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Asymptotic error distribution of the Euler method for SDEs
with non-Lipschitz coefficients

Andreas Neuenkirch and Henryk Zähle

Abstract. In [14, 8] Kurtz and Protter resp. Jacod and Protter specify the asymptotic error
distribution of the Euler method for stochastic differential equations (SDEs) with smooth co-
efficients growing at most linearly. The required differentiability and linear growth of the
coefficients rule out some popular SDEs as for instance the Cox-Ingersoll-Ross (CIR) model,
the Heston model, or the stochastic Brusselator. In this article, we partially extend one of the
fundamental results in [8], so that also the mentioned examples are covered. Moreover, we
compare by means of simulations the asymptotic error distributions of the CIR model and the
geometric Brownian motion with mean reversion.
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1. Introduction

We consider thed-dimensional Itô stochastic differential equation (SDE)

dX(t) =
m
∑

j=0

fj(X(t)) dWj(t), X(0) = x0, (1.1)

wherex0 ∈ R
d, f0, . . . , fm : R

d → R
d are continuous functions,W0 is the identity

on R+ (i.e.W0(t) = t), andW1, . . . ,Wm are independent one-dimensional Brownian
motions. SDE (1.1) and all other equations and processes in the sequel are restricted
to a fixed time interval[0, T ]. We assume that (1.1) has a unique strong solution, and
we denote byXn Euler’s “polygonal” approximation of this solution, i.e.

dXn(t) =
m
∑

j=0

fj(Xn(ηn(t))) dWj(t), Xn(0) = x0. (1.2)

Hereηn(t) is defined to be the largest element ofN0/n = {0, 1/n, 2/n, . . . } which is
smaller than or equal tot. For background on the Euler scheme and other numerical
schemes for SDEs see e.g. [13, 16].

This article was written while A. Neuenkirch was a member of the DFG-project "Pathwise numerics
and dynamics of stochastic evolution equations" at the Johann Wolfgang Goethe-Universität Frankfurt
am Main.
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In this article, we focus on the asymptotic distribution of the error processXn −X.
It follows from results in [8] that if the functionsfj are continuously differentiable
and have at most linear growth, then the process

√
n(Xn −X) converges in law to the

unique solution of thed-dimensional SDE

dUi(t) =
m
∑

j=0

∇fij(X(t))′U(t) dWj(t) (1.3)

− 1√
2

m
∑

j=1

m
∑

l=1

∇fij(X(t))′fl(X(t)) dBlj(t), U(0) = 0.

Here∇fij is the gradient of thei-th componentfij of fj , Blj (1 ≤ l, j ≤ m) are
independent one-dimensional Brownian motions being independent ofW1, . . . ,Wm,
andv′ denotes the transpose of a vectorv. The specified assumptions on the functions
fj exclude some popular models as for instance the Cox-Ingersoll-Ross (CIR) model
and the Heston model in finance, or the stochastic Brusselator used in the modeling
of chemical reactions, cf. Section 3. Indeed, the mappingx 7→

√

|x|, which appears
in the CIR model as well as in the Heston model, is not differentiable at 0, while the
equation for the stochastic Brusselator contains polynomial coefficients. The purpose
of this article is an extension of the fundamental results in[14, 8] to cover also the
mentioned examples.

We assume that the solution of (1.1) never leaves a given opensetD ⊂ R
d, and

that the functionsfj are continuously differentiable onD. Our main result (Theorem
2.1) shows that under these assumptions the weak convergence of

√
n(Xn − X) to

the solution of (1.3) still holds, where we use the convention ∇fij(x) = 0 for all
i = 1, . . . , d, j = 0, . . . ,m andx ∈ R

d \ D. The key for the proof is a localization
procedure, similar to the one in [5, 10], where pathwise convergence rates for the
approximation of SDEs have been derived.

Numerical results for the asymptotic error distribution are given in Section 4, where
we compare the CIR model and the geometric Brownian motion.

2. Main Result

Let (Ω,F , P) be a probability space, andW = (W1, . . . ,Wm) be anm-dimensional
Brownian motion on(Ω,F , P). As indicated in the Introduction, we assume that

(A) SDE (1.1) has a unique strong solutionX w.r.t. {(Ω,F , P); W}.

The definition of solutions of SDEs is recalled in the Appendix A. We further assume
thatX never leaves a given open setD ⊂ R

d, i.e.

(B) P(X(t) ∈ D for all t ∈ [0, T ]) = 1.
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Finally, we assume that

(C) f0|D, . . . , fm|D ∈ C1(D; Rd),

wherefj |D refers to the restriction offj to D. Fork, l ∈ N and an open setG ⊂ R
k,

we denote byC(G; Rl) the space of all continuous functions fromG to R
l. A super-

script p ∈ N ∪ {∞} refers to the subclass of allp-times continuously differentiable
functions ofC(G; Rl).

The rigorous meaning of the continuous time Euler scheme (1.2) is given by the
stochastic integral scheme

Xn(t) = x0 +

m
∑

j=0

∫ t

0
fj(Xn(ηn(s))) dWj(s).

