.
These tokens after that are represented in a certain feature space. For the named entity
extraction each of these tokens is classified. Methods to be used for NER can be split
into two categories:

• structured and

• non-structured methods

Non-structured methods do not respect the inherent structural information given by
documents or texts. This means that every token is handled independently without re-
specting the contextual tokens. These methods may use contextual information about
a particular token in form of contextual features contained in the feature space. Al-
though, during training and prediction the predictions and labels of contextual tokens

1http://clg.wlv.ac.uk/trac/palinka
2http://gate.ac.uk

60

3.2. NAMED ENTITY RECOGNITION

do not condition each other. Structured methods are respecting structural information
during the training and prediction phase. The learnt model and the made predictions
are conditioned by other labels or predictions. Chapter 2 defines structured and non-
structured methods in machine-learning.

Rule-based Models

The first systems for Information Extraction were based on handcrafted rules. The
creation of these rules has the disadvantage that experts are needed and that the re-
sulting rules are domain-dependent. One of the first systems for NER, for instance, is
SPARSER [McDonald, 1996]. SPARSER uses a three-step-model:

1. delimit
identify the boundaries of the possible named entities

2. classify
categorize the resulting constituents

3. record
create a discourse model containing the classified constituents

Those systems were based on finite automata or context free grammars. The heavy ef-
forts which have to be made for these approaches in addition to their domain-dependence
make them not preferable. We will focus on more flexible approaches in this work.

3.2.3 Feature Space
A useful feature space is needed for the automatic extraction of NEs. [McDonald,
1996] stated that using internal and external evidence together is important for good
results. Internal evidence is given by all information we can extract out of the token
itself. External evidence is given by contextual information surrounding the currently
focused token. [Daelemans, 1999] also mentioned to use contextual (external) informa-
tion in addition to the currently focused word (token). Figure 3.4 shows an exemplary
sentence containing three entity mentions of the entities Felix, Hamburg and Germany.
We focus on the first mention Felix to explain internal and external evidence.

Information units being extracted out of the mention itself are the word, the stem,

Felix goes to Hamburg which is in Germany.

Figure 3.4: A sentence containing three entity mentions.

the regular expressions that match this entity mention, letter n-grams of the mention,
prefixes or suffixes of the mention, other generalizations of the mention, and so on.
Information units concerning external evidence are extracted of the context of the en-
tity mention. The context is given by the tokens which are connected to the mention
token by the internal structure. In many NER tasks the sequential word order is used

61

CHAPTER 3. EVOLUTION OF INFORMATION EXTRACTION

as the internal structure. In those cases the tokens before and after the entity men-
tion are used for the extraction of external evidence. For the extraction of features the
contextual tokens can be handled exactly like the token itself but with the addition that
the information extracted out of them is stored in the feature space for the current token.

Table 3.5 shows information units extracted from the sentence shown in Figure 3.4.

Label Word Prefix Word -1 Word +1
PER Felix Fel ? goes

O goes goe Felix to
O to to goes Hamburg

LOC Hamburg Ham to which
O which whi Hamburg is
O is is which in
O in in is Germany

LOC Germany Ger in .
O . . Germany ?

Table 3.5: Exemplary information units extracted out of the sentence shown in Figure
3.4

The information units contain internal and external evidence. Each line of the table
represents one particular token, whereas each column represents one particular infor-
mation or attribute describing this token. The Label attribute contains information
about the classification of the tokens. Word and Prefix are extracted from certain to-
kens. And Word -1 and Word +1 contain information extracted from contextual tokens
– in this case the Word attribute information units of the preceding and following to-
kens are extracted.

It is remarkable, that internal and external evidence as it is described here is only useful
in plain text documents. Nevertheless, documents are not only containing plain text.
HTML-documents, for instance, are offering a structure – given by the HTML-tags –
which respectively contains plain text again. Additionally, meta information describing
the complete document might be interesting for the classification of entities. Finally,
the plain text itself can be seen as a structure by applying parsing methods which extract
internal structures like constituency or dependency parse trees.

Particular Features for Named Entity Recognition

[Settles, 2004] defines two types of features to be used for Named Entity Recognition:

• orthographic features

• semantic features

He presents orthographic features as features which are extracted from the tokens or
the context of the tokens itself. This extraction can be done without further knowl-
edge of semantical or morphological characteristics of the certain token. Examples for

62

3.3. EXPERIMENTS ON DOMAIN- AND LANGUAGE-INDEPENDENT NER

orthographic features are the tokens itself, contextual tokens, prefixes, n-grams, suf-
fixes, generalized tokens, and so on. Semantic features are those containing semantical
information concerning the particular token. These features are based on the use of
semantical resources like gazetteers, lexicons and ontologies.

Marc Roessler who wrote his PhD-thesis [Roessler, 2006] about Named Entity Recog-
nition developed a huge set of orthographic features. The Wortoberflächenmerkmale
(word-surface-features) can be seen as regular expressions which do or do not match
on particular words. Examples for such features are exactly 4 numbers, capital and
lower case letters inside of the word or only capital letters without a vowel. These
features indicate several types of word types. The first features probably indicates a
year, the second features indicates a special form of abbreviation and the third also in-
dicates an abbreviation. Additionally, Roessler presented features which are based on
the substring representation of the particular words. For each word a maximum amount
of eight of such features are being created. The features consisting of the last letter, the
two last letters and a letter window of size three which is shifted from the beginning
and from the end of the word creating a maximum of six additional features. Table 3.6
shows the resulting features for the word ”Jungermann”.

Jungermann Jun ung nge rma man ann nn n

Table 3.6: Substring representation features of [Roessler, 2006] for word ”Junger-
mann”

We would like to introduce a third class of features for Named Entity Recognition:

• morphologic features

These features heavily rely on complex morphologic analysis of the particular token,
and in addition to morphologic analysis they include part-of-speech tagging and pars-
ing, too. The most of these features are presented in Chapter 4.

3.3 Experiments on Domain- and Language-independent
NER

As we already mentioned the successful extraction of named entities is depending on
the domain the documents are belonging to. Domain-experts are helpful to gain in-
sights and for the construction of domain-relevant patterns. For the extraction of named
entities in the domain of bio-medicine, for instance, [Settles, 2004] used features in-
dicating the presence or absence of Greek letters. Such letters are often contained in
gene-names. Although, without knowing about that fact no one would use the presence
of Greek letters as a feature for named entity recognition. Unfortunately, the analysis
of the domain the particular documents are from is very time-consuming. In [Junger-
mann, 2006] we started analyzing feature sets which only rely on domain-independent

63

CHAPTER 3. EVOLUTION OF INFORMATION EXTRACTION

features. In [Jungermann, 2007, Jungermann and Roessler, 2007] we embedded the
semantic resource wikipedia into our feature set.

In this section we want to analyze the performance of an entity recognition system
without having domain- and language-knowledge of the corresponding documents. In-
stead of analyzing the particular domains of the documents we focused on general fea-
ture spaces containing features representing internal and external evidence. For all the
experiments we used the same feature set. This is remarkable because we will assume
that such feature set can be used for any domain or language if the results achieved by
using this feature set are good.

Datasets

We processed three datasets to analyze the possible insignificance of domain-relevant
features. All of the datasets are well-known in the Information Extraction-community.
Additionally, the datasets come with a training and a test set which directly lets us
compare our achieved results with the results other researchers have achieved on those
datasets.

The first dataset is the one presented at the International Joint Workshop on Natural
Language Processing in Biomedicine and its Applications (JNLPBA) 2004 [Kim et al.,
2004]. This dataset contains biomedical entities which is a good argument for not only
to extract the typical well-known entities like person-names, locations and so on. The
dataset contains 492.551 words which are tagged using six classes (O, protein, DNA,
cell type, cell line, RNA). Table 3.7 shows the distribution of the certain classes. This
dataset only provides the words and the labels for these words.

The second dataset is the one presented at the Conference on Computational Nat-

Class O protein DNA cell type cell line RNA
Distribution 77.75 % 11.19 % 5.14 % 3.14 % 2.28 % 0.50 %

Table 3.7: The class-distribution of the JNLPBA dataset

ural Language Learning 2000 (CoNLL) [Tjong Kim Sang and Buchholz, 2000]. The
shared task offering the dataset was about chunking which is used for separating sen-
tences into smaller parts containing words which belong to the same grammatical unit.
Table 3.8 shows the particular classes and the distribution of the certain classes which
have to be extracted. The dataset provides three attributes: a label, the words and the
PoS-tags for the particular words.

The third dataset is the one presented at the shared task of the Evaluation of NLP
and Speech Tools for Italian (EVALITA) workshop 2007 [Speranza, 2007]. It contains
the typical named entities Person, Location and Organization (plus Geopolitical entity
(GPE)). The language of the documents contained in the dataset is Italian. The dataset
has three attributes. One of them is the label and the other two are the word and the

64

3.4. SUMMARY

Class NP VP PP ADVP SBAR ADJP PRT CONJP INTJ LST UCP
Dstr. 51 % 20 % 20 % 4 % 2 % 2 % 1 % 0 % 0 % 0 % 0 %

Table 3.8: The class-distribution of the CoNLL dataset (on the training set)

PoS-tag for the certain word.

Feature sets

We used Conditional Random Fields (CRF) for the analysis of the datasets. CRFs
are the state of the art methods for NER and they are presented in Section 2.4.2. We
used the following feature set for the experiments on the three datasets. The features
completely were orthographic ones (see Section 3.2.3) leading to a feature set which
can easily be adapted for several tasks of different domains and languages. The feature
set was a combination of word-, generalize-, prefix- and suffix-features. These features
all have been extracted from the token currently processed. In addition to the features of
the current token the same features of the two preceding and the two following tokens
also have been taken into account. The CoNLL and the EVALITA dataset additionally
contain part-of-speech tags. We also use these tags for the feature set, and we embed
the PoS-tags of the two preceding and the two following tokens into the feature set, too.
It follows that every token has 20 (JNLPBA) or 25 (EVALITA and CoNLL) features,
which are the words before and after the token, the pre- and suffixes of the words before
and after the token (both of length 3), the generalized form of the words before and after
the token, the PoS-tags of the tokens before and after the token. The particular features
(word, prefix, ...) of the current word are used, too. Table 3.9 shows the feature set
processed on an exemplary example set.

Results

Our results are promising. Especially the fact that a feature set only based on ortho-
graphic features has been used is remarkable. Table 3.10 shows the best and the worst
results achieved on the particular datasets in combination with our results. All of the
methods which achieve the best results make use of dictionaries or gazetteers. Our ex-
periments show that the absence of gazetteers and dictionaries and no performing any
feature selection result in good results . For the CoNLL dataset we created a domain-
tailored feature set especially containing features created by a noun phrase chunker.
We wanted to show that our experiment setting achieves the same results if the feature
set contains domain-tailored features. The results, which are presented in row Junger-
mann*, are equal to those achieved by the best performing system presented in [Zhang
et al., 2001].

3.4 Summary
We have presented the historical development of Information Extraction in this chapter.
We have shown that the origin of Information Extraction is considered to be the Mes-
sage Understanding Conferences. The task to extract formerly defined informational

65

CHAPTER 3. EVOLUTION OF INFORMATION EXTRACTION

Label Word -2 Word -1 Word Word +1 Word +2 ...
PER ? ? Felix goes to ...

O ? Felix goes to Hamburg ...
O Felix goes to Hamburg which ...

LOC goes to Hamburg which is ...
O to Hamburg which is in ...
O Hamburg which is in Germany ...
O which is in Germany

LOC is in Germany . ? ...
O in Germany . ? ? ...

... Generalize 0 Generalize +1 Generalize +2

... Aaaaa aaaa aa

... aaaa aa Aaaaaaa

... aa Aaaaaaa aaaaa

... Aaaaaaa aaaaa aa

... aaaaa aa aa

... aa aa Aaaaaaa

... aa Aaaaaaa x

... Aaaaaaa x ?

... x ? ?

Table 3.9: Feature set used for the experiments extracted from the sentence shown in
Figure 3.4

CoNLL 2000 JNLPBA 2004 EVALITA 2007
Best result 94.13 % [Zhang

et al., 2001]
72.6 % [Zhou and
Su, 2004]

82.14 % [Pianta
and Zanoli, 2007]

Jungermann 92.97 % 70.82 % 74.49 %
Jungermann* 94.13 %
Worst result 85.76 % [Vilain

and Day, 2000]
49.1 % [Lee
et al., 2004]

50.88 % [Walker,
2007]

Table 3.10: Various results on NER datasets

66

3.4. SUMMARY

units out of documents from a certain domain was generalized over the years.

One general subtask which emerged from Information Extraction is Named Entity
Recognition. We have shown that the feature space for NER can be split into three types
of features. The orthographic features extracted from the token itself represent internal
evidence whereas features extracted from the contextual tokens represent the exter-
nal evidence. Only the combination of internal and external evidence delivers adequate
features for the extraction of correct classes for particular tokens. Semantic features are
gathering information from semantical sources like lexicons and gazetteers, and finally,
morphological features – based on complex morphological analysis – are offering rich
semantic information. Orthographic features are most easily to process whereas seman-
tic features need certain semantic sources and therefore become domain-dependent,
and morphologic features are based on former or ad-hoc analysis which are very com-
plex.

The choice of the certainly used machine learning approach is significant. We present
the use of structured and non-structured methods. Structured methods deliver the most
accurate results for NER.

We have shown that the creation of domain-dependent and computationally complex
feature sets can be avoided. We made experiments on three datasets by using the same
types of features for all of these datasets. We used a feature set which is only based
on orthographic features without any domain-dependent features and especially with-
out any domain-dependent feature tuning. The results are remarkable: we achieved
very good performance for all of the datasets. Particularly, we achieved a performance
nearly as good as the best published results for two of the datasets. We have addition-
ally shown that if the feature set is domain-dependent the achieved results will be equal
to the best results achieved on the particular datasets.

Although text classification is not really meant to be part of Information Extraction
we present it anyway in Section 3.1 due to the fact that it might become relevant during
preprocessing of Information Extraction tasks.

67

CHAPTER 3. EVOLUTION OF INFORMATION EXTRACTION

68

Chapter 4

Linguistic Resources for
Information Extraction Systems

In this chapter we will present the possibilities to use linguistic knowledge for Infor-
mation Extraction purposes. A sufficient feature space for these purposes heavily relies
on linguistic features. In Section 3.2.3 we called those features morphological. Those
features can be extracted for several types of tokens of the particular documents. Sen-
tences, for instance, might be analyzed by a syntactic parser which creates a parse
tree for the certain sentence. More specific, for word-level analysis, tokens containing
single words can be enriched by linguistic knowledge like morphologic analysis, part-
of-speech (PoS) tags, lemmas, stems or basic linguistic forms.

Linguistic systems or knowledge bases have to be used for the creation of such lin-
guistic features. These bases can on the one hand be annotated corpora containing
documents which are annotated for linguistic purposes or on the other hand these bases
might be lexicons containing or delivering specific linguistic knowledge for certain
types of single tokens.
Annotated corpora contain sets of sentences in which syntactical correlations of tokens
are annotated if there are any.
Lexicons in this context are to be requested in order to deliver the linguistic knowledge
stored for a particular token. Such linguistic knowledge mostly refers to the token itself
and it is independent of the possible context of the requested token. Anyhow, certain
lexicons may also deliver knowledge concerning the possible contexts the requested
tokens might occur in.

It follows that lexicons directly can be used for enriching tokenized documents by
additional attributes. If, for instance, a lexicon containing the basic forms of English
words is employed to enrich an example set like the one presented in Table 3.5, it will
be easy to develop an operator which makes use of the lexicon processing each token
of the example set independently.

69

CHAPTER 4. STATE OF THE ART IE SYSTEMS

Annotated corpora of course also can be converted into a kind of lexicon containing
linguistic information concerning particular tokens. Usually, those corpora are used
as training sets for the adjustment of machine learning methods. [Sha and Pereira,
2003], for instance, presented the use of CRFs (see Section 2.4.2) for shallow parsing.
That approach which is a supervised learning method needs a particular training set
containing the linguistic information for each token which can be provided by such an
annotated corpus.
Nevertheless, annotated corpora can contain linguistic information spreading over sev-
eral tokens, like a dependency relation or an information concerning a phrase spread-
ing several tokens. Such more complex information can be used for the training of
linguistic parsers being able to later on create dependency or constituent parse trees,
for example.

4.1 Penn Treebank – An exemplary annotated corpus
The Penn treebank [Marcus et al., 1993] is an annotated corpus for the English lan-
guage. It contains text of several types of documents. The documents are listed in the
following and they are sorted in descending order by the number of tokens they are
containing:

• Stories of the Dow Jones Newswire

• the Brown Corpus

• Abstracts of the Department of Energy

• Messages from the 3rd MUC

• Texts from the Library of America

• Sentences from IBM manuals

• Bulletins of the Department of Agriculture

• Sentences from ATIS

• Transcripts from the radio WBUR

The treebank contains about 4.9 million tokens which are annotated with part-of-speech
(PoS) tags. In contrast to other corpora which contain a more extensive tag set, the Penn
treebank only offers 36 PoS tags and 12 additional tags used for punctuation and cur-
rency, for example. Exemplary PoS tags are NN for nouns or NNS for nouns in its
plural form.

In addition to the given PoS tags, 2.9 million tokens contain syntactical tags given
by a so called skeletal parsing. This parsing brings together phrases of tokens belong-
ing to one syntactical group. Such group might be a noun phrase (NP) or a verb phrase
(VP), for instance.

70

4.1. PENN TREEBANK – AN EXEMPLARY ANNOTATED CORPUS

Figure 4.1 shows an exemplary sentence of the Penn treebank annotated by a skele-
tal parsing. The figure shows the string representation of the parse tree using the the
bracketing approach already mentioned in Section 2.1.4.

Figure 4.1: An annotated sentence (skeletal analysis) of the Penn treebank ([Marcus
et al., 1993], p. 325)

4.1.1 Other Treebanks

Treebanks like the Penn treebank can be used to train parsers which afterwards are able
to deliver syntactical parse trees for sentences. In our implementation (see Chapter 7)
we use the Stanford parser which comes with some already trained models. These
models are based on the Penn treebank (for English), the Chinese Penn treebank (for

71

CHAPTER 4. STATE OF THE ART IE SYSTEMS

Chinese) and the Negra corpus (for German).

Treebanks are available for many languages. A famous treebank for the German lan-
guage is the mentioned Negra corpus [Skut et al., 1997]. The remarkable point is that
the German language has a free word order which has to be respected by the annota-
tion scheme. Due to the free word order a parse tree cannot trivially be mapped on
the sentence in a direct way. Figure 4.2 shows the parse tree of a German sentence.
Parse trees for German sentences sometimes have to respect crossing edges which is
not really supported by a common tree structure.

Figure 4.2: A parse tree mapped on a German sentence ([Skut et al., 1997], p. 2)

[Dima and Hinrichs, 2011] presented a treebank for the aid of a question answering
systems for the CLARIN project (see Section 4.2.5). The development of such tree-
bank becomes necessary because parsers trained on, for instance, newspaper corpora
are not performing well on particular tasks like question answering.

Another corpus for German language is the Tübinger Baumbank des Deutschen (TüBa-
D/Z) consisting of nearly 56.000 sentences containing about 1.000.000 tokens. The
features which are annotated in this corpus are morphological ones, word forms, lem-
mas, syntactical features, named entities and so on. In contrast to the TüBa-D/Z corpus
which is extracted from newspaper articles, the TüBa-D/S corpus is extracted from dia-
logues which have been manually transliterated. Finally, the TüBa-D/D corpus is based
on historical documents. The TüBa-D/S corpus contains 38.000 sentences and 360.000
words, and the TüBa-D/D corpus contains about 260.000.000 words from 12.000.000
sentences.

4.1.2 Graphical Access of Treebanks
[Lezius, 2002] present a system for accessing treebanks. The system called TiGerSearch
can be seen as a search engine for treebanks which is able to load treebanks and to

72

4.2. DWDS – AN EXEMPLARY LEXICON FOR GERMAN

retrieve results for particular requests for the given treebank. The graphical user inter-
face of TiGerSearch easily lets novice users formulate requests by “drawing” linguistic
patterns they are interested in. The formulated linguistic request is used to crawl the
complete treebank delivering the patterns that match the request. These patterns are
manifold: a user, for instance, might be interested in particular grammatical patterns
which are represented as concrete subtrees of the treebank. These subtrees can – of
course – be represented in a graph view. Another request might be to find all collo-
cated nouns and verbs. The results can be represented by all particular verb-noun-pairs
found in the treebank.

4.2 DWDS – An exemplary lexicon for German

DWDS is the acronym for Digitales Wörterbuch der Deutschen Sprache (digital lexi-
con of German language). The DWDS is a scientific project which has the goal to give
an exhaustive overview of the German language of the present and the past. On the one
hand the lexicon shall deliver a scientific definition for every requested word, and on
the other hand exhaustive contextual information concerning the requested word shall
be presented. The project is based on a set of lexicons and annotated corpora. The used
corpora are annotated following the Guidelines for Electronic Text Encoding and Inter-
change [Burnard and Bauman, 2007]. The corpora are linguistically annotated which
means that the sentences are extracted, the tokens are extracted from the sentences and
the tokens are morphologically tagged.

4.2.1 Morphological Analysis

The morphologic analysis are done by the approach of [Geyken and Hanneforth, 2006]
which is based on finite state transducers. For the morphological analysis two ap-
proaches are usable. The first one is based on full-form lexicons which directly de-
liver the word form for a requested word. The other approach uses lexicons of stems
together with rules for decomposition and derivation. It is not reasonable to use full-
form lexicons for the German language because of the productive compounding of that
language. Most morphological analyzers for German therefore are based on the second
approach. In contrast to the usually used two-level-morphologies like in Gertwol [Haa-
palainen and Majorin, 1994] the method presented by [Geyken and Hanneforth, 2006]
uses concatenation mechanisms. The presented concatenation mechanism is based on
a strategy which uses different weights for different segmentation boundaries choosing
the solution with lowest weight as the most probable one. If, for instance, a word is
found directly in the lexicon, it will get weight 0. If it is a composition of two stems
found in the lexicons it will get higher weights if the boundary of the two stems is a
strong composition boundary in contrast to being only a weak composition boundary.
This morphologic analysis approach has a recognition rate of 99.1% on the archive of
the German newspaper “Die Zeit” and of 98.2% on the central corpus of DWDS.

73

CHAPTER 4. STATE OF THE ART IE SYSTEMS

4.2.2 Part-of-speech tagging

The PoS tagging of the tokens in DWDS is done using the method of [Jurish, 2003]
which is a two-fold approach. The approach combines a morphological analysis like
the one of [Geyken and Hanneforth, 2006] with a hidden Markov model (HMM [Ra-
biner, 1989]). The hidden Markov model takes the formerly extracted morphological
tags into account for the inference mechanism to predict the most probable PoS tags.

4.2.3 Dependency parsing

The method for syntactic tagging used in the DWDS system is based on the work of
[Didakowski, 2007] combining chunking and syntactic tagging. The combination is
actually done by incorporating 5 cascaded weighted finite state transducers: the first
step is a basic morphological analysis. The second step performs the chunking, and the
third step creates local dependency structures. The two last steps finally disambiguate
the head functions of embedded and main clauses.

4.2.4 The DWDS-website

DWDS is accessible for free use via http://www.DWDS.de. If a request for a par-
ticular word is performed the GUI shown in Figure 4.3 will be presented. The definition
of the basic form of the word is presented. Additionally, a thesaurus is presented which
delivers alternatives for the requested word. A so called profile of the requested word
presents the statistics for the word in the meaning of the morphological forms it occurs
in. An etymological dictionary is requested as well as the newspaper archive of “Die
Zeit” and “Die Zeit online”. Especially requesting the newspaper archives delivers
contextual information concerning the requested word in its currently used form.

4.2.5 German Research Groups on Information Extraction

Beside the DWDS project there are many other research groups focusing also on lin-
guistic research. We will exemplarily announce some of the most famous other German
groups which are working on linguistic analysis. These analysis more or less directly
can be used for Information Extraction purposes:

• CLARIN-D
CLARIN-D1 is a research project being funded by the German government. It is
a collaboration of different research groups on linguistic analysis which aims on
developing an integrated, interoperable and scalable framework combining the
resources and analysis of all partners.

• Center for Digital Humanities
The “Trierer Kompetenzzentrum”2 is an excellence initiative of the university

1http://clarin-d.net
2http://kompetenzzentrum.uni-trier.de

74

4.2. DWDS – AN EXEMPLARY LEXICON FOR GERMAN

Figure 4.3: The result presented for a requested word on the DWDS website

of Trier which has the goal to combine the research interests of computer sci-
entists and humanists. Particular fields of research are digitization, analysis and
indexing of writings which needs Information Extraction methods.

• Jena University Language & Information Engineering (Julie) Lab
The Julie Lab in Jena3 is a research center working on nearly all areas of Infor-
mation Extraction.

• FIRST4

The ”FIRST - Large scale information extraction and integration infrastructure
for supporting financial decision making”-project is an EU funded project at the

3http://www.julielab.de
4http://www.uni-goettingen.de/de/209829.html

75

CHAPTER 4. STATE OF THE ART IE SYSTEMS

University of Göttingen which aims at supporting decision makers in the finan-
cial domain.

• Stratosphere5

”Stratosphere - Information Management on the Cloud” is a group of researchers
funded by the German science association (DFG). The project aims at the man-
agement of information in cloud-computing environments and it also contains
Information Extraction relevant sub-projects.

• UKP Darmstadt6

The Ubiquitous Knowledge Processing (UKP) Lab mostly focuses on research
on natural language processing, semantic information management and knowl-
edge discovery in the web.

4.2.6 Lexical nets
[Hamp and Feldweg, 1997] are presenting GermaNet which is a lexical-semantic net
for the German language. GermaNet is comparable to WordNet [Miller et al., 1990]
which is a lexical-semantic net for English. These lexical-semantic nets are compara-
ble to ontologies by the presentation of particular relations between the words of the
certain language. A relation between words in GermaNet is defining semantical infor-
mation concerning the words. Exemplary relations are synonymy, antonym, metonymy,
hyponymy, and so on. These lexicons can directly be helpful for the analysis of tokens
in case of Named Entity Recognition, for instance. If a token which has to be classified
is part of a hyponomy-relation with a country, the token will probably be a city or a
territory. This makes WordNets a good resource for helpful features in Information
Extraction.

DWDS also internally uses a lexical net called LexikoNet [Geyken and Schrader, 2006].
LexikoNet only contains nouns. 75.000 nouns are put into 1.200 concepts containing,
for instance, instruments, sports teams, human groups, and so on.

[Henrich and Hinrichs, 2010] developed an editing framework for GermaNet called
GernEdiT which provides possibilities for the easy and intuitive manipulation of Ger-
maNet data. The framework works on a relational dataset containing the GermaNet
data. Unfortunately, it cannot be directly used for other lexical nets because the data of
those nets has to be transferred to a database first and afterwards the framework would
have to be adjusted to handle the language specific structures of that particular lexcial
net.

4.3 Summary
We presented the usage of linguistic resources for Information Extraction. In contrast
to orthographic or semantic features the use of morphological features require exhaus-

5http://www.stratosphere.eu/
6http://www.ukp.tu-darmstadt.de/

76

4.3. SUMMARY

tive preparatory work in order to generate the lexicons or to construct the analyzing
approach. If that preparatory work finally is done, the morphological features will de-
liver useful and rich semantic knowledge.

We presented annotated corpora and lexicons based on linguistic knowledge in particu-
lar. Annotated corpora can be used as a gold-standard for supervised learning methods
for the creation of parsers, PoS-taggers or NER-systems. These corpora are called tree-
banks, and one well-known treebank is the Penn Treebank we presented in detail in this
chapter. Linguistic lexicons contain linguistic knowledge for a huge amount of words
which are either accessible via an index or based on ad-hoc morphological analysis.
We present the German online lexicon DWDS as an example. The specialty of this
lexicon is that due to the grammar rules of German it is more complex than a lexicon
for English. For some analysis it is not useful to store the information in the lexicon
but to do the analysis ad-hoc during runtime.

We have shown in addition that certain languages like German require particular ana-
lyzing systems which sometimes are not available for those languages.

77

CHAPTER 4. STATE OF THE ART IE SYSTEMS

78

Chapter 5

Relation Extraction

In this chapter we will define the task of Relation Extraction as it is used in this work.
After a formal and textual definition of Relation Extraction in Section 5.1 we will show
the typical feature space which is used for Relation Extraction in Section 5.2. Two ap-
plication domains in which Relation Extraction is applied are shown in Section 5.3. We
present the broad area of kernels which are used for Relation Extraction in Section 5.4.
The specialized tree kernels which are used to access tree-structured attribute values
are presented in Section 5.5. In contrast to using different tree kernels it is possible to
convert the tree-structures used by them. Methods based on such manipulation of trees
are presented in Section 5.6. The datasets we use for Relation Extraction are presented
in Section 8.2.1. An intuitive approach for the visualization of (extracted) relations is
presented in Section 8.2.3. Section 8.2.2 contains the descriptions and the results of
the experiments we made for Relation Extraction. Finally, we subsume this chapter in
Section 5.7.

5.1 Definition
The task of Relation Extraction is a subsequent step of named entity recognition. If the
task of finding the entities is sufficiently done, one can look for relations between these
entities. The scientific field of finding relations between entities has become popular
since the ACE-tasks. Especially the relation detection and classification (RDC) task in
2004 [Doddington et al., 2004] has gained much attraction in the scientific community.

Following the definition presented in the ACE RDC task [LDC, 2004a] we specify
a relation as a valid combination of two entities being mentioned in the same sentence
and being related to each other. Relations can be symmetric or asymmetric. In [Had
et al., 2009] we defined the schema of i relations in a sentence s as follows:

Definition 19. Relation candidates Ri in a sentence s:

Ri(Sentence s) =< Typem ∈ relationtypes,
(Argument1 ∈ entitiess, Argument2 ∈ entitiess) >

79

CHAPTER 5. RELATION EXTRACTION

where entitiess is the set of entities contained in the current sentence, and relationtypes
is the set of possible relations in the corpus.

To build pairs of entities the entities in a sentence or document first of all have to
be detected. Making errors in this first step will cause errors in the following steps,
too. During the creation of entity pairs one has to take care of the possible approaches
to create these pairs. A trivial approach would be to create all pairs which will result
in a sparse amount of correct relations in comparison to the incorrect (negative) ones.
Therefore, one should create only those pairs which are defined. A relation-type that
is only defined to contain arguments of type Person, for instance, should not be used
in a creation process of a relation candidate containing other entities than Person. This
proceeding would create a smaller number of negative relation candidates. In addition,
although some combinations are defined by the relation-types, they never appear in the
training set. It is possible to create only those relation-types which are present in the
training set to still lower the number of negative relation-candidates.

After creating all possible pairs of entities for Relation Extraction, machine learning
techniques can be used to create models for distinguishing between correctly and in-
correctly related entities. Multiple machine learning techniques could be used for this
task, but the techniques used in most publications are SVMs.

5.2 Feature space
The selection of the feature space for Relation Extraction is crucial because the usage
of a great amount of features is possible. In Section 5.1 it became clear that first-of-all
the original text – containing the marked entity mentions – has to be converted into
examples. These examples have to be enriched by several features which are slightly
different from the features we presented for NER in Section 3.2. The examples are
extracted from a sentence containing several marked entity mentions. Each example
contains information about the two entities it was created for. The other entity mentions
contained in the sentence can be used as features, too. In addition to the information
offered by the entity mentions, the sentence itself offers many pieces of information
which can and should be used as features for future processing. The relative location
of the used informational units – words or entities – is very useful. An entity mention
which is located between the two entities building the relation, for instance, might offer
different informational contents than an entity mention located outside of the part of the
sentence bounded by the two relation-entities. Most publications concerning Relation
Extraction are using similar feature sets. Nevertheless, some features are only used in
particular publications. We will present a list of features which are used in different
publications.

[Zhao and Grishman, 2005], for instance, used the features presented in Table 5.1.
A token in this context consists of three features concerning a particular word: word,
pos and base. word is the particular word itself. pos is the part of speech tag of
the information available via word, and base is the base form of word. Additionally,

80

5.2. FEATURE SPACE

Name Description
arg1 information about the first entity
arg2 information about the second entity
seq token vector of the sequence of words between first and second entity
link token vector extracted from seq by utilizing the parse tree of the sen-

tence
path the dependency path connecting first and second entity of the depen-

dency parse tree

Table 5.1: Features used for Relation Extraction by [Zhao and Grishman, 2005]

dependencies, which are extracted of the dependency tree (see Section 2.1.4), can be
represented in token features by storing the vector of all dependency arcs (arc) in the
token for a particular word. An arc contains the word w, the word dw which is con-
nected by a dependency arc of a dependency parse tree, the role label label and the
direction e of the dependency arc. The pieces of information about the entities con-
tained in arg1 and arg2 are the (dependency-)token, type, subtype and mtype of the
entity. Although [Zhao and Grishman, 2005] use the dependency tree structure of the
corresponding sentence for the construction of the feature set, all the features still are
flat ones.

[Bunescu and Mooney, 2005] also used the dependency of the particular sentences
to extract flat features. They took the shortest dependency path between the two par-
ticular entities of the relation candidate and built a feature-vector out of it. The nodes
of the dependency path which are particular words of the sentence are represented as
a small feature vector containing the word itself and additional available information
concerning the word like the part-of-speech tag and the named entity class. The depen-
dencies (edges of the dependency tree) are represented as a binary feature indicating if
a particular word xi is depending from word xi+1 or if word xi+1 is depending from
word xi.

[Bunescu and Mooney, 2006] presented an approach completely waiving the structural
information from trees. Using a generalized version of [Lodhi et al., 2002] they used
the sequences of words before, between and after the relevant entities of the relation
candidate for constructing the feature vector.

[Zhou et al., 2005] published a great set of flat features. They extracted several fea-
tures concerning the words of the entity mentions building the relation candidate. As
an example they extracted the first word before the first entity mention, they extracted
the first word after the second entity mention, and so on. In sum they extracted 14 fea-
tures concerning that word level. Additionally, they extracted the information already
encoded in the entity mentions (called entity features). These are the entity types, the
combination of the entity types and the mention levels and the combination of the men-
tion levels. Some overlap features are extracted which contain the number of words and

81

CHAPTER 5. RELATION EXTRACTION

entity mentions between the two entity mentions building the relation candidate. The
overlap features also contain features which indicate if the first entity mention contains
the second entity mention or vice-versa. In addition, combinations of these overlap fea-
tures and the entity features are built to generate more effective features. Some features
were generated out of base phrase chunking. The dependency and the constituent parse
trees were used to generate path features for the relation candidate. Finally, semantic
resources like WordNet (see Section 4.2.6) were used to generate features indicating if
the entities contain known locations or if the entities indicate a social relationship.

[Zhang et al., 2006] were one of the first who used techniques directly processing
features containing tree structures. In contrast to the formerly presented approaches
which only converted the structured features into flat features for future processing,
the approach of [Zhang et al., 2006] directly handles the structured features. Addition-
ally, they show how to combine flat features with structured features in order to profit
from both types of features.

5.3 Applications
In this section we will show two exemplary applications which benefit from Relation
Extraction. The first example is text understanding which aims at the automatic ex-
traction of relevant facts from documents in order to semantically understand the doc-
ument without having to completely read it. The second example is biological knowl-
edge acquisition. Biological knowledge acquisition aims at extracting new pieces of
information out of biological documents. These pieces of information especially are
interrelations – between genes, for instance – which are available in text documents
but not yet published in databases for much easier access. The Learning Language in
Logic challenge 2005 (LLL05) [Nédellec, 2005] covered exactly that topic.

5.3.1 Opinion Mining
Opinion mining is a field of research which gained much interest over the last years.
The task is defined as the automatic extraction of opinions for particular entities. The
task is very interesting for many organizations because it can be used to extract opinions
or sentiments for certain products sold or produced by companies out of the WWW.
The WWW and especially social networks or blogging platforms represent an actual
view on the mood and the opinions of the community. The usage of opinion mining
techniques therefore can be helpful to gain a current feedback concerning particular
products. This feedback can be helpful on the one hand to gain insights of the needs
of customers and on the other hand to get information about the drawbacks of a new
product which has been just rolled out.

[Jiang et al., 2010] used Relation Extraction as a technique for opinion mining. First of
all, they extracted two types of entities: target features and sentiment words. The target
features are entities for which the opinions or sentiments should be extracted. Target
features could be products, for example. The sentiment words are words or tokens

82

5.4. KERNEL USAGE

which are expressing some kind of sentiment. After the extraction of the particular en-
tities the authors are constructing pairs of entities which only contain one target feature
and one sentiment word. Finally, machine learning approaches can be used to classify
the pairs in order to get to know if a relation is present between the particular entities
or if it is not. In addition, if there is a relation it will be classified. Figure 5.1 shows
an exemplary sentence containing two target features and two sentiment words. Each
target feature is used in a relation candidate with each sentiment word. It becomes
obvious that some of the pairs are not related. Especially the tree-structured features
which are used by the methods presented in this chapter are helpful in order to extract
the correct relations.

The computer is great but the hard drive is disgusting.

Figure 5.1: A sentence containing two target features (blue) and two sentiment words
(red).

5.3.2 Biological Knowledge Acquisition
A vast amount of biological documents are available in the World Wide Web. The
publication platform MEDLINE, for instance, contains abstracts and complete journal
articles concerning medical and biological scientific research. This platform is acces-
sible via Pubmed1 which is an information retrieval system enabling users to access
MEDLINE. Although Pubmed enables the access of MEDLINE, this access depends
the query which is defined by the user. The really interesting task is to extract infor-
mational pieces which are still unknown and therefore cannot be formulated in a user
query. One of these informational pieces is the extraction of relations between genes
or amino-acids, for instance. The extraction of genes and amino-acids equals the task
of NER, and after that Relation Extraction techniques can be used to extract – former
unknown – interrelations between the found entities.

5.4 Kernel Usage
Machine learning methods for Relation Extraction are similar to methods used for other
machine learning tasks like Data Mining, for instance. One major difference is the data
preparation which is more complex for Relation Extraction. In Section 5.1 we have
shown that a document containing entity mentions first of all has to be converted into
a set of relation candidates. Additionally, some of the features used for the description
of the candidates depend on both of the relevant entities of the relation candidate. Fi-
nally, the usage of structured features requires either a special preparation to extract a
set of flat features from the structured ones, or specific machine learning methods are
needed for the treatment of the structured features. State-of-the-art machine learning
methods used for various problems are SVMs. In Section 2.4.1 we have shown that
SVMs originally only have the ability to handle linearly separable data. The question

1http://www.ncbi.nlm.nih.gov/pubmed

83

CHAPTER 5. RELATION EXTRACTION

arises for structured data how to make these data linearly separable. The solution is to
use special kernel functions.

