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Notation by topic

Chapter 2

Aj scale parameter of a spectral component j.

B0 static magnetic field for alignment of nuclei in

NMR spectroscopy, measured in tesla.

B1 high intensity pulses of radio frequency energy

used to excite nuclei.

B1i intensity of the magnetic field B1.

I spin quantum number of a nucleus.

Nα, Nβ number of nuclei aligning either parallel or an-

tiparallel to an external magnetic field.

P angular momentum of a nucleus.

Pz angular momentum of a nucleus in direction

of an external magnetic field.

S(ω) analytical description of the NMR signal in

the frequency-domain.

T1, T2 relaxation times, the time needed for re-

alignment of the nuclei in accordance with the

static magnetic field B0.

Θ pulse angle, the angle between M0 and the di-

rection of the static magnetic field B0 after

applying B1.

γ gyromagnetic ratio describing the ratio of the

magnetic moment to the angular momentum

of a nucleus, measured in units of Hz
tesla

with

1 Hz = 1 s−1.

λj half width at half height (HWHH) of a spec-

tral component j.

µ magnetic moment of a nucleus, measured in

units of J
tesla

.

µs microseconds, 1 · 10−3 s (seconds).

µz magnetic moment of a nucleus in direction of

an external magnetic field.

ω variable denoting the frequency in a continu-

ous manner.
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ω1 radiation frequency, applied to excite nuclei in

NMR experiments.

ωj variable denoting the response frequency of a

spectral component j.

τP pulse length of the magnetic field B1.

ϕ phase of a spectral component j.

h Planck’s constant, h = 6.6256 · 10−34 Js

(joule second).

kB Boltzmann constant, kB = 1.3805 · 10−23 J
K.

x′, y′, z rotating coordinate system around the z-axis,

the direction of the static magnetic field B0.

e euler’s number, e = 2.718281828459 . . . .

J unit of energy, named for James Prescott

Joule. 1J = 1
kgm2

s2 , with kg = kilogram, m

= meter and s = second.

K Kelvin, measure of the absolute temperature.

MHz megaherz, 106 Hz = 106 s−1.

s second, a measure of time.

s(t) time-domain signal of an NMR experiment,

also known as FID.

Chapter 3

Q number of local maxima in a spectrum.

d(Yi, Yj) distance between the maximum positions

ωi, ωj of two Lorentz-functions Yi, Yj.

l index of a local maximum.

n number of spectral datapoints.

w, wi discrete frequency vector of a spectrum with

wi denoting the frequency with index i.

Chapter 4

K1 number of outer loops in algorithm 2.

K2 number of inner loops in algorithm 2.

SimA, SimB, SimC simulated spectra for the evaluation of algo-

rithm 2.
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Simreal real-world spectrum for the evaluation of al-

gorithm 2.

ρ Signal-to-Distortion Ratio (SDR).

Ŷ [i] model of the spectrum at iteration step i.

Ŷ
[i]
j model of Lorentz-function Yj at iteration step

i.

r height threshold in algorithm 2.

uω, uλ, uA uniformly distributed random numbers used

for the Lorentzian parameters in the simulated

spectrum series.

v, vmax random variable representing simulated noise,

uniformly distributed in the range [0, vmax].

wj,left, wj,max, wj,right positions of the point triplet with index j.

wj,x arbitrary position of the point triplet with in-

dex j.

Chapter 5

R user-specified signal free region of a spectrum.

δ threshold parameter of algorithm 4.

ω̂
[i]
j , λ̂

[i]
j , Â

[i]
j model parameters of Lorentz function Yj at

iteration step i.

ω̂j, λ̂j and Âj model parameters of Lorentz function Yj.

wl, wm, wr peak triplet positions.

Chapter 6

M peak palindrome as a set of Lorentz functions.

Y ∗j best matching peak.

αω, αλ, αA symmetry weights.

δω, δλ, δA symmetry thresholds.

δ∗ω spectral width threshold of a palindrome.

dA(Yi, Yj) area symmetry distance of a pair of Lorentz

functions Yi, Yj.

dλ(Yi, Yj) shape symmetry distance of a pair of Lorentz

functions Yi, Yj.



dω(Yi, c, Yj) position symmetry distance of a pair of

Lorentz functions Yi, Yj given position c.
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Summary

This thesis proposes an automated feature extraction methodology for data analysis

in one-dimensional Nuclear Magnetic Resonance (NMR) spectroscopy. The aim is

to reduce the amount of data while simultaneously preserving the information.

Based on the theory of NMR, the signal of an NMR experiment can ideally be

described as a superposition of Lorentz functions with unknown parameters. The

task of feature extraction is accomplished by decomposing a given spectrum into

a set of distinct Lorentz functions in the main part of the thesis. The two major

problems arising in this context are peak selection and parameter approximation.

The former addresses the problem of identifying the set of Lorentz functions con-

tained in a spectrum, and the latter stands for finding the corresponding set of

parameters that best fit the data.

The main contributions of this thesis have been published as follows:

1. H.W. Koh, S. Maddula, J. Lambert, R. Hergenröder and L. Hildebrand, ”Fea-

ture Selection by Lorentzian Peak Reconstruction for 1NMR Post-Processing”,

Proceedings of the 2008 21st IEEE International Symposium on Computer-

Based Medical Systems (CBMS’08), Yväeskylä, Finland, pp. 608-613 (Koh

et al., 2008),

2. H.W. Koh, S. Maddula, J. Lambert, R. Hergenröder and L. Hildebrand, ”An

Approach to Automated Frequency-Domain Feature Extraction in Nuclear

Magnetic Resonance Spectroscopy”, Journal of Magnetic Resonance 201(2),

pp. 146-156 (Koh et al., 2009),

3. H.W. Koh and L. Hildebrand: ”A Heuristic Approach for the Identification

of Palindromic Peak Sets”, Proceedings of the 2009 International Conference

on Bioinformatics and Computational Biology (BIOCOMP 2009), Las Vegas

NV, USA, pp. 632-638 (Koh & Hildebrand, 2009).



In the context of peak selection, the trivial approach of focusing only on the

occurrence of local maxima has the drawback of inherently omitting ”shoulders”,

hidden Lorentz functions which are overlapped by their neighbours such that their

corresponding local maximum is not present in the spectrum. With providing a

theoretical basement, this thesis proposes two alternative methods to solve this

problem, one by repeated subtraction (Koh et al., 2008), and the other based on

the curvature information of a spectrum, i.e. by identifying each Lorentz function

as a second derivative minimum (Koh et al., 2009). Moreover, by exploiting the

analytical solution for the parameters of a single Lorentz function, an alternative

parameter approximation scheme is proposed (Koh et al., 2009). It is empirically

shown that the results highly outperform the Levenberg-Marquardt algorithm, a

commonly used least-squares method in the context of NMR data analysis.

Finally, aiming at encapsulating the signal of the same origin throughout a

series of NMR experiments, an approach for the identification of palindromic peak

sets is proposed (Koh & Hildebrand, 2009).

All empirical studies have been carried out on a dual core 1.66 GHz notebook

with 1 GByte RAM and OS Windows XP.

The thesis is structured as follows: After the introduction in Chapter 1 and the

basic concepts of NMR spectroscopy in Chapter 2, general aspects regarding the

task of feature extraction in NMR data processing are given in Chapter 3, including

an overview of related literature. An initial, local maximum-based feature extrac-

tion approach is proposed in Chapter 4, and Chapter 5 deals with a corresponding

approach incorporating the information provided by the second derivative. Subse-

quently, an algorithm for the identification of palindromic peak sets is proposed in

Chapter 6, and finally the conclusions and comments on future work are given in

Chapter 7.
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Chapter 1

Introduction

Nuclear Magnetic Resonance (NMR) spectroscopy allows one to investigate the

electronic environment of atoms and the interaction between neighbouring nuclei,

and yields information about the number and type of molecular substructures

contained in a sample. In general, the application of NMR spectroscopy ranges

from physics to various branches of chemistry, biology and medicine (Ernst et al.,

1987). In particular, NMR spectroscopy plays a major role in molecular structure

determination and the analysis of heterogeneous mixtures of molecules. Figure 1.1

shows an example of a modern NMR device.

1.1 Motivation

Understanding the mechanisms and principles of life has always been of central

interest with the purpose of not only fighting diseases and healing injuries, but

generally finding answers to the fundamental question of how life actually estab-

lishes in arbitrary living organisms like plants, bacteria, insects and vertebrates

including the human species. The early work on inheritance between 1856 and

1863 by Gregor Johann Mendel, leading to the Mendel’s Laws of Inheritance,

the discovery of the double helix structure of the deoxyribonucleic acid (DNA)

molecule in 1953 by James D. Watson and Francis Crick, and the comple-

tion of the Human Genome Project in 2003 are some of the most well known

milestones.

Next to a scientist’s brilliant mind, diligence, excitement and sustained en-

durance, progress in biological research also essentially depends on the technologi-
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Figure 1.1: Worlds first 1 GHz Spectrometer. The picture is taken from
http://en.wikipedia.org/wiki/File:Bruker Avance1000.jpg

cal development (we cannot prove what we cannot measure). For instance, the work

of James D. Watson and Francis Crick was based on observations made by

x-ray imaging, while Mendel carried out his studies only equipped with a pencil,

a paper and a magnifying glass, while sequencing the whole human genome, con-

taining approximately 3 billion base pairs, would have been unimaginable without

the use of automated robotic devices and computer systems.

In the context of medical diagnosis, we nowadays benefit from the advent of non-

invasive devices, e.g. Computer Tomography (CT), Positron Emission Tomography

(PET) and Magnetic Resonance Imaging (MRI), all of them providing insights

into an organisms inner life without any physical interference. In opposition to the

former two technologies, whose scans are inherently accompanied with a notable

amount of radiation exposure (a single scan exposes several times more radiation

than the average natural background radiation in one year), MRI technology is

free of radiation and instead based on magnetic fields and radio frequency energy.

Thus, MRI constitutes an important monitoring technology and is applied in many

hospitals and other medical institutions all over the world. As a drawback however,
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due to the magnetic field, MRI cannot be applied if magnetic materials like iron,

cobalt or nickel are present in the body under investigation, e.g. contained in heart

pacemakers, implants, prostheses, etc.

MRI is based on the phenomenon of NMR, and allows one to visualize the struc-

ture and function of tissue and organs. As far as one is interested in measurements

at the molecular level, NMR spectroscopy as the originating technology allows to

quantitatively monitor classes of molecules non-invasively and non-destructively

for the same reasons as mentioned for MRI. Thus, NMR spectroscopy has much

potential in analyzing molecular systems of living cells and organisms.

Regarding the complex nature of living systems in general, high-throughput

monitoring of biological entities in a reliable, quantitative and global manner seems

to be a necessity in order to fully understand the underlying mechanisms and prin-

ciples of life. Thereby, non-invasive experiments on living cells or living organisms

obviously have more potential to reveal insights of interest rather than on life-

less material. NMR spectroscopy is based on magnetic fields and radio frequency

energy, its experiments are non-invasive, and the signal represents quantitative in-

formation. Therefore, it is considered to have much potential in the context of

Systems Biology, the inter-disciplinary field of research which studies interactions

in biological systems on the cellular and molecular level.

The analysis of metabolites, those small bio-molecules which occur as interme-

diates or products of chemical reactions within living organisms, is often referred

to as Metabonomics or Metabolomics. The latter is more interested in monitoring

the metabolism of an organism in whole, hence also facing the identification of not

yet assigned peak patterns of unknown compounds (Fiehn, 2002), while the former

is more focused on understanding the responses of known metabolites to certain

external stimuli (Nicholson et al., 1999).

For the measurement of metabolites, NMR Spectroscopy has become an impor-

tant technology due to its non-invasive and quantitative nature (Lindon & Nichol-

son, 2008). However, NMR experiments yield a mixture of partly overlapping

signals, altogether representing the molecular substructures which are contained in

a sample at once. Thus, for samples containing hundreds of different metabolites

and more, which is commonly the case for the measurement of living cells, the

extraction of quantitative and even only qualitative metabolite information out of

an NMR experiment often requires extensive care and manual processing due to
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the complex nature of the data. Thus, analyzing NMR data of biological samples

is commonly a tedious and time consuming task.

1.2 Aims of the thesis

Up to now, no golden standard for automated analysis and interpretation of NMR

data has been made. Establishing automated approaches allowing to reliably ex-

tract the quantitative information provided by each experiment is a challenging

task, especially with respect to the essential need of high-throughput experiments

resulting in data series containing hundreds of spectra and more in order to com-

prehensively understand the molecular system of living cells and organisms. This

thesis aims at developing an automated methodology for preserving and extracting

valuable information out of an NMR spectrum in order to allow reliable, automated

and quantitative analysis of NMR spectroscopic datasets, and to facilitate research

in the area of Systems Biology in general.
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Chapter 2

Basics in NMR Spectroscopy

The discovery of NMR spectroscopy goes back to the work of Rabi et al. (1938),

Purcell et al. (1946) and Bloch (1946). In the first three decades, all experimen-

tal setups were one-dimensional (1D NMR), where signal intensities are displayed

along a single frequency axis. This approach is called the classical continuous-wave

approach. The development of pulse Fourier spectroscopy in the 1970s, in conjunc-

tion with the development of the Fast Fourier Transform (FFT) algorithm in the

same time period, then revolutionized the classical approach, leading to essential

improvements in acquisition time and sensitivity. This thesis focuses on pulse

Fourier NMR experiments. In the remainder of this chapter, a rough overview

of physical foundations in pulse Fourier 1D NMR spectroscopy is given based on

Friebolin (1999) as long as not indicated otherwise.

2.1 The NMR spectrometer

In this section, a basic overview of an NMR device is given. Figure 2.1 shows an

illustration of a standard NMR device. In general, a spectrometer consists of a

magnet with corresponding magnetic coils, chambers of liquid helium and liquid

nitrogen, vacuum chambers, the sample tube and a shimming unit.

• Magnet:

The magnet is the essential component in a spectrometer, since the quality

of the experiments do strongly depend on it. Where the NMR experiments

in the 1960s based on permanent magnets or electromagnets with a magnetic
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flux density of up to 1.41 tesla, todays NMR experiments are based on su-

perconducting magnets with a magnetic flux density of up to 23.5 tesla. It

will become more clear in the remainder of this chapter why a high magnetic

flux density is beneficial in the context of NMR experiments, but as a rule of

thumb one can say ”the higher the better”.

• Sample tube:

The core of an NMR decive is given by the sample tube. It comprises the

sample, the transmitter and reciever coils, and the shimming unit, with the

latter being used to establish homogeneity of the magnetic field.

• Transmitter:

The transmitter unit is basically given as a radio frequency generator and

a frequency synthesizer, and produces the pulses of radio frequency energy

needed for the experiments.

• Receiver:

As the name implies, the receiver coil is used to detect the NMR signal.

Commonly, the detection process is accompanied by signal amplification units

similar to radio technology.

• Computer:

The whole experimental setup of an NMR experiment is controlled by the

computer. As well as supplying certain parameters for the shimming and the

transmitter units in view of automation, the analogue NMR signal is finally

recorded in a digital way for further processing, i.e. analysis, simulation, pre-

diction and interpretation of an experiment. The methods proposed within

this thesis belong to this category.

2.2 The NMR Experiment

A classical NMR experiment is illustrated in figure 2.2 and can be described in

three steps:

1. A strong magnetic field B0 induces macroscopic magnetization, having the

effect that nuclear spins align with the field.
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Figure 2.1: Schematic illustration of a standard NMR device (Friebolin, 1999).
1: Magnet, a) Magnetic coil, b,c) Filler for liquid helium and liquid nitrogen,
respectively, d) Inner and outer vacuum chambers, 2: Sample tube, 3: Sample
probe, 4: Probe changer, 5: Shimming unit

2. High intensity pulses B1 are used to excite a particular type of the sample’s

nuclei.

3. After the pulse has been applied, the nuclei induce a current in the receiver

coil due to the precession of the macroscopic magnetization, which leads to

the signal in the time-domain called free induction decay (FID).
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Figure 2.2: Illustration of a classical NMR experiment based on Campbell et al..

See the text for more details.

A more formal description of key aspects in NMR spectroscopy is given in the

following subsections.

2.3 Magnetic Properties of a Nucleus

The NMR technology is based on radio waves and magnetic fields, and measures

the resonance of nuclei based on their magnetic properties, with Proton (H) and

Carbon-13 (13C) being most commonly studied. The number ”13” signalizes the

isotope of Carbon. Other examples of investigated nuclei are Nitrogen-15 (15N),

Fluorine-19 (19F) and Phosphorus-31 (31P).

In a static magnetic field, the angular momentum P of a nucleus is described

as

P =
h

2π

√
I(I + 1) (2.1)

where h is Planck’s constant h= 6.6256 ·10−34 Js, with J (joule) being the unit of

energy, and where I denotes the spin quantum number, also simply called spin. P is

given in units of Js (joule seconds), and describes the rotational state of a nucleus.

I arises in 1
2

steps from the difference in the number of protons and neutrons of the

nucleus, and can take values from I ∈ {0, 1
2
, 1, 3

2
, 2, 5

2
, . . . , 6}. For example, Proton,

Carbon-13 and Fluorine-19 have a spin of I = 1
2
.
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Nucleus γ/2π (MHz/tesla)

1H 42.546
13C 10.705
15N -4.3156
19F 40.0541
31P 17.235

Table 2.1: Gyromagnetic ratios for some example nuclei (following Friebolin
(1999)).

The angular momentum P is quantized in the context of nuclear spins, as-

sociated with a so called magnetic quantum number m = {−I,−I + 1, . . . , I},
describing in total 2I + 1 angular momentum states of a given nucleus. It is worth

noting, that neither P nor I can be theoretically predicted.

The magnetic moment µ of a nucleus is a measure of the strength and the direc-

tion of its magnetization, in units of J/tesla, where tesla is the unit of the magnetic

flux density of a magnetic field. µ is associated with the angular momentum P by

the nucleus-specific gyromagnetic ratio γ as

µ = γ P. (2.2)

Nuclei with an equal number of protons and neutrons have a spin quantum

number I = 0, and thus zero angular momentum P and zero magnetic momentum

µ. For example, the regular carbon-atom 12C has zero angular momentum and

thus is not detected in NMR spectroscopic experiments. All nuclei with non-zero

angular and magnetic momentum maintain a characteristic gyromagnetic ratio γ,

with high values for γ indicating better detection in NMR experiments. Some

approximate gyromagnetic ratios are shown in table 2.1.

2.4 Alignment in a Magnetic field

For a nucleus with angular momentum P and magnetic moment µ placed in a

static magnetic field B0 the z-component Pz of P , namely the angular momentum

in direction of B0, is given as

Pz = m
h

2π
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(a) Angular momentum
states of spins with I = 1

2 .
(b) Double precession cone
for spins I = 1

2 .

Figure 2.3: Angular momentum states and the precession in a static magnetic field
B0.

where m again denotes the magnetic quantum number with m = {−I,−I +

1, . . . , I}, and h stands for Planck’s constant. Figure 2.3(a) illustrates the cor-

responding angular momentum states for spins I = 1
2
. Accordingly, the magnetic

moment µz in direction of the magnetic field B0 is then given as

µz = mγ
h

2π
. (2.3)

The larmor precession rate ωL, describing the rotation frequency of a nucleus,

is thereby proportional to the magnetic field strength B0, given as

ωL =
|γ|
2π
B0. (2.4)

Note that γ is specified by the type of nucleus, and therefore the larmor precession

rate ωL is nucleus-specific as well.

In the classical view, the nuclei rotate around the z-axis, the direction of the

magnetic field B0 (see figure 2.3(b)). They behave like little gyroscopes, with

the exception that only certain angles are allowed due to their quantized angular

momentum P . For example, each proton (H) with I = 1
2

rotates at the same angle

54◦44′ around the z-axis, the direction of the magnetic field B0.

In a magnetic field, the energy E of a magnetic dipole is proportionally related

to its magnetic moment µz and the magnetic flux density B0 by

E = −µz B0,
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and combining this with formula (2.3) gives

E = −mγhB0

2π
.