We now turn to the main result, whose proof will be carried outin Section 5. We
equipC([0, T ]; Rm ⊗R

d) with the supremum norm, and we use the symbol “=⇒” for
weak convergence.

Theorem 2.1.LetX andf0, . . . , fm satisfy assumptions (A), (B) and (C). Then there
are an extension(Ω̄, F̄ , P̄) of the original probability space (i.e. of the domain of
W1, . . . ,Wm) and independent Brownian motionsBlj (1 ≤ l, j ≤ m) on (Ω̄, F̄ , P̄)
which are independent ofW1, . . . ,Wm, such that SDE (1.3) has a unique solutionU
(w.r.t. (Ω̄, F̄ , P̄), {Wj}, {Blj}), and we have

(W,
√

n(Xn − X)) =⇒ (W,U) (in C([0, T ]; Rm ⊗ R
d)). (2.1)

The continuous time Euler schemeXn is indeed not an implementable approxima-
tion scheme since it requires complete knowledge of the sample paths of the driving
Brownian motions. However, in practice one is often only interested in the values of
Xn at the sampling points 0, 1/n, 2/n, . . . , i.e. in the discrete time Euler scheme. For
the latter we can derive from Theorem 2.1 the following weak convergence result:

Corollary 2.2. LetX andf0, . . . , fm satisfy assumptions (A), (B) and (C). Then

√
n max

i=0,...,Nn(T )
|Xn(i/n) − X(i/n)| =⇒ max

t∈[0,T ]
|U(t)|, (2.2)

whereNn(T ) = max{i ∈ N : i/n ≤ T}.

Proof. Theorem 2.1 implies in particular weak convergence of
√

n(Xn − X) to U
in the spaceD = D([0, T ]; Rd) of cádlàg functions (i.e. functions that are right-
continuous and have left limits) equipped with the Skorohodmetric. Moreover, the
functionηn introduced subsequent to (1.2) converges to the identity on[0, T ]. There-
fore Lemma 2.2 of [8] yields weak convergence of

√
n(Xn−X)◦ηn to U in D. Since

the limit processU is continuous, the latter convergence also holds ifD is equipped
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with the supremum norm, cf. [18, p.137]. Thus, as the mappingφ 7→ maxt∈[0,T ] |φ(t)|
from D to R is continuous with respect to the supremum norm, the continuous mapping
theorem shows that

√
n max

i=0,...,Nn(T )
|Xn(i/n) − X(i/n)|

=
√

n max
t∈[0,T ]

|Xn(ηn(t)) − X(ηn(t))|

converges weakly to the right-hand side of (2.2). 2

If D 6= R
d then, in contrast to the exact solution, the Euler scheme mayleaveD.

For many purposes this is an unwanted property. To overcome this problem one can

consider a projected Euler scheme withX
(π)
n (0) = x0 and

X
(π)
n ((i + 1)/n) = H(i/n)1D(H(i/n)) + π(H(i/n))1

Rd\D(H(i/n))

for i = 0, 1, . . . , where

H(i/n) = X
(π)
n (i/n) +

m
∑

j=0

fj(X
(π)
n (i/n))(Wj((i + 1)/n) − Wj(i/n))

andπ : R
d → D. Such projected Euler methods have been originally introduced for

the approximation of SDEs with reflecting boundaries, see e.g. [15, 17]. Of course,
the reflection functionπ should be chosen appropriately, i.e. according to the structure
of the SDE. However, we obtain the analogue of Corollary 2.2 also for the projected
Euler scheme regardless of the choice ofπ:

Corollary 2.3. LetX andf0, . . . , fm satisfy assumptions (A), (B) and (C), letNn(T )
be as in Corollary 2.2, and letπ : R

d → D be an arbitrary function. Then

√
n max

i=0,...,Nn(T )
|X(π)

n (i/n) − X(i/n)| =⇒ max
t∈[0,T ]

|U(t)|. (2.3)

Proof. In the proof of Lemma 5.3 below it is implicitly shown that forP-almost all
ω ∈ Ω there exists somen0(ω) ∈ N, such thatXn(., ω) does not leaveD for all

n ∈ N with n ≥ n0(ω). Thus, sinceX
(π)
n (., ω) coincides withXn(., ω) as long as

the latter takes values only inD, we haveX
(π)
n (., ω) = Xn(., ω) for all n ∈ N with

n ≥ n0(ω). In particular, we obtain(Mn − M
(π)
n ) → 0 asn → ∞ P-almost surely,

where

Mn =
√

n max
i=0,...,Nn(T )

|Xn(i/n) − X(i/n)|,

M (π)
n =

√
n max

i=0,...,Nn(T )
|X(π)

n (i/n) − X(i/n)|,
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and soM (π)
n = Mn + (M

(π)
n −Mn) converges weakly to maxt∈[0,T ] |U(t)| asn → ∞

by Corollary 2.2 and Slutzky’s lemma. 2

3. Examples

In this section, we illustrate our main result by means of four examples. The first
example (Subsection 3.1) is also covered by the fundamentalresults in [14, 8], but the
other three examples are not.