In this section we will focus on possible kernel functions used for Relation Extraction.
In Section 5.4.1 we present a linear kernel which can be used to handle nominal fea-
tures. The subsequence kernel of [Bunescu and Mooney, 2006] is presented in Section
5.4.2. The shortest path dependency kernel of [Bunescu and Mooney, 2005] is pre-
sented in Section 5.4.3. These kernel do not directly process structured features. The
convolution kernel [Haussler, 1999] can handle discrete structures. This kernel and the
extensions for this kernel are presented in Section 5.4.4. The tree kernels which have
been explicitly developed for the handling of tree-structured features are presented in
the following section (Section 5.5). In order to combine the structured and flat features
the composite kernels can be used. These kernels combine the outputs of different
kernels for the generation of one kernel result and they are presented in Section 5.4.5.

5.4.1 Linear Kernels

At the beginning of automatic Relation Extraction only flat features have been used for
classifying relation candidates. A huge set of flat features has been created containing
features according to the particular relation candidate. [Zhou et al., 2005] presented a
set of flat features which is used as a kind of benchmark feature set on Relation Ex-
tractiondata. Many of the features contained in this set are nominal features. The use
of SVMs which are well-suited for the handling of large feature vectors is not trivial
for nominal features because the SVM is used to find the optimal separating hyper-
plane in the (feature-)vector space of the example set (see Section 2.4.1). Internally
the dot-product is used on the particular attribute values. Nominal values usually are
presented as numerical values representing an index entry. This will lead to erroneous
results because nominal values represented by index numbers which are nearby will be
seen as more similar than values represented by index numbers which are more distant.
A kernel-function (see Section 2.4.1) is needed to handle the nominal feature values.
Given examples x and x′ containing nominal feature values, the following linear kernel
can be used for SVMs to handle the values:

Definition 20. A linear kernel:

k(x,x′) =
∑
i

c(xi, x
′
i) (5.1)

where c(xi, x′i) = 1 if the i-th feature of x has the same value as the i-th feature of x′,
otherwise c(xi, x′i) = 0.

This kernel can be used to process nominal features using an SVM. The features
can be used directly and do not have to be converted into numerical values.

84

5.4. KERNEL USAGE

5.4.2 Subsequence Kernel

[Bunescu and Mooney, 2006] define a relation candidate constructed out of two entity
mentions by using the sequences of words before, between and after the entity men-
tions. In addition, another sequence covers the entity mentions and the words between
them. Figure 5.2 shows a relation candidate of a sentence s. Not only the sequence of
words but also sequences of other attributes – like POS tags – can be used for calculat-
ing the kernel function.

The more tokens the particular sequences of two compared examples have in common

seqa seqb seqc
s = · · · e1 · · · e2 · · ·︸ ︷︷ ︸

seqb′

Figure 5.2: A relation candidate as used by the subsequence kernel by [Bunescu and
Mooney, 2006]

the greater is the resulting kernel value. This kernel is not comparable to the following
kernels which all of them access structural information for Relation Extraction, and it
is not described in detail because of this reason.

5.4.3 Shortest Path Dependency Kernel

[Bunescu and Mooney, 2005] are using the informational pieces given by the depen-
dency tree of a sentence and convert them into flat features. Figure 5.3 shows the sen-
tence already presented by the dependency tree in Figure 2.2. The entities contained in
this sentence are printed bold. Additionally, the dependencies between the entities are
needed for the kernel calculation. These are indicated by the arrows. To extract relation
candidates out of this sentence the pairs of entities are created. These pairs are enriched
by the shortest dependency path between the particular entities. Felix and New York,
for instance, are connected by the dependency relations from Felix to went and from
New York to went. The direction of a dependency relation is crucial because it indi-
cates which token is depending from which other token. The three resulting relation

Felix went to New York to visit the statue of liberty.

Figure 5.3: A sentence containing dependency relations

85

CHAPTER 5. RELATION EXTRACTION

candidates and the corresponding shortest dependency paths are presented in Table 5.2.

The kernel function on two such sequences x and x′ is calculated as presented in

Relation candidate Shortest dependency path
<Felix ,
New York>

Felix→ went← to← New York

<Felix ,
statue of liberty>

Felix→ went← visit← statue of liberty

<New York ,
statue of liberty>

New York← to← went← visit← statue of liberty

Table 5.2: Relation candidates and the corresponding shortest dependency paths

equation (5.2).

k(x,x′) =

{ ∏n
i=1 c(xi, x

′
i) m = n

0 m 6= n
(5.2)

where m and n are the length of the token-sequences x and x′. It follows that the cal-
culated kernel value for non-equal token-sequences is 0. If the sequences are of equal
length the kernel value will be calculated by the product of function c(·, ·) applied on
each index of the token-sequences. c(·, ·) calculates the entries the sequences have in
common at the particular index. To give the reader an example we use the three depen-
dency paths shown in Table 5.2 as a dataset to be processed by k(·, ·). This dataset is
shown in Table 5.3.

Only the first and the second sequences are of equal length (length = 7). The ker-

ID Shortest dependency path sequence
x1 [Felix,→, went,←, to,←, New York]
x2 [Felix,→, went,←, visit,←, statue of liberty]
x3 [New York,←, to,←, went,←, visit,←, statue of liberty]

Table 5.3: Relation candidates and the corresponding shortest dependency paths stored
as an example set

nel values for the first and the third example and the second and the third example
both are 0 (k(x1,x3) = k(x2,x3) = 0) because of the reason that the particular se-
quences are of different length (7 and 9). The kernel value k(x1,x2) is calculated by
multiplying the numbers of equal parts of the sequences.

k(x1,x2) = 1 · 1 · 1 · 1 · 0 · 1 · 0 = 0 (5.3)

86

5.4. KERNEL USAGE

Equation (5.3) shows the calculation of the kernel value for x1 and x2. Although
both sequences seem to be similar, the kernel value still is 0 like for the other two ker-
nel calculations. The reason for this is the pretty simple feature set we are using. The
entries of the sequences normally are enriched by additional features like the POS-tags
and so on. Nevertheless, just one entry xi in the sequence having nothing in common
with x′i will result in a kernel value of 0. This fact in combination with the fact that
a kernel value is 0 if the length of both sequences are different, makes this kernel not
very general.

5.4.4 Convolution Kernels
Although the approaches presented by [Zhao and Grishman, 2005] and [Zhou et al.,
2005] already used syntactic structures, those structures were shattered and have been
used as flat features. Such processing is tedious and will be avoided if the syntactic
structure is used in a direct way. [Haussler, 1999] presented a kernel function pro-
cessing discrete structures. Instead of shattering the syntactic structures explicitly, the
kernel function implicitly converts the structures and calculates the scalar product.

Definition 21. Suppose x ∈ X is a composite structure and ~x = x1, ..., xp are its
parts, where each xi ∈ Xi for i = 1, ..., p and all Xi are countable sets. The relation
R(~x, x) is true, iff x1, ..., xp are all parts of x. As a special case, X being the set of all
p-degree ordered, rooted trees and X1 = ... = Xp = X , the relation R can be used
iteratively to define more complex structures in X .
Given x, z ∈ X and ~x = x1, ..., xp, ~z = z1, ..., zp and a kernel ki forXi measuring the
similarity ki(xi, zi), then the similarity k(x, z) is defined as the following generalized
convolution

k(x, z) =
∑

{~x|R(~x,x)}

∑
{~z|R(~z,z)}

p∏
i=1

ki(xi, zi) (5.4)

[Haussler, 1999]p.5f

Particular kernels which are based on the kernel defined by Haussler are presented
in Section 5.5.

5.4.5 Composite Kernels
A recent extension is the combination of convolution kernels on the one hand with
linear kernels on the other hand, resulting in a so called composite kernel [Zhang et al.,
2006]. The kernel presented by [Haussler, 1999] is closed under product and addition
implying that a new kernel can be created by combining this kernel with another valid
kernel function. The composite kernel is defined as follows:

k(x,x′) = k1(x,x′) ◦ k2(x,x′) (5.5)

[Zhang et al., 2006] present two possible ways to combine the convolution and the
linear kernel. Eq. (5.6) shows the linear combination whereas eq. (5.7) presents the

87

CHAPTER 5. RELATION EXTRACTION

polynomial expansion.

k(x,x′) = α · kL(x,x′) + (1− α) · kT (x,x′) (5.6)

k(x,x′) = α · kPL (x,x′) + (1− α) · kT (x,x′) (5.7)

where x and x′ are relation candidates consisting of flat features on the one hand and
structured features on the other hand. The linear kernel kL just processes the flat fea-
tures, and the convolution kernel kT processes the structured information. kPL (x,x′)
is the polynomial expansion of kL(x,x′) with degree d resulting in kPL (x,x′) =
(kL(x,x′) + 1)d. The α value can be used to adjust the influence of each kernel.
In addition to the combination of both kernels each kernel is normalized beforehand.
A normalized kernel value k′(x,x′) of a kernel k(x,x′) is defined by:

k′(x,x′) =
k(x,x′)√

k(x,x)k(x′,x′)
(5.8)

5.5 Tree Kernels
In this section we will present tree kernels which are extensions of the approach pre-
sented by [Haussler, 1999] (see Section 5.4.4).

5.5.1 Tree Kernel by Collins and Duffy
[Collins and Duffy, 2001] were the first using parse tree information for the classifica-
tion of relations. Their work is based on the convolution kernel presented by [Haussler,
1999] for discrete structures. To make the structural information of the parse tree ap-
plicable by a machine learning technique a kernel for the comparison of two parse trees
is used. This kernel compares two parse trees and delivers a real-valued number which
can be used by machine learning techniques. During kernel calculation, each subtree
of the first tree is compared with each other subtree of the second tree, therefore the
trees are implicitly represented as a vector of subtrees. The transformation Φ of the
tree structure into a vector space of subtrees is given by:

Φ(T) = (subtree1(T), ..., subtreem(T)) (5.9)

where subtreei(T) is the number the i-th subtree occurs in tree T .
For this representation the m available subtrees of all trees (of the training set) have to
be extracted. The number of subtrees (from subtree1, ..., subtreem) both trees have in
common is summed up during kernel calculation. If the trees are present in the style
of a vector like in equation (5.9) the calculation of the sum of subtrees is very simple.
Especially for bigger trees the transformation of the trees into the vector representation
is infeasible and should be avoided.

[Collins and Duffy, 2001] define a tree kernel working directly on the tree structures.
The transformation into the vector space of all subtrees and the calculation of the sum
of equal subtrees the two trees have in common is calculated implicitly as presented in
Definition 22.

88

5.5. TREE KERNELS

Definition 22. The tree kernel defined by [Collins and Duffy, 2001] computes the fol-
lowing:

k(T1, T2) =< Φ(T1),Φ(T2) > (5.10)

Φi(T1) =
∑
n1∈N1

Isubtreei(n1) (5.11)

where Nj is the set of nodes of tree Tj . Isubtreei is a function defined as to deliver 1 if
the i-th subtree (in the vector of all subtrees of the training set) is rooted in node nk,
and 0 otherwise.

Eq. (5.11) equals eq. (5.9). It follows that

k(T1, T2) =
∑
n1∈N1

∑
n2∈N2

∑
i

Isubtreei(n1)Isubtreei(n2) (5.12)

=
∑
n1∈N1

∑
n2∈N2

C(n1, n2) (5.13)

C(n1, n2) represents the number of common subtrees for the two subtrees rooted at
node n1 and n2. The number of common subtrees finally represents a syntactic similar-
ity measure and can be calculated recursively starting at the leaf nodes inO(|N1|·|N2|).
In the following we will call this kernel the Quadratic Tree Kernel (QTK).

During the recursive calculation three cases are being respected:

1. If the productions at n1 and n2 are different, C(n1, n2) = 0

2. If the productions at n1 and n2 are the same and if n1 and n2 are preterminals,
C(n1, n2) = 1

3. Else if the productions at n1 and n2 are the same and if n1 and n2 are not preter-
minals, C(n1, n2) =

∏
j(1 +C(n1j , n2j)), where n1j is the j-th children of n1

(in a uniform manner for n2).

Especially trees containing many nodes will result in large kernel-outputs which makes
further processing by machine learning techniques complicated. To overcome that
problem, [Collins and Duffy, 2001] present two possibilities:

• Normalization

• Scaling

Every kernel output can be normalized by using following equation:

k′(T1, T2) =
k(T1, T2)

2
√
k(T1, T1) ∗ k(T2, T2)

(5.14)

Unfortunately, calculating the kernel-outcome is computationally expensive, therefore
it should be avoided to calculate this outcome multiple times like this is done during

89

CHAPTER 5. RELATION EXTRACTION

the normalization. [Collins and Duffy, 2001] established a scaling factor 0 < λ <= 1
which is used in two of the three cases for the recursive kernel calculation:

1. If the productions at n1 and n2 are different, C(n1, n2) = 0

2. If the productions at n1 and n2 are the same and if n1 and n2 are preterminals,
C(n1, n2) = λ

3. Else if the productions at n1 and n2 are the same and if n1 and n2 are not preter-
minals, C(n1, n2) = λ ∗

∏
j(1 + C(n1j , n2j)).

For the calculation of k(T1, T2) a total runtime of O((|N1| · |N2|)2) is needed, as for
each node n1 ∈ N1 a combination with every node n2 ∈ N2 is performed to calculate
C(n1, n2) which has a runtime of O(|N1| · |N2|).

5.5.2 Fast Tree Kernels
Moschitti ([Moschitti, 2006a, Moschitti, 2006b]) is presenting an efficient calculation
of equation (5.13). Instead of visiting every node of both trees T1 and T2 he is building
the pairs of nodes n1 and n2 for which the result of C(n1, n2) is not 0. This node pair
set NP is defined as:

NP = < n1, n2 >∈ N1 ×N2 : p(n1) = p(n2) (5.15)

If the productions of two nodes are not equal, C(n1, n2) = 0. The node pair set NP
contains all node pairs which are relevant for the kernel calculation because these pairs
might deliver results which are not 0. The Algorithm 2 shows the collecting mecha-
nism for the relevant pairs needed to calculate the tree kernel outcome.

The trees are represented as ordered production lists like it is described in Section
6.2.1. The productions of each tree are stored in a list and the lists are ordered. Two
lists are processed at the time. For each list an index is available to access particular
productions. These indexes are initially set to the beginning of the lists. If the contained
productions are equal a new node pair will be created and stored for returning it later.
Otherwise, if one production is of higher order, according to the particular ordering,
the other list’s index is incremented.

Although this approach may require only O(|N1| + |N2|), it needs |N1||N2| cycles
in the worst case, which will happen if each of both trees just consists of one produc-
tion type. The sorting of the production-lists of each tree requires O(|N1|log(|N1|)).
But this sorting can be done once during preprocessing. This results in a total runtime
of O((|N1| + |N2|)|N1||N2|) because C(n1, n2) has to be calculated for each of the
created node pairs < n1, n2 >∈ NP .

Because of the faster runtime in practical – compared to the tree kernel presented by
[Collins and Duffy, 2001] – this tree kernel is called Fast Tree Kernel (FTK).

90

5.5. TREE KERNELS

Algorithm 2 Collecting the relevant node pairs. ([Moschitti, 2006b], p. 3)
1: Input: List L1, L2

2: procedure EVALUATE NODE PAIR SET NP
3: L1 = T1.ordered list;
4: L2 = T2.ordered list;
5: n1 =extract(L1);
6: n2 =extract(L2);
7: while n1 and n2 are not null do
8: if p(n1) > p(n2) then
9: n2 = extract(L2);

10: else if p(n1) < p(n2) then
11: n2 = extract(L2);
12: else
13: while p(n1) = p(n2) do
14: while p(n1) = p(n2) do
15: NP .add(¡n1, n2¿);
16: n2 = next(L2);
17: end while
18: n1 = extract(L1);
19: reset(L2);
20: end while
21: end if
22: end while
23: return NP ;
24: end procedure

5.5.3 Approximate Tree Kernels
[Rieck et al., 2010] present the approximate tree kernel which is taking just a subset
of nodes into account during the tree kernel calculation. The tree kernels of [Collins
and Duffy, 2001] and [Moschitti, 2006a] are quadratic in the sense that the calculation
of C(n1, n2) has a runtime of O(|N1||N2|). [Rieck et al., 2010] present a selection
function ω : S → {0, 1} on the set of all possible node symbols S which takes the
particular nodes into account (ω(s) = 1) for the calculation of the kernel function or
not (ω(s) = 0).

Definition 23. Given a selection function ω : S → {0, 1}, the approximate tree kernel
is defined as

kω(T1, T2) =
∑
s∈S

ω(s)
∑
n1∈N1

l(n1)=s

∑
n2∈N2

l(n2)=s

C(n1, n2)

l(ni) is the extraction of the symbol which is assigned to node ni. Although
C(n1, n2) is equal to the function already known from the former tree kernels, it con-
tains the special case C(n1, n2) = 0, if ω(l(n1)) = 0 or ω(l(n2)) = 0.

91

CHAPTER 5. RELATION EXTRACTION

The crucial part of this approach is to define the symbols s ∈ S which are result-
ing in ω(s) = 1 and the ones which result in ω(s) = 0. The more symbols s result in
ω(s) = 0 the less functions C(n1, n2) have to be calculated which leads to a shorter
runtime. Additionally, the classification performance has to stay as good as without
selecting only a subset of symbols for calculation. To find the optimal setting for ω,
[Rieck et al., 2010] present the optimization shown in Optimization 1.

Optimization 1.

ω∗ =
argmax

ω∈[0,1]|S|

n∑
i,j=1
i 6=j

yiyj
∑
s∈S

ω(s)
∑
n1∈N1

l(n1)=s

∑
n2∈N2

l(n2)=s

C(n1, n2) (5.16)

subject to
∑
s∈S ω(s) ≤ N .

N is a parameter which is the upper bound of the number of symbols which should
only be used for the kernel calculation.

The predictive performance of the approximate tree kernel is comparable to the per-
formance achieved by the tree kernels working on the complete set of symbols. The
approximate tree kernel in contrast is significantly faster than the other mentioned tree
kernels. This fact especially makes approximate tree kernels useful in domains in
which the tree-structured values contain many nodes like HTML-documents, for in-
stance.

5.5.4 Context-sensitive Tree Kernels

[Zhang et al., 2006] presented pruning methods for syntactic parse trees resulting in
better classification performance (see Section 5.6). Unfortunately, these pruning meth-
ods cannot tackle certain relation types. Those particular relation types are indicated
by a related verb. Figure 8.4 shows such relation for the German language. Espe-
cially the German language contains more of these relations than the English language.
Nevertheless, also the ACE corpus containing English documents holds such relations.
[Zhou et al., 2007] used syntactic features and embedded those directly into the parse
tree.

[Zhou and Zhu, 2011] are presenting a context-sensitive tree kernel which is work-
ing in an approximate way comparable to the approximate tree kernel presented by
[Rieck et al., 2010].

5.5.5 Related Tree Kernels

[Zhou et al., 2007] extended the FTK kernel to become context sensitive by looking
back at the path above the ancestors of the root node of each subtree. The left side of
the production rule is taking into account m − 1 steps towards the root. The kernel
calculation itself sums up the calculations for each set of production rules created for

92

5.5. TREE KERNELS

1 . . .m. In the special casem = 1 the kernel result is the same as with the non context-
sensitive kernel. Figure 5.4 shows the resulting production rules for differentm values.

The kernel calculation is presented in equation (5.17).

m=3
NP CNP NE -> RWE

m=2
CNP NE -> RWE

m=1
NE -> RWE

NP

CNP

RWE

NE

RWE

NE

CNP

RWE

NE

Figure 5.4: The production rules of a particular subtree root node (NE) for different m
values ([Had et al., 2009], p. 5)

kC(T1, T2) =

m∑
i=1

∑
ni1∈Ni1

∑
ni2∈Ni2

C(ni1, n
i
2), (5.17)

where m is the number of ancestor nodes to consider. ni1 is a node of a tree with a
production rule over i ancestors. n1 is the root node of the context free subtree. N i

1 is
the set of all nodes with their production rules over i ancestors.

In addition to just using the composite kernel on the full parse tree of a sentence,
[Zhang et al., 2006] examined several ways of pruning the parse tree in order to get
differently shaped subtrees on which the tree kernel performs as well or better as on
the full tree. They showed that the shortest path-enclosed tree (PT) which is the min-
imal subtree containing the two entities of a relation candidate performs best for the
ACE 2003 and 2004 RDC corpus (see Section 5.6).

[Zelenko et al., 2003] present a slightly different kernel for Relation Extraction com-
pared to the kernel by [Collins and Duffy, 2001]. Their kernel is processing shallow
parse representations of text. Due to the fact that representations contain nodes which
consist of several attributes, the kernel has to respect these attributes.

[Reichartz et al., 2010] present another special form of tree kernels by generalizing
the original idea of tree kernels for handling typed dependency trees. In typed depen-
dency trees the edges between particular nodes are typed (named). The original tree

93

CHAPTER 5. RELATION EXTRACTION

kernel presented by [Collins and Duffy, 2001] would not be able to handle these typed
edges sufficiently.

[Vishwanathan and Smola, 2003] are presenting a linear-time approach of string ker-
nels which can be used to process the task of tree kernel calculation. Following their
approach the trees have to be represented as strings where each opening bracket, the
strings in between and the closing bracket represent a subtree. An exemplary sentence
given in this form is shown in Figure 7.5. This kernel only is based on the extraction of
complete common subtrees. It follows that only the existence of completely common
subtrees affect the kernel calculation. The recursive computation of C(n1, n2) as it is
presented by [Collins and Duffy, 2001] defines C(n1, n2) = λ

∏
j(1 + C(n1j , n2j))

for the recursive step. If only the complete subtrees are affecting the kernel value this
calculation should be rewritten to C(n1, n2) = λ

∏
j(0+C(n1j , n2j)). This represen-

tation leads to a value which will only be not equal 0 if the subtrees rooted in n1 and
n2 are completely equal. The kernel value of the calculation presented by [Collins and
Duffy, 2001] will already be not equal 0 if the productions of n1 and n2 are equal but
the productions of the children nodes are unequal. [Moschitti, 2006a] calls the kernel
presented by [Collins and Duffy, 2001] a subset-tree kernel and the one by [Vish-
wanathan and Smola, 2003] a subtree kernel. In order to allow the calculation of both
approaches the third step of the recursive calculation of the tree kernel function should
be replaced by

C(n1, n2) = λ
∏
j

(σ + C(n1j , n2j)), where σ ∈ {0, 1}.

5.6 Preparation of Trees
The greater the amount of nodes in a tree the more complex is the calculation of the
kernel function. In addition, it is important that the relation candidate, the parse tree is
used for, just covers a small part of the complete sentence, mostly. This allows to prune
the used parse tree without loosing information about the embedded relation candidate
but having the advantage of smaller complexity. Pruning is the most simple way to cre-
ate small and informative subtrees as features for Relation Extraction. We present the
possible known pruning methods in Section 5.6. Although pruned trees already contain
many informational units helpful for Relation Extraction, these subtrees additionally
can be enriched by semantic and syntactic information. The syntactic informational
units are containing contextual information extracted from the context outside of the
subtree. This latter approach is presented in Section 5.6.2.

5.6.1 Pruning trees
[Zhang et al., 2006] inspected five types of pruning methods:

• Minimum Complete Tree (MCT)

• Path-enclosed Tree (PT)

94

5.6. PREPARATION OF TREES

• Context-Sensitive Path Tree (CPT)

• Flattened Path-enclosed Tree (FPT)

• Flattened CPT Tree (FCPT)

Four of these pruning methods are shown in Figure 5.5.

Figure 5.5: Pruning methods as presented by [Zhang et al., 2006]

The MCT is the the smallest complete subtree containing both entities. Cutting
off every node and production except the path between the entities and the nodes in
between will lead to the PT. The CPT is the same as the PT containing one word beside
each entity, additionally. Non-terminal-nodes which just have one in- and out-arc are
removed to create the FPT out of the PT and the CFPT out of the CPT.

During the evaluation of the five pruned trees on the ACE 2003 and 2004 corpora
(see Section 6.5.2) it became clear that MCT performs worse compared to the other
pruned trees. [Zhang et al., 2006] suggest that the reason for this might be the great
context which is apparent in this trees compared to the other trees. The best perfor-
mance was achieved by using the PT.

5.6.2 Enriching trees by syntactic and semantic information

[Zhou et al., 2010] present methods to enrich the PT by additional syntactic and seman-
tic information. Three steps are performed: first, contextual information as already pre-
sented in [Zhou et al., 2007] are embedded in the tree. Second, structural refinements
on the tree are performed. Certain parts of the tree are compressed or deleted as they

95

CHAPTER 5. RELATION EXTRACTION

are not needed for classifying a relation. Figure 5.6 shows one of three structural refine-
ments performed by [Zhou et al., 2010]: the noun-phrase conjunctions are compressed
to one noun-phrase which contains the relevant entity E2. In addition, contextual infor-
mation is found outside the PT which has not been detected during the first step. Third,
semantical information is embedded into the tree using the entity information. Various
ways to embed these informational units are presented.

[Zhang et al., 2007] generalized the production rules of the parse tree in order to

Figure 5.6: Pruning methods as presented by [Zhou et al., 2010]

achieve better performance. The strict decisions of a convolution tree kernel make the
kernel returning ’unequal’ confronted with two production rules “NP → Det Adj N”
and “NP → Det N” although they might contain similar terminals (“NP → a red
car” and “NP → a car”). To avoid such behavior they proposed the insertion of
optional nodes into production rules to generalize them. Additionally similar part of
speech tags in the parse tree can be processed in an equal way – multiplied with a
penalty term.
This is a step into the right direction. However, only syntactic variance is handled.
Since words carry most of the semantic information, moving them into the tree kernel
could well help to generalize in a more semantic way.

Enriching the tree by word stems

In [Had et al., 2009] the usage of state-of-the-art tree kernels has been changed in order
to

• First, enrich the feature set for the linear kernel.

• Second, add semantic information into the parse tree.

96

5.6. PREPARATION OF TREES

Informational units indicating a particular relation are spread all over a sentence. The
main verb, for example, might occur at different positions of the sequence of words (see
Figure 8.4 as an example). [Zhou et al., 2005] presented the usage of contextual flat
features for Relation Extraction. We generalized that approach by taking the complete
bag of words representation (see Section 3.1) into account as additional flat features for
the relation candidates. This approach of course is very promising if the sentence only
contains one relation candidate.

Our second enhancement concerns the parse tree directly. A particular parse tree of
a sentence contained in the merger corpus (see Section 8.2.1) is shown in Figure 8.4.
The parse tree contains two entities which are solidly underlined. In addition, the verb
which indicates the relation is underlined by a dashed line. Pruning the parse tree and
using the path-enclosed tree (PT), for instance, will not work well for this case. Never-
theless, using the complete parse tree without pruning will result in using equal parse
trees for every relation candidate of the particular sentence.

The technique presented by [Zhou et al., 2007] to use context-sensitive parse trees
is only useful for German datasets if good parsers are available. Our idea was to gener-
alize the information contained in the parse trees by embedding syntactical information
extracted from the tokens into the parse trees at different levels. We extracted the word
stems for every entity involved in the relation candidates and put these stems into the
certain parse trees.

In Figure 5.7 we show three possible ways to embed the word stem information into

S

NE

VW

VVFIN

übernehmen

S

NE

VW

VVFIN

übernimmt

S

NE

VW

VVFIN

übernehmen

übernimmt

S

VVFIN

übernehmen

übernimmt

NE

VW

1) 3) 4)

2)

Figure 5.7: Word stems provided at different depth-levels in the parse tree ([Had et al.,
2009],p.9)

the parse trees. The first way (Fig. 5.7 2)) is to replace the original tokens at the leaf
nodes. The second way (Fig. 5.7 3)) is to generate new preterminal nodes containing
the stems, and the third way (Fig. 5.7 4)) is to create an inner node above the pretermi-

97

CHAPTER 5. RELATION EXTRACTION

nal nodes containing the word stem. Figure 5.7 1) shows the original parse tree. The
token ’VW’ can not be stemmed and therefore nothing is inserted.

5.7 Summary
In this chapter we have presented the task of Relation Extraction in the context of In-
formation Extraction.

We defined Relation Extraction as a follow-up analysis of named entity recognition.
Only already extracted entities are taken into account for further processing. This pro-
cessing creates relation candidates out of pairs of entities. The original sequence of
tokens therefore is destroyed. The relation candidates are enriched by a feature set
containing flat and structured features. We presented possible features, and we showed
which real world tasks are to be augmented by Relation Extraction.

Relation Extraction often is done by using kernel machines. In Section 5.4 we present
possible kernels which are working on flat features being extracted from the entities
itself, from the contextual tokens of the particular entities or from structural informa-
tion available for the entity pair. These kernels lack the possibility to access inherently
available information of structured features. This drawback is avoided by tree kernels.
These kernels explicitly are designed to directly handle tree structured features.

We have shown the development of tree kernels which started with the convolution ker-
nel of [Haussler, 1999]. [Collins and Duffy, 2001] used that kernel for tree-structured
features. A more efficient extension has been developed by [Moschitti, 2006a, Mos-
chitti, 2006b]. Finally, we presented tree kernel approaches embedding additional in-
formation inside of the tree structure [Had et al., 2009, Zhang et al., 2007].

An important point for the processing of trees is the complexity which depends on
the number of nodes. In order to avoid complex calculations and for the creation of
more meaningful trees, we present multiple pruning methods. These methods are us-
ing smaller subtrees of the original tree structures to achieve significant representatives
for the certain entity pair.

The calculation of tree kernel values remains computationally complex. Although
recent extensions of tree kernels have been developed, the recursive manner of the
tree kernel calculation stays a remarkable factor in the computation routine. Especially
SVMs which are exhaustively optimized during the training phase are performing many
kernel calculations during this training phase. This results in longer runtime compared
to using non-recursive kernels which unfortunately cannot process tree structures. Min-
imizing the number of kernel calculations should result in shorter runtime. In the next
chapter we analyze the usage of tree kernels in machine learning approaches which are
not optimized during the training phase which leads to a better runtime.

98

Chapter 6

Efficient Tree Kernel Usage

State-of-the-art techniques for relational learning are taking tree-structured attributes
into account. Current machine learning approaches which respect tree-structured at-
tribute types are mostly based on kernel machines such as Support Vector Machines
(SVM). It hast been shown in Chapter 5 that many kernel calculations have to be per-
formed during training and prediction phase. In many environments it becomes more
and more important to use techniques which are as efficient as possible. In resource-
aware settings like mobile devices, for instance, it should be avoided to perform com-
plex calculations in order not to heavily stress the device. Every dispensable calculation
can save power for the mobile device resulting in longer operating time. It follows that
complex training is to be avoided on mobile devices.

Two possible solutions to avoid complex training arise: training should be done more
efficiently, or training should be completely avoided. In contrast to making training
more efficient it is much more interesting to entirely avoid complex training. The ques-
tion arises if a machine learning method can achieve high performance by not relying
on optimized training like for SVMs.

Machine learning techniques which memorize the training data instead of creating an
optimized decision model are called lazy learners [Aha, 1997]. Unfortunately, it is not
recommendable to memorize the training data completely. In fact, the training data
has to be efficiently stored in a condensed way without losing too much relevant in-
formation. In contrast to lazy learners like k-NN, for instance, naı̈ve Bayes classifiers
do not memorize the complete training data. They create a condensed set of the train-
ing data which is not optimized in the sense of selecting just a set of representative
examples to be used during prediction (see Section). In contrast to memorizing the
complete training set, naı̈ve Bayes classifiers are storing conditional probabilities for
the certain attributes. These values are just expected values which calculated using the
training data. In case of tree-structured attribute values, in particular, it is not trivial
to calculate such probabilities (see Section 6). Although naı̈ve Bayes classifiers are
not optimized, they deliver good results. Their ability to deliver good results while not
needing exhaustive training makes naı̈ve Bayes classifiers to be preferred in resource-

99

CHAPTER 6. EFFICIENT TREE KERNEL USAGE

aware settings like mobile devices [Fricke et al., 2011, Morik et al., 2010].

In this chapter we will show how to overcome the burden of too many kernel cal-
culations during the usage of machine learning methods. We present two approaches
of compressing forests of tree structures and we show how these approaches help to
enhance machine learning from tree-structured attribute values. In addition, we show
two particular machine learning techniques which profit from such compression.

Compression of tree structure forests and more efficient access on such forests is help-
ful in mostly every setting in which machine learning approaches have to access and
iterate over multiple trees. In the prediction phase of Support Vector Machines, for in-
stance, an example is classified by using the amount of support vectors extracted during
training phase. This prediction is a sum of kernel calculations shown in equation (6.1)
which is performed for each example x to be predicted.

ŷ = f(x) =

n∑
i=1

yiαik (xi,x) (6.1)

We suggest for simplicity that the examples x and xi with i ∈ {1, . . . , n} are contain-
ing just one attribute which is tree-structured. Using the approach presented in equation
(6.1) has two drawbacks: at first multiple kernel functions have to be evaluated. A ker-
nel calculation has to be performed for every support vector which is every example
xi contained in the training set which got an α 6= 0 during training. That results in
a number of n kernel calculations for the worst case. Furthermore, the trees (xi with
i ∈ {1, . . . , n}) might share several subtrees. These shared subtrees are representing
redundant information. For the worst case, all trees xi with i ∈ {1, . . . , n} are equal
resulting in a sum of n equal kernel values being calculated. If the trees contained in the
training set could be stored in one data structure, the number of kernel calculations will
be reduced to just one calculation. In addition, multiple access on redundant subtrees
will be avoided, if the right data structure is chosen.

ŷ = f(x) = k (F ,x) (6.2)

Equation (6.2) shows the predictive function after storing the support vector trees in a
merged manner. F represents the merged forest of support vector trees. The particular
yi and αi values have to be stored in the tree structure forest, too. Instead of performing
a sum of n kernel calculations just one kernel value is calculated on F and x. We will
use the term F in the following as a forest of tree-structures containing the informa-
tional units of multiple trees.

At first we will present related work existing in this field of research in Section 6.1.
We will show how forests of tree-structures can be stored efficiently in a compressed
manner in Section 6.2. In Section 2.4.1 we have shown how a naı̈ve Bayes classifier
is working, and in Section 6.3 we will show how to efficiently embed tree kernels in a
naı̈ve Bayes classifier. In Section 6.4 we present the usage of tree kernels in perceptron
learning. In Section 6.5 we will demonstrate the experiments we made on three datasets

100

6.1. RELATED WORK

containing tree-structured attribute values. In Section 6.6 we present a summary of this
chapter.

6.1 Related Work
[Pighin and Moschitti, 2009a, Pighin and Moschitti, 2009b, Pighin and Moschitti,
2010] presented an approach to speed up the handling of tree-structured values using
Support Vector Machines. They analyzed the tree kernel feature-space of the fragments
of the given trees. By utilizing Support Vector Machines on subsets of the training set
they use the resulting support vectors to extract the most relevant fragments. These
fragments are selected and they are exclusively used for later tree kernel processing.
[Rieck et al., 2010] developed approximate tree kernels which are only working on a
subset of subtrees of the original parse trees lowering the amount of kernel calculations
to be evaluated.

SVMs are not the only machine learning technique tree kernels were used in. [Aiolli
et al., 2007] showed that tree kernels can be embedded in perceptrons which may be
used for online-learning. They are using directed acyclic graphs (DAG) to store forests
of tree structures. If a tree should be stored in the DAG its nodes will be represented
as vertices in the DAG. Redundant subtrees are avoided by introducing a frequency
for each vertex. If a node – and the subtree it is the root of – is already stored in the
DAG the frequency count of the corresponding vertex will be increased. This results in
the avoidance of redundant storage of equal trees or subtrees. For binary classification
problems one DAG is sufficient to perform the prediction. This is possible by using
negative and positive frequencies for the negative and positive classes. The approach
of [Aiolli et al., 2007] is precisely presented in Section 6.4.

To the best of our knowledge tree kernels never have been embedded in naı̈ve Bayes
classifiers before. We will present the possibilities to handle trees by naı̈ve Bayes clas-
sifiers in Section 6.3.

6.2 Compression of Tree Forests
In this Section we will show how a set of trees can be merged into one data structure
F resulting in more efficient access. We present two data structures which have dif-
ferent advantages and disadvantages. As an exemplary forest of tree-structures to be
efficiently combined in one data structure we will use the 3 trees shown in Figure 6.1.

6.2.1 Merged Lists
As we use the formalism of [Moschitti, 2006b], the tree xτ for an example x must be
given in ordered production list form – like stated in Algorithm 2. The production of
every node of a tree xτ except the leaf-nodes is contained in the list. The productions
are the roots of certain subtrees. If the productions are stored in the list they will be

101

CHAPTER 6. EFFICIENT TREE KERNEL USAGE

A

B C

D E F

a)

A

B F

D E

b)

A

B F

c)

Figure 6.1: Three tree-structures

still linked to those subtrees. Figure 6.1 a) contains three such productions, namely (A
(B) (C)), (B (D) (E)), (C (F)). The list of the productions linked to the corresponding
trees is shown in Table 6.1. Figure 6.1 b) contains the productions (A (B) (F)), (B (D)
(E)). The list of the productions linked to the corresponding trees is shown in Table
6.2. Figure 6.1 c) contains (A (B) (F)), and the corresponding list exposition is shown
in Table 6.3.

Production Tree

(A (B) (C))

A

B C

D E F

(B (D) (E))

B

D E

(C (F))

C

F

Table 6.1: List exposition of the tree shown in Figure 6.1 a)

Given these sorted lists of productions – which are still linked to the corresponding
(sub-) trees – allows to combine them by storing them together in one sorted list. The
resulting list is: (A (B) (C)), (A (B) (F)), (A (B) (F)), (B (D) (E)), (B (D) (E)), (C (F)) and
it is shown in Table 6.4. It is important to note that duplicate production entries cannot
be easily merged. Having a look on the production (A (B) (F)), for instance, shows that
equal productions can be linked to different trees. Those lists can be handled like any
other tree xτ given by sorted production lists. Instead of calculating a sum of kernel

102

6.2. COMPRESSION OF TREE FORESTS

Production Tree

(A (B) (F))

A

B F

D E

(B (D) (E))

B

D E

Table 6.2: List exposition of the tree shown in Figure 6.1 b)

Production Tree

(A (B) (F))

A

B F

Table 6.3: List exposition of the tree shown in Figure 6.1 c)

calculations like in equation (6.1), the tree-structured values can be stored in one list
F which can be processed by using just one kernel calculation for each class which is
shown in equation (6.2).

