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Abstract

Space filling designs, which satisfy a uniformity property, are widely used
in computer experiments. In the present paper the performance of non-uniform
experimental designs which locate more points in a neighborhood of the boundary
of the design space is investigated. These designs are obtained by a quantile
transformation of the one-dimensional projections of commonly used space filling
designs. This transformation is motivated by logarithmic potential theory, which
yields the arc-sine measure as equilibrium distribution. Alternative distance
measures yield to Beta distributions, which put more weight in the interior of
the design space. The methodology is illustrated for maximin Latin hypercube
designs in several examples. In particular it is demonstrated that in many cases
the new designs yield a smaller integrated mean square error for prediction.
Moreover, the new designs yield to substantially better performance with respect
to the entropy criterion.

Keywords and phrases: design for computer experiments, space filling designs, Latin

hypercube designs, logarithmic potential, arc-sine distribution
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1 Introduction

In modern scientific studies, mathematical computer models are widely used to de-

scribe complex processes. These models are a replacement for real (physical, chemical,

biological, etc.) experiments which are too time consuming or too costly. Typical ex-

amples of computer models include the flow of air over an airplane wing, behavior of a

metal structure under stress, combustion of gasses in a flame, VLSI-circuit and engine

design, plan ecology, thermal-energy storage, health medical models and many other

processes. Moreover, mathematical models may describe phenomena which can not be

reproduced, for example, weather or climate change. Computer experiments usually

involve a large number of input variables and are typically extremely time consuming.

One run of a computer experiment may require several hours or longer. Therefore, the

choice of an appropriate set of input conditions is of particular importance for making

inference on the basis of a computer model. In the literature this rapidly growing

field is called design for computer experiments [see Sacks, Welch, Mitchell and Wynn

(1989), Santner, Williams and Notz (2003), Fang, Li, Sudjianto (2006) or Kleijnen

(2008) among many others].

For computer experiments space-filling designs are very popular. The class of space-

filling designs includes a wide variety of different types of designs such as Latin hy-

percube designs (LHD), designs based on random or pseudo-random sequences, sphere

packing designs and others. Most of these designs are uniformly space-filling in the

sense that the design points are uniformly scattered on the domain.

The purpose of the present note is to give some motivation for choosing non-uniform

space-filling designs in computer experiments. Our approach applies an average mea-

sure of inter-point distances to each marginal projection of a space filling design. In

particular, we consider Latin hypercube designs with marginals minimizing a logarith-

mic potential. This optimization problem yields to the arc-sine distribution and we

propose to transform the marginals of maximin Latin hypercube designs by the corre-

sponding quantile function. The transformed designs are called generalized maximin

Latin hypercube designs and we show their efficiency for prediction with respect to the

mean squared and entropy criterion in several numerical examples. Other functionals

yield to Beta distributions, which are an interesting alternative if the prediction in the

interior of the design space is of more interest.

The remaining part of the paper is organized as follows. In Section 2 we review some

notations from the design of computer experiments and state two optimization prob-

lems, which have Beta distributions as solution. These results provide the motivation
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for introducing generalized maximin Latin hypercube designs, which are obtained by

transforming the one-dimensional projections of a maximin Latin hypercube design by

the quantile function of a Beta-distribution. In particular, we consider the arc-sine

distribution and the generalized Latin hypercube designs derived from this transfor-

mation which are compared with commonly used designs in several numerical examples

in Section 3. Finally, some conclusions are given in Section 4.

2 Efficient designs for computer experiments

In computer experiments, one of the primary objectives is to construct a meta-model

for the estimation of the response at untried inputs. Correspondingly, appropriate op-

timality criteria for choosing a design in computer experiments should be based on the

error of prediction. A very popular optimality criterion is the minimization of the mean

square error over the design space. This criterion is adopted to lead to a design which

should fill the entire design space uniformly at the initial stage of computer experi-

ments. The examples of space-filling designs include Latin hypercube designs, sphere

packing designs, distance based designs, uniform designs, minimal discrepancy designs,

designs based on random or pseudo-random sequences, see Santner et al. (2003), Fang

et al. (2006). A “good” design should yield a dense set in the projection on each coor-

dinate and at the same time form a dense set in entire design space. By construction,