3.1. Geometric Brownian motion

The geometric Brownian motion with mean reversion, which isgiven by the unique
solution of the one-dimensional SDE

dA(t) = κ(λ − A(t)) dt + θA(t) dW (t), A(0) = a0 > 0 (3.1)

with κ, λ, θ > 0, is a popular model for the dynamics of asset prices. Note that the
solution of (3.1) remains strictly positive for all time, sothat the process is indeed
suitable to model the dynamics of asset prices. Clearly, Theorem 2.1 applies here for
D = R and we have

dU(t) = −κU(t) dt + θ U(t) dW (t) − θ2
√

2
A(t) dB11(t), U(0) = 0,

which gives

U(t) = − θ2
√

2
Φ(t)

∫ t

0

1
Φ(s)

A(s) dB11(s), (3.2)

whereΦ is the unique solution of the one-dimensional linear SDE

dΦ(t) = −κ Φ(t) dt + θ Φ(t) dW (t), Φ(0) = 1,

see (5.3) in Subsection 5.1. Of course, the solution of the latter SDE is given by

Φ(t) = exp

(

−
(

κ +
1
2

θ2
)

t + θ W (t)

)

.

Since the solution of (3.1) has the representation

A(t) = Φ(t)

(

a0 + κλ

∫ t

0

1
Φ(s)

ds

)

,

the expression for (3.2) can be rewritten as

U(t) = − θ2
√

2
Φ(t)

(

a0B11(t) + κλ

∫ t

0

∫ s

0

1
Φ(u)

du dB11(s)

)

.
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3.2. Cox-Ingersoll-Ross model

The Cox-Ingersoll-Ross (CIR) process is given by the uniquesolution of the one-
dimensional SDE

dV (t) = κ(λ − V (t)) dt + θ
√

|V (t)| dW (t), V (0) = v0 > 0 (3.3)

with κ, λ, θ > 0. It is well known that if 2κλ ≥ θ2, then the solution remains strictly
positive for all time (cf., e.g., [21, Section 3]). Since this is a desired property for
interest rates, Cox et al. ([3]) proposed this process in 1985 as a model for short-term
interest rates. A further advantage of the CIR process in thecontext of short rates is
that it admits closed-form formulae for bond prices. The strict positivity of the solution
ensures that Theorem 2.1 applies forD = (0,∞) and we have

dU(t) = −κU(t) dt +
θ

2
1

√

V (t)
U(t) dW (t) − θ2

√
8

dB11(t), U(0) = 0,

which gives

U(t) = − θ2
√

8
Φ(t)

∫ t

0

1
Φ(s)

dB11(s), (3.4)

whereΦ is the unique solution of the one-dimensional linear SDE

dΦ(t) = −κ Φ(t) dt +
θ

2
1

√

V (t)
Φ(t) dW (t), Φ(0) = 1,

see again (5.3) in Subsection 5.1. The solution of the latterSDE reads as

Φ(t) = exp

(

−κt − θ2

8

∫ t

0

1
V (s)

ds +
θ

2

∫ t

0

1
√

V (s)
dW (s)

)

.

Note that if the condition 2κλ ≥ θ2 is violated, then the solution of (3.3) can still be
approximated weakly by the Euler scheme (cf. [20, Section 4]) but it may obtain the
value zero. (It will even obtain the value zero with probability one if the time horizon
is infinite, cf. [21, Section 3]). Thus in this case our results do not apply.

3.3. Heston model

A popular stochastic volatility model in finance is the Heston model ([6]), i.e.

dA(t) = µA(t) dt + A(t)
[

ρ
√

|V (t)| dW1(t) +
√

1− ρ2
√

|V (t)| dW2(t)
]

,

dV (t) = κ(λ − V (t)) dt + θ
√

|V (t)| dW1(t), (3.5)
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whereκ, λ, θ, µ > 0 andρ ∈ [−1, 1]. Here, a process(V (t) : t ∈ [0, T ]) of Cox-
Ingersoll-Ross type is used to model the volatility of an asset (A(t) : t ∈ [0, T ]). If
2κλ ≥ θ2, V (0) > 0 andA(0) > 0, then the unique solution of the two-dimensional
SDE (3.5) remains inD = (0,∞)2. Therefore Theorem 2.1 applies and we have the
following asymptotic dynamics of the error process:
[

dU1(t)

dU2(t)

]

=

[

µU1(t)

−κU2(t)

]

dt

+





ρ
√

V (t)U1(t) + ρ
2

A(t)√
V (t)

U2(t)

θ
2

1√
V (t)

U2(t)



 dW1(t)

+





√

1− ρ2
√

V (t)U1(t) +

√
1−ρ2

2
A(t)√
V (t)

U2(t)

0



 dW2(t)

+

[

dR1(t)

dR2(t)

]

where
[

dR1(t)

dR2(t)

]

= − 1√
2

[

ρ2 A(t)V (t) + ρθ
2 A(t)

θ2

2

]

dB11(t)

− 1√
2

[

ρ
√

1− ρ2 A(t)V (t)

0

]

dB21(t)

− 1√
2

[

ρ
√

1− ρ2 A(t)V (t) +
θ
√

1−ρ2

2 A(t)

0

]

dB12(t)

− 1√
2

[

(1− ρ2)A(t)V (t)

0

]

dB22(t).

