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ABSTRACT

We consider a dose-finding trial in phase IIB of drug development. For choosing

an appropriate design for this trial the specification of two points is critical: an

appropriate model for describing the dose-effect relationship and the specification

of the aims of the trial (objectives), which will be the focus in the present paper.

For many practical situations it is essential to have a robust trial objective that

has little risk of changing during the complete trial due to external information.

An important and realistic objective of a dose-finding trial is to obtain precise

information about the interesting part of the dose-effect curve. We reflect this

goal in a statistical optimality criterion and derive efficient designs using optimal

design theory. In particular we determine non-adaptive Bayesian optimal designs,

i.e. designs which are not changed by information obtained from an interim

analysis. Compared with a traditional balanced design for this trial it is shown

that the optimal design is substantially more efficient. This implies either a gain

in information or essential savings in sample size. Further, we investigate an

adaptive Bayesian optimal design that uses two different optimal designs before

and after an interim analysis, and we compare the adaptive with the non-adaptive

Bayesian optimal design. The basic concept is illustrated using a modification of

a recent AstraZeneca trial.
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1 Introduction

Before the decision is taken to move into phase III of drug development, a dose-finding trial is

performed to determine the dose (or doses) appropriate for the phase III trials and to obtain

a solid basis for the decision of continuing to phase III or not. A typical dose-finding trial

consists of a few hundred patients, a few doses and the treatment time is often somewhat

shorter than in the succeding phase III trials. This trial is performed at the end of phase II

in the development process and usually called phase IIB trial. For a general overview about

dose-finding studies, we refer to recent monographs by Chevret (2006) and Ting (2006).

One general problem for the pharmaceutical industry is that there is often a rather

poor understanding about the dose-effect profile of a new drug when going into phase III

despite a quite long development process. The dose-finding trial of phase IIB provides some

information on this profile. But it is often felt that there is still insufficient knowledge

afterwards and that one could have done better. These difficulties are partially caused by

the fact that traditional (balanced) designs are used for this trial, which may be suboptimal.

It is clear that a good knowledge of the dose-effect properties is very important for the

chances of success of the chosen doses for phase III. Furthermore, phase IIB is often the last

possibility before launch of the new drug to investigate this dose-effect relation in detail:

only one or two doses are usually used in phase III. Moreover, knowledge of the dose-effect

relation would be also useful for physicians and patients when the drug is finally on the

market.

For these reasons more innovative designs for dose-finding trials are of particular interest.

Running a clinical trial by a traditional approach using parallel groups with placebo and a

number of dose arms with equal allocation throws away possibilities to obtain information in

a more efficient way. A more innovative way of designing experiments for dose-finding trials

is to think carefully about useful doses for this trial, to modify the allocation ratios for the

doses and to think about the advantages or disadvantages of a possible change of the design

after interim data of the trial has been evaluated. The last point of a potential adaptation got

recently very much interest. The European regulatory authorities (Committee for Medicinal

Products for Human Use; 2006) developed a reflection paper (currently in draft version) for

confirmatory trials (phase III) with flexible analysis plans. For the phase IIB trial considered

in this paper we will discuss the possibility of an adaptive choice of doses or allocation ratios.

A recommendation of the Pharmaceutical Research and Manufacturers of America working

group regarding adaptive dose-response trials was presented by Gaydos et al. (2006). They

reviewed non-adaptive and adaptive dose-response designs both for early (phase I) and later-
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stage (phase II) drug development. Dose-finding trials conducted with adaptive design are

described by Krams et al. (2003) and Smith et al. (2006).

When designing a trial, especially if non-traditional approaches are considered, the spec-

ification of two points is critical: what knowledge about the dose-effect relationship (a priori

knowledge) is available and what are the aims of the trial (objectives). There are different

possible sources to gain a priori knowledge: for example earlier trials with the same drug,

preclinical information, published data with similar drugs. All information has to be anal-

ysed carefully and it is often possible to derive guesses for an anticipated effect - even if these

are very rough.

In this paper we focus more on the second point mentioned above, the specification of trial

objectives. Sometimes, the main objective of a dose-finding trial is defined as identification

of a single dose for phase III. However, for many practical situations, it is necessary to

specify a broader objective for the trial. Usually it takes a long time to perform such a dose-

effect trial, in many cases several years. During this period, a lot of new information can

be obtained from sources external to the trial. For example, there are other trials ongoing

with the compound under investigation and new information might be obtained by those

including further information about safety and tolerability. Or, a competing company may

launch a new drug for the same indication and requirements for a clinical relevant effect may

change.

Since many things can happen during a phase IIB trial, we need a more flexible objective.

We think a realistic objective for a dose-finding trial is to get information about the inter-

esting part of the dose-effect curve. We make the notion ”interesting part” more concrete in

this paper and describe it in statistical terms. Based on the specification of this objective,

we derive and investigate appropriate designs using optimal design theory. A brief overview

how optimal design theory can be applied to dose-finding trials is included in the article of

Dragalin (2006).

