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ABSTRACT 
 

Quantitative structure-activity relationship (QSAR) modeling pertains to the construction of 
predictive models of biological activities as a function of structural and molecular information 
of a compound library. The concept of QSAR has typically been used for drug discovery and 
development and has gained wide applicability for correlating molecular information with not 
only biological activities but also with other physicochemical properties, which has therefore 
been termed quantitative structure-property relationship (QSPR). Typical molecular parame-
ters that are used to account for electronic properties, hydrophobicity, steric effects, and to-
pology can be determined empirically through experimentation or theoretically via computa-
tional chemistry. A given compilation of data sets is then subjected to data pre-processing and 
data modeling through the use of statistical and/or machine learning techniques. This review 
aims to cover the essential concepts and techniques that are relevant for performing 
QSAR/QSPR studies through the use of selected examples from our previous work.  
 
Keywords: quantitative structure-activity relationship, QSAR, quantitative structure-property 
relationship, multivariate analysis 
 
 
 

INTRODUCTION 
 

Drug discovery has often evolved from 
serendipitous and fortuitous findings, for 
example, the discovery of penicillin by 
Alexander Fleming in 1928 triggered the 
Antibiotic Revolution which contributed 
tremendously to humankind’s quest of lon-
gevity. If not by chance, such discoveries 
may be achieved through random system-
atic experimentation or chemical intuition 
where combinatorial libraries are synthe-
sized and screened for potent activities. 
Such approach is extremely time consum-
ing, labor intensive, and impractical in 
terms of costs. A more lucrative solution to 

this problem is to rationally design drugs 
using computer-aided tools via molecular 
modeling, simulation, and virtual screening 
for the purpose of identifying promising 
candidates prior to synthesis. 

Quantitative structure-activity relation-
ship (QSAR) and quantitative structure-
property relationship (QSPR) makes it pos-
sible to predict the activities/properties of a 
given compound as a function of its mo-
lecular substituent. Essentially, new and 
untested compounds possessing similar mo-
lecular features as compounds used in the 
development of QSAR/QSPR models are 
likewise assumed to also possess similar 
activities/properties. Several successful 
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QSAR/QSPR models have been published 
over the years which encompass a wide 
span of biological and physicochemical 
properties. QSAR/QSPR has great potential 
for modeling and designing novel com-
pounds with robust properties by being able 
to forecast physicochemical properties as a 
function of structural features. The popular-
ity of QSAR/QSPR has seen exponential 
growth as illustrated by a literature search 
in Scopus for research articles with QSAR, 
QSPR, structure-activity relationship, and 
structure-property relationship as keywords 
(Figure 1). 

This review covers the essential con-
cepts and history of QSAR/QSPR as well as 
the components involved in the develop-
ment of QSAR/QSPR models. Several ex-
amples from our previous research and 
relevant equations are presented. 

 

BRIEF HISTORY OF QSAR 
 QSAR has its origins in the field of 

toxicology whereby Cros in 1863 proposed 
a relationship which existed between the 
toxicity of primary aliphatic alcohols with 
their water solubility (Cros, 1863). Like-

wise, Crum-Brown and Fraser (Crum-
Brown and Fraser, 1868-1869) postulated 
the linkage between chemical constitution 
and physiological action in their pioneering 
investigation in 1868 as follows:  
 
 “performing upon a substance a 

chemical operation which shall in-
troduce a known change into its 
constitution, and then examining 
and comparing the physiological 
action of the substance before and 
after the change” 

 
 Shortly after, Richet (1893), Meyer 

(1899), and Overton (1901) separately dis-
covered a linear correlation between lipo-
philicity (e. g. oil-water partition coeffi-
cients) and biological effects (e. g. narcotic 
effects and toxicity). By 1935, Hammett 
(1935, 1937) introduced a method to ac-
count for substituent effects on reaction 
mechanisms through the use of an equation 
which took two parameters into considera-
tion namely the (i) substituent constant and 
the (ii) reaction constant. 
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Figure 1: Number of research articles in the field of QSAR/QSPR. 
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 Complementing the Hammett’s model, 
Taft proposed in 1956 an approach for 
separating polar, steric, and resonance ef-
fects of substituents in aliphatic compounds 
(Taft, 1956). The contributions from 
Hammett and Taft set forth the mechanistic 
basis for QSAR/QSPR development by 
Hansch and Fujita (1964) in their seminal 
development of the linear Hansch equation 
which integrated hydrophobic parameters 
with Hammett’s electronic constants. An 
insightful account on the development of 
QSAR/QSPR can be found in the excellent 
book by Hansch and Leo (1995). 
 