3.4. Stochastic Brusselator

An example for an SDE with polynomial coefficients is the stochastic Brusselator

dX(t) =

(

α − (β + 1)X(t) + X(t)2Y (t) +
σ2

2
X(t)

)

dt − σX(t) dW (t),

dY (t) =

(

βX(t) − X(t)2Y (t) − σ2

2
X(t)

)

dt + σX(t) dW (t),

whereα, β, σ > 0. Although the coefficients of this SDE have polynomial growth,
this equation admits a unique strong solution, see e.g. [19,2]. Here Theorem 2.1 for
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D = R
2 gives

[

dU1(t)

dU2(t)

]

=

[

{−β − 1 + σ2

2 + 2X(t)Y (t)}U1(t) + X(t)2 U2(t)

{β − σ2

2 − 2X(t)Y (t)}U1(t) − X(t)2 U2(t)

]

dt

+

[

−σ U1(t)

σ U1(t)

]

dW (t) − 1√
2

[

σ2 X(t)

−σ2 X(t)

]

dB11(t).

4. Numerical Examples

Here we compare the asymptotic error processes of the geometric Brownian motion
with mean reversion (3.1) and the CIR model (3.3). We setT = 1 and focus on the
distribution of the random variable

M = max
t∈[0,1]

|U(t)|.

We consider two different settings:
1) For the CIR processV = (V (t) : t ∈ [0, 1]) we choose

κ = 0.97351, λ = 0.05791, θ = 0.15415, and v0 = 0.02, (4.1)

which corresponds to the dynamics of the short term interestrates in the CIR model
(under the objective measure) estimated from historical data of the German debt secu-
rity market (Rentenmarkt), cf. [4]. For the geometric Brownian motionA = (A(t) :
t ∈ [0, 1]) the parameters are chosen in such a way thatA(1) andV (1) have the same
variance:

κ = 0.97351, λ = 0.05791, θ = 0.3988, and a0 = 0.02. (4.2)

2) For the CIR processV = (V (t) : t ∈ [0, 1]) we choose

κ = 1, λ = 0.5, θ = 1, and v0 = 0.2, (4.3)

so that the strict positivity condition 2κλ ≥ θ2 is just satisfied. For the geometric
Brownian motionA = (A(t) : t ∈ [0, 1]) the parameters are again chosen in such a
way thatA(1) andV (1) have the same variance:

κ = 1, λ = 0.5, θ = 1.2944, and a0 = 0.2. (4.4)

For both settings 1) and 2) we simulated 10.000 paths ofU for bothA andV , where
we used the representations (3.2) and (3.4). Figure 1 shows the empirical densities of
M in either case. We used a kernel density estimator with Gaussian kernel and band-
width choice by cross-validation. The following table displays some further empirical
features ofM :
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setting model mean sd min max kurt

1) GBM 0.015643 0.009530 0.003225 0.162262 19.76

CIR 0.008937 0.003206 0.003157 0.028918 4.64

2) GBM 0.548598 0.613945 0.055889 15.861450 119.69

CIR 0.395864 0.163062 0.129266 1.653468 6.22

0.00 0.01 0.02 0.03 0.04

0
50

10
0

15
0

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Figure 1. Empirical density ofM for the CIR model and for the geometric Brownian
motion (dashed line). Left: setting 1), right: setting 2).

Surprisingly, in both cases the empirical densities for thegeometric Brownian motion
are broader than the densities for the CIR process. (See alsothe corresponding means
and variances in the above table.) In particular, the non-Lipschitz coefficient in SDE
(3.3) does not lead to a badly shaped asymptotic error distribution as one might expect.

5. Proof of Theorem 2.1

The proof of Theorem 2.1 is organized as follows. First, in Subsection 5.1 we discuss
the existence and uniqueness of solutions to equation (1.3). Second, in Subsections
5.2 and 5.3 we carry out the proof of (2.1). Finally, in Subsections 5.4 and 5.5 we give
the proofs of two lemmas, which are omitted in Subsection 5.2.

5.1. Unique solution of (1.3)

Note that equation (1.3) can be rewritten as

dU(t) = dH(t) + dS(t)U(t), (5.1)
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whereH andS areR
d- resp.Rd,d-valued continuous semi-martingales:

H(t) =









− 1√
2

∑m
j=1

∑m
l=1

∫ t
0 ∇f1j(X(s))′fl(X(s)) dBlj(s)

...

− 1√
2

∑m
j=1

∑m
l=1

∫ t
0 ∇fdj(X(s))′fl(X(s)) dBlj(s)









,

S(t) =
m
∑

j=0









∫ t
0 ∂1f1j(X(s)) dWj(s) · · ·

∫ t
0 ∂df1j(X(s)) dWj(s)

...
...

