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Abstract

Often the Pareto front of a multi-objective optimization problem
grows exponentially with the problem size. In this case, it is not possi-
ble to compute the whole Pareto front efficiently and one is interested
in good approximations. We consider how evolutionary algorithms can
achieve such approximations by using different diversity mechanisms.
We discuss some well-known approaches such as the density estima-
tor and the ε-dominance approach and point out how and when such
mechanisms provably help to obtain good additive approximations of
the Pareto-optimal set.

1 Introduction

Multi-objective optimization problems are often difficult to solve as the task
is not to compute a single optimal solution but a set of solutions representing
the different trade-offs with respect to the given objective functions. The
number of these trade-offs can be exponential with regard to the problem
size, which implies that not all trade-offs can be computed efficiently. In this
case, one is interested in good approximations of the Pareto front consisting
of a not too large set of Pareto-optimal solutions.

Evolutionary algorithms (EAs) form a class of randomized algorithms
that is popular with practitioners. They are easy to implement and often
achieve good results without having much knowledge of the problem under
consideration. It has been observed empirically that multi-objective evolu-
tionary algorithms (MOEA) are able to obtain good approximations for a
wide range of multi-objective optimization problems. The aim of this paper

∗This author was supported by the Deutsche Forschungsgemeinschaft (DFG) as part
of the Collaborative Research Center “Computational Intelligence” (SFB 531).
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is to contribute to the theoretical understanding of MOEAs in particular
with respect to their approximation behavior.

One field of research that has gained increasing interest during recent
years is the rigorous analysis of simple randomized algorithms with respect
to their runtime behavior. The advantage of this line of research is that it
provides rigorous results, which often show that even simple EAs are quite
successful. On the other hand, EAs are composed of several components that
influence their behavior. The investigation of simplified EAs often can not
capture important features of more sophisticated EAs. We want to put for-
ward this line of research by considering MOEAs that incorporate diversity
mechanisms that are frequently used in successful applications and analyz-
ing their approximation behavior on different multi-objective optimization
problems.

Most rigorous studies of MOEAs investigate a simple MOEA called
GSEMO [5]. These studies comprise rigorous statements about the run-
time of MOEAs, which increase the theoretical understanding of when and
how MOEAs are able to solve multi-objective optimization problems. For in-
stance, [6] introduces an example problem where a population-based MOEA
outperforms several algorithms that are based on a single individual, and
[1] shows that the addition of objectives can be advantageous as well as
disadvantageous. In recent years, even the analysis of simple MOEA for
combinatorial optimization problems has become possible [4, 11, 12].

However, GSEMO is a quite simple MOEA with some disadvantages in
comparison to the MOEAs used in practice. One disadvantage of GSEMO is
that the population size grows with the number of discovered non-dominated
individuals since the population archieves all non-dominated individuals
found so far. Most MOEAs used in practice are based on a population
of fixed size. When dealing with large Pareto fronts, these MOEAs try to
spread the individuals in the population over the whole Pareto front. The
application of a wide range of diversity mechanism can help to achieve this
goal [3]. A popular diversity strategy is to use a density estimator to favor
individuals in less crowded regions of the objective space [10] (density esti-
mator approach). Another well-known diversity strategy is to partition the
objective space into boxes and to restrict the population to at most one in-
dividual per box [9] (ε-dominance approach). We concentrate in this paper
on the density estimator approach (using the density estimator proposed for
SPEA2 [13]) and the ε-dominance approach.

The goal of this paper is to better understand how such diversity mech-
anisms influence the approximation ability of MOEAs. We present example
problems that allow rigorous statements about the usefulness of such diver-
sity mechanisms. In particular, we point out for each diversity mechanism
a typical situation, which explains when and how the considered diversity
mechanism is crucial to obtain a good approximation of the Pareto front of
the given problem.
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The outline is as follows. In Section 2, we introduce the basic defini-
tions and the algorithms that are relevant to this paper. We present in
Section 3 a problem where a proper diversity strategy is crucial for obtain-
ing good approximations. We show that the density estimator as well as
the ε-dominance approach lead to a significant performance boost in com-
parison to GSEMO. In Section 4, we present two problems that point out
the differences between both diversity mechanisms. Finally, we discuss our
results and finish with some conclusions.