Runtime analysis

In this Section we will show that in practical use the runtime of the kernel calculations
on multiple lists is worse than the runtime of one kernel calculation on one list contain-
ing all the individual lists together.

We assume that ψi is representing unique productions here. This means that production
ψi does not equal production ψj , where i 6= j. The production list shown in Table 6.4
is encoded to {ψ1, ψ2, ψ2, ψ3, ψ3, ψ4}, so that the production lists shown in Tables 6.1,
6.2 and 6.3 are encoded to {ψ1, ψ3, ψ4}; {ψ2, ψ3}; {ψ2}.

The crucial part of the processing is the construction of the node pairs (see Algorithm
2). Following the declaration of [Moschitti, 2006b] building such node pairs can be
done in O(|N1||N2|) for the worst case. This case occurs if two trees are containing
only one particular type of production. The list of such tree contains e.g. ψi multiple
times. In that case, the pairs are built by iterating one time over the first list of produc-
tions for each element of the second list of productions.

103

CHAPTER 6. EFFICIENT TREE KERNEL USAGE

Production Tree

(A (B) (C))

A

B C

D E F

(A (B) (F))

A

B F

(A (B) (F))

A

B F

D E

(B (D) (E))

B

D E

(B (D) (E))

B

D E

(C (F))

C

F

Table 6.4: List exposition of the merged trees

104

6.2. COMPRESSION OF TREE FORESTS

In our example the kernel and respectively the node pair list is calculated |M | = 3
times, where M is the amount of trees contained in F . That leads to a runtime of
O(|M ||N̄1||N2|) in the worst case, where N̄1 is the amount of nodes of the tree in M
containing the most productions. Using only one list results in calculating only one
node pair list, but one of the trees consists of all productions of the merged lists which
leads to

∑|M |
i=1 |Ni| productions. This also leads to a runtime of O(|M ||N̄1||N2|) for

the worst case, where N̄1 is the amount of nodes of the tree in M containing the most
productions.

[Moschitti, 2006b] also states that the runtime of the node pair construction can need
O(|N1|+ |N2|) for special cases (see Section 5.5.2). As an example the tree consisting
of the production ψ2 like shown in Figure 6.1c) is going to be classified by the particu-
lar tree-structure forest F presented in Table 6.4. A pointer on the merged production
list is shifted until the production ψ2 – being the first and only production of the tree to
be classified – is found. As the list contains the production ψ2 two times, two nodepairs
(ψ2, ψ2) are constructed. The production-list of the example to be classified is shifted
and the algorithm ends because the example to be classified does not contain any more
productions. The productions contained in the nodepairs of course are still linked to
the corresponding trees. This processing was done in O(|N1| + |N2|). Especially the
shifting of the productions of the example to be classified has to be repeated for every
new tree in a list of trees. Using just one structure F avoids such computational over-
head.

To act on this assumption, the runtime of a method using a tree kernel on multiple
lists is O(|M |(|N̄1| + |N2|)) and the runtime of a method using just one list F is
O(|M ||N̄1|+ |N2|), where N̄1 is the amount of nodes of the tree in M containing the
most productions.

6.2.2 Directed Acyclic Graphs
Another way to store multiple tree-structured values is to use a directed acyclic graph
as presented by [Aiolli et al., 2007]. A minimal directed acyclic graph (DAG) con-
taining a minimal number of vertices can be used to store all the tree structures which
have been seen in the training set. The DAG G = (V,E) contains a set of vertices
V and each vertex v ∈ V consists of a label (denoted by l(v)) on the one hand and
a frequency value (denoted by f(v)) on the other hand. The DAG contains a set of
directed edges E connecting some of the vertices. Nodes which are connected in the
original tree-structures also are connected in the corresponding DAG.

A DAG containing all information of the trees apparent in Figure 6.1 is shown in Fig-
ure 6.2. The algorithm to create a minimal DAG representing multiple trees is given
in Algorithm 3. This algorithm converts every tree into its inverse topological ordered
list of vertices (using the method invTopOrder(·). The first elements of the list are
vertices with zero outdegree. After that vertices containing at most children with zero
outdegree are contained in the list, and so on. The vertices are sorted in ascending
order by the length of the longest path from each vertex to a leaf. The tree shown in

105

CHAPTER 6. EFFICIENT TREE KERNEL USAGE

A, 1

B, 1

C, 1

A, 1A, 1

B, 2

D, 2 E, 2 F, 3

Figure 6.2: A DAG containing the information given by the tree-structures shown in
Figure 6.1

Figure 6.1 a) becomes list {D,E, F,B,C,A}, the tree shown in Figure 6.1 b) becomes
{D,E,B, F,A}, and finally, the tree shown in Figure 6.1 c) becomes {B,F,A}.

The lists are processed and for every vertex it is checked if it already exists in the
DAG or if it is not. The formalism dag(u) ≡ dag(v) means that the DAG rooted at
vertex u is equivalent to the DAG rooted at vertex v. If a particular vertex is already
available in the DAG the frequency of the corresponding node in the DAG is incre-
mented by the frequency of the vertex. If a tree is added to a DAG, the frequencies of
the nodes in the tree are (usually) 1. Otherwise, a node containing label and frequency
of the vertex is created in the DAG. After that all the corresponding children (denoted
by ch[·]) of the new node are connected by edges. It is very important that the vertices
of the trees are sorted because it is guaranteed that the children of a newly created node
are already present in a DAG (if the created node has any).

6.3 The Tree Kernel naı̈ve Bayes Approach
Unfortunately, memorizing specially shaped attribute values like trees is not as trivial
as it is for numerical or nominal attribute values. In addition, it is not useful to memo-
rize all trees seen in the training set because the storage needs would be too high. Like
for nominal attributes it is not obvious how to calculate a similarity or distance of two
trees which are not totally equal.

Tree kernels (see Section 5.5) allow a flexible calculation of similarities for trees be-
cause it will deliver greater values if the two trees used by the kernel function are more
similar. Current machine learning approaches which respect tree-structured attribute
types by using tree kernels are based on kernel machines. Suffering from relatively
complex training, these techniques are not useful in resource-aware settings like mo-
bile devices, for instance. Our contribution in this Section is threefold: we show how
to embed tree kernels into naı̈ve Bayes classifiers. We present a lot of options to handle

106

6.3. THE TREE KERNEL NAÏVE BAYES APPROACH

Algorithm 3 Creating a minimal DAG for a given tree-structure forest ([Aiolli et al.,
2007], p. 3)

1: procedure CREATE MINIMAL DAG(A TREE-STRUCTURE FOREST F =
xi1 , ..., xin)

2: Initialize an empty DAG D
3: for int j = 1; j <= n; j + + do
4: vertex list← invTopOrder(xij)
5: for all v ∈vertex list do
6: if ∃u ∈ D|dag(u) ≡ dag(v) then
7: f(u)+ = f(v)
8: else
9: add node w to D with l(w) = l(v) and f(w) = f(v)

10: for all chi[v] do
11: add arc (w, ci) to D where ci ∈ Nodes(D)
12: and dag(ci) ≡ dag(chi[v])
13: end for
14: end if
15: end for
16: end for
17: Return D
18: end procedure

the tree kernel values in a naı̈ve Bayes classifier, and we evaluate our tree kernel naı̈ve
Bayes approach on three real-world datasets.

6.3.1 Using Tree Kernels as Distance Measure in naı̈ve Bayes Clas-
sifiers

In Section 2.4.1 it became clear that the important parameters for a naı̈ve Bayes classi-
fier are p(y) and p (xi|y). p(y) is not affected by attribute-values and therefore is not
affected by tree-structured attributes, too. p (xi|y) is the crucial term which should be
regarded in the following. We distinguish three types of attribute value types: nominal,
numerical and tree-structured value types.

For nominal attribute value types xi, p (xi|y) is calculated by simply counting the
occurrences of the particular values of xi for each class y ∈ Y . For numerical attribute
value types xi, the mean (µi) and the standard-deviation (σi) of the attribute are used
to calculate the probability density function for every class y ∈ Y as seen in equation
(6.3). A Gaussian normal distribution is expected, here.

p (xi|y) =
1√

2πσi
e
− 1

2

(
xi−µi
σi

)2

(6.3)

The calculation of the probability for tree-structured attribute values is not that trivial.
A simple approach would be just to store each unique tree-structured value and count

107

CHAPTER 6. EFFICIENT TREE KERNEL USAGE

its occurrences like for nominal attributes. This approach is not promising as it is not
general enough. It is not very probable that many examples are containing exactly the
same tree-structured value. We are presenting a more flexible approach which uses tree
kernels for the calculation of the conditional probabilities p (xi|y) for tree-structured
attribute values. Algorithm 4 shows the calculation of the probabilities for naı̈ve Bayes
classifiers in pseudo-code. The input parameters are the training set S and the set to be
predicted is set T .

Algorithm 4 Calculating probabilities for Naı̈ve Bayes classifiers
1: procedure CALCULATEPROBABILITIES
2: Input: Example sets (T ⊂ X × Y, S ⊂ X × Y)
3: for all x ∈ T do
4: for all xi ∈ x do
5: for all y ∈ Y do
6: if xi is numerical or nominal then
7: calculate p(xi|y)
8: else
9: if xi is tree-structured then

10: vy = fy(xi) =
∑
xj∈x′|(x′,y′)∈S,y′=y k(xi, xj)

11: calculate p(xi|y) using vy
12: end if
13: end if
14: end for
15: end for
16: end for
17: end procedure

If an attribute xi is tree-structured the tree kernel value v is calculated by applying a
tree kernel on xi and on every tree structure xj which has been seen in the training-set
S for this attribute. To calculate this sum of kernel calculations all the tree-structures
which have been seen in the training set have to be taken into account during the test
phase. Storing every tree-structure that has ever been seen in the training-phase on its
own in a list, for instance, has two major drawbacks:

1. the storage requirements are high

2. the number of kernel calculations correspond to the quantity of the training set

To reduce the storage needs and the number of kernel-calculations we can use both
approaches we already presented in Section 6.2 to store all tree-structured values in a
compressed manner.

6.3.2 Calculation of probabilities using kernel-values
The tree kernel values can be processed like every other numerical attribute value in
naı̈ve Bayes classifiers. Equation (6.3) shows the calculation of the probability for an

108

6.3. THE TREE KERNEL NAÏVE BAYES APPROACH

attribute value xi given a particular class y ∈ Y by using the mean and the standard de-
viation of the attribute in the training dataset. Unfortunately, to calculate the mean and
standard deviation of the tree kernel values during training, it is necessary to calculate
the kernel values for each example in the training set using the global data structure F
(merged list or DAG) which is used during the prediction phase, too. To calculate the
conditional probability, first of all a data structure F for every particular label class is
needed. This means that our approach has to perform one former run over the training
set to create all Fs. After that, another run over the training set is needed to calculate
the kernel values. This step cannot be performed during the first run over the training
set as it needs the complete set Fs. The kernel values finally are needed to calculate
mean and standard deviation. Algorithm 5 and 6 present our approach for training and
predicting in pseudo-code.

Algorithm 5 Tree Kernel Naı̈ve Bayes classifier training
1: procedure TREE KERNEL NAÏVE BAYES TRAINING + MEAN CALCULATION
2: Input: Example set T ⊂ X × Y
3: Output: Probabilities P , Kernel-values K, Mean-values µ, Standard devia-

tions σ
4: Initialize P,K, µ, σ := empty sets
5: for all (x, y) ∈ T do
6: for all xi ∈ x do
7: if xi is numerical or nominal then
8: calculate p(xi|y)
9: add p(xi|y) to P

10: else
11: if xi is tree-structured then
12: add xi to Fy
13: end if
14: end if
15: end for
16: end for
17: for all (x, y) ∈ T do
18: calculate k(xi,Fy), where xi is tree-structured
19: add k(xi,Fy) to K
20: calculate µi and σi
21: add µi to µ
22: add σi to σ
23: end for
24: return P , K, µ and σ
25: end procedure

109

CHAPTER 6. EFFICIENT TREE KERNEL USAGE

Algorithm 6 Tree Kernel Naı̈ve Bayes classifier prediction
1: procedure TREE KERNEL NAÏVE BAYES PREDICTION
2: Input: Example (x)
3: for all xi ∈ x do
4: for all possible y ∈ Y do
5: if xi is numerical or nominal then
6: calculate probabilities p(xi|y)
7: else
8: if xi is tree-structured then
9: calculate tree-kernel-value vy = fy(xi) = k(xi,Fy)

10: calculate the probability p(xi|y) using vy
11: end if
12: end if
13: end for
14: end for
15: end procedure

6.3.3 Pseudo-probabilities using kernel-values

The calculation of the mean and standard deviation of the tree kernel-values is very
time consuming because the tree kernel has to be applied on every example of the
training set with each data structure F . This results in n|Y | kernel calculations, where
n is the number of examples. We try to overcome this computational complexity by
not calculating the mean and standard deviation of the tree-structured values. We are
using various normalization methods to create pseudo-probabilities, instead. Although,
these pseudo-probabilities are used like every other probability in equation 2.19, they
are real-valued and not necessarily bounded by 0 and 1.We are replacing the calculation
of the probability in line 10 of Algorithm 6 by various approximation methods – some
of them are normalizations. We present 6 methods which are finally evaluated on three
real-world datasets:

• none

The calculated tree kernel value vy is directly used as a probability

p(xi|y) = vy

• normalize by frequency

The calculated tree kernel value vy is normalized by the number of all subtrees
in Fy for class y (this is the length of the merged list or the sum of frequencies
in the DAG)

p(xi|y) =
vy

freqFy

• normalize by tree number

110

6.4. PERCEPTRONS WITH TREE KERNELS

The calculated tree kernel value vy is normalized by the number of trees con-
tained in Fy for class y

p(xi|y) =
vy

treesFy

• normalize by maximum
The calculated tree kernel value vy is normalized by the maximum value calcu-
lated on the training set by Fy for class y

p(xi|y) =
vy

max{vjy|j ∈ {1, . . . , |S|}}

• normalize by all
The calculated tree kernel value vy is normalized by the sum of the values cal-
culated on the training set by Fy for class y

p(xi|y) =
vy∑|S|
j=1 v

j
y

• normalize by tree size
The calculated tree kernel value vy is normalized by the fraction of frequency
and tree number for class y

p(xi|y) =
vy(

freqFy
treesFy

)
• normalize by example set size

The calculated tree kernel value vy is normalized by the number of examples
given for the particular class

p(xi|y) =
vy

|{(x′, y′) ∈ S|y′ = y}|

6.4 Perceptrons with Tree Kernels
In this section we will show how to use perceptron models 2.4.1 in combination with
tree kernels for the processing of tree-structured data.

6.4.1 Kernel-based Perceptron
Extending the perceptron to incorporate kernels has been proposed by several researchers
[Crammer et al., 2003, Weston et al., 2005, Dekel et al., 2008]. The basic observation is
that the hyperplane parameters β and β0 are given by linear representations of misclas-
sified training examples in equation (2.16). For linear kernels, it is possible to compute
β =

∑
i yixi allowing for a compact representation of the decision function due to∑

(xi,yi)∈M

yik(xi,x) = k(β,x) = 〈Φ(β),Φ(x)〉.

111

CHAPTER 6. EFFICIENT TREE KERNEL USAGE

However, as the mapping Φ implicit within the kernel k(·, ·) may be non-linear, we are
forced to explicitly use the misclassified examples M , yielding

fM,k(x) = sign

 ∑
(xi,yi)∈M

yik(xi,x) + β0

 . (6.4)

Obviously this impacts the classification/training time. As shown in equation (6.4) it
involves multiple kernel computations for each new example opposed to the original
perceptron.

6.4.2 Tree List Perceptron
As follows from (6.4) the composite nature of the decision function is a major draw-
back of non-linear kernels such as tree kernels. Approaches to overcome this generally
aim at restricting the number of support vectors, i.e. limiting |M | by some constant
[Dekel et al., 2008]. Unfortunately, the difference between kernel-perceptrons which
calculate a sum of kernel-calculated values (equation (6.4)) and traditional perceptrons
which only update their vector β (equation (2.16)) remains present. For the latter case
the vector β is just updated iteratively and the prediction is simply performed. For
the kernel-perceptron the set M grows with every misclassified example and for every
prediction a sum of kernel-calculations has to be performed.

Our approach is to divide M into disjoint sets for negative and positive classes. Thus,
we end up with M+ being the misclassified examples (x, y) with y = +1 and M−

containing the ones with y = −1. To store M+ and M− we can use any of both data
structures presented in Section 6.2. Instead ofM+ andM−, we writeF+ andF−, now.

To reflect this separation, the decision function fτ (x) is now defined as

fτ (x) = sign(k(xτ ,F+)− k(xτ ,F−)) (6.5)

where k(·, ·) is a tree kernel function and xτ represents the tree to be used. Thus,
instead of calculating the sum of kernel-function values of every misclassified example
our approach only calculates two kernel-function values.

We already mentioned in Section 6.2.1 and 6.2.2 that the presented data structures
can very elegantly be used for binary classification problems by using only one data
structure for two classes. Perceptrons which are binary classification methods therefore
can benefit from this fact by only maintaining one data structure F instead of one for
each class (F+ and F−). The decision function fτ (x) is then defined as

fτ (x) = sign(k(xτ ,F)). (6.6)

Algorithm 7 has to be changed, respectively, by using only one data structureF instead
of two data structures. Instead of using a list for storing the tree structures forest the
approach also can benefit from using a DAG as a data structure. The comparison of
different internal data structure is shown in Section 6.5.4.

112

6.5. EXPERIMENTS

Algorithm 7 Tree List Perceptron Algorithm
procedure TRAINTREELISTPERCEPTRON

Input: Training set S ⊂ X × Y
Output: Positive misclassified examples F+ and negative misclassified exam-

ples F−
Initialize F+,F− := empty data structures
for all (x, y) ∈ S do

if fτ (x) 6= y then
if y = 1 then
F+ ∪ xτ

else
F− ∪ xτ

end if
end if

end for
return F+, F−

end procedure

6.5 Experiments
In the following Section we evaluate our method on three real-world datasets con-
taining tree-structured values. We implemented the presented naı̈ve Bayes tree ker-
nel approach within the Information Extraction Plugin [Jungermann, 2010, Junger-
mann, 2011a] for the open source Data Mining toolbox RapidMiner [Mierswa et al.,
2006]. The state-of-the-art and the most often used implementation of tree kernels in
SVMs is the tree kernel implementation of Moschitti1 which is using the SVM light-
implementation of Joachims [Joachims, 1999]. To show the competitiveness of our
approach, we compared the runtime of our approach with the runtime of the tree kernel
implementation of Moschitti. The running times presented in Table 6.6 are measured
for 100 ten-fold cross-validation over the complete dataset. Table 6.7 contains the val-
ues for a five-fold cross-validation on a 10% sample of the dataset. Although the tree
kernel naı̈ve Bayes approach is faster the true gain in case of runtime can not be evalu-
ated because our approach is implemented in Java while SVM light is implemented in
C.

6.5.1 Datasets
Syskill and Webert Web Page Ratings

The first dataset Syskill and Webert Web Page Ratings (SW) is available at the UCI ma-
chine learning repository [Frank and Asuncion, 2011]. The dataset originally was used
to learn user preferences on websites. It contains websites of four domains. Addition-
ally, user ratings for each website are given. We will only focus on the classification of
the four domains by neglecting the user ratings. That leads to a four-class classification

1http://disi.unitn.it/moschitti/Tree-Kernel.htm

113

CHAPTER 6. EFFICIENT TREE KERNEL USAGE

task. We parsed the websites for the construction of a tree-structured attribute value
for each website by using a HTML-parser2. Unfortunately, some leafs of the result-
ing HTML-tree contain huge text fragments (textual nodes). These fragments would
be disadvantageous for the calculation of tree kernels because few trees would con-
tain completely the same text fragments. This will lead to smaller tree kernel values.
To create more comparable trees we converted every leaf which contains text into a
leaf containing just the word ’leaf’. Unfortunately, the trees still were too huge to be
processed by the tree kernel implementation of Moschitti which is restricted to smaller
trees in the original implementation. An analysis of the trees showed that many equally
shaped subtrees are contained many times in the trees. We pruned the trees by a very
trivial heuristic: we deleted equally shaped subtrees in each tree. A tree which is pro-
cessed in this way just contains unique subtrees. Using this heuristic creates smaller
trees making them applicable by the tree kernel implementation of Moschitti.

To compare our approach to traditional naı̈ve Bayes classifiers we converted the string
representation (see Section 2.1.4) of the trees into its BOW representation containing
the corresponding TF-IDF values. We split the string representation by using spaces
and brackets for splitting. In addition, we used the two-grams of this split representa-
tion as features. This preprocessing finally resulted in 445 attributes. That attribute set
already contains the tree attribute. The dataset contains 341 examples of four classes.
136 examples belong to class BioMedical, 61 to class Bands, 64 to class Goats and
finally, 70 examples belong to class Sheep.

SQL requests dataset

[Bockermann et al., 2009] presented a dataset containing SQL-requests which are
crawled from a database-server web log. Some of the requests are attempts to attack
the database for accessing crucial data. The analysis of SQL-request to detect attacks
is called intrusion detection. The requests in the dataset are classified as normal re-
quest and attack. The relevant class in this binary dataset is relatively rare because the
dataset is containing only 15 attacks on 1000 requests. [Bockermann et al., 2009] used
an SVM with a tree kernel to detect the attacks.

We made several experiments on that SQL dataset. Each example has been converted
into a representation containing different types of attributes. One attribute is the tree-
structured value of the SQL statement parsed by an SQL-parser. The other attributes
are extracted out of this tree-structured values. We converted the tree structure into a
string representation (see Figure 7.5) and converted it into a kind of BOW represen-
tation. We therefore split the strings at each parenthesis and used the resulting tokens
and the bigrams of tokens for the creation of the feature set. This leads to a sum of
1695 flat and 1 structured attribute.

2http://htmlparser.sourceforge.net

114

6.5. EXPERIMENTS

ACE 2004

In addition to the experiments we made on the SQL and the Syskill and Webert dataset,
we made experiments on the well-known ACE 2004 dataset.

The shared task of the Automatic Content Extraction conference 2004 offered one of
the first tasks for relational learning [LDC, 2004a, LDC, 2004b] which meanwhile
became a benchmark dataset for Relation Extraction methods. Since the publication
of the paper of [Zhao and Grishman, 2005] most publications only use a part of the
dataset for a better comparison of the approaches. This part contains 348 documents
and 125.000 words. Generating all relation candidates leads to 50.924 relation candi-
dates containing 4.356 relations. The dataset contains seven types of relations, namely:
ART, DISC, EMP-ORG, GPE-AFF, OTHER-AFF, PER-SOC, PHYS. These relations
are split into several sub-relations. Although the sub-relations were part of the evalu-
ation of the RDC task at the ACE conference, we will only focus on the seven main
relation types in this work. Because of the long runtime shown in Table 6.7 we ex-
tracted a sample of 10% of the dataset to evaluate the best parameter setting.

6.5.2 Evaluation of the Tree Kernel naı̈ve Bayes Approach

Syskill and Webert Web Page Ratings

We made a parameter-optimization by only using the tree-containing attribute to an-
alyze the best parameter-setting for the tree kernel naı̈ve Bayes approach. We used
all seven possible approximation methods. We used σ-values of 0 and 1. We used
21 different λ-values between 0.1 and 107, and in half of the settings we handled the
kernel values like numerical values expecting a Gaussian normal distribution. On the
other half of the settings we expected no Gaussian normal distribution and used the
values directly. Table 6.5 shows the parameter-settings we used for evaluation. This

parameter range
normalization by none, DAG frequency, tree number, maximum,

all, tree size, example number
λ

[
0.1 . . . 107

]
σ 0, 1
Gaussian normal distribution true,false

Table 6.5: Comparison of results of the naı̈ve Bayes experiments on the SW dataset

setup results in 588 individual experiment-settings. Each of this setting is evaluated by
a ten-fold cross validation. Figure 6.3 is the visualization of the results of the seven
normalization methods.

The original tree kernel is restricted to λ-values of 0 < λ ≤ 1. For the tree kernel naı̈ve
Bayes approach λ-values greater than 1 are delivering the best results. Another inter-
esting fact is that using the kernel values directly as probabilities – without expecting

115

CHAPTER 6. EFFICIENT TREE KERNEL USAGE

a) Different parameter settings and calculating the probabilities by using ”No normal-
ization”

b) Different parameter settings and calculating the probabilities by using ”Normalize
by maximum”

116

6.5. EXPERIMENTS

c) Different parameter settings and calculating the probabilities by using ”Normalize
by DAG frequency”

d) Different parameter settings and calculating the probabilities by using ”Normalize
by all”

117

CHAPTER 6. EFFICIENT TREE KERNEL USAGE

e) Different parameter settings and calculating the probabilities by using ”Normalize
by example number”

f) Different parameter settings and calculating the probabilities by using ”Normalize
by tree size”

118

6.5. EXPERIMENTS

g) Different parameter settings and calculating the probabilities by using ”Normalize
by tree number”

Figure 6.3: Optimization experiments for SW

a normal Gaussian distribution and without normalization – delivers almost the best
results. This is remarkable because expecting a normal Gaussian distribution means to
calculate the mean and standard deviation after the construction of the DAGs. Not cal-
culating the mean and standard deviation for the training set results in a more ordinary
calculation and finally a better runtime (see Tables tab:ResourceAware:SQLresults and
tab:ACEresults).

If we are calculating the tree kernel values for all trees in the training data for achieving
numerical values we will be able to use them as we usually use numerical values. We
calculate mean and standard deviation of those numerical values. Assuming a Gaussian
normal distribution we are able to calculate probabilities given new and not yet seen
numerical values and the mean and standard deviation of the training data. It is re-
markable that this way of calculating the probabilities achieves the worst performance.
A reason for this could be outliers contained in the training data. If a tree-structured
value contained in the training data delivers an exceptional huge tree kernel output the
mean and standard deviation will be useless for the calculation of correct conditional
probabilities. Unfortunately, finding outliers in tree-structured attributes is not trivial.
The extraction of outliers only can be done by some kind of similarity measure. A
possible solution to manage this is to use tree kernels, too. This means that first of all,
the DAGs have to be constructed. After that the kernel-values for all tree-structured
values of the training data have to be calculated. Comparing the resulting numerical

119

CHAPTER 6. EFFICIENT TREE KERNEL USAGE

values will probably state out the outliers. If we now want to remove such outliers,
the formerly created DAGs will have to be reconstructed because they still contain the
defect tree-structured value.
Another argument for the assumption that outliers are contained in the training data is
visible in Figure 6.3 b) and d). Normalizing the tree kernel outcome will deliver bad
results if the maximum and the sum of the kernel outcomes of the training phase are
used for normalization. The reason for this again could be outliers creating exceptional
huge kernel outcomes which finally result in inaccurate values for the approximations
during prediction.
Using one of the other normalization methods deliver better results, again, which are
more or less similar to.

We extracted the best parameter setting for the tree kernel naı̈ve Bayes approach using
the tree and the BOW features together, too. After that we used the best settings to eval-
uate the performance of our approach. Table 6.6 shows the performances concerning
accuracy, recall and precision. Those values have been evaluated using a loop of 100
ten-fold cross-validations for the naı̈ve Bayes and tree kernel naı̈ve Bayes approaches.
The tree kernel SVM only was also evaluated on 100 ten-fold cross-validations. The re-
sults show that our naı̈ve Bayes tree kernel approach delivers comparable performance,
at least.

Using an analysis of variance test (ANOVA, see Section 2.4.4) it becomes apparent
that using the tree kernel naı̈ve Bayes approach on tree-structured values delivers sig-
nificantly better results in cases of accuracy and precision than a naı̈ve Bayes approach
using no tree-structured values. Using the tree kernel naı̈ve Bayes approach on tree-
structured and BOW features delivers slightly better results in cases of accuracy.

SQL requests dataset

To optimize the parameters for our tree kernel naı̈ve Bayes approach on the SQL
dataset, we used the same setting as already described for the SW dataset (see Table
6.5). Figure 6.4 shows the results using the optimal parameters. The best performance
is achieved by using either no approximation method or by DAG frequency approxi-
mation which both achieve 99.2% accuracy. For both (and all the other) normalization
methods the results heavily depend on the chosen value for the λ-parameter. A default
learner which only predicts the majority class would achieve 98.5% accuracy because
985 of 1000 requests are no attacks. Like for the Syskill and Webert Web Page Ratings
dataset the normalization methods using the sum or the maximum of the outcome been
seen during training are not flexible enough to achieve good results. Those approxi-
mations rely on values calculated on the training set. They never perform better than
the default learner which predicts the majority class. The difference between training
and prediction set seems to be too grave for the achievement of good results. It is
very likely that the model is overfitted to the training set. The usage of the remaining
normalization methods does not deliver better results than using no normalization or
DAG frequency normalization. Additionally, the results are poor if we are expecting a
Gaussian normal distribution on the values calculated on the training set and using this

120

6.5. EXPERIMENTS

a) Different parameter settings and calculating the probabilities by using ”No normal-
ization”

b)Different parameter settings and calculating the probabilities by using ”Normalize
by DAG frequency”

Figure 6.4: Optimization experiments for SQL

121

CHAPTER 6. EFFICIENT TREE KERNEL USAGE

for calculation of the probabilities during prediction.

Table 6.6 shows that using the tree kernel naı̈ve Bayes approach on tree-structured
values compared to a naı̈ve Bayes approach using no tree-structured values delivers
significantly better results in cases of precision and accuracy. All experiments were
evaluated using a loop of 100 ten-fold cross-validations and calculating the average.
An interesting fact is that using a tree kernel SVM on the tree-structured and BOW val-
ues on the SQL dataset ends up in shorter runtime compared to the application of a tree
kernel SVM alone. This might be due to the faster convergence of SVM processing the
kernel on the structured in combination with the flat features.

Combining the tree-structured values with the BOW features using our tree kernel
naı̈ve Bayes approach delivers results which are worse than using the BOW or the tree-
structured features exclusively. To develop a smoother combination of both probability
distributions inside of the naı̈ve Bayes classifier might overcome this problem.

Method Accuracy Recall Precision Time (in s)

SW
Baseline (majority vote) 39.9% 25.0% 10.0%
Naı̈ve Bayes on BOW 60.9± 1.5% 63.3± 1.0% 64.2± 0.9% 0.2
Tree Kernel Naı̈ve Bayes 66.6± 0.7% 63.1± 0.8% 70.5± 2.2% 1.90
(+ Gaussian) 2.73
Tree Kernel Naı̈ve Bayes
& BOW

66.0± 0.9% 62.8± 0.9% 65.5± 2.3% 3.04

Tree Kernel SVM 66.6± 7.0% 60.8± 8.1% 71.8± 9.3% 55.0
Tree Kernel SVM & BOW 72.3± 6.0% 68.0± 6.8% 75.8± 8.9% 98.5

SQL
Baseline (majority vote) 98.5% 50.0% 49.3%
Naı̈ve Bayes on BOW 96.6± 0.2% 81.0± 2.2% 62.3± 1.0% 3.12
Tree Kernel Naı̈ve Bayes 99.3± 0.1% 79.7± 2.4% 84.0± 4.0% 60.6
(+ Gaussian) 612
Tree Kernel Naı̈ve Bayes
& BOW

96.6± 0.2% 81.2± 2.7% 64.3± 2.5% 66.5

Tree Kernel SVM 98.5± 0.5% 50.0± 0.0% 49.3± 0.3% 64.5
Tree Kernel SVM & BOW 98.9± 0.6% 62.5± 18.3% 67.3± 24.2% 56.8

Table 6.6: Results of various machine learning approaches on the SW and SQL datasets
(the values are arithmetic means and the corresponding standard deviations)

ACE 2004

We evaluated the best experiment setting and the performance of the tested methods
on that sample, too. To calculate the values for precision and recall, we calculated the
average values of the certain values for each of the seven relation classes. These seven
classes are the relevant ones. The values for precision and recall for the negative exam-
ples are good just because of the amount of negative examples. A default learner only
predicting no relation class will result in more or less good performance as the number
of relations which are not classified is very huge compared to the classified relations.

122

6.5. EXPERIMENTS

The performance values of the naı̈ve Bayes approaches are evaluated using a loop of
100 five-fold cross-validations.

We used the features presented by [Zhou et al., 2005] (see Section 5.2) in several
settings shown in Table 6.7. Again, the tree kernel SVM is a little bit faster if it is
applied on a tree-structured attribute together with non-tree-structured attributes. If the
tree kernel SVM is applied on tree-structured attributes alone, it is on the other hand
a little bit slower than our tree kernel naı̈ve Bayes approach. This relies on the faster
convergence of the SVM processing flat and structured features together. Although
the results for the tree kernel SVM are not significant, the results achieved by the tree
kernel naı̈ve Bayes approach are comparable. Using the tree-structured attributes in
contrast to just using the features presented by [Zhou et al., 2005] (Zhou-features) re-
sults in significantly better results in case of precision and accuracy. In addition to the
other two datasets we evaluated the f-score (f-measure, see Section 2.4.4), too. The
best result is achieved by the tree kernel naı̈ve Bayes approach in combination with the
Zhou-features.

Method Accuracy Recall Precision F-mea-
sure

Time
(in s)

NB on Zhou-features 79.0± 0.2% 56.2± 2.0% 18.1± 0.6% 27.4% 0.07
TKNB 91.0± 0.2% 15.3± 1.4% 29.7± 2.6% 20.2% 320
(+ Gaussian) 1400
TKNB & Zhou-features 86.8± 0.3% 48.3± 1.9% 25.7± 1.0% 33.5% 320

TKSVM 92.5± 0.3% 4.0± 3.8% 13.5± 10.2% 6.2% 620
TKSVM & Zhou-features 93.3± 0.3% 12.6± 6.8% 27.7± 16.9% 17.3% 585

Table 6.7: Results of various machine learning approaches on the ACE dataset (the
runtime values are rounded)

Discussion

Using the tree kernel naı̈ve Bayes approach in most of the cases results in short runtime
compared to the SVM tree kernel approach. In addition the tree kernel naı̈ve Bayes ap-
proach delivers comparable results in case of accuracy, precision, recall and f-measure
compared to the results achieved by the SVM.

We want to analyze the different runtimes of the tree kernel naı̈ve Bayes approach
on the SQL and the SW dataset. In Table 6.8 we show a comparison of the runtime of
the tree kernel naı̈ve Bayes approach on the datasets SW and SQL in detail. It is getting
obvious that the runtime depends on the characteristics of the particular dataset. For
the SW dataset, for instance, it lasts longer to create the DAGs than to use the DAGs
for predicting the test dataset. For SQL it is the other way round: creating the DAGs
does not need as much time as predicting the examples during the prediction phase.
In addition, the runtime of a complete cross-validation on the SQL dataset is generally
longer than it is for SW.

123

CHAPTER 6. EFFICIENT TREE KERNEL USAGE

Dataset DAGs creation
time (in s)

Examples in
training

Prediction
time (in s)

Examples
to predict

Nodes in
DAGs

SW 1.57 3069 0.22 341 227, 1188,
316, 291

SQL 13.7 8100 60.7 1000 242, 7360

Table 6.8: Runtime of ten-fold cross-validations on various datasets

Reasons for this are on the one hand the greater amount of examples to be processed
in the SQL dataset. On the other hand the tree-structures in the SQL dataset are more
complex than in the SW dataset. For the binary SQL dataset just two DAGs are con-
structed but one of them is very huge because it contains more than 7300 vertices. The
greatest DAG of the four DAGs created for the SW dataset just contains 1188 vertices.
Calculating the tree kernel values is costly. These calculations are just performed dur-
ing the prediction – like for every lazy learning approach.

If great and complex trees have to be evaluated like for the SQL and especially for
the ACE dataset the fraction of prediction and training time becomes bigger.

6.5.3 Evaluation of the Tree Kernel Perceptron Approach
In this Section we analyze the performance with respect to runtime and kernel cal-
culations of the proposed Tree List Perceptron-Algorithm (Algorithm 7) compared to
SVMs or Kernel-Perceptrons.

ACE 2004 dataset

We used the ACE 2004 dataset for Relation Detection and Characterization (RDC) (see
Section 6.5.2), again. In contrast to our setting in Section 6.5.2 we used the complete
dataset.

As we use binary classifiers we cannot train one model for all relation types. We used
a one-against-all strategy (see Section 2.4.3) and evaluated every experiment by a five-
fold cross-validation. This setting is used by various experiments on the ACE 2004
dataset like [Zhao and Grishman, 2005, Zhang et al., 2006, Zhou et al., 2007, Qian
et al., 2008].

In a first experiment-setting we compared the results of the SVM-LIGHT-TK of [Mos-
chitti, 2006b] with a perceptron using a fast tree kernel and the tree list perceptron
approach. For the perceptron- and tree list perceptron-training we only made one pass
over the data and used the resulting perceptron/tree list perceptron for prediction. This
setting is used to analyze the performance which can be achieved by approximated
training. Our suggestion is that the runtime is shorter and the resulting performance is
not as good as for the SVM which is optimized during several runs on the training set.