In thermal equilibrium, atoms of the same nucleus type are approximately

equally distributed in the different angular momentum states m (see previous sec-

tion). In a static, non-zero magnetic field of strength B0 however, due to inter-

actions between the field and the nuclear magnetic moments, the states m differ

in their energy level. In the case of nuclei with spins I = 1
2

(e.g. 1H,13C), the

natural distribution in the number of atoms Nα and Nβ of the respective two states

m = −1
2

and m = 1
2

in equilibrium is described by the Boltzmann distribution

as

Nα

Nβ

= e
−

∆E

kBK ≈ 1− ∆E

kBT
(2.5)

where K denotes the absolute temperature in Kelvin, kB is the Boltzmann con-

stant kB = 1.3805 · 10−23 J
K, and ∆E = γ h

2π
B0 stands for the energy difference

between the two states m = −1
2

and m = 1
2

(see figure 2.4(a)). In other words, the

two spin states of a spin I = 1
2

align either parallel or antiparallel to the magnetic

field, according to (2.5). In total, the lower energy state occurs more often than

the higher energy state. Summation over all magnetic moments µz in direction of

the magnetic field then leads to a tiny but measurable macroscopic magnetization

M0 of the sample (see figure 2.4(b)). Thus, M0 gives quantitative information

concerning the number of nuclei and in general plays a key role in describing pulse

NMR experiments, as we will see in the following sections.

2.5 Magnetic Resonance of the Nuclei

In NMR experiments, electromagnetic radiation of radio frequency is applied in

order to induce transitions between the angular momentum states of a particular

type of nucleus. Thereby, transitions from states with lesser to those with higher

energy are called energy absorption, and vice versa energy emission. Since more

spins initially align in the angular momentum state of lower energy (Nα > Nβ),

energy absorption is observed in total, whereby the intensity of the absorption is

proportional to Nα −Nβ and is therefore also proportional to the total number of



12 Basics in NMR Spectroscopy

(a) Energy difference between two states in
dependence to the magnetic field strength
B0.

(b) State distribution on the double
precession cone. Nα > Nβ results in
a macroscopic magnetization.

Figure 2.4: Energy difference and distribution of the angular momentum states for
spins with I = 1

2
.

respective nuclei contained in a given sample. This magnetic resonance absorption

is detected as the quantitative signal in NMR experiments.

A transition only occurs, if the corresponding radiation frequency ω1 equals

the larmor precession rate ωL (2.4) of the respective nucleus under investigation,

formally described as the resonance condition:

ω1 = ωL =
|γ|
2π
B0. (2.6)

ωL is also called the larmor-frequency.

As a result, the investigation can be focused on specific nuclei depending on

which frequency ω1 is applied in an experiment. For Protons, the gyromagnetic ra-

tio γ is known to be 42,546 MHz/tesla, and NMR experiments with ω1 = |42,546
2π
|B0

are denoted as 1H NMR experiments. Analogously, 13C NMR experiments operate

at the frequency 10.705 MHz/tesla for 13C (see table 2.1).
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Figure 2.5: Chemical structure of tetramethylsilane (TMS).

2.6 Chemical Shift

The local magnetic field experienced by nuclei differs from the total magnetic field

B0. The nuclei are said to be shielded. A measure for this effect is given by the

shielding constant σ, leading to an expansion of the resonance condition (2.6) as

ω1 =
|γ|
2π

(1− σ)B0. (2.7)

Theoretical approaches are still unable to precisely calculate σ with respect

to a given sample. As a result, the effective local magnetic field and thus the

effective resonance frequency of a particular substrate cannot be specified prior

to an experiment. However, theory and experiments indicate that the differences

between the local and the total magnetic fields, and thus changes in the resonance

frequencies, mainly depend on the electron density distribution of the molecules,

but are independent to the total magnetic field B0. Next to the structure and the

type of a molecule, molecular interactions due to concentration and pH-value1 are

the main contributors to the shielding effect.

NMR spectroscopic datasets are commonly free of absolute values, since the

magnetic field B0 and the resonance frequencies ωi are proportionally related to

each other (2.6, 2.7). Instead, resonance frequencies are measured relative to a

reference. For this purpose, tetramethylsilane (TMS) (Si(CH3)4) is commonly used

for its beneficial properties of being chemically inert2 and being easily removed from

a solution due to its low boiling point of 26, 5◦ C under normal conditions3. Figure

2.5 shows the chemical structure of TMS.

1The pH-value is a measure of the acidity or basicity of a solution, and expresses the activity
of dissolved hydrogen ions H+.

2A chemically inert substrate is chemically not active.
3Normal conditions in terms of approx. 1013 hPa = 1.013 bar of air pressure
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Figure 2.6: Chemical shifts for protons of organic compounds, based on Friebolin
(1999).

In order to compare experimental results obtained with different external mag-

netic fields B0, the resonance signals are commonly given by the dimensionless

value δ as

δ =
ωsubstrate − ωreference

ωreference
106.

The factor 106 has the purpose of simplifying the resulting numbers. Thus, δ is

given in ”parts per million” (ppm), and called the chemical shift of a substrate. For
1H NMR experiments, δ commonly ranges from 14 ppm to -3 ppm, and is given

in descending order to display the NMR signal in terms of ascending shielding

constants σ. Figure 2.6 provides an overview to frequency ranges of several classes

of organic substrates.
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2.7 Relaxation and the Time-Domain Signal

Applying B1 at frequency ω1 on a given sample has the effect that the initial

macroscopic magnetization vector M0 changes its direction by pulse angle Θ as

Θ = γB1iτP (2.8)

with B1i as the intensity and τP as the pulse length of the high-frequency pulse

B1, commonly in the range of several µs. The change of M0 is illustrated in figure

2.7(a). However, the movement of M0 is hard to comprehend with regard to a

static coordinate system x, y, z. The whole process becomes more understandable

by changing the view to a rotating coordinate system x′, y′, z around the z-axis

at the same frequency as ω1. In this way the precession around the z-axis can be

neglected. Remember, z stands for the direction of the static magnetic field B0,

the axis around which the precession takes place.

Common pulse angles are 90◦x′ and 180◦x′ , with x′ denoting the direction of the

pulse in the rotating frame. Figure 2.7(b) shows the effect of applying a 90◦x′-

pulse. Due to the impact of B1, the precession of the nuclei around the z-axis is

not equally distributed on the surface of the double precession cone anymore, but

slightly biased toward the My′ vector, resulting in a transverse magnetization in

direction of the y′-axis. In total, the macroscopic magnetization vector M0 changes

its direction in the y′, z-plane around the x′-axis by pulse angle Θ, and precesses

around the z-axis at the larmor-frequency ωL (2.4, 2.7). As soon as B1 is switched

off, the macroscopic magnetization vector M0 returns back to its initial alignment

in the static magnetic field B0, a process known as relaxation.

Back in the equilibrium state after relaxation, it holds M0 = Mz and Mx,My =

0. The behavior of an isolated magnetization vector M0 during the relaxation

process has been mathematically analyzed by Bloch (1946) on the basis of two

simplifications:

1. ”That the changes of orientation of each nucleus are solely due to the presence

of the external magnetic fields”, and

2. ”That the external fields are uniform throughout the sample,”

which amongst other things means that interactions between nuclei are omitted.

Nevertheless, by changing the spatially stationary coordinate system as shown in



16 Basics in NMR Spectroscopy

(a) Applying pulse B1 changes the ori-
entation of the macroscopic magnetiza-
tion vector M0 by pulse angle Θ and
leads to a precession of M0 around the
z−axis at larmor-frequency vL.

(b) Magnetization bias toward the My′

vector as an effect of applying a 90◦x′ -
pulse.

Figure 2.7: Change of the magnetization vector M0 after applying a high-frequency
pulse.

figure 2.7(a) into a rotating coordinate system x′, y′, z as mentioned before, the

precession around the z-axis can be neglected, and the relaxation process for an

isolated spin system is described by the following Bloch equations :

dMz(t)

dt
= −Mz(t)−M0

T1

dMx′(t)

dt
= −Mx′(t)

T2

and
dMy′(t)

dt
= −My′(t)

T2

with T1 and T2 denoting the time constants for the relaxation processes along the

z-axis and the x− and y-axes, respectively. Following Schorn (2001), the solutions

for Mx′(t) and My′(t) are given as

Mx′(t) = M0 sin Θ cos(ω1 t) e
t
T2

and My′(t) = M0 sin Θ sin(ω1 t) e
t
T2 .
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In terms of practical experiments however, inhomogeneities of the magnetic

field, interactions with neighbouring nuclei, and even instrumental contributions

result in varying precession rates with varying phases and varying relaxation times

even for chemically equivalent nuclei. A thorough mathematical description of the

underlying mechanisms is provided by the quantum-mechanical relaxation theory

(Ernst et al., 1987), but is beyond the scope of the thesis.

In the classical description, the resulting signal is given by |J | distinct groups

of nuclei, maintaining their own precession rate ωj, their own phase ϕj and their

own relaxation time T ∗2j . Following Ernst et al. (1987) and Jarvi et al. (1997), the

subsequent signal along the axes x′ and y′ can be described as

M j
x′(t) = Mj sin Θ cos(ωj t+ ϕj)e

− t
T∗2j

and M j
y′(t) = Mj sin Θ sin(ωj t+ ϕj)e

− t
T∗2j ,

with Θ denoting the pulse angle (2.8). In complex notation, M j
x′(t) and M j

y′(t) are

summarized as

M j(t) = M j
x′(t) + ıiM j

y′(t) = Mj sin Θ e
ıi(ωj t+ϕj)− t

T∗2j

with ıi denoting the imaginary number with ıi2 = −1. The measured time sig-

nal s(t), obtained by simultaneous observation of both x- and y-axes, is directly

proportional to the complex magnetization M j(t). It is for each group of nuclei j

given as

s(t) =

|J |∑
j

Aj sin Θ e
ıi(ωj t+ϕj)− t

T∗2j , (2.9)

and thus reflects the signal proportional to the number of responding nuclei of

group j. The signal s(t) is also known as the free induction decay (FID).

With applying a 90◦x′-pulse (Θ = 90◦), the idealized4 time domain signal s(t)

as a sum of exponential decays is given as

s(t) =
J∑
j

Aje
ıi(ωj t+ϕj)−t/T ∗2j .

4The model analytically describes the pure NMR signal without considering effects of noise
and other distortions.
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In summary, the recorded time-domain signal quantitatively reflects the dif-

ferences in the relaxation process of all responding nuclei, thus allowing different

molecular substructures to be distinguished from one other.

2.8 The Signal in the Frequency Domain

As shown in the previous section, the signal of an NMR measurement is given as a

weighted sum of oscillating functions whose envelopes are exponentially decaying

in time (2.9). For reasons of better visual analysis and interpretation, the Fourier

Transform (FT) is applied on the signal, resulting in a spectrum in the frequency

domain, which basically means a separation of the resonance frequencies along the

frequency axis.

The Fourier Transform goes back to the work of the french mathematician Jean

Baptiste Joseph Forier (1768-1830), who amongst other things introduced

the Fourier Series. In basic summary, they represent the decomposition of any

periodic function f(t) with basic frequency v = 1
T

as a superposition of sine and

cosine functions (Popov, 1990):

f(t) = f(t−mT ) =
∞∑
j=1

(
bj sin(2πjvt) + cj cos(2πjvt)

)
, (2.10)

where m, j are integers. Equation (2.10) is also known as the fourier series expan-

sion. In case of a non-periodic function, an analogous relationship exists:

F (ω) =

∫ ∞
−∞

f(t)
(
cos(ωt)− ıi sin(ωt)

)
dt =

∫ ∞
−∞

f(t)e−ıiωtdt, (2.11)

with ω = 2πv. Equation (2.11) represents the Fourier Transform, and the inverse

FT is defined as

f(t) =
1

2π

∫ +∞

−∞
F (ω) eıiωtdω.
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In the context of NMR, fourier transforming the FID results in the signal function

S(ω) in the frequency domain, with the real part aj(ω) and imaginary part dj(ω)

of each component j (Ernst et al., 1987; Popov, 1990):

S(ω) =

∫ +∞

0

s(t) e−ıiωtdt =

|J |∑
j

eıiϕj (aj(ω) + ıidj(ω)) ,

with aj(ω) = Aj
T ∗2j

1 + (ω − ωj)2 T ∗22j

and dj(ω) = −Aj
T ∗22j

(ω − ωj)
1 + (ω − ωj)2 T ∗22j

aj(ω) is called absorption signal, dj(ω) is known as the dispersive signal, and both

differ from each other by 90◦ in their phase. Figure 2.8 provides a schematic

illustration of example FIDs and the result after FT.

With the assumption, that a given spectrum can easily be phase corrected

(ϕj = 0 ∀j ∈ {1, . . . , |J |}), (2.12) can be rewritten as

S(ω) =

|J |∑
j

Aj
T ∗2j

1 + (ω − ωj)2T ∗22j

,

and by replacing T ∗2j = 1
λj

, it follows

S(ω) =

|J |∑
j

Aj
λj

λ2
j + (ω − ωj)2

=

|J |∑
j

Yj(ω). (2.12)

Yj(ω) is also known as a Lorentz function, and denotes the contribution of a single

spectral component, namely a single peak of the spectrum. Figure 2.9 shows an

example metabolite NMR spectrum containing 32768 datapoints. The center and

bottom graphs show horizontally zoomed regions from the respective spectrum

above.

2.9 Multiplet patterns

As described in the previous section, the signal of an NMR spectrum is given as a

superposition of Lorentz functions. However, each Lorentz function alone does not

necessarily represent a single molecular substrate, as shown in the following. Figure
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Figure 2.8: Schematic illustration of the Fourier Transformation, based on Friebolin
(1999). Top: A single frequency in the time domain results as a single peak in
the frequency domain. Bottom: Signals at four different frequencies and their
corresponding spectrum. The frequency difference is denoted by JAX .
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Figure 2.9: Example regions of a real-world NMR spectrum (solid line). A sugges-
tion for the underlying Lorentz functions is given in grey colour.



22 Basics in NMR Spectroscopy

Figure 2.10: 90 MHz 1H NMR spectrum of a mixture of CHBr3, CH2Br2, CH3Br
and TMS (Friebolin, 1999).

2.10 for example shows an 1H NMR spectrum of a mixture of bromoform (CHBr3),

methylene bromide (CH2Br2) and methyl bromide (CH3Br). Each component of

the mixture results in a single peak called singlet, which can easily be explained by

chemical equivalence of the respective nuclei in each molecule (they are all protons).

However, NMR signals of more complex molecules commonly result in a specific

pattern of peaks, as e.g. shown in figure 2.11 for the 1H NMR signal of ethyl acetate

(CH3COOCH2CH3). From left to right, a quartet, a singlet and a triplet can be

observed, although the protons within each of the denoted groups are chemically

equivalent as well. The reason lies in the phenomenon called spin-spin coupling,

basically referring to the fact that neighbouring nuclei affect the local magnetic

field through the chemical bonds of a molecule, leading to increased or decreased

field strengths, and therefore to changes in the observed resonance frequency (2.6).

This interaction mainly evolves within 1-3 chemical bonds, and further distances

have almost no impact on the observed signal.

In general, the number of signals in a multiplet, further denoted as the multi-

plicity M , mainly depends on the number of equivalent neighbouring nuclei and is

given as

M = 2nI + 1,

with n denoting the number of neighbouring nuclei, and I denoting the spin quan-

tum number (2.1). For protons (I = 1
2
), the above formula reduces to

M = n+ 1,
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(a) Chemical struc-
ture of ethyl acetate
(CH3COOCH2CH3).

(b) 300 MHz 1H NMR spectrum of ethyl acetate

Figure 2.11: Chemical structure of ethyl acetate (top) and its corresponding 1H
NMR spectrum (bottom) as an example of spin-spin coupling effects between equiv-
alent neighbouring nuclei, based on Friebolin (1999).

leading to intensity ratios within multiplets following the coefficients of the bino-

mial series, which are provided by the Pascal’s triangle. Table 2.2 shows the ratios

for the first six multiplets.

The effect of spin-spin coupling between non-equivalent neighbouring nuclei

commonly occurs differently, and Pascal’s triangle cannot be applied anymore.

Figure 2.12 shows the chemical structure and the 1H NMR spectrum for three
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Multiplicity Intensity ratio

Singlet 1
Doublet 1 : 1
Triplet 1 : 2 : 1
Quartet 1 : 3 : 3 : 1
Quintet 1 : 4 : 6 : 4 : 1
Sextet 1 : 5 : 10 : 10 : 5 : 1

Table 2.2: Pascal’s triangle providing the coefficients of the binomial series. They
are equal to the intensity ratios within multiplets of equivalent nuclei with spin
I = 1

2
.

protons HA, HM and HX of styrene. The initial resonance frequencies ωA, ωM

and ωX without coupling effects split two times for each neighbouring proton but

with different impact, indicated by JAM , JAX and JMX , the so called coupling

constants. Interestingly, the value of the coupling constants only depends on the

angular moments P of the respective nuclei, and is in opposition to the chemical

shift therefore independent of the magnetic field B0 (2.1). This also holds for spin-

spin coupling between equivalent nuclei, and basically means that the splitting

into multiplet patterns can in general be considered to be robust against variations

in experimental conditions, e.g. concentration or pH-value. This characteristic

property will become important in Chapter 6.
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(a) Chemical structure of styrene

(b) Spin-spin coupling resulting in a splitting of signals

Figure 2.12: Chemical structure of styrene (top) and its corresponding 1H NMR
spectrum (bottom) as an example of spin-spin coupling effects between non-
equivalent neighbouring nuclei, based on Friebolin (1999).
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Chapter 3

NMR Feature Extraction

The term Feature Extraction basically means the process of constructing and se-

lecting a set of relevant features in a given dataset, commonly aiming at reducing

the amount of data under investigation while preserving the information content

as well as possible. Beginning with a rough overview of related literature, this

chapter presents some basic properties of a Lorentz function, and discusses some

key aspects regarding the task of feature extraction in NMR data analysis.

With regard to the fact that each measured spectrum results in a finite list of n

discrete datapoints, w = {w1, . . . , wn} denotes their positions in descending order

w1 > · · · > wn according to the convention in NMR spectroscopy (Friebolin, 1999).

The corresponding intensity values are in the remainder of this work denoted as

S(w1), . . . , S(wn), and the spectrum is given as

S =
{(
w1, S(w1)

)
, . . . ,

(
wn, S(wn)

)}
.

Further, the first discrete derivative S
′

of S is given as

S
′
=
{(
w
′

1, S
′
(w1)

)
, . . . ,

(
w
′

n−1, S
′
(wn−1)

)}
=

{(
w1 + w2

2
, S(w2)− S(w1)

)
, . . . ,

(
wn−1 + wn

2
, S(wn)− S(wn−1)

)}
,
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and under the assumption of equal distance between any consecutive pair of fre-

quencies wi, wi+1, i ∈ {1, . . . , n}, the second discrete derivative S
′′

is given as

S
′′

=
{(
w
′′

2 , S
′′
(w2)

)
, . . . ,

(
w
′′

n−1, S
′′
(wn−1)

)}
with w

′′

i = wi

and S
′′
(wi) = S(wi−1) + S(wi+1)− 2S(wi).

Note, that the frequency information is here for datapoints denoted as wi in-

stead of ω, whereas the position parameters of a spectrum’s Lorentz functions

are denoted in a continuous manner by ωj (2.12), accounting for the effects of

discretization. Also note, that it is rather unlikely that the resonance frequency

of a spectral component coincides with a discretely given frequency value of the

resulting digitized spectrum.

3.1 Related Work

In practice, an NMR signal is distorted in many ways, ranging from inhomogeneous

magnetization (Spielman et al., 1988) and noise arising from different sources dur-

ing the measurement (Hoult & Lauterbur, 1979) through artifacts of the Fourier

Transform (Giancaspro & Comisarow, 1983; Verdun et al., 1988) to frequency

shifts mainly induced by molecular interactions within the sample itself. Many

approaches to enhance the quality of the signal have been proposed, e.g. zero-

filling and apodization (Verdun et al., 1988; Bartholdi & Ernst, 1973; Ebel et al.,

2006), spectral noise filtering (Massaro et al., 1989; Asfour et al., 2000), phase

correction and exact interpolation (Giancaspro & Comisarow, 1983; van Vaals &

van Gerwen, 1990; Goto, 1998) and reference deconvolution (Morris et al., 1997;

Metz et al., 2000; Li et al., 2003).