2 Definitions and Algorithms

In multi-objective optimization the goal is to optimize several objective func-
tions simultaneously. The different objective functions are often conflicting,
which implies that there is no single optimal solution but a set of solutions
that represents the possible trade-offs w. r. t. the objective functions. We
consider problems defined on binary strings of fixed length, i. e., the search
space is Bn where B = {0, 1}. The objective function f : Bn → Rm maps
search points to a vector-valued objective space. An objective vector u
weakly dominates v (u � v) iff ui ≥ vi for all i ∈ {1, . . . , m}, and u dom-

inates v (u ≻ v) iff u � v and u 6= v. The concept of dominance directly
transfers from the objective vectors to the corresponding search points, e. g.,
x � y holds for two search points x and y iff f(x) � f(y).

Global Simple Evolutionary Multi-objective Optimizer (GSEMO) (see
Algorithm 1) is a MOEA that has been analyzed w. r. t. runtime behavior
on various problems [1, 4, 5, 6, 11, 12]. GSEMO maintains a population P
of variable size, which serves as an archive for the discovered non-dominated
individuals as well as a pool of possible parents. P is initialized with a single
individual that is drawn uniformly at random from the decision space. In
each generation an individual x is drawn uniformly at random from P , and
an offspring y is created by applying a mutation operator to x. We resort
to the global mutation operator that flips each bit of x with probability 1/n
throughout this paper. If y is not dominated by any individual of P , y is
added to P . All other individuals that are weakly dominated by y are in
turn deleted from P . The last step ensures that P stores for each discovered
non-dominated objective vector u just the most recently created decision
vector x with f(x) = u.

Often the number of Pareto-optimal objective vectors grows exponen-
tially with the problem size. In this case, it is not possible to obtain the
whole front efficiently. Hence, we are interested in the time to obtain a good
approximation of the Pareto front and want to examine in which situations
the use of a diversity mechanism can help to achieve this goal. In this pa-
per, we use the additive ε-dominance measure (see e. g. [9]) to judge the
quality of an approximation. An objective vector u ε-dominates v (u �ε v)

3



Algorithm 1 GSEMO

1: choose an initial population P ⊆ Bn with |P | = 1 uniformly at random
2: repeat

3: choose a parent x ∈ P uniformly at random
4: create an offspring y by flipping each bit of x with probability 1/n
5: if ∄z ∈ P : z ≻ y then

6: set P ← (P \ {z ∈ P | y � z}) ∪ {y}
7: end if

8: until stop

Algorithm 2 GDEMO

1: choose an initial population P ⊆ Bn with |P | = 1 uniformly at random
2: repeat

3: choose a parent x ∈ P uniformly at random
4: create an offspring y by flipping each bit of x with probability 1/n
5: if ∄z ∈ P : z ≻ y ∨ b(z) ≻ b(y) then

6: set P ← (P \ {z ∈ P | b(y) � b(z)}) ∪ {y}
7: end if

8: until stop

iff ui + ε ≥ vi for all i ∈ {1, . . . , m}. A set of objective vectors T (or a set
of corresponding search points) is called an ε-approximation of f iff there is
for each objective vector v ∈ f(Bn) at least one objective vector u ∈ T that
ε-dominates v.

If we are satisfied with an approximation of the Pareto front, it might be
beneficial to avoid storing similar individuals in the population of GSEMO.
We partition the objective space into boxes and store at most one individual
per box in the population. To do this, we map an individual x to the box
index vector b(x) = (b1(x), . . . , bm(x)) with bi(x) := ⌊fi(x)/ε⌋ where ε ∈ R+

denotes the size of the boxes. Global Diversity Evolutionary Multi-Objective
Optimizer (GDEMO) (see Algorithm 2) is a MOEA that incorporates this
concept.

Often evolutionary algorithms work with a population of fixed size and
try to spread the individuals in the population over the Pareto front by
increasing the distance in the objective space between the individuals. To
keep a population of size µ in each generation either the offspring has to
be skipped or one individual in the current population has to be deleted to
make room for the offspring. We investigate a simplification of the diversity
mechanism incorporated into SPEA2 [13], which relies on a so-called density
estimator.

