View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Eldorado - Ressourcen aus und fiir Lehre, Studium und Forschung

technische universitat
dortmund

Asymptotic error distribution of the
Euler method for SDEs with
non-Lipschitz coefficients

Andreas Neuenkirch and Henryk Zahle

Preprint 2009-10 August 2009

Fakultat fur Mathematik
Technische Universitat Dortmund

Vogelpothsweg 87
44227 Dortmund tu-dortmund.de/MathPreprints



https://core.ac.uk/display/46909041?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Asymptotic error distribution of the Euler method for SDEs
with non-Lipschitz coefficients

Andreas Neuenkirch and Henryk Zahle

Abstract. In [14, 8] Kurtz and Protter resp. Jacod and Protter spetiéyasymptotic error
distribution of the Euler method for stochastic differahgquations (SDEs) with smooth co-
efficients growing at most linearly. The required diffeiabtlity and linear growth of the
coefficients rule out some popular SDEs as for instance thel@gersoll-Ross (CIR) model,
the Heston model, or the stochastic Brusselator. In thislertve partially extend one of the
fundamental results in [8], so that also the mentioned eXesngre covered. Moreover, we
compare by means of simulations the asymptotic error Higions of the CIR model and the
geometric Brownian motion with mean reversion.
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1. Introduction

We consider th@-dimensional 1td stochastic differential equation (SDE)
dX(t) = f[i(X()dW;(t),  X(0) = o, (1.1)
j=0

wherezg € R, fo,..., fm : R® — R? are continuous functiond}y is the identity
onR, (i.e.Wy(t) = t), andW4, ..., W, are independent one-dimensional Brownian
motions. SDE (1.1) and all other equations and processé®iadquel are restricted

to a fixed time interval0, 7']. We assume that (1.1) has a unique strong solution, and
we denote byX,, Euler’s “polygonal” approximation of this solution, i.e.

m

dX,(t) = Z I (Xn(mn())) de(t), 7n<0) = To. (1.2)
j=0

Heren, (t) is defined to be the largest elementaf/n = {0,1/n,2/n,... } which is
smaller than or equal tb For background on the Euler scheme and other numerical
schemes for SDEs see e.g. [13, 16].

This article was written while A. Neuenkirch was a memberhaf DFG-project "Pathwise numerics
and dynamics of stochastic evolution equations" at the ioNgolfgang Goethe-Universitat Frankfurt
am Main.
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In this article, we focus on the asymptotic distributionfué error procesX’,, — X.
It follows from results in [8] that if the functiong; are continuously differentiable
and have at most linear growth, then the procga$X,, — X ) converges in law to the
unique solution of the@-dimensional SDE

va 'U(t) dwi(t) (1.3)
1 m m

- — Vi (X (X(t)) dBj(t), U(0) =0.
V2 Zl lZ i :

HereV f;; is the gradient of thé-th componentf;; of f;, B;; (1 < [,j < m) are
independent one-dimensional Brownian motions being iaddpnt ofi1’y, ..., W,,,
andv’ denotes the transpose of a veatoiThe specified assumptions on the functions
fj exclude some popular models as for instance the Cox-Iniii&teses (CIR) model
and the Heston model in finance, or the stochastic Brussala&sl in the modeling
of chemical reactions, cf. Section 3. Indeed, the mapping \/ﬂ which appears
in the CIR model as well as in the Heston model, is not difféadate at 0, while the
equation for the stochastic Brusselator contains polyabouefficients. The purpose
of this article is an extension of the fundamental resultl#y 8] to cover also the
mentioned examples.

We assume that the solution of (1.1) never leaves a given sped ¢ R¢, and
that the functiongf; are continuously differentiable aB. Our main result (Theorem
2.1) shows that under these assumptions the weak convergéné (X, — X) to
the solution of (1.3) still holds, where we use the conveniiof;;(z) = 0 for all
i=1...,d,j=0,...,mandz € R?\ D. The key for the proof is a localization
procedure, similar to the one in [5, 10], where pathwise eagence rates for the
approximation of SDEs have been derived.

Numerical results for the asymptotic error distributioa given in Section 4, where
we compare the CIR model and the geometric Brownian motion.

2. Main Result

Let (Q, F,P) be a probability space, addl = (W4, ..., W,,) be anm-dimensional
Brownian motion onQ, F,P). As indicated in the Introduction, we assume that
(A) SDE (1.1) has a unique strong solutidhw.r.t. {(Q, F,P); W}.

The definition of solutions of SDEs is recalled in the Appendi We further assume
that X never leaves a given open getc R?, i.e.

(B) P(X(t) e Dforallt € [0,7]) = 1.



Asymptotic error distribution of the Euler method 3

Finally, we assume that
©) folp, -, fm|p € CH(D;RY),

wheref;|p refers to the restriction of; to D. Fork, ! € N and an open set C RF,
we denote byC'(G; R!) the space of all continuous functions fraihto R!. A super-
scriptp € N U {oo} refers to the subclass of alttimes continuously differentiable
functions of C(G; RY).

The rigorous meaning of the continuous time Euler schen® (&.given by the
stochastic integral scheme

Xolt) =m0+ /O £ () AW (5).