The remaining part of this paper is organised as follows. In the next section we describe

a specific situation of a phase IIb trial which motivated our investigations. For the sake of

a transparent presentation of the basic concepts we concentrate on this specific trial, but it

is emphazised that the main ideas presented in this paper are applicable in other situations.

In Section 3 we describe the objectives of the dose-finding trial under consideration and

reflect these in statistical terms. We apply optimal design theory in Section 4 to derive a

non-adaptive Bayesian optimal design, i.e. a design which is not changed by information

obtained from an interim analysis of the available data. It is demonstrated that this non-
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adaptive design provides answers to our objectives in a more efficient way than the commonly

used balanced design. In Section 5, we develop the Bayesian optimal design further by taking

into account that an interim analysis is often conducted in dose-finding trials, which provides

additional information about the dose response relationship. A modification of the allocation

ratios for the dose arms based on this information leads to an adaptive Bayesian optimal

design. This concept has been discussed before in the context of model discrimination for

nested linear models by Montepiedra and Yeh (1998, 2003). The conduct of such a design

requires some further logistical and operational considerations, see e.g. Quinlan and Krams

(2006). We compare the efficiencies of the non-adaptive and the adaptive Bayesian optimal

design in Section 6 and conclude the paper with a brief discussion in Section 7. Statistical

details are postponed to the Appendix.

2 The dose-finding trial

The motivation for the investigation described in this paper was the planning for an As-

traZeneca phase IIB trial. For confidentiality reasons, we cannot present all details about

the medical background of this trial and we can only publish modified values about as-

sumptions. However, we have modified our example in a way that essential properties and

conclusions carry over from the ”real” example to our partially artificial example.

The planning for the design of this trial was done when data from phase I trials (single

ascending dose and multiple ascending dose trial for healthy volunteers) were available. As

result of these trials it was concluded that doses higher than 100 mg have too high safety

risks. For doses up to this threshold, good safety experiences were gained and the drug was

well tolerated.

In the trials that will be performed in phase II and III for patients, a primary variable

will be used measuring the effect of the drug. We do not specify this variable here, but we

use in this paper a continuous variable where higher values indicate a positive effect of the

drug. Until now, there are no effect-results for the drug available. However, pharmacometric

modellers could use various sources of information to get possible dose-effect-relationships

within our dose range between 0 and 100 mg. Pharmacokinetic analyses from the phase I

trials were available, preclinical data could be used and clinical data from another compound

with similarities to the drug under investigation was another important source to get some

anticipations about a possible dose-effect curve. As first result of these investigations, an

Emax-sigmoid model was seen as an adequate and flexible dose-effect-model. This model has
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the form:

f(x) = E0 +
Emaxx

α

EDα
50 + xα

,

where x is the dose in mg and f(x) denotes the true effect for dose x. The parameter E0

describes the placebo response, Emax is the maximum effect for a very high dose compared

with placebo, ED50 is the dose with half of the maximum effect and α is a parameter, which

influences the shape of the dose-effect-curve. For more details regarding this model we refer

to Holford and Sheiner (1981) and Bezeau and Endrenyi (1986), for example, while some

optimal designs for estimating the parameters in this model can be found in Dette, Melas

and Wong (2005). However estimation of the parameters is usually not the main objective

of a dose-finding trial.

In the trial under consideration the experts were quite sure that the dose-effect curve is

monotone in the dose range of interest (up to 100 mg). Hence, curves with an umbrella shape

were not likely and it seems that the Emax-sigmoid model is a rather robust model for the

possible monotone curves. As prior guess for the values of the parameters in this model based

on the available information, the pharmacometric modellers obtained E0 = 22, Emax = 11.2,

ED50 = 70 mg and α = 1. There are of course several uncertainties in these guesses. The

preclinical evidence suggests that Emax values up to 1.5 · 11.2 = 16.8 may also be possible.

The determination of the ED50 was somewhat difficult, therefore half of the prior guess value

(35 mg) is used as an optimistic bound and 200 mg as a conservative value. A value of α = 1

seemed to be a quite good choice based on the information, however, dose-effect-curves were

of interest where low doses have almost no effect. These curves were achieved with higher α

values, hence α = 2 and 4 were used. A dose-effect-curve which is more flat for higher doses

but has some effect overall should also be taken into account and such a curve was modelled

by a low Emax in combination with a low ED50. From these considerations, seven anticipated

scenarios were set up. The parameters corresponding to these scenarios are listed in Table 1

and the different curves are visualised in Figure 1. Finally we assume a standard deviation

of σ = 10 for all cases, although this will have no effect on the optimal designs derived below

(but it will have some effect in the simulation study performed in Section 6).

