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Abstract

We consider the common nonlinear regression model where the variance as well as the

mean is a parametric function of the explanatory variables. The c-optimal design problem is

investigated in the case when the parameters of both the mean and the variance function are

of interest. A geometric characterization of c-optimal designs in this context is presented,

which generalizes the classical result of Elfving (1952) for c-optimal designs. As in Elfving’s

famous characterization c-optimal designs can be described as representations of boundary

points of a convex set. However, in the case where there appear parameters of interest in

the variance, the structure of the Elfving set is different. Roughly speaking the Elfving set

corresponding to a heteroscedastic regression model is the convex hull of a set of ellipsoids

induced by the underlying model and indexed by the design space. The c-optimal designs

are characterized as representations of the points where the line in direction of the vector c

intersects the boundary of the new Elfving set. The theory is illustrated in several examples

including pharmacokinetic models with random effects.
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1 Introduction

Nonlinear regression models are widely used to describe the relation between several variables

[see Seber and Wild (1989), Ratkowsky (1983, 1990)]. Because of the broad applicability of such

models in many fields the problem of constructing optimum experimental designs for these models

has found considerable interest in the literature. Early work has been done by Chernoff (1953)

who introduced the concept of locally optimal designs. These designs require an initial guess

of the unknown parameters of the model and are used as benchmarks for many commonly used

designs. Locally optimum designs for nonlinear models have been discussed by numerous authors

[see Ford et al. (1992), Box and Lucas (1959), Haines (1993), Haines (1995), Biedermann et al.

(2006), López-Fidalgo and Wong (2002), Dette et al. (2004) among many others]. Most of the

relevant literature discusses the design problem under the additional assumption of a constant

variance but much less work has been done for models with an heteroscedastic error structure.

Wong and Cook (1993) studied G-optimal designs for models, when heteroscedasticity is present

in the data. A systematic approach to optimal design problems for heteroscedastic linear models

was given by Atkinson and Cook (1995), who derived the necessary information matrices in the

case where the variance as well as the mean depend on the parameters of the model and the

explanatory variables. For other work on optimal designs for specific regression models with

heteroscedastic errors and various optimality criteria we refer to King and Wong (1998), Ortiz

and Rodŕıguez (1998), Fang and Wiens (2000), Brown and Wong (2000), Montepiedra and Wong

(2001) and Atkinson (2008) among others.

The present paper is devoted to the local c-optimality criterion which determines the design such

that a linear combination of the unknown parameters (specified by the vector c) has minimal

variance [see e.g. Pukelsheim (1981), Pázman and Pronzato (2008)] . Under the assumption of

homoscedasticity there exists a beautiful geometric characterization of locally c-optimal designs

which is due to Elfving (1952) who considered the case of a linear model. Roughly speaking, the

characterization of Elfving (1952) is possible, because the Fisher information can be represented

in the form

I(x, θ) = f(x, θ)fT (x, θ),(1.1)

where f(x, θ) denotes a vector of functions corresponding to the particular model under consid-

eration and θ is the vector of unknown parameters. The c-optimal design with support points

x1, . . . , xm and weights p1, . . . , pm can be characterized as a representation of the point

λc =
m∑
r=1

prεrf(xr, θ)(1.2)

2



where ε1, . . . , εk ∈ {−1, 1} and λ > 0 denotes a scaling factor such that the point λc is a boundary

point of the Elfving set

R1 = conv {εf(x, θ) | x ∈ X , ε ∈ {−1, 1}}.(1.3)

Here X denotes the design space, conv(A) is the convex hull of a set A ⊂ Rp. This result has

been applied by numerous authors to derive c-optimal designs in linear and non-linear regression

models [see e.g. Studden (1968), Han and Chaloner (2003), Ford et al. (1992), Chernoff and

Haitovsky (1990), Fan and Chaloner (2003), Dette et al. (2008) among many others]. For a

review on Elfving’s theorem we also refer to Fellmann (1999) and to the recent work of Studden

(2005). On the other hand, in the case of heteroscedasticity, where both the mean and the

variance depend on the explanatory variables and parameters of interest, the information matrix

is usually of the form

I(x, θ) =
k∑
j=1

fj(x, θ)f
T
j (x, θ)(1.4)

[see Atkinson and Cook (1995)] with k ≥ 2. Here f1, . . . , fk represent certain features of the

nonlinear regression model under consideration (see Section 2 for more details) and a geometric

characterization of the Elfving type is not available. It is the purpose of the present paper to fill

this gap and to provide a useful characterization of c-optimal designs for regression models with

Fisher information of the form (1.4).