-0

We now turn to the main result, whose proof will be carried inuBection 5. We
equipC([0, T]; R™ @ RY) with the supremum norm, and we use the symbek” for
weak convergence.

Theorem 2.1.Let X and fo, ..., f,, satisfy assumptions (A), (B) and (C). Then there
are an extensior{Q, 7, P) of the original probability space (i.e. of the domain of
Wi, ..., Wy,) and independent Brownian motio; (1 < [,j < m) on (Q,F,P)
which are independent &¥7, ..., W,,, such that SDE (1.3) has a unigue solutign

(w.rt. (Q, F,P),{W;},{B;}), and we have
(W,vn(X, — X)) = (W,U)  (inC([0,T|;R™ @ RY)). (2.1)

The continuous time Euler schemg, is indeed not an implementable approxima-
tion scheme since it requires complete knowledge of the Eapgihs of the driving
Brownian motions. However, in practice one is often onleiested in the values of
X, at the sampling points,@/n, 2/n, ..., i.e. in the discrete time Euler scheme. For
the latter we can derive from Theorem 2.1 the following weakwergence result:

Corollary 2.2. Let X and fo, . . ., [, satisfy assumptions (A), (B) and (C). Then

X, (i/n)— X (i U], 2.2
Vi max | Xn(ifn) = X(i/n)| = max [U(t) (2.2)

whereN,,(T) =max{i € N:i/n <T}.

Proof. Theorem 2.1 implies in particular weak convergence/@f( X, — X) to U

in the spaceDd = D(]0,7];RY) of cadlag functions (i.e. functions that are right-
continuous and have left limits) equipped with the Skorohwetric. Moreover, the
function,, introduced subsequent to (1.2) converges to the identitp.6f. There-
fore Lemma 2.2 of [8] yields weak convergence4f(X,, — X) on, toU in D. Since
the limit procesdJ is continuous, the latter convergence also holds i§ equipped
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with the supremum norm, cf. [18, p.137]. Thus, as the mapping max.c(o7) |#(t)|
fromDD to R is continuous with respect to the supremum norm, the cootismapping
theorem shows that

Vi max - [Xi/m) - X(i/n)
= Vi max [X (1)) — X (na(0)]

te[0,T]

converges weakly to the right-hand side of (2.2). O

If D # R? then, in contrast to the exact solution, the Euler schemelgwyeD.
For many purposes this is an unwanted property. To overchiag@toblem one can

consider a projected Euler scheme V\Eﬁﬂ)(o) = zpand

X6+ 1)/n) = H(i/n) Lp(H(i/n)) + (H(i/n)) Lya, p(H(i/n))

fori=0,1,...,where
H(i/n) =X (i/n) + 3 ;0 (/) (Wi((i + 1) /n) — Wi/n)
§=0

andr : RY — D. Such projected Euler methods have been originally intcediufor
the approximation of SDEs with reflecting boundaries, sge .5, 17]. Of course,
the reflection functiomr should be chosen appropriately, i.e. according to the tstreic
of the SDE. However, we obtain the analogue of Corollary %8 for the projected
Euler scheme regardless of the choicerpf

Corollary 2.3. Let X and fo, .. ., f, satisfy assumptions (A), (B) and (C), I&t,(T)
be as in Corollary 2.2, and let : R? — D be an arbitrary function. Then

(7).
Vi max X (/) = X(ifn)| = max [U(#)]. (2:3)

Proof. In the proof of Lemma 5.3 below it is implicitly shown that f@ralmost all
w € Q there exists someg(w) € N, such thatX,,(.,w) does not leaveD for all

n € Nwith n > no(w). Thus, sinc@ﬁr)(.,w) coincides withX,,(.,w) as long as
the latter takes values only i, we haveX " (.,w) = X,(.,w) for all n € N with

n > np(w). In particular, we obtairiM,, — M,(L“) — 0 asn — oo P-almost surely,
where

My =+/n  max [Xn(i/n) — X(i/n)],

07 7N7L (T>

M7(L7r) =+/n _max : \Ygr)(i/n) — X (i/n)|,

i=0,...,Nn,
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and soM,\™ = M, + (Mﬁf) — M,,) converges weakly to maxo 71 |U(t)| asn — oo
by Corollary 2.2 and Slutzky’s lemma. O

3. Examples

In this section, we illustrate our main result by means ofr fexsamples. The first
example (Subsection 3.1) is also covered by the fundamesgalts in [14, 8], but the
other three examples are not.

3.1. Geometric Brownian motion

The geometric Brownian motion with mean reversion, whichii&en by the unique
solution of the one-dimensional SDE

dA(t) = k(X — A(t)) dt + 0A(t) dW (1), A(0) =ap >0 (3.1)

with x, A\,0 > 0, is a popular model for the dynamics of asset prices. Natettie
solution of (3.1) remains strictly positive for all time, $loat the process is indeed
suitable to model the dynamics of asset prices. Clearlypiidm 2.1 applies here for
D = R and we have

dU(t) = —kU(t)dt + 0 U (t) dW () — j—; A(t)dBy(t), U(0) =0,

which gives
02 b1
Ult)=——=®d(¢ —— A(s)dB , 3.2
(1) = ~Z=00) | G Als) dBu(s) 32)
where® is the unique solution of the one-dimensional linear SDE
dP(t) = =k P(t) dt + 0 P(t) dW (t), P(0) =1,

see (5.3) in Subsection 5.1. Of course, the solution of tterl&DE is given by

D(t) = exp (- (m 41 92) t+6 W(t)> .

