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Abstract

In genetic association studies, important and common goals are the

identification of single nucleotide polymorphisms (SNPs) showing a

distribution that differs between several groups and the detection of

SNPs with a coherent pattern. In the former situation, tens of thou-

sands of SNPs should be tested, whereas in the latter case typically

several ten SNPs are considered leading to thousands of statistics that

need to be computed.

A test statistic appropriate for both goals is Pearson’s χ2-statistic.

However, computing this (or another) statistic for each SNP or pair

of SNPs separately is very time-consuming.

In this article, we show how simple matrix computation can be

employed to calculate the χ2-statistic for all SNPs simultaneously.
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1 Introduction

While association studies typically comprise the genotypes of several ten sin-

gle nucleotide polymorphisms (SNPs), quite recently developed microarrays

allow to measure the genotypes of tens or even hundreds of thousands of

SNPs simultaneously. In the former situation, two tasks are the identifica-

tion of SNPs showing a distribution that differs substantially between several

groups (e.g., non-cancer vs. cancer) and the detection of groups of SNPs with

a coherent pattern. Considering SNP microarray, a first goal is to reduce the

number of SNPs to a better manageable size.

Since the latter goal is similar to the first task in the former situation,

both problems can be solved in the same way: For each SNP, a statistic

appropriate for testing if its distribution differs between several groups is

computed. The higher this score, the more likely it is that the corresponding

SNP differs substantially between the classes (for topics such as adjusting for

multiplicity that have to be considered in this situation, see, e.g., Dudoit et

al., 2003).

As SNPs are categorical variables exhibiting three realizations (homozy-

gous reference, heterozygous, and homozygous variant), an appropriate test

statistic is Pearson’s χ2-statistic

χ2 =
r∑

g=1

c∑
k=1

(ngk − ñgk)
2

ñgk

, (1.1)

where ngk and ñgk are the observed and expected numbers of observations,

respectively, shown in the gth row and kth column of the corresponding con-

tingency table, g = 1, . . . , r, k = 1, . . . , c. Here, c = 3, and r is the number

of groups such that ngk specifies how many of the n =
∑

g,k ngk =
∑

g,k ñgk

observations in the gth class showing the kth genotype.

A solution to the other problem, i.e. the detection of groups composed of
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related SNPs, is, again, to compute Pearson’s χ2-statistic (1.1) with r = c = 3

to test if two SNPs are independent. Afterwards, e.g., Pearson’s corrected

contingency coefficient

PC =

√
d

d− 1
· χ2

χ2 + n

with d = min{r, c} here
= 3 is calculated as a measure of similarity for these

two SNPs.

Since considering each pair of m SNPs means that m(m− 1)/2 similari-

ties/distances have to be determined, Pearson’s χ2-statistic has to be calcu-

lated several hundred to a few thousand times even if m < 100. The same

applies to the analysis of microarrays in which tens of thousands of SNPs

are tested for different group distributions. In these cases, it can therefore

be time-consuming to compute each of the χ2-statistics separately.

In this article, we show how simple matrix calculation can be employed

to consider all SNPs or pairs of SNPs simultaneously. Another advantage of

this approach is that it provides a matrix composed of all m or m(m− 1)/2

contingency tables, respectively. This matrix thus enables the determination

of other similarity measures based on contingency tables such as simple or

flexible matching coefficients (Müller et al., 2005).

This article is organized as follows: In Section 2, the approaches for the

simultaneous computation of thousands of Pearson’s χ2-statistics in the two

situations are described, whereas in Section 3 we discuss practical issues

as the actual implementation of these algorithms and the handling of both

missing values and variables with differing numbers of levels. This section

also contains a short description of how the approach for detecting groups of

SNPs with coherent patterns can be used to compute similarity measures that
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are not based on Pearson’s χ2-statistic. Finally, the matrix based algorithms

are compared with the corresponding individual computations in Section 4.

2 Simultaneous Computation of Pearson’s χ2-

Statistic

Let X be an m × n matrix in which each column corresponds to one of the

n observations and each row to one of the m variables, and y be a vector of

length n containing the class labels of the n observations. Assume that each

of these variables exhibits c levels denoted by the integers 1, . . . , c, and that

each observation belongs to one of the r classes 1, . . . , r. Then, Pearson’s

χ2-statistics for testing a variable if its distribution differs between r groups

can be computed for all variables represented in X simultaneously by the

procedure described in Algorithm 1.

Algorithm 1 (Rowwise Pearson’s χ2-Statistic)

Let X be an m × n matrix consisting of the values 1, . . . , c, and y be a

vector of length n containing the class labels 1, . . . , r of the n observations

represented by the columns of X.

1. Let X(k) denote an m× n matrix with elements

x
(k)
ij =

1, if xij = k

0 otherwise

,

k = 1, . . . , c, and L be an n× r matrix with elements `jg = I
(
yj = g

)
.