Let Q be a given set of search points. The rankQ(x) of a search point
x ∈ Q is given by the number of search points in Q that dominate x,
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Algorithm 3 Selection for Removal

Input: set of search points Q
Output: search point z ∈ Q
1: set Q′ ← arg maxx∈Q rankQ(x)
2: set Q′′ ← arg minx∈Q′ distQ(x)
3: return z ∈ Q′′ chosen uniformly at random

Algorithm 4 RADEMO

1: choose an initial population P ⊆ Bn with |P | = µ uniformly at random
2: repeat

3: choose a parent x ∈ P uniformly at random
4: create an offspring y by flipping each bit of x with probability 1/n
5: choose an individual z ∈ P ∪ {y} for removal using Algorithm 3
6: set P ← (P ∪ {y}) \ {z}
7: until stop

i. e., rankQ(x) := |{y ∈ Q | y ≻ x}|. Additionally, a metric on the
objective space is taken into account. We consider the maximum metric
d(u, v) := maxi∈{1,...,m} |ui − vi| where u and v are objective vectors. Let

distQ(x) := (dist0Q(x), . . . ,dist
|Q|−1
Q (x)) where distk

Q(x) denotes the distance
d(f(x), f(y)) from x ∈ Q to its k-th nearest neighbor y ∈ Q w. r. t. d.

The archive truncation procedure of SPEA2 selects a search point x ∈
Q with the lowest distQ(x) value w. r. t. the lexicographic order from the
search points with the highest rankQ(x) value for removal (see Algorithm 3).
Using this selection procedure, we obtain a simplified version of SPEA2,
which we refer to as Rank- And Distance-based Evolutionary Multi-objective
Optimizer (RADEMO) (see Algorithm 4).

For theoretical investigations, we count the number of generations until
a desired goal has been achieved. This number is called the runtime of
the considered algorithm. The subject of our investigations is the runtime
that an algorithm needs to achieve an additive δ-approximation of a given
problem where δ ∈ R+.

3 Approximation of Large Pareto Fronts

In this section, we discuss how diversity mechanisms can be provably helpful
to achieve a δ-approximation of an exponentiallly large Pareto front. All the
problems examined in this paper depend on a parameter δ and the goal is
to examine whether our algorithms are able to achieve a δ-approximation of
the Pareto-optimal set in polynomial time.

To simplify the following function definitions, we use the common func-
tions OMn(x) :=

∑n
i=1 xi and BVn(x) :=

∑n
i=1 2n−i·xi. We assume w. l. o. g.
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Figure 1: Objective space of LF′
δ for

δ = 1 and n = 36.
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Figure 2: Objective space of LFδ for
δ = 1 and n = 36 (logarithmic scale).

that the number of bits is even and refer to the first (second) half of a
bit string x as x′ (x′′). We consider the bi-objective example function
LF′

δ(x) = (LF′
δ,1(x), LF′

δ,2(x)) (Large Front) where

LF′
δ,1(x) :=

{

(2·OM(x′) + 2−n/2 ·BV(x′′))·δ min{OM(x′), OM(x′)} ≥ √n

2·OM(x′)·δ otherwise

LF′
δ,2(x) :=

{

(2·OM(x′) + 2−n/2 ·BV(x′′))·δ min{OM(x′), OM(x′)} ≥ √n

2·OM(x′)·δ otherwise.

Figure 1 shows the objective space of LF′
δ.

The above-defined function LF′ induces the same dominance relation on
the search space as the similar function LFδ(x) = (LFδ,1(x), LFδ,2(x)) [7]
with

LFδ,1(x) :=

{

(1 + δ)2·OM(x′)+2−n/2·BV(x′′) min{OM(x′), OM(x′)} ≥ √n

(1 + δ)2·OM(x′) otherwise

LFδ,2(x) :=

{

(1 + δ)2·OM(x′)+2−n/2·BV(x′′) min{OM(x′), OM(x′)} ≥ √n

(1 + δ)2·OM(x′) otherwise

shown in Figure 2. In particular,

LF′
δ(x) = δ · log1+δ(LFδ(x))

holds for each x ∈ Bn. This allows to transfer the results for GSEMO and
GDEMO on LF provided in [7] directly to LF′. Hence, we can state the
following results.

Theorem 1. The time until GSEMO has achieved a δ-approximation of

LF′
δ is 2Ω(n1/4) with probability 1− 2−Ω(n1/4).
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Theorem 2. Choosing ε = δ as box size, the expected time until GDEMO

has achieved a δ-approximation of LF′
δ is O(n2 log n).

The reason for the stated negative result for GSEMO on LF′ is that the
algorithm produces many Pareto-optimal objective vectors with roughly n/4
1-bits in the first half of the bitstring. However, to achieve a δ-approxima-
tion it is necessary that for each i, 0 ≤ i ≤ n/2, a solution with i 1-bits in
the first half of the bitstring is obtained. This implies that at least n/2 + 1
search points are necessary to achieve a δ-approximation. In contrast to
the negative result for GSEMO, the algorithm GDEMO is able to obtain a
δ-approximation efficiently when choosing the value of ε, which determines
the size of the boxes, as in the definition of LF′. This has the effect that the
algorithm keeps for each fixed number of 1-bits in the first half exactly one
individual in the population.