It appeared to be important to make also a rough judgement about the probabilities of

these scenarios. The prior guess scenario should have the largest probability. The Scenarios

4 and 7 seem also very likely, followed by Scenario 6 with an effect for higher doses. The

other scenarios, Scenario 5 and the optimistic Scenarios 2 and 3, seem to be less likely. These

considerations were translated to rough values for probabilities for the scenarios, see the last

column in Table 1 and Figure 1. We call these probabilities ”a priori probabilities”, since
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Table 1: Parameters for anticipated dose-effect scenarios

Scenario E0 Emax ED50 α probability πj

1 Prior guess 22 11.2 70 1 0.30

2 High Emax 22 16.8 70 1 0.05

3 Low ED50 22 11.2 35 1 0.05

4 High ED50 22 11.2 200 1 0.20

5 Intermed α 22 11.2 70 2 0.05

6 High α 22 11.2 70 4 0.15

7 Low Emax, ED50 22 7.0 35 1 0.20
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1 Prior guess,     prob=0.30
2 High Emax,      prob=0.05
3 Low ED50,       prob=0.05
4 High ED50,      prob=0.20
5 Intermed alpha, prob=0.05
6 High alpha,       prob=0.15
7 Low Emax,ED50, pb=0.20 

Figure 1: Anticipated dose-effect scenarios
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they are based on the a priori knowledge of the clinical team. The a priori probability for

Scenario j is denoted by πj (j = 1, . . . , 7).

In the dose-finding trial for which the design was constructed, we have multiples of 20

mg as available strengths of the new drug and there is also a placebo available. Therefore,

possible treatment arms are placebo and the doses 20, 40, 60, 80, and 100 mg. A balanced

design assigning an equal proportion of patients to each arm is a common choice in this

context. In our case it allocates 1/6 of the patients to placebo and each of the five active

doses. We investigate in the following sections unbalanced designs and compare the efficiency

of these designs with the balanced design which we treat as a reference design.

Based on a balanced design, a linear-contrast-test of the null-hypothesis that all dose-

arms have the same effect as placebo (with one-sided significance level α = 0.025, power

1 − β = 0.8) versus the alternative of Scenario 7 with a maximal effect of about 5 units

compared to placebo and standard deviation σ = 10, a sample size of ntotal = 300 patients

was determined. For convenience, we use this sample size for all designs under investigation.

3 Trial objectives

The main purpose of the trial is, roughly speaking, to characterise the interesting part of the

dose-effect curve. But what means interesting in the present context? Based on results of

competing drugs on the market, effects lower than δ = 5 compared with the placebo-effect

are of no medical interest. If there is a dose with an effect lower than δ, it is not worth to

investigate this dose further since there exist already better treatments on the market.

Let xδ be the unknown dose which has an effect of δ and xmax be the maximum tolerable

dose, in our case xmax = 100mg. The objectives of the trial are (see also Figure 2):

1. To estimate the dose-effect (compared to the placebo-effect) for doses between xδ and

xmax.

2. To estimate the effect at the maximal dose xmax compared to the placebo-effect.

3. To estimate the dose xδ with effect δ.

4. To prove that there is a positive effect at some active dose compared to placebo.

It is worth to highlight that all these objectives are defined via the dose-effect curve itself and

not in terms of the four parameters in the Emax-sigmoid model. This is important from the

point of view of estimation. In our situation we anticipate that the Emax-sigmoid curve will
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Figure 2: Objectives of the trial

not reach its plateau. Dutta et al. (1996) investigate this situation and conclude that if the

highest dose in the trial is below ED95, the parameters in this model are poorly estimated.

Despite this, the curve itself can be well estimated via the least squares method within the

range of observations. Since our interest is to obtain knowledge about effects for doses up

to 100 mg but not the model parameters, we have no problem with this issue.

Having the Objectives 1-4 defined above, the question is how we should choose the design

of the trial to get the best answers (estimates and test decision) for our objectives. As long

as we use a non-adaptive design, it is specified by the total number of patients n, the number

of doses k (inclusive placebo), the dose levels x0, . . . , xk−1 (in mg) and the proportions of

patients w0, . . . , wk−1 allocated to each dose level. We assume that the total sample size n

is already determined. For our example, n was determined in Section 2 (ntotal = 300) for

the balanced design and the goal is now to get better estimates with other designs using the
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same sample size. We assume further that it is already decided which doses are possible,

in our case we have k = 6 and x0 = 0, x1 = 20, . . . , x5 = 100. So we focus here on the

optimisation of the proportions of patients allocated to each dose level. We don’t exclude

that a proportion is 0, hence it is possible to use actually less than 6 different dose levels.

For the construction of an efficient experimental design (i.e. the appropriate allocation

proportions), we will apply optimal design theory [see Silvey (1980), for example]. As devel-

oped in the appendix, a function d(x,design, scenario) can be specified which is asymptoti-

cally proportional to the variance of the nonlinear least squares estimate f̂(x) − f̂(0) of the

dose-effect function f(x) − f(0) at dose x compared to placebo, given a fixed design and a

fixed scenario. Because these estimates are asymptotically unbiased, this quantity measures

the precision of the estimate, and it can be shown that the function d(x,design, scenario)

depends sensitively on the design of the experiment. Therefore the goal in this context

is to minimize this variance by the choice of the design or, alternatively, to maximize the

information 1/d(x,design, scenario).

