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Summary

Returns of risky assets are often modelled as the product of a
volatility function times standard Gaussian noise. This paper
proposes a piecewise constant volatility function and shows how
to construct such functions so that (i) the number of intervals
of constant volatilities is minimized, and that (ii) these constant
volatilities are equal to the root mean squared returns.

1Research supported by Deutsche Forschungsgemeinschaft (DFG). The algorithms sug-
gested here were programmed in R and are available from the authors upon request.
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1 The model and notation

Let r(t) be the excess-return of some risky asset in period t. For stocks with
end of period price pt, r(t) = log(pt/pt−1). In empirical finance, r(t) is often
modelled as

R(t) = Σ(t) · Z(t), (t = 1, ..., n) (1)

where Z(t) ∼ i.i.d. N(0, 1). In the ARCH-class of parametric models Σ(t)
depends on past values of the R(t)2 as typified by the GARCH(1,1) model

Σ(t)2 = α0 + α1R(t− 1)2 + β1Σ(t− 1)2.

The present paper in contrast follows a nonparametric approach to the mod-
elling of Σ(t) based on Davies and Kovac (2001), Davies (2005, 2006) and
Höhenrieder (2008). Related nonparametric approaches are those of Mercu-
rio and Spokoiny (2004) and Granger and Stărică (2005).

The exact manner of the approximation can be carried out in various
ways. Here we follow Davies (2005, 2006) and exploit the fact that, under
the model (1) we have

R(t)2

Σ(t)2
=
∑

t∈I

Z(t)2 ∼ χ2

|I| (2)

for any nonempty interval I ⊂ {1, ..., n} where |I| denotes the number of
elements of I and χ2

k denotes the χ2–distribution with k degrees of freedom.
This implies that, for all α ∈ (0, 1), there is some αn ∈ (0,1) such that

P

(

χ2

|I|, 1−αn

2

≤
∑

t∈I

Z(t)2 ≤ χ2

|I|, 1+αn

2

, ∀I ⊂ {1, . . . , n}

)

= α (3)

where χ2

k,β denotes the β–quantile of the χ2–distribution with k degrees of
freedom. Simple approximations for αn for α = 0.9 and 0.95 and 100 ≤ n ≤
20000 are given in Section 5. We define

An =
{

σ : σ : {1, . . . , n} → (0,∞)

χ2

|I|, 1−αn

2

≤
∑

t∈I

R(t)2

σ(t)2
≤ χ2

|I|, 1+αn

2

, ∀I ⊂ {1, . . . , n}
}

. (4)

For data generated under (1) it follows that P (Σ ∈ An) = α so An is a
universal, exact α–confidence region for the volatility Σ (see Davies et al
(2009)). For real data r(t) which may or may not have been generated
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under the model we refer to An with the R(t) replaced by r(t) as an α–
approximation region. It may be checked that, for αn > 0.5 (which will
always be the case), we have

χ2

|I|, 1−αn

2

< |I| < χ2

|I|, 1+αn

2

, (5)

for all non-empty intervals I ⊂ {1, . . . , n}. This implies that σ̃(t) := |rt| lies
inAn, which is consequently a nonempty set whatever the data. The problem
then becomes one of specifying one or more functions σ ∈ An which reflect
aspects of the data which are of interest. This is done by regularization.

The form the regularization takes is dictated by the problem under in-
vestigation and also by the practicability of being able to carry it out. In
many nonparametric problems the regularization is done in terms of shape or
smoothness but neither of these is appropriate for modelling risky returns.
In line with Davies (2005,2006) we take a sparsity approach and look for
functions σ(t) which are piecewise constant on intervals and such that the
number of intervals is minimized. For real data r(t) we now have to minimize
the number of intervals of constancy of σ(t) subject to σ ∈ An that is

χ2

|I|, 1−αn

2

≤
∑

t∈I

r(t)2

σ(t)2
≤ χ2

|I|, 1+αn

2

, ∀I ⊂ {1, . . . , n}. (6)

As it stands this problem is computationally too difficult. We show below
how a modified version can be solved and how additional constraints can be
placed on the solution. We illustrate the method using 19260 daily returns
of the Standard and Poor’s index from 1928 to 2000 and 9569 daily returns
of the German DAX stock indices from 4.1.1960 - 30.4.1998.