2

Since the solution of (3.1) has the representation

A(t) = ®(t) <a0 + EA /Ot % ds> :

the expression for (3.2) can be rewritten as

U(t) = —3—; P(t) (aoBll(t) + KA /0 t /0 ’ % du dBll(s)) .
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3.2. Cox-Ingersoll-Ross model

The Cox-Ingersoll-Ross (CIR) process is given by the unigol@ition of the one-
dimensional SDE

AV(t) = k(A= V(£))dt + 0/[V ()] dW (), V(0)=vp>0  (3.3)

with x, X, 8 > 0. It is well known that if 2\ > 62, then the solution remains strictly
positive for all time (cf., e.g., [21, Section 3]). Sincedhs a desired property for
interest rates, Cox et al. ([3]) proposed this process irb E38a model for short-term
interest rates. A further advantage of the CIR process irtémeext of short rates is
that it admits closed-form formulae for bond prices. Thspositivity of the solution
ensures that Theorem 2.1 applies for= (0, c0) and we have

2

dU(t) = —k U(t) dt L0 2\/_ t) dW () — \/gdBll(t), U(0) =0,
which gives
2 t
Ut) = ~2=0(0) | G dBus), (3.4

where® is the unique solution of the one-dimensional linear SDE

dD(t) = —k (1) dt + 2 AW (t), ®(0) =1,

2\/—

see again (5.3) in Subsection 5.1. The solution of the |StXE reads as

2 t t
d)(t):exp(—nt—%/o %dm—g/o \/%dW(s))

Note that if the condition 2\ > #? is violated, then the solution of (3.3) can still be
approximated weakly by the Euler scheme (cf. [20, Sectigrodi it may obtain the
value zero. (It will even obtain the value zero with probiypibne if the time horizon
is infinite, cf. [21, Section 3]). Thus in this case our resuld not apply.

3.3. Heston model

A popular stochastic volatility model in finance is the Hestoodel ([6]), i.e.

dA(t) = pA(t) dt + A(t [p\/\V [dWa(t +\/1—p2\/|V(t)\dW2(t)},
AV (t) = k(A — V() dt + 0/|V (t)| dWr(t (3.5)



Asymptotic error distribution of the Euler method 7

wherex, A\, 0, > 0 andp € [-1,1]. Here, a proces§V (t) : ¢ € [0,T]) of Cox-
Ingersoll-Ross type is used to model the volatility of areagd(t) : ¢ € [0,7)). If

2K\ > 62, V(0) > 0 andA(0) > 0, then the unique solution of the two-dimensional
SDE (3.5) remains i) = (0, 00)2. Therefore Theorem 2.1 applies and we have the
following asymptotic dynamics of the error process:

dUa(t) pla(®) |
dUZ(t) —KUz(t)
[ VO UA() + § s Ua()
+ 0_1 i dWq(t)
i 2 v V20
L | VIVt + - v V20 ] dWa(t)
0
AR ()
- i dR(t)
where
dRi(t) | 1 [ pPAR V() + 2 A1)
dRat) | V2| e 2 4Bul?)
B \% PV 1—p20A(t)V(t) ABor(t)
A [T a0 v + 25240 | gpu
v2 |

3.4. Stochastic Brusselator

An example for an SDE with polynomial coefficients is the siatic Brusselator
2
dX(t) = (a —(BFLX)+ XY () + %X(t)) dt — o X (t) dW (t),

dY (t) = (BX(t) — X2V (t) — %2X(t)) dt + o X (£) dW (t),

wherea, 5,0 > 0. Although the coefficients of this SDE have polynomial gitow
this equation admits a unique strong solution, see e.g.J[l%lere Theorem 2.1 for
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D = R? gives
i) | _ [ A8 14 g +2XOY (O} + X (12 0200) |
dUs(t) {8 % —2X(1)Y ()} UL(t) - X(H)2Ua(t)
o Ui(t) 1 o? X (t)
R dW (t) — 7 l 02Xt dB1a(t).

