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Abstract

The paper is devoted to the explicit construction of optimal designs for discrimination

between two polynomial regression models of degree n − 2 and n. In a fundamental

paper Atkinson and Fedorov (1975a) proposed the T -optimality criterion for this purpose.

Recently Atkinson (2010) determined T -optimal designs for polynomials up to degree 6

numerically and based on these results he conjectured that the support points of the

optimal design are cosines of the angles that divide a half of the circle into equal parts if

the coefficient of xn−1 in the polynomial of larger degree vanishes. In the present paper we

give a strong justification of the conjecture and determine all T -optimal designs explicitly

for any degree n ∈ N. In particular, we show that there exists a one-dimensional class of

T -optimal designs. Moreover, we also present a generalization to the case when the ratio

between the coefficients of xn−1 and xn is smaller than a certain critical value. Because of

the complexity of the optimization problem T -optimal designs have only been determined

numerically so far and this paper provides the first explicit solution of the T -optimal

design problem since its introduction by Atkinson and Fedorov (1975a). Finally, for the

remaining cases (where the ratio of coefficients is larger than the critical value) we propose

a numerical procedure to calculate the T -optimal designs. The results are also illustrated

in an example.

AMS Subject Classification: 62K05

Keywords and Phrases: T -optimum design; discrimination designs; uniform approximation;

Chebyshev polynomials; model uncertainty; goodness-of-fit test
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1 Introduction

The problem of identifying an appropriate model in a class of competing regression models is

of fundamental importance in regression analysis and occurs often in real experimental studies.

It is nowadays widely accepted that good experimental designs can improve the performance

of discrimination, and several authors have addressed the problem of constructing optimal de-

signs for this purpose [see Hunter and Reiner (1965), Stigler (1971), Atkinson and Fedorov

(1975a,b), Hill (1978), Studden (1982), Spruill (1990), Dette (1994, 1995), Dette and Haller

(1998), Song and Wong (1999), Ucinski and Bogacka (2005), Wiens (2009, 2010) among many

others]. In a fundamental paper Atkinson and Fedorov (1975a) introduced the T -optimality

criterion for discriminating between two competing regression models. As an example, these

authors constructed T -optimal designs for a constant and a quadratic model. Since its introduc-

tion the problem of determining T -optimal designs has been considered by numerous authors

[see Atkinson and Fedorov (1975b), Ucinski and Bogacka (2005), Wiens (2009), Tommasi and

López-Fidalgo (2010) among others]. The T -optimal design problem is essentially a minimax

problem and except for very simple models the corresponding optimal designs are not easy to

find and have to be determined numerically. In a recent paper Dette and Titoff (2009) discussed

the T -optimal design problem from a general point of view and related it to a nonlinear problem

in approximation theory. As an illustration, designs for discriminating between a linear model

and a cubic model without quadratic term were presented and it was shown that T -optimal de-

signs are in general not unique. Atkinson (2010) considered a similar problem of this type and

studied the problem of discriminating between two competing polynomial regression models

which differ in the degree by two. This author determined T -optimal designs for polynomials

up to degree 6 numerically where the coefficient of xn−1 in the polynomial of larger degree (say

n) vanishes. Based on these results he conjectured that the support points of the T -optimal

design are cosines of angles dividing a half of circle into equal parts.

The present paper has two purposes. In particular, we prove the conjecture raised in Atkinson

(2010) and derive explicit solutions of the T -optimal design problem for discriminating between

polynomial regression models of degree n−2 and n for any n ∈ N. Moreover, we also determine

the T -optimal designs analytically in the case when the ratio of the coefficients of the terms

xn−1 and xn is sufficiently small. The situation considered in Atkinson (2010) corresponds to

the case where this ratio vanishes, and in this case we show that there exists a one-dimensional

class of T -optimal designs. To our best knowledge these results provide the first explicit solution

of the T -optimal design problem in a non-trivial situation. Our results provide further insight

into the complicated structure of the T -optimal design problem. Finally, in the case where the

coefficient exceeds the critical value we suggest a procedure to determine the T -optimal design

numerically.
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2 The T -optimal design problem revisited