124

6.5. EXPERIMENTS

Perceptron
Precision Recall F-Measure

ART 27.6 28.8 27.95
DISC 39.2 32.2 34.33

EMP-ORG 56.2 55.4 55.39
GPE-AFF 25.4 42.2 30.36

OTHER-AFF 24.2 25.4 24.3
PER-SOC 50.4 53.6 50.81

PHYS 46.4 34.4 39.24
Tree List Perceptron

Precision Recall F-Measure
ART 24.6 28.6 25.7 (28)
DISC 38.8 34.6 36.2 (35.2)

EMP-ORG 59.2 53.8 55.7 (54)
GPE-AFF 20.2 36.6 24.0 (32.8)

OTHER-AFF 22.6 23.4 22.6 (29.8)
PER-SOC 55.8 55.2 54.8 (48)

PHYS 46.8 35.6 40.3 (39)
SVMlight

Precision Recall F-Measure
ART 84.7 17.0 28.3
DISC 84.8 3.8 45.3

EMP-ORG 84.1 55.0 66.5
GPE-AFF 72.9 22.5 34.4

OTHER-AFF 72.1 17.0 27.4
PER-SOC 87.1 46.3 60.5

PHYS 75.8 30.6 43.6

Table 6.9: Classification results on the ACE dataset using different machine learning
techniques

Accuracy Precision Recall Time (in s)
Perceptron

90.5± 1.5% 32.5± 3.9% 24.3± 2.6% 5904
Tree List Perceptron

90.6± 1.4% 32.1± 3.7% 23.9± 2.8% 1698
DAG Perceptron

90.7± 1.1% 32.9± 3.7% 24.1± 2.6% 115

Table 6.10: Classification results on the ACE dataset using different perceptron ap-
proaches

125

CHAPTER 6. EFFICIENT TREE KERNEL USAGE

The results are shown in Table 6.9. Although the results for precision are better for
the SVM, the results for f-measure achieved by the perceptron and the tree list percep-
tron approach are comparable to those achieved by the SVM. Especially, the fact that
the SVM iterates over the training set several times relativizes the results. Another ob-
servation is that the performance achieved by the perceptron and the tree list perceptron
is nearly the same. Perceptrons might achieve results which are overestimated because
of a positive order of the examples. We made five different randomized runs on the
same dataset to avoid such behavior and presented the average results in brackets for
the tree list perceptron. Additionally, we made 100 ten-fold cross-validations using the
three different perceptron approaches on the data sample. The average results are pre-
sented in Table 6.10. It is remarkable that the results are comparable but the runtime is
totally different. The perceptron based on the DAG is much faster than the two other
perceptrons.

Figure 6.5: Runtime of the perceptron efficiently storing the trees in a list in contrast
to a perceptron calculating the tree kernel values for each tree of the set.

In a second experiment-setting, we explored the number of kernel executions done dur-

126

6.5. EXPERIMENTS

ing the training-phase of the perceptron and the tree list perceptron. We differentiated

Perceptron Tree List Perceptron
direct rec. direct rec.

(* 106)
ART 11.0 45.3 0.1 45.7
DISC 14.0 125.4 0.1 123.9

EMP-ORG 43.5 295.3 0.1 295.0
GPE-AFF 22.0 144.1 0.1 144.8

OTHER-AFF 9.0 33.7 0.1 34.0
PER-SOC 13.6 72.5 0.1 72.6

PHYS 42.5 447.6 0.1 451.0

Table 6.11: Number of kernel calculations executed by the perceptron and the tree list
perceptron

between the number of direct and recursive kernel-calculations. The results are shown
in Table 6.11. The number of direct kernel-executions is the number of executions on
the root of the particular trees, whereas the number of recursive kernel-executions is
the number of all the recursive kernel executions on the subtrees. Although the num-
ber of direct kernel executions differ strongly, the numbers of recursive executions are
nearly equal comparing perceptron and tree list perceptron. The difference in direct
executions is obvious: the tree list perceptron just performs two kernel executions for
every prediction, whereas the perceptron performs an execution for every misclassified
example per prediction. As the two kernel executions of the tree list perceptron are per-
formed on production lists which contain the same information which is also contained
int the multiple trees the prediction of the perceptron is performed on, the numbers of
recursive executions are nearly the same.

In a third experiment-setting, the runtime of the perceptron and the tree list percep-
tron is compared empirically. We made experiments on two equally sized datasets and
calculated the mean of the runtime. The results are shown in Figure 6.5. It is obvious
that the formally presented runtime (Section 6.2.1) has a great empirical argument. The
runtime of the perceptron always is more than two times slower than the runtime of the
tree list perceptron. The two lines at the bottom of the plot show the time needed for
the required computations after an example was misclassified. Whereas the perceptron
just stores the example, the tree list perceptron needs to merge the list of productions
with the positive or negative productions-list, respecting the order of the productions.

Syskill and Webert Web Page Ratings

We also evaluated the perceptron using tree kernels on the Syskill and Webert dataset
we already presented in Section 6.5.1. We always made 100 ten-fold cross-validations
to evaluate the experiments. Table 6.12 shows the results. The time we are mentioning
in the last column is the mean value for one cross-validation. The feature sets we
used for the experiments were manifold: the first and the second experiment have been

127

CHAPTER 6. EFFICIENT TREE KERNEL USAGE

done by using a perceptron which only used the flat features extracted from the tree
structures of the HTML trees. For the first experiment we used one- and two-gram-
features of the flat features extracted from the trees and for the second experiment
we only used the one-grams. The following four experiments all were done by using
tree kernels embedded in a perceptron. The third experiment has been done by using
a DAG handling positive and negative classes. It is important that a perceptron is a
binary decision model which has to be used in a 1-vs-all strategy (see Section 2.4.3)
for the handling of multiple classes like it is needed for the SW dataset. The fourth
experiment was using the tree list perceptron approach, and finally the fifth experiment
only used the FTK (see Section 5.5.2) without any efficient storing of the tree set.

Method Accuracy Recall Precision Time (in
s)

Using a perceptron on one- and
two-gram features

66.4± 1.5% 64.1± 1.7% 66.0± 2.1% 118.7

Using a perceptron on one-gram
features

62.7± 1.6% 61.3± 1.8% 62.1± 2.3% 18.9

Using a DAG 67.9± 1.5% 64.0± 1.6% 68.4± 2.5% 1.78
Using the tree list perceptron ap-
proach

68.3± 1.6% 64.5± 1.7% 69.1± 2.4% 55.0

Using the FTK approach 68.3± 1.5% 64.6± 1.7% 69.2± 2.4% 78.9

Table 6.12: Results of the Perceptron approaches on SW

6.5.4 Comparison of different internal data structures

In another experiment we tried to analyze the use of different data structures. We used
a perceptron on the SQL dataset (see Section 6.5.1) and we used different data struc-
tures for storing the set of already misclassified examples containing tree structures.
We present the trivial approach which just stores each tree and calculates the sum on
the set of these trees. This approach is two-fold as the calculation is possible using the
approach by [Collins and Duffy, 2001] or a faster approach by [Moschitti, 2006a, Mos-
chitti, 2006b]. The approach to store the set of trees in one list to use the approach
by [Moschitti, 2006a, Moschitti, 2006b] later on is presented in Section 6.4.2 and it is
the third method to be used here. The fourth approach to store the set of trees is a DAG.

Table 6.13 shows the results of the perceptron experiments on the SQL dataset. It

Method Accuracy Recall Precision Time (in s)
One DAG 98.9± 0.6% 87.3± 3.1% 82.4± 6.8% 3.58
Tree List Percep-
tron

99.0± 0.6% 87.3± 3.6% 83.2± 6.4% 18.6

FTK 99.0± 0.6% 87.3± 3.6% 83.2± 6.5% 23.89
QTK 98.9± 0.5% 87.6± 3.3% 82.3± 6.6% 31.34

Table 6.13: Results of the Perceptron approaches on SQL

128

6.6. SUMMARY

becomes obvious that quality of the results concerning recall, precision and accuracy
do not depend on the internally used data structure. Figure 6.6 shows the runtimes
for one 10-fold cross-validation using the five different data structures internally by a
perceptron on the SQL dataset.

0

10

20

30

DAG Tree List Perceptron FTK CollinsDuffy

ti
m

e
 (

in
 s

)

datastructure

Figure 6.6: Runtime for a cross-validation using different data structures using a per-
ceptron on SQL

6.6 Summary
In this chapter we have shown that a crucial point to be respected for efficient tree ker-
nel usage is the data structure storing the set of trees.

We presented two data structures which both can handle sets of trees. One data struc-
ture is based on our idea to store the set of trees in a list of productions. This idea is
affected by the FTK by [Moschitti, 2006b] which presents the usage of lists of produc-
tions to store trees. The other data structure is a directed acyclic graph (DAG) which –
during tree kernel calculation – acts like a tree but contains a whole set of trees. The
advantage of using a DAG is that the nodes contain frequencies in addition to the la-
bels. This behavior results in a smaller amount of nodes which leads to a less complex
calculation of the tree kernel values. The usage of both data structures leads to a more
efficient calculation for tree kernels in contrast to not storing the certain set of trees in
one data structure.

129

CHAPTER 6. EFFICIENT TREE KERNEL USAGE

Our presented approach aims at enhancing the calculation over sets of trees in order
to make the access more efficient. The internal calculation of C(ni, nj) is not affected
by our approach. The approximate tree kernel approach presented by [Rieck et al.,
2010] aims at speeding up the calculation of C(ni, nj). The combination of our ap-
proach and the approximate tree kernel could, again, lead to a more efficient tree kernel
calculation.

Additionally, we presented two machine learning approaches which by definition have
a shorter runtime than, for instance, support vector machines (SVMs). The first ap-
proach is a perceptron which is evaluated with all presented data structures. The sec-
ond approach is our main contribution in this chapter which is the development of a
tree kernel naı̈ve Bayes classifier. This classifier is on the one hand significantly better
than naı̈ve Bayes classifiers applied on flattened structured features with respect to pre-
cision and accuracy. On the other hand our approach is significantly faster on particular
datasets than comparable tree kernel methods based on optimized models like SVMs.

We presented experiments on three real-world datasets which show that our tree kernel
naı̈ve Bayes approach is a fast and efficient alternative to tree kernel methods based on
kernel machines.

130

Chapter 7

The Information Extraction
Plugin for RapidMiner

In this chapter we will present the plugin we developed for the open source frame-
work RapidMiner [Mierswa et al., 2006]. Relevant publications concerning the ex-
tension are [Jungermann, 2009, Jungermann, 2010, Jungermann, 2011b, Jungermann,
2011c, Jungermann, 2011a].

Our plugin allows the combination of Information Extraction and Data Mining meth-
ods. In addition, it is possible to use all techniques which are already available in
RapidMiner. These techniques do not only include models like decision trees or sup-
port vector machines. A great benefit of RapidMiner is the possibility to easily validate
machine learning tasks. By the application of our plugin the validation process can
also be used for Information Extraction processes making the results more significant.
Additionally, we are able to evaluate and validate several different parameter settings
for multiple techniques. This makes our plugin a toolbox for the comparison and devel-
opment of new machine learning approaches for Information Extraction. The plugin is
open source and easily to extend.

RapidMiner, which is shortly presented in Section 7.1, supports a certain data structure
for storing datasets. This data structure has to be respected by extensions and operators
of those extensions. This circumstances lead to particular requirements which have to
be fulfilled by our extension. These requirements in addition to the data structure used
in RapidMiner are presented in Section 7.1.1.

The process of a particular Data Mining task can be separated in four distinct parts
in RapidMiner. The first part is the retrieval of the data. We present the possible ways
to retrieve data for Information Extraction purposes in RapidMiner in Section 7.2.1.
After the retrieval the data has to be prepared for future use. This preparation is of-
ten called preprocessing. Although the task of preprocessing sometimes contains the
process of data preparation (see Section 2.2), we just focus on the enrichment of the

131

CHAPTER 7. THE IE PLUGIN FOR RAPIDMINER

data by features to allow more precise analyses in this work. The preprocessing of the
datasets is presented in Section 7.2.2. The preprocessed datasets finally can be used to
create models which in turn can be used to analyze formerly unknown datasets. The
process of creating models is called modeling and it is presented in Section 7.2.3. After
– and sometimes also during – the process of modeling the models have to be evalu-
ated to get the optimal model for a given datasets. The task of evaluation is presented
in Section 7.2.4.

In Section 7.3 we present frameworks which are comparable to our plugin. We will
show that state-of-the-art frameworks for Information Extraction are based on a com-
parable architecture like our plugin. It will become obvious that our plugin is superior
compared to those frameworks because it enables the close collaboration of Informa-
tion Extraction and Data Mining.

Section 7.4 summarizes this chapter. The particular reference for each operator is pre-
sented in Appendix A.

7.1 RapidMiner
RapidMiner is an open source framework for Data Mining purposes. It offers many
Data Mining methods which can be plugged together to form a Data Mining analy-
sis. The functional objects in RapidMiner are called operators, and the set of operators
being plugged together are defined to be a so called process. The major function of a
process is the analysis of the data which is retrieved at the beginning of the process.
The framework offers a graphical user interface (GUI) that offers the possibility to
connect operators with each other in the process. The particular panel visualizing the
process is called process view. Operators have interfaces for achieving and presenting
data. These interfaces are called ports. Input ports are receiving the data which will be
presented to the operator and the output port is delivering the data which has been pro-
cessed by the operator. Most operators have at least one input and one output port. Data
that is passed to an input port of an operator is processed internally and it is presented
at the output port, finally. The data which is processed is passed to any operator which
is connected to the certain output port. Other types of objects may be created during
the process. These objects are also presented at certain output ports. The data can be
used to create models (see Section 2.4 for more information concerning models), for
instance. These models can be evaluated, and performance results can be generated out
of this evaluation process, and so on. These kinds of objects all can be passed as data
objects from operator to operator by connecting the operators. The complete process
has global output ports. Data, results or models which are passed to these ports are
represented in the result view panel after finishing the process.

The GUI of RapidMiner is shown in Figure 7.1. Six main areas of the GUI, which can
be rearranged by the user, are to be distinguished:

1. Overview
The Overview tab is representing an overview of the complete process window.

132

7.1. RAPIDMINER

Figure 7.1: RapidMiner graphical user interface

If the process is too large to be displayed in the process window, the overview
window will help to navigate to certain positions in the process window.

2. Operators and Repositories
These tabs allow accessing operators or repositories of RapidMiner. Operators
are the basic elements for building a process. Repositories store datasets to avoid
the loading and converting process of files for each run of a process. This behav-
ior leads to a faster access on datasets.

3. Process
The Process window makes the whole process of connected operators accessible.
An overview of this window which could become very large is available in the
Overview tab.

4. Problems, Log and System Monitor
This tab contains possible log messages, information about problems and about
the system load.

5. Parameters
The Parameters tab shows the parameters of the operator which is currently fo-
cused. Parameters are very important because the results of Data Mining tasks
often depend on the right choice of the particular parameters.

6. Help
The Help-tab contains information about operators which are focused.

Each RapidMiner-process can be split into four distinct phases. These phases are
shown in Figure 7.2:

133

CHAPTER 7. THE IE PLUGIN FOR RAPIDMINER

1. Retrieve
The leftmost operator in Figure 7.2 is a Retrieve-operator. During the Retrieve
phase the data which is processed later on is loaded from specific data sources.

2. Preprocessing
The retrieved data has to be prepared or enriched in the Preprocessing phase. The
second operator shown in Figure 7.2 (the purple one) is a particular preprocessing
operator which is converting nominal values to numerical ones.

3. Modeling
The prepared data is used in the Modeling phase to extract or create models
which can be used for the analysis of unlabeled data. The third operator shown
in Figure 7.2 is creating an SVM model.

4. Evaluation
The two rightmost operators shown in Figure 7.2 are used to apply the learned
model to a dataset and to evaluate the performance achieved by the applied
model. The expected or real performance of the created models is evaluated
during the Evaluation phase.

Figure 7.2: Exemplary process in RapidMiner

These phases are similar for every RapidMiner process. Therefore, we will define the
particular phases and the corresponding specialties using the Information Extraction
Plugin in Section 7.2.

7.1.1 Data Structure
The data structure in RapidMiner for handling example sets is comparable to a spread-
sheet as it is used in many spreadsheet programs. The lines of the spreadsheet represent
examples and the columns represent attributes. Table 7.1 shows an exemplary dataset
containing n examples and d attributes.

It is remarkable that for many Data Mining tasks the examples are independently
processed. It follows that the analysis of a particular example i only depends on the

134

7.2. INFORMATION EXTRACTION PLUGIN

ID Label Att1 Att2 ... Attd
1 true 2 ’Felix’ ... 5.4
2 false 3 ’goes’ ... 7.1
...
n true 1 ’Detroit’ ... 2.3

Table 7.1: Spreadsheet-like data structure internally used by RapidMiner

attributes of example i instead of taking, for instance, other examples into account. We
already mentioned in Section 2.3.1 that the structure of documents and texts should be
respected for Information Extraction tasks. CRFs, for instance, process all the tokens
of a particular sentence at the same time, and the tokens of the certain sentence condi-
tion each other. To be precise: each token is conditioning the following one. It follows
that the ordering of the tokens of sentences have to be respected. In addition, the set of
tokens of a sentence has to be stored together in a grouped fashion. Another example is
the creation of relation candidates which takes all the pairs of entities of one sentence
into account. We used the data structure of RapidMiner and we developed mechanisms
to respect the particular circumstances of Information Extraction tasks.

7.2 Information Extraction Plugin

The process for Information Extraction tasks also can be split in the four phases which
are already presented for usual Data Mining tasks. These phases and the according
operators to be used in each phase are described in this section.

7.2.1 Retrieve

The process to retrieve datasets into RapidMiner is crucial for Information Extraction
purposes because of the circumstances we presented in Section 7.1.1. We present two
particular approaches to retrieve data. The first of these approaches should be used
if the data is available in form of document files, for example PDF files. The second
approach is a loading mechanism based on well-known data formats like the one of the
CoNLL 2003 shared task on NER1. The resulting dataset contains an additional special
attribute (batch-attribute) which groups the examples. In addition to the grouping the
sequential ordering of the examples is respected by the operators of the plugin. Table
7.2 shows the same dataset as presented in Table 7.1 after being converted into m
groups (probably sentences). We will present two possible ways to convert documents
into example sets in order to use them in RapidMiner.

1http://www.cnts.ua.ac.be/conll2003/ner/

135

CHAPTER 7. THE IE PLUGIN FOR RAPIDMINER

ID batch Label Att1 Att2 ... Attd
1 0 true 2 ’Felix’ ... 5.4
2 0 false 3 ’goes’ ... 7.1
...
n m true 1 ’Detroit’ ... 2.3

Table 7.2: Spreadsheet data structure internally used by the Information Extraction
Plugin

Retrieve via Document

It is important to respect the structural characteristics of datasets consisting of textual
data as presented in Section 7.1.1. The Text Mining Extension of RapidMiner already
offers the possibility to retrieve data which is available as a document. Although the
structure of these documents in later steps is shattered by the Text Mining Extension,
the mechanism for retrieving documents can be used to load documents into Rapid-
Miner. The Text Mining Extension uses a special class for handling documents: the
Document-class. This class stores the whole document in combination with additional
meta-information. In the case of text mining the document is split into unique tokens
which are finally used to classify the complete document. For Information Extraction
purposes we would like to tokenize the document and to preserve the order of such
tokens, therefore, we implemented tokenizers which are able to process example sets
extracted from the Document classes. The application of these tokenizers result in a
spreadsheet containing the tokens in the particular order as they have been found in the
document. Each token contains a certain number indicating from which general unit
it has been created. Each word-token of a particular sentence, for instance, contains
the number of the sentence, whereas each sentence-token of a document contains the
number of that document. The Tokenizer-class can be easily extended to create own
tokenizers. Figure 7.3 shows a process containing two operators of the Text Mining
Extension (the two leftmost operators) and two operators (the two rightmost ones) of
the Information Extraction Plugin. The process loads a document, converts it into an
example set containing an example which holds the complete document-text and the
two tokenizers are splitting the text into multiple tokens (examples). The third operator
splits the text into sentences, and the fourth operator splits the sentences into words.
After having finished the process the resulting dataset consists of examples holding
one word each. Additionally, the words are containing sentence numbers allowing to
access all the words of a particular sentence.

Retrieve via File

Although RapidMiner already offers many operators (e.g., the Read CSV-operator) to
retrieve datasets contained in spreadsheet-like files, the specific structure of certain
datasets containing documents necessitates a particular operator. Datasets like the one
for the CoNLL 2003 shared task on NER which is well-known in the NER community

136

7.2. INFORMATION EXTRACTION PLUGIN

Figure 7.3: Retrieving a document for Information Extraction in RapidMiner

are already available as tokenized documents. Comparable to csv-files the datasets
contain a token each line whereas the tokens additionally contain features which are
also stored in the same line. The main difference to ordinary csv-files is the fact that
sentences are split by empty lines. It follows that after the tokens for one sentence an
empty line is located. Although the Read CSV-operator of RapidMiner can be adjusted
to neglect such lines, we developed an own retrieve operator which respects the empty
lines to distinguish between distinct sentences. We therefore use a special attribute
containing the sentence numbers. These special attributes later can be used by other
operators which work on complete sentences (like CRFs, for instance).

7.2.2 Preprocessing
Preprocessing is crucial for Information Extraction. In contrast to traditional Data
Mining tasks, the examples/tokens in Information Extraction tasks are initially not pro-
viding any information except the tokens itself. The tokens have to be enriched by
attributes to get a more general representation. We will distinguish two different types
of preprocessing in the following. The first type of processing is used to enrich tokens
for NER by additional attributes. The other type of processing is used for enriching
relation candidates for Relation Extraction. Both techniques are presented in the fol-
lowing subsections.

Named Entity Recognition

As already mentioned in Section 3.2 it is necessary to enrich tokens for NER by internal
and external information. We developed an abstract class for preprocessing operators
that can focus on tokens before or after the current token and on the current token itself.
The sentence

Felix Jungermann studied computer sciences at the University of
Dortmund from 1999 until 2006.

is converted into a spreadsheet as shown in Table 7.3.

Using this abstract class we can access contextual tokens in a relative way. Each
token is processed and the abstract class accesses a number of tokens before and after

137

CHAPTER 7. THE IE PLUGIN FOR RAPIDMINER

ID batch Label Att1
1 0 PER ’Felix’
2 0 PER ’Jungermann’
3 0 O ’studied’
4 0 O ’computer’
5 0 O ’sciences’
6 0 O ’at’
7 0 O ’the’
8 0 O ’university’
9 0 O ’of’

10 0 LOC ’Dortmund’
11 0 O ’from’
12 0 O ’1999’
13 0 O ’until’
14 0 O ’2006’
15 0 O ’.’

Table 7.3: Spreadsheet representation of a sentence.

the current token. The number of tokens to access before and after the current token are
parameters that can be adjusted by the user. Let the number of tokens surrounding the
current token be 2 and the current token shall be example number 10: ’Dortmund’. In
that case the preprocessing method would also access the 8th, 9th, 11th and 12th token
in addition to the 10th token. The most simple way of preprocessing would be to en-
rich the current token by the surrounding tokens. In this way we can bring the context
of particular tokens into the tokens itself. Non-structured models will achieve better
performance working on such models because the context is not internally respected
by the model but by the feature space the model is using.

Table 7.4 shows the dataset presented in Table 7.3 enriched by two surrounding to-
kens before and after each token. If a token is at the beginning or at the end of a
sentence some of the contextual attributes will contain null-values because the tokens
of one particular sentence only contain informational units from that sentence.

In addition to the relative contextual tokens to be taken into account another interesting
parameter to set for preprocessing operators is the parameter length. Some attributes
like prefixes or suffixes, for instance, have a specific length which has to be adjusted by
this parameter.

Annotations Another step to be performed during the analysis of NER datasets is
the labeling of documents and texts. The number of labeled tokens compared to tokens
which are not labeled is sparse for most NER datasets. Additionally, the labels are
sometimes spread over multiple tokens. Because of these two reasons it should easily

138

7.2. INFORMATION EXTRACTION PLUGIN

ID batch Label Att1 token−2 token−1 token+1 token+2

1 0 PER ’Felix’ null null ’Jungermann’ ’studied’
2 0 PER ’Jungermann’ null ’Felix’ ’studied’ ’computer’
3 0 O ’studied’ ’Felix’ ’Jungermann’ ’computer’ ’sciences’
4 0 O ’computer’ ’Jungermann’ ’studied’ ’sciences’ ’at’
5 0 O ’sciences’ ’studied’ ’computer’ ’at’ ’the’
6 0 O ’at’ ’computer’ ’sciences’ ’the’ ’university’
7 0 O ’the’ ’sciences’ ’at’ ’university’ ’of’
8 0 O ’university’ ’at’ ’the’ ’of’ ’Dortmund’
9 0 O ’of’ ’the’ ’university’ ’Dortmund’ ’from’

10 0 LOC ’Dortmund’ ’university’ ’of’ ’from’ ’1999’
11 0 O ’from’ ’of’ ’Dortmund’ ’1999’ ’until’
12 0 O ’1999’ ’Dortmund’ ’from’ ’until’ ’2006’
13 0 O ’until’ ’from’ ’1999’ ’2006’ ’.’
14 0 O ’2006’ ’1999’ ’until’ ’.’ null
15 0 O ’.’ ’until’ ’2006’ null null

Table 7.4: Dataset of Table 7.3 enriched by contextual tokens

be possible to mark specific tokens somewhere in a document directly and to assign a
label to the marked tokens. We implemented an annotator operator which visualizes the
dataset as a textual document allowing the user on the one hand to create new labels and
on the other hand to use those labels for annotating the tokens. After having used that
operator the dataset contains a label attribute carrying the annotations and a formerly
defined default value if no annotation is given for a particular token. Figure 7.4 shows
a screenshot of the annotator screen containing the text presented already in Table 7.3
and Table 7.4.

Figure 7.4: Annotating operator for RapidMiner

139

CHAPTER 7. THE IE PLUGIN FOR RAPIDMINER

Relation Extraction

We developed particular preprocessing operators working especially for relational learn-
ing purposes. Although the flat features developed by [Zhou et al., 2005] can be seen as
contextual information, they are only relative to a pair of tokens. Respecting these two
tokens is much more complex than as it is for the single tokens for NER. In addition to
the flat features Relation Extraction heavily relies on structural information like parse
trees, for instance. We developed parsing operators to first of all create tree-structured
attributes. Additionally, we implemented pruning methods for the creation of more
condensed tree-structures.

Tree structures can be represented as nominal values as it is shown in Figure 7.5. It
would be a computational overhead to parse these nominal values into tree objects for
every time they are needed. We developed a generic form of attribute which allows
the storage of every type of Java object. This generic object-attribute can be used to
work with tree structures in RapidMiner. Like for nominal values, the object-attribute
is storing a mapping which is an index mapping numerical values to particular unique
objects.

(ROOT (S (NP (NNP Felix)) (VP (VBD went) (PP (TO to) (NP (NNP New) (NNP York)))
(S (VP (TO to) (VP (VB visit) (NP (NP (DT the) (NN statue)) (PP (IN of) (NP (NN
liberty)))))))) (. .)))

Figure 7.5: String representation of the constituent parse tree shown in Figure 2.1

7.2.3 Modeling
We implemented or embedded most of the techniques we presented in this work in
RapidMiner. The particular models are CRFs (see Section 2.4.2), Tree Kernel SVMs
(see Section 5.5), Tree Kernel Perceptrons (see Section 6.4) and Tree Kernel Naı̈ve
Bayes Classifier (see Section 6). Most of the publications concerning tree kernel learn-
ing are evaluated using the SVMlight

2 which is implemented in C. We used the JNI
interface of the SVMlight of Martin Theobald3 and embedded tree kernel calculation
into it. This Java SVMlight can be used for the purpose of comparison.

7.2.4 Evaluation and Validation
Some Information Extraction tasks need specific evaluation. NER datasets, for in-
stance, sometimes are labeled using the IOB-tagging (see Section 2.3.1). During the
evaluation of predictions made on a test set the predicted tokens in some evaluation
schemes only are considered to be correct if all the single tokens of an entity consist-
ing of multiple tokens are predicted correctly. George Walker Bush, for instance, is an
entity of type PERSON consisting of three tokens. If only one of these three tokens

2http://svmlight.joachims.org/
3http://www.mpi-inf.mpg.de/˜mtb/svmlight/JNI_SVM-light-6.01.zip

140

7.3. COMPARABLE FRAMEWORKS

is not predicted to be of type PERSON, the complete entity is incorrectly tagged. Al-
though the tokens are represented as single examples, the evaluation has to be done
on the entity-mentions which sometimes consist of multiple tokens. We implemented
particular operators respecting this circumstance.

7.3 Comparable Frameworks

Information Extraction is a very popular topic in data analysis. Many software tools for
Information Extraction have been developed during the last years. The functionalities
of most of these tools are similar and they are comparable to the functionalities of the
RapidMiner extension we presented in Section 7.2.

In this section we want to present two frameworks which have been developed for
Information Extraction purposes. We will present the differences and similarities of
these tools in comparison to the software we implemented for Information Extraction.
Although many frameworks for Information Extraction purposes are available, we only
present two of them which are well-known in the Information Extraction community.
Both tools are open source and they are offering a graphical user interface making them
easily applicable to new tasks.

The particular frameworks we are presenting in this chapter are Apache UIMA (Section
7.3.4) and GATE (Section 7.3.5). Both frameworks are based on a general annotation
concept which is presented in Section 7.3.2. The idea of such an annotation concept is
the maintenance of analysis results by annotations layers. The results of NER, for in-
stance, are represented by an annotation layer which points to the found named entities
in a certain document.

Apache UIMA is the implementation of the Oasis UIMA standard [Ferrucci et al.,
2009]. This standard, which is presented in Section 7.3.3, “defines platform-independent
data representations and interfaces for software components or services called analyt-
ics, which analyze unstructured information and assign semantics to regions of that
unstructured information.” ([Ferrucci et al., 2009], p. 1f).

7.3.1 Historical Frameworks

The two frameworks we want to present at a glance are historical ones. Especially the
framework of Grishman which is one of the first Information Extraction frameworks
already provides a pipelined analysis structure which is apparent in many current In-
formation Extraction frameworks, too.

Ralph Grishman is one of the pioneers of Information Extraction in his work [Grish-
man, 1997] he presented the basic principles which should be respected by Information
Extraction systems. The Information Extraction system Proteus [Yangarber and Grish-
man, 1998] was one of the first systems which already was based on a general pipelined

141

CHAPTER 7. THE IE PLUGIN FOR RAPIDMINER

approach. This approach was used in order to get rid of the domain-dependent analysis.
Proteus is based on the following 7 particular analyzing steps:

1. Lexical Analysis

2. Name Recognition

3. Partial Syntax

4. Scenario Patterns

5. Reference Resolution

6. Discourse Analysis

7. Output Generation

These steps all can be used for every Information Extraction task. The certain steps are
based on knowledge bases which are exchangeable in order to stay flexible. Neverthe-
less, for particular domains the knowledge bases have to be set up or generated.

Another pioneer of Information Extraction is Walter Daelemans who is one of the de-
velopers of TiMBL [Daelemans et al., 2003] which was developed at the university of
Tilburg. Since 1997 the research group on Induction in Linguistic Knowledge is active
at that university. The principles of TiMBL are based on memory-based learning.

7.3.2 Annotation concept
The enriching of textual data by annotations should not affect the original data. This
is, for example, stated in the UIMA standard (see Section 7.3.3). A trivial way of an-
notating documents is to create tags which are directly embedded into the documents.
This would lead to a manipulation of those documents which should be avoided. The
manipulated documents could become intractable in different ways which is described
later on. In contrast to the manipulation of the original documents, the annotations
are contained in an additional view referencing the documents. These types of anno-
tations are called stand-off annotations or stand-off markup. The paradigm for these
annotations is based in the markup language community and it is based on the princi-
ple not to change the original document but to create additional content. [Thompson
and McKelvie, 1997] give three reasons for using stand-off annotations in contrast to
manipulating the original documents:

• Stand-off annotations avoid copying the source document which would create
redundant content.

• Stand-off annotations easily allow the creation of overlapping levels of annota-
tions.

• Stand-off annotations still can be used if the propagation of the original docu-
ment is restricted in some way. The annotations, at least, can be published.

142

7.3. COMPARABLE FRAMEWORKS

[Thomas and Brailsford, 2005] state that the possibility to simultaneously create many
annotation levels is another advantage in addition to the creation of overlapping anno-
tation levels.

If, for instance, a document is to be tokenized into single words, a new type of annota-
tion will be created containing a set of annotations referencing the original document.
The new annotation types can be seen as layers which are put on the original data. Each
annotation contained in the set of one particular layer references a part in the original
document. Following this concept it is possible either to work on already created anno-
tations or to process the original document. It is also possible to work on both types of
information. Figure 7.6 shows the paradigm of stand-off annotations: on the left-hand
side the original document is shown which is referenced by several annotation sets on
the right-hand side. The annotations and the document are separated.

Document Annotations

Figure 7.6: Stand-off annotations: the original document is separated from the annota-
tions which only reference it.

Our plugin also follows this annotation concept because an annotation layer in our plu-
gin just can be seen as a certain feature. A process which is extracting named entities,
for instance, labels the tokens. These labels can afterwards be used as features for
Relation Extraction tasks.

7.3.3 The UIMA standard
UIMA is the abbreviation of Unstructured Information Management Architecture. The
UIMA standard [Ferrucci et al., 2009] was developed for the definition of methodical
processing of unstructured information. Unstructured information in this case is any
information which is not structured by any semantic. Examples for unstructured in-

143

CHAPTER 7. THE IE PLUGIN FOR RAPIDMINER

formation are an audio file or a document containing free text. A document could of
course contain a structured content like a table or a list, but this content is more easily
to process and does not need complex methods like Information Extraction.

The UIMA standard was developed because popular tools for analyzing unstructured
information such as GATE4, Mallet5, Open-NLP6, LingPipe7, and so on have not
clearly defined a standard “enabling the interoperability of analytics across platforms,
frameworks and modalities (text, audio, video)” ([Ferrucci et al., 2009], p. 7).

The standard first of all defines the elements which are needed for the Information
Extraction analysis process:

• artifact
An artifact is a segment of unstructured content. This can be a textual document,
an audio or a video segment.

• analysis
The analysis is the process which assigns semantics to the artifact.

• analytic
The concept analytic is used for the piece of software performing the analysis.

• artifact metadata
The artifact metadata is the resulting semantics created by the analytic during
the analysis.

The goal of the standard is to support the reusability of analytics in a platform-independent
way.

The Common Analysis Structure (CAS) is the joint representation of the artifact to-
gether with the extracted artifact metadata in an XML schema. Two fundamental types
of objects are represented by the CAS: the subject of analysis (Sofa) holds the artifact,
and the set of annotations are types of artifact metadata referencing regions in the
Sofa. A region mostly is defined by a start and end point in the Sofa. The annotations
are following the concept presented in Section 7.3.2.

7.3.4 The Apache UIMA Framework
Apache UIMA8 is an open source framework respecting the UIMA specification (see
Section 7.3.3). The framework in its original form is used to plug together analysis
engines for the annotation of unstructured content. The framework itself has not been
developed to deliver analysis engines. It has been developed to create an architecture
allowing to easily construct and deploy analysis engines.

4http://gate.ac.uk/
5http://mallet.cs.umass.edu/
6http://incubator.apache.org/opennlp/
7http://alias-i.com/lingpipe/
8http://uima.apache.org

144

7.3. COMPARABLE FRAMEWORKS

Apache UIMA offers several tools [UIMA Community, 2010] which help distributing
new UIMA components following the UIMA standard. Plugins for the well-known
open source platform Eclipse9 enable the usage of many of these tools directly in
Eclipse.

Plugins of Apache UIMA

We will present some of the plugins which are delivered together with Apache UIMA
in this section.

One plugin is the Component Descriptor Editor. Users can easily use this plugin for
the creation of new descriptors specifying different components of UIMA.

The most important components which need such descriptors are:

• Analysis Engines

• Type Systems

• Cas Consumers

• Cas Initializers

• Collection Readers

• ...

Another plugin delivered with Apache UIMA is the Collection Processing Engine Con-
figurator. This configurator allows to process a collection of unstructured information
by (several) analysis engines. The resulting CASes can be handled by CAS consumers.
These consumers are located at the end of the analysis process and they “consume” the
incoming CASes and perform final processes on these CASes – like to store them in
the file system.
For the essential analysis of documents the Document Analyzer can be used. This pro-
gram allows to run analysis engines on text files. The results will be written to a given
directory. Additionally, the results, which are the original text files containing annota-
tions produced by the analysis engines, are displayed in a visualization component.

The CAS Visual Debugger is used to run analysis engines. After finishing the anal-
ysis the results are presented in a panel containing three parts (see Figure 7.7). The
first part – located in the top left corner of the panel – contains the indexes described
in the analysis engine. The second part – located in the bottom left corner – contains
further information about the indexes. On the right-hand side of the panel the analyzed
text is presented. Users get aware of corresponding annotations by selecting parts of
this text. Selecting indexes in the former two containers will highlight the correspond-
ing annotation in the text window.

9http://www.eclipse.org

145

CHAPTER 7. THE IE PLUGIN FOR RAPIDMINER

Figure 7.7: CAS Visual Debugger output ([UIMA Community, 2010], p. 53)

The CAS Editor is used to visualize and edit CASes. A CAS can be annotated man-
ually or automatically. The automatic annotation is done by using a particular UIMA
annotator.

7.3.5 The GATE Framework

GATE10 is the abbreviation of general architecture for text engineering. In contrast
to Apache UIMA which has been developed for the analysis of general unstructured
contents the GATE framework only focuses on text analysis. Another difference is that
GATE does not deliver or respect a standard like it is done by Apache UIMA. Nev-
ertheless, the processing and especially the workflow is comparable to Apache UIMA
and to the Information Extraction Plugin presented in Section 7.2.

The concept of GATE [Cunningham et al., 2011] is to split the process of natural lan-
guage processing into more specific parts. The particular resources which are used in
the certain parts are split into three different types, namely LanguageResources, Pro-

10http://gate.ac.uk/

146

7.3. COMPARABLE FRAMEWORKS

cessingResources and VisualResources.

• LanguageResources represent textual corpora like documents, lexicons, and so
on.

• ProcessingResources represent the methods used for processing textual data.
These methods can be manipulating ones like tokenizers or analytical ones like
part of speech taggers.

• VisualResources are resources that are used for visualization or annotation based
on graphical user interfaces.

The set of resources in GATE is called CREOLE which is an abbreviation for Col-
lection of REusable Objects for Language Engineering. Figure 7.8 shows the GUI of
GATE.

On the lefthand-side the utilities for the creation of a GATE process are available:

Figure 7.8: The graphical user interface of GATE

Applications, Language Resources, Processing Resources and Datastores. Applica-
tions are used to define the workflow of the process. In the example shown in Figure
7.8 a simple pipe is used to create a sequence of analyzing operators. Language Re-
sources are representing documents or textual corpora which should be processed later
on. Processing Resources contains all analyzing operators which can be arranged in the
particular workflow. Datastores contains resources used for storing the created results.

147

CHAPTER 7. THE IE PLUGIN FOR RAPIDMINER

On the righthand-side of the GUI the particular settings for the analyses process can be
made. The tabs can be used to navigate to certain objects. In this example a pipe of
analyzing operators is shown.

At the bottom of the GUI the parameters for an operator which is focused in the work-
flow can be set.