∫ t
0 ∂1fdj(X(s)) dWj(s) · · ·

∫ t
0 ∂dfdj(X(s)) dWj(s)









. (5.2)

Here ∂kfij denotes thek-th partial derivative offij . For the precise meaning of
equation (5.1) see Definition A.2 in the Appendix A. Since theBrownian motions
W1, . . . ,Wm andBlj (1 ≤ j, l ≤ m) are independent, the covariation ofH andS is
zero. Now it follows from Lemma A.3 in the Appendix A that equation (5.1) (and thus
(1.3)) has a unique solution which is given by

U(t) = Φ(t)

∫ t

0
Φ(s)−1 dH(s). (5.3)

Here,(Φ(t) : t ∈ [0, T ]) is the unique solution of theRd,d-valued linear SDE

dΦ(t) = dS(s) Φ(t), Φ(0) = Id,

whereΦ(s)−1 denotes the inverse of the matrixΦ(s).

5.2. Proof of (2.1) (Step 1)

We now turn to the proof of (2.1), which avails a localizationprocedure similar to
that of [5, 10]. We start with introducing a truncated version of SDE (1.1). For every
q ∈ N, we set

Dq = {x ∈ D : |x| < q and dist(x, ∂D) > 1/q}

with ∂D the boundary ofD, and dist(x, ∂D) = inf{|x − y| : y ∈ ∂D}. Moreover,
denoteq0 = min{q ∈ N : x0 ∈ Dq}. In particular, we then have∪q≥q0Dq = D. For
everyq ∈ N there exists a functionϕq ∈ C∞(Rd; R) such that 0≤ ϕq(x) ≤ 1 and

ϕq(x) =

{

1 , x ∈ Dq,

0 , x ∈ R
d \ D2q.
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We use these functions to truncate the coefficients of SDE (1.1), i.e. we set

fj,q(x) = fj(x)ϕq(x), x ∈ R
d, (5.4)

for all j = 0, . . . ,m andq ∈ N. The corresponding SDE reads as follows

dX(q)(t) =
m
∑

j=0

fj,q(X
(q)(t)) dWj(t), X(q)(0) = x0. (5.5)

Clearly, we havefj,q ∈ C1(Rd; Rd) and the derivative offj,q is bounded. Therefore
the functionsfj,q are Lipschitz continuous, so the standard theory ensures that the
truncated SDE (5.5) has a unique strong solutionX(q). On the other hand, the truncated
coefficients also satisfy the assumptions of the following theorem.

Theorem 5.1.Suppose that SDE (1.1) has a unique strong solution, and thatthe func-
tionsf0, . . . , fm are continuously differentiable onRd and have at most linear growth
(i.e. |fj(x)| ≤ K(1 + |x|)). Further, define the processesZn = (Zi,j

n , 1 ≤ i, j ≤ m)
andUn by

Zi,j
n (t) :=

√
n

∫ t

0
(Wi(s) − Wi(η(s))) dWj(s),

Un :=
√

n(Xn − X).

Then there are an extension(Ω̄, F̄ , P̄) of the original probability space (i.e. of the
domain ofW1, . . . ,Wm) and independent Brownian motionsBlj (1 ≤ l, j ≤ m) on
(Ω̄, F̄ , P̄) which are independent ofW1, . . . ,Wm, such that SDE (1.3) has a unique
solutionU (w.r.t. (Ω̄, F̄ , P̄), {Wj}, {Blj}) and

(W,Zn, Un) =⇒ (W,B,U) (in C([0, T ]; Rm ⊗ R
m,m ⊗ R

d)). (5.6)

Here the extension(Ω̄, F̄ , P̄) may be chosen to be independent off0, . . . , fm.

Proof. For the existence and uniqueness of a strong solution of SDE (1.3) see Sub-
section 5.1. The other claims are implied by Theorem 3.2 of [8] and its proof (along
with the implication (a)⇒(b) in Theorem 5.5 of [8]). Actually, the results in [8] only
give the weak convergence in (5.6) in the cádlàg spaceD([0, T ]; Rm ⊗ R

m,m ⊗ R
d).

However, since the limit(W,B,U) is continuous, the weak convergence also holds in
C([0, T ]; Rm ⊗ R

m,m ⊗ R
d). 2

Therefore we obtain forU (q)
n :=

√
n(X

(q)
n − X(q)), Zn and{Blj} as in Theorem

5.1 that
(W,Zn, U (q)

n ) =⇒ (W,B,U (q)), (5.7)

whereX
(q)
n is the continuous time Euler scheme for the approximation ofSDE (5.5),

andU (q) is the unique strong solution of SDE (1.3) withX andfj replaced byX(q) and
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fj,q, respectively. Note that we may and do assume that all limits(W,B,U (q)), q ∈ N,
are defined on the same extension(Ω̄, F̄ , P̄) of the original domain, since the extension
(Ω̄, F̄ , P̄) in Theorem 5.1 depends only onB (i.e. is independent ofq). Further, we de-
note byU the unique strong solution of (1.3) with respect to((Ω̄, F̄ , P̄), {Wj}, {Blj}).