In Section 2 we introduce the basic notation of a heteroscedastic nonlinear regression model and

demonstrate that the Fisher information matrix has in fact the form (1.4). Section 3 contains our

main results. We derive a general equivalence theorem for locally c-optimal designs in nonlinear

regression models with Fisher information matrix given by (1.4). These results are used to derive

a geometric characterization of locally c-optimal designs which generalize the classical result of

Elving to regression models, where the mean as well as the variance depend on the explanatory

variables and the parameters of interest. The corresponding Elving space has the same dimension

as a classical Elving space but consists of the convex hull of a family of ellipsoids induced by the

underlying model and indexed by the design space (see Section 3 for details). In the special case

k = 1 the generalized Elfving set reduces to the classical set considered by Elfving (1952) and

a similar result is obtained if the variance of the regression is a function of the mean. Finally,

in Section 4 we illustrate the geometric characterization in several examples. In particular we

demonstrate the applicability of the results in the Michaelis-Menten model with exponentially

decreasing variance and in a nonlinear random effect model used in toxicokinetics, where the

Fisher information has a similar structure as in (1.4).
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2 c-optimal designs for heteroscedastic regression models

Consider the common nonlinear regression model where at a point x a response Y is observed

with expectation

E[Y |x] = µ(x, θ)(2.1)

and variance

Var[Y |x] = σ2(x, θ).(2.2)

Here θ ∈ Rp denotes the vector of unknown parameters. Note that we do not exclude the case,

where µ and σ2 depend on different subsets of the parameter vector, that is θ = (θ1, θ2), µ(x, θ) =

µ(x, θ1); σ
2(x, θ) = σ2(x, θ2). We assume that n independent observations Y1, . . . , Yn are available

under experimental conditions x1, . . . , xn ∈ X , where X denotes the design space. We define µθ =

(µ(x1, θ), . . . , µ(xn, θ))
T as the vector of the expected responses, σ2

θ = (σ2(x1, θ), . . . , σ
2(xn, θ))

T

as the vector of variances and

Σθ = diag(σ2(x1, θ), . . . , σ
2(xn, θ))(2.3)

as the covariance matrix of the random vector Y = (Y1, . . . , Yn)T . Under the additional assump-

tion of a normal distribution the Fisher information of Y is given by the k × k matrix

I =
dµTθ
dθ

Σ−1
θ

dµθ
dθ

+
1

2

dσ2
θ

dθ

T

Σ−2
θ

dσ2
θ

dθ
.(2.4)

An approximate experimental design is a discrete probability measure with masses w1, . . . , wm

at points x1, . . . , xm ∈ X . These points define the distinct experimental conditions at which

observations have to be taken and w1, . . . , wm > 0,
∑m

j=1wj = 1 are positive weights represent-

ing the proportions of total observations taken at the corresponding points [see Silvey (1980),

Atkinson and Donev (1992), Pukelsheim (1993), Randall et al. (2007)]. If N observations can

be taken a rounding procedure is applied to obtain integers rj from the not necessarily integer

valued quantities wjN (j = 1, . . . ,m) [see Pukelsheim and Rieder (1992)]. If the assumption of

a normal distribution is made the analogue of the Fisher information matrix for an approximate

design is the matrix

M(ξ, θ) =

∫
X
I(x, θ)dξ(x) ∈ Rp×p,(2.5)

where

I(x, θ) =
1

σ2(x, θ)

(
∂µ(x, θ)

∂θ

)T
∂µ(x, θ)

∂θ
+

1

2σ4(x, θ)

(
∂σ2(x, θ)

∂θ

)T
∂σ2(x, θ)

∂θ
(2.6)
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denotes the Fisher information at the point x [see also Atkinson and Cook (1995) or Atkinson

(2008)].

