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An Empirical Investigation of Simpli�ed

Step-Size Adapatation in Evolution Strategies

with a View to Theory

Jens Jägersküpper? & Mike Preuss

Technische Universität Dortmund, Fakultät für Informatik,
44221 Dortmund, Germany

Abstract. Randomized direct-search methods for the optimization of a
function f : Rn → R given by a black box for f -evaluations are inves-
tigated. We consider the cumulative step-size adaptation (CSA) for the
variance of multivariate zero-mean normal distributions. Those are com-
monly used to sample new candidate solutions within metaheuristics,
in particular within the CMA Evolution Strategy (CMA-ES), a state-
of-the-art direct-search method. Though the CMA-ES is very successful
in practical optimization, its theoretical foundations are very limited be-
cause of the complex stochastic process it induces. To forward the theory
on this successful method, we propose two simpli�cations of the CSA
used within CMA-ES for step-size control. We show by experimental
and statistical evaluation that they perform su�ciently similarly to the
original CSA (in the considered scenario), so that a further theoretical
analysis is in fact reasonable. Furthermore, we outline in detail a proba-
bilistic/theoretical runtime analysis for one of the two CSA-derivatives.

1 Introduction

The driving force of this paper is the desire for a theoretical runtime analy-
sis of a sophisticated stochastic optimization algorithm, namely the covariance
matrix adaptation evolution strategy (CMA-ES). As this algorithm is very hard
to analyze theoretically because of the complex stochastic process it induces,
we follow an unorthodox approach: We decompose it into its main algorithmic
components: the covariance matrix adaptation (CMA), and the cumulative step-
size adaptation (CSA). While the CMA is, in some sense, supposed to handle
ill-conditionedness in the optimization problems, it is the duty of the CSA to
cope with a challenge that every algorithm for real-valued black-box optimiza-
tion faces: step-size control, i.e. the adaptation of step-sizes when approaching
an optimum. The idea behind this decomposition is to substitute one of the
components by an alternative mechanism that is more amenable to a theoret-
ical analysis. While doing so, we rely on experimentation to assess how far we
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depart from the original algorithm. Here simpler mechanisms for step-size con-
trol are substituted for CSA. The desired outcome of this process is a modi�ed
algorithm that is both: tractable by theoretical analysis techniques, and, tested
empirically, still working reasonably similar to the original one. At the same time
we aim at better understanding the core-mechanisms of the original algorithm.
(A simpli�ed algorithm may also be interesting for practitioners, as simple meth-
ods often spread much faster than their complicated counterparts, even if the
latter have slight performance advantages.) The full theoretical analysis itself,
however, is not part of this work, but is still pending. Rather we discuss why
a theoretical analysis seems feasible and outline in detail how it could be ac-
complished. Note that proving (global) convergence is not the subject of the
theoretical investigations. The subject is a probabilistic analysis of the random
variable corresponding to the number of steps necessary to obtain a prede�ned
reduction of the approximation error. For such an analysis to make sense, the
class of objective functions covered by the analysis must necessarily be rather
restricted and simple. This paper provides evidence by experimental and statis-
tical evaluation that a theoretical analysis for the simpli�ed algorithm does make
sense to yield more insight into CSA, the step-size control within the CMA-ES.

In a sense, our approach can be seen as algorithm re-engineering, a viewpoint
which is to our knowledge uncommon in the �eld of metaheuristics. Therefore,
we also strive for making a methodological contribution that will hopefully in-
spires other researchers to follow a similar path. To this end, it is not necessary
to be familiar with the latest scienti�c work on metaheuristics to understand
the concepts applied herein. It is one of the intrinsic properties of stochastic al-
gorithms in general that even simple methods may display surprising behaviors
that are not at all easy to understand and analyze. We explicitly focus on prac-
tically relevant dimensions. As it may be debatable what relevant is, we give a
3-fold categorization used in the following: Problems with up to 7 dimensions
are seen as small, whereas medium sized ones from 8 to 63 dimensions are to
our knowledge of the highest practical importance. Problems with 64 dimensions
and beyond are termed large.