Now, our objective is to derive (2.1) by means of (5.7). This will be done in Sub-
section 5.3, for which we need some further preparation. We define

τq = inf{t ∈ [0, T ] : X(t) /∈ Dq}

and
τ (q)
q = inf{t ∈ [0, T ] : X(q)(t) /∈ Dq},

for everyq ∈ N, where we use the convention inf∅ = ∞. The stopping timesτq and

τ
(q)
q specify the first exit times ofX andX(q) from the setDq. Note that we have

lim
q→∞

τq = ∞, (5.8)

sinceX is continuous and never leavesD. For the considerations of Subsection 5.3
the following three lemmas are crucial. The first one states thatτq andτ

(q)
q coincide,

and thatX andX(q) coincide up to this exit time. The second one shows that the two

Euler schemesXn andX
(q)
n coincide on the set{τq = ∞} for n sufficiently large, and

the last one says that the processesU andU (q) coincide also up to the first exit time
τq. The first lemma is more or less obvious. Therefore we omit itsproof. The proofs
of the other two lemmas are postponed to Subsections 5.4 and 5.5.

Lemma 5.2.Let q ≥ q0. We haveP-almost surely,X(. ∧ τq) = X(q)(. ∧ τq) and

τq = τ
(q)
q .

Lemma 5.3.Let q ≥ q0. For P-almost allω ∈ Ω there exists somen0(ω) ∈ N such
that for all n ∈ N with n ≥ n0(ω),

Xn(., ω)1{τq(ω)=∞}(ω) = X
(q)
n (., ω)1{τq(ω)=∞}(ω). (5.9)

Lemma 5.4.Letq ≥ q0. We havēP-almost surely,U(. ∧ τq) = U (q)(. ∧ τq).

5.3. Proof of (2.1) (Step 2)

In order to prove (2.1), we have to show

lim
n→∞

E[g(W,Un)] = Ē[g(W,U)] (5.10)



Asymptotic error distribution of the Euler method 13

for all bounded and continuous functionsg : C([0, T ]; Rm ⊗R
d) → R. Since we have

P̄ ≡ P on (Ω,F , P), we will always writeĒ instead ofE in this subsection. For every
q ≥ q0 + 1, let

Aq = {τq−1 ≤ T} ∩ {τq = ∞}

be the event thatX leavesDq−1 and never leavesDq. Moreover, setAq0 = {τq0 =
∞}. With the help of (5.8), Lemma 5.2, the dominated convergence theorem (recall
thatg is bounded), and by introducing a telescoping sum, we obtain

Ē[g(W,Un)]

= Ē

[

∞
∑

q=q0

g
(

W,
√

n(Xn − X)
)1Aq

]

=

∞
∑

q=q0

Ē

[

g
(

W,
√

n(Xn − X(q))
)1Aq

]

=
∞
∑

q=q0

(

Ē

[

g
(

W,
√

n(X
(q)
n − X(q))

)1Aq

]

+ Ē

[{

g
(

W,
√

n(Xn − X(q))
)

− g
(

W,
√

n(X
(q)
n − X(q))

)

}1Aq

]

)

=:
∞
∑

q=q0

(

S1(n, q) + S2(n, q)
)

.

Now note that1Aq is measurable with respect toW := σ(W (s) : s ∈ [0, T ]). Thus,
by the factorization lemma there exists aW-measurable (and bounded) functionFq :
C([0, T ]; Rd) → R such that1Aq = Fq(W ). Moreover, the bounded and continuous
functions are dense inL2(C, C, P̄ ◦ W−1) (cf. e.g. [11, Lemma 1.33]), whereC =
C([0, T ]; Rd) andC is the Borelσ-algebra onC. Therefore there existW-measurable
bounded and continuous functionsFp,q : C([0, T ]; Rd) → R such thatĒ[(Fp,q(W ) −
Fq(W ))2] → 0 asp → ∞. Along with Hölder’s inequality we thus obtain

∣

∣

∣
S1(n, q) − Ē

[

g
(

W,
√

n(X
(q)
n − X(q))

)

Fp,q(W )
]
∣

∣

∣
(5.11)

≤
(

Ē

[

g
(

W,
√

n(X
(q)
n − X(q))

)2
])1/2(

Ē

[

(

Fq(W ) − Fp,q(W )
)2
])1/2

→ 0
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asp → ∞. Sinceg is bounded, this convergence is uniform inn ∈ N. Consequently
we can exchange the limits and we obtain by (5.7) that

lim
n→∞

S1(n, q) = lim
n→∞

lim
p→∞

Ē

[

g
(

W,
√

n(X
(q)
n − X(q))

)

Fp,q(W )
]

= lim
p→∞

lim
n→∞

Ē

[

g
(

W,
√

n(X
(q)
n − X(q))

)

Fp,q(W )
]

= lim
p→∞

Ē

[

g
(

W,U (q)
)

Fp,q(W )
]

= Ē

[

g
(

W,U (q)
)1Aq(W )

]

for every fixedq ≥ q0. For the latter step one can proceed as in (5.11). On the
other hand, by Lemma 5.3 the integrand ofS2(n, q) convergesP-almost surely to 0
asn → ∞, so that dominated convergence yieldsS2(n, q) → 0 asn → ∞ for every
fixed q ≥ q0. Thus, using the dominated convergence theorem once again,we obtain

lim
n→∞

Ē[g(W,Un)] =

∞
∑

q=q0

Ē[g(W,U (q))1Aq ].