Under some additional assumptions of regularity it can be shown that the asymptotic covariance

matrix of the maximum likelihood estimate for the parameter θ is given by

1

N
M−1(ξ, θ)(2.7)

[see Jennrich (1969)]. An optimal design for estimating the parameter θ minimizes an appropriate

function of this matrix and numerous criteria have been proposed for this purpose [see Silvey

(1980), Pukelsheim (1993) or Randall et al. (2007)]. In this paper we consider the local c-

optimality criterion, which determines the design ξ such that the expression

cTM−(ξ, θ)c,(2.8)

is minimal, where c ∈ Rp is a given vector, the minimum is calculated among all designs for

which cT θ is estimable, that is c ∈ Range(M(ξ, θ)), and M−(ξ, θ) denotes a generalized inverse

of the matrix M(ξ, θ). The expression (2.8) is approximately proportional to the variance of the

maximum likelihood estimate for the linear combination cT θ. It is shown in Pukelsheim (1993)

that the expression (2.8) does not depend on the specific choice of the generalized inverse if the

vector c is estimable by the design ξ. Note that the criterion (2.8) is a local optimality criterion

in the sense that it requires the specification of the unknown parameter θ [see Chernoff (1953)].

Locally optimal designs are commonly used as benchmarks for given designs used in applications.

Moreover, in some cases knowledge about the parameter θ is available from previous studies

and locally c-optimal designs are robust with respect to misspecifications of θ [see Dette et al.

(2008)]. For robustifications of locally optimal designs the interested reader is referred to the

work of Chaloner and Verdinelli (1995), Dette (1995) or Müller and Pázman (1998) among many

others.

Note that the Fisher information (2.4) is of the form

(2.9) I(x, θ) =
k∑
`=1

f`(x, θ)f
T
` (x, θ) ,

where k = 2 and

(2.10) f1(x, θ) =
1

σ(t, θ)

(
∂µ(t, θ)

∂θ

)T
; f2(x, θ) =

1√
2σ2(t, θ)

(
∂σ2(t, θ)

∂θ

)T
.

Because the formulation of our main results does not yield any additional complication in the

subsequent discussion, we consider in the following models with a Fisher information of the form
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(2.9). We call a design ξc minimizing cTM−(ξ, θ)c a locally c-optimal for a model with Fisher

information matrix of the form (2.9), where the minimum is taken over the class of all designs for

which cT θ is estimable. The corresponding statements for the heteroscedastic nonlinear regression

models are then derived as special cases.

3 Elfving’s Theorem for heteroscedastic models

The following result allows an easy verification of c-optimality for a given design.

Theorem 3.1. A design ξc is locally c-optimal in a model with Fisher information matrix of the

form (2.9) if and only if there exists a generalized inverse G of the matrix M(ξc, θ) such that the

inequality

(3.1)
k∑
`=1

(
cTGf`(x)

cTM−(ξ, θ)c

)2

≤ 1

holds for all x ∈ X . Moreover, there is equality in (3.1) at any support point of the design ξc.

Proof of Theorem 3.1. Let Ξ denote the set of all approximative designs on X and for fixed

θ let

M = {M(ξ, θ) | ξ ∈ Ξ} ⊂ Rp×p

denote the set of all information matrices of the form (2.5), where I(x, θ) =
∑k

`=1 f`(x, θ)f
T
` (x, θ).

M is obviously convex and the information matrix M(ξc, θ) of a locally c-optimal design for

which the linear combination cT θ is estimable (i.e. c ∈ Range (M(ξ, θ)) maximizes the function

(cTM−c)−1 in the setM∩Ac, where Ac = {M(ξ, θ)) ∈M | c ∈ Range(M(ξ, θ))}. Consequently

it follows from Theorem 7.19 in Pukelsheim (1993) that the design ξc is c-optimal if and only if

there exists a generalized inverse, say G, of the matrix M(ξc, θ) such that the inequality

tr(AGccTGT ) ≤ cTM−(ξc, θ)c

holds for all A ∈M, where there is equality for any matrix A ∈M which maximizes (cTM−c)−1

in the set M. Note that the family M is the convex hull of the set{
k∑
`=1

f`(x, θ)f
T
` (x, θ)

∣∣∣∣x ∈ X
}

,

and therefore the assertion of Theorem 3.1 follows by a standard argument of optimal design

theory [see e.g. Silvey (1980)]. 2
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The following result gives the corresponding statement for the case of the nonlinear heteroscedas-

tic regression model introduced in Section 2. It is a direct consequence of Theorem 3.1 observing

that in this case we have k = 2 and the two functions f1 and f2 are given by (2.10).