In the following section the original CSA is described in detail. The two
new simpli�ed CSA-derivatives are presented in Section 3, and their technical
details and di�erences as well as some related work are discussed in Section 4.
Furthermore, a detailed outline of a theoretical runtime analysis is given. The
experimental comparison (including statistical evaluation) of the three CSA-
variants is presented in Section 5. Finally, we conclude in Section 6.

2 Cumulative step-size adaptation (CSA)

The CMA-ES of Hansen and Ostermeier [1] is regarded as one of the most e�-
cient modern stochastic direct-search methods for numerical black-box optimiza-
tion, cf. the list of over 100 references to applications of CMA-ES compiled by
Hansen [2]. Originally, CSA was designed for so-called (1,λ) Evolution Strate-
gies, in which 1 candidate solution is iteratively evolved. In each iteration, λ
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new search points are sampled, each independently in the same way, namely by
adding a zero-mean multivariate normal distribution to the current candidate
solution. When CMA is not used, like here, each of the λ samples is generated
by independently adding a zero-mean normal distribution with variance σ2 to
each of its n components. The best of the λ samples becomes the next candidate
solution�irrespective of whether this best of λ amounts to an improvement or
not (so-called comma selection; CSA does not work well for so-called elitist se-
lection where the best sample becomes the next candidate solution only if it is at
least as good as the current one). The idea behind CSA is as follows: Consecutive
steps of an iterative direct-search method should be orthogonal. Therefore, one
may recall that steps of steepest descent (a gradient method) with perfect line
search (i.e., the truly best point on the line in gradient direction is chosen) are
indeed orthogonal when a positive de�nite quadratic form is minimized. Within
CSA the observation of mainly positively [negatively] correlated steps is taken as
an indicator that the step-size is too small [resp. too large]. As a consequence, the
standard deviation σ of the multivariate normal distribution is increased [resp.
decreased]. Since the steps' directions are random, considering just the last two
steps does not enable a smooth σ-adaptation because of the large variation of the
random angle between two steps. Thus, in each iteration the so-called evolution
path is considered, namely its length is compared with the length that would
be expected when the steps were orthogonal. Essentially, the evolution path is
a recent part of the trajectory of candidate solutions. Considering the complete
trajectory is not the most appropriate choice, though. Rather, a certain amount
of the recent history of the search is considered. In the original CSA as proposed
by Hansen and Ostermeier, σ is adapted continuously, i.e. after each iteration.
The deterministic update of the evolution path p ∈ Rn after the ith iteration
works as follows:

p[i+1] := (1− cσ) · p[i] +
√

cσ · (2− cσ) ·m[i]/σ[i] (1)

where m[i] ∈ Rn denotes the displacement (vector) of the ith step, and the �xed
parameter cσ ∈ (0, 1) determines the weighting between the recent history of
the optimization and its past within the evolution path. We use cσ := 1/

√
n

as suggested by Hansen and Ostermeier [1]. Note that m[i] is one of λ vectors
each of which was independently chosen according to a zero-mean multivariate
normal distribution with standard deviation σ[i]. The length of such a vector
follows a scaled (by σ[i]) χ-distribution. Initially, p[0] is chosen as the all-zero
vector. The σ-update is done deterministically as follows:

σ[i+1] := σ[i] · exp
(

cσ

dσ
·
(
|p[i+1]|

χ̄
− 1

))
(2)

where the �xed parameter dσ is called damping factor, and χ̄ denotes the ex-
pectation of the χ-distribution. Note that σ is kept unchanged if the length of
the evolution path equals χ̄. We used dσ := 0.5 because this leads to a better
performance than dσ ∈ {0.25, 1} for the considered function scenario. Naturally,
there is interdependence between dσ and cσ, and moreover, an optimal choice
depends (among others) on the function to be optimized, of course.
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3 Two simpli�ed CSA-Derivatives

In this section we introduce two simpli�cations of the original CSA, created by
subsequently departing further from the de�ning Equations (1) and (2). The �rst
simpli�cation (common to both CSA-derivatives) will be to partition the course
of the optimization into phases of a �xed length in which σ is not changed. Such
a partitioning of the process has turned out useful in former theoretical analyses,
cf. [3,4] for instance. Thus, both variants use phases of a �xed length, after each
of which σ is adapted�solely depending on what happened during that phase,
respectively. Therefore, recall that cσ = 1/

√
n in the path update, cf. Eqn. (1).