Consider the classical regression model

(2.1) y = η(x) + ε,

where the explanatory variable x varies in the design space X and observations at different

locations, say x and x′ are assumed to be uncorrelated with the same variance. In (2.1)

the quantity ε denotes a random variable with mean 0 and variance σ2 and η is a function,

which is called regression function in the literature. We assume that the experimenter has two

parametric models for this function in mind, that is

(2.2) η1(x, θ1) and η2(x, θ2)

and the first goal of the experiment is to discriminate between these two models. In (2.2) the

quantities θ1 and θ2 denote unknown parameters which vary in compact parameter spaces, say

Θ1 ⊂ Rm1 and Θ2 ⊂ Rm2 , and have to be estimated from the data. In order to find “good”

designs for discriminating between the models η1 and η2 we consider approximate designs in

the sense of Kiefer (1974), which are defined as probability measures on the design space X
with finite support. The support points of an (approximate) design ξ give the locations where

observations are taken, while the weights give the corresponding relative proportions of total

observations to be taken at these points. If the design ξ has masses ωi > 0 at the different

points xi (i = 1, . . . , k) and N observations can be made by the experimenter, the quantities

ωiN are rounded to integers, say ni, satisfying
∑k

i=1 ni = N , and the experimenter takes ni

observations at each location xi (i = 1, . . . , k).

To determine a good design for discriminating between the models η1 and η2 Atkinson and

Fedorov (1975a) proposed in a fundamental paper to fix one model, say η1 (more precisely

its corresponding parameter θ1) and to determine the design which maximizes the minimal

deviation between the model η1 and the class of models defined by η2, that is

ξ∗ = argmax
ξ

∫
χ

(η1(x, θ1)− η2(x, θ
∗
2))

2 ξ(dx),

where the parameter θ∗2 minimizes the expression

θ∗2 = arg min
θ2∈Θ2

∫
χ

(η1(x, θ1)− η2(x, θ2))
2 ξ(dx).

Note that θ∗2 is not an estimate but corresponds to best approximation of the “given” model

η1(·, θ1) by models of the form {η2(·, θ2) | θ2 ∈ Θ2} with respect to a weighted L2-norm. Since its

introduction the T -optimal design problem has found considerable interest in the literature and

we refer the interested reader to the work of Ucinski and Bogacka (2005) or Dette and Titoff

(2009) among others. In general, the determination of T -optimal designs is a very difficult
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problem and explicit solutions are – to our best knowledge – not available except for very

simple models with a few parameters. In this paper we present analytical results for T -optimal

designs, if the interest is in the discrimination between two polynomial models which differ in

the degree by two. To be precise, we consider the case where the regression functions η1(x, θ1)

and η2(x, θ2) are given by

(2.3) η1(x, θ1) = θ10 + θ11x+ . . .+ θ1n−2x
n−2 + θ1n−1x

n−1 + θ2nx
n,

and

(2.4) η2(x, θ2) = θ20 + θ21x+ . . .+ θ2n−2x
n−2,

respectively, and the design space is given by X = [−1, 1]. In model (2.3) the parameter θ1 is

given by θ1 = (θ10, θ11, . . . , θ1n−2, bθ1n, θ1n)
T , where the ratio of the coefficients corresponding to

the highest powers b = θ1n−1/θ1n and the parameter θ1n specify the deviation from a polynomial

of degree n− 2.

In the following discussion we define

(2.5) η(x, α, b, θ1n) = η1(x, θ1)− η2(x, θ2) = α0 + α1x+ . . .+ αn−2x
n−2 + θ1n(bx

n−1 + xn),

where we use the notation αi = θ1i − θ2i (i = 0, . . . , n − 2), then the problem of finding the

T -optimal design for the models η1 and η2 can be reduced to

ξ∗ = argmax
ξ

∫
χ

(
α∗
0 + α∗

1x+ . . .+ α∗
n−2x

n−2 + θ1n(bx
n−1 + xn)

)2
ξ(dx)

where α∗ = (α∗
1, . . . , α

∗
n−2)

T is a vector minimizing the expression

α∗ = argmin
α

∫
χ

(η(x, α, b, θ1n))
2 ξ(dx).

It is now easy to see that for a fixed value of b = θ1n−1/θ1n the T -optimal design does not depend

on the parameter θ1n. In the next section we give the complete solution of the T -optimal design

problem if the absolute value of the parameter b = θ1n−1/θ1n less or equal than some critical

value.