2 Minimizing the number of intervals

2.1 Local adequacy

As mentioned above it is computationally not feasible to solve (6). We
therefore consider the following modified version. Let I1, ..., Ik ⊂ {1, ..., n},
Iν∩Iµ = ∅ and I1∪ ...∪Ik = {1, ..., n} be the intervals where σ(t) is constant,
with value σIν

, (σIν
> 0). The inequalities in equation (6) imply

∑

t∈J r(t)2

χ2

|J |, 1+αn

2

≤ σ2

Iν
≤

∑

t∈J r(t)2

χ2

|J |, 1−αn

2

, ∀J ⊂ Iν , ν = 1, . . . , k. (7)
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This lead to the modified approximation region A∗n given by

A∗n =
{

σ : σ : {1, . . . , n} → (0,∞)χ2

|I|, 1−αn

2

≤
∑

t∈I

R(t)2

σ(t)2
≤ χ2

|I|, 1+αn

2

∀I ⊂ Iν , Iν a constancy interval of σ
}

. (8)

Clearly local adequacy is a weaker condition than (6). It is seen that P (Σ ∈
An) ≥ α so A∗n is a universal, honest (Li (1989)) α–confidence region for the
volatility Σ. A volatility function σ ∈ A∗n will be called locally adequate. It
turns out that we can minimize the number of intervals for a locally adequate
volatility function.

2.2 Algorithm 0

It follows from (7) that

σ2

l (Iν) := max
J⊂Iν

∑

t∈J R(t)2

χ2

|J |, 1+αn

2

≤ σ2

Iν
≤ min

J⊂Iν

∑

t∈J R(t)2

χ2

|J |, 1−αn

2

=: σ2

u(Iν). (9)

Given the left endpoint sv of Iv, the lower bound σ2

l (Iv) is an increasing
function of the right endpoint tv, and the upper bound σ2

u(Iv) is a decreasing
function of the right endpoint tv of Iv. This suggests the following algorithm
to obtain a locally adequate volatility function.

Algorithm 0

Starting with s1 = 1, t1 = 1, we let t1 increase until the upper bound σ2

u(I1)
becomes smaller than the lower bound σ2

l (I1) at t1 + 1. Setting s2 = t1 + 1,
we then repeat the procedure until we reach the end of the sample at n.

The algorithm requires the calculation of the σ2

l (Iν) and σ2

u(Iν) of (9)
which can be done efficiently as follows. For I = {s, . . . , t} we write

σ2

l (s, t) = σ2

l (I), σ2

u(s, t) = σ2

u(I). (10)

We have

σ2

l (s, t) = max

{

σ2

l (s + 1, t), σ2

l (s, t− 1),

∑t

i=s r(i)2

χ2

t−s+1, 1+αn

2

}

(11)

and

σ2

u(s, t) = min

{

σ2

u(s + 1, t), σ2

u(s, t− 1),

∑t

i=s r(i)2

χ2

t−s+1, 1−αn

2

}

. (12)
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Remark 2.1. The complexity of this algorithm is O(n2). The actual running
time depends on the data, the worst case being when the method results in
a single interval. For daily returns over several years this is never the case
so that actual running times are much shorter than the complexity would
suggest; for the Standard and Poor’s returns with n = 19260 observations it
takes about three seconds.

The algorithm does not specify a volatility function except for the unlikely
case that the upper and lower bounds are equal at the end of each interval.
Because of this σ0

sp,n we be interpreted as any volatility function which lies
between the bounds. In this sense we have the following theorem.

Theorem 2.2. Any volatility function σ0

sp,n constructed above is locally ad-
equate and has the minimum number of intervals of constancy amongst all
locally adequate volatility functions.

Proof: Assume that there exists another locally adequate volatility func-
tion σ̃ with corresponding partition Ĩ1, . . . , Ĩk̃ with k̃ < k. It is clear that
Ĩ1 ⊂ I1 and by induction it follows that ∪i

j=1
Ĩj ⊂ ∪

i
j=1

Ij. Consequently

{1, . . . , n} = ∪k̃
j=1

Ĩj ⊂ ∪
k̃
j=1

Ij

6=
⊂ {1, . . . , n} (13)

which is a contradiction.