In this paper, we focus on Objective 1 and 2 and use the following optimality criteria for

these objectives.

Criterion 1: For the first objective, the function x 7→ d(x,design, scenario) should be

small for all x between xδ and xmax. We use the IL-criterion proposed in Dette and

O’Brien (1999) with L = 1, which determines the design such that the function

Φ1(design, scenario) =

{
∫ xmax

xδ

d(x,design, scenario) dx

}−1

is maximal. It would be possible, to use unequal weightings of different doses, if a good

estimation is more important for certain doses than for others. Further, an alternative

would be to minimize the largest variance instead of the integrated variance (a type of

G-optimality) or to use other types of integrals, see Dette and O’Brien (1999).

Criterion 2: This criterion is simpler than the one before, and we use

Φ2(design, scenario) = 1/d(xmax,design, scenario),

which corresponds to the minimization of the variance of the estimate for the effect of

the maximal tolerable dose xmax.

For the sake of simplicity we do not consider the other two objectives (3 and 4) mentioned

above for the construction of optimal designs. We mention briefly how one can define opti-

mality criteria in these cases and refer to literature for further information. It will be clear



Optimal designs for the interesting part of a dose-effect 10

from the following discussion how the method can extended to incorporate these criteria as

well.

Criterion 3: We estimate xδ by x̂δ defined via f̂(x̂δ) − f̂(0) = δ. Dette et al. (2007)

applied the delta-method (Van der Vaart, 1988) to derive the asymptotic variance of x̂δ

and used this formula to define an optimality criterion, which is called MED-optimality.

Criterion 4: For a precise definition of the optimality criterion for Objective 4 it is

necessary to specify the test, which will be used to prove that there is a positive effect

of the drug. In this context, tests based on contrasts are very common, see Stewart

and Ruberg (2000) and Bretz et al. (2005). For example, if we use a single contrast test

for a prespecified and fixed contrast, the test statistic has a noncentral t-distribution

with a noncentrality parameter τ = τ(design, scenario) depending on both the design

and the scenario, see Bretz et al. (2005). We can define the optimality criterion as the

square of the noncentrality parameter.

A commonly used design is the balanced design with 1/6 of the patients allocated to placebo

and each of the five active doses. We define the relative efficiency of an arbitrary design with

respect to the balanced design by

Effc(design, scenario) = Φc(design, scenario)/Φc(balanced design, scenario), (3.1)

where c is the criterion. An efficiency > 1 means that the design is more efficient than the

balanced design. Moreover, we can directly interprete the efficiency in terms of sample size:

for example, an efficiency of 1.25 means that the balanced design would need 25% of patients

more than the design under consideration to obtain estimates with approximately the same

precision (where we compare different designs by the criterion ”c”).

4 Bayesian optimal design

Criterion 1 (dose-effect in the dose range between xδ and xmax) was judged to be the most

important criterion. We want to choose a design for the trial which has maximal efficiency

according to this criterion. However, this criterion makes only sense if there exists a dose

with effect δ between 0 and xmax mg. If there is no such dose, we want to have a good

estimate for the effect at the highest dose (Criterion 2), since this is cruical for the decision

of whether it is time to stop the development of the drug or whether there is any hope that
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the drug could have some value. For our trial, this means that we look at Criterion 1 for all

scenarios except for Scenario 4. For Scenario 4, we look at Criterion 2.

Since the true scenario is unknown, we determine an overall optimal design by maximising

the weighted mean of the efficiencies for certain scenarios. According to the description

above, we define our main function to be optimised by

Ψ(design) =

2
∑

c=1

7
∑

j=1

vj,cEffc(design, scenario = j) (4.1)

where

vj,c =

{

πj , if (j 6= 4 and c = 1) or (j = 4 and c = 2),

0, else.

The πj are the a priori probabilities for Scenario j, see Table 1. Note that it is clear from the

definition of Ψ in (4.1) how other criteria (like the criteria mentioned in Section 3) could be

incorporated. We could calculate the sum over the efficiencies for these criteria as well after

we have specified appropriate weights vj,c. This optimality criterion of the weighted mean

of the efficiencies for the scenarios is called Bayesian- or multiobjective optimality criterion

in the literature on optimal designs [see e.g. Dette, Haines and Imhof (2005) or Zhu and

Wong (2000)]. We call the resulting design ”Bayesian optimal design” and sometimes ”non-

adaptive Bayesian optimal design” in contrast to the adaptive designs considered in Section

5. As mentioned before, we assume that the only available doses are 20, 40, 60, 80, and 100

mg.