3 T -optimal designs for small values of |b| = |θ1n−1/θ1n|
Throughout this section we assume that the parameter b satisfies

(3.1) |b| = |θ1n−1/θ1n| ≤ n(1− cos
(π
n

)
)/(1 + cos

(π
n

)
) = n tan2

( π
2n

)
,

then it is easy to see that all points

(3.2) t∗i (b) = −
(
1 +

|b|
n

)
cos

(
iπ

n

)
− |b|

n
, i = 1, . . . , n
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are located in the interval [−1, 1]. Our first result gives an explicit solution of the T -optimal

design problem in the case b = θ1n−1 = 0 and – as a by-product – proves the conjecture raised

in Atkinson (2010).

Theorem 3.1 A design ξ is T -optimal for discriminating between the models (2.3) and (2.4)

with θ1n−1 = 0 on the interval [−1, 1] if and only if it can be represented in the form ξ =

(1− α)ξ1 + αξ2, where α ∈ [0, 1], the measures ξ1 and ξ2 are defined by

ξ1 =

(
t∗1(0) . . . t∗n(0)

ω∗
1 . . . ω∗

n

)
, ξ2 =

(
−t∗n(0) . . . −t∗1(0)
ω∗
n . . . ω∗

1

)
,(3.3)

and the weights and support points are given by

(3.4) ω∗
i =

2

n
sin2

(
iπ

2n

)
, ω∗

n−i =
2

n
cos2

(
iπ

2n

)
, i = 1, . . . ,

⌊n
2

⌋
, ω∗

n =
1

n
,

and (3.2) for b = 0, respectively.

Proof of Theorem 3.1. It was proved by Dette and Titoff (2009) [see Theorem 2.1] that any

T -optimal design on the interval [−1, 1] for discriminating between the polynomials
∑n−2

j=0 θ2jx
j

and

η1(x, θ1) =
n−2∑
j=0

θ1jx
j2 + θ1nx

n

(note that θ1n−1 = 0) is supported at the set of the extremal points

A =
{
x ∈ [−1, 1]

∣∣∣ ψ∗(x) = sup
t∈[−1,1]

|ψ∗(t)|
}

where ψ∗(x) = η1(x, θ1)−
∑n−2

j=0 θ2jx
j and

(3.5) θ2 = (θ20, . . . , θ2n−2)
T = arg min

θ2∈Rn−1
sup

x∈[−1,1]

| η1(x, θ1)−
n−2∑
j=0

θ2jx
j |

is the parameter corresponding to the best approximation of η1(x, θ1) with respect to the sup-

norm. By a standard result in approximation theory [see Achiezer (1956), Section 35 and 43] it

follows that the solution of the problem (3.5) is unique and given by ψ∗(x) = θ1n2
−(n−1)Tn(x),

where Tn(x) = cos(n arccosx) is the nth Chebyshev polynomial of the first kind. Note that

Tn(x) is an even or odd polynomial of degree n with leading coefficient 2n−1 [see Szegö (1975)].

The corresponding extremal points are given by x0 = t∗1(0) = −1, xi = t∗i (0) = − cos iπ
n
,

i = 1, . . . , n− 1, xn = t∗n(0) = 1.
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Now it follows from Theorem 2.2 in Dette and Titoff (2009) that a design ξ∗ is T -optimal if

and only if it satisfies the system of linear equations

(3.6)

∫
A
ψ∗(x)xkdξ∗(x) = 0 k = 0, . . . , n− 2

(note that in the case of linear models the necessary condition in Theorem 2.2 in Dette and

Titoff (2009) is also sufficient). Therefore for proving that ξ∗1 = ξ1 is a T -optimal design it is

sufficient to verify the identities

(3.7)

∫
ψ∗(x)dξ∗1(x) = θ1n2

−(n−1)(−1)n
n∑

i=1

(−1)ixki ω
∗
i = 0, k = 0, 1, . . . , n− 2,

which will be done in the Appendix. In a similar way we can check that the design ξ∗2 in (3.3)

is a T -optimal design. Note that

supp (ξ∗1) ∪ supp (ξ∗2) =
{
xi = − cos

(π
n
i
)
| i = 0, . . . , n

}
= A

because t∗n−i(0) = −t∗i (0). Moreover, (3.6) defines a system of linear equations of the form

Fω = 0 for the vector ω = (ω0, . . . , ωn)
T of the T -optimal design ξ∗, where the matrix F is

given by F = ((−1)ixki )
k=0,...,n−2
i=0,...,n ∈ Rn−1×n+1 and has rank n− 1. Additionally, the components

of the vector ω satisfy
∑n

i=0 ωi = 1. Therefore the set of solutions has dimension 1. Because the

vectors of weights corresponding to the designs ξ∗1 and ξ
∗
2 are given by ω(1) = (0, ω∗