Since Lemma 5.4 implies

∞
∑

q=q0

Ē[g(W,U (q))1Aq ] =
∞
∑

q=q0

Ē[g(W,U)1Aq ] = Ē[g(W,U)],

we reach (5.10).

5.4. Proof of Lemma 5.3

We first show that there areΩ1, Ω2 ∈ F with P(Ω1) = P(Ω2) = 1, such that for every
ω ∈ Ω1 ∩ Ω2 ∩ {τq = ∞} there areε(ω) > 0 andn0(ω) ∈ N satisfying

inf
t∈[0,T ]

dist(X(t, ω), ∂Dq) = inf
t∈[0,T ]

dist(X(q)(t, ω), ∂Dq) > ε(ω), (5.12)

sup
t∈[0,T ]

|Xn(t, ω) − X(t, ω)| + sup
t∈[0,T ]

|X(q)
n (t, ω) − X(q)(t, ω)| < ε(ω) (5.13)

for all n ≥ n0(ω), where dist(x, ∂Dq) = inf{|x − y| : y ∈ ∂Dq}. To show (5.12) we
may pick by Lemma 5.2 someΩ1 ∈ F with P (Ω1) = 1 such thatX(. ∧ τq(ω), ω) =
X(q)(.∧τq(ω), ω) for all ω ∈ Ω1. Thus we haveX(., ω) = X(q)(., ω) for all ω ∈ Ω1∩
{τq = ∞}. Then, sinceDq is an open set, there exists for everyω ∈ Ω1 ∩ {τq = ∞}
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an ε(ω) > 0 satisfying (5.12). We next show (5.13). From [5] it followsthat there
exists a setΩ2 ∈ F with P (Ω2) = 1 such that

lim
n→∞

sup
t∈[0,T ]

|Xn(t, ω) − X(t, ω)| = lim
n→∞

sup
t∈[0,T ]

|X(q)
n (t, ω) − X(q)(t, ω)| = 0

for all ω ∈ Ω2. Thus for allω ∈ Ω2 there exists ann0(ω) ∈ N such that (5.13) holds.
From (5.12) and (5.13) it now follows that for allω ∈ Ω1 ∩ Ω2 ∩ {τq = ∞} there

exists ann0(ω) ∈ N such that

Xn(t, ω) ∈ Dq, X
(q)
n (t, ω) ∈ Dq (5.14)

for all t ∈ [0, T ] and alln ≥ n0(ω).
To complete the proof of Lemma 5.3, we point to the following representation of

the continuous time Euler schemeXn:

Xn(t) = Xn(k/n) +
m
∑

j=0

fj(Xn(k/n))(Wj(t) − Wj(k/n)) (5.15)

for t ∈ (k/n, (k + 1)/n]; an analogous representation holds forX
(q)
n . Thus, since

P (Ω1∩Ω2) = 1, it obviously remains to show that for everyω ∈ Ω1∩Ω2∩{τq = ∞}
and alln ≥ n0(ω) we have

Xn(k/n, ω) = X
(q)
n (k/n, ω), k = 0, . . . ,Nn(T ).

However, due toXn(0, ω) = x0 = X
(q)
n (0, ω), (5.14), andfj,q ≡ fj on Dq, this

follows straightforwardly by induction.

5.5. Proof of Lemma 5.4

For 1 ≤ i ≤ d setZi = Ui − U
(q)
i . Using the SDEs forU andU (q), we obtain by

Lemma A.4 in the Appendix A that

Zi(t ∧ τq)

=

m
∑

j=0

∫ t

0
∇fij(X(s))′Z(s)1{s≤τq}dWj(t)

+
m
∑

j=0

∫ t

0

[

∇fij(X(s))′ −∇fij,q(X
(q)(s))′

]

U (q)(s)1{s≤τq}dWj(s)

− 1√
2

m
∑

j,l=1

∫ t

0

[

∇fij(X(s))′fl(X(s))

−∇fij,q(X
(q)(s))′fl,q(X

(q))(s))
]1{s≤τq}dBlj(t).
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Sincefij,q(x) = fij(x) for x ∈ Dq, andX(. ∧ τq) = X(q)(. ∧ τq) by Lemma 5.2,
the latter two summands vanish. So we have

Zi(t ∧ τq) =

m
∑

j=0

∫ t

0
∇fij(X(s))′Z(s ∧ τq)1{s≤τq}dWj(t),

or equivalently,

Z(t ∧ τq) =

∫ t

0
dSq(s)Z(s ∧ τq)

with Sq = S1{s≤τq} andS defined as in (5.2). ThusZ(. ∧ τq) satisfies a linear SDE
with zero initial value, and Lemma A.3 in the Appendix A now impliesZ(. ∧ τq) ≡ 0
P̄-almost surely.

A. Auxiliaries

Here we give some auxiliaries. We start with the definition ofstrong solutions of SDEs
driven by Brownian motion.