Table 2: Bayesian optimal design

Dose (in mg) 0 20 40 60 80 100

Weight 0.417 0.023 0.023 0.126 0.112 0.299

n 125 7 7 38 33 90

For the trial discussed in this paper, the Bayesian optimal design was computed numer-

ically, and the allocation weights are shown in Table 2. More weight is put on the doses 60,

80, and 100 mg and on placebo than on 20 and 40 mg. To have a higher proportion of pa-

tients assigned to placebo is important since we are interested in the differences between the

placebo and the other doses. Allocation of patients to the maximal tolerable dose 100 mg is

important to get information about the right end of the dose-effect curve. The ”interesting”

part of the dose-effect curve (i.e. the interval between xδ and xmax) starts for most of the

scenarios (Scenario 1, 5, 6, 7) around 60 mg.
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Since the sample size for the trial is 300 patients, a rounding procedure is applied to

obtain the integers from the not necessarily integer valued quantities, which are obtained

by multiplying the weights from Table 2 with the sample size n = 300 [see Pukelsheim and

Rieder (1992)]. We try to get these number of patients for each dose as closely as possible,

but depending on the randomisation procedure of the trial, we can’t be sure to achieve these

numbers exactly.

Compared with the balanced design, the Bayesian optimal design has an average efficiency

of Ψ(design) = 1.55. In other words, if Ψ is used to measure the quality of an experimental

design, the balanced design requires 55% more patients than the Bayesian optimal design to

obtain estimates with a comparable precision.

For a more detailed comparison of the two designs one has to check the efficiency of

this design also under Criterion 2 and under the different scenarios and criteria seperately.

For this purpose we determined the efficiencies defined by (3.1) for all scenarios and the two

criteria. The corresponding results are listed in Table 3. As mentioned before, there exists no

dose with an effect of δ for Scenario 4 and consequently there is no efficiency for Criterion 1.

For the computation of the overall efficiency for Criterion 2, we have used formula (4.1), with

vj,1 = 0 and vj,2 = πj, the a priori probability of Scenario j. We observe in nearly all cases

a substantial improvement in efficiency if the Bayesian optimal design is used instead of the

balanced design. In particular the Bayesian optimal design is between 70% and 106% more

efficient for estimating the effect of the maximal tolerable dose xmax (Criterion 2). Under

the Criterion 1 the adavantages of the Bayesian optimal design are less substantial but still

clearly visible. The overall efficiency is 1.55 and only under the Scenario 6 the commonly

used balanced design is 11% more efficient for estimating the effect of the dose in the range

[xδ, xmax]. In all other cases the Bayesian optimal design should be perferred.

5 Adaptive Bayesian optimal designs

The a priori probabilities for the seven scenarios were quite rough guesses based on the

information available before the trial. Since in the trial under consideration there was the

opportunity to perform an interim analysis, it seems to be reasonable to revise these prob-

abilities in the light of the interim results. With the modified probabilities a new optimal

design can be calculated. Two-stage designs of this type have been discussed before in the

context of constructing optimal designs for model discrimination [see e.g. Montepiedra and

Yeh (1998, 2003) and the references in these papers].

In the trial discussed in this paper an interim analysis was performed after 1/3 of the
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Table 3: Efficiencies of the Bayesian optimal design compared to the balanced design

Criterion

Scenario c = 1 c = 2

1 Prior guess 1.48 1.97

2 High Emax 1.10 1.97

3 Low ED50 1.08 1.93

4 High ED50 - 2.02

5 Intermed α 1.36 2.06

6 High α 0.89 1.71

7 Low Emax, ED50 1.98 1.93

Overall 1.55 1.93

patients has been investigated, i.e. the sample size in the first stage is n(1) = 100. Until the

interim analysis, the patients will be assigned to treatments according to the (non-adaptive)

Bayesian optimal design determined in the previous section. We call this first part of the trial

stage I. During the time necessary for interim analysis recruitment for the trial continues and

we still assign the patients to treatment according to the (non-adaptive) Bayesian optimal

design. We assume that n(1o) = 40 patients will be treated during the time of interim

analysis and we call these patients ”stage I overrun”. In the interim analysis we calculate a

posteriori probabilities for the seven scenarios using the Bayes formula. We call the part of

the trial with the remaining n(2) = 160 patients stage II. For stage II, we will use another

design than in stage I and stage I overrun, based on the optimal design for the a posteriori

probabilities, see below. Let n
(1)
i be the number of patients for dose level i = 0, 1, . . . , 5 in

stage I (corresponding to 0, 20, . . . , 100mg, respectively), n
(1o)
i the number of patients in the

stage I overrun and n
(2)
i the number of patients in stage II.

Under the assumption of normally distributed responses the means of the observations for

each dose level , say Ȳ
(1)
0 , Ȳ

(1)
1 , . . . , Ȳ

(1)
5 , are independent and Ȳ

(1)
i ∼ N(f(xi), σ

2/n
(1)
i ), i =

0, . . . , 5 (if the assumption of a normal distribution cannot be made, this statement is still

correct in an asymptotic sense). We are interested in differences to placebo and therefore, we

focus on the differences of the dose means with the placebo mean, i.e. Ȳ
(1)
i −Ȳ

(1)
0 , i = 1, . . . , 5.