Since (1 − 1/
√

n)i = 0.5 for i �
√

n · ln 2 (as n grows), the half-live of a step
within the evolution path is roughly 0.5

√
n iterations for small dimensions and

roughly 0.7
√

n for large n. For this reason we choose the phase length k as d
√

n e
a priori for the simpli�ed versions to be described in the following. The second
simpli�cation to be introduced is as follows: Rather than comparing the length of
the displacement of a phase with the expected length that would be observed if
the steps in the phase were completely orthogonal, the actual correlations of the
steps of a phase in terms of orthogonality are considered directly and aggregated
into a criterion that we call correlation balance.

pCSA. The �p� stands for phased. The run of the ES is partitioned into phases
lasting k := d

√
ne steps, respectively. After each phase, the vector correspond-

ing to the total movement (in the search space) in this phase is considered. The
length of this displacement is compared to ` :=

√
k · σ · χ̄, where χ̄ is the expec-

tation of the χ-distribution with n degrees of freedom. Note that ` equals the
length of the diagonal of a k-dimensional cube with edges of length σ · χ̄, and
that σ · χ̄ equals the expected step-length in the phase. Thus, if all k steps of a
phase had the expected length, and if they were completely orthogonal, then the
length of the displacement vector in such a phase would just equal `. Depending
on whether the displacement's actual length is larger [or smaller] than `, σ is
considered as too small (because of positive correlation) [resp. as too large (be-
cause of negative correlation)]. Then σ is scaled up [resp. down] by a prede�ned
scaling factor larger than one [resp. by the reciprocal of this factor].

CBA. �CBA� stands for correlation-balance adaptation. The optimization is
again partitioned into phases each of which lasts k := d

√
ne steps. After each

phase, the k vectors that correspond to the k movements in the phase are con-
sidered. For each pair of these k vectors the correlation is calculated, so that we
obtain

(
k
2

)
= k(k − 1)/2 correlation values. If the majority of these values are

positive [negative], then the σ used in the respective phase is considered as too
small [resp. as too large]. Hence, σ is scaled up [resp. down] after the phase by
some prede�ned factor larger than one [resp. by the reciprocal of this factor].

4 Related work, discussion, and a view to theory

Evolutionary algorithms for numerical optimization usually try to learn good
step-sizes, which may be implemented by self-adaptation or success-based rules,
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the most prominent of which may be the 1/5-rule to increase [decrease] step sizes
if more [less] than 1/5 of the samples result in an improvement. This simple deter-
ministic adaptation mechanism, which is due to Rechenberg [5] and Schwefel [6],
has already been the subject of a probabilistic analysis of the (random) number
of steps necessary to reduce the approximation error in the search space. The �rst
results from this viewpoint of analyzing ES like �usual� randomized algorithms
were obtained in [7] for the simplest quadratic function, namely x 7→

∑n
i=1 x2

i ,
which is commonly called Sphere. This analysis has been extended in [8] to
quadratic forms with bounded condition number as well as to a certain class
of ill-conditioned quadratic forms (parameterized in the dimensionality of the
search space) for which the condition number grows as the dimensionality of the
search space increases. The main result of the latter work is that the runtime
(to halve the approximation error) increases proportionally with the condition
number. This drawback has already been noticed before in practice, of course. As
a remedy, the CMA was proposed which, in some sense, learns and continuously
adjusts a preconditioner by adapting the covariance matrix of the multivariate
normal distribution used to sample new candidate solutions. As noted above,
within the CMA-ES the CSA is applied for step-size control, which is neither
a self-adaptive mechanism nor based on a success rule. In the present work, we
exclusively deal with this CSA mechanism. Therefore, we consider a spherically
symmetric problem, so that the CMA mechanism is dispensable. We demand
that the simpli�ed CSA-derivatives perform su�ciently well on this elementary
type of problem at least. If they did not, they would be unable to ensure local
convergence at a reasonable speed, so that e�orts on a theoretical analysis would
seem questionable.