Corollary 3.2. Under the assumption of a normally distributed error a design ξc is c-optimal

for the nonlinear heteroscedastic regression model (2.1) and (2.2) if and only if there exists a

generalized inverse G of the matrix M(ξc, θ) such that the inequality

(3.2)
1

σ2(x, θ)

(
∂µ(x, θ)

∂θ
Gc

)2

+
1

2σ4(x, θ)

(
∂σ2(x, θ)

∂θ
Gc

)2

≤ cTM−(ξc, θ)c

holds for all x ∈ X . Moreover, there is equality in (3.2) at any support point of the design ξc.

In the following discussion we will use the equivalence Theorem 3.1 to derive a geometric char-

acterization of locally c-optimal designs in nonlinear regression models with Fisher information

of the form (2.9), which generalizes the classical result of Elving in an interesting direction. For

this purpose we define a generalized Elving set by

Rk = conv

{
k∑
j=1

εjfj(x, θ)

∣∣∣∣ x ∈ X ;
k∑
j=1

ε2
j = 1

}
(3.3)

and obtain the following result.

Theorem 3.3. A design ξc = {xr, pr}mr=1 is locally c-optimal in a model with Fisher information

matrix of the form (2.9) if and only if there exist constants γ > 0, ε1,1, . . . , ε1,m, . . . , εk,1, . . . , εk,m

satisfying

k∑
`=1

ε2
`r = 1 ; r = 1, . . . ,m(3.4)

such that the point γc ∈ Rp lies on the boundary of the generalized Elfving set Rk defined in (3.3)

and has the representation

γc =
m∑
r=1

pr

{
k∑
`=1

ε`rf`(xr)

}
∈ ∂ Rk.(3.5)

Proof. Assume that the design ξc = {xr; pr}mr=1 minimizes cTM−(ξ, θ)c or equivalently satisfies

Theorem 3.1. We define γ2 = (cTGc)−1, d = γGc ∈ Rp, then it follows from c ∈ Range(M(ξ, θ))
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and the representation (2.9) that

γc = M(ξc, θ)d =
m∑
r=1

pr

{
k∑
`=1

f`(xr, θ)f
T
` (xr, θ)

}
d

=
m∑
r=1

pr

{
k∑
`=1

f`(xr, θ)ε`r

}
,

where we have used the notation ε`r = fT` (xr)d (` = 1, . . . , k; r = 1, . . . ,m). By Theorem 3.1

there is equality in (3.1) for each support point xr, which implies (observing the definition of γ

and ε`r)
k∑
`=1

ε2
`r = 1 ; r = 1, . . . ,m.

Consequently, the conditions (3.4) and (3.5) are satisfied and it remains to show that γc ∈ ∂Rk.

For this purpose we note that we have by Cauchy’s inequality and Theorem 3.1(
dT
{ k∑
`=1

ε`f`(x, θ)

})2

≤
k∑
`=1

(dTf`(x, θ))
2

k∑
`=1

ε2
` ≤

k∑
`=1

ε2
` = 1(3.6)

for all x ∈ X and ε1, . . . , ε` satisfying (3.4). Moreover, γcTd = 1 by the definition of the constant

γ and the vector d. Consequently, the vector d defines a supporting hyperplane to the generalized

Elfving set Rk at the point γc, which implies γc ∈ ∂Rk

In order to prove the converse assume that γc ∈ ∂Rk and that (3.4) and (3.5) are satisfied. In

this case there exists a supporting hyperplane, say d ∈ Rp, to the generalized Elfving set Rk at

the boundary point γc, that is

γcTd = 1 ,(3.7)

and the inequality ∣∣∣∣dT{ k∑
`=1

ε`f`(x, θ)
}∣∣∣∣ ≤ 1(3.8)

holds for all x ∈ X , ε1, . . . , εk satisfying (3.4). Defining

ε`(x) =
dTf`(x, θ)√∑k
j=1(d

Tfj(x, θ))2

, ` = 1, . . . , k

we have
∑k

`=1 ε
2
`(x) = 1 and obtain from the inequality (3.8)

k∑
`=1

(dTf`(x))2 =

∣∣∣∣ k∑
`=1

dT
{
ε`(x)f`(x, θ)