Concerning the extraction of relevant features with regard to multivariate anal-

ysis and classification, various methods have been proposed in the literature and

are essentially grouped into three classes:

1. Spectral Binning

2. Targeted Profiling

3. Peak Selection and Parameter Approximation
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3.1.1 Spectral Binning

Spectral binning is often applied after Fourier Transform prior to principal com-

ponent analysis (PCA) or partial least squares - discriminant analysis (PLS-DA)

(Potts et al., 2001; Wang et al., 2003; Viant, 2003; Stoyanova et al., 2004; Jansen

et al., 2005; Dieterle et al., 2006). It is considered to potentially mitigate effects of

peak shifts and other variations by averaging over a certain number of datapoints

(Chang et al., 2007). However, since these shifts in the frequency domain may

commonly occur for each peak or peak pattern in each spectrum differently, single

bins at same positions of different spectra may not contain signal from the same

source of origin at all. Potential results are dramatic loss of spectral resolution,

obscured feature vectors, and hence misinterpretation of the data, as also reported

by Viant (2003) and Dijkstra et al. (2006). Figure 3.1 shows an example spectrum

before and after binning to the bin size of 100 datapoints.

3.1.2 Targeted Profiling

As the NMR chemical shifts are sensitive to concentration, temperature and the

pH-value of the metabolite solutions under investigation, the spectral response for

a given metabolite differs from spectrum to spectrum. To circumvent this prob-

lem, compound-specific peak patterns are manually assigned in a process known

as Targeted Profiling (Weljie et al., 2006). As a result, an NMR spectrum series

M containing m spectra is turned into a set of compounds {c1, . . . , ck}, with the

feature vector {vi,1, . . . , vi,m} for each compound i denoting its relative concen-

tration in each of the m experiments. Subsequently, multivariate methods can

be applied based on the achieved metabolite concentrations. The crucial part of

this approach is the pattern assignment itself, which has been performed manually

e.g. in Weljie et al. (2006). Although this approach seems to be very promising,

the limitations are clear: manual assignment demands expert knowledge, is time

consuming, and the outcome is restricted to the reference compounds database ab

initio. Figure 2.6 of the previous chapter shows potential ranges of proton signals

of typical molecular substructures. The huge degrees of overlap indicate, that the

assignment is not a trivial problem, and generally considered time-consuming and

error-prone.
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(a) Raw spectrum containing 32768 dps.

(b) After binning to the bin size of 100 dps.

Figure 3.1: Example on effects of spectral binning, here with a bin size of 100
datapoints.
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3.1.3 Peak Selection and Parameter Approximation

The last class of methods for extracting features out of a given NMR spectrum

is also known as Quantification, comprising the two tasks of peak selection and

parameter approximation.

3.1.3.1 Peak Selection

Peak selection, also known as model selection, stands for the identification of spec-

tral components in a measured sample, i.e. the number of addends in (2.12). As

far as frequency-domain methods are concerned, they are commonly found based

on the occurrence of local maxima and applying a height threshold afterwards, a

strategy which is often proposed in the context of spectroscopic data analysis (Ya-

sui et al., 2003; Jarvi et al., 1997; Koradi et al., 1998; Moseley et al., 2004; Nguyen

et al., 2009; Dijkstra et al., 2006). By this, the identification of overlapped Lorentz

functions called ”shoulders” is not well supported, which will be discussed in more

detail in Section 3.3.2. As shown by Dijkstra et al. (2006), neglecting peak overlap

may not only yield an incomplete model but also substantially falsify the height

and area information of the detected peaks, and thus constitutes a major source

of error.

3.1.3.2 Parameter Approximation

Motivated by the fact that ideally each resonance frequency of the measured time

signal corresponds to a known analytical expression, the aim of these approaches

is to approximate the corresponding parameters to accurately model the signal.

Methods available in the literature are either directly operating on the measured

FID in the time domain or after Fourier Transform. Approaches for the former

class of methods are for example given by (Spielman et al., 1988; Neil & Bretthorst,

1993; Miller & Greene, 1989; Vanhamme et al., 2000b; Bretthorst et al., 2005), a

review is provided by Vanhamme et al. (2000a). Approaches of the latter class of

methods are e.g. based on exact interpolation (Giancaspro & Comisarow, 1983;

Goto, 1998), on the levenberg-marquardt algorithm (Marquardt, 1963; Jarvi et al.,

1997; Pons et al., 1996), or on genetic algorithms (Metzger et al., 1996; Karakaplan,

2007). A review can be found in Mierisov & Ala-Korpela (2001).
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3.1.3.3 Levenberg-Marquardt Algorithm

A prominent method for the task of parameter approximation is given by the

Levenberg-Marquardt method (LM). In the following, an outline of the method is

given. The more interested reader is referred to Press et al. (2007).

Definition 3.1 (Least-Squares Problem)

Given a vector of real-valued datapoints {(x1, y1), . . . , (xn, yn)} with xi, yi ∈ IR, i ∈
{1, . . . , n}, given the parameterized model function1 f : IR → IR with m param-

eters a = {a1, . . . , am}, find the parameter set a∗ = {a∗1, . . . , a∗m} which (locally)

minimizes the following merit function:

χ(a) =
n∑
i=1

(
yi − f(xi, a)

)2
. (3.1)

Several methods exist to solve the aforementioned problem, e.g. the sim-

plex method, singular value decomposition, simulated annealing, and also the

Levenberg-Marquardt method.

In the context of spectral NMR data, the model function can be described

based on (2.12):

f(ω, a) =

|J |∑
j

Aj
λj

λ2
j + (ω − ωj)2

=

|J |∑
j

Yj(ω, ωj, λj, Aj),

with parameters a = {ω1, . . . , ω|J |, λ1, . . . , λ|J |, A1, . . . , A|J |}.

The functions Yj(ω, ωj, λj, Aj) are called the basis functions of f . For reasons of

simplicity, they are in the remainder of the thesis denoted as Yj(ω).

As can be observed, the model f depends nonlinearly on the parameter set a.

Finding the parameter set which minimizes the merit function χ is then called a

nonlinear least-squares problem. LM is considered as the standard method for this

type of problems, and has commonly been used for parameter approximation of

spectral NMR datasets in the literature.

1With regard to equation (2.12), only the case of one independent variable is considered here.
The least-squares problem can however easily be generalized to l-dimensional model functions
f : IRl → IR as well.
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Basically, LM is a combination of two methods: The Gauss-Newton method

and the steepest descent method. The former assumes, that the χ function can at

any arbitrary parameter vector P be well approximated by a quadratic form:

χ(a) = χ(P) +
∑
i

∂χ

∂ai
ai +

1

2

∑
i,j

∂2χ

∂ai∂aj
aiaj + . . . (3.2)

≈ χ(P)− b · a +
1

2
a ·A · a, (3.3)

where b := −∇χ = −
(
∂χ

∂a1

, . . . ,
∂χ

∂am

)
,

and where [A]i,j :=
∂2χ

∂ai∂aj
.

(3.2) (first line) is the taylor series of χ, which is approximated by (3.3). The vector

b denotes the gradient of χ at P, namely the vector of first partial derivatives, and

the matrix A is the second partial derivative matrix of χ, also known as the Hessian

matrix of χ at P.

Given a parameter vector acur, the parameter vector amin which minimizes (3.3)

can then directly be obtained by the following equation (Gauss-Newton):

amin = acur + A−1 · [−∇χ(acur)]. (3.4)

In case where (3.3) is a poor approximation of the χ function, the next set of

parameters anext can also be found by taking a step down the gradient (steepest

descent), e.g. for parameter al given as:

al,next = al,cur − c ·
∂χ

∂al
(al,cur). (3.5)

c is a constant describing the size of the step.

(3.4) can be rewritten as a set of linear equations, e.g.

m∑
l

αk,l δal = βk, (3.6)
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with δal = al,min − al,cur,

βk = −1

2

∂χ

∂ak

= −2
n∑
i=1

(
yi − f(xi, a)

)∂f(xi, a)

∂ak
, (3.7)

and αk,l =
1

2

∂2χ

∂al ∂ak

= 2
n∑
i=1

(
∂f(xi, a)

∂ak

∂f(xi, a)

∂al
−
(
yi − f(xi, a)

)∂2f(xi, a)

∂al ∂ak

)
. (3.8)

Accordingly, (3.5) can be rewritten to give

δal = c · βl (3.9)

Note that the term δal describes the change of parameter al,cur in order to

receive the next parameter al,next, either by (3.6) or by (3.9). In the Levenberg-

Marquardt method, both equations are combined as described in the following:

With noting that the quantity χ is dimensionless, with further noting that in

case of parameter al, δal has the dimensions of al, and with also noting that βl has

the dimensions of 1
al

, the constant c in equation (3.9) must have the dimensions of

a2
l . The only obvious quantity with these dimensions are given by αl,l, the diagonal

elements of matrix [α]. As a result, the step size c in (3.9) can be replaced by the

term 1
µαl,l

, resulting in

δal =
1

µαl,l
βl ⇔ µαl,l δal = βl. (3.10)

µ is used as a fudge factor in order to adjust the scale. With rewriting (3.6) as

m∑
l

α′k,l δal = βk, (3.11)

with α′i,j =

αi,i(1 + µ), for i = j,

αi,j, else,

the variation term δal results as a smooth combination of both equations (3.6) and

(3.9). For large µ, the diagonal elements dominate, and equation (3.11) becomes
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similar to (3.10). Otherwise, (3.11) goes over to (3.6). The corresponding algorithm

is outlined in algorithm 1.

Algorithm 1 Levenberg-Marquardt Algorithm (LM)

Input: Initial guess for the parameters a,
Output: parameters a∗ minimizing χ

1: for b = 1 to K do
2: Compute χ(a)
3: Choose a modest value for µ, e.g. µ = 0.001
4: Calculate δa by (3.11)
5: if χ(a + δa) ≥ χ(a) then
6: µ = 10µ
7: else
8: µ = 1

10
µ

9: end if
10: end for
11: return a∗

A worst-case runtime estimate of algorithm 1 is given as O
(
(n |J |2 + |J |3)K

)
,

since evaluating a parameter set in line 2 takes time O(n |J |), and since the exe-

cution of line 4 takes time O(n|J |2 + |J |3) on its own, namely by calculating the

second partial derivative matrix A in time O(n|J |2) and calculating the inverse

matrix A−1 (3.4) in time O(|J |3) (Cormen et al., 2001).

In summary, LM finds the set of minimizing parameters a∗ by continuously

switching between the methods of Gauss-Newton and steepest descent, based on the

squared error of all datapoints (3.1). Close to a minimum, the former is emphasized,

and for those far away the latter is predominantly applied. In general, LM results

in a local minimum as a result of its hill-climbing nature.

3.2 The Lorentz function

In Chapter 2, we have seen that the elementary NMR signal after Fourier trans-

formation is given as a Lorentz function with particular parameters, reflecting the

relaxation process of a particular group of nuclei. In the following, some basic

properties of the Lorentz function are given.

A single Lorentz function Y (ω) is given as

Y (ω) = A
λ

λ2 + (ω − ω0)2
, (3.12)
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where ω0 stands for the position of the maximum, and A is a scaling factor (see

figure 3.2(a)). λ stands for the half width at half height (HWHH), as shown in the

following:

Let ωλ be the frequency, for which Y (ωλ) = 1
2
Y (ω0) holds. It follows that

Y (ωλ) =
1

2
Y (ω0),

⇔ A
λ

λ2 + (ωλ − ω0)2
= A

1

2λ

⇔ λ2 = (ωλ − ω0)2

⇔ λ = ωλ − ω0 ∨ λ = ω0 − ωλ.

The maximum of a Lorentz function Yj(ω) is given by Yj(ωj) =
Aj

λj
, and the

first three derivatives of Y are given as

Y
′
(ω) = − 2Aλ(ω − ω0)

(λ2 + (ω − ω0)2)2
(3.13)

Y
′′
(ω) =

8Aλ(ω − ω0)2

(λ2 + (ω − ω0)2)3
− 2Aλ

(λ2 + (ω − ω0)2)2
,

and Y
′′′

(ω) =
−48Aλ (ω − ω0)3(
λ2 + (ω − ω0)2)4 +

24Aλ (ω − ω0)(
λ2 + (ω − ω0)2)3 ,

and the corresponding roots of the derivatives are given as

Y
′
(ω) = 0⇔ω = ω0,

Y
′′
(ω) = 0⇔ω = ω0 ±

1√
3
λ, (3.14)

and Y
′′′

(ω) = 0⇔ω = ω0 ∨ ω = ω0 ± λ.

Further, with Y (−1) denoting the first order integral function of Y , given as

Y (−1)(ω) = A arctan

(
ω − ω0

λ

)
,
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(a) Parameters of a Lorentz function (b) A Lorentz function and its first two
derivatives

Figure 3.2: The Lorentz function as the spectral component of an NMR spectrum.
a) The parameters of a Lorentz function: ω0 stands for the spectral position of the
maximum, λ stands for the half width at half height (HWHH), and the area under
the curve is given by Aπ. b) The first (dashed line) and second (dot-dashed line)
derivatives of a Lorentz function (solid line) and the corresponding roots.

the area of Y equals Aπ as shown∫ ∞
−∞

Y (ω)dω = lim
a→∞
b→−∞

[
Y (−1)(ω)

]a
b

= lim
a→∞

Y (−1)(a)− lim
b→−∞

Y (−1)(b)

= A lim
a→∞

arctan

(
a− ω0

λ

)
− A lim

b→−∞
arctan

(
b− ω0

λ

)
= A lim

a→∞
arctan(a)− A lim

b→−∞
arctan(b)

= A
π

2
+ A

π

2
= Aπ.

Figure 3.2(a) illustrates a Lorentz functions and its three parameters.

3.3 Key considerations

An NMR spectrum can be described as a superposition of Lorentz functions with

unknown parameters. Regarding an automated approach for feature extraction

of NMR data, several problems arise making it difficult to accurately extract the

information and therefore gain valuable knowledge out of a series of NMR experi-

ments.

A correct identification and separation of signal peaks from noise and artifacts

plays a key-role to successful approximation. Following Bretthorst et al. (2005,
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p.67), model selection is the crucial part of any approach operating in the time do-

main, since ”Proposals for the model indicator are more difficult because when the

model indicator changes, all of the parameters change”. Furthermore, it is stated

that ”a change (is proposed) in the model indicator by increasing or decreasing the

model indicator randomly using a Gaussian random number generator”. Solving

the task of model selection in the frequency domain probably has more potential,

since signals occurring at different response frequencies become intuitively distin-

guishable from one another. Thus, this thesis focuses on methods operating in the

frequency domain.

The following subsections discuss general problems in the context of frequency

domain feature extraction. They are:

1. Data Complexity

2. Peak Overlap

3. Sample dependence of chemical shifts

3.3.1 Data Complexity

A sufficiently high spectral resolution is needed to minimize the effects of digiti-

zation. For example, figure 3.3 illustrates the drawbacks of poor resolution. The

trivial approach of graphically determining the parameters of a Lorentz function

clearly leads to highly falsified height, width, area and position information for

the poorly resolved spectrum (solid line). With increasing the resolution (dashed

line), the actual line shape is represented more accurately, and the parameters

can be found more accurately as well. As a result, the number of datapoints in a

single NMR spectrum is typically in the range of 104 − 106, whereas in opposition

the number of Lorentz functions in an NMR spectrum of heterogeneous biological

samples is typically less than 103. Thus, data reduction has the potential to reduce

computational efforts in further steps of the analysis, and hence plays an important

role in NMR data analysis.

3.3.2 Distortions and Peak Overlap

As already mentioned in Section 2.2, the spectrum is commonly distorted in many

ways, but even in the ideal case of (2.12) the number of local maxima does not
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Figure 3.3: 1H NMR signal, acquired with 32 K (dashed line) and with 2 K (solid
line) datapoints (Friebolin, 1999).

necessarily equal to the number of single Lorentz functions. The reason for this

is given by the occurrence of peak overlap, which will be discussed further in the

remainder of this subsection.

Definition 3.2 (Peak Distance)

The peak distance d(Yi, Yj) between two Lorentz functions Yi and Yj is defined by

the absolute distance in their respective position parameters ωi and ωj as

d(Yi, Yj) = |ωj − ωi|

In conjunction, the distance between a Lorentz function Yi and an arbitrary position

v ∈ IR is defined as

d(Yi, v) = |v − ωi|

The distance between two arbitrary positions v1, v2 is given as

d(v1, v2) = |v2 − v1|



40 NMR Feature Extraction

Figure 3.4: An example overlapping of three Lorentzians (dashed lines), resulting
in a single maximum and two ”shoulders” of the spectrum (solid line).

Definition 3.3 (Nearest Maximum)

Let {m1, . . . ,mQ} ⊂ w be the position vector of local maxima in a discrete spectrum

S. The nearest maximum m(Yj) to a given Lorentz function Yj is defined as

m(Yj) = m(ωj) = min
l∈Q

(
d(Yj,ml)

)
= min

l∈Q

(
|ml − ωj|

)
.

with l ∈ Q denoting the index of the local maximum.

Definition 3.4 (Hidden Peak)

Given a sum of Lorentz functions Y = Y1+· · ·+Y|J | (2.12), and given an addend Yj

of Y at position ωj, and given m(ωj) denoting the position of the nearest maximum

in Y to Yj, a hidden peak is defined as

Yj is hidden in Y ⇔

∃i ∈ {1, . . . , |J |} ⇒ m(Yi) = m(Yj) ∧ d(ωi,m(ωi)) ≤ d(ωj,m(ωj))

Yj is then called a shoulder in Y , or simply a shoulder.

In other words, a Lorentz function is hidden, if there exists another Lorentz

function with the same nearest local maximum (Definition 3.3) in the spectrum

but with lesser distance. In the case of d(Yi,mi) = d(Yj,mi), both Yi and Yj might

be intuitively considered as hidden and unhidden at the same time, but this is

for real-world experiments rarely the case due to discretization and is therefore

neglected in further considerations. In the following, a peak which is not hidden

in Y is called a maximum peak. Figure 3.4 provides an example overlap situation

for two hidden peaks and one maximum peak.
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Proposition 3.1

Given two equally scaled and shaped Lorentz functions Y1(x) and Y2(x) as

Y1(x) = A
λ

λ2 + (x− ω1)2

Y2(x) = A
λ

λ2 + (x− ω2)2
,

with x ∈ IR, and given their sum Y (x) = Y1(x) + Y2(x), the total number of local

optima in Y equals 1 for

|ω1 − ω2| ≤
2√
3
λ

Proof:

The positions of the local optima in Y equal the zero positions of the first derivative.

They can be found by solving the following equation for x:

Y
′
(x) = −2Aλ

(
(x− ω1)(

λ2 + (x− ω1)2)2 +
(x− ω2)(

λ2 + (x− ω2)2)2

)
= 0,

resulting in three solutions x1, x2 and x3, given as

x1 =
ω1 + ω2

2

∨x2 = x1 ±
1

2

√
−4λ2 + (ω2 − ω1)

(
ω1 − ω2 + 2

√
4λ2 + (ω1 − ω2)2

)

∨x3 = x1 ±
1

2

√
−4λ2 + (ω1 − ω2)

(
ω2 − ω1 + 2

√
4λ2 + (ω2 − ω1)2

)
x1 stands for the position of the local optimum of Y in the middle of ω1 and ω2,

which either is a minimum in the separated case, or the single maximum in the

overlapped case. x2 and x3 stand for the two maxima in the separated case for

ω1 > ω2 and ω1 < ω2, respectively. Their root terms equal zero for

ω1 = ω2 +
2√
3
λ ∨ ω1 = ω2 −

2√
3
λ
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which concludes that only one maximum occurs in Y if this particular relationship

between the positions ω1, ω2 and the width parameter λ applies. There are two

results for ω1, distinguishing between ω1 > ω2 and ω1 < ω2 again.

�

Proposition 3.2

Given two equally scaled and shaped Lorentz functions Y1, Y2, and given their sum

Y as in proposition 3.1, and let w.l.o.g. be ω1 < ω2, then it holds that

ω2 − ω1 <
2λ√

3
⇒ Y ′′has maximal two roots.

Proof:

Given any Lorentz function Y0 as

Y0(ω) = A
λ

λ2 + (ω − ω0)2
,

the corresponding second derivative Y ′′0 of Y0 has two roots, i.e. ω = ω0 ± 1√
3
λ

(3.14), and is negative only in the interval [ω0 − 1√
3
λ, ω0 + 1√

3
λ] due to

Y ′′0 (ω) < 0

8Aλ(ω − ω0)2

(λ2 + (ω − ω0)2)3
− 2Aλ

(λ2 + (ω − ω0)2)2
< 0

⇔ 2Aλ

(λ2 + (ω − ω0)2)2

(
4(ω − ω0)2

λ2 + (ω − ω0)2
− 1

)
< 0

⇔ 4(ω − ω0)2

λ2 + (ω − ω0)2
< 1

⇔ 3(ω − ω0)2 < λ2

⇔ ω > ω0 −
1√
3
λ ∧ ω < ω0 +

1√
3
λ

In consequence, Y ′′0 is positive for

ω < ω0 −
1√
3
λ ∧ ω > ω0 +

1√
3
λ

To prove that the summation of two equally shaped and scaled Lorentz functions

Y1, Y2 with d(Y1, Y2) ≤ 2√
3
λ result in a sum Y , of which the second derivative Y ′′
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contains at most two roots, we focus w.l.o.g. at and around the position ω0 − λ√
3
.