Like for Apache UIMA the created results are available as annotations together with
the original document. The annotation concept is presented in the following paragraph.

Annotation concept in GATE

The first annotation concept for GATE was based on the concept of TIPSTER [Grish-
man, 1996]. The data structure based on this concept stores the textual data and the
corresponding annotations in a data structure shown in Table 7.5. The text is contained
in the first line, and the corresponding annotations are stored given their ID, Type,
Span Start, Span End and Attributes. The ID has to be unique, and it can be
referenced by other annotations – the annotations of Type parse with IDs 8− 11 are,
for instance, referencing formerly defined annotations of Type token (8 − 10) or of
Type parse (10−11). In the current version the annotations are stored in a graph. The

Text
Cyndi savored the soup.
|0...|5...|10..|15..|20

Annotations
ID Type Span Start Span End Attributes
1 token 0 5 pos=NP
2 token 6 13 pos=VBD
3 token 14 17 pos=DT
4 token 18 22 pos=NN
5 token 22 23
6 name 0 5 name type=person
7 sentence 0 23 constituents=[1],[2],[3],[4],[5]
8 parse 0 5 symbol=“NP”,constituents=[1]
9 parse 14 22 symbol=“NP”,constituents=[3],[4]
10 parse 6 22 symbol=“VP”,constituents=[2],[9]
11 parse 0 22 symbol=“S”,constituents=[8],[10]

Table 7.5: Exemplary data structure used by TIPSTER ([Grishman, 1996], p. 20)

annotations can be seen as the arcs between the beginning and the end of the annotation
referenced in the document.

148

7.4. SUMMARY

7.4 Summary
We presented the Information Extraction Plugin in this chapter. The plugin is an ex-
tension to the open source framework RapidMiner.

After having presented the graphical user interface of RapidMiner we showed that
most of the RapidMiner processes can be split into four particular phases. The first
phase is the Retrieve-phase in which datasets are loaded into the RapidMiner process.
The second phase is the Preprocess-phase in which the feature set of the dataset is
cleaned, enriched or manipulated in order to later on receive better learning results.
The Modeling-phase is the third phase. The datasets are used for learning in this phase.
The learning results are put into so called models to make them usable in the further
processing. The fourth and final phase is the Evaluation-phase. The learned models are
evaluated to find out how well the models will perform on other datasets than the set
used for training these models.

Compared to traditional Data Mining tasks we have shown that those phases are also
apparent for Information Extraction tasks. Due to the spreadsheet data structure inter-
nally used by RapidMiner we developed a representation of datasets for Information
Extraction based on that data structure. In addition, we implemented several operators
helpful and needed for Information Extraction purposes.

We presented Information Extraction systems which are comparable to the Information
Extraction Plugin. These systems, in particular GATE and Apache UIMA, are based
on a similar annotation concept. This concept has been developed not to manipulate
the document itself. It can be seen as a layer which is put on the original document
containing additional information. Although GATE and UIMA are comparable to our
plugin in cases of Information Extraction analysis, they are not similar.

Our plugin directly allows to rapidly use Information Extraction-results in Data Mining
tasks because of the close collaboration between Information Extraction and Data Min-
ing techniques. In the next chapter we will present particular real-world tasks which are
a good argument for such collaboration. The plugin is easy to extend which makes it to
a powerful toolbox for the significant evaluation and validation of (new) Information
Extraction methods.

149

CHAPTER 7. THE IE PLUGIN FOR RAPIDMINER

150

Chapter 8

Applications

In this chapter we present three particular applications which are collaborations of In-
formation Extraction and Data Mining techniques. The first application presented in
Section 8.1 is an information management system for the German parliament’s domain.
We show that after having extracted particular entities out of the documents, it is possi-
ble to gain further knowledge of events the entities form. These events furthermore can
be analyzed by Data Mining methods to achieve more insights concerning these events.

The second application is another information management system which is presented
in Section 8.2. Informational units concerning companies have been extracted from the
WWW for the creation of a company network. Additionally, the names of the partic-
ular companies are used to crawl a dataset from the WWW. This dataset consists of
sentences which contain at least two company names. We used this dataset for Rela-
tion Extraction. The resulting relations are put in the company network. An intuitive
graphical visualization of such network allows to rapidly gain additional information
concerning the entities which are present in the network.

The third application which is presented in Section 8.3 a network of related entities
can be analyzed only by focusing on the relations between particular entities, instead
of analyzing the entities itself. The network of related entities can be given or it can be
created as a post processing step after Relation Extraction.

8.1 The German Parliament Application

Several information systems make available large collections of documents through the
Internet. Their documents can not only be retrieved by a search engine, but also by a
built-in retrieval service based on the structuring of the content. To the user, the mak-
ing of the structures is hidden. The structure is presented in terms of categories among
which the user might choose in order to navigate to the desired document. Although
search for documents becomes more focused and user-driven, the user needs to under-
stand the categories. Having a particular question in mind, the user is guessing under

151

CHAPTER 8. APPLICATIONS

which heading she might find a relevant document. Moreover, the user needs to read
the document in order to determine the answer to her question.

Some systems offer full-text search so that snippets of text are returned which include
the keyword of the query. This eases already the burden of reading, but still the user
needs to compose the answer out of some text excerpts. Again, the keyword needs to
be chosen carefully in order to receive the right parts of relevant documents.

In contrast to the retrieval of documents, the Message Understanding Conferences
(MUC) focused on the extraction of structured information from natural language texts.
Event extraction means to fill in the slots of a frame with named entities (NE) of the
appropriate type, e.g., person, location, organization or temporal and numeric expres-
sions (cf. the more recent work [Aone and Ramos-Santacruz, 2000]). Hence, NER
became a subtask in its own right within MUC-6 and MUC-7 [MUC, 1995, MUC,
1998]. Methods ranged from linguistic rules over pattern-based approaches to ma-
chine learning techniques. Linguistic knowledge is not only exploited by the hand-
written rule or pattern-based extractions, but also when applying learning algorithms.
For instance, part of speech (POS) tagging delivers class, case and number features of
words, dictionaries classify known instances of NE types, and tagged texts allow to
retrieve the context of NEs which becomes additional features to the word in focus.
A knowledge-poor approach has applied machine learning to construct the required
linguistic resources (e.g., name lists, gazetteers) in a bootstrap manner when learning
NER [Roessler and Morik, 2005]. Tagging documents with NER already offers some
services to the user, namely highlighting words or phrases in the text. This might help
the user to selectively read only the relevant parts of a long document.

Currently, the restriction to NER is being dropped and approaches towards event ex-
traction are undertaken, anew. Relation Extraction (see Chapter 5) aims at recognizing
semantic relations between NEs, e.g., interactions of proteins [Blaschke and Valencia,
2001]. Again, the hand-written rules were followed by learning approaches, first by
learning the extraction rules [Bunescu et al., 2004]. Syntactic knowledge was used by
patterns for the extraction of relations [Hahn and Romacker, 2000] and syntactic de-
pendency trees were used as features for probabilistic learning [Katrenko and Adriaans,
2007]. Learning approaches outperformed the hand-written ones. Relation learning re-
moves irrelevant occurrences of NEs, selecting only the ones in the relation of interest.
Hence, readers are confronted with a smaller number of text excerpts.

Event extraction is similar to Relation Extraction, but usually events contain more slots
than relations have arguments. Several definitions are possible. Here, we simply define
relations as parts of events and the relation learning in the way of [Katrenko and Adri-
aans, 2007].

Definition 24. Given a set of documents D and an n-ary relation schema R with
arguments A1, A2, ..., An, find instances r(x1, x2, .., xn) with x1 ∈ dom(A1), x2 ∈

152

8.1. THE GERMAN PARLIAMENT APPLICATION

dom(A2), ..., xn ∈ dom(An) in D.

Typically, the relation r is represented in natural language by a verb, and the do-
mains of arguments can be constrained by the case of a noun and a NE type. Typically,
the arity is small, n ≤ 4. We could write the form of events similarly, just allowing
more complex arguments. Where a relation instance has just a (possibly composite)
word as argument, an event may have a NE, a phrase, a relation, or a reference to an-
other event as argument. In order not to confuse the reader, we use another notation for
events.

Definition 25. Given a set of documents D and a schema E defining slots S1, ..., Sn
as elements, find instances < e >< S1 > ... < /S1 >,< S2 > ... < /S2 >, ..., <
Sn > ... < /Sn >< /e > in D.

Typically, the schema corresponds to an XML schema, the slots correspond to XML
elements, and instances are tagged text. Since XML elements can be structured them-
selves, relations can become slots of an event. The name of the schema corresponds
typically to a noun, indicating the type of the event. Event extraction allows to build
up a database. This, in turn, allows to do analyses ranging from simple queries over
statistics to knowledge discovery (Data Mining). Although not being comparable to a
natural language dialog system, more service is offered to the user.

In this Section, we propose to combine IR, NER, Relation Extraction, event extraction,
and Data Mining in order to offer more services to users. We illustrate our framework
by the application of the German Parliament document collection. The services we are
aiming at are introduced in Section 8.1.1. The IR techniques and how we are using
them for answering simples questions and as a basis for following steps are presented.

The website of the German parliament (http://www.bundestag.de) is an excel-
lent example of a web-based information system. It is structured according to the cat-
egories: parliament, members, committees, documents, knowledge, European Union,
international, and visitors. To each category, a number of documents with links to other
content is stored.

In particular, all plenary sessions are documented, from the 8th period until today (16th
period). Also the printed papers which form the basis of discussions and decisions in
plenary sessions, the recommendations of committees, small and large interpellations
(“kleine Anfrage”, “Anfrage”), legal proposals, are available as well as information
about the members of parliament. We are focusing on the document collection, here.
There is an information system, DIP21 (http://dip21.bundestag.de), which
already offers some services to process the documents.

These services seem to merely use an index over the given documents. The documents
are available in PDF format (mostly), the pages of the members of parliament are writ-
ten in HTML. The identifier numbers of printed papers and plenary sessions need to

153

CHAPTER 8. APPLICATIONS

be explained. For each plenary session there is an agenda, where to each of its points
printed papers form the basis. In the plenary session, a topic is called by the numerical
identifier of the respective printed paper. For instance, a committee might have de-
cided to recommend the rejection of a request. This means, that there is a printed paper
with, let’s say, ID=16/5540 which proposes something, i.e., is a request. The commit-
tee’s recommendation to reject the proposal has another number, e.g., ID=16/5561. In
the plenary session, the parliament decides about the recommendation 16/5561. If the
recommendation is accepted, this means, that the request 16/5540 is rejected. If the
recommendation is rejected, the request must again be discussed (and changed) in the
committee yielding another paper of type changed request with a new number, e.g.,
ID=16/6102. For users who just want to know, for instance, whether the old age pen-
sion increases, or not, it is cumbersome to follow all these references through all the
documents. Hence, for users it is not easy to actually receive answers to their informa-
tion needs, although all information is publicly available.

Such a situation is quite common for web-based information systems. We use the
one of the German parliament, because it is publicly available and we, as citizens, are
allowed to analyze the documents. The goal is to enhance the services for users by
moving more into the documents.

While the German Parliament web site is typical with respect to the services it of-
fers, it is rather exceptional with respect to the language. Analyzing word frequencies,
we receive the typical power law distribution. However, the word length is even for
German extraordinary. There are words like
“Konsensfindungserleichterungsmassnahme”,
“Fernstrassenbauprivatfinanzierungsgesetzesänderungsgesetz”, or
“Grundstücksverkehrsgenehmigungszuständigkeitsübertragungsverordnung”.
Our corpus of the periods 13 - 16 contains 50,363 documents with about 470,000 dif-
ferent words. This shows that the political language is extremely challenging for ex-
traction purposes.

8.1.1 Services

Services of the parliament’s web-site are currently restricted. We would like to offer
more to users. There is a variety of questions which people like to ask assuming dif-
ferent answers. For instance, the following questions were raised by a group of our
students:

1. How many members of parliament have children?

2. How many of the female members of parliament have children?

3. Which requests (which plenary sessions) dealt with the relation between Ger-
many and Turkey?

4. Which decisions were related to students from foreign countries?

154

8.1. THE GERMAN PARLIAMENT APPLICATION

5. Under which aspects have the relationship between Germany and Turkey been
discussed?

6. Which party has signed the most requests?

7. Which party has the most requests rejected?

8. How many changes were necessary before the law for unemployed (Hartz law I,
II, III, IV) has been decided?

9. Which parties or members of parliament were against the student registration
fees?

10. Given the three levels of additional income, is there a correlation between the
party and members with the highest level of additional income?

11. Which events were used as argument in favor of restricting civil rights in favor
of enhancing the state’s security?

The questions demand for different types of results.

• Some questions just ask for excerpts of documents, questions 3 and 4 are exam-
ples of this type. The answer set can be determined by full-text search and some
post-processing.

• Some questions ask for counts of entities which are easy to recognize, questions
1 and 2 are examples of this type.

• Some questions ask for statistical analysis of relations, question 9 is an example
of this type.

• Some questions ask for counts of events, questions 7, 8, 9 are examples.

• Some questions ask for statistical analysis of events or machine learning, ques-
tions 7 and 10 are examples.

• Some questions demand text understanding, questions 5 and 11 are examples.
We exclude these difficult questions, here.

The architecture of our system for targeted Information Extraction is shown in Figure
8.1. In contrast to only using the Information Extraction Plugin of RapidMiner which
is presented in Chapter 7, we want to show the benefit of the combination of IR, IE and
Data Mining, in this section.

The graphical user interface offers menus for simple questions, questions about re-
lations or events, and questions requiring some statistical analysis or learning. Doc-
uments from the web-based information system are retrieved, transformed from PDF
into ascii format, and stored in the document base, which is then indexed. The simple
questions are answered on the basis of the document’s index. Some annotations are
quite easy and can be achieved on the basis of simple patterns. The annotated docu-
ments become stored in the document base, as well. Questions about easy to recognize

155

CHAPTER 8. APPLICATIONS

Figure 8.1: The system design for targeted Information Extraction using RapidMiner

entities are answered on the basis of these data. Other annotations according to NE
require to learn the NER. This is performed by the IE-plugin. Again, annotated docu-
ments are stored for further use in the document base. In order to learn about relations
and events, the regular RapidMiner with designed experiments is integrated.

This architecture is quite general and a blueprint for a class of applications, namely
enhancing web-based information systems. Depending on the application is the partic-
ular set of pre-processing operators, the regular expressions or other patterns to be used,
and the particular sets of relation and event schemata. Due to RapidMiner’s flexibility,
it is easy to adapt the system to a new domain.

8.1.2 Targeted Information Retrieval

In this section we explain how we prepare for answering various questions (see Section
8.1.1) using our system or particular components of it.

Referring to Figure 8.1 one can see that our system consists of three components which
are now presented in detail.

156

8.1. THE GERMAN PARLIAMENT APPLICATION

IR-Component

Many questions already are to be answered by IR techniques. To get these questions
answered is on the one hand a nice benefit for users and on the other hand relatively
easy to offer.

The system first of all extracts all the plenary session documents and printed papers
and stores them for later use in ascii-format. Additionally the websites of the mem-
bers of parliament are extracted in order to fill personal event templates which contain
names, birthday, birthplace, family status, children, education and so on. In addition
we build up an index of all the documents using the open-source indexing environment
lucene1.

Furthermore, we extract the information of every printed paper – similar to the ap-
proach using for the members of parliament – into an event-like template for accessing
the information easily. This extraction by now is done using trigger-words like, e.g.,
”geboren in” (born in) for birthplaces.

The printed papers follow a special formatting which helps to extract the number of
the printed paper, the members of parliament, the parties involved, the date, and an
abstract of the printed paper. These are the slots of the printed-papers-template.

The member-of-parliament-templates, the printed-paper-templates, the original (com-
plete) documents and the index over all documents form our repository which is ready
to use for answering questions 1, 2, 3, 4 and 6. The data of the repository is used for
further analysis in the IE-component and in the Data Mining(DM)-component in order
to answer more difficult questions.

Our system contains all printed papers of the 14th, 15th and 16th period as templates
currently. Requests like ’How many requests has the party SPD signed?’ or ’Show me
all the printed papers of type ”Gesetzentwurf”!’ can be easily processed.

Experiments using the IR-component

As an example we extracted all the requests and its corresponding recommendations
of the committees either to reject, to accept or to depose the proposals. For this task,
one has to look for all the printed papers of type request. Then, one has to extract all
the recommendations considering these requests. Finally, one has to search snippets
according to the request numbers in the recommendations to find the decision of the
committees. Users now can easily look at relevant excerpts of large documents, fo-
cused on particular recommendations to see what happened to a request.

The recommendation is a relation embedded into the event request consisting of the
outcome (i.e., accept, reject, depose), the number of the recommendation and the rec-
ommending committee (e.g. committee of justice). The following, for instance, is a

1http://lucene.apache.org

157

CHAPTER 8. APPLICATIONS

positive recommendation of the committee of justice (in German: ’Rechtsausschuss’):
recommend(< printed paper > 14/358 < /printed paper >,< recommendation >

accept < /recommendation >,< committee > Rechtsausschuss < /committee >)

IE-Component

The IE-component is profitable for users when, for example, highlighting special ob-
jects (NEs) in the texts for achieving a better user-guidance. It is necessary for other
processes for which it captures trigger-words or patterns. Additionally, the IE-plugin
delivers the Relation Extraction.

As learning and Information Extraction environment we use the open-source software
RapidMiner2 [Mierswa et al., 2006] which is implemented in Java. RapidMiner of-
fers several interfaces to other systems and an elegant mechanism to plugin specialized
add-ons. We have developed such a plugin for information extraction (IE – see Chap-
ter 7 for more information). Converting natural language to examples means that every
word occurrence becomes one example which has a bunch of attributes. Preceding and
following words become attributes of the current word. Corresponding to the learning
task (in this case NER), a label attribute is added (the NE).

Using the IE-plugin for RapidMiner one must first of all define a dataset (text). Then,
one can use various pre-processing-operators. Corresponding to McDonald’s defini-
tion of internal and external evidence ([McDonald, 1996]) the categorization of words
depends on internal features – extracted directly from the form of a word – and external
features features – extracted from the context of a word. The pre-processing operators
make use either of internal or of external evidence. Considering current work on se-
quence labeling ([Leaman and Gonzalez, 2008]) one sees that there is a set of features
which delivers good results. These features consist of character n-grams, prefixes, suf-
fixes, word-generalizations and so on. The external evidence is used by encoding the
knowledge of surrounding contexts into attributes of words. So particular words also
have attributes corresponding to words in front or behind the word. Most of the fea-
tures presented in [Leaman and Gonzalez, 2008] also are implemented in our IE-plugin.

After the pre-processing steps, one can use multiple machine learning methods. In case
of sequence labeling tasks, [Nguyen and Guo, 2007] showed that the structured support
vector machine (SVMstruct [Tsochantaridis et al., 2005]) delivers the best results com-
pared to other methods like hidden Markov models and especially conditional random
fields (CRF) ([Lafferty et al., 2001]). But [Keerthi and Sundararajan, 2007] showed
that the better performance of the SVMstruct compared to CRFs is only due to differ-
ent internal features used for learning. Their comparison showed that the performance
of both methods are nearly the same. Hence, both methods can well be used. Since the
SVMstruct is not yet implemented in Java, we integrated CRFs into RapidMiner – we
use MALLET [McCallum, 2002] as basis for our CRF-operator.

2formerly known as YALE

158

8.1. THE GERMAN PARLIAMENT APPLICATION

Relation Experiment using the IE-plugin

On the basis of the snippets according to the request numbers in the recommendations,
we have extracted the relation recommend with the arguments reject, accept, and
depose. We present the results in Table 8.1.

Found requests 1.935
Requests without recommendation 680
Requests with recommendation 1.255
Recommendation ’reject’ 794
Recommendation ’accept’ 251
Recommendation ’depose’ 44
Recommendation not extractable 166

Table 8.1: Recommendation extraction for all requests

NER Experiments using the IE-plugin

We made an exemplary NER-experiment using a manually annotated document of the
plenary sessions. The document contained about 2.700 sentences containing nearly
56.000 words or in other words ’tokens’ – points for example are tokens, too. Table 8.2
shows the numbers of NEs and the performance (measured with f-measure) which was
achieved on the dataset using a ten-fold-cross-validation. The results show that some
NEs are easy to spot like, for instance, name and party. In contrast, the recognition of a
plenary session and of printed paper numbers is difficult for NER. However, the num-
bers and the dates do not need to be extracted by NER, but can be easily set by regular
expressions during pre- or post-processing. Usually, NER tasks are recognizing insti-
tutions, locations, and organizations. Without background knowledge, organizations
are hard to detect.

name institution party person location
count 1.115 823 703 422 409

f-measure in % 90,3 87,9 96,1 68,4 68,2
organization reaction date p.p. no. p.s. no.

count 238 120 78 45 18
f-measure in % 52,1 55,4 60,3 37,7 36,7

Table 8.2: NEs in the examined document (printed papers (p.p.), plenary session (p.s.))

DM-Component

The innovation of our system is the opportunity to use extracted events as input for
Data Mining experiments. It is nice to get questions answered like ’How many re-

159

CHAPTER 8. APPLICATIONS

quests are recommended to be rejected?’, but Data Mining goes beyond that. It offers
the opportunity to get to know why or under which circumstances a request has been
rejected. We are using RapidMiner for Data Mining. According to the example of
former paragraph we converted all found requests into examples as an input for a Data
Mining task. The event request has the form as shown in Figure 8.2.

There are only 5 parties in the parliament. The supporters of a request can be a

<e type = "request">
<printed_paper>14/138</printed_paper>
<recommend>

<printed_paper> 14/358 </printed_paper>
<recommendation> accept </recommendation>
<committee> Rechtsausschuss </committee>

</recommend>
<party 1> SPD </party 1>
<party 2> BUENDNIS90/DIE GRUENEN </party 2>
<party 3> null </party 3>
<party 4> null </party 4>
<party 5> null </party 5>
<multiMOP> false </multiMOP>
<justParty> true </justParty>
<government> false </government>

</e>

Figure 8.2: An event of type request in XML-format

number of members of parliament (MOP), some parties, or the complete government.
The slot < party1 > indicates the party initiating the request. The shown example
states that two parties together have signed the request 14/138 and the request got a
positive recommendation by the committee of justice. This event is transformed into
a data set for learning, where the slots become attributes. The recommend arguments
for the decision are encoded by numbers: 0 for no recommendation, 1 for accept, 2 for
reject, and 3 for depose. These arguments are the class labels for learning. A simple
decision tree learner delivers the results presented in Figure 8.3.

The possible label allocations are given in brackets at the leaves of the learned tree.
Using this little number of attributes one would not think of getting interesting results,
but there are some: if the attribute PARTY 2 is null (just one party is signing the re-
quest), one can see at the leaf with PARTY 1 = PDS that most of the requests of this
party, the leftist party, are recommended to be rejected. This answers question 7 from
the former paragraph. A ten-fold-cross-validation over the requests ended up in 67,1
% accuracy to predict the label.

160

8.1. THE GERMAN PARLIAMENT APPLICATION

Tree

PARTY 2 = CDU/CSU
| PARTY 1 = SPD:
0 {0=37, 2=0, 1=4, 3=0}
| PARTY 1 = PDS:
2 {0=0, 2=2, 1=0, 3=0}
PARTY 2 = BUENDNIS 90/DIE GRUENEN
| Just Parties = true:
0 {0=95, 2=1, 1=44, 3=3}
| Just Parties = false:
1 {0=75, 2=1, 1=155, 3=3}
PARTY 2 = null
| PARTY 1 = SPD:
2 {0=44, 2=164, 1=1, 3=9}
| PARTY 1 = PDS:
2 {0=171, 2=413, 1=9, 3=20}
| PARTY 1 = CDU/CSU:
2 {0=46, 2=108, 1=1, 3=3}
| PARTY 1 = BUENDNIS 90/DIE GRUENEN:
0 {0=141, 2=102, 1=2, 3=6}
| PARTY 1 = CDU:
2 {0=0, 2=1, 1=0, 3=0}
| PARTY 1 = FDP:
0 {0=2, 2=0, 1=0, 3=0}
| PARTY 1 = DIE LINKE.:
0 {0=1, 2=0, 1=0, 3=0}
PARTY 2 = SPD
| Just Parties = true:
0 {0=22, 2=0, 1=3, 3=0}
| Just Parties = false:
0 {0=31, 2=0, 1=23, 3=0}
PARTY 2 = DIE LINKE.:
2 {0=0, 2=1, 1=0, 3=0}

Figure 8.3: A decision tree which is trained on extracted request events of the German
parliament

161

CHAPTER 8. APPLICATIONS

8.1.3 Related Research and Conclusion

The first trainable systems for event extraction were based on wrapper induction (WI)
[Kushmerick et al., 1997]. WI-based systems are processing a huge amount of already
structured data – typically labeled by HTML-tags. By learning which tags wrap the
interesting data, WI-based systems are capable of filling event slots after having found
special tags. These systems work well if and because the HTML-syntax is well-formed
and thus offers kinds of slots, already.

A more specific problem is the analysis of semantic roles and its corresponding re-
lations. [Yangarber and Grishman, 2000], for instance, tried to extract patterns for the
relation ’position statement’ automatically – given a little seed example set. Their re-
sults show that this automatic pattern extraction works as good as hand-crafted ones,
being not as time-consuming. Actually ’relational search’ is used to extract relations
between entities automatically without using seed-examples [Cafarella et al., 2006] in
an unsupervised and highly scalable manner. Therefore any object-string-pair which
occurs in a neighboring context in a (huge) document collection is extracted with its
corresponding relation – which just is the text between the two object-strings. An
extraction graph – consisting out of objects and relations between these objects – is
built up in order to answer queries which cannot be answered easily by traditional
search-engines. [Popov et al., 2003] present a similar system which uses an ontology
to annotate semantic categories (NEs) in texts and in turn uses the annotated texts to
update and advance its ontology.

Related systems like the one from [Popov et al., 2003] or the one from [Cafarella et al.,
2006] are powerful for Relation Extraction. It should be investigated if these tech-
niques are applicable for the event- and relation-extraction in our system, and whether
it would improve our extraction of events.

Our Relation Extraction is currently quite heuristic. Here, more sophisticated ap-
proaches could extract relations from the plenary sessions. It is extremely hard to
extract the opinion (in favor, against) from speeches in parliament. The language used
is most elaborated and full of subtle irony. Currently, we restrict ourselves to the ballot
results where the language is more standardized.

Similarly, event extraction from the plenary sessions is currently referring to decision
making events (recommendations, decisions, votes, passes of a law), interjections, and
the extraction of the list of speakers in a plenary session dealing with a certain topic.
This is already challenging, since the speeches can be nested, and the topics are called
in various ways. Far more difficult is to recognize the position in a speech. For in-
stance, does a speaker argue in favor or against nuclear plants? Extracting the opinion
of a politician at several points in time would allow to register changes in the political
belief of a member of parliament. However, the difficulty is the extraction of the opin-
ion from text. Hence, we work on events which relate requests (standing for a political
position) and politicians or parties. The summarizing text of a request represents the

162

8.2. COMPANY INFORMATION EXTRACTION FROM THE WEB

position and is only interpreted by the reader.

The major focus of this section is the combination of IR, IE, and DM. Indexing services
and Information Extraction transform a document collection into a set of events and re-
lations which form the basis of Data Mining. The efforts of finding relevant paragraphs
in the documents, of writing regular expressions for the extraction of simpler entities
such as, e.g., document numbers or dates, are turned into operators of the IE plugin
of RapidMiner and, hence, are available for other applications, as well. The IE-plugin
offers these preprocessing operators. It interacts with the IR-tool lucene. It offers an
annotation tool and runs the CRF NER in a loop of cross validation. Hence, we have
not merely shown an application but the development of a system which eases to build
an application. Such a principled approach to enhancing services of web-based infor-
mation systems by event extraction and Data Mining is a novelty, as far as we know.

8.2 Company Information Extraction from the Web
In this section we present an application focusing on Information Extraction on com-
pany related information from the WWW. We extracted seed information from a semi-
structured newspaper website containing information about the biggest German com-
panies. These informational units already can be presented in a company network. This
network is represented using a visualization which is based on a graph framework (see
Section 8.2.3). In an additional step we used these information to crawl the WWW
for the extraction of a dataset containing sentences which might contain two or more
related companies. This dataset is described in Section 8.2.1. We made several Re-
lation Extraction experiments on that dataset. The experiment setting and the results
are presented in Section 8.2.2. The extracted relations finally can be embedded in the
company network to reveal additional knowledge.

8.2.1 The Merger Relation Dataset
In this section we present dataset which can be used for Relation Extraction. It is a
dataset a student created during his diploma thesis [Had, 2009]. The dataset contains
relations indicating the so called merger-relation. This relation type defines the merg-
ing of two companies.

Information about companies and economics are valuable information for the stock
market. Extracting these information automatically is of great use in order to gain
knowledge about processes leading to the rising of shares, for instance.

An interesting relation in this domain is the merger relation indicating the merging
of two companies. The merging of two firms mostly leads to great consequences at the
stock market. The dataset is created in the following way.

The 30 German companies indexed in the DAX have been used to crawl documents
concerning these firms from the WWW. These documents are used to create a pool of

163

CHAPTER 8. APPLICATIONS

relevant documents. The sentences containing at least two companies of a list of known
company names are extracted for further processing. The sentences are tagged using
the IOB-tagging (see Section 2.3.1). The resulting dataset only contains sentences in
which company names are tagged. Pairs of companies of the sentences are converted
into relation candidates. Especially sentences containing more than two companies
are crucial because such sentences are offering more than one relation candidate. Fig-
ure 8.4 shows as an example the parse tree of a sentence containing a found merger-
relation.

The final corpus contains 1698 sentences which in sum contain 3602 relation candi-

S

NP

CNPADV PIDAT NN

Die beiden Stromkonzerne

RWE

NE

und

KON

VEW

NE

VMFIN

wollen

VP

VVINF

fusionieren

Figure 8.4: A parse tree for a German sentence containing a merger-relation ([Had
et al., 2009] p. 2)

dates. Nearly 3000 of these candidates are no merger-relation. 672 relation candidates
are tagged as real merger relations. Unfortunately, most of the sentences contain only
relation candidates of one label. Only few sentences (98) contain relation candidates
of both classes. This distribution is very skewed leading to the fact that the analysis of
the sentence itself already delivers well-suited models. The ACE corpus (see Section
6.5.2), for instance, offers nearly 3000 sentences, and more than a half of them contain
at least a negative candidate and a true relation.

8.2.2 Experiments

We made several experiments on the merger relation dataset. In the following we
present the feature set we used for the particular experiments:

• baseline-feature set
This feature set represents the features as presented in [Zhou et al., 2005]. To
additionally use the tree kernel we took the parse tree of the certain sentences the

164

8.2. COMPANY INFORMATION EXTRACTION FROM THE WEB

relation candidates are part of, and we used these parse trees in the feature set,
too.

• word-vector-feature set
This feature set only holds the bag of word representation of the sentence the
certain relation candidate is extracted from.

• big-word-vector-feature set
This feature set is a combination of the baseline-feature set and the word-vector-
feature set.

• stem-x-tree-feature sets
In this feature set we use the stems of the tokens and embedded them into the
parse tree at level x. x is always relative to the preterminals. x = 0 leads to
replacing the preterminals by stems. This feature set equals the baseline-feature
set but only the parse tree is different.

All used parse trees are created by the Stanford parser [Klein and Manning, 2002]. We
applied 10-fold cross validation using the composite kernel with a parameter setting of
C = 2.4, m = 3 and α = 0.6 (see Section 5.4.4).

Performance

The performance achieved by our experiments is shown in Table 8.3. The results are
given by the mean on the particular cross validation results together with the standard
deviations.

The best values for precision and recall are achieved in the feature set containing

Feature set Precision Recall F-meas.
baseline 33.47 ± 3.9% 52.27 ± 22.0% 38.64 ± 8.9%

word-vector 36.41 ± 12.2% 69.93 ± 11.6% 45.45 ± 5.1%
big-word-vector 36.83 ± 5.2% 74.86 ± 9.6% 48.73 ± 3.1%

stem-replace-tree 31.46 ± 4.6% 76.03 ± 9.0% 44.08 ± 4.3%
stem-0-tree 37,94 ± 6.3% 47.90 ± 14.6% 41.79 ± 9.1%
stem-1-tree 44,33 ± 7.6% 53.42 ± 9.9% 47.51 ± 4.4%
stem-2-tree 36.28 ± 4.0% 62.91 ± 10.9% 45.64 ± 4.6%

Table 8.3: Performance of Relation Extraction experiments on the merger relation
dataset using ten-fold cross validation.

the parse trees which are enriched by the stems of the tokens. Although the feature
set containing the bag of words representation of the sentences results in the best f-
measure, the results of the feature set containing the parse trees enriched by stems are
promising. The good results using the bag of word representation might be based on
the fact that the merger relation dataset contains many sentences which only contain
one relation candidate. This makes the task of Relation Extraction to a kind of sentence
classification for this dataset.

165

CHAPTER 8. APPLICATIONS

8.2.3 Visualization of Extracted Relations
In [Had et al., 2009] an economic network is presented for the visualization of relations
between companies and persons. This economic network has been constructed out of
informational units for companies and persons who are active in the board of directors
of such companies. A newspaper website has been crawled to gather information con-
cerning some of the most influential companies for the creation of the network. Such
information is given in a semi-structured way which makes the extraction easy by us-
ing regular expressions. About 2.000 tuples containing information about companies
have been extracted. Although some of these tuples only contain trivial information
like industry type or address, the greater amount of these tuples contained information
about the board of directorate, shareholding, some performance indicators and share
owner information. Many of the extracted companies are related to other companies.
We assume that a relation will be given if two companies share a person. This person,
for instance, is member in the board of directorate in both companies.

The resulting graph is visualized using the JUNG-Framework [O’Madadhain et al.,

Figure 8.5: A company and all involved persons visualized. ([Had et al., 2009], p. 7)

166

8.2. COMPANY INFORMATION EXTRACTION FROM THE WEB

Figure 8.6: Two companies related by a merge. Former relations are revealed, too.
([Had et al., 2009], p. 7)

167

CHAPTER 8. APPLICATIONS

2003]. A graphical user interface allows the selection of particular companies in order
to gather all involved persons. Figure 8.5 shows the extracted persons for the Volk-
swagen AG as an example. Figure 8.6 shows the same company, additionally, a found
merger-relation between two companies is visualized using a thicker line between the
two involved companies. Having a look on the graph now reveals the fact that two
persons are involved in both firms. This fact might generate hypothesis or questions
like “Have the merge of the two companies been launched by these two persons?”. It
becomes clear that the extracted relations will reveal additional knowledge if they are
embedded in an already available relation graph.

Visualizing relations by a network makes the information intuitively better understand-
able for the users.

8.3 Relation Graph Analysis
In this section we will show how to analyze graphs consisting of related entities with-
out using any information of the entities itself. Only the fact that entity i is connected
to entity j makes them somehow similar.

Relations between entities do not necessarily have to be extracted to gain insights on
the related entities. In modern web frameworks such relations already inherently are
given. Those relations can be used to extract groups of similar entities. The similarity
of these groups is only based on the relations between the entities in contrast to being
based on characteristics of the entities itself. By focusing on the well-known social net-
work Twitter we will show that relations inherently are given in a social network and
that these relations can be used for clustering the entities of such network. In addition,
we show that the permanent evolution of such network can be tackled by stream-based
approaches.

8.3.1 Introduction
Social networks like LinkedIn, facebook and Twitter have gained lots of attention dur-
ing the last years. The interest on social networks mostly is based on the success
of facebook which inspires other companies like google to develop social networks
(google+), too. The name already states it: social networks are connecting people.
Those networks offer their users a platform to communicate and to share different
types of information. Users can get connected by establishing friendship relations, for
instance. Additionally, users can offer content by chatting and sharing information like
videos, music clips, photos, links, and so on.

An interesting question concerning the analysis of social networks is if the network
contains groups of similar users. Social networks do not only connect users. They also
contain informational entities like messages, photos, links, and so on. This allows not
only the finding of groups of similar users, it is also possible to find groups of similar
entities.

168

8.3. RELATION GRAPH ANALYSIS

For the purpose of analyzing such networks we have to have a more formal view on
such networks. Every type of content contained in the network shall be seen as an
entity. In practical the entities are users, messages, photos, videos, links, and so on. In
addition, these entities can be related. A relation can be manifold: a user is a friend
of another user, a user posts a photo, a user writes a message. The relations also can
connect multiple entities: a user posts a message which is related to another user, or
a user marks another user on a photo. We assume that every communication in the
network creates a particular type of relation and a particular instance of such relation
type.

In this work we certainly focus on the well-known network Twitter which offers its
users the possibility to create short messages which are propagated to those users which
are connected to the particular user. Users can “follow” other users which makes them
possible to receive messages created by such users. The messages itself can contain
additional content like urls, tags and other users which can be linked in a relation.

Figure 8.7 shows an exemplary message (called tweet) as it might occur in the Twitter-
framework. This particular tweet contains information about the author, the message
itself, a link and 4 tags. This tweet can be represented as 4 four-ary relations between
user, message, url and tag. To not generate too complex relations the 4 tags are not
represented in one relation but 4 relations containing one tag each are created.

Defining a social network as a collection of entities which are somehow related to

Figure 8.7: Example tweet of the Twitter platform

each other, results in the definition of a social network which is given in Definition 26.

Definition 26. A social network is an undirected graph G = (V,E), where V is the
set of nodes being the set of entities apparent in the social network and E being the set
of edges connecting entities v ∈ V . Entities vi and vj will be connected ((vi, vj) ∈ E)
if vi and vj are part of a particular relation of one of the relation types occurring in
the social network.

The particularly possible relation types of the Twitter framework are presented in
Section 8.3.5 and in Figure 8.8.

Interrelated entities normally are described using a triangular adjacency matrix A of
dimension d × d, where d is the number of entities. Matrix A normally is sparse

169

CHAPTER 8. APPLICATIONS

containing w at position Ai,j if entityi is related to entityj with weight w, and 0
otherwise. This matrix unfortunately cannot be used to describe n-ary relations with
n ≥ 3 as it only allows the interaction of two entities.

For the description of multi-dimensional relations, containing more than two inter-
related entities, tensors can be used like it is presented in several publications [Acar
et al., 2005, Acar et al., 2006, Banerjee et al., 2007, Shashua and Hazan, 2005, Kolda
et al., 2005, Cai et al., 2006, Wang et al., 2006]. A tensor is a generalization of matrices
which contains not only two but n dimensions. A 3-dimensional tensor X for instance
is a cube which can be used like an adjacency matrix to describe relations connecting
three types of entities. If for social network analysis a relation connecting users, tags
and urls is given, the corresponding tensor X can be used in the following way:

X i,j,k =

{
w if user i, tag j and url k are related
0 otherwise.