DEVELOPMENT OF QSAR MODEL 
 The construction of QSAR/QSPR 

model typically comprises of two main 
steps: (i) description of molecular structure 
and (ii) multivariate analysis for correlating 
molecular descriptors with observed activi-
ties/properties. An essential preliminary 
step in model development is data under-
standing. Intermediate steps that are also 
crucial for successful development of such 
QSAR/QSPR models include data pre- 
 

processing and statistical evaluation. A 
schematic representation of the QSAR 
process is illustrated in Figure 2. 
 
Data understanding 

 Data understanding is a crucial step that 
one should not overlook as it helps the re-
searcher to become familiar with the nature 
of the data prior to actual QSAR/QSPR 
model construction thereby reducing un-
necessary errors or labors that would oth-
erwise occur. An added benefit is that such 
preliminary observations can often lead to 
the identification of interesting associations 
or relationships to study. However, before 
exploring the data it is essential that thor-
ough literature search on relevant back-
ground information pertaining to the bio-
logical or chemical system of interest is 
performed. 

 This can be achieved through what is 
known as exploratory data analysis which 
often starts with simple observation of the 
data matrix particularly the variables (also 
known as attributes or fields), its corre-
sponding data types, and the data samples 
(also called records).  
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Figure 2: Schematic overview of the QSAR process. 
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As applied to the QSAR discipline, 
variables represent molecular descriptors; 
data samples represent each unique com-
pound; data types refer to the characteristics 
or the kinds of data the particular value is 
represented as, which essentially is qualita-
tive or quantitative in nature. Qualitative 
data types are interpreted as categorical la-
bels while quantitative data types are 
amendable to arithmetic operations. A more 
in-depth look into the nature of the data can 
be performed via a simple scatter plot of the 
variables. 
 
Molecular descriptors 

 Molecular descriptors can be defined as 
the essential information of a molecule in 
terms of its physicochemical properties 
such as constitutional, electronic, geometri-
cal, hydrophobic, lipophilicity, solubility, 
steric, quantum chemical, and topological 
descriptors. A more in-depth explanation of 
molecular descriptors can be found in the 
literature (Helguera et al., 2008; Karelson et 
al., 1996; Katritzky and Gordeeva, 1993; 
Labute, 2000; Randić, 1990; Randić and 
Razinger, 1997; Xue and Bajorath, 2000) 
and a more extensive treatment in the ency-
clopedic Handbook of Molecular Descrip-
tors (Todeschini and Consonni, 2000). 
From a practical viewpoint, molecular de-
scriptors are chemical information that is 
encoded within the molecular structures for 

which numerous sets of algorithms are 
available for such transformation. 

 Such descriptors could be calculated us-
ing general quantum chemical software 
such as Gaussian (Frisch et al., 2004), Spar-
tan (Wavefunction, 2004), GAMESS 
(Gordon and Schmidt, 2005; Schmidt et al., 
1993), NWChem (Kendall et al., 2000), Ja-
guar (Schrödinger, 2008), MOLCAS 
(Karlström et al., 2003), Q-Chem (Shao et 
al., 2006), Dalton (Angeli et al., 2005), and 
MOPAC (Stewart, 2009) or specialized 
software such as DRAGON (Talete srl, 
2007; Tetko et al., 2005), CODESSA 
(Katritzky et al., 2005), ADRIANA.Code 
(Molecular Networks GmbH Computer-
chemie, 2008), and RECON (Sukumar and 
Breneman, 2002). Once the molecular de-
scriptors have been calculated it will serve 
as independent variables for further con-
struction of the QSAR model. 
 
Modeled activities/properties 

 The activities and properties that can be 
modeled by QSAR/QSPR are dependent 
variables of the QSAR model. These de-
pendent variables are assumed to be influ-
enced by the independent variables which 
are the molecular descriptors. A variety of 
biological and chemical properties have 
successfully been modeled using the QSAR 
approach, such parameters are summarized 
in Table 1. 
 

 
 
Table 1: Summary of biological and chemical properties explored in QSAR studies. 