Let for this purpose y1 be given as

y1 = Y ′′(ω0 −
λ√
3

+ c)

=
8Aλ(c− λ√

3
)2

(λ2 + (c− λ√
3
)2)3
− 2Aλ

(λ2 + (c− λ√
3
)2)2

=
54Aλ c

α︷ ︸︸ ︷
(3c− 2

√
3λ)(

4λ2 + c (3c− 2
√

3λ)︸ ︷︷ ︸
α

)3 ,

with c ∈ IR, c < 0, and let y2 be given as

y2 = Y ′′(ω0 −
λ√
3

+ d)

=
8Aλ(d− λ√

3
)2

(λ2 + (d− λ√
3
)2)3
− 2Aλ

(λ2 + (d− λ√
3
)2)2

=
54Aλd

β︷ ︸︸ ︷
(3d− 2

√
3λ)(

4λ2 + d (3d− 2
√

3λ)︸ ︷︷ ︸
β

)3 ,

with d ∈ IR, d > 0. By noting that Y ′′0 is axis-symmetric in ω0, since the third

integral function arctan is rotation-symmetric (without proof), it is sufficient to

show that the following holds:

c < 0 < d ≤ λ√
3
∧ |c| = |d| ⇒ |y1| < |y2|
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For λ,A > 0, the proof follows as

c < 0 < d ≤ λ√
3
⇒ α < 0 ∧ β < 0

∧ c < 0 < d ≤ λ√
3
∧ |c| = |d| ⇒ |α| > |β| ∧ |c α| > |d β|

∧ c < 0 ∧ α < 0 ⇒ cα > 0

∧ 0 < d ≤ λ√
3
∧ β < 0 ⇒ dβ < 0 ∧ |dβ| < 4λ2

⇒ 4λ2 + c α > 4λ2 + d β

⇒ cα

(4λ2 + cα)3
<

dβ

(4λ2 + dβ)3

⇒ |y1| < |y2|

�

In summary, peak overlap between a pair of equally scaled and shaped Lorentz

functions results in the loss of a local maximum in their sum for the distance

d(Y1, Y2) ≤ 2√
3
λ, and furthermore, the number of roots in the second derivative Y ′′

of the sum Y is two for d(Y1, Y2) < 2√
3
λ. Figures 3.5(a) - 3.5(d) show example over-

lapping scenarios of Lorentz functions, their resulting sum and the corresponding

first and second derivatives. One clearly observes, that the minima of the second

derivative function (red dot-dashed line) are much better preserved than the max-

ima of the spectrum (black solid line) (compare figures 3.5(a), 3.5(b) and 3.5(c)).

Based on this observation, Chapter 5 proposes an alternative method for the iden-

tification of peak overlap.

3.3.3 Sample dependence of chemical shifts

With respect to the analysis of a whole series of spectra resulting from multiple

NMR experiments, an additional drawback is given by the sample dependence

of chemical shifts (compare Section 2.6). As well as to the type and the atomic

neighbourhood of a nucleus, the chemical shift also depends on the temperature, the

pH-value and the concentrations of the solutions. These conditions generally vary

from experiment to experiment, as does the chemical shift. As a result, Lorentz

functions of the same molecular source may occur at different positions along the
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(a) d(Yi, Yj) = 2.5√
3
λ (b) d(Yi, Yj) = 2√

3
λ

(c) d(Yi, Yj) = 1.5√
3
λ (d) d(Yi, Yj) = 1√

3
λ

Figure 3.5: Two overlapping Lorentz functions Yi, Yj(grey areas) with equal HWHH
λ and area A, the corresponding sum (solid line) and the resulting second derivative
(dot-dashed red line), with distances varying as indicated.

frequency axis for different experiments, and a direct point-by-point comparison of

multiple NMR spectra is thus prohibited.

For a series of NMR spectra S1(ω), . . . , SK(ω) containing an equal set of spectral

components J , equation (2.12) can be extended as

Sk(ω) =

|J |∑
j

Aj
λj

λ2
j + (ω − ωj,k)2

=

|J |∑
j

Yj,k(ω),

with ωj,k = ωj + cj,k

denoting the particular frequency variation of component j in experiment k. This

leads to the two-dimensional |J | ×K matrix C containing the variation terms as
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c1,1 . . . c1,k . . . c1,K

...
...

...

cj,1 . . . cj,k . . . cj,K
...

...
...

c|J |,1 . . . c|J |,k . . . c|J |,K

As already mentioned in Section 2.6, the actual values of C cannot be cal-

culated in advance. In this context, it is worth mentioning that the frequency

distribution within multiplets (see Section 2.9), namely the peak-to-peak distances

in the frequency domain, is given by the component-specific coupling constants,

which themselves only depend on the external magnetic field. Thus, chemical shift

variations occur for all multiplets only as a whole, more formally described as

cp,k = cq,k for all p, q ∈M,k ∈ K

with M ⊆ J denoting a multiplet, and K denoting the spectrum set. In this

context, a method for the identification of multiplets is proposed in Chapter 6.
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Chapter 4

Approach I: Lorentzian Peak

Reconstruction

4.1 The Exact Solution

For a spectrum S containing a single peak (|J | equals 1), it holds Y (ω) = S(ω).

By providing three points of the function (ω1, Y (ω1)), (ω2, Y (ω2)) and (ω3, Y (ω3))

(see 4.1), a quadratic equation system can be obtained as

Figure 4.1: Three points are chosen to directly calculate the parameters of the

Lorentz function.



48 Approach I: Lorentzian Peak Reconstruction

Y (ω1) = A
λ

λ2 + (ω1 − ω)2

∧ Y (ω2) = A
λ

λ2 + (ω2 − ω)2
(4.1)

∧ Y (ω3) = A
λ

λ2 + (ω3 − ω)2
,

With denoting Y (ω1) = y1, Y (ω2) = y2 and Y (ω3) = y3, the parameter solutions

for A, λ and ω are found by the software Mathematica 5.0, Wolfram Research as

follows:

ω =
ω1

2 y1 y2,3 + ω3
2 y1,2 y3 + ω2

2 y2 (−y1,3)

2ω1,2 y1 y2 − 2 (ω1,3 y1 + (−ω2,3) y2) y3

,

λ =
1
√
y2,3

√
ω3

2 y3 +
α

4 (ω1 y1 y2,3 + ω3 y1,2 y3 + ω2 y2 (−y1,3))2 ,

A =
−4ω1,2ω1,3 ω2,3 y1 y2 y3 (ω1 y1 y2,3 + ω3 y1,2 y3 + ω2 y2 (−y1,3))λ(

ω4
1,2 y1

2 y2
2 − 2ω2

1,2 y1 y2

(
ω2

1,3 y1 + ω2
2,3 y2

)
y3 +

(
ω2

1,3 y1 − ω2
2,3 y2

)2
y3

2
) ,

where

α = −
(
ω4
1,2 y1

2 y2
3
)

+ ω2
1,2 y1 y2

2 β y3 − y2 γ y32

+ ((ω1 − 3ω3) ω1,3 y1 − (ω2 − 3ω3) ω2,3 y2)
(
ω1

2 y1 − ω2
2 y2 + ω3

2 − y1,2
)
y3

3,

β =
(
3ω1

2 + ω2
2 − 2ω3

2 − 2ω1 (ω2 + 2ω3)
)
y1 + 2ω2

2,3 y2,

γ = ω1,3

(
3ω1

3 − ω1
2 (4ω2 + 5ω3) + ω1

(
2ω2

2 + 4ω2 ω3 − 5ω3
2
)

− ω3

(
2ω2

2 − 8ω2 ω3 + ω3
2
))
y1

2

+ 2 (ω2 − ω3)
(
ω2

2 (−2ω1 + ω2) + 4ω1,2 ω2 ω3 + (2ω1 − 5ω2) ω3
2 + ω3

3
)
y1 y2

+ ω4
2,3 y2

2,

ω1,2 = ω1 − ω2, ω1,3 = ω1 − ω3, ω2,3 = ω2 − ω3,

y1,2 = y1 − y2, y2,3 = y2 − y3, and y1,3 = y1 − y3.

The equations are well defined for

ω1 < ω2 < ω3 ∧ y1 < y2 > y3 ∧ y1, y2, y3 > 0 (4.2)
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and for further conditions describing the general relationships between the given

points expressible by a single Lorentz function:

(y2 <
(ω1 − ω3)2 y1

(ω2 − ω3)2 ∨ (ω1 − ω3)2 y1

(ω2 − ω3)2 < y2 ≤
(−2ω1 + ω2 + ω3)2 y1

(ω2 − ω3)2 )

∧ y3 >
(ω1 − ω2)2 y1 y2

(
(ω1 − ω3)2 y1 + (ω2 − ω3)2 y2

)(
(ω1 − ω3)2 y1 − (ω2 − ω3)2 y2

)2

− 2

√√√√(ω1 − ω2)4 (ω1 − ω3)2 (ω2 − ω3)2 y1
3 y2

3(
(ω1 − ω3)2 y1 − (ω2 − ω3)2 y2

)4

∨
y2 =

(ω1 − ω3)2 y1

(ω2 − ω3)2 ∧ y3 >
(ω1 − ω2)2 y1 y2

2 (ω1 − ω3)2 y1 + 2 (ω2 − ω3)2 y2∨
y2 >

(−2ω1 + ω2 + ω3)2 y1

(ω2 − ω3)2

∧ y3 < 2

√√√√(ω1 − ω2)4 (ω1 − ω3)2 (ω2 − ω3)2 y1
3 y2

3(
(ω1 − ω3)2 y1 − (ω2 − ω3)2 y2

)4

−
(ω1 − ω2)2 y1 y2

(
(ω1 − ω3)2 y1 + (ω2 − ω3)2 y2

)(
(ω1 − ω3)2 y1 − (ω2 − ω3)2 y2

)2 .

As a consequence, the Lorentzian parameters can directly be calculated by

providing any triplet of points, as long as the conditions are met. Note that the

middle value of a given triplet of points needs to be larger than the side ones (4.2),

but does not necessarily equal the maximum of the underlying Lorentz function

due to the effects of discretization.

4.2 Proportional Approximation I

In order to directly calculate the parameters based on the solutions of the previous

section, position triplets are found by the occurrence of local maxima in a given

spectrum. For a peak j, they are in the following denoted as {wj,left, wj,max,
wj,right}, and the respective positions are – as an initial solution – found with

wj,max as the maximum position and wj,left and wj,right as the respective next

left and right neighboring positions of a spectral component j. In this way, the

maximum constraint (4.2) is automatically preserved.



50 Approach I: Lorentzian Peak Reconstruction

Figure 4.2: Initially found Peaks by direct calculation. Shown are the spectrum
(solid curve), the initially found Lorentz functions (grey areas), a predefined height
threshold (horizontal line) and the corresponding superposition (dotted line).

A real-world spectrum is commonly given as a superposition of multiple Lorentz

functions (2.12), and the actual intensity values of each Lorentz-function remain

hidden. The assumption of Yj(w) = S(w) ∀j ∈ J results in a parameter set, for

which each Yj(w) on its own matches the given spectrum at each of the chosen po-

sitions wj,left, wj,max and wj,right, but for which the sum of all components in (2.12)

will not necessarily match the spectrum S(w). Figures 4.2 and 4.3(a) elucidate this

situation. The spectrum is displayed by the black solid line, each component Yj(w)

is marked in grey, and the dashed line shows the resulting superimposed signal of

each component. It can be observed, that this has almost no effect if the peaks are

far enough from each other (left side of figure 4.2), but also leads to substantial

errors for peaks found close to one another (right side of figure 4.2, figure 4.3(a)).

Nevertheless, this initial guess can be used as a starting point. The basic idea

to improve the initial parameter set is to iteratively adjust the values Yj(w) by

rule of proportion. Let Ŷ
[i]
j denote the model of Lorentz function Yj and let Ŷ [i]

be the current model spectrum, namely the sum of all modeled Lorentz functions

(the dashed line in figures 4.2, 4.3(a)) at iteration step i, and let wj,x denote any

of the chosen position triplet {wj,left, wj,max, wj,right}. The key idea is to take

the ratio between the original spectrum S(wj,x) and the current model Ŷ (wj,x) as

the ratio, by which the current intensity value Y
[i]
j (wj,x) has to be decreased or

increased (figure 4.3(b)) in order to produce a more accurate fit (figure 4.3(c)).

The corresponding formula is written as

Ŷ
[i]
j (wj,x)

Ŷ
[i−1]
j (wj,x)

=
S(wj,x)

Ŷ [i−1](wj,x)
⇔ Ŷ

[i]
j (wj,x) = Ŷ

[i−1]
j (wj,x)

S(wj,x)∑
l∈J

Ŷ
[i−1]
l (wj,x)

(4.3)
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4.3 Shoulder Detection

For a real-world spectrum, not only the actual parameters of the Lorentz functions

are unknown, but also the number of functions to start with. A trivial way to

solve this problem is to consider each local maximum exceeding a certain intensity

threshold as a potential peak. However, hidden peaks as defined in Definition

3.4 are neglected (see Definition 3.4 in Section 3.3.2 of the previous chapter). A

straight forward solution to also detect ”shoulders” is within this chapter given by

iteratively subtracting the model from the original spectrum after approximation of

the current parameter set, and to extend the model by the remaining local maxima

(figures 4.3(d) - 4.3(f)). This is achieved by the iteration of the following three

steps:

1. Find all local maxima exceeding intensity threshold r, calculate the corre-

sponding lorentzian parameters given the analytical solutions of equation-

system (4.1), and add them to the model.

2. Iteratively approximate the parameter set by the rule of proportion as given

by (4.3).

3. Subtract the resulting model from the original spectrum, and proceed with

Step 1.

Figure 4.3 provides a schematic illustration of the approximation.

4.4 The Algorithm

The corresponding algorithm Lorentzian Peak Reconstruction (LPR) is given by

algorithm 2. The best model Ŷ best is hereby defined as the one which minimizes

the mean squared error at the peak points (MSEPP), defined as

MSEPP(S, Ŷ ) =
1

3 |J |

|J |∑
j

(
(S(wj,left)− Ŷ (wj,left))

2

+ (S(wj,max)− Ŷ (wj,max))
2

+ (S(wj,right)− Ŷ (wj,right))
2
)

(4.4)
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(a) (b) (c)

(d) (e) (f)

Figure 4.3: Parameter approximation and Shoulder Detection by rule of proportion.
(a): Initial guess exceeds a superimposed spectrum. (b): Iteratively adjust the
heights by rule of proportion (4.3) and recalculate the parameters. (c): Result
after three iterates. (d): Hidden Peaks are found by iteratively subtracting the
model from the spectrum. (e): Incorporating the new ”shoulders” to the model by
repeating the proportional approximation. (f): The final result.

and can be calculated in time O(|J |2). MSEPP considers the squared distance for

the chosen three points of a peak only.

In the following, we will denote lines 4 - 13 as the inner loop, and lines 1 -

16 as the outer loop of algorithm 2. Each iteration of the outer loop needs time

O(n+K2 n |J |+|J |) with |J | denoting the number of model peaks, K2 denoting the

predefined number of inner loop iterations, and n denoting the number of spectral

datapoints of the spectrum. This runtime estimate concludes by observing that

finding local maxima and calculating the corresponding lorentzian parameters in

lines 2-3 takes time O(n), that the inner loop can be performed in time O(n|J |),
and that line 15 can be executed in time O(n|J |) as well.

In summary, lines 2 - 3 detect single peaks based on the occurrence of local

maxima and a user-specified height threshold r, and lines 4 - 13 approximate

the parameters in accordance with the spectrum. Hidden peaks are detected by

iteratively subtracting the currently best model from the spectrum (line 15).
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Algorithm 2 Lorentzian Peak Reconstruction (LPR)

Input: Spectrum S containing n data points, height threshold r, parameters
K1, K2

Output: Spectrum model Ŷ

1: for a = 1 to K1 do
2: Find all local maximum positions wj,max, for which S(wj,max) >r holds.
3: Calculate lorentzian parameters using the solutions

of equation system (4.1), given the point triplets
{(wj,left, S(wj,left)), (wj,max, S(wj,max)), (wj,right, S(wj,right))} and add to
J .

4: for b = 1 to K2 do
5: Calculate the model Ŷ [b] for all {w1, . . . , wn} ∈ w.
6: for all peaks j in J do
7: Calculate new heights Ŷ

[b]
j (wj,x) by (4.3)

8: if wj,max is not local maximum in Ŷ
[b]
j anymore then

9: Find new maximum position wj,max within the range

[wj−1,right, wj+1,left] in Ŷ
[b]
j

10: end if
11: Calculate new parameters ωj, λj, Aj, given the new heights Ŷ [b](wj,x)
12: end for
13: end for
14: Remove all peaks with Y

[b]
j (wj,max) ≤ r

15: Subtract the currently best model Ŷ best from S
16: end for
17: return Ŷ best

4.5 Results

The performance of algorithm 2 is evaluated on four different spectra, one real-

world spectrum and three simulated spectra. The simulated spectra contain each

100 Lorentz functions Y1, . . . , Y100, with parameters Aj, λj and ωj given as

Aj = uA, uA ≈U(50, 100), j ∈ {1, . . . , 100}

λj = uλ, uλ ≈U(0.002, 0.005), j ∈ {1, . . . , 100}

ωj = ωj−1 + uω ·max(λj−1, λj), uω ≈U(1.5, 5.0), j ∈ {2, . . . , 100}

uA, uλ and uω are uniformly distributed random variables. The position parameter

of the first Lorentz function ω1 has been chosen as 0.0. The spectral resolution

is given as wi+1 − wi = 0.0005 ∀i ∈ {1, . . . , n − 1}, where n denotes the number

of datapoints. The distance between two consecutive peak pairs Yj−1, Yj is given
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by multiplying the greater of their respective HWHH parameters λj−1, λj with a

random number, resulting in the first simulated spectrum SimA.

For noise simulation, two more spectra SimB and SimC are similarly generated,

but with adding to each spectral datapoint an equally distributed random number

v as

S(w) =
100∑
j=1

Aj
λj

λ2
j + (w − ωj)2

+ v, (4.5)

with v ≈ U(0, vmax) and vmax =

max
i∈{1,...,n}

S(wi)

ρ
.

ρ is reciprocal to the maximal distortion level vmax, with a high value for ρ implying

a low level of noise. In the following, ρ is referred to as the signal-to-distortion

ratio (SDR). It holds ρ = 1000 for the second spectrum SimB, and ρ = 100 for

the third spectrum SimC . Figure 4.4 shows an example simulated spectrum.

Figure 4.4: Example of a simulated spectrum.

All runs of algorithm 2 have been performed with the parameter settings K1 = 3

(number of outer loops), K2 = 50 (number of inner loops) and height thresholds

r = 0.02·max for the simulations, and r = 0.0005·max for the real-world spectrum,

where max denotes the maximal value of the respective data vector. For evaluation

purposes, two distinct measures are used: Mean squared error (MSE) and mean
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squared error at the peak points (MSEPP). MSE measures the mean squared error

between the given spectrum S and the model Ŷ as

MSE(S, Ŷ ) =
1

n

n∑
w=1

(S(w)− Ŷ (w))2

MSEPP refers to the measurement function used in algorithm 2 (4.4). In order

to monitor the squared error between the current model Ŷ and the actual super-

position of Lorentz functions Y regardless to additional noise in the spectra, two

analogous measures MSE Orig and MSEPP Orig are introduced as

MSE Orig(Y, Ŷ ) =
1

n

n∑
w=1

(Y (w)− Ŷ (w))2,

MSEPP Orig(Y, Ŷ ) =
1

3 |J |

|J |∑
j

(
(Y (wj,left)− Ŷ (wj,left))

2

+ (Y (wj,max)− Ŷ (wj,max))
2

+ (Y (wj,right)− Ŷ (wj,right))
2
)

Figure 4.5 shows the performance of algorithm 2 for both error functions MSE

and MSEPP. Thereby, each iteration of the outer loop is marked by a vertical line,

and a step on the horizontal axis reflects the accuracy of the current model after

executing either lines 3 or 12 of algorithm 2. For spectrum SimA, remarkably both

MSE and MSEPP decrease exponentially in the number of iterations from 108

straight down to 10−14 (figure 4.5(a)). This shows, that the proposed algorithm is

capable of reconstructing a pure sum of Lorentz functions.