Latin hypercube designs have projections that are spread out evenly over the values

of each input variable. Unfortunately, these designs may have a poor filling of the

entire hypercube (in the extreme case - if the design space is a square - all points are

evenly spread out of the diagonal of this square); see e.g. Liefvendahl, Stocki (2006),

Pepelyshev (2009). Several criteria of optimality are introduced in order to choose

a “good” design in a class of Latin hypercube designs. Most criteria are based on

a measure which quantifies how spread out a set of points is. A typical example is

the maximin criterion, which determines the Latin hypercube design maximizing the

minimal distance

Ψp(L) = min
i,j=1,...,n

i 6=j

||xi − xj||p = min
i,j=1,...,n

i6=j

(
d∑

s=1

|xs,i − xs,j|p
)1/p

, (1)

where d denotes the dimension of the n input variables x1, . . . , xn and xi = (x1,i, . . . , xd,i)
T

is ith point of the design L = {x1, . . . , xn}. Usually this criterion is used with p = 2

for computational reasons or the isotropic argument. The maximin objective for the

choice of points have been shown to be useful first in Niederreiter (1983).
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A Latin hypercube design, which maximizes Ψp(L) in the class of all LHD, is called a

maximin Latin hypercube design (MLHD). An alternative criterion was introduced by

Audze, Eglais (1977) and is based on the analogy of minimizing forces between charged

particles. These authors proposed the minimization of the function

ΨAE(L) =
n∑

i=1

n∑
j=i+1

1

||xi − xj||22
. (2)

Other criteria of uniformity are star L2-discrepancy, centered L2-discrepancy, wrap-

around L2-discrepancy which are motivated by quasi-Monte-Carlo methods and the

Koksma-Hlawka inequality [see Hickernell (1998), Fang et al. (2000, 2002)].

Uniform designs are particularly important for inference about the mean
∫

G(x)dx of

some known arbitrary integrable function G over the design space. In this case the

sample mean of G computed from a uniform design minimizes a certain bound for the

absolute error from the true mean [see for example Hickernell (1998)]. However in

most computer experiments, one is typically not interested in estimating the mean of

some function G. In many cases the output of a computer experiment is used for the

construction of a meta-model for prediction. In this model the parameters have to be

estimated and this objective is not taken into account by the choice of uniform designs.

In order to address the problem of prediction and fitting, we propose to choose designs

points which are more densely located near the boundary of the design space. In the

following discussion we define a transformation for the projections of a Latin hypercube

design. Our proposal is motivated by the following observations.

First, if for a (one dimensional) uniform design a sphere with center in the middle of

the design space contains k points then, a sphere with the same radius and a center

near the boundary of the design space contains fewer points. This effect is increasing

with the dimension of the design space, which means that at the boundary of the design

space there is substantially less information for prediction.

Second, note that in a Gaussian process analysis the uncertainty of the prediction at

the point x is essentially of the form

V (x) = 1− tT (x)R−1t(x),

where t(x) = (r(x, x1), . . . , r(x, xn))T is the vector of correlations between the point

x and the design points x1, . . . , xn and r(·) is a given correlation function. For a

one-dimensional input variable the typical form of the function V (x) with Gaussian

correlation function r(·) for the design points 0, 0.1, . . . , 1 is given in Figure 1. We

observe that the uncertainty is larger near the boundary of the design space. Therefore,
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to reduce the uncertainty (for example in a minimax approach) the design points should

be located more densely near the boundary.
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Figure 1: The typical form of the uncertainty in Bayesian analysis for equidistant

design points in the one-dimensional case.