Figure 1 shows the first 280 absolute values of the Standard and Poor’s
returns together with the lower and upper bounds calculated with α =
0.9999991 which is the default value (see Section 5) for a data set of length
19260. At observation 277 the value of the lower bound is 0.008924 and that
of the upper bound is 0.009062. At observation 278 the lower bound increases
to 0.009162 and so is higher than the upper bound which remains constant.
The first interval is therefore [1, 277]. Figure 2 showsthe the absolute daily

returns of the German stock price index DAX with a volatility function σ
(0)

sp,n

as follows: n = 9589, αn = 0.9999975 and the value of the volatility on the
interval Iν set to

√

(σ2

l (Iν) + σ2
u(Iν))/2. There are 36 intervals of constant

volatility.
The partitioning I1 ∪ I2 ∪ . . . ∪ Ik = {1, . . . , n} obtained via the above

procedure is in general not the only one with the smallest number of intervals
of constancy. We could have started from the endpoint and moved to the
left; for most data sets this would yield a different solution.
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Figure 1: The first 280 absolute values of the Standard and Poor’s returns
together with the lower and upper bounds for the volatility.
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Figure 2: 9589 absolute daily returns of the German DAX-index together
with the locally adequate piecewise constant volatility σ

(0)

sp,n described in the
text with 36 intervals of constancy.
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3 Empirical volatility and dynamic program-

ming

3.1 Empirical volatility

As already mentioned Algorithm 0 does not specify a value for the volatility
function. For simplicity of interpretation there are grounds for requiring that
its value is the empirical volatility on that interval

σ2

n,{s,...,t} = σ2

n,I :=
1

t− s + 1

t
∑

t=s

r(t)2, I = {s, . . . , t}. (14)

If the end of period prices p(t) are generated by an underlying exponential
Brownian Motion on [s, t], and no micro-structure noise is present, σ2

n,I will,
after suitable normalization, tend in probability to the innovation variance of
this Brownian Motion as the number of (equally spaced) observations in the
[s, t]-interval increases. This follows immediately from the finite quadratic
variation of Brownian motion and has engendered an enormous literature in
empirical finance recently (see Anderson and Benzoni (2008) for an overview).

At first glance it may seem that we can simply modify Algorithm 0 of
Section 2.2 as follows. Starting with t = 1 we increase the interval by one
point at a time until the empirical volatility no longer lies between the upper
and lower bounds. We stop at the immediately preceding point and start with
a new interval. Unfortunately this will not always yield the minimum number
of intervals. Suppose that the first time that the empirical volatility does not
lie between the two bounds is because it is too small. If we include the next
observation this may be sufficiently large to increase the empirical volatility
so that it now does lie between the bounds. This is not just a theoretical
possibility as it occurs for the Standard and Poor’s returns: the empirical
volatility moves outside the bounds for the first time at time t = 233, stays
outside the bounds until time t = 274 when it moves back in again. The
values of the empirical volatility and the lower and upper bounds at t = 274
are 0.008380, 0.008139 and 0.009063 respectively. The optimization problem
can be solved by adapting the dynamic programming algorithm of Friedrich
at al. (2008). We describe the algorithm in the following section.

3.2 Dynamic programming

The idea of the algorithm is the following. Given t suppose we have the
optimal partition of each interval {1, . . . , s}, 1 ≤ s ≤ t. That is, for each
s we have a partition of the interval {1, . . . , s} into the minimum number
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disjoint intervals such that the empirical volatility on each interval I
(s)
ν of the

partition lies between the bounds σ2

l (I
(s)
ν ) and σ2

u(I
(s)
ν ) for that interval as

defined by (9). Given this we show how it is possible to extend these optimal
partitions from t to t + 1.