4. Numerical Examples

Here we compare the asymptotic error processes of the gaorBebwnian motion
with mean reversion (3.1) and the CIR model (3.3). WeTset 1 and focus on the
distribution of the random variable
M = max |U(t)].
t€[0,1]
We consider two different settings:
1) For the CIR procesk = (V (¢) : t € [0, 1]) we choose

5 =097351 A\ =005791 6=0.15415 and vy =002  (4.1)

which corresponds to the dynamics of the short term inteegst in the CIR model
(under the objective measure) estimated from historica dethe German debt secu-
rity market RentenmarBt cf. [4]. For the geometric Brownian motiaa = (A(¢) :

t € [0,1]) the parameters are chosen in such a way #{a) andV'(1) have the same
variance:

k=0.97351 X =0.0579] #=0.3988 and ag=0.02 4.2)
2) For the CIR procest = (V(¢t) : t € [0, 1]) we choose
k=1 A=05 6=1 and =02, (4.3)

so that the strict positivity conditions2 > 62 is just satisfied. For the geometric
Brownian motionA = (A(t) : t € [0, 1]) the parameters are again chosen in such a
way thatA(1) andV (1) have the same variance:

k=1 A=05 6=12944 and ag=0.2. (4.4)

For both settings 1) and 2) we simulated 10.000 patlis fafr both A andV', where
we used the representations (3.2) and (3.4). Figure 1 sh@wsnhpirical densities of
M in either case. We used a kernel density estimator with Gaw&srnel and band-
width choice by cross-validation. The following table desgs some further empirical
features ofM:
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setting model mean sd min max kurt
1) GBM 0.015643 (0009530 0003225 0162262 19.76
CIR 0.008937 (0003206 0003157 0028918 4.64
2) GBM 0.548598 0613945 0055889 13861450 119.69
CIR 0.395864 (0163062 0129266 1653468 6.22

150
I

100
I

Figure 1. Empirical density of\/ for the CIR model and for the geometric Brownian
motion (dashed line). Left: setting 1), right: setting 2).

Surprisingly, in both cases the empirical densities forgeemetric Brownian motion
are broader than the densities for the CIR process. (Se¢h&lsmrresponding means
and variances in the above table.) In particular, the n@sdhitz coefficient in SDE
(3.3) does not lead to a badly shaped asymptotic errorldigion as one might expect.

5. Proof of Theorem 2.1

The proof of Theorem 2.1 is organized as follows. First, ibsaction 5.1 we discuss
the existence and uniqueness of solutions to equation. (883ond, in Subsections
5.2 and 5.3 we carry out the proof of (2.1). Finally, in Subiees 5.4 and 5.5 we give
the proofs of two lemmas, which are omitted in Subsection 5.2

5.1. Unique solution of (1.3)

Note that equation (1.3) can be rewritten as

dU(t) = dH(t) + dS(t) U(t), (5.1)
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whereH andsS areR?- resp.R%?-valued continuous semi-martingales:

— 5 Y S Jo VI (X () fil X (5)) dBy (s)
H(t) = : ,
~ 75 Lt it Jo Vg (X(9))'fi(X (s)) dByy (s)

| Jo 01 (X()dWi(s) - [g Bafyy(X(s)) dWi(s)
S(t) =Y : : (5.2)
O Jo oty (X () dWy(s) - [3 0afy(X(s)) dWy(s)

Here 0y, f;; denotes thek-th partial derivative off;;. For the precise meaning of
equation (5.1) see Definition A.2 in the Appendix A. Since Brewnian motions
Wi,..., Wy, andBy; (1 < j,1 < m) are independent, the covariationEfands is
zero. Now it follows from Lemma A.3 in the Appendix A that eqoa (5.1) (and thus
(1.3)) has a unique solution which is given by

U(t) = o(t) /0 d(s)"LdH(s). (5.3)

Here,(®(t) : t € [0,T]) is the unique solution of th&%4-valued linear SDE
do(t) = dS(s) ®(t),  @(0) =1Iq,

where®(s) ! denotes the inverse of the matdxs).

5.2. Proof of (2.1) (Step 1)

We now turn to the proof of (2.1), which avails a localizatiprocedure similar to
that of [5, 10]. We start with introducing a truncated versad SDE (1.1). For every
q € N, we set

Dy ={z € D :|z| < ganddistz,0D) > 1/q}

with 9D the boundary ofD, and distz,0D) = inf{|x — y| : y € dD}. Moreover,
denotego = min{qg € N : 2o € D,}. In particular, we then have,>q, D, = D. For
everyq € N there exists a functiop, € C*°(R%; R) such that 0< ¢,(z) < 1 and

() 1, xeﬁq,
xT) =
e 0 , zeR\ Dy,
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We use these functions to truncate the coefficients of SDB,(le. we set

fig@) = f(@) pq(x),  z€RY (5.4)

forallj =0,...,m andq € N. The corresponding SDE reads as follows
dXD(t) =3 f;o(X D) dW;(t),  X'9(0) = ao. (5.5)
j=0

Clearly, we havef;, € C1(R?% R%) and the derivative of; , is bounded. Therefore
the functionsf;, are Lipschitz continuous, so the standard theory ensugdsthie
truncated SDE (5.5) has a unique strong solufidfl. On the other hand, the truncated
coefficients also satisfy the assumptions of the followhmgprem.

Theorem 5.1.Suppose that SDE (1.1) has a unique strong solution, andhlegtinc-
tions fo, . . ., fm are continuously differentiable dk? and have at most linear growth
(i.e.|fj(z)] < K(1+ |z|)). Further, define the process&s = (Z,7, 1 <i,j <m)
and U, by

Z09(t) == Vi /0 (Wi(s) — Wiln(s))) dW;(s),

U, = vn(X, — X).