}∣∣∣∣2 ≤ 1(3.9)
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for all x ∈ X . On the other hand, it follows from (3.5) and (3.7) that

1 = γcTd =
m∑
r=1

prd
T

{
k∑
`=1

ε`rf`(xr, θ)

}
,

which implies (using the inequality (3.9)) for x1, . . . , xm

dT
{ k∑
`=1

ε`rf`(xr, θ)
}

= 1 r = 1, . . . ,m.(3.10)

Consequently, we obtain using the Cauchy-Schwarz inequality

1 =

(
k∑
`=1

ε`rd
Tf`(xr, θ)

)2

≤
k∑
`=1

ε2
`r

k∑
`=1

(
dTf`(xr, θ)

)2 ≤ 1

for each r = 1, . . . ,m, which gives

ε`r = λrd
Tf`(xr, θ) ` = 1, . . . , k; r = 1, . . . ,m(3.11)

for some constants λ1, . . . , λm. Now inserting (3.11) in (3.10) yields

1 = λr

k∑
`=1

(
dTf`(xr, θ)

)2
= λr r = 1, . . .m,

and combining (3.11) and (3.5) gives

γc =
m∑
r=1

pr

{
k∑
`=1

f`(xr, θ)f
T
` (xr, θ)

}
d = M(ξc, θ)d.

It follows from Searle (1982) that there exists a generalized inverse of the matrix M(ξc, θ) such

that d = γGc and we have from (3.9) for all x ∈ X

γ2

k∑
`=1

(cTGf`(x))2 ≤ 1.(3.12)

By (3.7) we have γ2 = cTGc = cTM−1(ξc, θ)c and the inequality (3.12) reduces to (3.1). Conse-

quently the c-optimality of the design ξc = {xr; pr}mr=1 follows from Theorem 3.1. 2

Note that in the case k = 1 the generalized Elfving set Rk defined in (3.3) reduces to the

classical Elfving set (1.3) introduced by Elfving (1952). Similarly, Theorem 3.3 reduces to the

classical Elfving Theorem for models in which the Fisher information can be represented by

I(x, θ) = f1(x, θ)f
T
1 (x, θ) [see Pukelsheim (1993), Chapter 2, or Studden (2005)]. In the following
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Corollary we specify the geometric characterization of Theorem 3.3 in the special case of nonlinear

heteroscedastic regression models where we have k = 2 and the functions f1 and f2 are given by

(2.10).

Corollary 3.4. Consider the nonlinear heteroscedastic regression model defined by (2.1) and

(2.2) with the additional assumption of a normal distribution, and define

R = conv

{
ε1

σ(x, θ)

(
∂µ(x, θ)

∂θ

)T
+

ε2√
2σ2(x, θ)

(
∂σ2(x, θ)

∂θ

)T ∣∣x ∈ X , ε2
1 + ε2

2 = 1

}
.(3.13)

A design ξc = {xr; pr}mr=1 is locally c-optimal if and only if there exist constants γ > 0 and

ε1,1, . . . , ε1,m, ε2,1, . . . , ε2,m satisfying ε2
1r + ε2

2r = 1 (r = 1, . . . ,m) such that the point

γc =
m∑
r=1

pr

{
ε1r

σ(xr, θ)

(
∂µ(xr, θ)

∂θ

)T
+

ε2r√
2σ2(xr, θ)

(
∂σ2(xr, θ)

∂θ

)T}

is a boundary point of the set R.