The empirical volatility is locally adequate on the interval {s, . . . , t} if

σ2

l (s, t) ≤
1

t− s + 1

t
∑

ℓ=s

r(ℓ)2 ≤ σ2

u(s, t). (15)

We put

Jt = {s ∈ {1, . . . , t} : (15) is satisfied} (16)

Pt =
{

{I1, . . . , Ik} :
k
∑

ν=1

Iν = {1, . . . , t},

Iν satisfies (15), ν = 1, . . . , k
}

(17)

L0 = 0 (18)

Lt = min
|P|∈Pt

|P| (19)

where
∑

in (17) denotes a disjoint union and |P| in (19) denotes the number
of elements in P .

Theorem 3.1. If αn ≥ 0.5 then

t ∈ Jt (20)

{{1}, . . . , {t}} ∈ Pt (21)

Lt = min
s∈Jt

Ls−1 + 1 (22)

Proof: The claims (20) and (21) follow from

χ2

1, 1−αn

2

< 1 < χ2

1, 1+αn

2

for αn ≥ 0.5 and (22) follows from

Pt = {P ∪ {{s, . . . , t}} : s ∈ Jt,P ∈ Ps−1} .

Theorem 3.2. Let p1 . . . , pn satisfy

pt ∈ arg mins∈Jt
Ls−1, 1 ≤ t ≤ n (23)

8
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Figure 3: The absolute daily returns of the German DAX-index together
with the locally adequate piecewise constant empirical volatility function
σ

(1)

sp,n with 38 intervals of constancy.

and put recursively

tLn
:= n, sLn

:= ptLn
, tν−1 := sν − 1, sν−1 : ptν−1

.

Then the partition Iν = {sν , . . . , tν}, ν = 1, . . . , Ln is a partition which satis-

fies (15) and the resulting volatility function σ
(1)

sp,n has the minimum number
of intervals amongst all locally adequate empirical volatility functions.

Proof: This is clear from the construction.

As we have included an extra restriction, the minimum number of in-
tervals cannot now be less than the number obtained from Algorithm 0 of
Section 2.2. For the DAX-data of Figure 2 the minimum number of intervals
is now 38 against the 36 obtained from Algorithm 0. The result is shown in
Figure 3.

3.3 Algorithm 1

We now give an algorithm to calculate the partition of Theorem 3.2 following
Höhenrieder (2008). It requires the efficient calculation of σ2

l (s, t) and σ2

l (s, t)
as given by (11). Remark 2.1 also applies to this algorithm.
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Algorithm 1: Calculation of a piecewise constant locally adequate empirical
volatility function with the minimum number of intervals of constancy.

Input: Sample size n ∈ N, quadratic increments r(1)2, . . . , r(n)2 ∈ R,
quantiles χ2

k,
1−αn

2

, χ2

k,
1+αn

2

∈ R+ for k = 1, . . . , n (with given αn ∈ [0.5, 1))

Output: Piecewise constant locally adequate empirical volatility function with
minimum number of intervals σn(1), . . . , σn(n) ∈ R

local: Interval end points s, t ∈ N, number of intervals L0, . . . , Ln ∈ N0,
left end points p1, . . . , pn ∈ N, σn,l(s, t)

2, σn,u(s, t)2 ∈ R as in (10),
σ2

n,{s,...,t} ∈ R as in (14), index i ∈ N

begin

/* Calculation of L1, . . . , Ln and p1, . . . , pn */

L0 ← 0;
L1 ← 1; /* σn,l(1, 1)2 ≤ σ2

n,{1} ≤ σn,u(1, 1)2 (15) */

p1 ← 1;
for t ← 2 to n do

Lt ← Lt−1 + 1; /* σn,l(t, t)
2 ≤ σ2

n,{t} ≤ σn,u(t, t)2 (15) */

pt ← t;
for s← t−1 to 1 do

if σn,l(s, t)
2 ≤ σ2

n,{s,...,t} ≤ σn,u(s, t)2 then

if Ls−1 + 1 < Lt then
Lt ← Ls−1 + 1;
pt ← s;

end

end

end

end

/* Calculation of σn(1), . . . , σn(n) */

t ← n;
while t > 0 do

s← pt;
for i← s to t do

σn(i)← σn,{s,...,t};
end

t ← s−1;
end

end
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4 Minimizing the empirical quadratic devia-

tions

4.1 The empirical quadratic deviations

In general there will not be a unique solution to the problem of minimizing
the number of intervals for piecewise constrained empirical volatility. We
therefore look for a solution σ