We now give a motivation for the specific choice of the transformation, which is slightly

more formal than the heuristic arguments of the previous paragraphs. Recall the type

of criterion in (2) and define a family of criteria by

ψa(L(s)) =





n∑
i=1

n∑
j=i+1

1

|zi − zj|a if a ∈ (0, 1)

n∑
i=1

n∑
j=i+1

− log |zi − zj| if a = 0

(3)

where L(s) = {z1, . . . , zn} with zi = xs,i (s = 1, . . . , d) denotes the projection of the

initial design on the sth coordinate. Arguing as before, it is reasonable for the computer

experiment to choose the design L = {x1, . . . , xn} which has one-dimensional marginals

L(s) = {xj,1, . . . , xj,n} minimizing the criterion (3). The solution to the case a = 0 in

(3) is well known [see Szegö (1975)] and given by the roots of the polynomial

z(z − 1)P ′
n−1(2z − 1),

where Pn−1(z) denotes the (n− 1)th Legendre polynomial orthogonal with respect to

the Lebesgue measure on the interval [−1, 1]. Note that the uniform distribution on this
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set is the D-optimal approximate design for a polynomial regression model of degree n

[see Pukelsheim (2006)]. In particular it can be shown that for increasing sample size n

the uniform distribution on this set converges weakly to the arc-sine distribution with

density

p 1
2
(x) =

1

π
√

x(1− x)
, (4)

[see for example Dette and Studden (1995)].

The design {z1, . . . , zn} minimizing (3) for a ∈ (0, 1) can not be determined explicitly.

However an approximate solution is possible by the following argument. If z1, . . . , zn

are interpreted as realizations of independent identically distributed random variables

with distribution µ, then (with an appropriate normalization) (n
2
)−1 ψa (L(s)) can be

considered as an approximation of the integral

φa(µ) =





∫ 1

0

∫ 1

0

1

|x− y|a µ(dy)µ(dx) if a ∈ (0, 1]

−
∫ 1

0

∫ 1

0

log |x− y|µ(dy)µ(dx) if a = 0

(5)

It has recently been shown [see Dette, Pepelyshev, Zhigljavsky (2009)] that φa is min-

imal for the Beta distribution

p 1+a
2

(x) =
1

B(1+a
2

, 1+a
2

)
x

a−1
2 (1− x)

a−1
2 ; a ∈ [0, 1]. (6)

Note that for the choice a = 0 we obtain the arc-sine distribution, which appears as the

equilibrium distribution of the logarithmic potential [see Saff and Totik (1997)]. By

the argument of the previous paragraph the arc-sine distribution is also the limit distri-

bution of the D-optimal design for large degree polynomial regression [see Pukelsheim

(2006), Ch. 9.5]. Moreover, Wiens and Zhou (1997) showed that V -optimal designs for

linear models, which are robust against small departures from the assumed regression,

converge weakly to the arc-sine distribution.

Our strategy of constructing a non-uniform design is now the following.

(A) We generate Latin hypercube designs. For this purpose we recall an algorithm

for the construction of Latin hypercube design, which was introduced in McKay

et al. (1979). This algorithm generates n points in dimension d in the following

manner.
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(1) Generate n uniform equidistant points xs,1, . . . , xs,n in the range of each

input variable, s = 1, . . . , d. Without loss of generality, we assume that the

range of each input is the interval [0, 1] and xs,j ∈ R = {0, 1/(n− 1), 2/(n−
1), . . . , 1}.

(2) Generate a matrix (pi,j) of size d × n such that each row is a random per-

mutation of the numbers 1, . . . , n and these permutations are independent.

(3) Each column of the matrix (pi,j) corresponds to a design point, that is

(x1,p1,j
, . . . , xd,pd,j

)T is the jth point of the Latin hypercube design.

(B) We determine a maximin hypercube design maximizing the criterion (1). Several

algorithms for this purpose can be found in Liefvendahl and Stocki (2006), Jin

et al. (2005), Fang and Qin (2003) among many others.

(C) For the definition of a generalized (non-uniform) design supported at the points

z1, . . . , zn, zi = (z1,i, . . . , zd,i), we assume that the points xj,i of the one-dimensional

projection of a maximin Latin hypercube design are transformed by the quan-

tile function of a continuous density p 1+a
2

(t), which minimizes the criterion (5),

namely, zj,i is a solution of the equation

xj,i =

∫ zj,i

0

p 1+a
2

(t)dt

i = 1, . . . , n, j = 1, . . . , d. Note that the equally-spaced points correspond to the

choice p1(t) ≡ 1.