CSA, pCSA, and CBA are basically (1, λ) ES, and results obtained following
a dynamical-system approach indicate that the expected spatial gain towards the
optimum in an iteration is bounded above by O(ln(λ) ·d/n), where d denotes the
distance from the optimum, cf. [9, Sec. 3.2.3, Eqn. (3.115)]. As this result was
obtained using simplifying equations to describe the dynamical system induced
by the ES, however, it cannot be used as a basis for proving theorems on the
runtime of (1, λ)ES. Nevertheless, this is a strong indicator that a (1, λ) ES con-
verges, if at all, at best linearly at an expected rate 1−O(ln(λ)/n). From this,
we can conjecture that the expected number of iterations necessary to halve the
approximation error is bounded below by Ω(n/ lnλ). This lower bound has in
fact been rigorously proved in [10, Thm. 1] for a framework of iterative methods
that covers pCSA as well as CBA. (Unfortunately, CSA is not covered since the
factor for the σ-update in Eqn. (2) depends on the course of the optimization,
namely on the length of the evolution path.) Actually, it is proved that less than
0.64n/ ln(1+3λ) iterations su�ce to halve the approximation error only with an
exponentially small probability e−Ω(n) (implying the Ω(n/ lnλ)-bound on the
expected number of steps). Moreover, [10, Thm. 4] provides a rigorous proof
that a (1, λ) ES using a simple σ-adaptation mechanism (based on the relative
frequency of improving steps) to minimize Sphere needs with very high prob-
ability at most O(n/

√
lnλ) iterations to halve the approximation error. This
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upper bound is larger than the lower bound by a factor of order
√

lnλ, which
is actually due to the σ-adaptation: It adapts σ such that it is of order Θ(d/n),
whereas σ = Θ(

√
lnλ · d/n) seems necessary. For the original CSA minimizing

Sphere, a result obtained in [11, Eqn. (20)] (using the dynamical-system ap-
proach again) indicates that the expected spatial gain in an iteration tends to
(
√

2− 1) · (c1,λ)2 · d/n = Θ(ln(λ) · d/n) as the dimensionality n goes to in�nity,

where c1,λ = Θ(
√

lnλ) is the so-called (1,λ)-progress coe�cient (obtained for
optimal σ, cf. [9, Eqn. (3.114)]); σ is reported to tend to

√
2 · c1,λ · d/n as the

dimensionality n goes to in�nity, which is indeed Θ(
√

lnλ · d/n) [11, Eqn. (19)].
So, the long-term objective is a probabilistic analysis which rigorously proves

that the (1, λ) ES using CSA needs only O(n/ lnλ) iterations to halve the ap-
proximation error (for Sphere) with very high probability, which is optimal
w.r.t. the asymptotic in n and λ. As this seems intractable at present because of
the involved stochastic dependencies due to the evolution path, the intermediate
objective may be to prove the O(n/ lnλ)-bound for CBA. This makes (the most)
sense if CBA behaves su�ciently similarly to the original CSA, of course. And
this is what we investigate in the present paper. (If CBA performed much worse
than CSA, however, we would have to reconsider whether it makes sense to try
to prove the O(n/ lnλ)-bound for CBA as it might just not adapt σ such that it
is Θ(

√
lnλ · d/n).) The partition of the optimization process into phases in each

of which σ is not changed, and after each of which σ is deterministically updated
solely depending on what happened in that phase, enables the following line of
reasoning in a formal proof:

If σ is too small at the beginning of a phase, i.e., σ < c1 ·
√

lnλ · d/n for an
appropriately chosen constant c1 > 0, then it is up-scaled after the phase with
very high probability (w.v.h.p.). If, however, σ is too large at the beginning of a
phase, i.e., σ > c2 ·

√
lnλ ·d/n for another appropriately chosen constant c2 > c1,

then it is down-scaled after the phase w.v.h.p. With these two lemmas, we can
obtain that σ = Θ(