These have a multivariate normal distribution, N(µ, σ2Σ) with mean

µ = (f(x1) − f(x0), . . . , f(x5) − f(x0))
⊤
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and covariance matrix Σ which is specified in the appendix. Let hj(a1, . . . , a5) be a common

density of this multivariate distribution for Scenario j (note that the distribution depends on

the scenario via the means f(xj)−f(x0)). Then, the updated probabilities can be computed

according to

πj,updated = πj · hj(Ȳ
(1)
1 − Ȳ

(1)
0 , . . . , Ȳ

(1)
5 − Ȳ

(1)
0 )/

[

7
∑

t=1

πt · ht(Ȳ
(1)
1 − Ȳ

(1)
0 , . . . , Ȳ

(1)
5 − Ȳ

(1)
0 )

]

where πj , πj,updated are the a priori and a posteriori probability for Scenario j, respectively.

We compute now numerically an optimal design using the probabilities πj,updated for

Scenario j = 1, . . . , 7. Since we have already patients from stage I and stage I overrun, the

proportion w
(1)
i = (n

(1)
i + n

(1o)
i )/ntotal of all patients has already been allocated to dose level

xi, i = 0, . . . , 5. Therefore, computation of the optimal design means that we compute the

optimal weights wi ∈ [w
(1)
i , 1] with

∑5
i=0 wi = 1.

We compute then ni by wintotal and application of a rounding procedure (ensuring that

still ni ≥ n
(1)
i + n

(1o)
i after rounding). The number of patients for dose xi in stage II is

then n
(2)
i = ni − (n

(1)
i + n

(1o)
i ), i = 0, . . . , 5. We illustrate this procedure, in particular the

calculation of the a posteriori probabilities, with a simulated example.

Example 5.1 Based on the results of n(1) = 100 patients in stage I, see Table 4, a posteriori

probabilities are calculated and shown in Table 5. Since the observed results are closer to the

optimistic scenarios, the a posteriori probabilities are larger than the a priori probabilities

for Scenario 2 and 3. For Scenario 1, 5 and 6 there are only small differences between

the a priori and a posteriori probabilities, whereas for the other scenarios, the a posteriori

probabilities are smaller than the a priori probabilities.

The Bayesian optimal design for the a posteriori probabilities is calculated and the required

number of patients per dose is shown in the last row in Table 6. The numbers of patients

required for stage II are calculated by subtracting the number of patients in stage I and

stage I overrun from the totally required patients, see Table 6. Because the patients already

assigned to dose have to be taken into account, we have calculated the optimal design in the

subset of designs which have at least weight w
(1)
0 = 0.193, w

(1)
1 = 0.013, w

(1)
2 = 0.010, w

(1)
3 =

0.057, w
(1)
4 = 0.053, w

(1)
5 = 0.140 for the doses 0, 20, 40, 60, 80 and 100mg, respectively.

These weights correspond to the number of patients in stage I and stage I overrun for a dose

divided by the total number of patients, ntotal = 300.

In the described adaptive Bayesian optimal design, we perform an interim analysis with the

aim to recalculate the allocation ratios for each dose. For the trial which motivated this
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Table 4: Simulated result for stage I (n(1) = 100)

Dose (in mg) 0 20 40 60 80 100 Total

n
(1)
i 41 3 2 13 11 30 100

Ȳ
(1)
i − Ȳ

(1)
0 - 9.48 4.93 8.26 14.03 9.87 -

Table 5: Change of probabilities for simulated data

Scenario 1 2 3 4 5 6 7

a priori probability 0.30 0.05 0.05 0.20 0.05 0.15 0.20

a posteriori probability 0.29 0.28 0.20 0.01 0.05 0.12 0.06

Table 6: Final design for the trial for simulated stage I data

Dose (in mg) 0 20 40 60 80 100 Total

stage I n
(1)
i 41 3 2 13 11 30 100

stage I overrun n
(1o)
i 17 1 1 4 5 12 40

stage II n
(2)
i 63 12 22 40 10 14 160

Total ni 121 16 25 57 26 56 300

research, further possibilities were discussed. If for all doses there is only an insufficient

effect of the drug observable, the trial should be stopped for futility immediatly after interim

analysis. Further, if we see in the interim analysis that the variance differs from our pre-trial

anticipation, we could change the sample size ntotal (sample-size re-estimation). However,

although these are interesting possibilities, we focus here on recalculation of allocation ratios.

Futility stop or sample-size re-estimation are not within the scope of this paper.

In contrast to the approach described in this section, which uses only the a posteriori

probabilities for the determination of the design for stage II, there is it at least one alternative

approach to obtain an adaptive design, which is briefly indicated here. From the available

data of stage I the dose-effect curve could be estimated and these parameter estimates could

serve as inital guess for the construction of a design for stage II. This design is determined

optimising Eff1(design, estimated scenario) if there exists a dose with effect δ between 0 and

xmax and Eff2(design, estimated scenario) otherwise. Although this approach is attractive on

a first glance, it is necessary to point out that for the interim analysis only 100 observations
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are available. As a consequence there is still a rather large uncertainty in the estimates

obtained from the interim analysis. Therefore, it seems to be more appropriate to construct

the design for stage II also in a robust sense. We recommend not to optimise with the

assumption that the observed scenario is the true one, but to express the still existing

uncertainty using the a posteriori probabilities calculated from the interim analysis.