Biological properties Chemical properties 

Bioconcentration 
Biodegradation 
Carcinogenicity 
Drug metabolism and clearance 
Inhibitor constant 
Mutagenicity 
Permeability 

Blood brain barrier 
Skin 

Pharmacokinetics 
Receptor binding 

Boiling point 
Chromatographic retention time 
Dielectric constant 
Diffusion coefficient 
Dissociation constant 
Melting point 
Reactivity 
Solubility 
Stability 
Thermodynamic properties 
Viscosity 
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Data pre-processing 
 Data pre-processing can be considered 

to be one of the most important phase of 
data mining as it helps to ensure the integ-
rity of the data set before proceeding further 
with data mining analysis. Essentially, the 
quality of a data mining analysis is a func-
tion of the quality of the data to be ana-
lyzed. This is often summarized by the 
“garbage in–garbage out” rule. Therefore, 
to obtain reliable QSAR models it is impor-
tant to handle the data with great care. 
 
Data cleaning 

 The preliminary steps in data pre-
processing typically requires data cleaning 
as raw data often contain anomalies, errors, 
or inconsistencies such as missing data, in-
complete data, and invalid character values 
which may cause trouble for data mining 
software if left untreated. This matter is 
made complicated when informations are 
consolidated from various sources as such 
data would need to be prepared to conform 
to designated criteria and redundant infor-
mation would also need to be eliminated. 
 
Data transformation 

 There exists a great deal of variability in 
the range and distribution of each variable 
in the data set. However, this may pose a 
problem for data mining algorithms such as 
neural network which involves distance 
measurements in the learning step. Such 
situation is handled by applying statistical 
techniques such as min-max normalization 
or z-score standardization. In min-max 
normalization, the minimum and maximum 
value of each variable is adjusted to a uni-
form range between 0 and 1 according to 
the following equation: 

minmax

min

xx
xx

x i
normalized −

−
=  

where xnormalized represents the min-max 
normalized value, xi represents the value of 
interest, xmin represents the minimum value, 
and xmax represents the maximum value.  

 In z-score standardization, essentially 
the variable of interest is subjected to statis-
tical operation to achieve mean center and 
unit variance according to the following 
formula: 
 

( )∑
=

−

−
= N

i
jij

jijstnd
ij

Nxx

xx
x
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2 /
 

 
where stnd

ijx  represents the standardized 
value, xii represents the value of interest, jx  
represents the mean, and N  represents the 
sample size of the data set. The equation is 
essentially the difference of the value of 
interest and its mean followed by a division 
operation with the numerator, which is the 
variance. Practically, both normalization 
and standardization requires statistical op-
eration to be applied to each individual 
value using the global parameter of each 
variable such as its minimum value, mean, 
or variance. 

 In situations where the data does not 
have a Gaussian (normal) distribution, sim-
ple mathematical functions can be applied 
to achieve normality or symmetry in the 
data distribution. A commonly used ap-
proach is to apply logarithmic transforma-
tion on the variable of interest in order to 
achieve distribution approaching normality. 
This is typically performed on dependent 
variables such as the modeled biologi-
cal/chemical properties of interest whereby 
IC50 may be transformed to logIC50 or –
logIC50. Practically, such mathematical op-
eration is applied to each individual value 
of a given variable of interest. 
 
Feature or variable selection 

 Typical data sets often contain redun-
dant or noisy variables which make it more 
difficult for learning algorithms to discern 
meaningful patterns from the input data set 
of interest. For example, a data set may 
contain 1,500 variables but only 15 of those 
may contain unique and useful information 
while the rest may contain redundant in-
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formation to the aforementioned variable 
set. Therefore, such multicollinearity of the 
variables in the data set would need to be 
treated before proceeding with data mining 
analysis in order to reduce unnecessary 
computational resources that are required in 
model construction. 

 Similarly, feature fusion is another in-
teresting approach for reducing the dimen-
sionality of the variable matrix while keep-
ing the core information intact. This is per-
formed by merging the information of two 
or more variables through mathematical 
operations. A more in-depth treatment of 
such issue is addressed in the literature 
(Bosse et al., 2007; Goodman et al., 1997; 
all and McMullen, 2004; Torra, 2003). 
 