(2)

sp,n which is closest to the data in that it
minimizes the sum of the empirical quadratic deviations

n
∑

t=1

(r(t)2 − σ(t)2

sp,n)2 (24)

amongst all empirical volatility functions σsp,n with the minimum number
of intervals. This does not involve any new principles but it necessitates
an additional search amongst the admissible partitions to find those which
minimize the sum of the quadratic deviations. As the volatility function
is constant on each interval of the partition and its value on each interval
independent of the other intervals, the search can be considerably reduced.
With σn,I as defined by (14) we write for I = {s, . . . , t}

abw{s,...,t} := abwI :=
∑

i∈I

(r(i)2 − σ2

n,I)
2 (25)

and

LS0 = 0 (26)

LSt = min
P∈Pt,|P|=Lt

∑

I∈P

abwI . (27)

Corresponding to (22) we have

LSt = min
s∈Jt,Ls−1+1=Lt

(

LSs−1 + abw{s,...,t}
)

(28)

which gives rise to

Theorem 4.1. Let p1 . . . , pn satisfy

pt ∈ argmins∈Jt,Ls−1+1=Lt

(

LSs−1 + abw{s,...,t}
)

(29)

and put recursively

tLn
:= n, sLn

:= ptLn
, tν−1 := sν − 1, sν−1 : ptν−1

.

11
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Figure 4: The absolute daily returns of the German DAX-index together
with the locally adequate piecewise constant empirical volatility function
σ

(2)

sp,n with 38 intervals of constancy which minimizes the sum of the empirical
quadratic deviations (24).

Then the partition Iν = {sν , . . . , tν}, ν = 1, . . . , Ln satisfies (15) defines a
locally adequate empirical volatility function which has the minimum number
of intervals and minimizes the sum of the empirical quadratic deviations (24)
amongst all such functions.

Proof: Again this is clear from the construction.

Figure 4 shows the result of applying this procedure to the DAX-data of
Figure 2. It should be compared with Figure 3 which has the same number
of intervals, namely 38. The sums of the empirical quadraticdeviations are
0.001308 for Figure 3 and 0.000813 for Figure 4. The advantage of the
minimization of the quadratic deviations is apparent: the solution is closer to
the data with the consequence that structural breaks are not smoothed away.
Of the 38 intervals of constancy the shortest is of length one (observation
7455 – ‘Black Monday’ 1987) and the longest is of length 720 (observations
3546-4265).

12



4.2 Algorithm 2

We now give an algorithm to calculate the partition of Theorem 4.1 following
Höhenrieder (2008). If the data have been generated under the model (1)
then the solution is unique with probability one. For real data of finite
precision it is possible that there is more than one solution but we take this
to be highly improbable. The complexity of the algorithm is O(n3) because
of the required search amongst the adequate empirical volatility functions
with the minimum number of intervals. Again, the worst case in terms of
running time is when the solution is exactly one interval. The running time
for the Standard and Poor’s returns with n = 19260 and 71 intervals is about
four seconds.

5 Choice of αn

The use of local adequacy as the criterion for accepting a model has as a con-
sequence that the number of intervals for which the model is tested depends
on the data. To overcome this the method can be calibrated for data gener-
ated as an exponential Brownian motion by taking αnm to be defined by (3)
for a given α. For such data the volatility is constant and we choose αn so that
the method returns exactly one interval with probability α. The values of αn

may be determined by simulations. Figure 5 shows a plot of − log(1 − αn)
against log n for n = 100, 250, 500, 1000, 2500, 5000, 10000, 20000 and with
α = 0.90. The points were fitted by linear regression to the linear fit

log(1− αn)− log n = a0 + a1 log log n

with the maximum absolute deviation being 0.0532 for α = 0.9 and 0.0384
for α = 0.95. The resulting simple functions for αn are

αn = 1− 0.0343 exp(−0.286 log log(n))/n, α = 0.90, (30)

and
αn = 1− 0.0175 exp(−0.329 log log(n))/n, α = 0.95. (31)