Community Discovery using Tensors

Clustering or the detection of communities on multi-relational data given a tensor rep-
resentation is done by decomposing the tensor X into matrices U (i). Each matrix U
is representing one particular dimension of the tensor. The matrices are of dimension
Rmi×k, where mi is the number of entities of dimension i of the original tensor and k
is the number of groups or clusters to be created. The parameter k in this connection
is a parameter which is set by the user. The created matrices should approximate the
original tensor best given the following equation:

X ≈ [z]
∏
i

×diU
(i).

The matrices U (i) can be seen as a mapping of the particular entities to the k clusters.
[z] is a super-diagonal tensor connecting all the matrices (see Section 8.3.3). ×di is the
mode-d product which is presented in Section 8.3.3.

[Allen, 1984, Lathauwer et al., 2000, Harshman, 1970] have presented different types
of decomposition techniques like PARAFAC (CP) and Tucker3. How well the original
tensor has been approximated is measured by a divergence function. [Banerjee et al.,
2007], for instance, used the Bregman divergence to evaluate the approximation of
their clustering framework. [Bader et al., 2007] tried to find and track informative dis-
cussions in the Enron email dataset by applying a CP tensor decomposition approach
on the relation (term,author,time). Although both presented approaches are clustering
multi-relational data available in tensors, they are only working on one tensor present-
ing only one type of relation.

METAFAC which is presented by [Lin et al., 2009] is a factorization of multiple multi-
relational datasets. Multiple types of relations are stored in multiple tensors which
finally are analyzed all together. In detail, the particular relation types share types of
entities. This leads to the fact that one particular matrix U (i) is used to approximate

170

8.3. RELATION GRAPH ANALYSIS

several dimensions of multiple tensors. Finally, a global clustering on all entity types
is created respecting all of the relation types.

Stream-based Community Discovery

Most of the approaches for tensor decomposition are not able to process data which
is presented as a stream. The approaches which are called stream-based more or less
collect the data and create a new tensor which is presented to the decomposing method.
In [Lin et al., 2009], for instance, the stream is split into blocks. The information con-
tained in these blocks is converted into a tensor representation which is used to update
the former created approximating decomposition. The update procedure is comparable
to the original decomposition: the (update-)tensor is decomposed and the result is used
to update the former result by using a trade-off factor to combine both decompositions.

Two other approaches which in some way incorporate streaming data are presented
for comparison. Dynamic tensor analysis presented by [Sun et al., 2006] pretends to
handle streaming data. If new data is coming in to be processed, their approach will
create a new tensor containing the data. After that, that tensor is unfolded to each mode
(dimension) and the resulting matrices are used to update their model in a stream-based
way. In our approach we have to update not only one but multiple relations at a time.

GraphScope by [Sun et al., 2007] also collects new data and aggregates them to new
tensors being used to update the model. In addition, their approach finds the optimal
time point for updating. The two major drawbacks of these approaches is that first the
data is aggregated to new tensors which is not really stream-based and second the di-
mensions of the tensors have to be known. A former created model which, for instance,
has information about users1 until users100 is not able to be updated by information
about another user which is unknown (user101, for example).

Own Contributions

[Lin et al., 2009] state that the runtime of their approach is bound by O(N), where
N is the number of entries available in the particular tensors. For our Twitter dataset
we crawled about 200.000 messages containing about 590.000 relations. In order to
achieve faster runtime, we will bound the size of tensors and allow a stream-based con-
tinuous updating of the decomposition model.

Our contribution in this chapter is an adaption of METAFAC by [Lin et al., 2009].
The adaption consists of four particular steps:

1. We bounded the dimension of the certain U (i) matrices. In this way we only
allow a particular number of entities to be part of our model. If the maximum
number of entities is reached the most outdated entities are replaced by new ones.

2. The strategy for the replacement for outdated entities is presented based on a
time-dependent weighting mechanism. This mechanism decreases the weight of
each entity over time.

171

CHAPTER 8. APPLICATIONS

3. New relations are continuously integrated. Instead of collecting the relational
data for the block-wise updating of the model, we directly integrate new rela-
tions, and the particular model is updated.

4. Our new approach is evaluated on real-world data crawled from the social net-
work Twitter.

The rest of this chapter is structured as follows. In Section 8.3.2 we present how to use
graphs for the representation of relations containing more than two involved entities.
We call this relations n-ary in contrast to binary relations. In Section 8.3.3 we show
how tensors can be used to store the particular n-ary relations. In addition, we present
the possible calculations used for tensors. We show how tensors are decomposed and
how this methods helps to cluster n-ary relational data. We also present the related
approach which we enhanced in Section 8.3.4 in order to make it usable in a com-
pletely stream-based manner. Additionally, we present the three major contributions
we developed for the stream-based approach in that section. Section 8.3.5 contains the
presentation of the results we achieved by using our approach on data extracted from
the blogging platform Twitter. Finally, Section 8.3.6 summarizes this chapter.

8.3.2 Graphs representing n-ary Relations
We did not distinguish the different types of entities which can be related to each other
in a relational graph G up to now. Nevertheless, the different types of entities play an
important role in the different relation types, because only specific entity types interre-
late in a particular type of relation. We split the set of entities V into multiple sets Vi
of entities containing only particular types of entities like users or tags, for instance.

V =
⋃
i

Vi

A relation is a particular mention of a relation type R. If in one relation, for instance, a
user, a message and an url are interrelated, the relation containing that information will
be (ui,mj , urk), where ui is a user, mj is a message and urk is an url. (ui,mj , urk)
is of Vuser × Vmessage × Vurl. The relation type R of (ui,mj , urk) is R := Vuser ×
Vmessage × Vurl. The entries ui, mj and urk are only indices pointing on a list of
nominal values to avoid redundant information. For accessing these lists we need a
mapping function ϕi accessing the i-th set of entities Vi:

ϕi : Vi → {0, . . . , |Vi| − 1}.

This mapping function on the one hand maps particular values w to a list of nominal
values and on the other hand the inverse of that mapping function delivers the partic-
ular entry given the index. ϕi(w) is the index of entry w in the list of nominal values
of entity-set Vi. ϕ−1

i (j) is the particular value stored at index j in the list of nominal
values of entity-set Vi.

After defining the mapping function we can show how to store sets of relations us-
ing a tensor. As presented in the former sections a tensor is a multi-dimensional array.

172

8.3. RELATION GRAPH ANALYSIS

An n-ary relation can be stored in a mode-n tensor X ∈ R|V1|×...×|Vn|. A particular
entry in such a tensor

X i1,...,in ∈ R, ϕ−1
j (ij) ∈ Vj

denotes a relation between the indices

(i1 ∈ V1, · · · , ij ∈ Vj , · · · , in ∈ Vn).

The indices are mapped to concrete values, and

ϕ−1
1 (i1), · · · , ϕ−1

j (ij), · · · , ϕ−1
n (in)

are the corresponding values. For a set of relations X ⊆ Vi1 × . . . × Vil(i) we will
present the corresponding binary tensor in the following. The tensor contains a 1 if the
particular entities are related and a 0 otherwise.

X ν1,...,νl(i) =

{
1 if (ϕ−1

1 (ν1), . . . , ϕ−1
l(i)(νl(i))) ∈ X

0 otherwise
(8.1)

MetaGraph

By using a matrix sets of binary relations can be stored like it is done by using adja-
cency matrices. A network containing multiple entity types which might be related in
different relation types only could be tackled by a set of adjacency matrices. Every
relation type between two entity types is presented by an adjacency matrix containing
the particular interrelated pairs of the entity types.

A tensor can be used to store a set of multi-dimensional relations. 3-dimensional rela-
tions, for instance, can be stored in mode-3 tensor. MetaGraph presented by [Lin et al.,
2009] is based on tensors enabling the use of multi-dimensional relations. MetaGraph
is a graph G = (V,E), where V is the set of vertices representing particular types of
entities, and E is the set of edges connecting the vertices. The edges in this presenta-
tion are hyperedges connecting two or more vertices. By using hyperedges it is getting
possible to tackle multi-dimensional relations. Each relation type R is represented by
a hyperedge in G. It follows that each hyperedge is represented by a tensor X (i) rep-
resenting the particular relations.

Every type of relation apparent in the social network which should be used for the
analyses has to be presented on the one hand as a hyperedge in the MetaGraph and on
the other hand as a tensor. The choice for the types of relations used in the MetaGraph
is to be made by the user. Only the most important relation types have to be chosen.
Choosing too many relation types will lead to a greater amount of tensors and of course
to a greater runtime. If we want to analyze all possible relations (connecting at least
two entity types) between all entity types a number of |P(V)|−|V |−1 = 2|V |−|V |−1
tensors will be needed.

We presented a MetaGraph for the Twitter framework in [Bockermann and Junger-
mann, 2010b]. This graph is shown in Figure 8.8. The hyperedges are indicated by

173

CHAPTER 8. APPLICATIONS

Ri, and the four entity types used in this graph are users, tags, url and tweets. One can
see that entity-types can be connected to itself. This means that for instance a user is
mentioning another user in a tweet like it is done in relation type R4.

user tag

tweet url

R1

R2

R3

R4

R5

R6

R7

R8

Figure 8.8: A MetaGraph for Twitter ([Bockermann and Jungermann, 2010a], p. 3)

Clustering Problem

By only choosing a subset of relations to be represented in the MetaGraph only an
approximation of the social network is given. The relation types R are represented as
tensors X . The MetaGraph G is described by those tensors:

G 7→
{
X (1), . . . ,X (n)

}
.

The task of clustering the entities presented by this description of the graph G is pre-
sented in the following. [Lin et al., 2009] are presenting a factorization approach
working on all the tensors (X (1), . . . ,X (n)). A certain tensor X (i) is factorized in
the following way

X (i) ≈ [z]

l(i)∏
j=1

×jU (ij). (8.2)

174

8.3. RELATION GRAPH ANALYSIS

[z] is the global super-diagonal tensor which is used for factorizing all of the tensors.
The matrices U (q) which are shared by some relation types are of dimension R|Vq|×k,
where k is the user-defined number of clusters to be found and |Vq| is the cardinality
of entity-set Vq . Each entity is represented in the certain matrices. For each entity type
only one matrix U is available. That means that relations sharing entity types t also
share the resulting matrix U (t).

The mathematical basics for tensor calculations are presented in Section 8.3.3.

[Lin et al., 2009] are using a normalization method leading to the fact that the en-
tries in a matrix U (q) are values of [0, 1]. The entries in the matrices can be seen as
a sort of probability for each entity belonging to the particular clusters. To extract the
most probable cluster C(l) for a given entity ϕ−1

q (l) one just has to find the maximum
entry in the corresponding matrix:

C(l) = arg max
m
U

(q)
l,m,m ∈ {1, . . . , k} (8.3)

To achieve a global clustering for all types of relations the factorization has to be si-
multaneously performed on all tensors. Like for the factorization of only one tensor,
a distance measure D : RI1×...×Il × RI1×...×Il → R is needed to evaluate the ap-
proximating performance. In contrast to the factorization of a single tensor we now
have to calculate the global distance. This distance has to be minimal leading to an
optimization problem:

arg min
[z],U(q)

n∑
i=1

D(X (i), [z]

l(i)∏
j=1

×jU (ij)) (8.4)

Later on we will analyze the possibilities to do such clustering on data streams repre-
senting the behavior of an original social network. A huge amount of new data which
can be represented as particular relations is created in a social network every second.
The twitter platform already is offering a stream of the newly created content. It fol-
lows that only stream-based analysis will tackle this amount of data well.

[Lin et al., 2009] present a batch processing approach to handle a stream of data. The
stream is converted into a stream of subsets each containing just a disjoint subset of the
original stream. If t is the current subset the currently available model is presented by
zt−1, {U (q)

t−1}. The creation of the new model is done by

arg min
zt,{U(q)

t }
(1− α)

n∑
i=1

D(X (i) ‖ [zt]

l(i)∏
j=1

×jU (i)
t) + αLprior (8.5)

Lprior = D([zt−1] ‖ [zt]) +

n∑
i=1

D(U
(i)
t−1 ‖ U

(i)
t). (8.6)

The divergence between old and new model Lprior is used to handle the impact of how
strongly the new created model is taken into account. α is used as a trade-off factor

175

CHAPTER 8. APPLICATIONS

in order to select whether the new model (α → 0) or the older model (α → 1) should
stronger affect the new model.

8.3.3 Tensors

For the further processing of tensors we need to describe some basic methods for the
handling of tensors. Most of these methods are needed for the clustering approach we
are presenting for social networks. In this section we will formally introduce the needed
formalisms for tensor analysis. We will start with the most important operations.

Operations on Tensors

Although a tensor always can be represented in its original form as a multi-dimensional
matrix, it also can be represented in multiple other ways. We will present the operations
vec, unfold and fold in the following. These methods are used to transform a tensor into
different representations without changing its content.

Representations

Given a tensor X it can be converted into a (long) vector representation using the vec
operation

vec : RI1×···×IM → RJ where J =
∏M
k=1 Ik.

By using this method, a tensor X ∈ RI1×···×IM is converted to a vector x ∈ RJ , by
mapping its entries ai1,··· ,iM to position i1 + (I1i2) + · · ·+ (

∏M−1
k=1 Ik)iM , i.e.

xi1+(I1i2)+···+(
∏M−1
k=1 Ik)iM

= ai1,··· ,iM .

The operations unfold and fold are used to convert tensors into regular (two-dimensional)
matrices and vice versa. Unfolding is an operation

unfold : RI1×···×IM ×N → RId×J with N = {1, . . . ,M}

which transforms a tensor X along a given mode d ∈ {1, . . . ,M}. This special mode
is used as the first and the other modes are representing the other dimension of the
resulting matrixX ∈ RId×J with J =

∏M
i=1,i6=d Ii. The entries ai1,...,iM of the tensor

X are mapped to position aid,j

ai1,...,iM 7→ aid,j where j =
∏M
k=1,k 6=d ikIk.

Folding is the inverse operation of unfold, and it is converting a matrixXd ∈ RId×
∏M
i=1,i 6=d Ii

to a tensor X ∈ RI1×···×IM .

176

8.3. RELATION GRAPH ANALYSIS

The accumulation of tensors does not create another representation of a tensor. Sim-
ilar to the vectorize method this method creates a vector using the tensor values by
summing up the values along a given mode:

acc : RI1×···×IM ×N → RId with N = {1, . . . ,M},

where d ∈ {1, . . . ,M}. The resulting vector x ∈ RId is the original i-th mode of the
tensor containing the values of all other modes summed up:

xid =
∑

ai1,i2,...,id,...,iM .

The accumulation methods also can be performed along two modes resulting in a ma-
trix.

acc : RI1×···×IM ×N ×N → RIc×Id with N = {1, . . . ,M},

Given two modes c and d, the accumulation method will take all other modes except
these two and sums up the values: X ∈ RIc×Id with

xic,id =
∑

ai1,i2,...,ic,...,id,...,iM .

where c, d ∈ {1, . . . ,M}.

Mode-d Product

The mode-d product is another necessary operation for the approach of tensor factor-
ization. Given an m-way tensor X and a matrix U the mode-d product of X and U is
an operation

×d : RI1×···×IM × RId×J → RI1×···×Id−1×J×Id+1×···×IM

where
(X ×d U)i1,...,id−1,j,id+1,...,iM =

∑
id

xi1,...,iM · uid,j .

Tensor Decomposition

Tensor decomposition is the approach to find the best matrices for approximating the
original tensor. [Kiers, 2000] present PARAFAC (or CP) decomposition. Following the
definition of CP, a third-order tensor X ∈ RI×J×K is decomposed to

X =

[
R∑
r=1

ar ◦ br ◦ cr

]
+ E (8.7)

where R is a positive integer and ar ∈ RI , br ∈ RJ , cr ∈ RK . See Figure 8.9 for a
schematic illustration of this decomposition. The decomposition is just an approxima-
tion of X which becomes visible by error tensor E . If we want to formally neglect E

177

CHAPTER 8. APPLICATIONS

≈

+...+

+

+a1

b1
c1

a2

b2
c2

a3

b3
c3

aR

bR
cR

X

Figure 8.9: CP tensor decomposition ([Bockermann and Jungermann, 2010a], p. 4)

we can use the approximate notation of X :

X ≈
R∑
r=1

ar ◦ br ◦ cr. (8.8)

The elementwise presentation of equation (8.8) is

xijk ≈
R∑
r=1

airbjrckr (8.9)

We will need probability values for later processing, therefore we have to normalize the
rank-one tensors ar, br and cr for r = 1, ..., R to one. We will achieve the following
form

xijk ≈
R∑
r=1

zrairbjrckr (8.10)

where z ∈ RR is a weight-vector. This decomposition sometimes is called higher-order
singular value decomposition (HOSVD) ([Kilmer and Moravitz Martin, 2004]). The
rank-one tensors ar, br and cr for r = 1, ..., R represent the singular values. These
values later on can be utilized for the derivation of a clustering of the data.

ar, br and cr for r = 1, ..., R can be represented as matricesU1 ∈ RI×R,U2 ∈ RJ×R
and U3 ∈ RK×R. Constructing a superdiagonal tensor [z] ∈ RR×...×R of z contain-
ing just zeros apart from positions zr,...,r where it contains value zr of eq. (8.10).

178

8.3. RELATION GRAPH ANALYSIS

Following this approach makes eq. (8.10) to be written as mode-n product:

X ≈ ((([z]×1 U
1)×2 U

2)×3 U
3) = [z]

3∏
i=1

×iU i (8.11)

Figure 8.10 shows the n-mode product of equation (8.11) for a better understanding.

X
U2

U1

U3

≈
z

Figure 8.10: CP tensor decomposition incorporating weights ([Bockermann and
Jungermann, 2010a], p. 4)

METAFAC - Metagraph Factorization

The METAFAC algorithm presented by [Lin et al., 2009] is used to optimally decom-
pose a set of tensors X (i) with shared factors [z], {U (q)}. They evaluate the approx-
imation performance by using the Kullback Leibler divergence DKL [Kullback and
Leibler, 1951], introducing the following optimization problem:

arg min
[z],{U(q)}

n∑
i=1

DKL(X (i), [z]
∏

i1,...,il(i)

×jU (ij)) (8.12)

To solve the problem of eq. (8.12) [Lin et al., 2009] developed an approximate solution
which is based on the following variables

µ(i) = vec(X (i) � ([z]

l(i)∏
j=1

×jU (ij))) (8.13)

S(i) = fold(µ(i) ∗ (z ∗UMi ∗ · · · ∗U1i)T) (8.14)

179

CHAPTER 8. APPLICATIONS

where � is the elementwise division of tensors, and ∗ is the Khatri-Rao product of
matrices. µ(i) and S(i) are afterwards used for iteratively updating z and {U (q)} by

z =
1

n

n∑
i=1

acc(S(i),Mi + 1) (8.15)

U q =
∑

l:el∼vq

acc(S(i), q,Me + 1) (8.16)

where acc is the accumulation-function (see Section 8.3.3) and Mi + 1 is the last di-
mension of S(i). This step is repeated until convergence is reached. Convergence is
reached if eq. (8.4) delivers sufficiently small values which means that the approxima-
tion is well suited. The optimization algorithm is presented as Algorithm 8.

Algorithm 8 MF algorithm ([Lin et al., 2009], p. 5)

1: Input: Meta-Graph G = (V,E), data tensors {X (e)}
2: Output: z and {U q}

3: procedure METAFAC(G, {X (e)})
4: Initialize z, {U q}
5: repeat
6: for all e ∈ E do
7: compute {S(e)} by eq. (8.13), (8.14)
8: compute z by eq. (8.15)
9: end for

10: for all q ∈ V do
11: update {U q} by eq. (8.16)
12: end for
13: until convergence
14: end procedure

Timestamped Metagraph Factorization

As already mentioned, [Lin et al., 2009] propose to use a batch processing for handling
streams of data. They are creating timestamped batches of the complete data, and these
batches are used for the iterative updating of the model. Instead of creating one optimal
model the model is iteratively updated which requires a slightly different objective:

minz,{Uq}(1− α)
∑
e∈E

D(X e ‖ [z]
∏
i:vi∼e

×iU i) + αlprior (8.17)

lprior = D(zt−1 ‖ z) +
∑
i

D(U i
t ‖ U

i) (8.18)

180

8.3. RELATION GRAPH ANALYSIS

The functions to be updated are defined as follows:

z = (1− α)
∑
e∈E

acc(Se,Me + 1) + αzt−1 (8.19)

U q = (1− α)
∑

l:el∼vq

acc(Sj , q,Me + 1) + αU q
t−1 (8.20)

The adaption of the METAFAC algorithm 8 is done by substituting the computations in
lines 7, 8 and 11 using the equations (8.18), (8.19) and (8.20) respectively.

8.3.4 Stream-based Clustering using Tensors
In this section we are presenting the adaption we made on the METAFAC framework.
We are presenting a method to bound the amount of entities which are currently active
in the model. This amount of active entities is determined by choosing only the most
novel entities for processing. To always choose the most novel entities we present a
weighting mechanism which automatically downgrades older entities. This approach
should cause the model to incorporate only novel Twitter messages.

In the Twitter network the users are creating messages (tweets) which are read by other
users. We assume, that this messages are given as a sequence M :

M := 〈m0,m1, . . .〉

where each message mi is consisting of a set of relation types R(mi). Let τ(mi) ≥ 0
be the timestamp the message mi was created. The resulting sequence of relations is

S := 〈R(m0),R(m1), . . .〉.

These relations are directly added to the social network graph G. The network graph
G is permanently evolving leading to a sequence of graphs or graph-states

〈Gt0 , Gt1 , . . .〉

where each Gti contains all information about the relations of all messages up to time
ti.
Let t, t′ be two ordered timestamps with t < t′. In the following G[t,t′] denotes the
graph containing only information concerning the messages in the timespan between t
and t′. Gt, for instance, equals G[0,t]. The graphs which are metagraphs are still pre-
sented by a set of tensors X (1), . . . ,X (n). The time bound graphs are also represented
by a set of tensors:

G[t,t′] 7→
{
X (1), . . . ,X (n)

}
[t,t′]

.

The MFSTREAM Algorithm

In contrast to the sliding window approach presented in the METAFAC algorithm in
equation (8.17), we present a more continuous approach. METAFAC factorizes ten-
sors {X (i)}[tj−1,tj], where the time slots tj−1 and tj always cover the same amount of

181

CHAPTER 8. APPLICATIONS

messages. The new factorization results are updating the former model weighted by a
trade-off factor.

Our more continuous approach directly adds new relations to the network graph. This
graph is permanently used for factorizing the most current tensors. In order to only use
the most novel relations for factorization we on the one hand use an upper bound to
lower the maximum number of entities and on the other hand introduce a time-based
weighting strategy to exclude old entities from our model. In the following we will
present the weighting mechanism in addition to the bounding mechanism of the entity
sets. Our algorithm is presented in Section 8.3.4.

Relation Weighting

Up to now a relation just was a number of entities which relate to each other. It is
sufficient to use a binary property to represent if, for instance, entities i, j and k are
related:

X i,j,k = w,

with w ∈ {0, 1}.

As we are extracting time-stamped relations, now, we are willing to use the information
concerning the particular timestamps. Our idea was to use the age of a particular rela-
tion during the factorization process. The process is accessing the entries of the certain
tensors which allows the introduction of the timestamps as entries of the tensors. In
addition, the entries should decrease over time to represent the fact that older messages
contain older information that should not affect the model much.

Each relation r ∈ Ri is associated with a timestamp τ(r). This timestamp is the
time the relation was created. We denote S as the set of relations which have been
extracted from messages. It follows that the corresponding tensor for relation type
Ri = Vi1 × . . .× Vil(i) should contain the following values

X (i)
i1,...,il(i)

=

{
τ(r) if r = (ϕ−1

1 (ν1), . . . , ϕ−1
l(i)(νl(i))) ∈ S

0 otherwise
(8.21)

The tensor entries which represent a relation between different entities is not binary
anymore. The entries now are equal to the creation time of the corresponding message
in the Twitter framework. Additionally, we introduce a global clock, denoted by τmax,
representing the maximum timestamp of all relations which have been seen so far:

τmax := max { τ(r) | r ∈ X } .

τmax and the timestamps τ(r) for each entry r in the tensors now can be used to cal-
culate a weighting function on-the-fly during accessing the tensor entries. A simple
example for a parametrized weighting function is given as

ωα,β(r) :=
α

α+ 1
β (τmax − τ(r))

. (8.22)

182

8.3. RELATION GRAPH ANALYSIS

The advantage of calculating the weighting function on-the-fly is the fact that otherwise
the tensors have to be updated at each time step. The global clock has to be maintained
anyway for the allocation of timestamps to the relations which makes it an efficient
approach to only calculate the weights if they are needed.

Restricting the amount of Entities

Streaming algorithms better should not create models which are growing proportional
to the time the streaming data is analyzed. An important property of such algorithms
therefore is to remove obsolete elements for the creation of condensed models. Using
our presented time-based weighting approach allows us to identify the mostly out-dated
relations which should not affect the model much. Nevertheless, these relations will
still affect the factorization process if they are not deleted from the tensors. Another
reason for storing less relations in the tensors is the fact that the runtime of each it-
eration of the factorization is manifested by N the number of non-zero entries in the
tensors. For reducing the runtime for optimization we restrict the size of each tensor
by introducing constants Cq ∈ N and providing new entity mappings ϕq by

ϕq : Vq → V q with V q = {1, . . . , Cq}.

Two facts are following: These ϕq mappings will not be bijective anymore if |Vq| >
Cq . Second, the size of the matrices U (q) also will be limited to Cq × k.

During the processing of the stream we will not know if a new unknown entity will
occur. If a new entity occurs our approach will have to organize the mapping of the
new entity in a dynamic way. We define dynamic entity mappings ϕq , which map a
new entity e to the next free index of {1, . . . , Cq}. If the maximum number of entities
is reached, we will choose f ∈ {1, . . . , Cq} as the element that is mostly out-dated, i.e.
contains the oldest timestamp.
In addition, all relations containing that particular entity f are removed from all tensors
and from the current cluster model. This means that the matricesU have to be updated,
too: U (q)

f,i = 1
k ∀ i = 1, . . . , k.

The METAFAC approach must have to know the number of entities beforehand and es-
pecially for the batch processing of a new time window the entities must correspond to
the entities which have already been used for creating the former model. Our approach
is not restricted in this way as formerly unknown entities easily are mapped to new
indices. It makes no difference if the maximum number of entities is reached or not.

Continuous Integration

We presented our contributions to a stream-based factorization of tensors for clustering
social networks in Sections 8.3.4 and 8.3.4. Our stream-based adaption of METAFAC
is called MFSTREAM, and it is presented in Algorithm 9. Our approach is totally dy-
namic in contrast to METAFAC as it is adding new relations to the corresponding tensor
{X (q)} and it is fitting [z], {U (q)} after having seen T new messages. The parameter
T is set by the user. After having seen T new messages, our approach performs just

183

CHAPTER 8. APPLICATIONS

one iteration of the optimization – using the time-based weighting method presented
in Section 8.3.4. The time complexity per iteration of the MFSTREAM algorithm is the
same as for the METAFAC algorithms (refer Section 8.3.3). Due to the fact that we fix
the tensor dimensions, the maximum number of non-zero elements N in the tensors is
constant, which implies a runtime of O(1).

Algorithm 9 The MFSTREAM algorithm ([Bockermann and Jungermann, 2010b], p.
9)

1: Input: MetaGraphG = (V,E), StreamM = 〈mi〉, capacitiesCq , constant T ∈ N
2: procedure MFSTREAM
3: Initialize z, {U (q)}, c := 0
4: while M 6= ∅ do
5: m := mc, c := c+ 1 . Pick the next message from the stream
6: for all (rj1 , . . . , rjl(j)) ∈ R(m) do
7: for all p = 1, . . . , l(j) do
8: if ϕp(rjp) = nil then . Replacement needed?
9: if |ϕp| = Cq + 1 then

10: f∗ := arg minf∈ϕp τ(f)

11: U
(p)
f∗,s := 1

k ∀ s = 1, . . . , k
12: else
13: f∗ := min

f∈{1,...,Cp}
ϕ−1
p (f) = nil . Pick next unmapped f∗

14: end if
15: ϕp(rjp) := f∗, τ(f∗) := τ(m)
16: end if
17: end for
18: end for
19: νi := ϕp(rji) for i = 1, . . . , l(j)

20: X (p)
ν1,...,νl(j)

:= τ(m) . Update corresponding tensor
21: if c ≡ 0 mod T then . Single opt.-iteration every T steps
22: for all i ∈ {1, . . . , n} do
23: compute {S(i)} by eq. (8.14) and (8.13)
24: update z by eq. (8.15)
25: end for
26: for all j ∈ {1, . . . , q} do
27: update {U (j)} by eq. (8.16)
28: end for
29: end if
30: end while
31: end procedure

184

8.3. RELATION GRAPH ANALYSIS

8.3.5 Experiments
To evaluate our approach we created a real-world dataset crawled from the microblog-
ging framework Twitter. Twitter-users can have followers and they can follow other
users, too. If a user is writing a message it will be propagated to all the followers. The
other way round, a user gets all the messages of the users she is following. The mes-
sages can contain a maximum of 140 characters. In spite of such limitations users are
not only creating messages – called tweets – but also enriching their tweets by tags, urls
or mentions, which allows users to address other users. We finally identified the entity
types {user, tweet, tag, url}. The metagraph we created for the the Twitter platform,
is shown in Figure 8.8. Although the maximum number of possible relation types is
P(V) = 24, some of them will never occur or are redundant. Each tweet is written
by a user which means that every relation should contain an entity user – the relation
(tweet,tag) which does not refer to a user would never occur. We extracted 8 relation
types {R1, . . . , R8} for our metagraph:

• R1: a user writing a tweet.

• R2: a user writing a tweet containing a special tag.

• R3: a user writing a tweet containing a special url.

• R4: a user mentioning another user in a written tweet.

• R5: a user writes a tweet containing a tag and an url.

• R6: a user writing a tweet containing an url and mentioning another user.

• R7: a user writes a tweet containing a tag and a mentioned user.

• R8: a user mentioning another user in a tweet containing a tag and an url.

The particular creation of our dataset containing a large set of relations was done by
extracting 1000 seed users and the users they follow and their followers. By using an
English stopword filter we extracted users which are writing in English and we also
processed all the users they follow and their followers of the seed users in the same
way. This leads to about 478.000 users for whom we extracted all the messages written
between the 19th and 23rd of February 2010. Out of these 2.274.000 tweets we used
the tweets written at the 19th of February for our experiments, leaving about 389.000
tweets from 41.000 users.

Model Evaluation

To evaluate our approach we compared MFSTREAM with METAFAC. For the compar-
ison of the resulting clusterings of both approaches we employed the “within cluster”
point scatter [Hastie et al., 2003]. This is given as

W (C) :=

K∑
k=1

Nk
∑

C(i)=k

‖ xi − xk ‖2 (8.23)

185

CHAPTER 8. APPLICATIONS

where K is the number of clusters, xi is a member of a cluster C(i) and xk is the
centroid of a cluster k. The larger the result of W (C) the more examples of particular
clusters are not similar to the corresponding centroid which makes this evaluation mea-
sure to be be seen as a sum of dissimilarities between elements in the particular clusters.

We used a stream of 200k messages to create the clusterings with MFSTREAM, and we
restricted the dimensions of the tensors toCuser = Ctweet = 5000 andCtag = Curl =
1000. We used several weighting functions such as ω1,1, ω10,1000 and ω100,1000 as well
as a binary weighting which equals the unweighted model (i.e. w ∈ {0, 1}).

MFSTREAM and METAFAC are not trivially comparable. METAFAC only can pro-
cess a static set of relations. We processed all messages until the first entity type Vi
reached its limit. After that we stored the resulting clustering. We reset the ϕmappings
and started anew, revealing a new clustering every time an entity type Vi reached Ci,
revealing a total of 93 clusterings for our complete dataset. We applied METAFAC on
the messages of the corresponding 93 clusterings and computed their similarities using
W (C). Table 8.4 shows that MFSTREAM delivers results comparable to METAFAC
for different weighting functions. The most similar result is achieved by using ω1,1000.
Figure 8.11 shows that using timestamped values instead of binary values for calcu-
lation of the MFSTREAM delivers better results. The decrease of T , which leads to a
larger number of optimization steps, intuitively increases the quality of MFSTREAM.
This is presented in Table 8.5 and Figure 8.12. Additionally, we want to show the ef-

Weighting W (C) (mean) std. deviation
METAFAC 5.685 · 107 1.32 · 107

binary 7.511 · 107 2.00 · 107

ω1,1 6.142 · 107 1.57 · 107

ω1,1000 6.002 · 107 1.38 · 107

ω10,1000 6.272 · 107 1.43 · 107

ω100,1000 6.724 · 107 1.55 · 107

Table 8.4: Mean ofW (C) of different weights, comparing MFSTREAM and METAFAC

T W (C) (mean) std. deviation
5 6.043 · 107 1.35 · 107

10 6.133 · 107 1.36 · 107

50 6.058 · 107 1.40 · 107

100 6.465 · 107 1.49 · 107

250 10.882 · 107 3.13 · 107

500 43.419 · 107 11.47 · 107

Table 8.5: Mean of W (C) with different update steps T

186

8.3. RELATION GRAPH ANALYSIS

Figure 8.11: W (C) for MFSTREAM compared to the METAFAC clusterings ([Bocker-
mann and Jungermann, 2010b], p. 11)

Figure 8.12: Relative W (C) of MFSTREAM using different update step sizes T
([Bockermann and Jungermann, 2010b], p. 11)

187

CHAPTER 8. APPLICATIONS

fect of the update frequency T . Figure 8.13 shows the relative runtime of MFSTREAM
where T = 1 corresponds to the baseline at 1.0. Raising T results in a shorter runtime,
since the model is updated less frequently, which is the major time factor. The upper
curve shows the runtime for updating after 5 relations (T = 5), the middle one shows
T = 10, and the latter refers to T = 50.

Varying the sizes of entity types given by Cq results in clusterings of different numbers
of entities. These clusterings cannot be directly compared by W (C) anymore. Hence,
we normalized W (C) by the variance V of each clustering. Larger models of course
incorporate more information, which results in more stable clusterings as can be seen
in Figure 8.14.

8.3.6 Summary
In this chapter we presented MFSTREAM which is a flexible and dynamic algorithm
for clustering multi-relational data from evolving networks. Our approach is derived
from the METAFAC framework presented in [Lin et al., 2009]. We proposed four con-
tributions in this work: Our first contribution is the possibility to continuously integrate
new relations for an incremental update of the model. This makes our approach a ”real”
stream-based approach.

In order to respect especially the most novel relations during the creation of our model
we developed a time-based weighting strategy. This strategy which is based on the
timestamps of the relations and a global timestamp is creating time-based weights on-
the-fly without updating the timestamps for each relation in every step.

The number of relations used for creating the model is affecting the runtime of the
approach. We restricted the number of maximum tensor entries to a fixed value which
leads to a constant runtime. If the maximum number of maximum entries for a particu-
lar entity type is reached the most out-dated relation is replaced by the newer one. For
this replacement the time-based weighting also is utilized.

We crawled the Twitter network and created a dataset containing about 400.000 mes-
sages from 40.000 users. For the evaluation of our approach we implemented both ap-
proaches METAFAC and MFSTREAM in Java. We compared the clusterings achieved
by our stream-based approach and METAFAC using the within-cluster point scatter
metric.

Evaluation Problem

The evaluation with the cluster point scatter metric in addition to a manual revision of
the clustering results from the MFSTREAM algorithm show reasonable results. Low-
ering the number of optimization steps for the MFSTREAM algorithm improves the
clustering. The reason for this is that more iterations are applied on the same data.
MFSTREAM is able to handle relations containing new, unseen entities which is not
possible for METAFAC. By offering a replacement strategy especially respecting novel

188

8.3. RELATION GRAPH ANALYSIS

Figure 8.13: Relative runtime of MFSTREAM using different numbers of relations for
update ([Bockermann and Jungermann, 2010b], p. 11)

Figure 8.14: W (C)/V of MFSTREAM using different sizes of models ([Bockermann
and Jungermann, 2010b], p. 11)

189

CHAPTER 8. APPLICATIONS

relations, the approach is suitable to continuously integrate new data from a stream.

The evaluation of the comparison between a batch- and a stream-algorithm remains
difficult. The METAFAC approach optimizes a single, static problem derived from
a fixed set of data. In contrast, its stream variant approximates solutions of a non-
stationary optimization problem. As the objective function remains constant, the data
changes continuously. The replacement strategy available within the MFSTREAM ap-
proach, results in different datasets the approach is working on than the ones used by
METAFAC. The RandIndex, defined in [Rand, 1971], provides a similarity measure
for the comparison of two clusterings. We applied that metric in a first evaluation. Al-
though the results were very promising they seemed to be misleading. The index is
comparing tuples which are occurring together in a cluster for both clusterings. The
clusterings created by MFSTREAM do not contain all the entities which are contained
in the clusterings of the METAFAC experiments, because they have been deleted by
the replacement strategy. This makes the deleted entities (tuples) inaccessible by the
evaluation metric.

Future Work

The deletion of out-dated relations from the tensors is very strict in the current ver-
sion of our approach. Permanently deleting this information will delete the knowledge
which possibly might get interesting in the future, again. One could analyze the usage
of some kind of storage procedure or caching which allows a flexible re-entering of
already seen relations. Especially the entities which are deleted from the U matrices
have had weight-values which should be respected if these entities re-enter the model.

We analyzed the impact of the number of time steps after which the model should be
updated and the weighting strategy. An important factor for stream-based approaches
is runtime. One should analyze if runtime can be used as an optimization criterion. On
the one hand the runtime can be used to adjust the parameters and on the other hand
one could think about a multi-objective optimization approach using concurrent crite-
ria like runtime and quality, for instance.

It is a drawback that the selection of the number of clusters is just done in a strict
way. Recent work, like the one from [Lin et al., 2010], deliver first results on how to
automatically achieve the best number of clusters. Embedding such methods into our
approach would make it parameter-free and more flexible.

The adjustment of time steps after which our approach starts its optimization phase
is crucial. Methods for finding these steps automatically and in a dynamic way could
be embedded in our approach which will make it more flexible.