Multivariate analysis 

 Multivariate analysis is essentially an 
approach to quantitatively discern relation-
ships between the independent variables 
(e. g. molecular descriptors) and the de-
pendent variables (e. g. biological/chemical 
properties of interest). The classical ap-
proach is a linear regression technique typi-
cally involving the establishment of a linear 
mathematical equation: 
 

nn xaxaay +++= L110  
 

where y  is the dependent variable (e. g. 
biological/chemical property of interest), a0 
is the y-intercept or baseline value for the 
compound data set, a1 …an are the regres-
sion coefficients calculated from a set of 
training data in a supervised manner where 
the independent and dependent variables 
are known. The equation essentially relates 
the variation of biological/chemical proper-
ties as a function of the variations of the 
molecular substituents present in the mo-
lecular data set. Such linear approach works 
well for biological/chemical systems in 
which the phenomenon of interest is of lin-
ear nature. However, not all properties are 
clearly straightforward and may be non-
linear in nature, therefore calls upon the use 
of non-linear approaches in order to prop-

erly model such properties. Non-linear 
techniques such as artificial neural network 
are a quite popular technique which pos-
sesses uncanny capability to model proper-
ties of interest. This review article will 
briefly cover the fundamentals of artificial 
neural network as an example of a non-
linear learning algorithm. Other popular 
learning methods frequently used in the 
field of QSAR such as partial least squares 
regression (Geladi and Kowalski, 1986; 
Höskuldsson, 1988; Wold et al., 2001) or 
support vector machine (Chen et al., 2004; 
Cristianini and Shawe-Taylor, 2000; Wang, 
2005) can be found in excellent resources 
elsewhere. 
 
Artificial neural network 

Artificial neural network (ANN) is a 
pattern recognition technique that closely 
resembles the inner workings of the brain 
which is essentially composed of intercon-
nected neurons. The neurons receive its 
signals via synapses at the axon-dendron 
junction in which the axon of one neuron 
relays neurotransmitters to the dendron of 
another neuron. Such phenomenon is emu-
lated by ANN’s architectural design where 
neuronal units are interconnected to one 
another. A commonly used architecture as 
shown in Figure 3 is a three-layer feed-
forward network which is comprised of (i) 
input layer, (ii) hidden layer, and (iii) out-
put layer. The input layer essentially passes 
information of the independent variables 
into the ANN system; therefore the number 
of neuronal units present in the input layer 
is equal to the number of independent vari-
ables in the data set. The connections 
among neurons are assigned numerical val-
ues known as weights. The information 
from the input layer is relayed to the hidden 
layer for pattern recognition processing and 
predictions will then be passed from the 
hidden layer to the output layer. In a back-
propagation algorithm, the error is calcu-
lated, which is derived from the difference 
between the predicted value and the actual 
value, and if it is acceptable then the learn-
ing process will stop otherwise signals will 
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be sent backwards to the hidden layer for 
further processing and weight readjust-
ments. This is performed iteratively until a 
solution is reached and learning is termi-
nated. 
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Figure 3: Schematic representation of arti-
ficial neural network. 
 
Parameter optimization 

 In deriving a robust QSAR model, it is 
essential to optimize the parameters of the 
learning technique of interest. Such ap-
proaches could be performed via a system-
atic and empirical grid search or via sto-
chastic approaches using techniques such as 
Monte Carlo or genetic algorithm. A typical 
systematic grid search is performed from a 
predetermined minimum to maximum value 
which essentially is dependent on the pa-
rameter to be optimized. The step size be-
tween such parameter interval can be ini-
tially large in order to minimize computa-
tional resources. From this preliminary cal-
culation, the optimal regions are then iden-
tified and a more refined parameter search 
can then be performed using a more strin-
gent approach by narrowing the step size. 
 
Statistical evaluation 

 In construction of a QSAR model, it is 
essential to validate the model as well as 
apply statistical parameters to evaluate its 
predictive performance.  
 

Model validation 
 The predictive performance of a data set 

can be assessed by dividing it into a train-
ing set and a testing set. The training set is 
used for constructing a predictive model 
whose predictive performance is evaluated 
on the testing set. Internal performance is 
typically assessed from the predictive per-
formance of the training set while external 
performance can be assessed from the pre-
dictive performance of the independent test-
ing set that is unknown to the training 
model. A commonly used approach for in-
ternal validation is known as the N-fold 
cross-validation where a data set is parti-
tioned into N number of folds. For example, 
in a 10-fold cross-validation 1 fold is left 
out as the testing set while the remaining 9 
folds are used as the training set for model 
construction and then validated with the 
fold that was left out. In situations where 
the number of samples in the data set is lim-
ited, leave-one-out cross-validation is the 
preferred approach. Analogously, the num-
ber of folds is equal to the number of sam-
ples present in the data set, therefore one 
sample is left out as the testing set while the 
rest is used as the training set for model 
construction. Finally, validation is per-
formed on the data sample that was left out 
initially. This is iteratively performed until 
all data samples are given the chance to be 
left out as the testing set. 
 