The resulting design will be called generalized maximin Latin hypercube design through-

out this paper and by the previous discussion we expect that a good choice for the dis-

tribution in step (C) of the procedure is to use one of the densities {p 1+a
2
}a∈[0,1]. The

parameter a can be considered as a tuning parameter, which specifies the importance

of the boundary. The larger the parameter a ∈ [0, 1], the more mass is put at the

boundary of the interval [0, 1]. Note that the extreme case a = 1 yields the uniform

distribution, while the other extreme case is a = 0 corresponding to the arc-sine dis-

tribution. In the following discussion we will concentrate on the arc-sine measure p 1
2

which minimizes the logarithmic potential. For this density we obtain

zj,i =
(

cos
(
xj,i π

)
+ 1

)
/2, i = 1, . . . , n.

In particular, we have
∫ 1/4

0

p 1
2
(t)dt =

∫ 1/2+1/4

1/2−1/4

p 1
2
(t)dt = 1/3,
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which indicates that – in contrast to the uniform distribution – the arc-sine distribution

puts more mass in the neighbourhood of the boundary of the design space. In the

following section we investigate the performance of these designs in several numerical

examples.

3 Examples

In this section we compare two designs: the maximin Latin hypercube design (MLHD)

and the generalized maximin Latin hypercube design (GMLHD) obtained from MLHD

by applying the arc-sine transformation. We downloaded maximin Latin hypercube

designs from the website http://www.spacefillingdesigns.nl/. The following illustrative

examples of models are not hard time consuming computer models. However, they have

a typical form of the response and allow to compute the accuracy of the meta-model

for different designs.

We use the Bayesian framework, in which the meta-model is the mean of a posterior

Gaussian process [see Sacks et al. (1989), Kennedy and O’Hagan (2001)]. More pre-

cisely, we consider a Gaussian process with linear mean and the Gaussian correlation

function

r(x) = e−
∑d

s=1 x2
s/ψs

where ψ = (ψ1, . . . , ψd) is a vector of correlation parameters. In the following exam-

ples, we estimate the hyper-parameter of the Gaussian process for each dataset by

the algorithm given in Kennedy and O’Hagan (2001) and Bastos and O’Hagan (2008).

Specifically, the parameters of the mean and variance function are determined by the

integration of the likelihood with respect to the noninformative prior and the estimate

of ψ is determined by the maximization of the posterior density.

To study the performance of the meta-model η̂(x) for different designs, we use three

criteria, two mean square error (MSE) criteria and an entropy criterion. The first mean

square error criterion is defined by

MSE(L) =

∫

[0,1]d
(η(x)− η̂(x))2w(x)dx, (7)

where L is the given design, w(x) is a weight function and η(x) is a computer model.

For the sake of brevity we assume that w(x) ≡ 1 and calculate the mean square error

by Monte-Carlo sampling, that is

MSE[0,1]d =
1

N

N∑

k=1

(η(xk)− η̂(xk))
2
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with N = 10000, where the points xk are randomly chosen from [0, 1]d. We also

calculate the mean square error over 2d corner points, that is

MSE{0,1}d =
1

2d

∑

x∈{0,1}d

(η(x)− η̂(x))2,

and consider the entropy criterion, which is defined by

E = log det R, (8)

where R = (r(xi−xj))i,j is a correlation matrix for the design points. Note that several

authors prose to maximize the entropy criterion in order to determine a space-filling

design, see e.g. Sacks et al. (1989), Sebastiani and Wynn (2000).

3.1 Two-dimensional rational model

We start with a two-dimensional model which has the typical form of models in com-

puter experiments and was studied recently in Bastos and O’Hagan (2008). The model

is defined by

η(x) =
(
1− e−0.5/x2

) 2300x3
1 + 1900x2

1 + 2092x1 + 60

100x3
1 + 500x2

1 + 4x1 + 20
, (9)

where the input variable x = (x1, x2) varies in the square [0, 1]2. The results of the

simulation study are depicted in Table 1, where we show the entropy and the square

root of the simulated mean square error obtained by the different designs. From this

table we see that the mean square error obtained by the MLHD is substantially larger

than the mean square error obtained by the GMLHD. The entropy for the MLHD is

smaller than the entropy obtained by the GMLHD. The improvement with respect to

MSE[0,1]2 varies between 53% (n = 30) to 57% (n = 70). The improvement with respect

to the entropy criterion is about 15%. The improvement with respect to the accuracy of

the prediction at the boundary, measured by MSE{0,1}d , is even larger (which is obvious

by the construction of the GMLHD). Thus, in model (9) the GMLHD is substantially

more efficient than the MLHD with respect to all criteria.