Remark 3.5. Consider the case where mean and variance in the regression model are related

by a known link function, say `, that is

σ2(x, θ) = `(µ(x, θ)).(3.14)

Under this assumption a straightforward calculation shows that the Elfving set (3.13) reduces to

R = conv

{
ε1√

`(µ(x, θ))

(
∂µ(x, θ)

∂θ

)T
+

ε2`
′(µ(x, θ))√

2`2(µ((x, θ))

(
∂µ(x, θ)

∂θ

)T ∣∣∣∣ x ∈ X , ε2
1 + ε2

2 = 1

}

= conv

{(
ε1√

`(µ(x, θ))
+

ε2`
′(µ(x, θ))√

2`2(µ(x, θ))

)(
∂µ(x, θ)

∂θ

)T ∣∣∣∣ x ∈ X , ε2
1 + ε2

2 = 1

}
.

Now using the values

ε1 = ε
1√

1 + ω2(x)
; ε2 = ε

ω(x)√
1 + ω2(x)

; ω(x) =
`′(µ(x, θ))√
2`(µ(x, θ))

for some ε ∈ {−1, 1} it can be easily shown that R1 ⊂ R, where the set R1 is defined by

R1 = conv

ε
√

1

`(µ(x, θ))
+

1

2

(
`′(µ(x, θ))

`(µ(x, θ))

)2(
∂µ

∂θ
(x, θ)

)T ∣∣∣∣ x ∈ X , ε ∈ {−1, 1}

 ,
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and corresponds to a classical Elfving set of the form (1.3). Similarly, it follows observing the

inequality ∣∣∣∣ ε1√
`(µ, (x, θ))

+
ε2`
′(µ(x, θ))√

2`2(µ(x, θ))

∣∣∣∣ ≤
√

1

`(µ(x, θ))
+

1

2

(
`′(µ(x, θ))

`(µ(x, θ))

)2

whenever ε2
1 + ε2

2 = 1, that R ⊂ R1, which implies R = R1. Thus for nonlinear heteroscedastic

regression models, where the conditional expectation and variance are related by a known link

function by (3.14), the Elfving set R reduces to an Elfving set of the form (1.3) and the classical

result of Elfving (1952) can be used to characterize locally c-optimal designs.

4 Examples

In this section we will illustrate the geometric characterization by two examples. In the first

example we discuss a nonlinear heteroscedastic regression model. Our second example considers

a population model and indicates that an information matrix of the form (2.9) may also appear

in other situations.

4.1 A heteroscedastic Michaelis-Menten model

As a first example we consider a common model in enzyme kinetics with an heteroscedastic error

structure, that is

Yi =
θ1xi
θ2 + xi

+
√
e−θ3xiεi ; i = 1, . . . , n,(4.1)

where errors are independent identically and normal distributed with mean 0 and variance σ2 > 0.

The parameters to be estimated are θ = (θ1, θ2, θ3). Clearly, V ar(Yi) = σ̃2(xi, θ) := e−θ3xiσ2,

which means that the model is heteroscedastic. Some design issues for the Michaelis-Menten

model have been discussed by López-Fidalgo and Wong (2002). In the following we illustrate

the geometric characterization of Section 3 by constructing optimal designs for estimating the

minimum effective dose in the model (4.1).

For this purpose we assume for the parameters θ = (3, 1.7, 0.1), σ2 = 1. A straightforward

calculation shows that

∂f(x, θ)

∂θ
=

(
x

θ2 + x
,
−θ1x

(θ2 + x)2
, 0

)T
,

∂σ̃2(x, θ)

∂θ
= (0, 0,−xe−θ3x)T ,
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which yields

f1(x, θ) =
1

σe−θ3x/2

(
x

θ2 + x
,
−θ1x

(θ2 + x)2
, 0

)T
(4.2)

f2(x, θ) =
1√

2σ2e−θ3x
(0, 0,−xe−θ3x)T(4.3)

The corresponding generalized Elfving space is as depicted in Figure 2. Suppose we are interested

in estimating the minimum effective dose xmin, i.e. the smallest value of x resulting in an expected

value E[Y |x] = E. The solution of this equation is given by

xmin =
Eθ2

θ1 − E
.