6 Comparison between non-adaptive and adaptive designs

In order to compare the non-adaptive with the adaptive Bayesian optimal design described

in Section 5, we performed a simulation study. We have no asymptotic formula to compute

an efficiency for the adaptive design as it is available for the non-adaptive design. Therefore,

we compute mean squared errors (MSE) of the estimates in the simulations. More precisely,

for a certain design and a certain simulation scenario, we obtain the MSE at dose x for

estimation of f(x) − f(0) by

MSE(x,design, scenario) =
1

s

s
∑

l=1

(

f̂l(x) − f̂l(0) − (f(x) − f(0))
)2

,

where s is the total number of simulations and f̂l denotes the estimated function in the lth run

of the simulation. Because the estimates are asymptotically unbiased, the MSE can also be

approximated by the variance of f̂l(x)− f̂l(0), which is proportional to d(x,design, scenario).

Therefore we replace in the numerical calculation of Φc the function d(x,design, scenario) by

the mean squared error MSE(x,design, scenario) of the estimates for f(x) − f(0). For each

scenario, we performed 5000 simulations for the non-adaptive and the adaptive Bayesian

optimal design. We focus on the important criteria, Criterion 1 and 2, and calculate the

relative efficiency of the adaptive with respect to the non-adaptive Bayesian optimal design

by
Φc(adaptive Bayesian optimal design, scenario)

Φc(non-adaptive Bayesian optimal design, scenario)
.

A value > 1 means here that the the adaptive Bayesian optimal design has a better perfor-

mance than the non-adaptive Bayesian optimal design.

The results are presented in Table 7 and show that in many cases the non-adaptive and the

adaptive Bayesian optimal design are comparable. Under Criterion 1 the adaptive Bayesian

optimal design performs better in the optimistic Scenario 2 and slightly better for scenorios

3 and 6, while the non-adaptive Bayesian design has slight advantages in Scenario 1, 5 and

7. On the other hand, under Criterion 2, the non-adaptive design yields always a smaller

MSE than the adaptive design. While these advantages are less substantial in Scenario 4
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Table 7: Simulated relative efficiencies of the adaptive Bayesian optimal design compared to

the non-adaptive Bayesian optimal design (based on MSE calculation)

Criterion

Scenario c = 1 c = 2

1 Prior guess 0.96 0.95

2 High Emax 1.25 0.82

3 Low ED50 1.08 0.89

4 High ED50 - 0.98

5 Intermed α 0.95 0.91

6 High α 1.05 0.82

7 Low Emax, ED50 0.94 0.97

Overall 1.00 0.93

and 7, the differences in the other scenarios vary between 9% and 18%. Overall, assuming

the given a priori distribution and observing that Criterion 1 reflects the more important

objective, the two designs have a comparable efficiency (relative efficiency=1.00 in Table 7).

Generally, when using design adaptations during the conduct of a trial, it is not clear

if statistical properties of e.g. estimates are affected from adaptation. Therefore, we show

the empirical distribution function for the effect estimates at dose 100 mg (difference to

placebo effect) of our simulations for Scenario 1 for the non-adaptive (Figure 3) and the

adaptive Bayesian optimal design (Figure 4), based on 5000 simulation runs. The empirical

distribution functions are compared in the figures with the cumulative distribution function of

the normal distribution (dotted line) with the same mean and variance as the simulated data.

For the non-adaptive design, the empirical distribution function cannot be distinguished

from the normal cummulative distribution function in the figure. For the adaptive design,

we observe a slight deviation. For values above the 0.9-quantile, the simulated results are

larger than the values from the fitted normal distribution.

In summary we did not observe a convincing advantage of the adaptive over the non-

adaptive Bayesian optimal design in terms of efficiency. On the other hand, an adaptive

design is more challenging from an operational point of view. Moreover, there is a slight

effect on the distributional properties of the estimates caused by the adaptation, which can

be avoided with a non-adaptive design. Therefore, we recommended to use the non-adaptive

Bayesian optimal design in this situation.
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Figure 3: Simulated distribution function of the estimate of the effect at the maximum

tolerable dose xmax based on the non-adaptive Bayesian optimal design.

On the other hand the deviations from the normal distribution caused by adaptation are

not too serious. So if we would have seen a good efficiency gain with the adaptive design,

we probably would have accepted this fact. The same is true for the operational aspects:

if there would have been justification from an efficiency point of view, it would have been

worth to conduct an adaptive design at the cost of different distributional properties of the

resulting estimates.

If an interim analysis is required because of ethical or other reasons, this could also be

performed on the basis of the non-adaptive Bayesian optimal design without changing the

design for the second stage.
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Figure 4: Simulated distribution function of the estimate of the effect at the maximum

tolerable dose xmax based on the adaptive Bayesian optimal design.