2. For k = 1, . . . c, set L(k) = X(k)L and

L̃(k) =
1

n
X(k)1nL

′1n, (2.1)
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where 1n is a vector consisting of n ones, and compute

S(k) =
L(k) ∗ L(k)

L̃(k)
(2.2)

with s
(k)
ig = `

(k)
ig · `(k)

ig / l̃
(k)
ig , i = 1, . . . ,m, g = 1, . . . , r.

3. Let S be an n× c matrix in which the kth column consists of the vector

sk = S(k)1r, k = 1, . . . , c. The vector comprising Pearson’s χ2-statistics

for testing each row of X if the distribution of the corresponding vari-

able differs between the groups specified by y is given by

rX = S1c − n. (2.3)

For the computations in Algorithm 1, note that (1.1) can also be expressed

as

χ2 =
r∑

g=1

c∑
k=1

n2
gk

ñgk

− n,

and that the
(
ith, gth

)
element of L(k) or L̃(k) comprises the observed or

expected number of observations, respectively, being a member of group g

and showing the kth level at the ith variable.

Using similar ideas, Algorithm 2 describes how Pearson’s χ2-statistic for

testing if two variables are independent can be determined for all of the

m(m − 1)/2 pairs of m variables simultaneously. Note that Algorithm 2

assumes that all variables exhibit the same number of levels such that r = c.

For an extension to r ≤ c, see Section 3.3.
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Algorithm 2 (Pairwise Pearson’s χ2-Test for Independence)

Let X be an m× n matrix consisting of the values 1, . . . , c.

1. Let X(k) denote an m× n matrix, k = 1, . . . , c, with elements

x
(k)
ij =

1, if xij = k

0 otherwise

.

2. For g, k = 1, . . . , c, compute N(gk) = X(g)X(k)′ and

Ñ(gk) =
1

n
X(g)1n1

′
nX

(k)′. (2.4)

3. Pearson’s χ2-statistic for testing if the ith and the hth variable, i, h =

1, . . . ,m, represented in the ith and hth row of X, respectively, are

independent is given by the
(
ith, hth

)
element of

RX =
c∑

g=1

c∑
k=1

N(gk) ∗N(gk)

Ñ(gk)
− n. (2.5)

3 Practical Issues

3.1 Details on the Actual Implementation

Algorithms 1 and 2 have been implemented in the statistical software envi-

ronment R (Ihaka and Gentleman, 1996). The following notes give details on

their actual implementations:
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• Instead of computing the rowwise or columnwise sums of a matrix by

multiplying it with a vector consisting of an appropriate number of

ones, the even faster R function rowSums or colSums are employed for

these calculations.

• In (2.2) and (2.5), the elementwise squaring of L(k) or N(gk) is repre-

sented by “*”, since in R it is faster to elementwise square a matrix Z

by Z ∗ Z than by Z2. Thus, the actual reason for this is not to avoid

notations such as N(gk)2.

• In the second step of Algorithm 2, not all c2 matrices N(gk) are deter-

mined. We only consider N(gk) for g = 1, . . . , c, and k = g, . . . , c, as the

lower (upper) triangle of N(gk) contains the same values as the upper

(lower) triangle of N(kg). The same applies to Ñ(gk).

• Finally, the pairwise χ2-statistics are actually not computed as shown

in (2.5). Instead, the upper triangle of N(gk) is stored in the
(
(g −

1)c + k
)th

column of the m(m − 1)/2 × c2 matrix M, and the lower

triangle in the
(
(k− 1)c + g

)th
column. Hence, this matrix M contains

all contingency tables corresponding to any of the m(m − 1)/2 pairs

of m variables. Therefore, M can also be employed to compute other

similarity measures based on contingency tables. In the same way, all

expected cell entries are retained in a matrix M̃.

The vector rX comprising the m(m − 1)/2 χ2-statistics can thus be

determined by

rX =

(
M ∗M

M̃
− n

)
1c2 .

By default, rX is then stored in the lower triangle of an m×m matrix

such that the lower triangle of this matrix is identical to the lower

triangle of RX in (2.5).
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3.2 Missing Values

Even though both Algorithm 1 and 2 still work if there are missing values,

the resulting χ2-statistics will not be correct, since the expected numbers of

observations are divided by n, i.e. the total number of observations, and not

by the actual number of observations showing no missing value at a particular

variable.

For solving this problem, let XA be an m× n matrix with

xA
ij =

1, xij is not missing

0, xij is a missing value

,

and replace n in (2.3) by the vector

n =


n1

...

nm

 = XA1n.

In (2.1), 1
n

is substituted by the m× r matrix

Nden =


1
n1

· · · 1
n1

...
. . .

...

1
nm

· · · 1
nm

 ,

whereas in (2.4) and in (2.5) n is replaced by the m×m matrix

N = XA
(
XA

)′
.