Then there are an extensid®, 7, P) of the original probability space (i.e. of the
domain ofW¥y, ..., W,,) and independent Brownian motiofi; (1 < /,j < m) on
(Q, F,P) which are independent d¥/1, ..., WW,,, such that SDE (1.3) has a unique

solutionU (w.r.t. (Q, F,P),{W;},{By;}) and
(W, Zp,Up) = (W,B,U)  (in C([0,T];R™ @ R™™ @ R%)). (5.6)
Here the extensio(Q, 7, P) may be chosen to be independenf@f . . , /..

Proof. For the existence and uniqueness of a strong solution of SCH $§ee Sub-
section 5.1. The other claims are implied by Theorem 3.2 P&l its proof (along
with the implication (a}>(b) in Theorem 5.5 of [8]). Actually, the results in [8] only
give the weak convergence in (5.6) in the cadlag sfiage, 7]; R @ R™™ @ R?),
However, since the limitiV, B, U) is continuous, the weak convergence also holds in
C([0,T;; R™ @ R™™ @ RY). o

Therefore we obtain fot\?) := (XY — x@), 7, and{B,;} as in Theorem
5.1 that
(W, Z,,, U\?) = (W, B,U?), (5.7)

WhereYS) is the continuous time Euler scheme for the approximatio8DE (5.5),

andU @ is the unique strong solution of SDE (1.3) withand f; replaced byX (@) and
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fj.q» respectively. Note that we may and do assume that all lif#itsB, UW@), qeN,

are defined on the same extensi@n 7, IP) of the original domain, since the extension

(Q,F,P)in Theorem 5.1 depends only @h(i.e. is independent @f). Further, we de-

note byU the unique strong solution of (1.3) with respectt®, 7, P), {W;}, {By;}).
Now, our objective is to derive (2.1) by means of (5.7). Thi# ke done in Sub-
section 5.3, for which we need some further preparation. &ae

T, =1nf{t € [0,T] : X(t) ¢ Dy}
and
7\ =inf{t € [0,T] : X'9(t) ¢ D},
for everyq € N, where we use the convention ihf= co. The stopping times, and
Té‘” specify the first exit times ok and X (9) from the setD,. Note that we have

lim 7, = oo, (5.8)

q—00

since X is continuous and never leavés For the considerations of Subsection 5.3
the following three lemmas are crucial. The first one stdtas, andréq) coincide,
and thatX and X (9 coincide up to this exit time. The second one shows that te tw
Euler schemeX,, andYS) coincide on the seftr, = oo} for n sufficiently large, and
the last one says that the processeand U9 coincide also up to the first exit time
74 The first lemma is more or less obvious. Therefore we omjtrie®f. The proofs

of the other two lemmas are postponed to Subsections 5.4.6nd 5

Lemma 5.2.Letq > go. We haveP-almost surely,X (. A 7,) = X@(. A 7,) and

Tg = Téq>.

Lemma 5.3.Letq > qo. For P-almost allw € Q there exists somep(w) € N such
that for all n € N withn > ng(w),

Xo(es ) L ()00} (9) = X (13 )L )00} (0)- (5.9)

Lemma 5.4.Letq > go. We haveP-almost surelyl/ (. A 7,) = U@W(. A 7).

5.3. Proof of (2.1) (Step 2)

In order to prove (2.1), we have to show

lim Elg(W,U,)] = E[g(W,U)] (5.10)

n—oo
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for all bounded and continuous functiops C([0, T]; R™ @ R?) — R. Since we have
P =Pon(Q,F,P), we will always writeE instead ofE in this subsection. For every
q>qo+1,let

Ag={rg-1 < T} N {ry = oo}

be the event thak' leavesD,_; and never leave®,. Moreover, setd,, = {7, =
oo}. With the help of (5.8), Lemma 5.2, the dominated convergeheorem (recall
thatg is bounded), and by introducing a telescoping sum, we obtain

Elg(W, Un)]
— B[S oW VX, - X)L
9=4q0
- YE [9(W V(R = X)) 14,
4=qo0
= 3 (Bsw VAR - x 0,

= 3" (S1(n,q) + S2(n.q)).

9=90

Now note thatll 4, is measurable with respect W’ := o(W (s) : s € [0,T]). Thus,
by the factorization lemma there exist3\&measurable (and bounded) functibp :
C([0,T);RY) — R such thatl 4, = F,(W). Moreover, the bounded and continuous
functions are dense ih?(C,C,P o W) (cf. e.g. [11, Lemma 1.33]), wher€ =
C([0,T]; R?) andC is the Borelo-algebra orC'. Therefore there exidty-measurable
bounded and continuous functiofs,, : C([0,7];R?) — R such tha€[(F, ,(W) —
F,(W))?] — 0 asp — co. Along with Holder’s inequality we thus obtain

(1, ) ~ E[g (W, va(XS — X)) B, ()] (5.11)