In the extreme case when the parameter ε in the GDEMO algorithm
becomes small, the algorithm collapses to GSEMO. This shows that the right
choice of ε is crucial for dealing with large Pareto fronts. In the following, we
show that the density estimator ensures in a natural way a spread over the
Pareto front of LF′. We already know that n/2 + 1 points are necessary to
achieve a δ-approximation of LF′. Therefore, we assume that the population
size of RADEMO is at least n/2+1 and show that the algorithm constructs
a δ-approximation efficiently.

Theorem 3. Choosing µ ≥ n/2 + 1 as population size, the expected time

until RADEMO has achieved a δ-approximation of LF′
δ is O(µn log n).

Proof. Let x and y be two individuals. If OM(x′) = OM(y′), the dis-
tance between the two search points in the objective space is small, i. e.,
d(LF′

δ(x), LF′
δ(y)) < δ holds. Otherwise, d(LF′

δ(x), LF′
δ(y)) > δ holds. This

implies that once a solution with a specific number of 1-bits in the first half
of the bitstring is obtained, such a solution will remain in the population
during the whole optimization process as µ ≥ n/2+1. We therefore have to
consider the different times to produce the individuals with i, 0 ≤ i ≤ n/2,
1-bits in the first half of the bitstring. An offspring y with OM(y′) = i is
created with probability at least

min{n/2− i + 1, i + 1} · 1
µ
· 1

en

if the population contains an individual x with OM(x′) = i−1 or OM(x′) =
i + 1. Note that such an i always exists as long as a δ-approximation has
not been obtained.

Therefore, we can sum up the waiting times for the different values of i,
which leads to an upper bound of

n/2
∑

i=0

µ · en
min{n/2− i + 1, i + 1} = O(µn log n)
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for the time needed to obtain a δ-approximation of LF′.

4 Comparing Additive ε-Dominance to the Den-

sity Estimator

In the previous section, we have shown that both diversity mechanisms may
help to achieve a good approximation of an exponentially large Pareto front.
The goal of this section is to work out the difference between the additive
ε-dominance approach and the use of the density estimator in a rigorous
way. To do this, we examine functions that illustrate the different behavior.
Our functions are simple in the sense that they have a small Pareto front
which can be easily computed by the GSEMO algorithm. However, we will
show that the examined diversity mechanisms may even have difficulties to
achieve a good approximation of the Pareto-optimal set.

4.1 The Right Parameter for the ε-Dominance Approach

In the following, we want to point out how the choice of ε in GDEMO in-
fluences the ability of this algorithm to achieve a good approximation. We
have already seen in Section 3 that the right choice of ε may help to achieve
good approximations for an exponentially large Pareto front. Now, we illus-
trate that the right value of ε is crucial for the success of the algorithm. In
particular, we point out that GDEMO may fail on problems with a small
Pareto front which may be easily solved by GSEMO.

For this reason, we consider the bi-objective example function SF′
δ(x) =

(SF′
δ,1(x), SF′

δ,2(x)) (Small Front) where

SF′
δ,1(x) := (OM(x)/n + ⌊OM(x)/n⌋) · δ

SF′
δ,2(x) := (OM(x)/n + ⌊OM(x)/n⌋) · δ.

Figure 3 shows the objective space of SF′
δ. To obtain a δ-approximation of

SF′ the search points 0n and 1n have to be obtained.
The above-defined function SF′ induces the same dominance relation on

the search space as the similar function SFδ(x) = (SFδ,1(x), SFδ,2(x)) [7]
with

SFδ,1(x) := (1 + δ)OM(x)/n+⌊OM(x)/n⌋

SFδ,2(x) := (1 + δ)OM(x)/n+⌊OM(x)/n⌋

shown in Figure 4. In particular,

SF′
δ(x) = δ · log1+δ(SFδ(x))

holds for each x ∈ Bn.

8
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All search points /∈ {0n, 1n} are mapped to the box index vector (0, 0)
if ε ≥ δ is chosen in the GDEMO algorithm. Therefore, we can transfer
the results for GSEMO on SF provided in [7] directly to SF′ and state the
following theorem.

Theorem 4. Choosing ε ≥ δ as box size, the time until GDEMO has

achieved a δ-approximation of SF′
δ is 2Ω(n) with probability 1− 2−Ω(n).