Figure 4.5(b) shows the performance for the simulated spectrum SimB. Again

substantial error decrease can be observed within the first iterations, but only

MSEPP shows similar behavior to that observed in the case of SimA. This can be

reasoned by the fact, that the proportional approximation based on (4.3) relies on

three peak-specific points only.

Increasing the level of noise has indeed a dramatic effect on the performance of

algorithm 2, as can be observed in figure 4.5(c). Within the first 51 steps, namely

the first iteration of the outer loop, highly unstable behavior is found. As can

be observed in figure 4.5(d), a feasible explanation is given by observing, that the

average number of 114 detected peaks highly exceeds the original number of 100

Lorentz functions. Although filtering the model by discarding peaks with smaller
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(a) Spectrum SimA (b) Spectrum SimB

(c) Spectrum SimC (d) Number of peaks for spectrum SimC . The
length of the errorbars equal twice the stan-
dard deviation out of ten spectra.

Figure 4.5: Simulation results of Algorithm 2

maximum values than the threshold r (line 14 of algorithm 2) results in a more

stable development for all error measures, the original number of peaks is still

exceeded on average by 3 - 4 peaks. Note, that for SimA and SimB the number

of peaks was constantly 100 and is therefore not shown. The error at the peak

points given by MSEPP and MSEPP Orig is below their respective counterparts

MSE and MSE Orig, which shows the algorithm’s ability to focus on the important

parts of a spectrum, namely the peaks themselves. For all simulated spectra, the

execution of all 152 steps needed between 30 and 40 seconds on average for ten

spectra.

For demonstration purposes, the performance of algorithm 2 is also shown for

an example of a real-world spectrum, namely a metabolite spectrum of human

colon cell lines containing 32768 (215) datapoints. The spectrum is obtained on a

VARIAN INOVA 800 spectrometer operating at 799.77 MHz. The data was ac-

quired with a 13 KHz spectral width, 22114 data points, and 1.7 second acquisition

time. Zero filling was performed resulting in 32768 (215) data points, and the FFT
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Figure 4.6: A subregion of the example ”real-world” spectrum Sreal. The modeled
Lorentz functions are shown in grey color.

algorithm was applied without any line broadening. Baseline and phase correc-

tion were performed by the software ACD/SpecManager 6.0. This spectrum is in

the following denoted as Simreal. Figure 4.6 shows spectrum Sreal in the spectral

window ranging from 1.9 ppm to 4.8 ppm after peak reconstruction. In total, 292

peaks are found for the parameter setting K1 = 3, K2 = 50 and r = 0.0005max

(maximal spectrum intensity).

For reasons of simplicity, the reconstruction performance is shown in detail only

for the subregion of the spectrum between 2.3 ppm and 2.4 ppm. As shown in figure

4.7, this region maintains both local maxima and shoulders. The reconstructed

Lorentz functions are shown after the first (top row), second (center row) and

third (bottom row) outer loop iteration of algorithm 2. The left column shows

the current model before entering the inner loop (line 4), while the right column

shows the current best model Ŷ after finishing the inner loop (line 13 of algorithm

2). Interestingly, the peak marked with a triangle in the top row moves to the left

during the parameter approximation (compare figures 4.7(a) and 4.7(b)). A reason

is given by the fact that the initial parameters are highly inaccurate (see dashed

line in figure 4.7(a)), leading to substantial changes of the modeled height values

Ŷj after applying the rule of proportion (4.3), i.e. the right side of that peak in

figure 4.7(a) is more decreased than the left side, and by proportionally calculating

the new values by (4.3), the local maximum moves to the left.

The detection of two more peaks in the second iteration of the outer loop is

shown in figure 4.7(c) (triangles in the center row). As can be observed in figure

4.7(d), the new peaks fill in the gaps, and the subsequent approximation has no

greater effect on the model.

The bottom row shows a similar situation: First, one more peak is detected

(figure 4.7(d)), and then the peak set is approximated (figure 4.7(e)). In some

regions, the model lies above the original spectrum (e.g. the region marked by
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(a) After line 3, a = 1 (b) After line 14, a = 1

(c) After line 3, a = 2 (d) After line 14, a = 2

(e) After line 3, a = 3 (f) After line 14, a = 3

Figure 4.7: Peak reconstruction of algorithm 2 on a subregion of Sreal. Shown are
the spectrum (solid curve), the set of Lorentz functions (grey areas), the predefined
height threshold (horizontal line) and the corresponding superposition (dotted line)
for intermediate states of the algorithm as indicated.

the circle in the bottom left of figure 4.7(e)). Since the algorithm considers only

the distinct three positions wj,l, wj,m and wj,r of each Lorentz function Yj, such

inaccurate regions may occur as a result of noise, distortions or yet hidden Lorentz

functions.
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(a) Reconstruction error (b) Number of peaks

Figure 4.8: Error measures and number of Lorentz functions during the reconstruc-
tion of the subregion of Sreal

Figure 4.8 shows the approximation error in each iteration step for the subregion

of Sreal. The error-function MSE almost remains unchanged during the execution

of the inner loops, and even decreases directly after including the additionally

found peaks (filling the gap). Generally, the measure MSEPP decreases during

the first 50 steps, but between steps 5 to 20, MSEPP rises by several orders of

magnitude before falling again. The previously mentioned process of the ”moving”

peak observed in figure 4.7 gives a reasonable explanation for this observation.

The unstable development of MSEPP from step 60 may again be explained by

either an incomplete or overrepresented model, or the occurrence of noise and

other distortions. However, in general an error decay over magnitudes of order can

be observed again.

At last, Figure 4.9 shows the final result of Algorithm 2 in comparison to an

example outcome of the Levenberg-Marquardt Algorithm (Algorithm 1 of the pre-

vious chapter). The latter has been achieved by the commercial software PeakFit

4.0. Thereby, the peaks were found automatically as local maxima exceeding a

height threshold (indicated by the horizontal line), and two peaks have been added

manually to the model to also account for the shoulders of the two biggest peaks as

well. One clearly observes, that the former Algorithm 2 yields a lesser amount of

error than the latter in terms of the absolute difference (colored in black) between

the model and the spectrum.
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(a) Algorithm 2 (b) Levenberg-Marquardt

Figure 4.9: Final approximation result for SReal by algorithm 2 (left) and by
the Levenberg-Marquardt algorithm (right). The absolute difference between the
model and the spectrum is marked in black color.

4.6 Discussion and Conclusion

In this chapter, an algorithm for reconstructing an NMR spectrum into a set of

Lorentz functions is proposed. Empirical studies on simulated spectra show an

exponential error decrease. The studies show that the achieved models maintain

an especially low error at the chosen peak points of the spectra. Thus, the re-

sults indicate, that the approach of determining the analytical solutions for the

parameters of a single Lorentz function in conjunction with the rule of proportion

has much potential in fulfilling the task of spectrum modeling and thus feature

extraction of NMR spectra.

Unfortunately, several drawbacks exist for Algorithm 2 and are pointed out as

follows: As seen in the results section of this chapter, the proposed algorithm has

a rather suboptimal performance on noisy data for the task of peak selection (see

Section 3.1.3 of the previous chapter). High fluctuations of the error functions are

observed for a considerably low noise amplitude of 1% of a spectrum’s maximal

intensity value. Moreover, further test runs with varying values for the height

threshold r indicated that a clear separation of signaling peaks and noise distortions

only based on the height information of an observed maximum is hard to achieve.

In conclusion, the reliability of Algorithm 2 concerning an accurate identification of

the actually underlying set of Lorentz functions of a given spectrum is considered to

be rather unsatisfying. As mentioned before in the previous chapter, yet finding the

set of Lorentz functions correctly is crucial to any approximation scheme if it is to

accurately model a spectrum. For this reason, the focus of further investigations

lies in improving the peak selection part of the approach, and further empirical
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studies including for instance a detailed comparison to the Levenberg-Marquardt

algorithm are yet omitted.

Mitigating the effects of noise by applying smoothing filters constitutes another

reasonable strategy to help in preventing incorrect peak selection. However, a more

general observation calls the whole approach into question: The cyclic methodology

of finding local maxima, approximating the set of parameters, subtracting the

model found so far from the spectrum, and finding local maxima again inherently

leads to computational overhead, since at the beginning of each cycle the whole

parameter set is adjusted all over again, and all achievements of the previous

approximation, namely the inner loops of Algorithm 2, become obsolete. In other

words, computational power is spent in each approximation cycle in order to detect

new shoulders, which themselves change the whole model, and consequently, the

efforts made so far for parameter approximation become useless.

In the following chapter, an approach is proposed to tackle the mentioned draw-

backs by explicitly separating the tasks of peak selection and parameter approxi-

mation into two distinct problems. As will be shown theoretically and empirically,

this leads to an improvement in both time consumption and quality of the results.
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Chapter 5

Approach II: Lorentzian

Spectrum Reconstruction

In Chapter 4, a first approach for reconstructing a spectrum into its distinct set

of peaks was proposed, based on the analytical solution for the parameters of

a Lorentz function and proportional approximation in accordance with a given

spectrum. Although the results are shown to be promising, a major drawback is

observed for the task of model selection (see Section 3.1.3). Further investigations

on changing the threshold led to the conclusion that this approach is rather im-

practical to automatically separate signaling peaks from noise distortions. With

the aim of improving the peak selection procedure, this chapter proposes an ex-

tension of the Lorentzian Peak Reconstruction approach. More specifically, the

two tasks of peak selection and parameter approximation are solved sequentially

by first simultaneously detecting maximum and hidden peaks of a spectrum, then

approximating the corresponding parameters at a stroke.

5.1 Curvature-Based Peak Selection

5.1.1 Initial Considerations

A reasonable way to find all peaks simultaneously, even if they are overlapped,

is to take into account the changes in the curvature of the spectrum, as already

mentioned in Section 3.3.2 of Chapter 3. As a matter of fact, each local maximum

of the spectrum has a corresponding root in its first derivative, and the roots of the



64 Approach II: Lorentzian Spectrum Reconstruction

second derivative are the inflection points, those points at which the curvature of

the original function changes its direction. A positive or negative second derivative

value corresponds to a curvature of the original function in counter-clockwise or

clockwise direction, respectively. Moreover, a local minimum in the second deriva-

tive stands for a locally maximal turn in clockwise direction of the original function,

and hence gives rise to the curvature property of interest.

For the Lorentzian Peak Reconstruction approach of the previous chapter, sep-

arating the signal from noise and other distortions is based on a user-specified

height threshold r. However, it turned out that in this way the outcome is in-

accurate in the presence of noise. Here, each position wi maintaining a nega-

tive local minimum in the second discrete derivative S ′′, i.e. S ′′(wi) < 0 and

S ′′(wi+1) > S ′′(wi) ≤ S ′′(wi−1), is considered to be a potential peak position, in

order to identify both maximum and hidden Lorentz functions in a spectrum at

once. In this way, peak identification can be seen as based on searching for little

”bumps” in the spectrum instead of local maxima only.

More formally, a second derivative minimum wm is assigned a surrounding

interval [wl, wr] with wl, wr ∈ w as the closest zero crossings, local maxima or

plateaus in S ′′, either of which is closer positioned to wm, more formally defined

as follows:

Definition 5.1 (Peak Triplet)

A peak triplet is given as a triplet of positions {wl, wm, wr} ⊂ w, for which the

following holds:
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1. S ′′(wm) < 0 ∧ S ′′(wm+1) > S ′′(wm) ≤ S ′′(wm−1),

2. l > m ∧ S ′′(wj+1) > S ′′(wj) ∀j ∈ {l − 1, . . . ,m}

∧
(
S ′′(wl+1) ≤ S ′′(wl) > S ′′(wl−1)︸ ︷︷ ︸

maximum or plateau

∨ (S ′′(wl+1) ≥ 0 ∧ S ′′(wl) < 0)︸ ︷︷ ︸
zero crossing

)
,

3. r < m ∧ S ′′(wj+1) < S ′′(wj) ∀j ∈ {m− 1, . . . , r}

∧
(
S ′′(wr+1) < S ′′(wr) ≥ S ′′(wr−1)︸ ︷︷ ︸

maximum or plateau

∨ (S ′′(wr) < 0 ∧ S ′′(wr−1) ≥ 0)︸ ︷︷ ︸
zero crossing

)
.

Note that, as mentioned in Chapter 3, the positions are given in descending

order, i.e. wi > wi+1 ∀i ∈ {1, . . . , n − 1}. In opposition to the previous chapter,

where a point triplet was defined as a local maximum and the next neighbouring

points of the spectrum, a peak triplet is here defined by properties of a spectrum’s

curvature, i.e. as a local minimum of the second derivative S ′′ and its nearest zero

crossings, local maxima or plateaus.

Definition 5.2 (Triplet Score)

With p = (wl, wm, wr) denoting a peak triplet, a score to distinguish between signal

and noise is defined as:

score(p) = min

(
m∑
k=l

|S ′′(wk)|,
r∑

k=m

|S ′′(wk)|

)
. (5.1)

In cases where the resolution of a spectrum is low, it is suggested to calculate

the respective area by the gaussian trapezoidal formula instead. The main idea of

(5.1) is to account for both the overall negativity of the second derivative and the

corresponding interval width, namely for the degree and the length of a consecutive,

clockwise-rotating curvature of the spectrum, assuming that noise distortions result

in high fluctuations but over a smaller number of datapoints. The minimum of both

sides is chosen in order to suppress an overrating of triplets due to the possible

occurrence of asymmetric second derivative shapes.
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Separation then takes place by discarding those peak triplets whose correspond-

ing score falls below the mean plus δ times the standard deviation of scores out of

a presumed signal-free region R. In most metabolite experiments, this region can

be found below -0.5 ppm or above 10 ppm.

The occurrence of noise and other distortions in the spectrum leads to the

occurrence of additional local maxima and minima in the second derivative and

thus to a wrong selection of peak triplets. In order to suppress these effects, an ad

hoc solution within this thesis is given by repeatedly applying the mean filter, also

known as smoothing filter, averaging filter, lowpass filter or box filter (Gonzales &

Woods, 2002; Davies, 2005). In basic description, each datapoint is replaced by the

average value of its neighborhood, thus leading to a smoothing of the spectrum. A

more formal description of the mean filter is given by algorithm 3.

Algorithm 3 (a,b-Mean Filter)

Input: Spectrum S = {S(w1), . . . , S(wn)}, parameters a, b ∈ IN
Output: Filtered spectrum S∗

1: for j = 1 to b do
2: for i = 1 to n do

3: S∗(wi) =
1

a

i+da2e∑
k=i−ba2c

S(wk′) with k′ =


|k|+ 1, for k ≤ 0,

2n− k, for k > n,

k, else.
4: end for
5: S ← S∗

6: end for
7: return S∗

Parameter b stands for the number of repeats, and parameter a denotes the

filter width. Note that the spectrum at the upper and lower bounds is mirrored, as

indicated by the case differentiation. With the observation that the sum in line 3

between two consecutive iteration steps only differs by S(wi−ba2c) and S(wi+1+da2e),
line 3 can be executed in constant time O(1), resulting in an overall runtime of

O
(
b(n+ a)

)
. In the remainder of the thesis, applying an a, b-mean filter is also de-

noted as a, b-filtering. Figure 5.1 shows an example of a distorted second derivative

before and after 2,2- and 3,3-filtering.

5.1.2 The Algorithm

The peak selection approach as a result of the previous section is described more

formally by the Curvature-Based Peak Selection algorithm (CBPS, algorithm 4).
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(a) Raw data (b) 2,2-filtering (c) 3,3-filtering

Figure 5.1: Examples of the second derivative after applying a mean filter as
indicated.

In summary, after identifying the peak triplets of a spectrum, the scores of each

of them is calculated. Filtering the signal from noise and other distortions takes

place by comparing the found peak triplets with those out of a predefined region

R of the spectrum.

Algorithm 4 Curvature-Based Peak Selection (CBPS)

Input: Spectrum S, second derivative S ′′, a signal-free region R ⊂ S, threshold
parameter δ

Output: Filtered list of peak triplets L
1: L,L′ = ∅
2: Find all peak triplets, given S ′′ and add to L′

3: Compute scores of each triplet pi of L′

4: Compute meanscore and sdscore given L′, R
5: for j = 1 to |L′| do
6: if score(pj) ≥ meanscore + δ sdscore then
7: Add pj to L
8: end if
9: end for

10: return L

With the observation that a peak triplet pi as defined in Definition 5.1 can

only have an overlap with neighbouring triplets in their boundary positions li, ri,

the worst-case runtime complexity of algorithm 4 lies in O(n + |L|). This results

from finding the peak triplets in line 2, which takes at most O(n+ |L|), calculating

the discrete areas in line 3 needs O(n + |L|) at most. Calculating the mean and

standard deviation of the scores takes O(|L|), and the for -loop in lines 5− 9 takes

O(|L|). Algorithm 4 is linear to the sum of spectral datapoints plus the number

of second derivative minima. Considering that the maximal number of second

derivative minima equals n−1
2

(each consecutive triplet consists of three points and

overlap in their boundary position (ri = li+1), algorithm 4 is linear to the number

of datapoints, i.e. O(n).
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5.1.3 Results and Discussion

The performance is tested on 20 simulated spectra, each given as a sum of 100

Lorentz functions with a global HWHH parameter λ = 0.005, a global amplitude

parameter A = 1.0, and with varying positions ωi of a peak i given as

ωi = ωi−1 + λ+ uω λ, uω ≈ U(0, 1), (5.2)

beginning with ω1 = 20λ and uω as a uniformly distributed random number. Spec-

trum distortions have been simulated by adding a uniformly distributed random

number1 v to each spectral datapoint as

S(w) =
100∑
j=1

A
λ

λ2 + (w − ωj)2
+ v, (5.3)

with vmax =
(A
λ

)

ρ
and v ∈ U(0, vmax). (5.4)

ρ is again the Signal-to-Distortion ratio (SDR) and reciprocal to the maximal

distortion level vmax. Here, the SDR is expressed relative to the common peak

height A
λ

instead of the maximal value of the entire spectrum (compare (4.5) of the

previous chapter). In this way, the distortion level can be expressed proportional

to the maximal height of a single Lorentz-function, and independent of respective

overlapping effects.

The spectral range is given as [0.0, ω100+20λ] with resolution |wi+1−wi| = λ
10

=

0.0005 ∀i ∈ {1, . . . , n− 1} (n denotes the number of datapoints). The region of no

signal R (see algorithm 4) was set to the ranges [0, 10λ] and [ω100 +10λ, ω100 +20λ].

The reasons for choosing uniform line width and amplitude parameters are both

to maintain an equal level of distortion for each peak, and to control the resulting

degree of peak overlap. Hidden peaks occur for the distance d(Yi, Yj) ≤ 2√
3
λ indeed

only for the scenario of two equally scaled and shaped Lorentz functions. However,

the first derivative of a Lorentz function decreases roughly to the power of three for

increasing distances to its maximum (see Proposition 3.1, Figure 3.5 and (3.13) of

Chapter 3). Thus, in combination with the positioning of the Lorentz functions as

specified by (5.2), the contribution of further Lorentz functions on the overlapping

1Only positive distortions are considered to guarantee positive height values and therefore
positive width and area parameters of a Lorentz function (compare (2.12)). In case of a real-
world spectrum, only peak triplets containing positive values are further considered by now.
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of a consecutive pair of peaks can be assumed to be constant, and is therefore

neglected. On the basis of this pair-wise simplification, a rough estimate for the

expected number of hidden peaks E(#hidden) in a sum of 100 Lorentz functions

follows as

E(#hidden) ≈ 99

(
2√
3
− 1

)
≈ 15, (5.5)

by noting that the probability for each peak i to become a hidden peak then simpli-

fies to the probability for u to become less equal than 2√
3
−1. The correspondingly

estimated probability for achieving a spectrum with all 100 peaks as maximum

peaks is (2− 2√
3
)99 ≈ 6 · 10−8.

Figure 5.2 shows the peak selection result of the CBPS algorithm (algorithm 4)

for varying SDRs ρ (5.4) and varying picking thresholds δ (see line 6 in algorithm

4). For the unfiltered scenario, the number of found peaks exceeds the correct

number considerably, as can be observed in figure 5.2(a). The reason lies in the

occurrence of additional minima and maxima of the second derivative due to the

incorporation of simulated noise (see for example figure 5.1(a)). In order to mitigate

these distortion effects, the signal is smoothened by either applying a 2,2-mean filter

(figure 5.1(b)) or a 3,3-mean filter (figure 5.1(c)).