1, . . . , ω
∗
n)

T and

ω(2) = (ω∗
n, . . . , ω

∗
1, 0)

T and are therefore linearly independent (note that ω∗
i > 0, i = 1, . . . , n),

any vector of weights corresponding to a T -optimal design must be a convex combination of ω(1)

and ω(2). Consequently, any T -optimal design can be represented in the form ξ = (1−α)ξ∗1+αξ∗2 ,
which proves the assertion of Theorem 3.1. 2

Note that the T -optimal design is not unique in the case b = 0. On the other hand, the T -

optimal designs are unique, whenever θ1n−1 ̸= 0, and, if the ratio |θ1n−1/θ1n| is not too large,

the T -optimal designs can also be found explicitly as demonstrated in our following result.

Theorem 3.2 If the parameter b = θ1n−1/θ1n satisfies (3.1), then there exists a unique T -

optimal design on the interval [−1, 1] for discriminating between the models (2.3) and (2.4).

For positive b this design has the form

ξ∗ =

(
t∗1(b) . . . t∗n(b)

ω∗
1 . . . ω∗

n

)
,(3.8)

where the points t∗i (b) and weights w∗
i (b) are defined in (3.2) and (3.4), respectively (note that

t∗1(b) ≥ −1, t∗n(b) = 1). The T -optimal design for negative b has the form

ξ∗ =

(
−t∗n(b) . . . −t∗1(b)
ω∗
n . . . ω∗

1

)
(note that −t∗n(b) = −1,−t∗1(b) ≤ 1).
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Proof of Theorem 3.2. We consider the case 0 < b ≤ n(1 − cos
(
π
n

)
)/(1 + cos

(
π
n

)
) where

direct calculations show that the points t∗i (b), i = 1, . . . , n are contained in the interval [−1, 1].

Moreover, these points are the extremal points of the polynomial

(3.9) cnTn

(
−x− b

n

1 + b
n

)
, cn = (−1)n

(
1

2

)n−1(
1 +

b

n

)n

where Tn is the Chebyshev polynomial of the first kind. For later purposes we note that the

coefficient of xn−1 in this polynomial is equal to

(3.10)
n∑

i=1

[(
1 +

b

n

)
ui +

b

n

]
= b,

where u1, . . . , un are the roots of the polynomial Tn(x), that is ui = cos(2i−1
2n
π) (i = 1, . . . , n),∑n

i=1 ui = 0. It can be shown by a standard argument in approximation theory [see Achiezer

(1956), Section 35 and 43] that θ1nψ
∗(x) with

ψ∗(x) = cnTn

(−x− b
n

1 + b
n

)
is the unique solution of the extremal problem

min
θ2∈Rn−1

sup
x∈[−1,1]

| η1(x, θ1)−
n−2∑
j=0

θ2jx
j |,

where η1(x, θ1) =
∑n

j=0 θ1jx
j. Therefore by Theorem 2.1 and 2.2 in Dette and Titoff (2009)

a T -optimal design is supported at the n extremal points t∗1(b), . . . , t
∗
n(b) (note that we use

b ≤ n tan2( π
2n
) at this point, which implies |t∗j(b)| ≤ 1; j = 1, . . . , n) and the weights are

determined by (3.6). Because the set of extremal points is given by A = {t∗1(b), . . . , t∗n(b)} this

system reduces to

(3.11)
n∑

i=1

t∗ki (b)(−1)iω∗
i = 0, k = 0, 1, . . . , n− 2,

and we will prove in the appendix that the weights given in (3.4) define a solution of (3.11).