The proof given in [7] relies on the phenomenon that an offspring of an
individual x with OM(x) < n/2 (OM(x) > n/2) tends to have more (less)
1-bits inducing a drift towards the middle of the front. Since GDEMO is
limited to at most one individual per box, it takes a long time to reach the
outskirts of the Pareto front, which are necessary for a δ-approximation.

For the middle part of the Pareto front of SF′ holds that all distances
between neighboring objective vectors are equal. Furthermore, the objective
vectors corresponding to the search points 0n and 1n have a large distance to
all other objective vectors. This helps the algorithm RADEMO to achieve
a δ-approximation of SF′ as the density estimator enforces the algorithm
to produce solutions that have a large distance in the objective space. The
next theorem shows that RADEMO obtains a δ-approximation efficiently if
the population size is at least 2.

Theorem 5. Choosing µ ≥ 2 as population size, the expected time until

RADEMO has achieved a δ-approximation of SF′
δ is O(µn log n).

Proof. Consider the potential pot(P ) := max{|OM(x) − OM(y)| | x, y ∈
P}. It holds 0 ≤ pot(P ) ≤ n. The optimization goal has been reached if
pot(P ) = n. Let x, y ∈ P be two individuals leading to the potential and
assume that OM(x) ≤ OM(y). Flipping a single 1-bit in x or a single 0-
bit in y increases the potential. Therefore the probability of increasing the
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potential is at least

1

µ
·
(

OM(x)

n
+

n−OM(x)− pot(P )

n

)

·
(

1− 1

n

)n−1

≥ n− pot(P )

eµn
.

The upper bound O(µn log n) is the result of the summation of the expected
waiting times for increasing the different potential values.

The following theorem shows that GSEMO is able to compute the Pareto
front of SF′

δ efficiently. The theorem stems from the result for GSEMO on
SF provided in [7].

Theorem 6. The expected time until GSEMO has achieved a δ-approxima-

tion of SF′
δ is O(n2 log n).

4.2 The Distance Measure of the Density Estimator

In the following, we showcase a simple function, which exemplifies how the
diversity mechanism of RADEMO might hamper the optimization process
if the population is not too large w. r. t. the size of the Pareto front.

Let SP := {1i0n−i | 0 ≤ i ≤ n}. We consider the bi-objective example
function TF′

δ(x) = (TF′
δ,1(x), TF′

δ,2(x)) (Two Fronts) where

TF′
δ,1(x) :=











OM(x) · δ/(4n) x /∈ SP

δ/4 + i · 2δ/n x = 1i0n−i, 0 ≤ i ≤ n/4

3δ/4− (i− n/4) · δ/n x = 1i0n−i, n/4 ≤ i ≤ n

TF′
δ,2(x) :=











0 x /∈ SP

δ/4− i · δ/n x = 1i0n−i, 0 ≤ i ≤ n/4

(i− n/4) · 2δ/n x = 1i0n−i, n/4 ≤ i ≤ n.

10



Figure 5 shows the objective space of TF′
δ. The Pareto-optimal set of TF′

is
{1i0n−i | n/4 ≤ i ≤ n}

and the Pareto front consists of the objective vectors of

{(3δ/4− i · δ/n, i · 2δ/n) | 0 ≤ i ≤ 3n/4}.

The next technical lemma, which is used in the proof of the following
theorem, describes how RADEMO spreads the individuals in the population
over a linear front. The lemma considers the following abstract scenario. At
the beginning, µ ≥ 2 tiles are placed within a discrete interval {0, 1, . . . , n}.
In each step, a new tile is added and afterwards a most closely surrounded
tile is removed. How often do we need to add a new tile next to an existing
tile until the minimal distance between neighboring tiles exceeds a certain
threshold m?

Lemma 1. Let n ∈ N, I = {0, 1, . . . , n}, 2 ≤ µ ∈ N, and (Pt)t∈N be a

sequence of multisets Pt = {pt,1, . . . , pt,µ} ⊆ I where Pt+1 = (Pt ∪ {x}) \ {y}
with x ∈ I and

y ∈ arg min
z∈Pt∪{x}

(dist1Pt∪{x}
(z), dist2Pt∪{x}

(z)).

Assume w. l. o. g. that pt,i+1 ≥ pt,i. Moreover, let D(Pt) = {dt,1, . . . , dt,µ−1}
be the set of all distances dt,i = d(pt,i+1, pt,i) = pt,i+1 − pt,i between neigh-

boring points. Then it suffices to add successively O(m3µ + mµ3) certain

points next to a point in the actual multiset to increase the minimal distance

minD(Pt) to at least m if

n > L :=

µ−1
∑

i=1

(m + i− 2) = Θ(µ2 + m)

holds.