Figure 5.3 provides the triplet score distribution along the position of the re-

spective peaks in an example spectrum of figure 5.2 with SDR ρ = 200. The

threshold score for δ = 3.0 (line 6 of algorithm 4) is indicated by the solid horizon-

tal line. The peak scores of the unfiltered scenario (figure 5.3(a)) are unfavourably

distributed in terms of separating the signal peaks based on δ. After smoothing

the spectra, a clear separation of peak and noise triplets can be observed in figures

5.3(b) and 5.3(c), leading to a drastic improvement in the selected number of peaks

(compare figures 5.1(b) and 5.1(c)). Figure 5.3(c), for example, also shows that

the range of the picking threshold δ may actually be much higher (here up to 50)

than the considered maximal value of 6 for the mesh plots (figures 5.2(a) - 5.2(c)).

This indicates that the triplet score as defined in (5.1) seems to be a reasonable

measure for discriminating Lorentz functions from noise.

Figure 5.4 provides corresponding contour plots of the CBPS algorithm. The

colour indicates the selected number of peaks, and each crossing of the gridlines

indicates an evaluation point. The same results can be observed as before: In the

case of raw data, CBPS results in an over-selection of peaks, even for higher SDRs

(lower distortion amounts), as shown in figure 5.4(a). Again smoothing the data
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(a) Raw data (b) 2,2-filtering

(c) 3,3-filtering (d) Colour table

Figure 5.2: Peak selection results of algorithm 4 with mean-filtering as indicated.
Shown are the number of selected peaks on average out of 20 spectra on the z−axis
for varying SDRs ρ along the x−axis and varying picking thresholds δ along the
y−axis.

(a) Raw data (b) 2,2-filtering (c) 3,3-filtering

Figure 5.3: Example triplet scores for SDR ρ = 200 in correspondence to figure
5.2. The grey areas denote the chosen signal-free region R, and the solid horizontal
line indicates the selection score for threshold δ = 3.0.
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(a) Raw data (b) 2,2-filtering (c) 3,3-filtering (d) 3,6-filtering

(e) Raw data (f) 2,2-filtering (g) 3,3-filtering (h) Colour table

Figure 5.4: Peak selection results for algorithm 4 (top row) and algorithm 2 on
average out of 20 spectra for varying SDRs ρ along the horizontal axis and varying
selection threshold δ on the vertical axis. The number of selected peaks is indicated
by the color. The data is smoothened by a mean filter as indicated.

leads to essentially improved picking results, as indicated by figures 5.4(b) - 5.4(d).

In case of the 3,3- and 3,6-mean filter, a deviation of only 3% (97-103) can be

observed for a SDR of only 100:1 and 50:1, respectively.

In comparison to the previous chapter, figures 5.4(e) - 5.4(g) show the outcome

of executing line 2 of algorithm 2 on the same set of spectra with height threshold

r = 0.02 max. As expected, the predominantly occurring empirical result of 80-

90 selected local maxima in figures 5.4(e) and 5.4(f) is in accordance with the

estimation of about 15 hidden peaks (5.5). The plot after applying a 3,6-mean

filter does not essentially differ from figure 5.4(g) and is therefore omitted here.

5.1.4 Conclusions

In summary, the CBPS algorithm yields an overall deviation in the number of

selected peaks of only 3% (97− 103) for the majority of parameter settings shown,

indicating the ability to simultaneously detect maximum and hidden peaks, and

thus representing an alternative method for solving the task of peak selection.
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In comparison with the Lorentzian Peak Reconstruction approach of the previous

chapter, the outer loop of algorithm 2 is omitted, and the parameter approximation

scheme is applied on the final model. Although the improved results are observed

only in conjunction with smoothing the data, namely after removing distortions in

the second derivatives, the only user-specified picking threshold δ can be chosen

from a quite broad range of values, indicating high applicability and robustness

of the approach in general. However, the impact of smoothing the data by mean

filtering is presumably not neglectable in the context of subsequent parameter

approximation. It should be also noted that a correct number of selected peaks

does not necessarily imply a correct selection of peaks. Both will be investigated

and discussed further in the following section.

5.2 Proportional Approximation II

Once the set of peak triplets is known the corresponding parameters need to be

fitted in accordance with the spectrum. By the use of the CBPS algorithm (4), peak

selection does not need to be taken into account during the approximation scheme

anymore, as it was the case for the Lorentzian Peak Reconstruction approach of

the previous chapter. Thus, there is no need of additional ”outer loops”, and the

approximation may directly yield the final result.

Reconsidering, that a given spectrum is ideally expressed as

S(ω) =

|J |∑
j

Aj
λj

λ2
j + (ω − ωj)2

=

|J |∑
j

Yj(ω),

with Ŷ
(i)
j denoting the model of Lorentz function Yj, Ŷ

i denoting the current

model spectrum, i.e. the sum of all calculated components at iteration step i,

and wj,x denoting the chosen positions {wj,left, wj,max, wj,right} of a triplet pj (i.e.

x ∈ {left,max, right}), the approximation again takes place by adjusting the

corresponding height values as given by (4.3):

Ŷ
(i)
j (wj,x)

Ŷ
(i−1)
j (wj,x)

=
S(wj,x)

Ŷ i−1(wj,x)
⇔ Ŷ

(i)
j (wj,x) = Ŷ

(i−1)
j (wj,x)

S(wj,x)∑
l∈J

Ŷ
(i−1)
l (wj,x)

and calculating the corresponding parameters given the exact solution.
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As stated in Section 4.1 of the previous chapter, a triplet of positions needs to

preserve the condition of forming a local maximum by their corresponding inten-

sity values in order to directly calculate the corresponding lorentzian parameters

(4.2). Considering that the CBPS algorithm also selects triplets corresponding to

shoulders (see definition 3.4), additional care needs to be taken to allow direct

parameter calculation, since in such cases the local maximum condition is not nec-

essarily met. An intuitive way to re-establish this condition is given by mirroring

the point with the smallest value to the vertical axis at the position of the second

derivative minimum, and then taking the resulting point triplet for calculating the

parameters. More formally, this leads to the following definition:

Definition 5.3 (Mirrored Point)

Given a spectrum S and a peak triplet p = {wl, wm, wr} with indices l > m > r, for

which the corresponding intensity values form an ascending shoulder, e.g. given as

S(wl) < S(wm) < S(wr).

Then, the mirrored point of p is defined as

(w2m−l, S(wl)).

The mirrored point of a descending shoulder is defined analogously as

(w2m−r, S(wr)).

A corresponding illustration is provided by figure 5.5. This methodology is ap-

plied in all situations, in which the maximum constraint is not preserved, and has

the beneficial effect that the search for local maximum point triplets along the cor-

rected spectrum (lines 8-10 of algorithm 2) becomes obsolete. The corresponding

algorithm Proportional Approximation (PA) is given by algorithm 5.
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(a) Before Mirroring (b) After Mirroring

Figure 5.5: The mirror point for a peak triplet of an ascending shoulder in order
to establish the maximum constraint of (4.2).

5.2.1 The Algorithm

Algorithm 5 Proportional Approximation (PA)

Input: Spectrum S, List L of peak triplets

Output: Approximated Parameter Set J

1: Initial guess: Ŷ
(0)
j (wj,x) = S(wj,x) for all j ∈ L, calculate initial parameters

2: for b = 1 to K do

3: for j = 1 to |L| do

4: Calculate the sum
∑
l∈J

Ŷ
(b−1)
l (wj,x)

5: Calculate new heights Ŷ
(b)
j (wj,x) by (4.3), and determine mirrored points,

if needed

6: Calculate new parameters ω
(b)
j , λ

(b)
j , A

(b)
j by

solutions of equation system (4.1)

7: end for

8: end for

9: return J

By observing, that the number of peak triplets equals the number of resulting

Lorentz functions, and with K denoting the number of iterations for the outer for -

loop of lines 2− 8 of algorithm 5, the worst-case runtime in terms of counting the

number of essential comparisons is given as O(K |J |2). Interestingly, the runtime

is independent of the number of spectral datapoints, since calculating the sum of
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all Lorentz functions in line 5 takes time O(|J |) for each peak triplet on its own,

and the time needed to calculate the new height values and the new parameters in

lines 6 lies in O(1).

In summary, a spectrum can be translated into its distinct set of lorentzian

parameters by the sequential execution of algorithms 4 and 5, as described in the

algorithm Lorentzian Spectrum Reconstruction (LSR, algorithm 6).

Algorithm 6 Lorentzian Spectrum Reconstruction (LSR)

Input: Spectrum S, signal-free region R ⊂ S, threshold parameter δ, maximal

iteration number K

Output: List J of peaks containing the approximated parameters

1: Find the list L′ of peak triplets (algorithm 4) given S

2: Filter L′ given R and parameter δ (algorithm 4) to receive L

3: Approximate parameter set of the Lorentz functions (algorithm 5) to receive

J ,

given spectrum S, filtered peak triplet list L and parameter K

4: return J

The worst-case runtime of algorithm 6 lies in O(n + K |J |2), where n again

denotes the number of spectral datapoints.

5.2.2 Results

In the following, the results of the proposed Proportional Approximation (PA)

algorithm (Algorithm 5) are shown and discussed in comparison to the Levenberg-

Marquardt algorithm (see Section 3.1.3.3 in Chapter 3), denoted henceforth as LM.

The former has been implemented in the programming language C-Sharp (C#),

and for the latter algorithm the software Mathematica 6.0, Wolfram Research was

used (Weisstein, 1999). The evaluation is based on 20 spectra again, but with

each containing only 20 Lorentz functions for reasons of time consumption. The

parameters are given as

Aj = uA, uA ≈U(50, 100), j ∈ {1, . . . , 100},

λj = uλ, uλ ≈U(0.002, 0.005), j ∈ {1, . . . , 100},

ωi = ωi−1 + uω max(λi, λi−1), uω ≈U(1.5, 2.0), j ∈ {2, . . . , 100}, ω1 = 0.0.
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uA, uλ and uω are uniformly distributed random variables. In opposition to the

spectra generated for the picking evaluation, the pairwise distances between con-

secutive Lorentz functions now differ to a lesser degree of freedom, accounting for

overlapping effects additionally introduced by varying the shape and amplitude

parameters as described (5.2). Distortions are introduced similar to the picking

evaluation (5.3), except that they are now considered relative to the maximal peak

height by a uniformly distributed random number v, given as

S(w) =
20∑
j=1

Aj
λj

λ2
j + (w − ωj)2

+ v

with v ≈ U(0, vmax) and vmax =

max
j∈J

(
Aj
λj

)
ρ

. (5.6)

Parameter ρ again specifies the Signal-to-Distortions ratio (SDR) (5.4). For eval-

uation purposes, three different SDRs ρ are considered: ρ = 1000, ρ = 500 and

ρ = 200, and a 5,3-mean filter (algorithm 3) is applied to smoothen the spectra.

Subsequently, the peaks are found by the Curvature-Based Peak Selection (algo-

rithm 4) with threshold parameter δ = 3.0 and a noise region chosen as mentioned

above, resulting in the selection of 20 peaks for all spectra.

Given spectrum S containing n datapoints and |J | Lorentz functions with pa-

rameters ωj, λj and Aj, and with Ŷ =
∑
i

Ŷi denoting the model with model pa-

rameters ω̂j, λ̂j and Âj, the following measures are used for evaluation purposes:

1. Mean Squared Error (MSE) as the standard error function of the discrete

spectrum, given as

1

n

n∑
i=1

(
S(wi)− Ŷ (wi)

)2
(5.7)

2. Mean Squared Error at the Peak Hills (MSE-PH) accounting for the mean

squared error within the peak intervals [wlj , wrj ] (Definition 5.1), given as

1

|J |

|J |∑
j=1

 1

rj − lj

rj∑
i= lj

(
S(wi)− Ŷ (wi)

)2

 (5.8)
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3. Mean Squared Error at the Peak Maxima (MSE-PM) accounting for the

squared error at each discrete peak maximum position wmj
, given as

1

|J |

|J |∑
j=1

(
S(wmj

)− Ŷ (wmj
)
)2

(5.9)

4. Mean Percentage Error of the Position Parameters (MPE-Pos) accounting

for the percentage error of the position parameters ω̂j, relatively to the orig-

inal HWHH parameters λj of peak Yj, given as

100

|J |

|J |∑
j=1

∣∣ (ω̂j − ωj)
λj

∣∣ (5.10)

5. Mean Percentage Error of the HWHH Parameters (MPE-HWHH) accounting

for the percentage error of each HWHH λ̂j, given as

100

|J |

|J |∑
j=1

∣∣1− λ̂j
λj

∣∣ (5.11)

6. Mean Percentage Error of the Area Parameters (MPE-Area) accounting for

the percentage error of the parameters Âj, given as

100

|J |

|J |∑
j=1

∣∣1− Âj
Aj

∣∣ (5.12)

The former three functions MSE, MSE-PH and MSE-PM account for the av-

erage squared error between the model and the spectrum in all datapoints, within

the boundaries of the corresponding triplets, and at the minimum point of the

second derivative, respectively, while the latter three functions MPE-Pos, MPE-

HWHH and MPE-Area are used to describe the relative deviation in the particular

parameters.

For LM, the parameters have been initialized with the initial parameters ω̂
[0]
j ,

λ̂
[0]
j and Â

[0]
j , found in line 1 of algorithm 5. Since the outcome of LM is highly



78 Approach II: Lorentzian Spectrum Reconstruction

dependent on the parameter initialization, five additional runs with varying pa-

rameters ω̂j, λ̂j and Âj as

ω̂j = ω̂
[0]
j + uω, uω ≈U(−0.001, 0.001) (5.13)

λ̂j = λ̂
[0]
j · uλ, uλ ≈U(0.5, 1.0) (5.14)

Âi = Â
[0]
j · uA, uA ≈U(0.5, 1.0) (5.15)

using uniformly distributed random variables uω, uλ and uA are considered as well.

The parameters are decreased to address the fact that the spectrum is always

exceeded by the initial guess Ŷ
[0]
j (wj,x) = S(wj,x). For each spectrum, the fit which

minimizes MSE (5.7) out of the initial and the additional five runs with decreased

parameters as described are further considered for evaluation.

Figure 5.6 shows the mean squared error performance for SDRs ρ = 1000, 500

and 200 (5.6) and 50 iterations. It can be observed, that PA leads to a faster error-

decrease than LM for all considered mean squared error functions, and outperforms

LM especially for the error function MSE-PM, as shown in figure 5.6(c). The reason

lies in the fact, that PA is based on the selected peak specific point triplets only,

whereas LM is based on decreasing the mean error considering all data points. This

observation is also in accordance with the results of the previous chapter in which

the mean squared error at the peak maxima is shown to be essentially decreased

in comparison to the average of all datapoints. Interestingly, PA even outperforms

LM in terms of MSE-PH, the error at the peak hills, as can be observed in figures

5.6(e), 5.6(b) and 5.6(h), which again underlines its ability to focus on a spectrum’s

regions of interests, namely the peaks. Furthermore, PA yields are more robust

performance than LM, as can be observed by comparing the length of the error

bars of the two approaches.

Figure 5.7 shows the mean percentage error in the lorentzian parameters of PA

and LM for different SDRs ρ = 1000, 500 and 200. PA clearly outperforms LM in

both accuracy and especially robustness for all of the three lorentzian parameters

position, HWHH and area of a peak. With a percentage error of less than 10%,

PA yields peak position parameters with promisingly low deviation, as shown in

figures 5.7(a) - 5.7(c). It can also be observed, that the error is already relatively

small from the very beginning of the approximation, indicating that the proposed

picking procedure (algorithm 4) is indeed capable of not only selecting the number

of peaks correctly, but also identifying the set of peaks with high accuracy. With

an average standard deviation of ca. 1% − 3% (10% − 50%) in the position, ca.
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(a) MSE, ρ = 1000 (b) MSE-PH, ρ = 1000 (c) MSE-PM, ρ = 1000

(d) MSE, ρ = 500 (e) MSE-PH, ρ = 500 (f) MSE-PM, ρ = 500

(g) MSE, ρ = 200 (h) MSE-PH, ρ = 200 (i) MSE-PM, ρ = 200

Figure 5.6: Mean squared error of the proposed method PA (solid line) and for
Levenberg-Marquardt (dotted line) for SDRs ρ = 1000 (top), ρ = 500 (center) and
ρ = 200 (bottom). The length of the error bars equals two times the standard
deviation.

5% − 10% (20% − 50%) in the HWHH, and ca. 5% − 10% (20% − 50%) in the

area parameter for PA (LM), the proposed approach also shows much more robust

behaviour than LM.

Peak fitting examples at different iteration steps are shown in figure 5.8. Here,

the initial peak set for both LM and PA is provided by the CBPS algorithm (see

figures 5.8(a), 5.8(b)). An interesting observation is given for LM by the peak

marked in yellow. Resulting from the greedy nature of LM, the peak is steadily

decreased during the whole fitting procedure, until its contribution to the sum

becomes negligibly small, as shown in figures 5.8(c), 5.8(e) and 5.8(g). However, the

global peak sum (red line) still fits the spectrum (black dotted line) considerably

well. Figure 5.8(d) shows the peak set after one iteration of the proportional

approximation algorithm. All peaks are significantly decreased, each in proportion
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(a) ρ = 1000 (b) ρ = 500 (c) ρ = 200

(d) ρ = 1000 (e) ρ = 500 (f) ρ = 200

(g) ρ = 1000 (h) ρ = 500 (i) ρ = 200

Figure 5.7: Mean percentage error of the parameters for the proposed method PA
(solid line) and for Levenberg-Marquardt (dotted line) along 50 iterations, top:
position (MPE-Pos), center: HWHH (MPE-HWHH), bottom: area (MPE-Area).
The length of the error bars equals two times the standard deviation.

to the initial sum and the spectrum, and after 10 iterations an acceptable solution

is already found.

Figure 5.9 shows some regions of the real-world metabolite NMR spectrum

Sreal of the previous chapter after applying the proposed automated reconstruction

approach. With smoothing the spectrum by a 3,3-mean filter and selecting the

noise region R to the ranges [12.8, 10.0] and [−1,−3.4] (in ppm), 531 peaks were

selected by the CBPS algorithm (algorithm 4) with picking threshold δ = 6.0. The

execution of the proportional approximation algorithm (algorithm 5) was finished

after ca 9 seconds.
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(a) LM, 0 steps (b) PA, 0 steps

(c) LM, 10 steps (d) PA, 1 steps

(e) LM, 20 steps (f) PA, 2 steps

(g) LM, 50 steps (h) PA, 10 steps

Figure 5.8: Example stages of the approximation for Levenberg-Marquardt (left)
and the Proportional Approximation (PA). Shown are the spectrum (black dotted
line), the model (red solid line) and the distinct Lorentz functions (blue areas)

.
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Figure 5.9: Portions of an example real-world spectrum (solid line), the fitted
Lorentz functions by algorithm 5 (grey areas) and the corresponding sum (dotted
line) after 10 iteration steps.
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5.3 Discussion and Conclusion

In this chapter, a two-step approach for automated feature extraction is proposed,

solving sequentially the tasks of peak selection and parameter approximation.

Based on theoretical aspects concerning the overlap of two equally shaped and

scaled Lorentzian functions, a runtime-efficient selection procedure (algorithm 4)

capable of simultaneously detecting hidden and unhidden peaks is proposed. Sim-

ulations empirically demonstrate, that the proposed approach in conjunction with

mean-filtering is able to find the set of signaling Lorentzian functions properly for a

broad range of varying noise amplitudes and picking thresholds. A subsequent pa-

rameter approximation scheme (algorithm 5) is proposed, exploiting the analytical

solution of a single Lorentzian function and adjusting the parameters in each step

of the iteration by the rule of proportion, similar to the previous Chapter 4 except

that the set of Lorentzian functions remains unchanged during the approximation.

Empirical studies show, that the proposed approach highly outperforms the

Levenberg-Marquardt algorithm in terms of minimal error and robustness of the

found model parameters. In particular, the results for the position and area param-

eters are highly promising. In comparison of figures 5.6 and 5.7, one clearly observes

in case of the Levenberg-Marquardt algorithm that a low amount of mean squared

error does not necessarily imply sufficiently accurate approximation of the model

parameters. Especially the greedy hill-climbing nature of the algorithm, namely

the combination of the steepest descent method and the local approximation of the

fitness function by a second order polynomial (Gauss-Newton), is likely to result in

only locally optimal solutions, in which the distinct parameters themselves might

actually be highly falsified. In extreme cases, distinctive Lorentz functions even

practically disappear from the model, as for example shown in figure 5.8. On the

other hand, considering the parameters in a more compact way, for example by

expressing the parameters of a single Lorentz function by polynomial expressions of

a corresponding point triplet as proposed, allows to focus on the important regions

of a spectrum, and the model is approximated faster, more accurately and more

reliably in terms of the O-notation and the shown error measures.