Definition A.1. Let (Ω,F , P) be a probability space, andW = (W (t) : t ∈ [0, T ]) be
anm-dimensional Brownian motion on(Ω,F , P). Moreover, letF0

t be theσ-algebra
generated byW up to timet, and(Ft) be the usual augmentation of the filtration(F0

t ).
Finally, letb, σ1, . . . , σm : R

d → R
d be measurable functions. Then, ad-dimensional

(Ft)-adapted continuous processX = (X(t) : t ∈ [0, T ]) is called strong solution of
the SDE

dX(t) = b(X(t)) dt +
m
∑

j=1

σj(X(t)) dWj(t), X(0) = x0, (A.1)

with respect to{(Ω,F , P); W} if for every t ∈ [0, T ],

∫ t

0

(

|b(X(s))|+
m
∑

j=1

|σj(X(s))|2
)

ds < ∞ P-a.s.

and P-almost surely

X(t) = x0 +

∫ t

0
b(X(s)) ds +

m
∑

j=1

∫ t

0
σj(X(s)) dWj(s), t ∈ [0, T ]. (A.2)

The solution is said to be (strongly) unique if any two strongsolutions with respect to
{(Ω,F , P); W} areP-indistinguishable.

In this article, we also deal with affine SDEs driven by certain semi-martingales:
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Definition A.2. Let (Ω,F , P) be a probability space, andS = (S(t) : t ∈ [0, T ])
andH = (H(t) : t ∈ [0, T ]) be R

d,d- resp.Rd-valued continuous semi-martingales
on (Ω,F , P). Moreover, letF0

t be theσ-algebra generated byS andH up to time
t, and(Ft) be the usual augmentation of the filtration(F0

t ). Then, ad-dimensional
(Ft)-adapted continuous processU = (U(t) : t ∈ [0, T ]) is called solution of the SDE

dU(t) = dH(t) + dS(t)U(t), U(0) = H(0), (A.3)

with respect to{(Ω,F , P); S; H} if for every t ∈ [0, T ],

∫ t

0
|U(s)|2ds < ∞ P-a.s.

and P-almost surely

U(t) = H(t) +

∫ t

0
dS(s)U(s), t ∈ [0, T ]. (A.4)

The solution is said to be unique if any two solutions w.r.t.{(Ω,F , P); S; H} areP-
indistinguishable.

Note that the order ofdS(s)U(s) in (A.3) and (A.4) is not a mistake. Alternatively
we could have written(U(s)′dS(s)′)′. The same applies to (A.5) below. SDE (A.3)
always has a unique solution which can be represented as follows (this result can be
found e.g. in a more general setting in [7]):

Lemma A.3. In the setting of Definition A.2, SDE (A.3) has a unique solution with
respect to{(Ω,F , P); S; H}. This solution is given by

U(t) = Φ(t)H(0) + Φ(t)

∫ t

0
Φ(s)−1 dG(s), t ∈ [0, T ],

whereΦ = (Φ(t) : t ∈ [0, T ]) is the unique solution of theRd,d-valued linear SDE

dΦ(t) = dS(t) Φ(t), Φ(0) = Id (A.5)

and
G = H − 〈S,H〉.

HereΦ(s)−1 denotes the inverse of the matrixΦ(s), and〈S,H〉 = (〈S,H〉i)d
i=1 with

〈S,H〉i =
∑d

j=1〈Sij,Hj〉.

In Subsection 5.5 we need the following stopping rule for Itô-integrals. For its proof
see e.g. Proposition III.2.10 and the remark on page 147 in [12].
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Lemma A.4.Let (Y (t) : t ∈ [0, T ]) be a real-valued(Ft)-progressively measurable
stochastic process on any filtered probability space(Ω,F , (Ft), P) with

∫ T

0
|Y (t)|2 dt < ∞ P-a.s.,

and(W (t) : t ∈ [0, T ]) be a one-dimensional(Ft)-Brownian motion. Let moreoverτ
be an(Ft)-stopping time. Then it holdsP-almost surely

∫ t∧τ

0
Y (s) dW (s) =

∫ t

0
Y (s)1{s≤τ} dW (s), t ∈ [0, T ]. (A.6)
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Homogenization of Maxwell’s equations with split rings

2008-15 Wilfried Hazod
Multiple selfdecomposable laws on vector spaces and on groups:
The existence of background driving processes

2008-14 Wilfried Hazod
Mixing of generating functionals and applications to (semi-)stability
of probabilities on groups

2008-13 Wilfried Hazod
Probability on Matrix-Cone Hypergroups: Limit Theorems and
Structural Properties

2008-12 Michael Lenzinger and Ben Schweizer
Two-phase flow equations with outflow boundary conditions
in the hydrophobic-hydrophilic case

2008-11 Karl Friedrich Siburg
Geometric proofs of the two-dimensional Borsuk-Ulam theorem

2008-10 Peter Becker-Kern, Wilfried Hazod
Mehler hemigroups and embedding of discrete skew convolution

2008-09 Karl Friedrich Siburg, Pavel A. Stoimenov
Gluing copulas

2008-08 Karl Friedrich Siburg, Pavel A. Stoimenov
A measure of mutual complete dependence