190

8.4. SUMMARY

8.4 Summary
We presented three applications which show how nowadays applications can benefit
from Information Extraction. Two of the applications especially benefit from the com-
bination of Information Extraction and Data Mining which is a good argument for the
implementation of a framework creating a strong collaboration between these two re-
search areas. We formed that framework by developing the Information Extraction
Plugin.

In the German parliament application we have shown that a vast number of tasks have
to be fulfilled to offer an Information Retrieval / Information Extraction system. For a
special task in this system we showed which steps have to be performed for the extrac-
tion of accepted / rejected requests of the parliament. We additionally have shown that
the combination of Information Extraction techniques and Data Mining methods allow
the later analysis of extracted informational units. Making this combination possible is
one of the benefits of the Information Extraction Plugin.

The Company Information Extraction system delivers and intuitive and user-friendly
graphical view on graphs containing related entities. A basic dataset consisting of in-
formational units of particular companies has been used to crawl sentences from the
WWW which contain at least two company names. This additional dataset was used to
perform Relation Extraction for the generation of additional relations which finally are
embedded in the company network. In particular we extracted relations that indicate
the merge or fusion of two companies. If these relations finally are put in the graph
they will reveal interesting facts which can furthermore be analyzed.

Additionally we presented an approach for relation graph analysis which can be used
to cluster graphs containing related entities. This analysis is a follow-up analysis after
having done a Relation Extraction. The extracted relations can be stored in a graph.
Due to the fact that the relations are not only binary ones the information concerning
the relations has to be stored using tensor representations. By using tensor factorization
methods the contained entities can be grouped into particular clusters. The remarkable
facts of the presented approach is that on the one hand no information beside the re-
lation has to be given and on the other hand that the approach is stream-based. That
makes our approach applicable to online-learning methods. This allows the handling of
big data on the one hand and efficient and fast analysis on the other hand. Our approach
is not restricted to graphs containing extracted relations. Arbitrary graphs containing
any type of related entities like social networks can be clustered by our approach, too.

191

CHAPTER 8. APPLICATIONS

192

Chapter 9

Conclusion

We presented several approaches of machine learning techniques for Information Ex-
traction purposes.

We have shown how Information Extraction developed over the years since its first
appearance during the Message Understanding Conferences in Chapter 3. At the be-
ginning Information Extraction has been performed in a very domain-dependent way
which led to Information Extraction-systems which achieved good performance but
only for the given tasks and domains. The task of Information Extraction therefore was
split into several subtasks. Two of these subtasks are presented in this work: Named
Entity Recognition and Relation Extraction. Relation Extraction relies on entities ex-
tracted by Named Entity Recognition.

We have presented how the feature sets for Named Entity Recognition should look
like. The features can be semantically split into three groups of features: orthographic,
semantic and morphologic features. The orthographic features are easily extracted
from the tokens or from the surrounding tokens. Semantic features are based on given
semantic lexicons or gazetteers and they are created by checking for matching tokens
in these lexicons. Although this, of course, leads to a richer feature set, the feature
set becomes more domain-dependent. A lexicon containing city names will help for
a task extracting location concerning entities, but it will not help for a gene extraction
task, for instance. Finally, morphological features are based on rich linguistic analysis.
These analysis might be based on systems which deliver results for a requested token,
ad hoc. These analysis also might be done to construct morphologic lexicons which
later on can be used to achieve features for requested tokens. For the first approach the
complex linguistic analysis is performed for every requested token, and for the other
approach the complex analysis has to be performed beforehand to create the lexicon.
These features deliver knowledge being very helpful for Named Entity Recognition
tasks. Unfortunately, these features are created in a complex manner and for many lan-
guages no or not sufficient resources are available to create morphological features.

We made experiments on several different datasets. We always used a CRF on sim-

193

CHAPTER 9. CONCLUSION

ilarly created feature sets. We have shown that a domain-independent feature set only
consisting of orthographic features will deliver nearly as good results as approaches
which are tailored to the certain domain. By using such feature set we avoid the time-
consuming analysis of the domain and the creation of domain-dependent features.

In the following chapter (Chapter 4) we put the focus especially on the morphologi-
cal features. The creation of such features is computationally complex. The generation
of morphological features can be done by creating a lexicon or by creating a system
performing the morphological analysis during runtime. Although morphological fea-
tures can be helpful for Information Extraction tasks their creation should be avoided
if the computational resources are not sufficient enough.

Relation Extraction is particularly described in Chapter 5. Relation Extraction heavily
relies on sufficiently well performed Named Entity Recognition. Given such entities
the task of Relation Extraction first of all is based on a reconstruction of the example-
or token set. Each pair of tokens of each sentence is being converted into relation
candidates. Out of these candidates the correct relations have to be extracted and clas-
sified. This task also benefits from the three types of features we already presented.
We presented the state-of-the-art feature sets and we especially showed that the mor-
phological information extracted from the parse trees for the particular sentences are
used to extend the feature sets. At first these parse trees have been used as flat features
by shattering the parse trees into smaller parts which were used like any other nominal
feature. Following publications presented the application of certain methods to use the
complete parse trees because the splitting of parse trees into smaller subtrees results in
the loss of information which is inherently stored in the trees. Using these structured
features requires certain methods being able to respect such structures. This is done
by tree kernels. We presented different tree kernels which all are based on the kernel
presented by [Collins and Duffy, 2001].

Although many extensions on tree kernels have been performed, the recursive calcula-
tion of the tree kernels we presented in this chapter remains computationally complex.
We focused on particular solutions in the following chapter.

In Chapter 6 we presented the possible solutions for a more efficient use of tree kernels
accessing tree sets or tree forests. The support vectors of a trained SVM containing
tree structures can be seen as a tree forest. This tree forest has to be traversed during
The training or test phase, for instance, and for each of the trees stored in the forest a
kernel value has to be calculated.

We presented approaches to avoid such behavior and we additionally show that ma-
chine learning approaches exist which are not relying on exhaustive training. These
approaches namely are perceptrons and naı̈ve Bayes classifiers. These approaches will
result in much faster runtime in comparison with SVM which rely on an exhaustive
training phase. If these approaches additionally are combined with the efficient use of
tree forests they will again speed up in case of runtime. Naı̈ve Bayes classifiers are
an approach relying on a minimum training phase. We presented analysis on naı̈ve

194

Bayes classifiers in combination with tree kernel usage. The tree kernels are used as a
distance- or similarity measure to make tree structures applicable by naı̈ve Bayes clas-
sifiers.

In Chapter 7 we presented the Information Extraction Plugin which has been devel-
oped for the open source framework RapidMiner. RapidMiner originally is a Data
Mining framework. Our plugin on the one hand allows the use of Information Ex-
traction methods in RapidMiner, and on the other hand the users still can use all the
methods and techniques originally developed for Data Mining purposes. The latter
point allows users to compare their results achieved by Information Extraction models
with results achieved by other approaches, and furthermore the extracted information
gathered by the Information Extraction Plugin can directly be used to be analyzed by
Data Mining methods.

The Information Extraction Plugin is the only Information Extraction framework which
directly aims at the close collaboration of Information Extraction and Data Mining. We
have shown that the architecture of state-of-the-art Information Extraction frameworks
is comparable to the one of the Information Extraction Plugin. The Information Extrac-
tion Plugin profits by the machine learning environment of RapidMiner which delivers
multiple evaluation and validation tools.

Chapter 8 contains three particular real-world applications which show that the col-
laboration of Information Extraction and (traditional) Data Mining techniques is ben-
eficial for the analysis of certain resources of information. In the first application we
have shown that Named Entity Extraction also can be used to extract particular entities
needed for event extraction. We presented the combination of Information Extraction
and Data Mining in order to gain insights of extracted entities in the politics domain.
Additionally, we presented experiments on a dataset containing relations concerning
the merge of organizations. We also presented a graph based approach for the visu-
alization of extracted relations. This graph based visualization enables not only the
graphical representation of relations, it also visualizes inherently available relations
becoming interesting for certain purposes. A merge of two organizations which share
multiple members of their leader-board becomes more interesting if the latter informa-
tion is known. The third application is about the possible further use of relations which
have been extracted from several sources. In that section we present an approach to
find clusters in a graph consisting of entities which might be related to each other. In
contrast to focus on the information concerning the entities the presented approach only
takes into account that an entity takes part in several relations. In addition to finding
clusters in such a graph we assume that the particular graph continuously changes over
time. We therefore developed a stream-based approach to respect this behavior. As an
example to demonstrate the presented approach on the well-known social network twit-
ter. This platform is continuously changing and therefore a good argument for using
such a stream-based approach like the one we presented.

195

CHAPTER 9. CONCLUSION

196

Joint Work and other Work by
the Author

Joint Work

Chapter 3
The work on the EVALITA dataset is based on a joint work together with Marc Roessler
[Roessler et al., 2007, Jungermann and Roessler, 2007]. Marc contributed his highly
acknowledged knowledge in the field of named entity recognition.

The analysis of the German parliament website is based on a joint work together with
Katharina Morik [Jungermann and Morik, 2008].

Chapter 5
In this chapter the part concerning the economic network and the enhanced parse tree
containing stems of tokens is based on a joint work together with Katharina Morik and
Martin Had [Had et al., 2009]. Martin Had implemented a system which crawled and
generated the economic network. In addition, he implemented a first version of the tree
kernel SVM.

Chapter 8.3
This chapter mostly is based on a joint work together with Christian Bockermann
[Bockermann and Jungermann, 2010b]. Christian contributed his highly acknowledged
knowledge in the field of data streams and stream-based Data Mining.

Other Publications

Towards Adjusting Mobile Devices To User’s Behaviour
[Fricke et al., 2011, Fricke et al., 2010] present possibilities in adjusting the scheduling
of system calls depending on the user behavior on mobile devices. A dataset contain-
ing file access calls has been created. It is possible to partially or to fully access the

197

CHAPTER 9. CONCLUSION

corresponding files. The authors analyzed the usage of machine learning techniques
predicting the type of file access. An evaluation has shown that only for some reason
the machine learning techniques achieved as good performance as the original operat-
ing system.
The author contributed his knowledge in Naı̈ve Bayes classifiers to this work. The
Naı̈ve Bayes classifiers are one of the analyzed machine learning techniques.

Enhancing Ubiquitous Systems Through System Call Mining
In [Morik et al., 2010] the author contributed his knowledge in Naı̈ve Bayes classifiers.
Like in [Fricke et al., 2011, Fricke et al., 2010] the authors have analyzed system calls
in this work. In contrast to the preceding publication this publication is rather focusing
on the analysis of structured methods. The authors are analyzing if and how much the
structure of system calls impact for system call scheduling performance.

198

Bibliography

[MUC, 1995] (1995). Proceedings of the Sixth Message Understanding Conference,
Columbia, Maryland. Morgan Kaufmann.

[MUC, 1998] (1998). Proceedings of the Seventh Message Understanding Confer-
ence, Fairfax, Virginia. Morgan Kaufmann.

[LDC, 2004a] (2004a). The ACE 2004 Evaluation Plan. Linguistic Data Consortium.

[Acar et al., 2005] Acar, E., Çamtepe, S. A., Krishnamoorthy, M. S., and Yener, B.
(2005). Modeling and multiway analysis of chatroom tensors. In ISI, pages 256–
268.

[Acar et al., 2006] Acar, E., Çamtepe, S. A., and Yener, B. (2006). Collective sampling
and analysis of high order tensors for chatroom communications. In ISI, pages 213–
224.

[Aha, 1997] Aha, D., editor (1997). Lazy Learning. Kluwer Academic Publishers.

[Aiolli et al., 2007] Aiolli, F., Da San Martino, G., Sperduti, A., and Moschitti, A.
(2007). Efficient kernel-based learning for trees. In Computational Intelligence and
Data Mining, 2007. CIDM 2007. IEEE Symposium on, pages 308 –315.

[Allen, 1984] Allen, J. F. (1984). Towards a general theory of action and time. Artifi-
cial Intelligence, 23:123–154.

[Aone and Ramos-Santacruz, 2000] Aone, C. and Ramos-Santacruz, M. (2000).
REES: a large-scale relation and event extraction system. In Proceedings of the
Sixth Conference on Applied Natural Language Processing, pages 76–83, Seattle,
Washington. Morgan Kaufmann Publishers Inc.

[Bader et al., 2007] Bader, S., Urfer, W., and Baumbach, J. I. (2007). Reduction of ion
mobility spectrometry data by clustering characteristic peak structures. Journal of
Chemometrics, 20:128–135.

[Banerjee et al., 2007] Banerjee, A., Basu, S., and Merugu, S. (2007). Multi-way clus-
tering on relation graphs. In Proceedings of the Seventh SIAM International Con-
ference on Data Mining, 2007, Minneapolis, Minnesota, USA. SIAM.

199

BIBLIOGRAPHY

[Bekkerman and Allan, 2004] Bekkerman, R. and Allan, J. (2004). Using Bigrams in
Text Categorization. Technical report, CIIR.

[Blaschke and Valencia, 2001] Blaschke, C. and Valencia, A. (2001). Can biblio-
graphic pointers for known biological data be found automatically? protein interac-
tions as a case study. Comparative and Functional Genomics, 2:196–206.

[Bockermann et al., 2009] Bockermann, C., Apel, M., and Meier, M. (2009). Learning
sql for database intrusion detection using context-sensitive modelling. In Proceed-
ings of the 6th Detection of Intrusions and Malware, and Vulnerability Assessment,
pages 196 – 205. Springer.

[Bockermann and Jungermann, 2010a] Bockermann, C. and Jungermann, F. (2010a).
Stream-based community discovery via relational hypergraph factorization on
evolving networks. In Atzmueller, M., Benz, D., Hotho, A., and Stumme, G., edi-
tors, Lernen, Wissen & Adaptivität (LWA 2010) – Workshop Proceedings.

[Bockermann and Jungermann, 2010b] Bockermann, C. and Jungermann, F. (2010b).
Stream-based community discovery via relational hypergraph factorization on
evolving networks. In Proceedings of the Workshop on Dynamic Networks and
Knowledge Discovery (DyNaK 2010).

[Bunescu et al., 2004] Bunescu, R., Ruifang, G., Kate, R. J., Marcotte, E. M., Mooney,
R. J., Ramani, A. K., and Wong, Y. W. (2004). Comparative experiments on learn-
ing information extractors for proteins and their interactions. Journal of Artificial
Intelligence in Medicine.

[Bunescu and Mooney, 2005] Bunescu, R. C. and Mooney, R. J. (2005). A shortest
path dependency kernel for relation extraction. In HLT ’05: Proceedings of the con-
ference on Human Language Technology and Empirical Methods in Natural Lan-
guage Processing, pages 724–731, Vancouver, British Columbia, Canada. Associa-
tion for Computational Linguistics.

[Bunescu and Mooney, 2006] Bunescu, R. C. and Mooney, R. J. (2006). Subsequence
kernels for relation extraction. In Weiss, Y., Schölkopf, B., and Platt, J., editors,
Advances in Neural Information Processing Systems 18, pages 171–178. MIT Press.

[Burnard and Bauman, 2007] Burnard, L. and Bauman, S. (2007). TEI P5: Guidelines
for electronic text encoding and interchange.

[Cafarella et al., 2006] Cafarella, M. J., Banko, M., and Etzioni, O. (2006). Relational
web search. Technical report, University of Washington, CSE.

[Cai et al., 2006] Cai, D., He, X., and Han, J. (2006). Tensor space model for docu-
ment analysis. In Proceedings of the 29th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, SIGIR ’06, pages
625–626, New York, NY, USA. ACM.

[Cardie, 1997] Cardie, C. (1997). Empirical methods in information extraction. AI
Magazine, 18.

200

BIBLIOGRAPHY

[Caropreso et al., 2001] Caropreso, M. F., Matwin, S., and Sebastiani, F. (2001). A
Learner-Independent Evaluation of the Usefulness of Statistical Phrases for Auto-
mated Text Categorization, pages 78–102. IGI Publishing, Hershey, PA, USA.

[Chinchor, 1998] Chinchor, N. (1998). Overview of MUC-7. In Proceedings of the
Message Understanding Conference, MUC.

[Cohen, 1960] Cohen, J. (1960). A coefficient of agreement for nominal scales. Edu-
cational and Psychological Measurement, 20(1):37–46.

[Collins and Duffy, 2001] Collins, M. and Duffy, N. (2001). Convolution kernels for
natural language. In Proceedings of Neural Information Processing Systems, NIPS
2001.

[Cooper, 2003] Cooper, C. (2003). The A-Z of Social Research, chapter Analysis of
variance (ANOVA), pages 9–12.

[Crammer et al., 2003] Crammer, K., Kandola, J. S., and Singer, Y. (2003). Online
classification on a budget. In Thrun, S., Saul, L. K., and Schölkopf, B., editors,
Proceedings of the Sixteenth Annual Conference on Neural Information Processing
Systems (NIPS). MIT Press.

[Cunningham et al., 2011] Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.,
Aswani, N., Roberts, I., Gorrell, G., Funk, A., Roberts, A., Damljanovic, D., Heitz,
T., Greenwood, M. A., Saggion, H., Petrak, J., Li, Y., and Peters, W. (2011). Text
Processing with GATE (Version 6).

[Daelemans, 1999] Daelemans, W. (1999). Machine learning approaches, pages 285–
304. Kluwer, Dordrecht.

[Daelemans et al., 1997] Daelemans, W., van den Bosch, A., and Weijters, T. (1997).
Empirical learning of natural language processing tasks, pages 337–344. Springer,
Berlin.

[Daelemans et al., 2003] Daelemans, W., Zavrel, J., van der Sloot, K., and van den
Bosch, A. (2003). TiMBL: Tilburg memory based learner, version 5.0: reference
guide [= ILK Research Group technical report 03-10]. Tilburg University, Tilburg.

[De Sitter et al., 2004] De Sitter, A., Calders, T., and Daelemans, W. (2004). A formal
framework for evaluation of information extraction.

[Dekel et al., 2008] Dekel, O., Shalev-Shwartz, S., and Singer, Y. (2008). The for-
getron: A kernel-based perceptron on a budget. SIAM J. Comput., 37:1342–1372.

[Della Pietra et al., 1997] Della Pietra, S., Della Pietra, V., and Lafferty, J. (1997). In-
ducing features of random fields. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 19(4):380–393.

201

BIBLIOGRAPHY

[Didakowski, 2007] Didakowski, J. (2007). Syncop - combining syntactic tagging
with chunking using weighted finite state transducers. In Proceedings of the Sixth
International Workshop on Finite-State Methods and Natural Language Processing
(FSMNLP).

[Dima and Hinrichs, 2011] Dima, C. and Hinrichs, E. W. (2011). A semi-automatic, it-
erative method for creating a domain-specific treebank. In Angelova, G., Bontcheva,
K., Mitkov, R., and Nicolov, N., editors, Proceedings of Recent Advances in Natu-
ral Language Processing, RANLP 2011, pages 413–419. RANLP 2011 Organising
Committee.

[Doddington et al., 2004] Doddington, G., Mitchell, A., Przybocki, M., Ramshaw, L.,
Strassel, S., and Weischedel, R. (2004). The Automatic Content Extraction (ACE)
Program–Tasks, Data, and Evaluation. Proceedings of LREC 2004, pages 837–840.

[Domingos and Pazzani, 1996] Domingos, P. and Pazzani, M. (1996). Beyond inde-
pendence: Conditions for the optimality of the simple bayesian classifier. In Ma-
chine Learning, pages 105–112. Morgan Kaufmann.

[Domingos and Pazzani, 1997] Domingos, P. and Pazzani, M. (1997). On the opti-
mality of the simple bayesian classifier under zero-one loss. Machine Learning,
29:103–130.

[Fernandes and Brefeld, 2011] Fernandes, E. R. and Brefeld, U. (2011). Learning
from partially annotated sequences. In Proceedings of the 2011 European Confer-
ence on Machine Learning and Knowledge Discovery in Databases - Volume Part I,
ECML PKDD’11, pages 407–422, Berlin, Heidelberg. Springer-Verlag.

[Ferrucci et al., 2009] Ferrucci, D., Lally, A., Verspoor, K., and Nyberg, E. (2009).
Unstructured Information Management Architecture (UIMA) Version 1.0, OASIS
Standard. Technical report, OASIS.

[Fisher, 1997] Fisher, R. A. (1997). On an absolute criterion for fitting frequency
curves. Statistical Science, 12(1):pp. 39–41.

[Frank and Asuncion, 2011] Frank, A. and Asuncion, A. (2011). UCI machine learn-
ing repository.

[Fricke et al., 2010] Fricke, P., Jungermann, F., Morik, K., Piatkowski, N., Spinczyk,
O., and Stolpe, M. (2010). Towards adjusting mobile devices to user’s behaviour. In
Proceedings of the International Workshop at ECML PKDD on Mining Ubiquitous
and Social Environments (MUSE 2010), pages 7 – 22.

[Fricke et al., 2011] Fricke, P., Jungermann, F., Morik, K., Piatkowski, N., Spinczyk,
O., Stolpe, M., and Streicher, J. (2011). Towards Adjusting Mobile Devices To
User’s Behaviour, pages 99–118. Springer-Verlag, Heidelberg.

[Fürnkranz, 1998] Fürnkranz, J. (1998). A study using n-gram features for text cate-
gorization.

202

BIBLIOGRAPHY

[Geyken and Hanneforth, 2006] Geyken, A. and Hanneforth, T. (2006). Tagh: A com-
plete morphology for german based on weighted finite state automata. In Yli-Jyrä,
A., Karttunen, L., and Karhumäki, J., editors, Finite-State Methods and Natural
Language Processing, volume 4002 of Lecture Notes in Computer Science, pages
55–66. Springer Berlin / Heidelberg. 10.1007/11780885 7.

[Geyken and Schrader, 2006] Geyken, A. and Schrader, N. (2006). LexikoNet, a lexi-
cal database based on role and type hierarchies. In Proceedings of LREC.

[Grishman, 1996] Grishman, R. (1996). Tipster text phase ii architecture design. In
Proceedings of a workshop on held at Vienna, Virginia: May 6-8, 1996, TIPSTER
’96, pages 249–305, Stroudsburg, PA, USA. Association for Computational Lin-
guistics.

[Grishman, 1997] Grishman, R. (1997). Information extraction: Techniques and chal-
lenges. In Pazienza, M., editor, Information Extraction A Multidisciplinary Ap-
proach to an Emerging Information Technology, volume 1299 of Lecture Notes in
Computer Science, pages 10–27. Springer Berlin / Heidelberg.

[Grishman, 2003] Grishman, R. (2003). Information extraction. In Handbook of Com-
putational Linguistics Information Extraction, chapter 30. Oxford University Press,
USA.

[Grishman and Sundheim, 1996] Grishman, R. and Sundheim, B. (1996). Message
understanding conference - 6: A brief history. In Proceedings of the 16th Interna-
tional Conference on Computational Linguistics (COLING).

[Haapalainen and Majorin, 1994] Haapalainen, M. and Majorin, A. (1994). GERT-
WOL: Ein System zur automatischen Wortformerkennung deutscher Wörter. Tech-
nical report, Lingsoft, Inc.

[Had, 2009] Had, M. (2009). Relation extraction zur ergänzung deutschsprachiger
firmendossiers. Master’s thesis, Technische Universität Dortmund.

[Had et al., 2009] Had, M., Jungermann, F., and Morik, K. (2009). Relation extraction
for monitoring economic networks. In Horacek, H.; Metais, E. M. R. W. M., editor,
Proceedings of the 14th International Conference on Applications of Natural Lan-
guage to Information Systems (NLDB), volume 5723 of Lecture Notes in Computer
Science, pages 103–114. Springer Berlin / Heidelberg.

[Hahn and Romacker, 2000] Hahn, U. and Romacker, M. (2000). An integrated model
of semantic and conceptual interpretation from dependency structures. In Proceed-
ings of the 18th International Conference on Computational Linguistics (COLING),
volume 1, pages 271–277. Association for Computational Linguistics.

[Hammersley and Clifford, 1971] Hammersley, J. M. and Clifford, P. (1971). Markov
fields on finite graphs and lattices.

203

BIBLIOGRAPHY

[Hamp and Feldweg, 1997] Hamp, B. and Feldweg, H. (1997). GermaNet – a lexical-
semantic net for German. In Vossen, P., Calzolari, N., Adriaens, G., Sanfilippo, A.,
and Wilks, Y., editors, Proceedings of the ACL/EACL-97 Workshop on Automatic
Information Extraction and Building Lexical Semantic Resources for NLP applica-
tions, Madrid.

[Harshman, 1970] Harshman, R. (1970). Foundations of the parafac procedure: Mod-
els and conditions for an “explanatory” multi-modal factor analysis. UCLA Working
Papers in Phonetics, 16.

[Hastie et al., 2003] Hastie, T., Tibshirani, R., and Friedman, J. H. (2003). The Ele-
ments of Statistical Learning. Springer, corrected edition.

[Haussler, 1999] Haussler, D. (1999). Convolution kernels on discrete structures.
Technical report, University of California at Santa Cruz, Department of Computer
Science, Santa Cruz, CA 95064, USA.

[Hazewinkel, 2002] Hazewinkel, M. (2002). Encyclopaedia of Mathematics.
Springer-Verlag Berlin Heidelberg New York.

[Henrich and Hinrichs, 2010] Henrich, V. and Hinrichs, E. (2010). Gernedit - the ger-
manet editing tool. In Chair), N. C. C., Choukri, K., Maegaard, B., Mariani, J.,
Odijk, J., Piperidis, S., Rosner, M., and Tapias, D., editors, Proceedings of the Sev-
enth International Conference on Language Resources and Evaluation (LREC’10),
Valletta, Malta. European Language Resources Association (ELRA).

[Hofmann et al., 2008] Hofmann, T., Schölkopf, B., and Smola, A. J. (2008). Kernel
methods in machine learning. Annals of Statistics, 36(3):1171–1220.

[Huang et al., 2003] Huang, J., Lu, J., and Ling, L. C. X. (2003). Comparing naive
bayes, decision trees, and svm with auc and accuracy. In Third IEEE International
Conference on Data Mining, ICDM 2003, pages 553–556. IEEE Computer Society.

[Jiang et al., 2010] Jiang, P., Zhang, C., Fu, H., Niu, Z., and Yang, Q. (2010). An
approach based on tree kernels for opinion mining of online product reviews. In
Proceedings of the IEEE International Conference on Data Mining, pages 256 –
265. IEEE.

[Joachims, 1998] Joachims, T. (1998). Text categorization with support vector ma-
chines: Learning with many relevant features. In Nédellec, C. and Rouveirol, C.,
editors, Proceedings of the European Conference on Machine Learning, pages 137
– 142, Berlin. Springer.

[Joachims, 1999] Joachims, T. (1999). Making Large-Scale SVM Learning Practical.
In Schölkopf, B., Burges, C., and Smola, A., editors, Advances in Kernel Methods –
Support Vector Learning, pages 169 – 184. MIT Press, Cambridge.

[Joachims, 2002] Joachims, T. (2002). Learning to Classify Text using Support Vector
Machines, volume 668 of Kluwer International Series in Engineering and Computer
Science. Kluwer.

204

BIBLIOGRAPHY

[Jungermann, 2006] Jungermann, F. (2006). Named entity recognition mit conditional
random fields. Master’s thesis, Computer Science, University of Dortmund.

[Jungermann, 2007] Jungermann, F. (2007). Named entity recognition without
domain-knowledge using conditional random fields. In Workshop Notes of the Ma-
chine Learning for Natural Language Processing Workshop, pages 16 – 17. van
Someren, Marten and Katrenko, Sophia and Adriaans Pieter.

[Jungermann, 2009] Jungermann, F. (2009). Information extraction with RapidMiner.
In Hoeppner, W., editor, Proceedings of the GSCL Symposium ’Sprachtechnolo-
gie und eHumanities’, pages 50–61. Universität Duisburg-Essen, Abteilung für
Informatik und Angewandte Kognitionswissenschaft Fakultät für Ingenieurwis-
senschaften.

[Jungermann, 2010] Jungermann, F. (2010). An information extraction plugin for
RapidMiner 5. In Proceedings of the RapidMiner Community Meeting And Con-
ference (RCOMM 2010), pages 67 – 72.

[Jungermann, 2011a] Jungermann, F. (2011a). Documentation of the Information Ex-
traction Plugin for RapidMiner.

[Jungermann, 2011b] Jungermann, F. (2011b). Handling tree-structured values in
rapidminer. In Proceedings of the 2nd RapidMiner Community Meeting and Con-
ference (RCOMM 2011), pages 151 – 162.

[Jungermann, 2011c] Jungermann, F. (2011c). Tree kernel usage in naive bayes clas-
sifiers. In Proceedings of the LWA 2011.

[Jungermann and Morik, 2008] Jungermann, F. and Morik, K. (2008). Enhanced ser-
vices for targeted information retrieval by event extraction and data mining. In
Proceedings of the 13th International Conference on Applications of Natural Lan-
guage to Information Systems, NLDB 2008, volume 5039/2008 of Lecture Notes in
Computer Science, pages 335 – 336. Springer Berlin / Heidelberg.

[Jungermann and Roessler, 2007] Jungermann, F. and Roessler, M. (2007). Ner in
texts without domain- or language-knowledge using wikipedia. intelligenza artifi-
ciale, Anno IV(2):75,76.

[Jurish, 2003] Jurish, B. (2003). A hybrid approach to part-of-speech tagging. Final
Report at BerlinBrandenburgische Akademie der Wissenschaften Berlin.

[Katrenko and Adriaans, 2007] Katrenko, S. and Adriaans, P. (2007). Learning rela-
tions from biomedical corpora using dependency trees. Knowledge Discovery and
Emergent Complexity in Bioinformatics, Volume 4366/2007:61–80.

[Keerthi and Sundararajan, 2007] Keerthi, S. S. and Sundararajan, S. (2007). Crf ver-
sus svm-struct for sequence labeling. Technical report, Yahoo! Research.

[Kiers, 2000] Kiers, H. (2000). Towards a standardized notation and terminology in
multiway analysis. Journal of Chemometrics, 14(3):105–122.

205

BIBLIOGRAPHY

[Kilmer and Moravitz Martin, 2004] Kilmer, E. and Moravitz Martin, C. D. (2004).
Decomposing a tensor. SIAM News, 37(9).

[Kim et al., 2004] Kim, J.-D., Otha, T., Yoshimasa, T., Yuka, T., and Collier, N.
(2004). Introduction to the bio-entity recognition task at JNLPBA. In Proceed-
ings of the Joint Workshop on Natural Language Processing in Biomedicine and its
Applications (JNLPBA-2004), Geneva, Switzerland.

[Kindermann and Snell, 1980] Kindermann, R. and Snell, J. L. (1980). Markov Ran-
dom Fields and Their Applications. Contemporary mathmatics, 1.

[Klein and Manning, 2002] Klein, D. and Manning, C. D. (2002). Fast extract infer-
ence with a factored model for natural language parsing. In Proceedings of Advances
in Neural Information Processing Systems.

[Kolda et al., 2005] Kolda, T. G., Bader, B. W., and Kenny, J. P. (2005). Higher-order
web link analysis using multilinear algebra. In ICDM ’05: Proceedings of the Fifth
IEEE International Conference on Data Mining, pages 242–249, Washington, DC,
USA. IEEE Computer Society.

[Kübler and Prokic, 2006] Kübler, S. and Prokic, J. (2006). Why is german depen-
dency parsing more reliable than constituent parsing? In Proceedings of the Fifth
International Workshop on Treebanks and Linguistic Theories - 2006, pages 7–18,
Prague, Czech Republic.

[Kullback and Leibler, 1951] Kullback, S. and Leibler, R. (1951). On information and
sufficiency. Annals of Mathematical Statistics, 22:79–86.

[Kushmerick et al., 1997] Kushmerick, N., Weld, D. S., and Doorenbos, R. (1997).
Wrapper induction for information extraction. In Proceedings of IJCAI-97.

[Lafferty et al., 2001] Lafferty, J., McCallum, A., and Pereira, F. (2001). Conditional
random fields: Probabilistic models for segmenting and labeling sequence data. In
Proceedings of the 18th International Conference on Machine Learning, pages 282–
289. Morgan Kaufmann, San Francisco, CA.

[Lancaster, 1968] Lancaster, F. W. (1968). Information Retrieval Systems: Character-
istics, Testing and Evaluation. John Wiley & Sons, New York.

[Lathauwer et al., 2000] Lathauwer, L. D., Moor, B. D., and Vandewalle, J. (2000). A
multilinear singular value decomposition. SIAM J. Matrix Anal. Appl., 21(4):1253–
1278.

[LDC, 2004b] LDC (2004b). Annotation Guidelines for Relation Detection and Char-
acterization (RDC). LDC, version 4.3.2 edition.

[Leaman and Gonzalez, 2008] Leaman, R. and Gonzalez, G. (2008). Banner: An exe-
cutable survey of advances in biomedical named entity recognition. In Proceedings
of the Pacific Symposium on Biocomputing 13, pages 652–663.

206

BIBLIOGRAPHY

[Lee et al., 2004] Lee, C., Hou, W.-J., and Chen, H.-H. (2004). Annotating multiple
types of biomedical entities: A single word classification approach. In Proceed-
ings of the Joint Workshop on Natural Language Processing in Biomedicine and its
Applications (JNLPBA-2004), pages 28–29.

[Lezius, 2002] Lezius, W. (2002). TIGERSearch – ein suchwerkzeug für baumbanken.
In Proceedings of the Konferenz zur Verarbeitung natürlicher Sprache (KONVENS
2002).

[Lin et al., 2010] Lin, Y.-R., Sun, J., Cao, N., and Liu, S. (2010). Contextour: Contex-
tual contour visual analysis on dynamic multi-relational clustering. In Proceedings
of the SIAM Conference on Data Mining (SDM10), pages 418 – 429.

[Lin et al., 2009] Lin, Y.-R., Sun, J., Castro, P., Konuru, R., Sundaram, H., and Kel-
liher, A. (2009). Metafac: Community discovery via relational hypergraph factor-
ization. In Proceedings of the 15th ACM International Conference on Knowledge
Discovery and Data Mining (SIGKDD 2009), pages 527–536, Paris, France. ACM.

[Liu, 2010] Liu, B. (2010). Sentiment analysis and subjectivity. Handbook of Natural
Language Processing, (1):1–38.

[Liu and Nocedal, 1989] Liu, D. C. and Nocedal, J. (1989). On the limited memory
method for large scale optimization. In Mathematical Programming, volume 45,
pages 503–528. Springer Berlin / Heidelberg.

[Lodhi et al., 2002] Lodhi, H., Saunders, C., Shawe-Taylor, J., Christianini, N., and
Watkins, C. (2002). Text classification using string kernels. Journal of Machine
Learning Research, 2:419–444.

[Marcus et al., 1993] Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B. (1993).
Building a large annotated corpus of english: the penn treebank. Comput. Linguist.,
19:313–330.

[McCallum, 2002] McCallum, A. K. (2002). Mallet: A machine learning for language
toolkit. http://mallet.cs.umass.edu.

[McDonald, 1996] McDonald, D. (1996). Internal and external evidence in the iden-
tification and semantic categorization of proper names. In Boguraev, B. and Puste-
jovsky, J., editors, Corpus Processing for Lexical Acquisition, pages 21–39. MIT
Press, Cambridge, MA.

[Mierswa et al., 2006] Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., and Euler,
T. (2006). YALE: Rapid Prototyping for Complex Data Mining Tasks. In Eliassi-
Rad, T., Ungar, L. H., Craven, M., and Gunopulos, D., editors, Proceedings of the
12th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD 2006), pages 935–940, New York, USA. ACM Press.

[Miller et al., 1990] Miller, G., Beckwith, R., Fellbaum, C., Gross, D., and Miller,
K. (1990). Five papers on WordNet. Technical Report CSL Report 43, Cognitive
Science Laboratory. Princeton University.

207

BIBLIOGRAPHY

[Mitchell, 2010] Mitchell, T. (2010). Generative and discriminative classifiers: Naive
bayes and logistic regression.

[Mitchell, 1997] Mitchell, T. M. (1997). Machine Learning. McGraw Hill, New York.

[Morik et al., 2010] Morik, K., Jungermann, F., Piatkowski, N., and Engel, M. (2010).
Enhancing ubiquitous systems through system call mining. In Proceedings of the
ICDM 2010 Workshop on Large-scale Analytics for Complex Instrumented Systems
(LACIS 2010).

[Moschitti, 2006a] Moschitti, A. (2006a). Efficient convolution kernels for de-
pendency and constituent syntactic trees. In Fuernkranz, J., Scheffer, T., and
Spiliopoulou, M., editors, Procs. ECML, pages 318 – 329. Springer.

[Moschitti, 2006b] Moschitti, A. (2006b). Making tree kernels practical for natural
language learning. In Proceedings of the 11th Conference of the European Chapter
of the Association for Computational Linguistics (EACL 2006).

[Moschitti et al., 2008] Moschitti, A., Pighin, D., and Basili, R. (2008). Tree kernels
for semantic role labeling. Computational Linguistics Journal, Special Issue on
Semantic Role Labeling.

[Müller et al., 2001] Müller, K.-R., Mika, S., Rätsch, G., Tsuda, K., and Schölkopf, B.
(2001). An introduction to kernel-based learning algorithms. IEEE Transactions on
Neural Networks, 12(2):181–201.

[Nédellec, 2005] Nédellec, C. (2005). Learning language in logic - genic interaction
extraction challenge. In Proceedings of the Learning Language in Logic 2005 Work-
shop at the International Conference on Machine Learning.

[Nguyen and Guo, 2007] Nguyen, N. and Guo, Y. (2007). Comparisons of sequence
labeling algorithms and extensions. In In Proceedings of the International Confer-
ence on Machine Learning (ICML’07), pages 681–688.

[Nocedal, 1980] Nocedal, J. (1980). Updating quasi-newton matrices with limited
storage. Mathematics of Computation, 35(151):773–782.

[O’Madadhain et al., 2003] O’Madadhain, J., Fisher, D., White, S., and Boey, Y.-B.
(2003). The JUNG (java universal network/graph) framework. Technical Report
Technical Report UCI-ICS 03-17, School of Information and Computer Science
University of California, Irvine, CA 92697-3425.

[Pianta and Zanoli, 2007] Pianta, E. and Zanoli, R. (2007). Exploiting svm for italian
named entity recognition. Intelligenza Artificiale, 4(2):69–70.