Statistical parameters 

 Pearson’s correlation coefficient (r) is a 
commonly used parameter to describe the 
degree of association between two variables 
of interest. Calculated r value of two vari-
ables of interest can take a value ranging 
from –1 to +1 where the former indicates an 
indirect (negative) correlation while the lat-
ter suggests a direct (positive) correlation. 
For describing the relative predictive per-
formance of a QSAR model, r is used to 
measure the correlation between experi-
mental ( x ) and predicted ( y ) values of in-
terest in order to observe the variability that 
exists between the variables. This is calcu-
lated according to the following equation: 
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where rxy is the correlation coefficient be-
tween variables x and y, n is the sample 
size, x is the individual value of variable x, 
y is the individual value of variable y, xy is 
the product of variables x and y, x2 is the 
squared value of variable x, and y2 is the 
squared value of variable y. 

 Root mean squared error (RMS) is an-
other commonly used parameter for assess-
ing the relative error of the QSAR model. 
RMS is computed according to the follow-
ing formula: 
 

( )

n

yx
RMS

n

i
∑
=

−
= 1

2

 

 
where RMS  is the root mean squared error, 
x is the experimental value of the activ-
ity/property of interest, y is the predicted 
value of the activity/property of interest, 
and n is the sample size of the data set. 
 
F-test 

The statistical significance of QSAR 
models are typically assessed by perform-
ing ANOVA and observing the calculated F 
values, which is essentially the ratio be-
tween the explained and the unexplained 
variance. Comparison of the performance 
of multiple QSAR models can be per-
formed when all models compared have the 
same number of degrees of freedom mean-
ing that the same sets of compounds and 
descriptors are used. Each model yields a 
calculated F value and the best performing 
model is identified as those bearing the 
highest value. 

Degrees of freedom take into considera-
tion the number of compounds and the 
number of independent variables that are 
present in the data set. This can be calcu-
lated using the equation n – k – l where n 
represents the number of compounds and k 
represents the number of descriptors. The 

higher the value becomes the more reliable 
the QSAR model is. 
 
Outliers 

Outlying compounds are those mole-
cules which have unexpected biological ac-
tivity and do not fit in a QSAR model ow-
ing to the fact that such compounds may be 
acting in a different mechanism or interact 
with its respective target molecules in dif-
ferent modes (Verma and Hansch, 2005). 
Similarly, conformational flexibility of tar-
get protein binding site (Kim, 2007a) and 
unusual binding mode (Kim, 2007b) are 
attributed to be possible source of outliers. 
Mathematically speaking, an outlier is es-
sentially a data point which has high stan-
dardized residual in absolute value when 
compared to the other samples of the data 
set. Methods for identification and treat-
ment of outlying compounds are therefore 
crucial in development of reliable QSAR 
models (Furusjö et al., 2006). A commonly 
used approach for detecting outliers is per-
formed by calculating the standardized re-
siduals of all compounds in the data set of a 
QSAR model. 
 
Predictive QSAR Model 

In evaluating the performance of the 
constructed QSAR model, a commonly 
used approach in the field of QSAR follows 
the recommendation of Tropsha (Tropsha et 
al., 2003) that a predictive QSAR model 
should possess the following statistical 
characteristics: 
 

5.02 >q  
 

6.02 >R  
 

1.0
)(
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RR  or 1.0
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15.185.0 ≤≤ k  or 15.1'85.0 ≤≤ k  

 
where q2 represents cross-validated ex-
plained variance, R2 represents coefficient 
of determination (where 2

0R  and 2
0'R  repre-
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sents predicted versus observed activities 
and observed versus predicted activities, 
respectively), slopes k and k’ of regression 
lines passing through the origin. 