< (Bo(w, vax? — x@)?))" (& (Rw) - Bran)]) " — 0
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asp — oco. Sincey is bounded, this convergence is uniformrire N. Consequently
we can exchange the limits and we obtain by (5.7) that

iim Si(n.q) = lim_lim E|g(W,va(X," = X9)) F,,(W)]

n—o0 n—0o0 p—0o0

— lim lim IE[g(W, \/E(YSD—X@U)FP,Q(W)}

P—00 N—00

= lim E[g(W,0)F,,(W)]

p—00

=E|g(W,U)14,(W)]

for every fixedq > qo. For the latter step one can proceed as in (5.11). On the
other hand, by Lemma 5.3 the integrand%fn, ¢) convergegP-almost surely to 0
asn — oo, so that dominated convergence yiekign, ¢) — 0 asn — oo for every
fixedq > qo. Thus, using the dominated convergence theorem once agaiohtain

lim E[g(W,U,)] = i E[g(W,U?)1,].
4=q90

Since Lemma 5.4 implies

ZE (W,U@)14,] ZE (W,U)14,] = Elg(W,U)],

9=q0 9=90

we reach (5.10).

5.4. Proof of Lemma 5.3

We first show that there afe;, Qo € F with P(Q1) = P(Qz) = 1, such that for every
w e Q1N QN {1, = oo} there ares(w) > 0 andng(w) € N satisfying

inf dist(X (t,w),0D,) = iBfT]dist(X(Q)(t,w),é‘Dq) > e(w), (5.12)
S )

t€[0,T

sup [Xu(t,w) — X(t.w)| + sup [X(tw) — XD(tw)| <c(w)  (5.13)
te[0,T) t€[0,T]

for all n > no(w), where distz, 0D,) = inf{|z — y| : y € 0D, }. To show (5.12) we
may pick by Lemma 5.2 son®@; € F with P(Q1) = 1 such thatX (. A 7y(w),w) =
X@( A1 (w),w)forallw € Q;. Thus we haveX (.,w) = X@(,,w)forallw € Q1N
{7y = oo}. Then, sinceD, is an open set, there exists for everye Q; N {7, = oo}
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ane(w) > 0 satisfying (5.12). We next show (5.13). From [5] it followat there
exists a seQ, € F with P(Qz) = 1 such that

lim sup [Xn(t,w) — X(t,w)| = lm sup X2 (t,w) - X9(t,w)| =0
00 ¢e(0,T] 90 (0,7

for allw € Q. Thus for allw € Q there exists ang(w) € N such that (5.13) holds.
From (5.12) and (5.13) it now follows that for all € Q1 N Q> N {7, = oo} there
exists amo(w) € N such that

X, (tw) €Dy X (tw) e Dy (5.14)

forallt € [0,7T] and alln > ng(w).
To complete the proof of Lemma 5.3, we point to the followiegresentation of
the continuous time Euler schemg,:

Xalt) = Xu(k/n) + Y f;(Xn(k/n)(Wj(t) — Wj(k/n)) (5.15)
=0

fort € (k/n,(k + 1)/n]; an analogous representation holdsﬁf). Thus, since
P(Q1NnQy) = 1, it obviously remains to show that for evesye Q1 NQoN {7, = oo}
and alln > ng(w) we have

Xulk/n.w) =X (kfn,w),  k=0,..,Nu(T).

However, due taX,(0,w) = x¢ = Y(Q)(O,w), (5.14), andf;, = f; on D, this

n

follows straightforwardly by induction.

5.5. Proof of Lemma 5.4

Forl<i<dsetZ, = U, — Ui(q). Using the SDEs fof/ and U@, we obtain by
Lemma A.4 in the Appendix A that

Zl(t A Tq)

-y / V£ (X (5))'Z(5) Lpscr,y W5 (1)
=070
'y /0 (V15X ()Y = V(XD ()| U ()1 oy ()
=0

-3 [ [vrereyace)

ji=1

— V fisa(XD(5)) fig(X D) ()| 1 fa<rydBys (1)
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Sincefij () = fi;(x) forx € Dy, andX (. A 7,) = X D(. A 7,) by Lemma 5.2,
the latter two summands vanish. So we have

Z t/\Tq /szj (SATq)ﬂ{S<T }dW()

or equivalently,
i
Z(tN1g) = / dSq(s)Z(s A 1y)
0

with S; = Sl,<,, ) andS defined as in (5.2). Thug(. A 7,) satisfies a linear SDE
with zero initial value, and Lemma A.3 in the Appendix A nowgles Z(. A 7,) =0
P-almost surely.

A. Auxiliaries

Here we give some auxiliaries. We start with the definitiostodng solutions of SDEs
driven by Brownian motion.

Definition A.1. Let (Q, F,P) be a probability space, an®l = (W (t) : ¢t € [0,T]) be
anm-dimensional Brownian motion of, 7, P). Moreover, letF? be thes-algebra
generated byV" up to timet, and(F;) be the usual augmentation of the filtratigh?).
Finally, letb, o1, ..., 0., : R — R? be measurable functions. Thenj-aimensional
(F:)-adapted continuous proce&s= (X (¢) : ¢t € [0,T7) is called strong solution of
the SDE

dX (t) = b(X (1)) dt + > oj(X(£))dW,(t),  X(0) = xo, (A1)

with respect to{ (Q, F,P); W} if for everyt € [0, T1,

/0 ( )+ Z o (X )ds <oo  Pas.

and P-almost surely

X(t):xo+/0 b(X(s))ds+Z/0 oi(X(s)dW;(s), te[0,T]. (A2)
j=1

The solution is said to be (strongly) unique if any two straogutions with respect to
{(Q, F,P); W} areP-indistinguishable.