As a final remark, this study is carried out for a sum of Lorentz functions

only. However, the basic characteristics of feature extraction in general does not

essentially change for datasets containing similar unimodal basis functions, and

likewise, similar results and observations are expected to be made, provided that
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the corresponding closed-form representation of the respective parameters can be

achieved.
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Chapter 6

Identification of Peak Palindromes

6.1 Motivation

In case of bio-molecular NMR experiments, especially those of samples containing

a highly heterogeneous mixture of various substrate molecules, reliable automated

analysis of large spectral series is a challenging task. In particular, the occurrence

of chemical shifts prohibit an ad hoc point-by-point spectrum comparison, since

it usually cannot be guaranteed that peaks originating from identical substrates

are equally positioned along the spectrum series (see Section 2.6 in Chapter 2).

Various methods for spectrum comparison have been proposed, ranging from early

work, for example that based on non-linear least-squares approaches (Diehl et al.,

1975), to more recent approaches based on spectral binning (Chang et al., 2007)

or spectrum and peak alignment (Torgrip et al., 2003; Yu et al., 2006; Wong et al.,

2005), or both (Stoyanova et al., 2004; Forshed et al., 2005). However, an optimal

solution has not yet been found.

In Chapters 4 and 5, two approaches for decomposing a spectrum into its dis-

tinct set of lorentzian parameters (2.12) have been proposed, for which empirical

studies showed promising results in terms of accuracy, runtime efficiency and ro-

bustness. A peak-wise representation essentially reduces the data amount of a

spectrum while simultaneously preserving the information content, but unfortu-

nately an ad hoc peak-by-peak comparison of multiple spectra is still prohibited

for the aforementioned reasons of peak shifts. A possible way to overcome the

problem of concentration and pH dependence of the chemical shifts is to focus on

the molecule-specific peak patterns of the spectrum. Based on the phenomenon
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Figure 6.1: Example splitting patterns of multiplets, following Reusch (1999).

of spin-spin coupling effects during an NMR experiment, each molecule maintains

its own set of specific spectral peak patterns called singlets (single peak) and mul-

tiplets (multiple peaks) (see Section 2.9). Figure 6.1 shows some basic example

multiplets with the corresponding peaks displayed in a stick-wise manner.

In general, the majority of known bio-molecules exhibit multiplet patterns

rather than resulting in a single peak of a spectrum. As an interesting prop-

erty, the peak-to-peak distances within a multiplet are solely dependent on the

magnetic moments of the particular nuclei, and spectrum-specific shifts therefore

occur for a multiplet as a whole (see Section 2.9 in Chapter 2). Amongst these

multiplets, quite a lot occur as peak sets with mirror-symmetric position param-

eters, mirror-symmetric heights, and mirror-symmetric peak shapes (Hoye et al.,

1994), in other words as patterns of peaks with a palindromic structure.

The problem of palindrome recognition on strings has been tackled for a long

time (Manacher, 1975; Knuth et al., 1977), with current applications in DNA and

protein sequence analysis, as e.g. in Gupta et al. (2004). Thus, in the nature

of strings being defined as a list of letters, the position distance between each

consecutive pair of letters is equal and plays no role in the detection of palin-

dromes on strings. However, this does not hold in general for palindromic peak

sets. Furthermore, given an alphabet A and a string s = {s1, . . . , sn} with si ∈ A,

palindromes on s have commonly been defined as a pair of two consecutive sub-

strings wGwR with wR being w reversed and G ∈ {∅, A∗} as the potential gap in

the center only (Kolpakov & Kucherov, 2008), whereas palindromic peak patterns

indeed may overlap with each other. This thesis proposes an approach to identify

mirror-symmetric peak patterns with respect to both the parameters of a Lorentz

function and the possible occurrence of pattern overlap.
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6.2 Definitions

For the remainder of this chapter, Y = {Y1, . . . , Yn} denotes the set of Lorentz func-

tions representing a spectrum in descending order of the positions {ω1 > · · · > ωn}.
The following definitions are given in order to characterize mirror-symmetric or

palindromic properties of a set of Lorentz functions.

Definition 6.1 (Peak Palindrome)

A Peak Palindrome is a set of peaks M ⊆ Y of length |M | = m, for which the

following symmetry scores are particularly defined as follows:

MPSE(M, c) =
1

k

k∑
i=1

dω(Yi, c, Ym−i) =

∣∣∣∣∣c− 1

m

m∑
i=1

ωi

∣∣∣∣∣
with dω(Yl, c, Yr) = |(ωl − c)− (c− ωr)|, (6.1)

MSSE(M) =
1

k

k∑
i=1

dλ(Yi, Ym−i) with dλ(Yl, Yr) = |λr − λl|, (6.2)

MASE(M) =
1

k

k∑
i=1

dA(Yi, Ym−i) with dA(Yl, Yr) =
max(Al, Ar)

min(Al, Ar)
, (6.3)

and where k =
⌊m

2

⌋
and c ∈ IR.

M is called a δ-palindrome to a position c ∈ IR, if MPSE(M, c) ≤ δω, MSSE(M) ≤
δλ and MASE(M) ≤ δA holds, and M is called a perfect palindrome to c for

MPSE(M, c) = 0, MSSE(M) = 0 and MASE(M) = 1. M is further called odd or

even with respect to the number of peaks m. Accordingly, a pair of peaks (Yl, Yr)

is called a δ-pair to c, if dω(Yi, c, Yj) ≤ δω, dλ(Yi, Yj) ≤ δλ and dA(Yi, Yj) ≤ δA

holds, and (Yl, Yr) is called a perfect pair for dω(Yl, c, Yr) = 0, dλ(Yl, Yr) = 0 and

dA(Yl, Yr) = 1. Finally, M is called a δ-pair palindrome, if each addend in (6.1) is

a δ-pair, i.e. dω(Yi, c, Ym−i) ≤ δω, dλ(Yi, Ym−i) ≤ δλ and dA(Yi, Ym−i) ≤ δA for all

i ∈ {1, . . . , k}.

Regarding the mirror-symmetry property, a δ-pair palindrome is more rigor-

ously defined than a δ-palindrome. Moreover, the degree of symmetry in the
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positions, areas and shapes of the peaks in M are expressed by the Mean Po-

sition Symmetry Error (MPSE), Mean Shape Symmetry Error (MSSE) and Mean

Area Symmetry Error (MASE), respectively. Note that each addend in MPSE

is dependent on a given position c, whilst MSSE and MASE are defined position-

independently, which will become important in the remainder of this chapter. Also

note that by definition it holds dA(Yl, Yr) ≥ 1. Moreover, the error in the areas

of a peak pair (MASE) is expressed in a scale-invariant manner due to the as-

sumption that distortions predominately occur proportionally to the absolute area

of a multiplet, namely proportionally to the number of signaling nuclei (Friebolin,

1999).

Definition 6.2 (Best Matching Peak)

Given Y and a peak Yi ∈ Y , and given symmetry weights αλ, αA and symmetry

thresholds δλ, δA, the best matching peak Y ∗j to Yi is defined by holding the following

equations

dλ(Yi, Yj∗) ≤ δλ ∧ dA(Yi, Yj∗) ≤ δA,

with j∗ := min
j∈Y

(
αλ
dλ(Yi, Yj)

δλ
+ αA

dA(Yi, Yj)

δA

)
The best matching ancestor Yj∗ to Yi is defined as the best matching peak Yj∗ with

j∗ < i. The best matching successor is defined analogously as the best matching

peak Yj∗ for all j∗ > i.

In other words, Yj∗ corresponds to the Lorentz function, which both fulfills the

δ-pair constraints and minimizes the weighted normalized symmetry. Note, if for a

peak a best matching peak exists, given thresholds δλ, δA and weights αλ, αA, then

by definition they form a δ-pair palindrome.

Definition 6.3 (Weighted Pair Symmetry Error)

Given two peaks Yl, Yr, given a center position c ∈ IR, and given symmetry weights

αω, αλ, αA and symmetry thresholds δω, δλ, δA, the weighted pair symmetry error

WPSE(Yl, c, Yr) is defined as

WPSE(Yl, c, Yr) = αω
dω(Yl, c, Yr)

δω
+ αλ

dλ(Yl, Yr)

δλ
+ αA

dA(Yl, Yr)

δA

Based on the proposed definitions, the following section proposes a greedy al-

gorithm to efficiently detect peak palindromes out of a set of Lorentz functions.
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6.3 The Algorithm

In the following, a greedy approach is proposed to find δ-palindromes out of a peak

set Y . Roughly speaking, the term greedy means that the search space is traversed

based on only locally optimal, greedy decisions, commonly resulting in a decreased

runtime, but to the loss of guaranteed optimal solutions.

In general, it can be presumed a priori that the spectral range covered by a

multiplet is typically much smaller than the range of the whole spectrum (Friebolin,

1999), making it reasonable to introduce an additional threshold parameter δ∗ω and

correspondingly to find δ-palindromes of maximal spectral width δ∗ω in a bottom-up

manner. In particular, the problem of δ-palindrome identification is in the following

divided into two stages: A. Finding a set of potential palindrome centers, and B.

Maximizing for each center the number of δ-pairs to result in a δ-palindrome. Both

parts are described in detail in the following.

6.3.1 Center Position Selection

In contrast to palindromes on strings where the maximal number of palindrome

positions is linearly proportional to the string length, the position parameters in

Y are given as arbitrary real numbers, and the maximal number of palindrome

positions results as the number of all subsets of Y , 2|Y |. Since typically biologi-

cal NMR experiments result in spectra containing hundreds of peaks, a potential

palindrome center c is here considered heuristically to be given either for odd palin-

dromes as the peak position c = ωi of a peak Yi, and for even palindromes as the

mean position c =
ωi+ωj

2
of a pair of peaks (Yi, Yj). This results in the maximal

number of n center positions for the former, and n2−n
2

for the latter case. Thus,

for even palindromes not all pairs of peaks actually need to be considered because

each δ-palindrome of length m would equivalently contribute Θ(m2) positions on

its own to the number of positions, whereas only one position is actually of interest.

On the other hand, the intuitive alternative of considering only consecutive pairs

of peaks might probably be too restrictive by means of overlapping palindromes.

As a compromise, for each peak Yi ∈ Y only the best matching successor (see

Definition 6.2) is considered to give a potential palindrome center, resulting in a

total number of n − 1 potential positions of even palindromes. With a spectral

range threshold δ∗ω as mentioned above, all n− 1 even positions can each be found
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in time O(k), where k denotes the average number of peaks within the spectral

range [ωi, ωi − δ∗ω] of peak Yi.

6.3.2 Palindromic Peak Addition

Provided position c and the next neighbouring peak pair (Yl−1, Yl+1) to a peak Yl

in the odd case, or to a pair of peaks (Yl, Yr) in the even case, a corresponding δ-

palindrome M is found by iteratively adding or replacing those δ-pairs with lowest

weighted pair symmetry error WPSE (Definition 6.3), in the range [c+ δ∗ω
2
, c− δ∗ω

2
]

(remember, the peaks are given in descending order of their position parameters).

Thereby, always the closer of the two peaks surrounding c is further iterated to

the next neighbouring peak (bottom-up). Obviously, the runtime is O(k), again

determined by k as the number of considered peaks within the range specified by

δ∗ω.

In order to prevent redundant palindrome representation, i.e. given by two

δ-palindromes M1 and M2 at respective positions c1 and c2 with M1 ⊆ M2 and

MPSE(M1, c2) ≤ δω, we shall take a closer look on the symmetry measures of

Definition 6.1. It can be observed, that MPSE is defined as the absolute distance

between the mean peak position of a palindrome M and a given position c, whilst

MSSE and MASE are position-independent, which leads to the following proposi-

tion:

Proposition 6.1

Given a δ-pair palindrome M1 = {Y1, . . . , Y|M1|} to position c, given a δ-palindrome

M2 = {Z1, . . . , Z|M2|} to some other position, and given a position symmetry thresh-

old δω, the following holds:

MPSE(M2, c) ≤ δω ⇒ M1 ∪M2 is a δ-palindrome to c

Proof By noting that the symmetry scores MASE and MSSE are both independent

from c, and with denoting k1 =
⌊
|M1|

2

⌋
and k2 =

⌊
|M2|

2

⌋
, the proof follows as:

M1 is a δ-pair palindrome ⇔ dω(Yi, c, Y|M1|−i) ≤ δωfor all i ∈ {1, . . . , k1},

∧ M2 is a δ-palindrome ⇔ 1

k2

k2∑
j

dω(Zj, c, Z|M2|−j) ≤ δω
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⇒

k1∑
i

dω(Yi, c, Y|M1|−i) +

k2∑
j

dω(Zj, c, Z|M2|−j)

k1 + k2

= MPSE(M1 ∪M2, c) ≤ δω

�

In other words, given the δ-pair palindrome M1 to a position c, the essential

meaning of proposition 6.1 is that it suffices to guarantee MPSE(M2, c) ≤ δω

for another δ-palindrome M2 in order to preserve the symmetry constraint after

unifying M1 with M2. The algorithm to find a δ-palindrome to a position c is given

as follows:
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Algorithm 7 (Palindromic Peak Addition)

Input: Y, c, Yi, Yj with i ≤ j, ωi ≥ c ≥ ωj, thresholds δ∗ω, δω, δλ, δA, weights

αω, αλ, αA

Output: δ-palindrome M to position c

1: peak pointer pL, pR← ∅
2: if Yi 6= Yj then // even case

3: Add Yi, Yj to M

4: else // odd case

5: Add Yi to M

6: end if

7: l = i+ 1; r = j + 1;

8: while l > 0, r < |Y | do

9: if ωl − c > 0.5 δ∗ω or c− ωr > 0.5 δ∗ω then // spectral range constraint

10: return M

11: else if dω(Yl, Yr) ≤ δω and dλ(Yl, Yr) ≤ δλ and dA(Yl, Yr) ≤ δA then //

δ-pair palindrome constraint

12: if δ-palindrome M1 with inner peaks Yl, Yr already exists, and

MPSE(M1, c) ≤ δω then

13: Add peaks of M to M1 // proposition 6.1

14: return M1

15: else if both Yl and Yr are not contained in M then

16: Add Yl, Yr to M

17: else if M contains Yl already, and WPSE(Yl, c, Yr) < WPSE(Yl, c, pR)

then

18: Replace pR by Yr in M

19: else if WPSE(Yl, c, Yr) < WPSE(pL, c, Yr) then

20: Replace pL by Yl in M

21: end if

22: pL← Yl, pR← Yr

23: end if

24: if ωl − c < c− ωr then // iterate only the nearest peak

25: l = l − 1

26: else

27: r = r + 1

28: end if

29: end while

30: return M
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The peak addition takes place in lines 9−22, and the bottom-up peak iteration

is denoted in lines 24 − 28. As stated above, the worst-case runtime of algorithm

7 lies in O(k). Proposition 6.1 is applied in lines 12− 14 preventing a blow-up in

both runtime and number of solutions. Each considered pair of peaks after line 11

is a δ-pair. Thus, each time line 13 is executed, a δ-pair palindrome M is added

to some existing δ-palindrome M1 and proposition 6.1 can directly be applied.

The following algorithm 8 summarizes the approach of finding a set of δ-

palindromes in Y :

Algorithm 8 (Finding a set of δ-palindromes)

Input: Y , threshold parameters δω, δλ, δA, weight parameters αω, αλ, αA

Output: Set of δ-palindromes P

1: for all peaks i ∈ Y do

2: Find the best matching successor Yj∗ to peak Yi within the range [ωi, ωi+δ∗ω]

3: if (Yi, Yj∗) is a δ-pair then

4: Find even palindrome M by algorithm 7 for c =
ωi+ωj∗

2
, Yi, Yj∗ , and add

to P

5: end if

6: Find odd palindrome M by algorithm 7 for c = ωi and Yi, and add to P if

|M | > 1

7: end for

8: return P

Considering that each of the lines 2, 4 and 6 take time O(k) with k as the

average number of peaks within the respective ranges specified by c and δ∗ω, the

worst-case runtime of algorithm 8 lies in O(|Y | k).

6.4 Results and Discussion

For demonstration purposes, preliminary results are shown and discussed for both

simulated metabolite spectra as well as for the real-world example spectrum of

the previous chapters, Sreal. In the case of simulated data, three metabolites are

simulated with 700.153 MHz, 0.0001192 ppm digital resolution and with 65536 dat-

apoints. Those simulated are Valine, Methionine and Iso-Leucine. The correspond-

ing Lorentzian functions have been found, and the parameters have been approxi-

mated by the Lorentzian Spectrum Reconstruction approach of the previous chapter
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Figure 6.2: Some peak palindromes found for Valin (simulated). The spectrum
(upper solid line) is shown for an example region of interest with the fitted Lorentz
functions (solid peak lines below) and the found peak palindromes (grey areas).

(algorithm 6). The palindromes have been found with the spectral range thresh-

old δ∗ω = 0.1 ppm, the symmetry thresholds δω = 0.001 ppm, δλ = 0.0002 ppm,

δA = 1.2, and the weight parameters have been chosen as αω = αλ = αA = 1.0.
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Interestingly, for the example multiplet structure of Valin shown in figure 6.2,

a δ-palindrome containing 14 peaks (top) as well as two δ-palindromes contain-

ing each 7 peaks were found (center and bottom). Figure 6.3 shows some peak

palindromes found as potential triplets and quartets of an example peak region

of Methionine. Again, several mirror-symmetric multiplet structures give multiple

solutions for explaining the whole peak pattern. Each palindrome shown in the

first two rows represents a feasible solution in combination with any of the bot-

tom two rows. A similar situation can be observerd for Iso-Leucine in figure 6.4.

Within a cluster of peaks, again several mirror-symmetric sub-patterns are found

and underline the potential of the proposed approach.

The real-world spectrum Sreal was smoothened by applying a 3,3-mean filter (al-

gorithm 3). Peak picking and peak fitting by the Lorentzian Spectrum Reconstruc-

tion approach of the previous chapter with the parameter setting δ = 6.0, K = 20

resulted in 584 approximated Lorentz functions. The spectral range threshold was

chosen as δ∗ω = 0.08 ppm, the threshold parameters were chosen as δω = 0.005 ppm,

δλ = 0.0005 ppm, δA = 1.5, and the weight parameters were chosen as αω = 1.0,

αλ = 0.5, αA = 0.5, to emphasize mirror symmetry in the position parameters.

Figure 6.5 shows some example peak palindromes found by algorithm 8. Next

to the predominant occurrence of doublets (two peaks) and triplets (three peaks),

quartets and higher order multiplets were found as well, some of which are shown.

6.5 Conclusions

In summary, this chapter proposed three measures to express the degree of multi-

plet symmetry for an arbitrary set of Lorentz functions, and introduced a parame-

terized greedy algorithm to automatically detect mirror-symmetric peak patterns.

It is shown, that the proposed approach is indeed able to identify peak palin-

dromes out of a set of overlapping peak patterns. However, the approach does

not result in a single optimal solution of peak palindromes in terms of unambigu-

ously representing the actual set of multiplets contained in a sample. Rather, a

set of patterns is found with the potential to support the identification of over-

lapped multiplet patterns contained in a spectrum. In general, the approach has

the potential to facilitate automated spectrum analysis in terms of bridging the gap

between the lorentzian peak representation of a spectrum and a distinct mixture of

multiplet patterns of the molecules contained in a sample. The prospective field of
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Figure 6.3: Some peak palindromes found for Methionine (simulated). The spec-
trum (upper solid line) is shown for an example region of interest with the fitted
Lorentz functions (solid peak lines below) and the found peak palindromes (grey
areas).
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Figure 6.4: Some peak palindromes found for Iso-Leucine (simulated). The spec-
trum (upper solid line) is shown for an example region of interest with the fitted
Lorentz functions (solid peak lines below) and the found peak palindromes (grey
areas).

application ranges from automated database construction and extension to incor-

poration into more sophisticated multiplet and spectrum matching and alignment

approaches.
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Figure 6.5: Some Palindromic peak sets found for the example real-world spectrum.
The spectrum (upper solid line) is shown for an example region of interest with the
fitted Lorentz functions (solid peak lines below) and the found peak palindromes
(grey areas).
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Chapter 7

Summary, Conclusions and
Future Work

7.1 Summary and Conclusion

In this thesis an alternative approach for the task of feature extraction in 1D NMR

data analysis has been proposed and is summarized as follows: In the absence

of noise, magnetic field inhomogeneities, preprocessing artifacts and phasing er-

rors, the pure signal can be modeled as a sum of Lorentz functions. Based on the

analytical solution for the corresponding parameters of a single Lorentz function

and on a proportional height adjustment procedure throughout the whole iteration

scheme, an initial approximation algorithm called Lorentzian Peak Reconstruction

is proposed in the first attempt in Chapter 4. The method fulfills both the tasks of

model selection and parameter approximation simultaneously and empirical stud-

ies show promising results for both simulated datasets and an example real-world

sub-spectrum. The key difference to conventional approaches is the inherent fo-

cus on the informative regions of the spectrum, namely the peaks instead of the

average error along all spectral datapoints under consideration. As a drawback,

the proposed method suffers from inaccuracies in model selection where noise and

other distortions are present, leading to an over-estimation of the number of peaks,

and thus to high fluctuations in the mean squared error within the peak regions

during the approximation.