√
lnλ ·d/n) for any polynomial number of steps w.v.h.p. once

σ is of that order. Subsequently, we show that, if σ = Θ(
√

lnλ · d/n) in a step,
then the actual spatial gain towards the optimum in this step is Ω(lnλ · d/n)
with probability Ω(1); this can be proved analogously to [10, Sec. 5]. Thus,
given that at the beginning of a phase (with

√
n steps) σ = Θ(

√
lnλ · d/n),

the expected number of steps in the phase each of which actually reduces the
approximation error by at least an Ω(lnλ/n)-fraction is Ω(

√
n). Using Cherno�'s

bound, in a phase there are Ω(
√

n) such steps w.v.h.p., so that a phase reduces
the approximation error at least by an Ω(lnλ/

√
n)-fraction w.v.h.p. Finally,

this implies that O(
√

n/ lnλ) phases, i.e. O(n/ lnλ) steps, su�ce to reduce the
approximation error by a constant fraction w.v.h.p. This directly implies the
O(n/ lnλ)-bound on the number of iterations to halve the approximation error.

The proof of that CBA ensures σ = Θ(
√

lnλ · d/n) (w.v.h.p. for any poly-
nomial number of steps) remains. Therefore, note that the probability that two
steps are exactly orthogonal is zero (because of the random directions). Thus,
in a phase of k steps the number of positively correlated pairs of steps equals
(with probability one)

(
k
2

)
minus the number of negatively correlated pairs. For
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a theoretical analysis of CBA, for each phase
(
k
2

)
0-1-variables can be de�ned.

Each of these indicator variables tells us whether the respective pair of steps is
positively correlated (�1�) or not (�0�). (Recall that in CBA the decision whether
to up- or down-scale σ is based on whether the sum of these indicator variables
is larger than

(
k
2

)
/2 or smaller.) There are strong bounds on the deviation of

the actual sum of 0-1-variables from the expected sum, in particular when the
variables are independent�which is not the case for CBA. This can be overcome
by stochastic dominance arguments, so that we deal with independent Bernoulli
trials, rather than with dependent Poisson trials. We merely need to know how
the success probability of a Bernoulli trial depends on σ.

All in all, CBA is a candidate for a theoretical runtime analysis of an ES
using this simpli�ed CSA-variant. It was an open question, whether CBA works
at all and, if so, how well it performs compared to the original CSA (and pCSA).
Thus, we decided for an experimental comparison with statistical evaluation.

5 Experimental investigation of the CSA-variants

Since the underlying assumption in theory on black-box optimization is that
the evaluation of the function f to be optimized is by far the most expensive
operation, the number of f -evaluations (λ times the iterations) is the sole per-
formance measure in the following comparison of the three CSA-variants. To
�nd out the potentials of the σ-adaptation mechanisms described above, we fo-
cus on the simplest unimodal function scenario, namely the minimization of the
distance from a �xed point. This is equivalent (here) to the minimization of a
perfectly (pre)conditioned positive de�nite quadratic form. One of these func-
tions, namely x 7→

∑n
i=1 xi

2, is the commonly investigated Sphere (level sets of
such functions form hyper-spheres). We decided for a (1,5) Evolution Strategy,
i.e. λ := 5. The reason for this choice is that, according to Beyer [9, p. 73], �ve
samples are most �e�ective� for comma selection, i.e. allow maximum progress
per function evaluation. Thus, di�erences in the adaptations' abilities (to choose
σ as close to optimal as possible) should be most noticeable for this choice.

Experiment: Do the CSA-derivatives perform similar to the original CSA?

Pre-experimental planning. In addition to the adaptation rule and the phase
length, the scaling factor by which σ is increased or decreased after a phase had
to be �xed for pCSA and CBA. For both CSA-derivatives, the σ-scaling factor
was determined by parameter scans, cf. Figure 1, whereas the phase length k
was chosen a priori as d

√
n e (for the reason given above). Interestingly, the

parameter scans show that the σ-scaling factor should be chosen identically as
1 + 1/n1/4 for pCSA as well as for CBA.