 It should be noted that q2 is calculated 
according to the following equation: 
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where yi is the measured value, iy)  is the 
predicted value, and y  is the averaged 
value of the entire data set, and summation 
applies to all compounds in the training set. 
Similarly, an external q2 is calculated using 
compounds that are previously not used in 
QSAR model development. This is calcu-
lated according to the following equation: 
 

∑

∑

=

=

−

−
−= training

i
i

training

i
ii

ext

yy

yy
q

1

2

1

2

2

)(

)(
1

)

 

 

CASE STUDY 
In this review, we present examples 

from our previous QSAR/QSPR investiga-
tions on various data sets of biological and 
chemical systems: (i) recognition of DNA 
splice junction sites (Nantasenamat et al., 
2005a), (ii) prediction of antioxidant activi-
ties of phenolics antioxidants (Nantase-
namat et al., 2008), (iii) prediction of bind-
ing performance of molecularly imprinted 
polymers (Nantasenamat et al., 2007a; Nan-
tasenamat et al., 2005b; Nantasenamat et 
al., 2006), (iv) prediction of spectral proper-
ties of green fluorescent protein variants 
(Nantasenamat et al., 2007b), (v) prediction 
of anti-anthrax activity of furin inhibitors 
(Worachartcheewan et al., 2009), (vi) pre-
diction of lactonolysis activity of N-acyl-
homoserine lactones. Among these, we se-
lect some representative data sets as exam-
ples of QSAR/QSPR in action. 

Recognition of DNA splice junction sites 
The deoxyribonucleic acid (DNA) of 

humans is made up of over three billion nu-
cleotides which contains an estimated num-
ber of 30,000 genes that can express over 
150,000 different proteins. The amazing 
fact that a limited number of genes can pro-
duce an overwhelming number of different 
gene products is made possible by a phe-
nomenon known as alternative splicing 
where the stretch of DNA strands are 
cleaved at specific regions. Such regions in 
the DNA are known as exons (coding re-
gion) and introns (non-coding region) 
which are not readily discernible by simple 
observation of the DNA sequences. Our 
previous investigation has made it possible 
to recognize boundaries cleavage regions of 
the DNA called splice junction sites which 
are boundaries where splicing occurs.  

 Splice sites are essentially comprised of 
2 types: (i) AG dinucleotide that borders the 
transition from intron to exon (intron/exon 
border) and (ii) GT dinucleotide that bor-
ders the transitions from exon to intron 
(exon/intron border). Owing to the fact that 
a gene is capable of expressing several dis-
tinct mRNAs encoding for different pro-
teins, it is therefore important to be able to 
predict the location of DNA splice sites as 
it has great potential for the identification of 
probable gene products in unknown DNA 
sequences. 

 In our efforts to develop a computa-
tional approach for recognition of DNA 
splice junction sites, the DNA sequences 
were transformed to sequences of binary 
numbers by converting each nucleotide to a 
four digit binary code where nucleotides 
adenine, cytosine, guanine, and thymine are 
represented as 0001, 0010, 0100, and 1000, 
respectively. Each entry of the data set de-
scribes information surrounding the splice 
junction site, particularly 15 nucleotides 
upstream and downstream resulting in a to-
tal of 32 nucleotides. This information 
serves as independent variables while the 
dependent variable is the class of splice 
junction site which was labeled as one of 
three possible types (going from 5’ to 3’ or 
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left to right of the splice site): (i) Intron-
AG-Exon, (ii) Exon-GT-Intron, and (iii) 
unknown-AG or GT-unknown. The data set 
is made of a total of 1,424 human DNA se-
quences that is divided into two portions: (i) 
a training set of 1,000 sequences and (ii) a 
testing set of 424 sequences. Various pre-
dictive models were developed using three 
different types of learning algorithm com-
prising of (i) self-organizing map, (ii) back-
propagation neural network, and (iii) sup-
port vector machine. 
 
Predicting the antioxidant activity of phe-
nolic antioxidants 

Reactive oxygen species (ROS) are 
produced during normal aerobic metabo-
lism. Antioxidants are biomolecules which 
scavenge and reduce the deleterious effects 
of these free radicals. Under normal physio-
logical conditions, equilibrium exists be-
tween the production and elimination of 
free radicals. Such equilibrium may be per-
turbed by environmental factors to trigger a 
condition known as oxidative stress, which 
may result in oxidative damage to various 
biomolecules such as DNA, RNA, proteins, 
and membrane lipids. Antioxidant enzymes 
and compounds that are present inherently 
in living organisms as well as those ac-
quired from nutrition play crucial role in 
combating the deleterious effects of ROS. 
Therefore, the ability to predict the antioxi-
dant activity, in terms of the bond dissocia-
tion enthalpy, offers great potential for de-
signing more robust antioxidant com-
pounds.  