Therefore the design ξ∗ specified in (3.8) is a T -optimal design for 0 < b ≤ n(1− cos π/n)/(1+

cos π/n). Since the function ψ∗(x) is unique, any T -optimal design is supported at the points

t∗1(b), . . . , t
∗
n(b) [see Theorem 2.1 in Dette and Titoff (2009)]. By Theorem 2.2 in the same ref-

erence it follows that the weights of any T -optimal design satisfy the system of linear equations

(3.11) with ω∗
i = ωi and

∑n
i=1 ωi = 1. Since ψ∗(t∗i (b)) = (−1)i (i = 1, . . . , n) we can rewrite

this system as

(3.12) Fω = en,

7



Table 1: The critical values b∗n = n tan2
(

π
2n

)
for various values n ∈ N.

n 3 4 5 6 7 8 9 10

b∗n 1 0.6864 0.5280 0.4306 0.3646 0.3168 0.2801 0.2509

where ω = (ω1, . . . , ωn)
T is the vector of weights, the last row of the matrix F is given by

(1, . . . , 1) and corresponds to the condition
∑n

i=1 ωi = 1, en = (0, . . . , 0, 1)T ∈ Rn denotes the

nth unit vector and the columns of the matrix F are given by

ai = (−1)i(1, t∗i (b), . . . , (t
∗
i (b))

n−2, ψ∗(t∗i (b)))
T , i = 1, 2, . . . , n.

The remaining assertion of Theorem 3.2 follows if we prove that detF ̸= 0, which implies that

the solution of (3.12) and therefore the T -optimal design is unique. For this purpose assume

that the opposite holds. In this case the rows of the matrix F would be linearly dependent and

there exists a vector h = (h1, . . . , hn−1, 1)
T such that aTi h = 0, i = 1, 2, . . . , n. But the function

k(x) = (1, x, . . . , xn−2, ψ∗(x))Th is a polynomial of degree n with coefficient of xn−1 given by b.

Since aih = k(t∗i (b)) = 0 this polynomial has roots at the points t∗i (b), moreover

n∑
i=1

t∗i (b) = −b−
n∑

i=1

(
1 +

b

n

)
cos

(
iπ

n

)
= −b+ 1 +

b

n
.

However, by (3.10) the sum of the roots must equal −b by Vieta’s formula. This contradiction

proves that detF ̸= 0. Therefore the system of equations in (3.12) has a unique solution, which

means that the T -optimal design is unique.

The case of negative b is considered in a similar way and the details are omitted for the sake of

brevity. 2

The critical values b∗n = n tan2
(

π
2n

)
for various values of n ∈ N are displayed in Table 1.

Theorem 3.1 and 3.2 give an explicit solution of the T -optimal design problem for discriminating

between a polynomial regression of degree n−2 and n, whenever |b| = |θ1n−1|/|θ1n| ≤ bn. In the

opposite case the solution is not so transparent and will be discussed in the following section.

4 T -optimal designs for large values of |b|
In this section we consider the case |b| ≥ n tan2

(
π
2n

)
for which the T -optimal design cannot be

found explicitly. Therefore we present a numerical method to determine the optimal designs.

The method was described by Dette et al. (2004) in the context of determining optimal designs

for estimating individual coefficients in a polynomial regression model [see also Melas (2006)]
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and for the sake of brevity we only explain the basic principle. For this purpose we rewrite the

function η in (2.5) as

(4.1) η(x, α, b̄) = α0 + α1x+ . . .+ αn−2x
n−2 + θ1n−1(x

n−1 + b̄xn),

where b̄ = 1/b = θ1n/θ1n−1. Note that for fixed b̄ the T -optimal design is independent of the

parameter θ1n−1 and that the choice

b̄ ∈
[
− 1

n
cot2

( π
2n

)
,
1

n
cot2

( π
2n

)]
corresponds to the case |b| ≥ n tan2

(
π
2n

)
considered in this section. In order to express the

dependence on the parameter b̄ we use the notation t∗i (b̄) for the support points and ω∗
i (b̄) for

the weights of the T -optimal design in this section.

The main idea of the algorithm is a representation of t∗i (b̄) and ω
∗
i (b̄) in terms of a Taylor series,

where the coefficients can be determined explicitly as soon as the series is known for a particular

point b̄. In the present situation this point is given by b̄ = 0, which corresponds to the situation

of discriminating between a polynomial of degree n− 2 and n− 1. For this case it follows from

Dette and Titoff (2009) that the T -optimal design coincides with the D1-optimal design. This

design has been determined explicitly by Studden (1980) and puts masses ωi(0) =
1

n−1
at the

points ti(0) = cos
(

(i−1)π
n−1

)
(i = 2, . . . , n − 1) and masses ω1(0) = ωn(0) =

1
2(n−1)

at the points

t1(0) = −1 and tn(0) = 1.