[Piatkowski, 2011] Piatkowski, N. (2011). Parallel algorithms for gpu accelerated
probabilistic inference. In Workshop on Big Learning, NIPS2011.

208

BIBLIOGRAPHY

[Piatkowski and Morik, 2011] Piatkowski, N. and Morik, K. (2011). Parallel inference
on structured data with crfs on gpus. In International Workshop at ECML PKDD
on Collective Learning and Inference on Structured Data (COLISD2011), Athens,
Greece.

[Pighin and Moschitti, 2009a] Pighin, D. and Moschitti, A. (2009a). Efficient lin-
earization of tree kernel functions. In CoNLL’09: Thirteenth Conference on Com-
putational Natural Language Learning, Boulder, CO, USA.

[Pighin and Moschitti, 2009b] Pighin, D. and Moschitti, A. (2009b). Reverse engi-
neering of tree kernel feature spaces. In EMNLP’09: Empirical Methods of Natural
Language Processing, Singapore.

[Pighin and Moschitti, 2010] Pighin, D. and Moschitti, A. (2010). On reverse feature
engineering of syntactic tree kernels. In Conference on Natural Language Learning
(CoNLL-2010), Uppsala, Sweden.

[Platt, 1999] Platt, J. (1999). Fast training of support vector machines using sequen-
tial minimal optimization. In Schölkopf, B., Burges, C., and Smola, A., editors,
Advances in Kernel Methods - Support Vector Learning, chapter 12. MIT-Press.

[Popov et al., 2003] Popov, B., Kiryakov, A., Manov, D., Kirilov, A., Ognyanoff, D.,
and Goranov, M. (2003). Towards semantic web information extraction. In Proceed-
ings of the ISWC’03 Workshop on Human Language Technology for the Semantic
Web and Web Services, pages 1–21.

[Pyle, 1999] Pyle, D. (1999). Data Preparation for Data Mining. Morgan Kaufmann
Publishers.

[Qian et al., 2008] Qian, L., Zhou, G., Kong, F., Zhu, Q., and Qian, P. (2008). Ex-
ploiting constituent dependencies for tree kernel-based semantic relation extraction.
In Proceedings of the 22nd International Conference on Computational Linguistics
- Volume 1, COLING ’08, pages 697–704, Morristown, NJ, USA. Association for
Computational Linguistics.

[Rabiner, 1989] Rabiner, L. R. (1989). A tutorial on hidden markov models and se-
lected applications in speech recognition. Proceedings of the IEEE, 77(2):257–286.

[Ramshaw and Marcus, 1995] Ramshaw, L. and Marcus, M. (1995). Text chunking
using transformation-based learning. In Yarovsky, D. and Church, K., editors, Pro-
ceedings of the Third Workshop on Very Large Corpora, pages 82–94, Somerset,
New Jersey. Association for Computational Linguistics.

[Rand, 1971] Rand, W. M. (1971). Objective criteria for the evaluation of clustering
methods. Journal of the American Statistical Association, 66(336):pp. 846–850.

[Reichartz et al., 2010] Reichartz, F., Korte, H., and Paass, G. (2010). Semantic rela-
tion extraction with kernels over typed dependency trees. In KDD, pages 773–782.

209

BIBLIOGRAPHY

[Rieck et al., 2010] Rieck, K., Krueger, T., Brefeld, U., and Müller, K.-R. (2010). Ap-
proximate tree kernels. J. Mach. Learn. Res., 11:555–580.

[Rifkin and Klautau, 2004] Rifkin, R. and Klautau, A. (2004). In defense of one-vs-all
classification. J. Mach. Learn. Res., 5:101–141.

[Roessler, 2006] Roessler, M. (2006). Korpus-adaptive Eigennamenerkennung. PhD
thesis, Universitaet Duisburg Essen.

[Roessler and Morik, 2005] Roessler, M. and Morik, K. (2005). Using unlabeled texts
for named-entity recognition. In Scheffer, T. and Rüping, S., editors, ICML Work-
shop on Multiple View Learning.

[Roessler et al., 2007] Roessler, M., Wagner, A., Jungermann, F., and Hoeppner, W.
(2007). Applying walu to annotate named entities in italian texts. intelligenza arti-
ficiale, Anno IV(2):77,78.

[Rosenblatt, 1958] Rosenblatt, F. (1958). The perceptron: A probabilistic model for
information storage and organization in the brain. Psychological Review, 65(6):386–
408.

[Rueping, 2000] Rueping, S. (2000). mySVM Manual. Universi-
taet Dortmund, Lehrstuhl Informatik VIII. http://www-ai.cs.uni-
dortmund.de/SOFTWARE/MYSVM/.

[Salton and Buckley, 1988] Salton, G. and Buckley, C. (1988). Term weighting ap-
proaches in automatic text retrieval. Information Processing and Management,
24(5):513–523.

[Salton et al., 1975] Salton, G., Wong, A., and Yang, C. S. (1975). A vector space
model for automatic indexing. Commun. ACM, 18:613–620.

[Sebastiani, 2005] Sebastiani, F. (2005). Text categorization. In Zanasi, A., editor,
Text Mining and its Applications to Intelligence, CRM and Knowledge Management,
pages 109–129. WIT Press, Southampton, UK.

[Settles, 2004] Settles, B. (2004). Biomedical named entity recognition using condi-
tional random fields and rich feature sets. In Proceedings of the International Joint
Workshop on Natural Language Processing in Biomedicine and its Applications,
JNLPBA ’04, pages 104–107, Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

[Sha and Pereira, 2003] Sha, F. and Pereira, F. (2003). Shallow parsing with condi-
tional random fields. In NAACL ’03: Proceedings of the 2003 Conference of the
North American Chapter of the Association for Computational Linguistics on Hu-
man Language Technology, pages 134–141, Morristown, NJ, USA. Association for
Computational Linguistics.

210

BIBLIOGRAPHY

[Shashua and Hazan, 2005] Shashua, A. and Hazan, T. (2005). Non-negative tensor
factorization with applications to statistics and computer vision. In Proceedings of
the 22nd International Conference on Machine Learning (ICML ’05), pages 792–
799, New York, NY, USA. ACM.

[Skut et al., 1997] Skut, W., Krenn, B., Brants, T., and Uszkoreit, H. (1997). An anno-
tation scheme for free word order languages. In Proceedings of the Fifth Conference
on Applied Natural Language Processing (ANLP)-97, Washington, DC.

[Speranza, 2007] Speranza, M. (2007). Evalita 2007 - named entity recognition task -
guidelines for participants.

[Sun et al., 2007] Sun, J., Papadimitriou, S., Yu, P. S., and Faloutsos, C. (2007).
Graphscope: Parameter-free mining of large time-evolving graphs. In Proceed-
ings of the 13th ACM International Conference on Knowledge Discovery and Data
Mining (KDD 2007), pages 687–696, San Jose, California, USA. ACM New York,
NY, USA.

[Sun et al., 2006] Sun, J., Tao, D., and Faloutsos, C. (2006). Beyond streams and
graphs: Dynamic tensor analysis. In Proceedings of the 12th ACM International
Conference on Knowledge Discovery and Data Mining (KDD ’06), pages 374–383,
New York, NY, USA. ACM.

[Sundheim, 1991] Sundheim, B. M. (1991). Overview of the third message under-
standing evaluation and conference. In Proceedings of the 3rd Conference on Mes-
sage Understanding, pages 3–16, Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

[Sutton and McCallum, 2007] Sutton, C. and McCallum, A. (2007). An introduction
to conditional random fields for relational learning. In Getoor, L. and Taskar, B.,
editors, Introduction to Statistical Relational Learning. MIT Press.

[Thomas and Brailsford, 2005] Thomas, P. L. and Brailsford, D. F. (2005). Enhancing
composite digital documents using xml-based standoff markup. In Proceedings of
the 2005 ACM Symposium on Document Engineering (DocEng), pages 177–186,
New York, NY, USA. ACM.

[Thompson and McKelvie, 1997] Thompson, H. S. and McKelvie, D. (1997). Hy-
perlink semantics for standoff markup of read-only documents. In Proceedings of
SGML Europe 1997: The next Decade – Pushing the Envelope, pages 227 – 229.

[Tjong Kim Sang, 2002] Tjong Kim Sang, E. F. (2002). Introduction to the conll-
2002 shared task: Language-independent named entity recognition. In Proceedings
of CoNLL-2002, pages 155–158. Taipei, Taiwan.

[Tjong Kim Sang and Buchholz, 2000] Tjong Kim Sang, E. F. and Buchholz, S.
(2000). Introduction to the conll-2000 shared task: Chunking. In Proceedings of
the 2nd Workshop on Learning Language in Logic and the 4th Conference on Com-
putational Natural Language Learning - Volume 7, ConLL ’00, pages 127–132,
Morristown, NJ, USA. Association for Computational Linguistics.

211

BIBLIOGRAPHY

[Tomanek, 2010] Tomanek, K. (2010). Resource-Aware Annotation through Active
Learning. PhD thesis, University of Dortmund.

[Tsochantaridis et al., 2004] Tsochantaridis, I., Hofmann, T., Joachims, T., and Altun,
Y. (2004). Support vector learning for interdependent and structured output spaces.
In Proceedings of the Twenty-first International Conference on Machine Learning
(ICML 2004).

[Tsochantaridis et al., 2005] Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun,
Y. (2005). Large Margin Methods for Structured and Interdependent Output Vari-
ables. Journal of Machine Learning Research, 6:1453–1484.

[UIMA Community, 2010] UIMA Community, A. (2010). UIMA Tools Guide and
Reference – Written and maintained by the Apache UIMA Development Community,
2.3.1 edition.

[Van-Rijsbergen, 1979] Van-Rijsbergen, C. J. (1979). Information Retrieval. Butter-
worths, London, 2 edition.

[Vapnik, 1995] Vapnik, V. N. (1995). The Nature of Statistical Learning Theory.
Springer, New York.

[Vilain and Day, 2000] Vilain, M. and Day, D. (2000). Phrase parsing with rule se-
quence processors: an application to the shared conll task. In Proceedings of the
2nd Workshop on Learning Language in Logic and the 4th Conference on Com-
putational Natural Language Learning - Volume 7, ConLL ’00, pages 160–162,
Stroudsburg, PA, USA. Association for Computational Linguistics.

[Vishwanathan et al., 2006] Vishwanathan, S. V. N., Schraudolph, N. N., Schmidt,
M. W., and Murphy, K. P. (2006). Accelerated training of conditional random fields
with stochastic gradient methods. In ICML ’06: Proceedings of the 23rd inter-
national conference on Machine learning, pages 969–976, New York, NY, USA.
ACM.

[Vishwanathan and Smola, 2003] Vishwanathan, S. V. N. and Smola, A. J. (2003).
Fast kernels for string and tree matching. In Becker, S., Thrun, S., and Obermayer,
K., editors, Advances in Neural Information Processing Systems 15 — Proceedings
of the 2002 Neural Information Processing Systems Conference (NIPS 2002), pages
569 – 576, Vancouver, British Columbia, Canada.

[Walker, 2007] Walker, C. (2007). Resource integration for named entity tagger de-
velopment in italian. Intelligenza Artificiale, 4(2):71–72.

[Wallach, 2002] Wallach, H. (2002). Efficient training of conditional random fields.
Master’s thesis, Division of Informatics, University of Edinburgh.

[Wang et al., 2006] Wang, X., Sun, J.-T., Chen, Z., and Zhai, C. (2006). Latent seman-
tic analysis for multiple-type interrelated data objects. In Proceedings of the 29th
Annual International ACM Conference on Research and Development in Informa-
tion Retrieval (SIGIR 2006), pages 236–243, New York, NY, USA. ACM.

212

BIBLIOGRAPHY

[Weston et al., 2005] Weston, J., Bordes, A., and Bottou, L. (2005). Online (and of-
fline) on an even tighter budget. In Cowell, R. G. and Ghahramani, Z., editors, Pro-
ceedings of the Tenth International Workshop on Artificial Intelligence and Statis-
tics, January 2005, Barbados, pages 413–420. Society for Artificial Intelligence and
Statistics.

[Yang and Pedersen, 1997] Yang, Y. and Pedersen, J. O. (1997). A comparative study
on feature selection in text categorization. In Proceedings of 14th International
Conference on Machine Learning, pages 412–420. Morgan Kaufmann.

[Yangarber and Grishman, 1998] Yangarber, R. and Grishman, R. (1998). NYU: De-
scription of the proteus/PET system as used for MUC-7. In In Proceedings of the
Seventh Message Understanding Conference (MUC-7).

[Yangarber and Grishman, 2000] Yangarber, R. and Grishman, R. (2000). Machine
learning of extraction patterns from unannotated corpora. In Proceedings of the
Workshop on Machine Learning for Information Extraction, 14th European Confer-
ence on Artificial Intelligence.

[Zelenko et al., 2003] Zelenko, D., Aone, C., and Richardella, A. (2003). Kernel meth-
ods for relation extraction. Journal of Machine Learning Research, pages 1083–
1106.

[Zhang et al., 2007] Zhang, M., Che, W., Aw, A. T., Tan, C. L., Zhou, G., Liu, T., and
Li, S. (2007). A grammar-driven convolution tree kernel for semantic role classifica-
tion. In Proceedings of the 45th Annual Meeting of the Association of Computational
Linguistics, pages 200–207. Association for Computational Linguistics.

[Zhang et al., 2006] Zhang, M., Zhang, J., Su, J., and Zhou, G. (2006). A composite
kernel to extract relations between entities with both flat and structured features. In
Proceedings 44th Annual Meeting of ACL, pages 825–832.

[Zhang et al., 2001] Zhang, T., Damerau, F., and Johnson, D. (2001). Text chunking
using regularized winnow. In Proceedings of the 39th Annual Meeting on Asso-
ciation for Computational Linguistics, ACL ’01, pages 539–546, Stroudsburg, PA,
USA. Association for Computational Linguistics.

[Zhao and Grishman, 2005] Zhao, S. and Grishman, R. (2005). Extracting relations
with integrated information using kernel methods. In ACL ’05: Proceedings of the
43rd Annual Meeting on Association for Computational Linguistics, pages 419–426,
Morristown, NJ, USA. Association for Computational Linguistics.

[Zhou et al., 2010] Zhou, G., Qian, L., and Fan, J. (2010). Tree kernel-based semantic
relation extraction with rich syntactic and semantic information. Inf. Sci., 180:1313–
1325.

[Zhou and Su, 2004] Zhou, G. and Su, J. (2004). Exploring deep knowledge resources
in biomedical name recognition. In Proceedings of the Joint Workshop on Natural
Language Processing in Biomedicine and its Applications (JNLPBA-2004), Geneva,
Switzerland.

213

BIBLIOGRAPHY

[Zhou et al., 2005] Zhou, G., Su, J., Zhang, J., and Zhang, M. (2005). Exploring vari-
ous knowledge in relation extraction. In Proceedings of the 43rd Annual Meeting of
the ACL, pages 427–434, Ann Arbor. Association for Computational Linguistics.

[Zhou et al., 2007] Zhou, G., Zhang, M., Ji, D. H., and Zhu, Q. (2007). Tree kernel-
based relation extraction with context-sensitive structured parse tree information. In
Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Language Learning. Association for
Computational Linguistics.

[Zhou and Zhu, 2011] Zhou, G.-D. and Zhu, Q.-M. (2011). Kernel-based semantic
relation detection and classification via enriched parse tree structure. J. Comput.
Sci. Technol., 26:45–56.

214

BIBLIOGRAPHY

Abbreviations

CAS Common Analysis Structure
CRF Conditional Random Fields
DM Datamining
FTK Fast Tree Kernel
IE Information Extraction
HMM Hidden Markov Model
KDD Knowledge Discovery in Databases
ML Machine Learning
MRF Markov Random Field
MUC Message Understanding Conference
NB Naı̈ve Bayes
NE Named Entity
NER Named Entity Recognition
PoS Part of Speech
QTK Quadratic Tree Kernel
RE Relation Extraction
SMO Sequential Minimal Optimization
Sofa Subject of Analysis
SVM Support Vector Machine
TK Tree Kernel
TKNB Tree Kernel Naı̈ve Bayes
TKSVM Tree Kernel Support Vector Machine
UIMA Unstructured Information Management Architecture

215

BIBLIOGRAPHY

216

Appendix A

Operator Reference

A.1 Tokenizers

In this section we will describe the parameters and the input and output ports of the
SentenceTokenizer in detail. These parameters and ports are extended from
the super-class TokenizerImpl and they are the same for WordTokenizer and
LineTokenizer. A new tokenizer should be extend the class TokenizerImpl
and the method String[] tokenization(String text) should be imple-
mented.

SentenceTokenizer This tokenizer splits texts into sentences. The parameters for
this operator are presented in Table A.1 and the I/O ports are presented in Table A.2.

Parameter Description
attribute Select the attribute here which has to be used for ex-

tracting the text to be tokenized from each example.
new token-name Type a new attribute name in here which will be cre-

ated to write the new tokens to.
Table A.1: Parameters for SentenceTokenizer

I/O port-name Description
I example set in-

put
The example set which will be used for tokenization.

O example set out-
put

The example set containing the new tokens.

O original exam-
ple set output

The original example set got at the input port.

Table A.2: I/O-ports for SentenceTokenizer

217

APPENDIX A. OPERATOR REFERENCE

WordTokenizer This tokenizer splits texts into words. The parameters and the I/O
ports are the same as for the SentenceTokenizer.

LineTokenizer This tokenizer splits texts into lines. It splits texts contained in ex-
amples by using the linebreaks in the texts, one could say. The parameters and the I/O
ports are the same as for the SentenceTokenizer.

A.2 Visualizer
The visualizers are used for the annotation and the visualization of textual data. The pa-
rameters and the ports of the ParseTreeVisualizer and the TextVisualizer
are comparable, and therefore we only present the parameters and ports of the
ParseTreeVisualizer.

ParseTreeVisualizer This operator creates a visualization of parse trees. For each
example the parse tree and the corresponding sentence will be displayed. Only one
example is displayed at a time, but one can switch from one example to another during
the visualizing process. Table A.3 describes the parameters of the operator and Table
A.4 describes the ports.

Parameter Description
sentence-attribute Select the attribute here which has to be used for

extracting the text to be displayed in addition to the
parse tree from each example.

parsetree-atrribute Select the attribute here which has to be used for
extracting the parse tree to be displayed from each
example.

Table A.3: Parameters for ParseTreeVisualizer

I/O port-name Description
I example set in-

put
The example set which will be used for tokenization.

O parsetree visu-
alization output

The visualization component which becomes visible
in the results workspace.

O original exam-
ple set output

The original example set got at the input port.

Table A.4: I/O-ports for ParseTreeVisualizer

TextAnnotator The TextAnnotator is used for annotating a textual dataset. The
textual data of the text-attribute are displayed. The user can annotate the to-
kens by marking them and by selecting formerly created labels. During the annotation
process it is possible to create new label types which can directly be used for anno-
tating. The labels are stored in the label-attribute for each token. After finish

218

A.3. PREPROCESSING

the annotation process the dataset is stored in a repository which is selected using the
parameter repository-entry.

Parameter Description
repository-entry Select a repository entry here which has to be used

for storing the dataset after having finished the an-
notation process.

text-attribute Select the attribute here which has to be used for
extracting the text to be displayed in addition to la-
beling from each example.

label-attribute Select the attribute here which has to be used for ex-
tracting the label to be displayed from each example.

Table A.5: Parameters for TextAnnotator

I/O port-name Description
I example set in-

put
The example set which will be used for tokenization.

O annotation out-
put

The annotation component which becomes visible
in the results workspace.

O example set out-
put

The original example set got at the input port.

Table A.6: I/O-ports for TextAnnotator

TextVisualizer This operator creates a visualization of labeled textual data. Like for
the ParseTreeVisualizer two attributes have to be selected. The nominal values
of the first attribute will be displayed as text whereas the nominal values of the second
attribute will be used as labels. The parameters and ports are comparable to the ones
of the ParseTreeVisualizer and therefore are not specified again.

A.3 Preprocessing
WordVectorPreprocessing This operator creates a BOW representation (see Section
3.1) of the values given by the attributes defined by the parameter valueAttribute.
The regular expression which can be set using the parameter splitExpression is
used for splitting the suggested values. Each unique resulting split value is used to
create a new attribute containing a 1 if the value in the attribute valueAttribute
contains the split value and 0, otherwise. The operator is very similar and we disclaim
on presenting the parameters and ports in detail.

A.3.1 Named Entity Recognition
The preprocessing operators for NER are extending two types of super classes. The
first one is PreprocessOperatorImpl and the second one is

219

APPENDIX A. OPERATOR REFERENCE

MultiPreprocessOperatorImpl. PreprocessOperatorImpl enriches the
dataset by one additional attribute for every value it sees, whereas
MultiPreprocessOperatorImpl is creating multiple additional attributes for
every value.

WordPreprocessing WordPreprocessing works like the operator
PrefixPreprocessing. The difference is that the extracted value from attribute
wordAttributeName is directly stored (without any manipulation) to the attribute
operatorName. The parameter length is not needed and therefore it is not appar-
ent.

PrefixPreprocessing PrefixPreprocessing extends
PreprocessOperatorImpl. The most important method to implement after ex-
tending PreprocessOperatorImpl is
String newValueToInsert(String w, int length,int index).
This method is delivering the new attribute value in a String representation and is
called using the parameters w which contains the value of the attribute
wordAttributeName of the indexth example shifted by position examples.
The parameter length can be used if the resulting value should contain a specific
length. All operators extending PreprocessOperatorImpl until some excep-
tions are defined by the same parameters which exemplarily are listed in Table A.7.
The input and output ports are presented in Table A.8. This operator creates a new at-
tribute containing the prefixes of length length of the values extracted from attribute
wordAttributeName. If the value extracted from attribute
wordAttributeName is ’Felix’, for instance, the prefix of length 3 is ’Fel’ and will
be stored in the attribute operatorName.

Parameter Description
position The position of the example to be chosen relative

to the current example. (−2 will take the example
two examples before, −2 2 will take all examples
between two before and two after the current exam-
ple,−2, 2 will take the examples two before and two
after the current example)

length The parameter length is determining the length of
the extracted prefix.

operatorName Select the name of the new attribute here which will
contain the created values.

wordAttributeName Select the attribute which will be used to extract the
values to be used for preprocessing.

Table A.7: Parameters for PrefixPreprocessing

220

A.3. PREPROCESSING

I/O port-name Description
I example set in-

put
The example set which will be used for preprocess-
ing.

O example set out-
put

The example set containing the new attribute(s).

O original The original example set got at the input port.
Table A.8: I/O-ports for PrefixPreprocessing

ngram preprocessing ngram_preprocessing extends
MultiPreprocessOperatorImpl. The most important method to implement
after extending MultiPreprocessOperatorImpl is
ArrayList<String>
newValueToInsert(String w, int length, int index).
This method is delivering a list of new attribute values and the processing is comparable
to the processing of PreprocessOperatorImpl. The resulting values will be
converted into a binary attribute, each. This operator will split the values extracted
from attribute wordAttributeName into pieces of length length. Each unique
piece will result in a new attribute which contains a 1 for each example containing this
piece or a 0 otherwise. The parameters and input and output ports are comparable to
the already presented operators.

IOBPreprocessing This operator cuts off the prefixes ’B-’ and ’I-’ of
wordAttributeName.

IndexPreprocessing This operator just takes the index of the relatively chosen ex-
ample and creates an additional attribute containing this information.

SuffixPreprocessing Works like PrefixPreprocessing but with the difference
that the suffixes are extracted.

WordCountPreprocessing This operator counts the words of the current sequence
and creates an attribute containing this information.

GeneralizationPreprocessing This operator generalizes the currently chosen value
of wordAttributeName by replacing capital letters by ’A’, small letters by ’a’ and
digits by ’x’. The resulting value is stored in the newly created attribute
operatorName.

WikipediaPreprocessing This operator creates a new attribute and puts the wikipedia-
category of the wordAttributeName of the relatively chosen example as a value
into it.

221

APPENDIX A. OPERATOR REFERENCE

LetterCountPreprocessing This operator counts the number of letters of the value
extracted of wordAttributeName of the relatively chosen example and stores them
as a value into a newly created attribute.

RegExPreprocessing RegExPreprocessing also extends
MultiPreprocessOperatorImpl. The chosen value is checked against a num-
ber of regular expression. If an expression is matched, the corresponding attribute of
the example is allocated with a 1 and otherwise it is allocated with a 0.

TagListPreprocessing This operator checks the wordAttributeName of the rel-
atively chosen example against a given tag list. If the current value is contained in the
list, the newly created attribute is allocated with 1 and otherwise it is allocated with 0.

StartOfSequencePreprocessing This operator creates a new attribute that contains a
1 if the current token shifted by location is at the beginning of the sequence/sentence
and 0 otherwise.

EndOfSequencePreprocessing Works like
StartOfSequencePreprocessing but for the end of sequences/sentences.

A.3.2 Relation Extraction

In this section we present the preprocessing operators related to Relation Extraction.

TreeCreatorAndPreprocessor The operator TreeCreatorAndPreprocessor
reads the values out of a particular attribute and creates a Tree-representation out of
it. The resulting tree-structured value is stored in a newly created attribute. The cre-
ation of the tree structure is done by parsing a machine-readable or natural language
sentence. Additionally, a tree structure given in String-representation can be read
and converted into a tree-structured attribute value. The parameters and the input and
output ports of this operator are shown in Tables A.9 and A.10.

Parameter Description
valueAttribute The attribute which contains the tree or the sentence

to be parsed.
needParsing Does the attribute value need to be parsed?
modelfile The file containing a parser model
parseTreeType The trees have to be pruned for special tasks (see

Chapter 5). Select pruning type here.
FTK Selecting this will activate the list-creation needed

for the FTK.
Table A.9: Parameters for TreeCreatorAndPreprocessor

222

A.3. PREPROCESSING

I/O port-name Description
I example set in-

put
The example set which will be used for preprocess-
ing.

O example set out-
put

The example set additionally containing the new at-
tribute.

Table A.10: I/O-ports for TreeCreatorAndPreprocessor

HTMLTreePreprocessing The HTMLTreePreprocessing operator works like
the TreeCreatorAndPreprocessor operator as it creates tree-structured attribute
values. In contrast to the TreeCreatorAndPreprocessor the resulting trees are
not pruned.

Zhou Features

In this section we present some of the features published in [Zhou and Su, 2004]. Ac-
cording to the two entities creating the relation candidate, several informational units
concerning these entities are extracted by the features. The features are extending the
class RelationPreprocessOperatorImpl. Two particular methods have to be
implemented by each operator: String newValueToInsertTree(Tree t)
and String newValueToInsert(String w1, String w2,
List<String> addAtts, int length, ExampleIteration exIter).
Both methods are creating the value for the newly created attribute. The first is based
on a tree-representation, and the second one is based on the position of the two entities
in the sentence.

WBNULLPreprocessing This operator creates a new binary attribute containing a
’true’-value if no word is located between the two entities creating the relation candi-
date. The parameters and input and output ports of this operator are presented in Tables
A.11 and A.12.

Parameter Description
operatorName The name of the new attribute that will be created.
use tree If this is selected the tree-structured attribute value

will be used.
firstAttributeName The name of the attribute containing the name of

the first entity must be inserted here (only if tree is
used).

secondAttributeName The name of the attribute containing the name of
the second entity must be inserted here (only if tree
is used).

additional Attributes Additional attributes can be selected using this pa-
rameter list. These attributes are only needed by
several operators.

Table A.11: Parameters for WBNULLPreprocessing

223

APPENDIX A. OPERATOR REFERENCE

I/O port-name Description
I example set in-

put
The example set which will be used for preprocess-
ing.

O example set out-
put

The example set additionally containing the new at-
tribute.

O original The original example set got from the input port.
Table A.12: I/O-ports for WBNULLPreprocessing

WBFLPreprocessing This operator creates a new attribute which will contain the
word between the two entities creating the relation candidate if there is only one word
between. The parameters and input and output ports are the same like for
WBNULLPreprocessing.

WBFPreprocessing This operator creates a new attribute which will contain the first
word between the two entities creating the relation candidate if there is more than
one word between. The parameters and input and output ports are the same like for
WBNULLPreprocessing.

WBLPreprocessing This operator creates a new attribute which will contain the last
word between the two entities creating the relation candidate if there is more than
one word between. The parameters and input and output ports are the same like for
WBNULLPreprocessing.

WBOPreprocessing This operator creates a new attribute which will contain the
words except the first and the last one between the two entities creating the relation
candidate if there is more than one word between. The parameters and input and out-
put ports are the same like for WBNULLPreprocessing.

BM1FPreprocessing This operator creates a new attribute which will contain the
word before the first entity of the two entities creating the relation candidate. The pa-
rameters and input and output ports are the same like for WBNULLPreprocessing.

BM1LPreprocessing This operator creates a new attribute which will contain the
word two words before the first entity of the two entities creating the relation candidate.
The parameters and input and output ports are the same like for
WBNULLPreprocessing.

AM2FPreprocessing This operator creates a new attribute which will contain the
word after the last entity of the two entities creating the relation candidate. The param-
eters and input and output ports are the same like for WBNULLPreprocessing.

224

A.4. META

AM2LPreprocessing This operator creates a new attribute which will contain the
word two words after the last entity of the two entities creating the relation candidate.
The parameters and input and output ports are the same like for
WBNULLPreprocessing.

M1greaterM2Preprocessing This operator creates a new binary attribute which will
contain ’true’ if the second entity is encapsulated in the first entity. The parameters and
input and output ports are the same like for WBNULLPreprocessing.

NumberOfMBPreprocessing This operator creates a new attribute which will con-
tain the number of entity mentions between the two entities creating the relation can-
didate. The parameters and input and output ports are the same like for
WBNULLPreprocessing.

NumberOfWBPreprocessing This operator creates a new attribute which will con-
tain the number of words between the two entities creating the relation candidate. The
parameters and input and output ports are the same like for WBNULLPreprocessing.

A.4 Meta

Binary2MultiClassRelationLearner This operator works like the
Polynomial by Binomial Classification operator already available in
RapidMiner. If a dataset containing more than two classes should be processed by
a binary learner a strategy to use the binary learner will have to be chosen (see Sec-
tion 2.4.3). The main reason for developing a new operator for this purpose is the fact
that some candidates for Relation Extraction are defined only for some special relation
types. It follows that the amount of relation candidates varies for each type of relation
class currently focusing. For each class different parameters have to be adjusted for the
internal learning mechanism. The parameters and input and output ports are presented
in Tables A.13 and A.14

225

APPENDIX A. OPERATOR REFERENCE

Parameter Description
classification strategies The strategy to be chosen to partition the dataset for

applying the internal learner.
use local random seed An own random seed is used to achieve repeatable

results.
event1 The name of the attribute containing the type of the

first entity must be inserted here.
event2 The name of the attribute containing the type of the

second entity must be inserted here. Using the two
types of entities allows to check whether the combi-
nation is suitable for particular relation classes.

null-Label The default-class has to be selected here.
confidence The confidence-level which has to be achieved to

predict a certain class. If the confidence-level is not
being achieved by any class the default-class is pre-
dicted.

epsilon-list A particular epsilon-value can be adjusted for every
learner/class here.

Table A.13: Parameters for Binary2MultiClassRelationLearner

I/O port-name Description
I training set The example set which will be used for learning.
O model The model created by the internal learning mecha-

nism.
O example set The original example set got from the input port.

Table A.14: I/O-ports for Binary2MultiClassRelationLearner

A.5 Data

CSVbatchedDataReader The CSVbatchedDataReader operator extends the
Read CSV operator which is already available in RapidMiner. The
CSVbatchedDataReader operator allows to read in datasets which are prepared
like described in Section 7.2.1.

A.6 Learner

TreeKernel Naive Bayes The TreeKernel Naive Bayes operator is the im-
plementation of the approach presented in Section 6. We only present the parameters
differing from the Naive Bayes (Kernel) operator in Table A.15. Table A.16
contains the input and output ports of the operator.

226

A.6. LEARNER

Parameter Description
lambda The first kernel to be used for the Composite Kernel

(just Entity is possible)
sigma The list of attributes to be used by the Entity Kernel
gaussian The λ-value to be used for QTK or FTK by the Com-

posite Kernel
treestructure selection The λ-value to be used for QTK or FTK by the Com-

posite Kernel
distribution The λ-value to be used for QTK or FTK by the Com-

posite Kernel
Table A.15: Parameters for Treekernel Naive Bayes

I/O port-name Description
I training set The example set which will be used for learning.
O model The model created by the internal learning mecha-

nism.
O exampleSet The original example set got from the input port.

Table A.16: I/O-ports for Treekernel Naive Bayes

TreeSVM We enhanced the already available JMySVM [Rueping, 2000] implemen-
tation in RapidMiner by abilities to process tree structures. We implemented the Ker-
nel presented by [Collins and Duffy, 2001], the Fast Tree Kernel by [Moschitti, 2006b,
Moschitti, 2006a] and the Composite Kernel by [Zhang et al., 2006]. The operator
TreeSVM has some additional parameters in contrast to the
Support Vector Machine operator. These parameters are shown in Table A.17.
The input and output ports are presented in Table A.18.

Parameter Description
kernel type The kernel type to be used (Collins and Duffy (triv-

ial), Moschitti (FTK), Composite Kernel)
CollinsDuffy Kernel
Lambda

The λ-value to be used (see Section 5.5) for QTK or
FTK

Composite Kernel Alpha If the Composite Kernel is used the α value (see Sec-
tion 5.4.5) can be adjusted here.

kernel type 1 The first kernel to be used for the Composite Kernel
(just Entity is possible)

attribute list The list of attributes to be used by the Entity Kernel
kernel type 2 The second kernel to be used for the Composite Ker-

nel (QTK and FTK possible)
Collins Duffy Kernel
Lambda (composite)

The λ-value to be used for QTK or FTK by the Com-
posite Kernel

Table A.17: Additional parameters for TreeSVM

227

APPENDIX A. OPERATOR REFERENCE

I/O port-name Description
I training set The example set which will be used for learning.
O model The model created by the internal learning mecha-

nism.
O estimated per-

formance
The original example set got from the input port.

O exampleSet The original example set got from the input port.
Table A.18: I/O-ports for TreeSVM

Kernel Perceptron The Kernel Perceptron operator is the implementation of
the approach presented in Section 6.4. The parameters of the operator are presented in
Table A.19. The input and output ports are presented in Table A.20.

Parameter Description
kernel type The kernel type to be used (CollinsDuffy, FastTree, Treecep-

tron, DAGperceptron, OneDAGperceptron)
attribute The attribute containing the tree-structures.
lambda The λ-value to be used (see Section 5.5) for the tree kernel.
sigma The σ-value to be used (see Section 5.5) for the tree kernel.
bootstrap If this is selected the at each step a randomly chosen example

will be selected.
stopping After this number of iteration training will stop. Selecting

−1 will make the perceptron do one run on the complete
example set.

Table A.19: Parameters for Kernel Perceptron

I/O port-name Description
I training set The example set which will be used for learning.
O model The model created by the internal learning mecha-

nism.
O example set The original example set got from the input port.

Table A.20: I/O-ports for Kernel Perceptron

ConditionalRandomField This operator implements a CRF which is presented in
Section 2.4.2. The parameters and the input and output ports of this operator are pre-
sented in Tables A.21 and A.22. This operator needs an embedded particular optimiza-
tion operator. The optimizer is presented in the next section (Section A.6.1).

Parameter Description
text-Attribute
name

Select the attribute containing the words of the sentence to
be processed

Table A.21: Parameters for ConditionalRandomField

228

A.7. VALIDATION

I/O port-name Description
I example set in-

put
The example set which will be used for learning.

O example set out-
put

The original example set got from the input port.

O model output The model created by the CRF.
Table A.22: I/O-ports for ConditionalRandomField

SVMlight The SVMlight operator allows the usage of the SVMlight of [Joachims,
2002] in RapidMiner. This is possible by connecting the C-code of the SVMlight
with RapidMiner via JNI . We used the implementation of Martin Theobald1 and
implemented the possibility to perform tree kernel calculations in addition.

A.6.1 Optimizer

LBFGS optimizer The LBFGS_optimizer can be used as an optimization method
for the ConditionalRandomField-operator. The optimization technique is pre-
sented by [Nocedal, 1980, Liu and Nocedal, 1989].

Parameter Description
maximum num-
ber of iterations

After this number of iterations the optimization is stopped.

eps for conver-
gence

The solution is assumed to be optimal if a smaller ε value
than this one is achieved during optimization.

features sorted in
array

Select this if the features are sorted in an array.

Table A.23: Parameters for LBFGS optimizer

I/O port-name Description
I feature set input The feature set which will be used for optimization.
O feature set out-

put
The feature set containing the optimized weights.

Table A.24: I/O-ports for LBFGS optimizer

A.7 Validation

If particular examples or tokens are grouped into sequences or sentences these se-
quences should be respected by operators which split the example set like
SplittedXBatchValidation and BatchSplitValidation or
SequenceSampling.

1http://www.mpi-inf.mpg.de/˜mtb/svmlight/JNI_SVM-light-6.01.zip

229

APPENDIX A. OPERATOR REFERENCE

PerformanceEvaluator This operator is a special performance evaluator for NER.
It calculates precision, recall and f-measure for each class except the default-class.
Additionally, the accumulated values are calculated because those values are used very
often in the Information Extraction community.

Parameter Description
precision The precision will be calculated for each class except the de-

fault class (not-NER-tag) if this box is selected.
recall The recall will be calculated for each class except the default

class (not-NER-tag) if this box is selected.
f-measure The f-measure will be calculated for each class except the

default class (not-NER-tag) if this box is selected.
overall-precision The precision will be calculated for all classes together ex-

cept the default class (not-NER-tag) if this box is se-
lected.

overall-recall The recall will be calculated for each class except the default
class (not-NER-tag) if this box is selected.

overall-f-
measure

The f-measure will be calculated for each class except the
default class (not-NER-tag) if this box is selected.

stopword A special token represents the end of a sentence in some
datasets. This token can be selected here so that it is not
used for the calculation of the performance.

not-NER-tag Type in the default-class here.
iob Select this box if the dataset is in IOB-format.

Table A.25: Parameters for PerformanceEvaluator

I/O port-name Description
I example set in-

put
The example set which will be used for evaluating
the performance.

O example set out-
put

The original example set from the input port.

O simplePerformanceDelivers the SimpleResultObject from
RapidMiner.

O performance Delivers the performance calculated by this opera-
tor.

Table A.26: I/O-ports for PerformanceEvaluator

230

Notes

231

Notes

232

Notes

233

Notes

234