In this article, we also deal with affine SDEs driven by cersgmi-martingales:
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Definition A.2. Let (Q, F,P) be a probability space, antd = (S(¢) : ¢ € [0,T])
andH = (H(t) : t € [0,T]) be R%4- resp.R%-valued continuous semi-martingales
on (Q, F,P). Moreover, letF? be thes-algebra generated by and H up to time

t, and(F;) be the usual augmentation of the filtratiof?). Then, ad-dimensional
(F:)-adapted continuous procdss= (U(t) : ¢t € [0,T7) is called solution of the SDE

dU(t) = dH(t) + dS(t) U(t), U(0) = H(0), (A.3)
with respect to{ (Q, F, P); S; H} if for everyt € [0, 71,
t
/ |U(s)2ds < oo P-a.s.
0
and P-almost surely
t
U(t) = H(t) +/ dS(s)U(s), te][0,T]. (A.9)
0
The solution is said to be unique if any two solutions wiQ, F,P); S; H} areP-

indistinguishable.

Note that the order afS(s)U(s) in (A.3) and (A.4) is not a mistake. Alternatively
we could have writteriU (s)'dS(s)")’. The same applies to (A.5) below. SDE (A.3)
always has a unique solution which can be represented asvfol(tthis result can be
found e.g. in a more general setting in [7]):

Lemma A.3.In the setting of Definition A.2, SDE (A.3) has a unique sofutivith
respect tof (Q, F,P); S; H}. This solution is given by

U(t) = ®(t)H(0) + d(t) /0 t d(s)"1dG(s), te[0,T],

where® = (®(t) : ¢ € [0, 7)) is the unique solution of tH&%-valued linear SDE
dD(t) = dS(H) ®(t),  (0) = I, (A.5)
and
G=H—(SH).

Here ®(s)~! denotes the inverse of the matdXs), and (S, H) = ((S, H);)¢_; with
(S, H)i = Y0_1(Sij. Hj).

In Subsection 5.5 we need the following stopping rule fosifii@grals. For its proof
see e.g. Proposition 111.2.10 and the remark on page 1472 [1
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Lemma A.4.Let (Y (¢) : t € [0,T]) be a real-valued F;)-progressively measurable
stochastic process on any filtered probability spé@eF, (F;),P) with

T
/ Y(#))?dt <o P-as,
0

and(W (t) : ¢t € [0,T]) be a one-dimension&lF;)-Brownian motion. Let moreover
be an(F;)-stopping time. Then it holdB-almost surely

/ "y sy dw(s) = / Y($)Lisery dW(s), t€[0.T].  (AB)
0 0

References

1. D.J. ALDous AND G.K. EAGLESON On mixing and stability of limit theorem#nnals
of Probability 6, p. 325-331. (1978)

2. L. ARNOLD, G. BLECKERT AND K.R. SCHENK-HOPPE The stochastic Brusselator:
Parametric noise destroys Hopf bifurcation. In: H. Craedl) et al Stochastic Dynamics.
Springer, New York, p. 71-92. (1999)

3. J. @X, J. INGERSOLL AND S. RossA theory of the term structure of interest rates.
Econometricéb3, p. 385-408. (1985)

4. T. HSCHER, A. MAY AND B. WALTHER Simulation of the yield curve: checking a Cox-
Ingersoll-Ross modelVorking Pape(2002)

5. 1. GYONGY A note on Euler’'s approximationBotential Analysis, p. 205-216. (1998)

6. S.L. HESTONA closed-form solution for options with stochastic voliyilwith applica-
tions to bond and currency optiorighe Review of Financial Studiésp. 327-343. (1993)

7. J. AcoD Equations différentielles stochastiques linéaires: Léhade de variation des
constantesSéminaire de probabilités XVI — Lecture Notes in Mathens&@R0, p. 442-
446. (1982)

8. J. AcoD AND P. PROTTER Asymptotic error distributions for the Euler method for
stochastic differential equation&nnals of Probability26, p. 267-307. (1998)

9. J. AcoD AND A.N. SHIRYAEV Limit Theorems for Stochastic Process&pringer,
Berlin, 2nd ed. (2003)

10. A. ENTZEN, P.E. KLOEDEN AND A. NEUENKIRCH Pathwise approximation of stochas-
tic differential equations on domains: Higher order cogeerce rates without global Lip-
schitz coefficientsNumerische Mathematikl 2, p. 41-64. (2009)

11. O. KaLLENBERG Foundation of Modern Probabilityspringer, Berlin. (1997)

12. I. KARATZAS AND S.E. SHREVE Brownian Motion and Stochastic CalculuSpringer,
New York, 2nd edition. (1991)

13. P.E. KOEDEN AND E. PLATEN Numerical Solution of Stochastic Differential Equations.
Springer, Berlin, 3rd edition. (1999)