An optimal design for estimating the minimum effective dose minimizes the variance of the

estimate for xmin. Consequently, if maximum likelihood is used to estimate θ and xmin is estimated

by x̂min = Eθ̂2/(θ̂1−E) an optimal design for estimating the minimum effective dose is a locally

c-optimal design problem for the vector

c =

(
−Eθ2

(θ1 − E)2
,

E

θ1 − E
, 0

)T
,

which is marked as the blue line in Figure 1. Let E = 1 and the maximum possible observation

xmax = 10, that is X = [0, 10]. From the figure we obtain as optimal design for estimating the

minimum effective dose the two point design

ξc =

(
1.4 10

0.952 0.048

)
.

The optimality of this design can be verified by Theorem 3.1.

4.2 A random effect nonlinear regression model

An information matrix of the form (2.9) appears also in the case of a nonlinear model with

mixed effects and homoscedastic error structure, which has been intensively discussed in the

toxicokinetics and pharmacokinetics literature [see e.g. Beatty and Pigeorsch (1997) or Retout

and Mentré (2003) among others]. To be precise we consider a special case of a nonlinear mixed

effects model which appears in population toxicokinetics, i.e.

Yi = f(xi, bi) + εi ; i = 1, . . . , n ,

12
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Figure 1: The Elfving space R defined in (3.3) for a Michaelis-Menten model (4.1) with het-

eroscedastic error structure. The functions f1 and f2 are given by (4.2) and (4.3), respectively.

where the errors are independent identically and normally distributed with mean 0 and variance

σ2 > 0. The quantities b1, . . . bn ∼ N (θ,Ω) denote here p-dimensional independent normally

distributed random variables representing the effect of the corresponding subject under investi-

gation [see Beatty and Pigeorsch (1997), Ette et al. (1995), Cayen and Black (1993)]. We assume

that the random variables b1, . . . , bn and the vector (ε1, . . . , εn)T are independent. The variance

of the random variable Yi can be approximated by

Var(Yi) ≈ σ̃2(xi, θ) :=
∂f(xi, θ)

∂θ

T

Ω
∂f(xi, θ)

∂θ
+ σ2.

It now follows by similar arguments as in Retout and Mentré (2003) that the Fisher information

matrix for the parameter θ at the point x can be approximated by

I(x, θ) =
1

σ̃2(x, θ)

∂f(x, θ)T

∂θ

∂f(x, θ)

∂θ
+

1

2σ̃4(x, θ)

∂σ̃2(x, θ)

dθ

T
∂σ̃2(x, θ)

∂θ
,
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which corresponds to the case (2.9) with k = 2 and

f1(x, θ) =
1

σ̃(x, θ)

∂f(x, θ)

∂θ
, f2(x, θ) =

1√
2σ̃2(x, θ)

∂σ̃2(x, θ)

∂θ
.

Consider for example the simple first order elimination model

Y = θ1e
−θ2x + ε, x ∈ X = [0,∞) ,(4.4)

which is widely used in pharmacokinetics [e.g. Rowland (1993)]. For the parameters we assume

θ = (30, 1.7) , Ω = diag(ω1, ω2) = diag(1, 0.1) and σ2 = 0.04

A straightforward calculation shows that

∂f(x, θ)

∂θ
= (e−θ2x,−θ1xe

−θ2x) ,

∂2f(x, θ)

∂θ1dθ2

= −xe−θ2x, ∂
2f(x, θ)

∂θ2
1

= 0,
∂2f(x, θ)

∂θ2
2

= x2e−θ2x,

which yields

f1(x, θ) =
1

σ̃(x, θ)
(e−θ2x,−θ1xe

−θ2x)(4.5)

f2(x, θ) =

√
2

σ̃2(x, θ)

2∑
m=1

(
∂2f(x, θ)

∂θm∂θ

∂f(x, θ)

∂θm

)
ωm .(4.6)

The corresponding generalized Elfving space is as depicted in Figure 2. If we are interested in

the optimal design for estimating the area under the curve, i.e.

AUC =

∫ ∞
0

θ1e
−θ2xdx =

θ1

θ2

,

we obtain a locally c-optimal design problem for the vector c = (1/θ2,−θ1/θ
2
2)T , which is marked

as the blue line in Figure 2. From this Figure we obtain as locally c-optimal design for the

estimation of the area under the curve the two point design

ξc =

(
0.13 1.99

0.29 0.71

)
.

The optimality of this design can also be verified by Theorem 3.1.
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