An improved method with a more stable and accurate peak selection, Lorentzian

Spectrum Reconstruction, is proposed in Chapter 5. This solves the tasks of model

selection and parameter approximation in a sequential manner by the algorithms
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Curvature-Based Peak Selection and Proportional Approximation II. A peak in a

given spectrum is identified by properties of its curvature, namely by the occur-

rence of roots, local minima and local maxima of the second derivative, instead of

searching for local maxima of the spectrum. In conjunction with mean-filtering,

empirical studies on simulated datasets show promising results regarding the num-

ber and position accuracy of the selected peaks. Subsequently, the approximation

scheme is extended in order to cope with point triplets that are not given as local

maxima, allowing even the parameters of shoulders to be proportionally approxi-

mated. Empirical studies on simulated datasets show moderately improved results

in comparison to the common Levenberg-Marquardt algorithm in terms of mini-

mizing the squared distance of all datapoints, and, as the most interesting results of

this thesis, dramatically improved results regarding the accuracy of the parameters

in the respective model.

At least for NMR spectral data, the observed results indicate that the method-

ology of focusing on few but potentially most significant points of a spectrum has

much more potential than considering all points of the spectrum simultaneously.

In addition, chopping the whole problem of NMR feature extraction into several

smaller problems, i.e. data smoothing, peak selection and parameter approxima-

tion, and solving them in a sequential manner has empirically shown to be highly

effective in terms of runtime complexity and quality of the resulting solutions. Nev-

ertheless, the Levenberg-Marquardt algorithm is by all means an elegant method

to search for local optima of the fitness function based on partial derivatives and

the steepest descent. However, the greedy hill-climbing nature inherently limits

the outcome of the algorithm. In cases where the corresponding fitness landscape

seem to contain a high density of local optima, approaching the problem in a com-

pletely alternative way can indeed lead to essential improvements, as shown within

this thesis.

Several interesting questions are still waiting to be answered, for example the

minimal spectral distance of a pair of Lorentz functions to occur as a distinct

second derivative minimum, or convergence properties of the proportional fitting

procedure. In general, it can be concluded, that the proposed approach is highly

suitable for solving the task of automated NMR feature extraction in terms of

model selection and parameter approximation. It is worth noting that the proposed

approach is in general not restricted to NMR spectroscopic data, but applicable

to all spectra given as superpositions of known functions, for which the analytical

solution of the respective parameters can be determined a priori. Thus, further
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investigations of the proposed methods concerning the task of quantification in

datasets of different basis functions are needed and have the potential to yield

similarly interesting results.

To directly enable a reliable multivariate analysis and classification of NMR

spectra obtained from a series of metabolite solutions, one has to cope with the

sensitivity of the chemical shifts to concentration, temperature and the pH-value

of the solutions. In particular, the signal-specific horizontal shifts of peaks in the

frequency domain mainly prohibit a peak-by-peak comparison of different spectra.

However, assignment is still beneficial for a thorough analysis of a spectrum series

since it allows the construction of feature vectors, which contain quantitative in-

formation of the same source of origin throughout the whole set of experiments.

In this context, given the spectrum model as a set of Lorentz functions, a heuristic

algorithm for the identification of palindromic peak sets is proposed in Chapter 6,

exploiting characteristic properties of the signal response of distinctive classes of

molecules. In general, the algorithm aims at bridging the gap between the peak-

wise representation of a spectrum and the inter-spectrum peak linkage, namely the

linkage of signals originating from same sources of origin but observed in different

NMR experiments.

With the introduction of three symmetry measures describing mirror-symmetric

properties of a chosen subset of peaks, the algorithm aims at uncovering mirror-

symmetric peak patterns with respect to potential overlap. These peak patterns

potentially represent molecule-specific multiplet signals and are thus related to each

other. As shown in the respective results Section 6.4, several multiplet-like peak

patterns are found for several example regions of simulated metabolite spectra and

an example real-world spectrum.

7.2 Future Work

The proposed approach of peak selection, parameter approximation and palindrome

detection demonstrates a way to transform an NMR spectrum into a set of rele-

vant features, reducing the amount of data while simultaneously preserving the

information content. By exploiting characteristic properties of the NMR signal,

e.g. the fact that the peak distribution within a multiplet remains constant while

chemical shift leads to a shifting in the frequency domain, the proposed methods
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show a direction to automatically relate corresponding signals from different NMR

spectra with each other. As already mentioned in the respective chapters, several

questions arise and as yet answered:

1. How to automatically choose the degree of smoothing a given spectrum?

2. What is the impact of smoothing filters others than the mean filter prior to

peak selection?

3. What are the limits of overlap detection by further derivation?

In the following, initial ideas and potential lines of investigation regarding the

mentioned questions are further discussed.

7.2.1 Impact of further smoothing filters

Within this thesis, the mean filter is the only smoothing method considered, but

other methods also exist, such as order-statistics filters (median filter) or con-

volution approaches. The reason of applying the mean filter is to remove local

minima and maxima of the second derivative, which are additionally induced by

the presence of noise and other distortions of the spectrum, on the background

of equally distributed (white) noise. An inherent drawback of smoothing is, that

there is no particular differentiation between signal and noise. As a result, shoul-

ders may disappear after smoothing the spectrum. Based on the assumption that

the corresponding peak triplets yield similar triplet scores to those of a predefined

signal-free region (definition 5.2), an alternative smoothing procedure would be

given by executing the following steps:

1. Identify peak triplets {wj,l, wj,m, wj,r} on the original spectrum without smooth-

ing, and calculate the corresponding triplet scores.

2. Filter the triplets pj by score(pj) < threshold

3. Calculate the envelopes envmax and envmin on the maxima and minima of the

filtered triplets and adjust the resolution by linear interpolation
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4. Adjust the original second derivative as

S
′′
(wj,l) =

envmax(wj,l) + envmin(wj,l)

2
, (7.1)

S
′′
(wj,m) =

envmax(wj,m) + envmin(wj,m)

2
, (7.2)

S
′′
(wj,r) =

envmax(wj,r) + envmin(wj,r)

2
, (7.3)

(7.4)

namely replace the original values by the average of the envelopes.

5. Calculate the spectrum S as the second order integral of S ′′.

By this, those parts of the spectrum that seem to maintain a low amount of noisy

error are preserved and the distorted parts are smoothed with respect to the relative

curvature of the neighboring datapoints.

7.2.2 Automated Smoothing

In extension to chapter 5, we additionally introduce the concept of triplet signifi-

cance in units of σ as follows:

Definition 7.1 (Peak Triplet Significance θ)

With Q denoting the set of peak triplets found in blank signal, the significance θ of

a peak triplet p with score s(p) is defined as

s(p) = s̄+ θ σ ⇔ θ =
s(p)− s̄

σ
, (7.5)

with s̄ =
1

|Q|
∑
i∈Q

s(pi) and σ =

√
1

|Q|
∑
i∈Q

(
s(pi)− s̄

)2

as the mean and standard deviation score of all peak triplets in Q, respectively.

Further,we call a triplet p to be accepted, if for a given significance threshold δ it

holds θ ≥ δ. The set of accepted triplets is in the remainder of this paper denoted

as A.
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For the purpose of noise reduction, we consider a slight variant of the mean filter

procedure of chapter 5. In particular, we here consider the repeated averaging with

a particular filter window of length 3, given as

smd(yi) =
1

3

i+1∑
k= i−1

yk′ , with k′ =


|k|+ 2, for k ≤ 0,

2n− k, for k > n,

k, else.

(7.6)

Similar to algorithm 3, the runtime complexity is given as O(n+a) with b denoting

the number of repeats.

Repeated averaging has already been considered decades ago, and is valued

for its computational efficiency and easy-to-implement characteristics (Faes et al.,

1994). In the following we will briefly describe the effects of filtering, and refer for

example to Cai (1988) for more detailed information.

Repeatedly smoothing by (7.6) steadily changes the coefficients of the filter win-

dow. For example, the first execution of (7.6) replaces each value yi by smd(yi) =
1
3
(yi−1 + yi + yi+1), after the second execution the value at index i is given as

smd(smd(yi)) = 1
9
(yi−2 + 2 yi−1 + 3 yi + 2 yi+1 + yi+2), and analogously the triple

execution of of (7.6) results in 1
27

(yi−3 +3 yi−2 +6 yi−1 +7 yi+6 yi+1 +3 yi+2 +yi+3).

In fact, the weights after b times executing (7.6) equal the trinomial coefficients1

obtained after expansion of (1 + t + t2)b (see e.g. Merlini et al. (2002)). As a

consequence of the central limit theorem, the coefficients discretely approximate

the probability density function of the Gaussian distribution (Rice, 1995). Mean

filtering thus corresponds to discrete convolution with a Gaussian kernel.

A heuristic non-parametric approach for automated Gaussian smoothing has

been proposed by Lin et al. (1996), based on the change in the number and the

maximal pair-wise distance of adjacent local maxima. The shown results though

indicate that the proposed method seems to be rather unsuitable for datasets

maintaining a higher diversity of peak positions as those considered in their paper.

1It might be worth mentioning that following Andrews (1990) no less than Euler found them
worthy for a 20-page account Euler (1765).
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Vivo-Truyols & Schoenmakers (2006) proposed an automated smoothing ap-

proach based on the lag-one autocorrelation coefficient ρ1, given as

ρ1 = 1− 1

2

∑
i=2

(yi − yi−1)2

∑
i=1

y2
i

n

n− 1
, (7.7)

where n stands for the number of real-valued datapoints yi. In rough summary, the

smoothing degree is repeatedly increased, until the lag-one autocorrelation coeffi-

cient of the residual, namely the observed spectrum subtracted by the smoothed,

is closest to the lag-one autocorrelation coefficient of blank signal. As a drawback,

the method tends to excessively smoothen the considered spectra. In the following,

an automated method for finding a proper smoothing degree is proposed based on

changes in the curvature during the smoothing procedure of a given spectrum.

7.2.2.1 Method

Repeatedly filtering the data by (7.6) allows to mitigate the impact of noise, but

at some point also tends to merge curvatures emerging from distinct Lorentz func-

tions. Figure 7.1 for example shows the effects of smoothing (thick dotted line) for

varying smoothing repeats b of an example spectrum (dotted line) with uniformly

distributed noise U(−0.3, 0.3) and significance threshold δ = 6.0. The spectrum

is originally given as a sum of two Lorentz functions with parameters λ = A = 1,

and with distance d = |ω2 − ω1| = 1.5 at a resolution 1
∆x

= 10. In the beginning

(b = 1), the second derivative (thin solid line) is highly distorted due to the effects

of noise (Fig. 7.1(a)). Increasing the degree of smoothing by repeatedly executing

(7.6) allows to encapsulate two major clockwise-rotating curvatures of the spec-

trum as two adjacent peak triplets (Figs. 7.1(b) - 7.1(d)). Further smoothing leads

to a merge of the two triplets, and only a single peak is observed for b > 50 (Fig.

7.1(e)). The aim thus is to find the number of smoothing repeats, which properly

balances the trade-off between noise removal and signal preservation.
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(a) b = 1

(b) b = 10

(c) b = 25

(d) b = 50

(e) b = 100

Figure 7.1: Smoothing effects on an example spectrum of two standard Lorentz
functions. Shown are the original spectrum (dots) after adding white noise at an
amplitude of 0.3, the smoothed spectrum (thick solid line) and the corresponding
second derivative (thin solid line). b denotes the number of smoothing steps.
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(a) fsum (b) fmult

Figure 7.2: The respective selection scores fsum and fmult (top lines) of Fig. 7.1
in comparison with the respective number of selected peaks (bottom line) for in-
creasing smoothing repeats b.

For a given significance threshold δ, an intuitive approach for determining a

reasonable degree of smoothing is given by maximizing the sum of scores

fsum(A) =
∑
j∈|A|

s(pj) (7.8)

for the set of accepted triplets A (see Def. 7.1). However, considering that the

score of each triplet itself is given as a sum of second derivative values already, we

may presume that merging of two adjacent triplets p1 and p2 has almost no effect

on fsum (compare Def. 5.2), written as

s(p1) + s(p2) ≈ s(p1,2) (7.9)

with p1,2 denoting the triplet received after merging of p1 and p2. To circumvent

this problem, we may consider

s(p1) ≥ 2 ∧ s(p2) ≥ 2 ⇒ s(p1) s(p2) ≥ s(p1) + s(p2) ≈ s(p1,2), (7.10)

and the degree of smoothing can then be found by maximizing

fmult(A) = log

 |A|∏
i=1

(
2 + s(pi)− (s̄+ δσ)

) =

|A|∑
i=1

log
(
2 + Θi − δ

)
. (7.11)

δ denotes a predefined significance threshold, and Θi denotes the significance of

peak triplet pi (see Def. 7.1). fmult now allows to prevent significant peak triplets
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pi from being merged together, since by definition it holds Θi ≥ δ for all triplets

pi ∈ A. Figure 7.2 shows the corresponding selection scores fsum and fmult for the

merging scenario of Fig. 7.1. In agreement with the assumption from above, the

sum of scores of accepted triplets (fsum, top line in fig. 7.2(a)) keeps increasing

even after the two triplets have merged to a single one (b > 50). In contrast, an

essential decrease can be observed for fmult (top line in fig. 7.2(b)). A pseudo-code

representation for an automated smoothing approach based on fmult is given by

Algorithm 9.

Algorithm 9

Input: Spectrum a, blank signal ablank, significance threshold δ
Output: List of accepted peak triplets A∗

1: best← 0; last←∞;A∗ ← ∅;
2: while ( |Q| > 1 and |ρ1,blank − ρ1,res| ≤ last ) do
3: Find set of triplets Q out of blank signal ablank;
4: last← |ρ1,blank − ρ1,res|;
5: Find accepted peak triplets A on a, given δ;
6: if ( fmult(A) ≥ best ) then
7: best← fmult(A); A∗ ← A;
8: end if
9: Apply (7.6) on all values in a and ablank;

10: end while
11: return A∗;

In summary, a given spectrum a is repeatedly smoothed, as long as blank

triplets exist, and as long as the autocorrelation coefficient of the residual, p1,res,

approaches that of blank signal, p1,blank. Note that the chosen degree of smoothing

by Algorithm 9 is less or equal to that of Vivo-Truyols & Schoenmakers (2006).

With b denoting the number of smoothing repeats needed for the execution of

lines 3-11, with n denoting the number of datapoints in a, and with m denoting

the number of datapoints in the blank signal, Algorithm 9 has a total worst-case

runtime of O
(
b(n+m+ |A|+ |Q|)

)
.

7.2.2.2 Results

In this section, initial results of Algorithm 9 are presented, based on simulated

spectra containing two standard Lorentz functions (3.12) with width and scale

parameters A = λ = 1. With d = |ω2 − ω1| denoting the distance between the

two peaks, and with r = 1
∆x

denoting the resolution of the spectrum, three peak
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(a) d = 1.2, r = 5 (b) d = 1.2, r = 10 (c) d = 1.2, r = 20

(d) d = 1.5, r = 5 (e) d = 1.5, r = 10 (f) d = 1.5, r = 20

(g) d = 2.0, r = 5 (h) d = 2.0, r = 10 (i) d = 2.0, r = 20

Figure 7.3: Number of accepted peak triplets after the execution of Algorithm
9 for different scenarios and varying noise amplitudes. The length of the error
bars equals two times the standard deviation out of 20 runs (see the text for more
details).

distances d ∈ {1.2, 1.5, 2.0} and three different spectrum resolutions r ∈ {5, 10, 20}
are considered, resulting in a total number of nine different smoothing scenarios.

Each scenario is sampled 20 times, and uniformly distributed noise U(− v
100
, v

100
)

is added to each datapoint, with noise amplitudes v in the range 0 ≤ v ≤ 50.

Triplets are found within the range [ω1 − 5, ω2 + 5] out of a total spectral range of

[ω1−20, ω2 +20]. All evaluation runs are based on a significance threshold δ = 6.0.
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Fig. 7.3 shows the performance of Algorithm 9 on average out of 20 runs

for each of the considered scenarios. The number of accepted peak triplets |A∗|
with maximal selection score fmult is denoted as Alg 1, and shown as squares.

In addition, the number of accepted triplets |A| found after the last execution of

line 5 in Algorithm 9 is denoted as Auto-Cor, and shown as circles. In a sense,

these results represent the outcome of the lag-one autocorrelation approach of

Vivo-Truyols & Schoenmakers (2006), and thus can be seen as baseline results,

compared to which the impact of fmult can be determined. In addition, for the

degree of smoothing chosen by Algorithm 9, the number of local maxima with a

maximal value higher than the spectrum average value is denoted as #Max, and

shown as diamonds.

The figures generally show that it can be highly beneficial to identify peaks as

curvatures of the spectrum rather than as maxima, since both methods Auto-Cor

and Algorithm 9 leave the spectra in most cases with exactly one maximum after

smoothing. Furthermore, it can also generally be observed that an increase in the

peak distance d (from top to bottom in all columns) and also an increase in the

resolution r (from left to right in all rows) have both a beneficial impact, i.e. the

maximal noise amplitude, for which two peaks can still be identified, increases for

increasing d or r or both.

An interesting result is given by the fact that Algorithm 9 is capable of iden-

tifying both peaks on average for even higher noise amplitudes and even smaller

peak distances than Auto-Cor in all considered scenarios. Thus, at least for the

considered datasets, maximizing (7.11) apparently comes to a better compromise

between noise reduction and signal preservation than minimizing the autocorrela-

tion distance only.

7.2.3 Overlap Detection by further derivation

For the task of peak selection, presented in Chapter 5, the curvature of the spec-

trum was investigated by observing local, negative minima of the discrete second

derivative function. As shown by figure 7.4(a), this approach cannot detect arbi-

trarily overlapped peaks. In this context, a theoretical investigation concerning the

relationship between the distance and number of distinct optima (local minima in

the second, local maxima in the 4th, etc) in further derivative functions would be
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(a) (b)

Figure 7.4: Two overlapping Lorentz functions (grey areas) with their sum (solid
line), the second derivative (dot-dashed red line) and the 4th derivative (dashed
blue line). The presence of two odistinct peaks can be observed by local maxima
of the 4th derivative function.

beneficial, as for instance initially given by propositions 3.1 and 3.2 for the number

of local maxima in the original function.

Figure 7.4 shows the overlap scenario of two Lorentz functions with equal

HWHH λ = 1, area A = 1, and distance ω2 − ω1 = λ√
3

(compare figure 3.5 in

Chapter 3). While this distance leads to only one local minimum in the second

derivative (following proposition 3.1), one can clearly observe two local maxima in

the 4th derivative (figure 7.4(b)). This suggests the potential of detecting smaller

overlaps of peaks by higher order investigations of the curvature. Similar to the

fact that a local minimum in the second derivative function indicates a locally

maximal turn in clockwise direction of the original function, a maximum in the

fourth derivative indicate a locally maximal turn in counter-clockwise direction of

the second derivative. Thus, it denotes a potential overlap of second derivative

minima. In a similar fashion, further derivative information might have the po-

tential to improve overlap detection in general. One problem to consider in this

context is the impact of noise and other distortions, since their occurrence already

has a great impact on the second derivative as shown in the results section 5.1.3.

Consequently, the interplay of smoothing filters and derivation is worth investigat-

ing. In particular, the loss of local optima resulting from smoothing the spectrum

can potentially be counteracted by calculating higher order derivatives, in order to

improve simultaneous peak and overlap detection.
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