Since (2.4) just takes individual and not pairwise missing values, i.e. miss-

ing values appearing in either of the two considered variables, into account,

it is additionally necessary to replace the rowwise sums of X(k) by Z(k) =

X(k)
(
XA

)′
such that (2.4) becomes

Ñ(gk) =
Z(g) ∗

(
Z(k)

)′

N
.
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3.3 Different Numbers of Levels

If the ith variable exhibits r < c levels, where c is the maximum number of

levels that one of the m variables can take, then the ith row of X(r+1), . . . ,X(c)

will only consist of zeros. Hence, the ith row of L(k) and L̃(k) in Algorithm 1

and the corresponding rows and columns of N(gk) and Ñ(gk), k = r+1, . . . , c,

or g = r+1, . . . , c, in Algorithm 2 will be composed of zeros. Since this leads

to dividing zero by zero in (2.2) and (2.5), no χ2-statistic for the ith variable

will be available.

A solution to this problem is to set ˜̀(k)
ig = max

{
1, ˜̀(k)

ig

}
in L̃(k), and

ñ
(k)
ih = max

{
1, ñ

(k)
ih

}
in Ñ(k).

3.4 Computation of Similarity Measures

As mentioned in Section 3.1, in the actual realization of Algorithm 2, an

m(m − 1)/2 × c2 matrix M containing all m(m − 1)/2 contingency tables

of the pairwise comparisons is constructed that enables the computation of

similarity measures such as the simple matching coefficient

SM =
1

n

c∑
k=1

nkk.

Since the
(
(k − 1)c + h

)th
column of M comprises the entry nkh of each

of the contingency tables, the vector rS consisting of SM for any pairwise

comparison of two variables is given by

rS =
Md

M1c2
,

where d is a vector of length c2 with elements

dh =

1, if h ∈
{
a : a = (k − 1)c + k, k = 1, . . . , c

}
0 otherwise

.
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4 Discussion

In this paper, we have presented approaches based on matrix algebra for the

simultaneous computations of thousands of Pearson’s χ2-statistics.

Table 4.1 shows that the computation time of Algorithm 1 depends only

slightly on the number of classes. However, the number of levels that a

variable can take has a high influence on the computation time time. This

is not very surprising, as the larger c, the more matrices X(k) have to be

constructed and evaluated in the determination of the χ2-statistics.

TABLE 4.1. Computation times of Algorithm 1 for different numbers m of

variables, numbers c of levels a variable can take, and numbers r of classes to

which the n = 200 observations belong.

r = 2, r = 2, r = 2, r = 3, r = 6,

m c = 3 c = 5 c = 10 c = 3 c = 3

100 < 0.01 0.01 0.01 < 0.01 0.01

1,000 0.05 0.07 0.15 0.05 0.05

10,000 0.63 1.03 2.04 0.64 0.62

100,000 6.16 9.98 61.82 6.18 6.46

As Table 4.2 and 4.3 reveal, using Algorithms 1 and 2 lead to a substantial

decreases of the computation time in comparison to one-by-one determina-

tions of the χ2-statistics. Not very surprisingly, the more χ2-statistics, the

higher is the factor by which the computation is accelerated. But even if the

number of variables is small, the algorithms will be about 15 times faster.

Algorithm 1 is used in version 1.10.0 and later of the R package siggenes

available at http://www.bioconductor.org, the web page of the Bioconduc-

tor project (Gentleman et al., 2004), such that the computation time of both
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TABLE 4.2. Computation times of both Algorithm 1 and the individual calcula-

tion of Pearson’s χ2-statistics for different numbers m of variables and numbers n

of observations. Each variable can take c = 3 levels, and each observation belongs

to one of r = 2 classes.

Algorithm 1 Individual

m n = 200 n = 1, 000 n = 200 n = 1, 000

50 < 0.01 0.01 0.13 0.16

100 < 0.01 0.02 0.26 0.32

1,000 0.05 0.40 2.64 3.35

10,000 0.63 2.39 26.74 34.42

100,000 6.16 – 274.96 –

TABLE 4.3. Computation times of both Algorithm 2 and the individual cal-

culation of Pearson’s χ2-statistic for testing each pair of m variables if they are

independent, where each variable exhibits c = 3 levels, and the number of obser-

vations is n = 1, 000.

m Algorithm 2 Individual

10 0.01 0.15

50 0.07 4.25

100 0.33 17.32

200 1.22 70.06

500 7.79 474.22
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SAM (Significance Analysis of Microarrays; Tusher et al., 2001) and EBAM

(Empirical Bayes Analysis of Microarrays; Efron et al., 2001) applied to cat-

egorical data (Schwender, 2005, 2007) is reduced. Both Algorithm 1 and 2

are implemented in the R function rowChisqStats contained in the package

scrime that will be available soon at http://www.bioconductor.org and

http://cran.r-project.org.
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