7 Concluding remarks

An advantage when thinking about possible innovative or adaptive designs is that one is more

forced to specify the knowledge available before conduction experiments and the objectives

of the trial. We could propose and specify in statistical terms the objective to get good

information about the interesting part of the dose-effect curve. This objective is connected

to the desires of the project team and the sponsor but is hopefully also appreciated by

physicians and patients after marketing.

However, it is essential to discuss the statistical criteria extensively with other experts

involved in the trial to be really sure that the specified objectives reflect the underlying aim

of the trial appropriately. It is important that all objecives have been taken into account

and that there are no implicit additional objectives which the clinical team has in mind but
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which are hard to express in common terms. If essential objectives have not been considered

in the construction of an statistical criterion, one would optimise the design on a wrong basis

and the resulting design coud be efficient for the specified objective but very inefficient for

the implicit objective.

It is remarkable and was somewhat unexpected that we have seen an impressive improve-

ment in efficiency when a balanced design is replaced by a (non-adaptive) Bayesian optimal

design. This underlines the usefulness of optimal design theory for clinical trial applications.

In contrast, we have not observed remarkable differences between the non-adaptive and the

adaptive Bayesian optimal design. In the trial under consideration the non-adaptive design

had a better performance in many cases. Advantages of non-adaptive designs in context

of model discrimination have also been observed by other authors [see Dette and Kwiecien

(2004), for example]. Roughly speaking the answer to the question, whether or not an adap-

tive design has advantages over an optimised non-adaptive design depends mainly on the

correct specification of the a priori knowledge. If this a priori information has been com-

pletely misspecified, the application of adaptive designs may have advantages. Consequently,

if there is absolutely no knowledge about the dose-effect curve available in advance, either a

separate pilot trial has to be performed or the first part in the trial itself (stage I) has to be

used to derive the final design of the trial. On the other hand, in phase IIB trials, there is

often a priori information available and the application of non-adaptive optimal designs is

well justified.

In the trial considered in this paper the anticipated scenarios differed not too much and

the more extreme scenarios were judged as more unlikely. Therefore the uncertainty was –

relatively – low which gives a partial explanation that we are in a situation where we have

no gain from changing allocation ratios during the trial.
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8 Appendix

The function d(x,design,scenario)

Let ϑ be the vector of parameters in the Emax-sigmoid model, i.e. ϑ = (E0, Emax, ED50, α)⊤,

which characterises a specific scenario. Let f(x, ϑ) = f(x) be the true dose-effect curve

and σ2 be the variance of the observations. We obtain from Seber and Wild (1989) for the

nonlinear least squares estimates (ϑ̂, σ̂2) for (ϑ, σ2):

√
n

{(

ϑ̂

σ̂2

)

−
(

ϑ

σ2

)}

D→ N
((

0

0

)

,

(

σ2M−1(design, ϑ) 0

0 2σ4

))

,

where n is the sample size,
D→ denotes the convergence in distribution for n → ∞, N (µ,Σ)

is a two-dimensional normal distribution,

M(design, ϑ) =
k
∑

j=1

wjg(xj , ϑ)g⊤(xj, ϑ)

is the information matrix [see Silvey (1980)] and

g(x, ϑ) =

(

∂f(x, ϑ)

∂E0
,
∂f(x, ϑ)

∂Emax
,
∂f(x, ϑ)

∂ED50
,
∂f(x, ϑ)

∂α

)⊤

=

(

1,
xα

EDα
50 + xα

,
−EmaxαEDα−1

50 xα

(EDα
50 + xα)2

,
EmaxEDα

50x
α(log x − log ED50)

(EDα
50 + xα)2

)⊤

is the gradient of the dose-effect-function with respect to ϑ.

The variance of the estimated effect of a certain dose x is approximately proportional to

g⊤(x, ϑ)M−1(design, ϑ)g(x, ϑ).

The variance of the estimated difference in the effect between a dose x and placebo (dose 0)

is approximately proportional to

d(x,design, ϑ) = (g(x, ϑ) − g(0, ϑ))⊤ M−1(design, ϑ) (g(x, ϑ) − g(0, ϑ)) .

Covariance matrix for differences of the dose means with the placebo mean in

the interim analysis

The differences of the dose means with the placebo mean in the interim analysis, Ȳ
(1)
i −

Ȳ
(1)
0 , i = 1, . . . , 5 have a multivariate normal distribution, N (µ, σ2Σ) with µ = (f(x1) −

f(x0), . . . , f(x5) − f(x0))
⊤ and covariance matrix

Σ =















1/n
(1)
0 + 1/n

(1)
1 1/n

(1)
0 · · · 1/n

(1)
0

1/n
(1)
0 1/n

(1)
0 + 1/n

(1)
2 1/n

(1)
0

...
. . .

1/n
(1)
0 · · · 1/n

(1)
0 1/n

(1)
0 + 1/n

(1)
5















.
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