Task. The hypothesis is that the three CSA-variants perform equally well in
terms of number of iterations. As the data can not be supposed to be normally
distributed, we compare two variants, namely their runtimes (i.e. number of
iterations), by the Wilcoxon rank-sum test (as implemented by �wilcox.test� in
�R�), where a p-value of 0.05 or less indicates a signi�cant di�erence.
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Fig. 1: Parameter scan of σ-scaling factors for pCSA (left) and CBA (right) over 2
to 1024 dimensions. The shading corresponds to the median number of steps
divided by dimensionality; 101 runs in the same setting as the �nal experiment.
The solid line represents 1 + 1/n1/4, whereas the thin lines show the contour.

Setup. The initial distance from the optimum is 220 and the stopping criterion
is a distance of less than 1 from the optimum, i.e., we measure the number of
iterations to halve the approximation error in the search space 20 times. The
initial σ is set to 220 · 1.225/n in each case. We investigate ten search-space
dimensions, namely n = 2i for i ∈ {1, 2, . . . , 10}. Each of the three algorithms is
run 1001 times.

Results. Figure 2 shows median runtimes and hinges for the three algorithms.
Additionally, the σ-adaptation within typical runs (i.e. median runtime) is shown
in Figure 3. Note that σ is considered well-chosen (after normalization w.r.t. di-
mension and distance from the optimum) when it lies between the two horizontal
lines, which correspond to a normalized σ of 1.0 (blue) resp. 2.0 (red).

Observations. Independently of the search-space dimension, i.e. for all ten
dimensions investigated, namely dimension n = 2i for i ∈ {1, . . . , 10}, we �nd:

1. The original CSA performs signi�cantly better than pCSA and CBA.
2. Moreover, CBA performs signi�cantly worse than pCSA.

As can be seen in Figure 2, transferring the continuous CSA-mechanism to a
phased one, namely to pCSA, leads to an increase in the runtimes by clearly
less than 50% in all ten dimensions. Concerning the runtimes at least, pCSA is
closer to the original CSA than CBA.

Discussion. Despite the reported �ndings, we attest that CBA does not fail,
it ensures a reliable σ-adaptation�it is merely worse. It particular, we are in-
terested in how much worse CBA is compared to the original CSA. Actually,
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Fig. 2: Left: Number of steps divided by dimensionality for CBA, pCSA, CSA, where
(1) lower hinge, (2) median, (3) upper hinge of 1001 runs, respectively.
Right: Ratio between (1) lower hinge, (2) median, (3) upper hinge of the 1001
runtimes of CBA vs. CSA and pCSA vs. CSA

in 2-dimensional search space, the ratio between the medians of the runtimes of
CBA to CSA equals 3. And in fact, when we multiply each of the 1001 runtimes
of CSA by 3, then the Wilcoxon test does not tell us a signi�cant di�erence
between CSA and CBA (p-value 0.85). Thus, we may conclude that CBA is
slower than CSA by roughly a factor of 3. However, �roughly� may be consid-
ered too vague. Rather, a con�dence interval should be given: For the factor
2.91 as well as for the factor 3.1, the p-value drops below 2.5%, respectively.
Thus, the 95%-con�dence interval for the factor by which CBA is slower than
CSA for the 2-dimensional problem is (at most) [2.91, 3.1], which has a spread of
only 3.1/2.91 < 1.066. The respective con�dence intervals for all ten dimensions
investigated are given in Table 1. As one might expect, they are pretty much
concentrated around the ratio of the median runtimes, respectively.

Concerning the performance di�erences observed, we think that CBA�as
the only variant for which a theoretical analysis seems feasible at present�still
works su�ciently similar to CSA to legitimate such analysis, at least for the
practically relevant and large dimensions: For eight and more dimensions the
number of function evaluations (�ve times the iterations) that CBA spends is

CBA vs. CSA 2D 4D 8D 16D 32D 64D 128D 256D 512D 1024D

conf. interval 2.91� 2.25� 1.61� 1.49� 1.46� 1.33� 1.25� 1.219� 1.171� 1.127�
runtime ratio 3.10 2.37 1.67 1.54 1.50 1.36 1.27 1.226 1.182 1.134

spread <6.6% <5.4% <3.8% <3.4% <2.8% <2.2% 1.6% <0.6% <1% <0.7%

Table 1: Con�dence intervals for the ratios between the runtimes of CBA and CSA
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Fig. 3: Normalized σ (w.r.t. dimensionality and distance from optimum) in a typical
run (i.e. median runtime) of each variant on 2-/16-/1024-dimensional Sphere
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mean±std of log2(bσ) 2D 16D 1024D