Proof. Adding a point x to Pt can have two consequences.

1. If x < pt,1 or x > pt,µ, a new interval of length pt,1 − x or x − pt,µ is
created.

2. If pt,1 ≤ x ≤ pt,µ, an existing interval of length ℓ1 + ℓ2 is divided
creating two neighboring intervals of length ℓ1 and ℓ2.

Thereafter two neighboring intervals of length ℓ3 and ℓ4 are merged creating
an interval of length ℓ3 + ℓ4.

We consider the first case. If pt,µ − pt,1 ≤ L then pt,1 > 0 or pt,µ < n.
Therefore adding x = pt,1−1 or x = pt,µ+1 to Pt increases pt,µ−pt,1. Hence,
at most L + 1 = O(µ2 + m) steps are sufficient to achieve pt,µ − pt,1 > L.

11
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Figure 6: Illustration for changing interval lengths. A thin arrow from a to
b stands for a ≤ b and a thick arrow from a to b stands for a < b

In the second case, at most three intervals are affected. In particular,
D(Pt+1) = D(Pt) ∪ {ℓ1, ℓ2, ℓ3 + ℓ4} \ {ℓ1 + ℓ2, ℓ3, ℓ4} holds. We distinguish
four cases where we assume w. l. o. g. that ℓ1 ≤ ℓ2 and ℓ3 ≤ ℓ4. Note that the
selection of y ensures that (ℓ3, ℓ4) is at most (ℓ1, ℓ2) w. r. t. the lexicographic
order. The situation is illustrated in Figure 6 (a).

• If 0 = ℓ3 = ℓ1 then D(Pt+1) = D(Pt).

• If 0 < ℓ3 = ℓ1 then D(Pt+1) = D(Pt)∪ {ℓ2, ℓ3 + ℓ4} \ {ℓ1 + ℓ2, ℓ4} with
|ℓ2 − (ℓ3 + ℓ4)| ≤ |(ℓ1 + ℓ2)− ℓ4| (see Figure 6 (b)).

• If 0 = ℓ3 < ℓ1 then D(Pt+1) = D(Pt) ∪ {ℓ1, ℓ2} \ {ℓ1 + ℓ2, ℓ3} with
|ℓ1 − ℓ2| < |(ℓ1 + ℓ2)− ℓ3| (see Figure 6 (c)).

• If 0 < ℓ3 < ℓ1 then D(Pt+1) = D(Pt)∪{ℓ1, ℓ2, ℓ3 + ℓ4}\{ℓ1 + ℓ2, ℓ3, ℓ4}
with min{ℓ1, ℓ2, ℓ3 + ℓ4} > min{ℓ1 + ℓ2, ℓ3, ℓ4} (see Figure 6 (d)).

Consider the functions

f1(Pt) := max{(m− 1− min
1≤i<µ

dt,i) · (µ− 1) + | arg min
1≤i<µ

dt,i|, 0},

f2(Pt) := g(dt,1) + · · ·+ g(dt,µ−1)

where g(dt,i) :=
∑m+µ−2−dt,i

j=1 j < (m+µ)2. An inspection of the above cases
shows that f1(Pt) is monotone decreasing and that f2(Pt) does not increase
in all cases except the last where f2(Pt+1)− f2(Pt) is

(g(ℓ1) + g(ℓ2) + g(ℓ3 + ℓ4))− (g(ℓ1 + ℓ2) + g(ℓ3) + g(ℓ4))

= (g(ℓ1)− g(ℓ1 + ℓ2)) + (g(ℓ2)− g(ℓ3)) + (g(ℓ3 + ℓ4)− g(ℓ4))

≤ g(ℓ1)− g(ℓ1 + ℓ2) ≤ g(ℓ1) < (m + µ)2.

12



Hence, the potential

pot(Pt) := f1(Pt) · (m + µ)2 + f2(Pt)

is monotone decreasing. Additionally,

pot(Pt) < ((m− 1) · (µ− 1) + µ− 1) · (m + µ)2 + (µ− 1) · (m + µ)2

= O(m3µ + mµ3)

holds.
The minimal distance min D(Pt) is as least m if pot(Pt) is at most (µ−

1) ·∑µ−2
j=1 j. If pot(Pt) is greater than (µ − 1) ·∑µ−2

j=1 j then there is an
dt,i ≤ m + µ − 3 with dt,i−1 ≥ dt,i + 2 or dt,i+1 ≥ dt,i + 2 due to the
pigeonhole principle. Therefore adding x = pt,i−1 or x = pt,i+1+1 decreases
the potential. Hence, O(m3µ+mµ3) such steps are sufficient to increase the
minimal distance minD(Pt) to at least m.