For the constructions of the Taylor expansion we now associate to each vector

τ ∈ U =
{
(t2, . . . , tn−1, ω1, . . . , ωn−1)

T
∣∣∣ − 1 < t2 < . . . < tn−1 < 1;ωi > 0,

n−1∑
j=1

ωj < 1
}
,

a design with n support points defined by

ξτ =

(
−1 t2 . . . tn−1 1

ω1 ω2 . . . ωn−1 ωn

)
.

As pointed out in the previous discussion there exists a corresponding extremal problem defined

by

(4.2) inf
q∈Rn−1

sup
x∈[−1,1]

∣∣b̄xn + xn−1 − f̄T (x)q
∣∣

with a unique solution corresponding to the T -optimal design problem under consideration,

where we use the notation f̄T (x) = (1, x, . . . , xn−2). For each vector q in (4.2) define vectors

dq = (qT , 1, b̄)T ,Θ = (q, τ) and a quadratic form

H(Θ, b̄) = H(q, τ, b̄) = dTqM(ξτ )dq,
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where M(ξτ ) is the information matrix of the design ξτ for the regression model (4.1). It then

follows by similar results as in Dette et al. (2004) that the design ξτ∗ is a T -optimal design for

discriminating between the polynomials of degree n and n − 2 and the vector q∗ is a solution

of an extremal problem (4.2) if the points Θ∗ = (q∗, τ ∗) ∈ Rn−1 × U is the unique solution of

the system

∂

∂Θ
H(Θ, b̄)

∣∣∣
Θ=Θ∗

= 0,

such that the inequality
∣∣dTq∗f(x)∣∣2 ≤ dTq∗M(ξτ∗)dq∗ holds for all x ∈ [−1, 1]. Additionally, the

function

Θ∗ :

{
I −→ R3n−4

b̄ −→ Θ∗(b̄) = (Θ∗
1(b̄), . . . ,Θ

∗
3n−4(b̄)) = (q∗(b̄)T , τ ∗(b̄)T ).

which maps the parameter b̄ ∈ I = [− 1
n
cot2

(
π
2n

)
, 1
n
cot2

(
π
2n

)
] to the coordinates of the best

approximation q∗(b̄) and the support points t∗i (b̄) and weights ω∗(b̄) of the T -optimal design, is

a real analytical function. The coefficients in the corresponding Taylor expansion

Θ∗(b̄) = Θ∗(b̄0) +
∞∑
j=1

Θ∗(j, b̄0)(b̄− b̄0)
j

in a neighborhood of any point b̄0 ∈ I can be calculated by the recursive formulas

Θ∗(s+ 1, b̄0) = − 1

(s+ 1)!
J−1(b̄0)

(
d

db

)s+1

g(Θ∗
(s)(b̄), b̄)

∣∣∣
b̄=b̄0

, s = 0, 1, 2, . . . ,

where

Θ∗
(s)(b̄) = Θ∗

(s)(b̄0) +
s∑

j=1

Θ∗(j, b̄0)(b̄− b̄0)
j,

g(Θ, b̄) =
∂

∂Θ
H(Θ, b̄)

J(b̄0) =

(
∂2

∂Θi∂Θj

H(Θ, b̄)

) ∣∣∣
Θ=Θ∗(b̄0)

.

We can use this result to calculate the T -optimal design for discriminating between polynomials

of degree n and n− 2 in the cases which are not covered by Theorem 3.1 and 3.2. We illustrate

the methodology in the following example.

Example 4.1 Consider the T -optimal design problem for a model of degree 5 and a cubic

polynomial model. Note that for n = 5 we have n tan2( π
2n
) ≃ 0.528. Therefore if b ∈ [0, 0.528]

a T -optimal design is given by Theorem 3.1, that is

ξ∗T =

(
t1(b) t2(b) t3(b) t4(b) 1

0.038 0.138 0.262 0.362 1
5

)
,
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t∗i (b) = −
(
1 +

b

5

)
cos

(
iπ

5

)
− b

5
, i = 1, . . . , 5.

In order to construct the T -optimal design on the interval [0.528,∞] we introduce the no-

tation b = 1/b ∈ [0, 1.894]. With the results of the previous paragraph we obtain a Taylor

expansion for the interior support points t∗2(b), t
∗
3(b), t

∗
4(b) and weights ω∗

1(b), ω
∗
2(b), ω

∗
3(b), ω

∗
4(b)

of the T -optimal design for discriminating between a cubic and a polynomial of degree 5 where

b = θ1n/θ1n−1. By the results of Studden (1980) the vector of support points and weights

corresponding to the center of the expansion at the point b̄0 = 0 is explicitly known, that is

(t∗2(0), t
∗
3(0), t

∗
4(0), ω

∗
1(0), . . . , ω

∗
4(0)) = (− 1√

2
, 0,

1√
2
,
1

8
,
1

4
,
1

4
,
1

4
).