This was addressed in our previous in-
vestigation on the structure-activity rela-
tionship of a library of phenolic antioxi-
dants. Multivariate analysis of the QSAR 
model was performed by support vector 
machine using molecular descriptors de-
rived from quantum chemical calculations 
as independent variables to predict the anti-
oxidant activity, which is the dependent 
variable. The aim of the study was to de-
velop a rapid approach to assess the anti-
oxidant activity of the phenolic antioxidants 
using readily available quantum chemical 

descriptors. Such descriptors were calcu-
lated at various theoretical levels in order to 
select the level which gave good perform-
ance while at the same time consume 
minimal computational resources. The theo-
retical levels consisting of the semi-
empirical Austin Model 1 (AM1), Hartree-
Fock with 3-21g(d) basis set, Becke’s three 
parameter Lee-Yang-Parr (B3LYP) with 3-
21g(d) basis set, and B3LYP with 6-31g(d) 
basis set were tested with multiple linear 
regression. Results indicated that AM1 and 
B3LYP/3-21g(d) were the best performing 
levels as observed from correlation coeffi-
cient of 0.897 and 0.917, respectively, and 
root mean squared error of 1.974 and 1.777, 
respectively. Such results outperformed 
those of HF/3-21g(d) and B3LYP/6-31g(d) 
which had lower correlation coefficient 
than the previous two at 0.761 and 0.730 
respectively, while having higher root mean 
squared error at 4.624 and 4.773, respec-
tively.  

Refinement of the predictive model was 
performed using support vector machine, 
which is a more robust learning classifier, 
to yield significant improvements with cor-
relation coefficients of 0.968 and 0.966, 
respectively, for models using descriptors 
derived from B3LYP/3-21g(d) and AM1 
calculations. Likewise, the root mean 
squared error showed substantial decline to 
1.122 and 1.247, respectively, for 
B3LYP/3-21g(d) and AM1 descriptors. 
 
Predicting the imprinting factor of 
molecularly imprinted polymers 

Molecular imprinting is a technology 
which enables the production of macromo-
lecular matrices which can bind to template 
molecules of interest and function as artifi-
cial receptors, antibodies, and enzymes. 
These molecularly imprinted polymers 
(MIPs) are produced by polymerization of 
cross-linking monomers with the self-
assembled template-monomer adducts. The 
template molecules are then extracted from 
the polymers to reveal complementary 
binding cavities that are specific to the 
original template molecule.  
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We have developed an approach to cal-
culate the interaction strength of template 
molecules with its complementary func-
tional monomers. This methodology essen-
tially correlates the molecular properties of 
template-monomer adducts with its respec-
tive interaction strength in a quantitative 
manner via multivariate analysis. The mo-
lecular properties were derived from quan-
tum chemical calculations to serve as quan-
titative description of the template mole-
cules and functional monomers. Artificial 
neural network implementing the back-
propagation algorithm was used as the mul-
tivariate analysis method. 

The data sets used was comprised of 
two types of polymer: (i) irregularly-sized 
particles that was prepared by traditional 
bulk polymerization and (ii) uniformly-
sized particles that was prepared by multi-
step swelling or precipitation polymeriza-
tion. The former yielded rather poor predic-
tivity with correlation coefficient of 0.382 
while the latter gave more robust results 
with correlation coefficient of 0.946. Rea-
sons for such disparity in the predictive per-
formance was attributed to the fact that the 
irregularly-sized MIPs had rather heteroge-
neous properties in terms of the (i) number 
of binding sites, (ii) distribution of the bind-
ing sites, (iii) size, and (iv) shape.  

In the molecular imprinting literature, 
uniformly-sized MIPs has gained wide rec-
ognition for its larger surface area, mono-
dispersity, and colloidal stability. Such fact 
was in line with the predictive performance 
of the devised QSAR model where uni-
formly-sized MIPs gave high predictive 
performance than the heterogeneous irregu-
larly-sized MIPs. 

