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Background

• Stealthy malware: spyware, adware, 
bots, ….

• Subtle command/control system

• Organized malicious activities

• Spamming, hosting phishing sites, DDoS attacks

2



Traffic Aggregation for 

Malware Detection (TAMD)
• Observe flow records at network border

• Assumptions:

• More than one infected host in the 

network

• Malware communication patterns different 

from benign hosts

• Traffic aggregates: network traffic sharing 

common characteristics

• Question: what characteristics can identify 

malware? 3



Aggregate Characteristics
• Common destination

• Spyware “phone-home”, botnet 

controller, bot update server, DDoS 

attack victim

• Similar Payload

• Bot commands

• Similar platform

• Platform-dependent infections

• Challenge: identify malware traffic while 

limiting the number of false alarms4



Destination Aggregates

• Internal hosts contacting the same “busier-
than-usual” external subnets

• Use past traffic as baseline

• Represent internal hosts as vectors

• Dimensions (i.e., D1, D2, ...) correspond to 
external subnets
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Destination Aggregates
(cont’d)

• Dimension Reduction

• Principal Component Analysis (PCA)

• Re-interpret data with new axes that 

captures most of the data variance

• Clustering

• Iteratively select furthest vector to be new 

hub

• Clusters contain hosts contacting the same 

“busier-than-usual” subnets
6
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Assign random point as initial 

hub.

Assign furthest point as new hub. Re-

cluster.

Iterate.
Stop when all points are closer to their 

hub than half of the average hub-hub 

distance.

Destination Aggregates
(cont’d)



Payload Aggregates

• Flows with “similar” payload prefix

• Edit distance as similarity metric

• Number of character insertions, 

deletions, substitutions, to turn one 

string into the other

• Captures syntactic similarities

• “.bot.execute 1 notepad.exe”

“.bot.execute 0 cmd.exe”

“abcdeeeeeenoopttuxx1.. . ”

• However, computationally expensive
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Payload Aggregates (cont’d)

• Locality Sensitive Hashing [Datar-Immorlica-Indyk-Mirrokni’04]

• Near-neighbor search: close points hash to 
same buckets

• Edit Sensitive Parsing [Cormode-Muthukrishnan’02]

• Embed edit distance into L1 distance

• As a result...

• Only compute edit distance for strings whose 
vectors hash to same buckets

• Time roughly proportional to size of data set

9

R q



Platform Aggregates

• Traffic from hosts of similar platform

• TTL (Time-to-Live) field

• Communication with characteristic 
sites

• e.g., Microsoft time server
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Multi-Level Aggregation
• Aggregation Functions:

• ByDestination

• ByPayload

• ByPlatform 

• In combination, refine resulting 
aggregates

• Traffic sharing multiple relevant 
characteristics

• Example: platform-dependent infections 
that contact common sites 
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Aggregation Example
Multiple infected hosts 

contacting sites 

uncommon to benign 

hosts.
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Aggregation Example (cont’d)
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ByDestination

Malware communication 

similar among infected 

hosts.

ByPayload

Multiple infected hosts 

contacting sites 

uncommon to benign 

hosts.
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ByDestination

Platform-dependent 

infection.

ByPayload

ByPlatform

Malware communication 

similar among infected 

hosts.

Aggregation Example (cont’d)
Multiple infected hosts 

contacting sites 

uncommon to benign 

hosts.



Evaluation Data

• Network traces from Carnegie Mellon 
University network border

• Two /16 subnets, over 33,000 hosts

• Argus flow records:

• Captures ~5000 flows/sec

• 9 a.m. to 3 p.m. daily

• Experiments use TCP and UDP traffic only
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Evaluation Data (cont’d)
• Network traces from malware in virtual 

machines

• Bagle, IRCbot, Mybot, SDbot

• Infect 3~8 Windows XP virtual hosts with 
each malware binary

• One hour of traffic from each malware

• Network traces from botnets in honeynets

• Spybot : Four bots, 32-minute trace

• HTTP-bot : Four bots, three-hour trace

• Large botnet : > 340 bots, seven-minute 
trace 16



Evaluation

• For every hour of campus traffic, 

• For every malware,

• Assign malware traffic to randomly selected 
internal hosts of same platform

• Comprise 0.0097% of all internal hosts

• Input to aggregation functions

• Repeat over every hour during three 
weeks in November/December 2007
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Results
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•On average, identified 

2.23 aggregates

•The single aggregate of 

infected hosts is always 

identified

2.23



Performance Statistics
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Function Run Time Total Run Time

[ByPlatform]



Alternative Botnet 

Architectures
• Peer-to-peer (P2P):

• Hard-coded peer list

• Bots report back to designated site 

• Use P2P to transfer URLs for downloading 

binaries 

• Hybrid:  Smaller centralized botnets peer in 

P2P 
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Limitations and Ongoing 

Work• Temporal locality in malware communication

• But sparse communication restricts botnet size and 

responsiveness

• Diversity in hosts’ platforms

• Good results with only ByDestination and ByPayload

• P2P with peer discovery through random 

probing 

• ByPayload or ByPlatform

• Encrypted payload

• Extend “similar” to include encrypted traffic

• Isolated bots 21



Conclusion
• Traffic Aggregation for Malware Detection 

(TAMD): Identifies traffic sharing common 
network characteristics

• Common destination

• Similar payload

• Common platform

• Detects stealthy platform-dependent malware 
contacting common sites

• Successful even when number of simulated 
infected hosts comprise 0.0097% of internal 
hosts  
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