3.2 Borehole model

In this subsection we examine designs for a borehole model which was investigated

in Worley (1987), Morris and Mitchell (1995), Ahn and Owen (2001), Fang and Lin
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Table 1: Square root of mean square error and entropy for MLHD and GMLHD with

different n for model (9).

n 30 40 50 60 70

MSE[0,1]2 0.2658 0.142 0.061 0.075 0.085

MLHD MSE{0,1}2 1.28 1.10 0.57 0.51 0.57

E -53.415 -97.96 -113.4 -166.3 -98.26

MSE[0,1]2 0.1248 0.042 0.038 0.042 0.037

GMLHD MSE{0,1}2 0.13 0.12 0.06 0.05 0.06

E -44.337 -82.78 -91.22 -140.6 -85.47

(2003). The borehole model describes the flow rate through the borehole that is drilled

from the ground surface through two aquifers. The flow rate is given by

η(x) =
2π(Hu −Hl)

ln(r/rw)
(
1 + 2LTu

ln(r/rw)r2
wKw

+ Tu

Tl

) ,

where the dimension of the vector of input variables is 8, that is

x = (rw, r, Tu, Tl, Hu, Hl, L, Kw).

The input rw ∈ [0.05, 0.15] is the radius of the borehole, r ∈ [100, 50000] is the ra-

dius of the influence, Tu ∈ [63070, 115600] is the transmissivity of the upper aquifer,

Tl ∈ [63.1, 116] is the transmissivity of the lower aquifer, Hu ∈ [990, 1110] is the poten-

tiometric head of the upper aquifer, Hl ∈ [700, 820] is the potentiometric head of the

lower aquifer, L ∈ [1120, 1680] is the length of the borehole and Kw ∈ [9855, 12045]

is the hydraulic conductivity of the borehole. The simulated square root of the mean

square error is depicted in Table 2 and we see that the mean square error for the

MLHD is a little smaller than the mean square error for the GMLHD if n = 60, 70,

80. This observation can be explained by the very sparse placement of (at most) 80

design points in a 8-dimensional design space.

The mean square error for the MLHD becomes larger than the mean square error for

the GMLHD if the number of design points is increasing and in this case we observe

a similar performance as in the 2-dimensional example. The mean square error at the

corner points MSE{0,1}d is substantially larger for the MLHD than for the GMLHD.

Similarly, the GMLHD performs substantially better than the MLHD with respect to

entropy criterion.
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Table 2: Square root of the mean square error and entropy for MLHD and GMLHD

with different n for the borehole model.

n 60 70 80 90 140 200

MSE[0,1]8 1.05 0.90 0.61 0.53 0.51 0.37

MLHD MSE{0,1}8 5.04 4.21 3.26 3.45 3.89 2.81

E -157.6 -193.8 -266.8 -273.2 -386 -561.2

MSE[0,1]8 1.21 1.04 0.65 0.54 0.48 0.32

GMLHD MSE{0,1}8 3.94 3.18 2.66 2.58 2.88 1.69

E -137.6 -170.7 -238.1 -241.2 -329.3 -473.4

3.3 Mechanical model

In this subsection, we examine designs for a non-linear mechanical model which was

studied in Crisfield (1991, p. 2) and Liefvendahl and Stocki (2006). The model consists

from the long bar and the spring as given in Figure 1. In the mechanical system, the

angle θ is assumed to be small.

Figure 2: The mechanical system. The force S has negative sign.