CSA 0.914± 1.183, 1.884 0.615± 0.454, 1.370 0.492± 0.171, 1.406

pCSA 2.012± 0.947, 4.033 0.642± 0.617, 1.560 0.408± 0.417, 1.327

CBA 1.699± 0.923, 3.247 0.734± 0.649, 1.663 0.236± 0.549, 1.178

Table 2: Means and standard deviations of log2(bσ) in the typical runs shown in Fig-
ure 3. Additionally, the log-mean bσ, namely 2^mean(log2 bσ), is given.

larger than for CSA by (at most) 67%, decreasing for larger dimensions down to
(at most) 13.4% in 1024 dimensions.

Clearly, the di�erences in the runtimes are due to di�erences in the ability to
adapt σ. Therefore, let σ̂ := σ · n/d denote the normalized σ (w.r.t. dimension-
ality and distance from the optimum point). Note that, for the simple function
scenario considered, for each dimension there is a unique value of σ̂ resulting in
maximum expected reduction of the approximation error per iteration (which is
not known exactly, unfortunately). Figure 3 shows the course of σ̂ in log2-scale
for each of the three CSA-variants for typical runs in 2-/16-/1024-dimensional
space, respectively, where �typical� means median runtime. In Table 2 the mean
and the standard deviation of log2(σ∗) for these runs are given, as well as the
log-mean of σ̂, which we refer to as the average σ̂.

For the 16- and 1024-dimensional problems, the original CSA adapts σ much
more smoothly than its two derivatives, which is apparently due to its continuous
σ-adaptation (most obvious in 1024 dimensions). For the 2-dimensional problem,
however, CSA shows a larger standard deviation from the average σ̂. Taking CSA
as a reference, pCSA as well as CBA adapt σ such that it is too large on average
in 16 dimensions, whereas in 1024 dimensions they adapt σ such that it is too
small on average�besides the larger �uctuations. For 16 dimensions, which we
consider practically relevant, as well as for 1024 dimensions, the average σ̂ of
pCSA lies right between the ones of CSA and CBA, respectively, which �ts well
with the di�erences in the runtimes. For the 2-dimensional problem, however,
correlations between the average σ̂ and the runtimes can hardly be found, which
becomes especially clear for pCSA. In two dimensions the runs are actually quite
short and, in addition, the step-lengths can deviate strongly from the expectation
σ · χ̄, so that the data might just be too noisy. Alternatively, there might be a
completely di�erent reason for the good performance of pCSA in 2-dimensional
space, which would be very interesting to reveal.

6 Conclusions & Outlook

The main aim of this work has been to develop an algorithm for step-size control
in black-box optimization which closely resembles the original CSA mechanism,
but which is su�ciently simple to enable a theoretical/probabilistic analysis.
From the experimental results obtained and from the construction details of the
two proposed CSA-variants we conclude that CBA does ful�ll both criteria.
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Additionally, some interesting facts have been unveiled. One of these a�ects
the change from continuous σ-update to phases in which σ is kept constant.
Contrary to what we expected, this modi�cation does not explain the large
runtime di�erences in small dimensions. Those may rather be due to the large
�uctuations observed in the step-sizes adjusted by the two CSA-derivatives; CSA
step-size curves are obviously much smoother in higher dimensions. Furthermore,
it has been found that an appropriate σ-scaling factor for both CSA-derivatives
seems to follow a double square root (namely 1 + 1/n1/4) rather than a single
square root function (like 1 + 1/

√
n) as one might expect.

Currently, we work on the details of a theoretical/probabilistic analysis of
CBA following the approach outlined in Section 4. Furthermore, we are going
to experimentally review the performance of the two CSA-derivatives on more
complex�actually, less trivial�functions in comparison to the original CSA
(also and in a particular in combination with CMA), but also to classical direct-
search methods like the ones reviewed in [12].
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