
Dynamic Binary
Instrumentation-based

Framework for Malware Defense

Najwa Aaraj†, Anand Raghunathan‡, and Niraj K. Jha†

† Department of Electrical Engineering, Princeton University,

Princeton, NJ 08544, USA

‡ NEC Labs America, Princeton, NJ 08540, USA

Outline

 Motivation

 Proposed framework

 Framework details

 Testing environment

 Real environment

 Experimental evaluation

 Related work

Princeton University DIMVA 08 presentation

Motivation

 Malware defense is a primary concern in
information security
 Steady increase in the prevalence and diversity

of malware

 Escalating financial, time, and productivity losses

 Minor enhancements to current approaches are
unlikely to succeed
 Increasing sophistication in techniques used by virus

writers

 Emergence of zero-day and zero-hour attacks

 Recent advances in virtualization allows the
implementation of isolated environments

Princeton University DIMVA 08 presentation

Motivation (Contd.)

 Advances in analysis techniques such as dynamic
binary instrumentation (DBI)
 DBI injects instrumentation code that executes as part of

a normal instruction stream

 Instrumentation code allows the observation of an
application’s behavior

 “Rather than considering what may occur, DBI has the
benefit of operating on what actually does occur”

Princeton University DIMVA 08 presentation

Ability to test untrusted code in an isolated environment
without corrupting a “live” environment, under DBI

Outline

 Motivation

 Proposed framework

 Framework details
 Testing environment

 Real environment

 Experimental evaluation

 Related work

Princeton University DIMVA 08 presentation

Proposed Framework

 Execute an untrusted program in a Testing environment

 Use DBI to collect specific information

 Build execution traces in the form of a hybrid model:
dynamic control and data flow in terms of regular
expressions, Rk’s, and data invariants

 Rk’s alphabet: ∑ = {BB1, …, BBn}, where BBj captures
data relevant to detecting malicious behavior

 Subject RU, a recursive union of generated Rk’s, to post-
execution security policies

 Based on policy application results, data invariants, and
program properties, derive monitoring model M

 Move M into a Real (real-user) environment, and use it
as a monitoring model, along with a continuous learning
process

Princeton University DIMVA 08 presentation

Princeton University DIMVA 08 presentation

Outline

 Motivation

 Proposed framework

 Framework details

 Testing environment

 Real environment

 Experimental evaluation

 Related work

Princeton University DIMVA 08 presentation

 Execution trace generation
 Step built on top of DBI tool Pin

 Control and data information generated to check
against security policies

 Regular expression generation
 Each execution trace transformed into regular

expression, Rk

 Rk’s alphabet: ∑ = {BB1, …, BBn}

 BBj is a one-to-one mapping to a basic block in the
execution trace

 BBj contains data components, di’s, if instruction Ii in

basic block executes action Ai

 di’s can reveal malicious behavior when they assume
specific values

Princeton University DIMVA 08 presentation

Execution Traces and Regular Expressions

 Completeness of testing procedure depends on
number of exposed paths

 Each application tested under multiple automatically-
and manually-generated user inputs

 Recursive union of Rk’s performed in order to
generate RU

Princeton University DIMVA 08 presentation

Execution Trace Union

 Data invariants
 Refer to properties assumed by the di’s in each BBj

 Invariant categories:

 Acceptable or unacceptable constant values

 Acceptable or unacceptable range limits

 Acceptable or unacceptable value sets

 Acceptable or unacceptable functional invariants

 Data fields, di’s, over which invariants are defined:

 Arguments of system calls that involve the modification
of a system file or directory

 Arguments of the “exec” function or any variant thereof

 Arguments of symbolic and hard links

 Size and address range of memory access

Princeton University DIMVA 08 presentation

Generation of Data Invariants

 Updating data invariants:
 Single or multiple invariant types for all di’s in each BBj

 Observe value of all di’s in each execution trace

 Start with strictest invariant form (invariant of constant type)

 Progressively relax stored invariants for each di

Princeton University DIMVA 08 presentation

Generation of Data Invariants
(Contd.)