We are interested in the vertical displacement w which is given by a solution of the

equation

S =
EA

l3
(z2w + 1.5zw2 + 0.5w3) + Ksw

with the smallest absolute value, where the input E ∈ [4.8 · 105, 5.2 · 105] is the Young

modulus of the bar material, A ∈ [95, 105] is the cross-sectional area of the bar, l ∈
[2650, 2750] is the length of the unloaded bar, z ∈ [24.5, 25.5] is the vertical coordinate

of the right node of the bar when it is unloaded, Ks ∈ [0.88, 0.92] is the stiffness of the

spring, S ∈ [−23,−22] is the vertical force applied to the right node of the bar. Thus
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the model has six inputs where x = (E, A, l, z, Ks, S). The simulated mean square

error for the MLHD and GMLHD is displayed in Table 3. We see that the performance

of the designs for the mechanical model is similar to the performance for the Borehole

model. For a smaller number of design points the MLHD performs slightly better than

the GMLHD with respect to the MSE[0,1]6 criterion, while the opposite behaviour is

observed if n is larger than 80. In both cases the differences between the two designs

are rather small. On the other hand compared to the MLHD the GMLHD yields

again a substantial improvement with respect to the entropy criterion and has a better

performance in the corners of the design space.

Table 3: Square root of the mean square error and entropy for MLHD and GMLHD

with different n for the mechanical model.

n 50 60 70 80 90 140 200

MSE[0,1]6 0.57 0.55 0.53 0.50 0.48 0.47 0.45

MLHD MSE{0,1}6 1.54 1.51 1.49 1.26 1.22 1.23 1.17

E -31.5 -32.6 -38.5 -48.0 -56.7 -107.0 -145.5

MSE[0,1]6 0.63 0.60 0.57 0.52 0.47 0.43 0.41

GMLHD MSE{0,1}6 1.26 1.19 1.07 0.90 0.85 0.82 0.83

E -21.7 -21.5 -25.3 -31.7 -37.5 -71.1 -93.5

3.4 Neddermeyer’s model

In this subsection, we examine the performance of the two designs for a model which

was studied by Neddermeyer (1943) and Higdon et al. (2008). The model describes the

internal radius of steel cylinder during a high explosive (HE) charge implosion. The

internal radius as a function of time is given by a solution of the differential equation

y′ =
[

2

R2
1f(y)2

(
v2

0

2
− s

2ρ
g(y)

)]−1/2

,

where

f(y) =
y2

(1− λ2)
ln

y2 + 1− λ2

y2
,

g(y) =
1

1− λ2
(y2 + 1− λ2) ln(y2 + 1− λ2)− λ2 ln(λ2),
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R1 = 1.5 is the initial outer radius of steel cylinder being imploded, λ = 2/3 is the ratio

of outer cylinder radius to the inner radius, ρ = 7.5 is the specific density (relative to

water), v0 = 0.3 · 105 is the initial velocity imparted on the outer radius of the cylinder

from the HE.

In this case we are interested in the internal radius after an implosion and the model

is of the form η(x) = y(T, x) with three input variables x = (s,m, u0). Here T =

5 · 105 is a time moment after an implosion, the input variable s varies in the interval

[1.85 · 1010, 2.25 · 1010] and represents the yield stress of steel, while m ∈ [0.29, 0.35]

is the mass ratio between the HE and cylinder and u0 ∈ [1.4 · 1010, 1.7 · 1010] is the

detonation energy per gram of exploded gas from the HE. The simulated mean square

error for the MLHD and GMLHD is shown in Table 4. In this case we observe a similar

superiority of the GMLHD as in the first example. The GMLHD yields between 18%

(n = 30) and 39% (n = 150) smaller values for the MSE[0,1]3 than the MLHD. The

improvement with respect to the entropy criterion is of similar size.