Asymptotic error distribution of the Euler method 19

14. T.G. KURTZ AND P. RROTTERWong-Zakai corrections, random evolutions, and simula-
tion schemes for SDE’s. In: E. Mayer-Wolf (ea) al. Stochastic Analysip. 331-346.
(1991)

15. D. LEPINGLE Euler scheme for reflected stochastic differential equatiMathematics
and Computers in Simulatid8, p. 119-126. (1995)

16. G.N. MLsTEIN Numerical Integration of Stochastic Differential Equat Kluwer, Do-
ordrecht. (1995)

17. R. EETTERSSONApproximations for stochastic differential equation wigetilecting con-
vex boundariesStochastic Processes and their Applicati®@®sp. 295-308. (1995)

18. D. RoLLARD Convergence of Stochastic Processtysringer, New York. (1984)

19. M. ScHEUTZOW Periodic behavior of the Stochastic Brusselator in the nfiedah limit.
Probability Theory and Related Fiel@2, p. 425-462. (1986)

20. H. ZAHLE Weak approximation of SDEs by discrete-time proces3mstnal of Applied
Mathematics and Stochastic Analy2308 14 pages. (2008)

21. H. ZAHLE Approximation of SDEs by population-size-dependent Gelidatson pro-
cessesStochastic Analysis and Applicatio(&009), to appear

Author information

Andreas Neuenkirch, Technische Universitat Dortmundukakfir Mathematik, Vogelpoth-
sweg 87, D-44227 Dortmund, Germany.
Email: andr eas. neuenki r ch@nat h. t u- dor t nund. de

Henryk Zahle, Technische Universitat Dortmund, FakuliétMathematik, Vogelpothsweg
87, D-44227 Dortmund, Germany.
Email: henr yk. zaehl e@mt h. t u- dort nund. de



Preprints ab 2008/08

2010-09 Andreas Neuenkirch and Henryk Zahle
Asymptotic error distribution of the Euler method for SDEs with
non-Lipschitz coefficients

2009-09 Karl Friedrich Siburg, Pavel A. Stoimenov
Regression dependence

2009-08 Wilfried Hazod
Continuous convolution hemigroups integrating a sub-multiplicative function

2009-07 Sergio Conti and Ben Schweizer
On optimal metrics preventing mass transfer

2009-06 Simon Castle, Norbert Peyerimhoff, Karl Friedrich Siburg
Billiards in ideal hyperbolic polygons

2009-05 Ludwig Danzer
Quasiperiodic Tilings - Substitution Versus Inflation

2009-04 Flavius Guias
Direct simulation of the infinitesimal dynamics of semi-discrete
approximations for convection-diffusion-reaction problems

2009-03 Franz Kalhoff and Victor Pambuccian
Existential definability of parallelism in terms of betweenness
in Archimedean ordered affine geometry

2009-02 Fulvia Buzzi, Michael Lenzinger and Ben Schweizer
Interface conditions for degenerate two-phase flow equations
in one space dimension

2009-01 Henryk Zahle
Approximation of SDEs by population-size-dependent
Galton-Watson processes

2008-25 Winfried Hazod
Mehler semigroups, Ornstein-Uhlenbeck processes and background
driving Lévy processes on locally compact groups and on hypergroups

2008-24 Karl Friedrich Siburg, Pavel A. Stoimenov
Symmetry of functions and exchangeability of random variables

2008-23 Ina Kirsten Voigt
Voronoi Cells of Discrete Point Sets

2008-22 Michael Lenzinger and Ben Schweizer
Effective reaction rates of a thin catalyst layer

2008-21 Michael Voit
Bessel convolutions on matrix cones: Algebraic properties and
random walks



2008-20

2008-19

2008-18

2008-17

2008-16

2008-15

2008-14

2008-13

2008-12

2008-11

2008-10

2008-09

2008-08

Margit Rosler and Michael Voit
Limit theorems for radial random walks on p X g-matrices as
p tends to infinity

Michael Voit
Central Limit Theorems for Radial Random Walks on
p X q Matrices for p — oo

Michael Voit
Limit theorems for radial random walks on homogeneous spaces
with growing dimensions

Ansgar Steland and Henryk Zahle
Sampling inspection by variables: nonparametric setting

Guy Bouchitté and Ben Schweizer
Homogenization of Maxwell’s equations with split rings

Wilfried Hazod
Multiple selfdecomposable laws on vector spaces and on groups:
The existence of background driving processes

Wilfried Hazod
Mixing of generating functionals and applications to (semi-)stability
of probabilities on groups

Wilfried Hazod
Probability on Matrix-Cone Hypergroups: Limit Theorems and
Structural Properties

Michael Lenzinger and Ben Schweizer
Two-phase flow equations with outflow boundary conditions
in the hydrophobic-hydrophilic case

Karl Friedrich Siburg
Geometric proofs of the two-dimensional Borsuk-Ulam theorem

Peter Becker-Kern, Wilfried Hazod

Mehler hemigroups and embedding of discrete skew convolution

Karl Friedrich Siburg, Pavel A. Stoimenov
Gluing copulas

Karl Friedrich Siburg, Pavel A. Stoimenov
A measure of mutual complete dependence