 
Predicting GFP spectral properties 

A practical example of QSAR/QSPR in 
action is modeling the spectral properties of 
Green Fluorescent Protein (GFP) from the 
Pacific Northwest jellyfish Aequorea victo-
ria. Owing to its autofluorescent nature, 
GFP is an amazing protein which finds ex-
tensive applications in life sciences as re-
porters for gene expression, protein local-

ization, protein-protein interaction, protein-
lipid interaction, structural and behavioral 
determination of macromolecules and as 
analytical sensors. Much effort has been put 
forth to enhance the utility of such proteins 
by expanding the palette of colors which 
can be afforded by GFP and GFP-like pro-
teins. The relationship between the struc-
tures of GFP chromophores and their re-
spective spectral properties had been estab-
lished in our previous study (Nantasenamat 
et al., 2007b). 

In such investigation, the excitation and 
emission maximas of 19 GFP color variants 
and 29 synthetic GFP chromophores were 
modeled using multiple linear regression, 
partial least squares regression, and back-
propagation neural network. Molecular de-
scriptions of the GFP chromophores were 
used as independent variables and the spec-
tral properties (e. g. excitation and emission 
maximas) were used as dependent vari-
ables.  

For development of the QSPR model, 
molecular descriptors were derived from 
three software packages: (i) Spartan’04, (ii) 
E-Dragon, and (iii) RECON. Sparan’04 is a 
quantum chemical package which calcu-
lates the electronic properties of the chro-
mophores. E-Dragon is an online version of 
the Dragon software package which can 
compute over 1,600 molecular descriptors 
spanning 20 categorical types. RECON is a 
software package used for deriving charge-
based descriptors for the molecules of in-
terest. Comparative assessment of the pre-
dictive performance for the QSPR model 
derived from the three software packages 
were carried out. Results indicated that the 
quantum chemical descriptors derived from 
Spartan’04 were most suitable for QSPR 
development as the selected descriptors 
could properly account for the substituent 
effects of the GFP chromophores. 

In preliminary trials, the predictive per-
formance of the QSPR model was relatively 
low for the data set comprising of 19 GFP 
color variants.Taking a closer look into the 
details of the QSPR model, it was found 
that the molecular structures did not reflect 
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the actual protonation state that was present 
in natural biological systems. The p-
hydroxybenzylidene chromophores of GFP 
is present in 2 protonation forms, namely 
the protonated and deprotonated forms 
which are responsible for the major absorb-
ance peak at 395 nm and the minor absorb-
ance peak at 475 nm, respectively. The pre-
liminary QSPR models were derived from 
GFP chromophores which were all drawn 
in the protonated form. This does not reflect 
the actual protonation states, therefore cor-
rection to the chromophore protonation 
state was performed by drawing chromo-
phores with 395 nm absorbance peak in the 
protonated form and 475 nm absorbance 
peak in the deprotonated form. Conse-
quently, the predictive performance of the 
QSPR model improved drastically from 
(rexcitation = 0.3272, RMSexcitation = 57.7310) 
and (remission = 0.7209, RMSemission = 
32.1526) to (rexcitation = 0.9795, RMSexcitation 
= 8.8237) and (remission = 0.9067, RMSemission 
= 15.7614) for structures not taking the pro-
tonation state into consideration and for 
structures taking the protonation state into 
consideration, respectively.  

In regards to the synthetic GFP chro-
mophores, the absorbance spectra indicated 
that the compound is present in the proto-
nated form. Such QSPR model gave satis-
factory performance as the drawn structures 
accurately reflected those present in natural 
biological systems with correlation coeffi-
cient and root mean squared error for the 
excitation and the emission maxima of (rex-

citation = 0.9335, RMSexcitation = 9.9095) and 
(remission = 0.9626, RMSemission = 9.7508), 
respectively. 

 

CONCLUSION 

The past few decades have witnessed much 
advances in the development of computa-
tional models for the prediction of a wide 
span of biological and chemical activities 
that are beneficial for screening promising 
compounds with robust properties. In this 
review article, we have provided a brief in-
troduction to the concepts of QSAR along 

with examples from our previous investiga-
tions on diverse biological and chemical 
systems. It should be noted that the appli-
cability of QSAR models are only useful in 
the domains that they were trained and 
validated. As such, QSAR models spanning 
wider domains of molecular diversity have 
the benefit of being valid for wider spans of 
molecules. It is also interesting to note that 
there are many paths for researchers in the 
field of QSAR/QSPR in their quest of es-
tablishing relationships between structure 
and activities/properties. Such abstract na-
ture holds the beauty of the field as there 
are endless possibilities in reaching the 
same destination of designing novel mole-
cules with desirable properties. 
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