The default value for αn we use is (30). Unfortunately it is a non-trivial
problem to derive the correct asymptotic behaviour of αn. Even in the case
of Gaussian white noise where the suitably normalized sums over intervals
∑

t∈I Z(t)/
√

|I| are all N(0, 1), the correct asymptotic behaviour of the max-
imum is not easy to derive. Surprisingly it is not sufficient to embed the Zi

in a Brownian motion (see Kabluchko (2007)). Nevertheless the accuracy of
the above approximations in the range n = 100 to n = 20000 gives hope that
they continue to hold for much larger values of n.
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Algorithm 2: Calculation of a piecewise constant locally adequate empiri-
cal volatility function with the minimum number of intervals and the minimum
quadratic deviation amongst all piecewise constant locally adequate volatility func-
tions with the minimum number of intervals.

Input: Sample size n ∈ N, quadratic increments r(1)2, . . . , r(n)2 ∈ R,
quantile χ2

k,
1−αn

2

, χ2

k,
1+αn

2

∈ R+ for k = 1, . . . , n (with given αn ∈ [0.5, 1))

Output: Piecewise constant locally adequate empirical volatility with minimum
number of intervals and minimum quadratic deviation
σn(1), . . . , σn(n) ∈ R

local: Interval end points s, t ∈ N, number of intervals L0, . . . , Ln ∈ N0,
quadratic deviation LS0, . . . , LSn ∈ R, left end points p1, . . . , pn ∈ N,
σn,l(s, t)

2, σn,u(s, t)2 ∈ R as in (10), σ2

n,{s,...,t} ∈ R as in (14),

abw{s,...,t} ∈ R as in (25), index i ∈ N

begin

/* Calculation of L1, . . . , Ln, LS1, . . . , LSn and p1, . . . , pn */

L0 ← 0;
L1 ← 1; /* σn,l(1, 1)2 ≤ σ2

n,{1} ≤ σn,u(1, 1)2 (15) */

LS0 ← 0;
LS1 ← 0; /* abw{1} = 0 (25) */

p1 ← 1;
for t ← 2 to n do

Lt ← Lt−1 + 1; /* σn,l(t, t)
2 ≤ σ2

n,{t} ≤ σn,u(t, t)2 (15) */

LSt ← LSt−1; /* abw{t} = 0 (25) */

pt ← t;
for s← t−1 to 1 do

if σn,l(s, t)
2 ≤ σ2

n,{s,...,t} ≤ σn,u(s, t)2 then

if Ls−1 + 1 < Lt or (Ls−1 + 1 = Lt & LSs−1 + abw{s,...,t} < LSt)
then

Lt ← Ls−1 + 1;
LSt ← LSs−1 + abw{s,...,t};
pt ← s;

end

end

end

end

/* Calculation of σn(1), . . . , σn(n) */

t ← n;
while t > 0 do

s← pt;
for i← s to t do

σn(i)← σn,{s,...,t};
end

t ← s−1;
end

end

14
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Figure 5: The plot of log(1− αn) against log n for α = 0.90.

6 Possible extensions

This paper took (1) as its basic model for the daily returns of a financial asset.
One obvious way of extending the model is to allow for other distributions for
the Z(t) rather than the standard normal. Obvious candidates are the family
of t–distributions. First results suggest that a better fit can be obtained
with a t–distribution with 10 degrees of freedom but that the gains are in no
manner substantial. Allowing for non-Gaussian Z(t) requires a more complex
algorithm as there are no simple algorithms for calculating the quantiles of
sums of squares of t–distributed random variables. For many data sets it is
clear that Z(t) cannot be modelled as a symmetric random variable but again
no substantial gains can be expected by allowing for asymmetric Z(t). This
does not cause an increase in algorithmic complexity. Another possibility is
to minimize the number of local extreme values of σ(t) (see Davies and Kovac
(2001)) but this is probably less interesting for financial data where one major
concern is the identification of structural breaks which may have external
causes. The one advantage of minimizing the number of local extreme values
is that use can be made of the taut string algorithm which is very fast and
efficacious.
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