 Security policy, Pi:
 Pi specifies fundamental traits of malicious behaviors

 Each Pi is a translation of a high-level language
specification of a series of events

 If events are executed in a specific sequence, they
outline a security violation

 Malicious behaviors detected by performing RU ∑(Pi)

 Example of Pi

A malicious modification of an executable, detected post-
execution, implies a security violation

Princeton University DIMVA 08 presentation

Security Policies and Malicious
Behavior Detection

 Malicious modifications include:

1. File appending, pre-pending, overwriting with virus content

2. Overwriting executable cavity blocks (e.g., CC-00-99 blocks)

3. Code regeneration and integration of virus within executable

4. Executable modifications to incorrect header sizes

5. Executable modifications to multiple headers

6. Executable modifications to headers incompatible with their
respective sections

7. Modifications of control transfer to point to malicious code

8. Modifications of function entry points to point to malicious
code (API hooking)

9. Executable entry point obfuscations

10. Modifications of Thread Local Storage (TLS) table

11. Modifications to /proc/pid/exe

Princeton University DIMVA 08 presentation

Security Policies and Malicious
Behavior Detection (Contd.)

 Generation of behavioral model, M
 M is composed of a reduced set of BBi blocks

 M embeds permissible or non-permissible real-time
behavior

 Program execution run-time monitored against M

 Blocks included in M

 Anomaly-initiating (AI) blocks

 Anomaly-dependent (AD) blocks

 Anomaly-concluding (AC) blocks

 Conditional blocks

 Data invariants and flags are added to each block in M
to instruct an inline monitor what to do at run-time

Princeton University DIMVA 08 presentation

Behavioral Model Generation

Rk

Example: Deriving M

BB1

BBi

BBk

BBk’

BB

BB ’

BBl

b1

b2

b3

Matching blocks

Conditional block

Matching blocks

Matching blocks

BB1

BBi

BB

BBl

AI block
1. Block address
2. Data invariants

Conditional block
1. Block address
2. Condition exit point
3. Successor blocks

AD block
1. Block address
2. Data invariants

AC block
1. Block address
2. Data invariants

Pi M

Princeton University DIMVA 08 presentation

Outline

 Motivation

 Proposed framework

 Framework details

 Testing environment

 Real environment

 Experimental evaluation

 Related work

Princeton University DIMVA 08 presentation

 Run-time monitoring and on-line prevention of
malicious code

 Composed of two parts:
 Check instrumented basic blocks against blocks in

behavioral model M

 Check observed data flow against invariants and flags
embedded in M’s blocks

 Apply conservative security policies on executed paths
not observed in the Testing environment

Framework Details:

Real Environment

Princeton University DIMVA 08 presentation

Outline

 Motivation

 Proposed framework

 Framework details

 Testing environment

 Real environment

 Evaluation results

 Conclusion

Princeton University DIMVA 08 presentation

 Experimental set-up
 Prototype on both Linux and Windows-XP operating

systems

 Linux operating system:

 Testing and Real environments implemented as two Xen
virtual domains

 Windows-XP operating system:

 Testing and Real environments implemented as a custom-
installed VMWare virtual Windows-XP operating system image

 Experiments with 72 real-world Linux viruses and 45
Windows viruses

 Also obfuscated versions of available viruses

Evaluation Results

Princeton University DIMVA 08 presentation

 Virus detection in the Testing environment:
 Original and obfuscated virus detection rate = 98.59%

(Linux), 95.56% (Windows XP)

 Best commercial antivirus tool:

 Detected original viruses = 97.22% (Linux), 95.23%
(Windows-XP)

 Detected obfuscated viruses = 50.00% (Linux), 57.14%
(Windows-XP)

 False negatives = 1.41% (Linux), 4.44% (Windows XP)

 Malicious effects not specified in security policies

 False positives = 0% (benign programs with behavior

resembling that of computer viruses)

Princeton University DIMVA 08 presentation

Evaluation Results (Contd.)

 Virus detection in the Real environment:
 Monitoring against behavioral model halts malicious

execution in the Real environment

 Restrictive policies applied 6.8% of the time (i.e., new
paths exercised 6.8% of the time)

 Execution time effects:
 Execution time increases by 26.81X (Linux) and 30.35X

(Windows-XP) in the Testing environment

 Does not impose severe limitations on the approach

 Offline malicious code detection, transparently to the user

 Execution time increases by 1.20X (Linux) and 1.31X
(Windows-XP) in the Real environment

Princeton University DIMVA 08 presentation

Evaluation Results (Contd.)

Outline

 Motivation

 Proposed framework

 Framework details

 Testing environment

 Real environment

 Evaluation results

 Conclusion

Princeton University DIMVA 08 presentation

 Current techniques fall short of meeting dramatically
increasing challenges of malware threats

 New defense mechanism against malware introduced

 Described system successfully detected a high
percentage of various malicious behaviors

 Acceptable penalty in the real user environment

 Approach depends on the accuracy of the security
policies used

Conclusion

Princeton University DIMVA 08 presentation

Thank you!