Table 4: Square root of the mean square error and entropy for MLHD and GMLHD

with different n for the Neddermeyer’s model.

n 30 40 50 70 90 150

MSE[0,1]3 1.34 1.13 1.08 1.07 0.86 0.90

MLHD MSE{0,1}3 15.48 13.61 11.30 11.87 8.36 9.41

E -61.4 -86.9 -94.9 -175.4 -245.8 -271.5

MSE[0,1]3 1.10 0.99 0.86 0.82 0.68 0.55

GMLHD MSE{0,1}3 11.04 8.64 4.93 3.22 1.80 0.96

E -51.8 -72.6 -77.4 -145.5 -202.9 -214.1

4 Conclusions

In this paper we have proposed new designs for computer experiments which improve

commonly used space-filling designs. The method is based on a quantile transformation

of the projections of a commonly used space-filling design for computer experiments

(such as maximin Latin hypercube, minimum distance, pseudo-random sequences, min-

imum discrepancy, etc.). For the quantile transformation we use the arc-sine distribu-

tion and as a consequence the new designs allocate more input variables in the neigh-

borhood of the boundary of the design space. The usefulness of a transformation of the
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uniform design has also been demonstrated in a different context by Al-Mharmah and

Calvin (1996) who showed that a Beta(2/3, 2/3) density yields a better performance

than the uniform density in random non-adaptive algorithms for the determination of

the maximum of a continuous function (note that the arc-sine distribution is close to

the Beta(2/3, 2/3) distribution).

Using (logarithmic) potential theory, some explanation is given why the new designs

(obtained by the quantiles of the arc-sine distribution) should perform better than

the original uniform space-filling designs. For maximin Latin hypercube designs the

methodology is illustrated in four examples, which are commonly considered in the

literature about designs for computer experiments. The transformed designs are called

generalized maximin hypercube designs (GMLHD). In all examples the mean square

error at the corner points obtained by the generalized maximin Latin hypercube designs

is substantially smaller than the mean square error obtained by the maximin Latin

hypercube designs. A similar superiority of generalized maximin Latin hypercube

designs can be observed for the entropy criterion. If the mean square error over the

full design space is considered the generalized maximin Latin hypercube designs show

a better performance than the initial designs in most cases, in particular, if (compared

to the dimension) the number of designs points is relatively large. If the sample sizes

are small compared to the dimension (such as d = 8 and n = 30), the maximin

Latin hypercube designs show a slightly better performance. However, in such cases

an adequate comparison of two small sample designs is only possible within a narrow

predetermined class of computer models. Consequently, results for small sample designs

for a particular model can not be transferred to other models.

We finally note that the results are obtained for the uniform distribution w(x) ≡ 1

in the mean square error criterion (7). Naturally, we can expect that if the weight

w(x) is not uniform and we are interested in more precise prediction in the middle of

the hypercube [0, 1]d, other transformations of the initial design would yield to designs

with a a better performance. An appropriate transformation p could be obtained by

incorporating the weight function w in the criterion (5). For example, if a = 0 in (3),

one could minimize the weighted logarithmic potential

ψ(µ) =
n∑

i=1

n∑
j=i+1

log
( 1

|zi − zj|
)
−

n∑
i=1

log w(zi) (10)

which has been studied extensively in the literature [see Szegö (1975)]. A typical weight

function representing the importance of the interior of the design space is given by the
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Beta density

wα,β(x) =
1

B(α, β)
xβ−1(1− x)α−1 , α, β ≥ 1 (11)

where the case α = β = 1 corresponds to the uniform distribution considered in

the present paper. It is well known [see Szegö (1975)] that for the choice (11) with

α > 1, β > 1 (which corresponds to a nonuniform weight with more mass in the interior

of the design space) the design {z1, . . . , zn} minimizing (10) is given by the roots of

the polynomial P
(2α−3,2β−3)
n (2z−1), where P

(γ,δ)
n (z) denotes the nth Jacobi polynomial

on the interval [−1, 1] orthogonal with respect to the measure (1− z)γ(1 + z)βdz. The

corresponding quantile transformations yield to generalized maximin Latin hypercube

designs which put more design points in the interior of the design space [0, 1]d.
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Szegö, G. (1975). Orthogonal Polynomials. Amer. Math. Soc. Colloq. Publ., Vol. 23,

Amer. Math. Soc., NY.

Wiens D.P., Zhou J. (1997). Robust Designs Based on the Infinitesimal Approach.

Journal of the American Statistical Association 92, 1503–1511.

Worley B.A. (1987). Deterministic uncertainty analysis. OSTI ID: 6104504.

17



 



 



 