At the first step we use a Taylor expansion at the point b̄0 = 0 to determine the T -optimal

design for b̄ ∈ [0, 0.4]. When we have found the vector Θ∗(0.4) we construct a further Taylor

expansion at the point b̄0 = 0.4 and this process is continued in order to determine the vector

Θ∗(b) for any value b ∈ [0, 1.894]. The support points and weights are depicted in Figure 1 as

a function of the parameter b̄ = 1/b = θ1n/θ1n−1. Note that in all cases b ̸= 0 the T -optimal

design for discriminating between a polynomial of degree 5 and 3 is supported at 5 points.

Figure 1: The support points (left panel) and weights (right panel) of the T -optimal design for

discriminating between a polynomial of degree 3 and 5 for various values of b = 1/b ∈ [0, 1.894].
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5 Appendix. Proof of the identities (3.7) and (3.11)

Note that the identities in (3.7) and (3.11) can be written in the form

(5.1)
n∑

i=1

t∗ki (b)(−1)iω∗
i = 0, k = 0, 1, . . . , n− 2,

where t∗i (0) = cos( iπ
n
) = xi. We will prove that these equalities hold for any real number b.

Since

(5.2) t∗ki (b) =
k∑

j=0

aj cos

(
jiπ

n

)
, i = 0, 1, . . . , n, k = 0, 1, . . . , n− 2

for some coefficients aj = aj(b) (j = 0, 1, . . . , k) the identities (5.1) follow from

(5.3)
n∑

i=1

(−1)i cos

(
kiπ

n

)
ω∗
i = 0, k = 0, 1, . . . , n− 2.

In order to prove (5.3) consider first the case k = 0, n = 2s for some s, where the left hand side

of (5.3) reduces to

n∑
i=1

ω∗
i (−1)i =

1

n

[ s−1∑
i=1

[
(1− cos

(iπ
n

)
)(−1)i + (1 + cos

( iπ
n

)
)(−1)i

]
+ (−1)s + 1

]
=

1

n

[ s−1∑
i=1

2(−1)i + (−1)s + 1
]
= 0,

which proves (5.3). If k = 0, n = 2s+ 1 we get

n∑
i=1

ω∗
i (−1)i =

1

n

[ s∑
i=1

[
(1− cos

( iπ
n

)
)(−1)i − (1 + cos

( iπ
n

)
)(−1)i

]
+ (−1)

]
=

1

n

[
2

s∑
i=1

cos

(
iπ

n

)
(−1)i+1 − 1

]

=
1

n

[
1−

cos
[
π(1+2(n+1)s)

2n

]
cos
(

π
2n

) − 1
]
= − 1

n

cos
(

(2s+1)π
2

)
cos
(

π
2n

) = 0

where the third identity follows by standard results for trigonometrical summation [see e.g.

Jolley (1961), formula (428)]. This proves (5.3) for the case k = 0, n = 2s + 1. Now consider

the case of even n, n = 2s for some odd s, s = 2l − 1 and k of the form k = 2(2r − 1). In this
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case the left hand side of (5.3) reduces to

1

n

[ s−1∑
i=1

[
(1− cos

( iπ
n

)
) + (1 + cos

( iπ
n

)
)
]
(−1)i cos

(
kiπ

n

)
+ (−1)s cos

(
kπ

2

)
+ cos(kπ)

]
=

1

n

[
2

s−1∑
i=1

(−1)i cos

(
kiπ

n

)
+ (−1)s cos

(
kπ

2

)
+ cos(kπ)

]
=

1

n

{(
cos
(kπ
4s

))−1[
cos
(πk
4s

− π
)
+ cos

(πk
4s

+
π

2
(k + 2s− 2)

)]
+ 2
}

=
1

n

{
(−1) + (−1)2s−1 + 2

}
= 0

where we have again used well known results on trigonometric summation [see Jolley (1961),

formula (428)]. Therefore we obtain the equality (5.3) in the case n = 2s, s = 2l − 1 and

k = 2(2r − 1). The other cases can be proved in a similar way, and the details are omitted for

the sake of brevity.
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