The next theorem shows that RADEMO does not achieve a δ-approxi-
mation of TF′

δ within polynomial time w. h. p. if the size of the population is
not too large. The main idea of the proof is that the individuals spread out
over {(δ/4+ i ·2δ/n, δ/4− i ·δ/n) | 0 ≤ i ≤ n/4} in an almost equally spaced
manner before the Pareto front is reached. Thereafter RADEMO’s diversity
mechanism prevents the algorithm from spreading out on the Pareto front.
Hence, RADEMO does not obtain the objective vectors in the top left part
of the Pareto front, which are necessary to achieve a δ-approximation.

Theorem 7. Choosing 2 ≤ µ = O(n1/3−c) as population size where 0 ≤ c ≤
1/3 is a constant, the time until RADEMO has achieved a δ-approximation

of TF′
δ is 2Ω(nc) with probability 1− 2−Ω(nc).

Proof. We use the method of considering a typical run of the algorithm and
regard the first 2Θ(nc) steps of the algorithm. Our goal is to show that the
probability of obtaining a δ-approximation within this phase is 2−Ω(nc).

The probability of flipping at least i bits in a single step is at most

(

n

i

)

·
(

1

n

)i

≤
(en

i

)i
·
(

1

n

)i

=
(e

i

)i
.

Hence, at least nc bits flip with probability at most (e/nc)nc
= 2−Ω(nc log n).

This implies that the probability of flipping more than nc bits in a single
step within the considered phase is at most 2−Ω(nc log n).

Since the initial population P is chosen uniformly at random, x /∈ SP

and n/12 < OM(x) < 11n/12 hold for all x ∈ P with probability at least
1− 2−Ω(n). Let x be an individual of the initial population with OM(x) =
i. This search point is uniformly distributed in {y ∈ Bn | OM(y) = i}.
Consider an offspring z that is accepted before for the first time an individual
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of SP has been obtained. This individual in uniformly distributed in {y ∈
Bn | OM(y) = OM(z)}. Hence, the probability of obtaining a solution of
SP whose number of 1-bits is at least n/12 is upper bounded by 1/

(

n
n/12

)

=

2−Ω(n). It follows that 0 ≤ OM(x) < n/12 applies for the first individual
x ∈ SP that is added to P w. h. p. Afterwards, maxx∈P OM(x) < n/12 +
(µ − 1) · nc holds. Hence, when the first individual x ∈ SP with n/6 <
OM(x) ≤ n/6 + nc is added to P , P consists of different individuals from
SP .

The probability to create an offspring y with OM(y) > maxx∈P OM(x)
is at most O(µ−1n−1). Consider a phase until an individual 1i0n−i with
n/4−nc < i ≤ n/4 is added to the population. The phase involves Ω(µn2−c)
steps with probability at least 1− 2−Ω(n1−c) due to Chernoff bounds.

Let m be the minimal distance between two different individuals in the
population. The probability to increase m to at least 6nc within Ω(µn2−2c)
consecutive steps is at least Ω(1) due to Lemma 1 since a certain bit of a
certain individual is flipped with probability at least Ω(µ−1n−1). Therefore,
this event occurs at least once in the considered phase with probability at
least 1− 2−Ω(nc). Hence, at the end of the phase m ≥ 6nc holds w. h. p.

Now, we regard the situation after an individual 1i0n−i with n/4−nc <
i ≤ n/4 has been added to P . It holds j ≤ n/4 − 6nc for the nearest
individual 1j0n−j of 1i0n−i. Each individual 1k0n−k with n/4 + 2nc ≤ k <
n/4 + 3nc does not dominate any individual in the population since

TF′
δ,1(1

k0n−k) = 3δ/4− (k − n/4) · δ/n ≤ 3δ/4− (n/4 + 2nc − n/4) · δ/n

= δ/4 + (n/4− nc) · 2δ/n

< δ/4 + i · 2δ/n = TF′
δ,1(1

i0n−i)

and

TF′
δ,2(1

k0n−k) = (k − n/4) · 2δ/n < (n/4 + 3nc − n/4) · 2δ/n

= δ/4− (n/4− 6nc) · δ/n

≤ δ/4− j · δ/n = TF′
δ,2(1

j0n−j).

Therefore these individuals are rejected since accepting such an individual
would decrease m. Hence, more than nc bits have to be flipped in a single
mutation step to approach the top left part of the Pareto front, which shows
the theorem.

We have seen that RADEMO does not compute a δ-approximation of
TF′

δ within polynomial time w. h. p. if the size of the population is at most
O(n1/3−c). Note that restricting the population size to O(n1/3−c) does not
seem to be too limited since a δ-approximation of TF′

δ can be obtained by
choosing a single search point of {1i0n−i | n/2 ≤ i ≤ n}.

We will show next that GDEMO with the right choice of ε performs
much better.
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Theorem 8. Choosing ε = δ as box size, the expected time until GDEMO

has achieved a δ-approximation of TF′
δ is O(n3).

Proof. If there is no solution of SP in the population, the population size
is 1 and the algorithm maximizes the number of 0-bits. Note that no steps
increasing the number of 0-bits are accepted in this case as such search points
are dominated by the current one constituting the population. This implies
that after an expected number of O(n log n) steps the population consists of
an individual from SP . Afterwards, the individual starts a random walk on
SP . The population has converged to a δ-approximation if an individual of
the second box has been obtained. This happens after an expected number
of O(n3) steps (see [8]).

The next theorem shows that the quite small Pareto front of TF′
δ can

also be efficiently computed by the simple algorithm GSEMO.

Theorem 9. The expected time until GSEMO has achieved a δ-approxima-

tion of TF′
δ is O(n3).

Proof. Since the population size is 1 as long as SP has not been found,
the expected time until the first individual from SP is created is at most
O(n log n) following the proof ideas in [2] for the (1+1) EA and the function
OM. As long as the Pareto front has not been found, the population size
is at most n/4. The probability to create an individual y with OM(y) >
maxx∈P OM(x) is therefore at least

1

n/4
· 1
n
·
(

1− 1

n

)n−1

≥ 1

n/4
· 1

en
.

Hence, the first Pareto-optimal individual is added to the population after
an expected number of at most n/4 · n/4 · en = O(n3) steps. Finally, the
expected time until the last Pareto-optimal search point is revealed is at
most

3n

4
· 3n

4
· en = O(n3)

using similar arguments.

5 Discussion and Conclusions

We have pointed out how different diversity strategies used by MOEAs can
help to achieve a good approximation of the Pareto-optimal set. Table 1
gives an overview of the different results.

For problems where many search points map to different Pareto-optimal
objective vectors (see function LF′), we have shown that MOEAs that do
not incorporate any diversity mechanism have difficulties to obtain a good
approximation as the different individuals may only cover parts of the Pareto
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GSEMO GDEMO RADEMO

LF′
δ ց ր ր

SF′
δ ր ց ր

TF′
δ ր ր ց

Table 1: Overview of the performance of the algorithms GSEMO, GDEMO,
and RADEMO on the functions LF′

δ, SF′
δ, and TF′

δ. ց means exponential
time w. h. p. and ր expected polynomial time.

front that are close to each other. In contrast to this both diversity mecha-
nisms examined in this paper lead to a good additive approximation of the
Pareto-optimal set.

Afterwards, we compared the two diversity strategies. It turned out that
the investigated density estimator may prevent the MOEA from obtaining
new Pareto-optimal search points even if these search points are Hamming
neighbors of search points already contained in the population (see function
TF′). The reason for this is that the search points already contained in
the population may have a relatively large distance to each other and may
not be be dominated by the search points that can be introduced into the
population. In such cases, the algorithm rejects the new search points of
the Pareto-optimal set if their insertion into the population would lead to a
worsening with respect to the distance measure. Finally, this has the effect
that it is not possible to achieve a good approximation of the problem at
hand.

To obtain good approximations by using the ε-dominance approach, it
is necessary to choose the right value for ε. We have pointed out that even
problems with a small Pareto front that is easy to compute without any di-
versity mechanism (see function SF′) may not be optimized by the mentioned
approach as it looses the information obtained by sampling Pareto-optimal
search points.

The results obtained in this paper are a first step to understand how
simple randomized algorithms may achieve good approximations for multi-
objective optimization problems. The goal for future research is to analyze
such algorithms on classical problems from multi-objective combinatorial
optimization. As such problems may have Pareto fronts of exponential size
diversity strategies are clearly necessary for the success of such algorithms.
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