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Summary

The paper considers the Markov-Switching GARCH(1,1)-model

with time-varying transition probabilities. It derives sufficient

conditions for the square of the process to display long memory and

provides some additional intuition for the empirical observation

that estimated GARCH-parameters often sum to almost one.
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1 Introduction

The GARCH(1,1) - model

εt = σtηt (1)

σ2
t = ω + αε2

t−1 + βσ2
t−1

is still the main workhorse in all areas of applied economics whenever condi-

tional heteroskedasticity is seen to be a problem. Almost from the moment it

was born, it was however plagued by the observation that in many applica-

tions, the observed empirical autocorrelations of the ε2
t were much larger than

the theoretical autocorrelations implied by the estimated model parameters.

In particular, the empirical autocorrelations of the ε2
t often seem to indicate

long memory, which is not possible in the GARCH-model; in fact, in all stan-

dard GARCH-models, theoretical autocorrelations must eventually decrease

exponentially, so long memory is ruled out.

The same holds for Markov-Switching GARCH models with constant transi-

tion probabilities, as suggested, among others, by Cai (1994), Hamilton and

Susmel (1994), Francq et al. (2001), Klaassen (2002) or Haas et al. (2004). It

is easily seen (for a proof see e.g. Francq and Zakoian (2005)) that theoreti-

cal autocorrelations must likewise decrease exponentially in such models. The

present paper therefore allows for transition probabilities that change with

sample size, along the lines of Diebold and Inoue (2001), and derives the lim-

iting behaviour of the variance of the sum of the ε2
t as sample size increases.

If the staying probabilities of the underlying Markov-process tend to 1, these

autocorrelations lead to a variance of the sum of the ε2
t which grows faster than

sample size, and thus induce the appearance of long memory.

2



2 Structural breaks and sample size

Most models that allow for changes in the coefficients of (1) do so by letting ω,

α and β depend on the unobserved state of a finite - dimensional irreducible

homogeneous Markov chain

σ2
t = ω(∆t) + α(∆t)ε

2
t−1 + β(∆t)σ

2
t−1, ∆t ∈ {1, ..., M}, (2)

P (∆t = j|∆t−1 = i) = pij = constant. (3)

Recent examples and variants thereof, with useful surveys of the literature,

are Francq et al. (2001), Klaassen (2002) or Haas et al. (2004). Although

theoretical autocorrelations of the ε2
t are notoriously hard to derive exactly for

such models, it is clear from the Markov-structure that they must eventually

decrease exponentially (if they exist; for details see Francq and Zakoian 2005),

so these models cannot explain long memory in the squared εt’s. Intuitively

speaking, the reason is that the number of realized regimes in such models is

roughly proportional to sample size. The present paper considers another type

of asymptotics where the expected number of realized regimes remains bounded

as sample size increases. The most simple example is the one considered by,

among others, Mikosch and Starica (2004) or Hilebrand (2005), who divide the

sample {1, ..., T} into K + 1 subsamples

{1, ..., [Td1]}, {[Td1 + 1], ..., [Td2]}, ..., {[TdK ], ..., T}, (4)

where 0 < d1 < ... < dK < 1 are fixed and [Tdi] denotes the integer part of

Tdi, and where different GARCH models hold in each subsample.

The present paper considers the Markov switching model (2), where however

the transition probabilities pij depend on sample size. A similar set-up is in-

vestigated by Diebold and Inoue (2001), who explore Markov switching in the
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expectation µt in the model yt = µt + εt, while the present paper explores

Markov switching with time dependent transition probabilities in the dynam-

ics of the εt - process itself.

It is easily seen that with Markov-switching the expected number of regimes

in a given time interval 1,...,T depends only on the staying probabilities pii :

E(
T−1∑

t=1

I∆t+1 6=∆t) =
T−1∑

t=1

P (∆t+1 6= ∆t)

=
T−1∑

t=1

M∑

i=1

π(i)
M∑

j=1

j 6=l

pij = (T − 1)
M∑

i=1

πi(1− pii), (5)

where π(i) = P (∆t = i) denotes the stationary distribution of the Markov

chain. In particular, if

1− p
(T )
ii =

K

(T − 1)
(6)

for all i and for some natural number K, we have

E(number of regimes)= K.

If 1 − p
(T )
ii tends to zero more slowly than in (6), the expected number of

regimes will increase with sample size, but will still be o(T ), which provides

the intuition behind our result below that time-dependent staying probabilities

of type (6) imply the appearance of long memory in the squares of the εt -

process.

A similar set-up was studied by Hilebrand (2005), who shows by different

arguments that, with finitely many nonstochastic switches in regime along the

lines of (4), the estimated persistence parameters λ̂ = α̂+ β̂ must tend to unity

as sample size increases.
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3 Structural change and long memory

There are various definitions of long memory in ε2
t (see e.g. Diebold and Inoue

2001, p. 133, for an overview). The most general of these simply requires that

E(ε2
t ) < ∞, but

1

T
var(

T∑

t=1

ε2
t ) →∞ as T →∞. (7)

For the case of a stationary ε2
t - process, this is equivalent to the spectral

density of ε2
t tending to infinity for small frequencies.

Below we consider a triangle sequence of models

ε
(1)
1

ε
(2)
1 , ε

(2)
2

...

ε
(T )
1 , ..., ε

(T )
T

where the sequence ε
(T )
1 , ..., ε

(T )
T is generated by a Markov switching model (2)

and where the transition matrices depend on T in such a way that the expected

number of regimes remains bounded away from both zero and infinity (The

superscript T will be omitted in the sequel whenever there is no danger of con-

fusion). From Francq and Zakoian (2005, theorem 3.1) we obtain the covariance

matrix of (ε2
1, ..., ε

2
T )′ as a function of the GARCH parameters ω(i), α(i), β(i)

and of the transition probabilities pij (i, j = 1, ..., M). In particular, Francq

and Zakoian (2005) show that {ε2
t}, which follows an ARMA(1,1) process

ε2
t = ω + (α + β)ε2

t−1 + ut − βut−1 (8)

when there is no Markov-switching, where ut := ε2
t − σ2

t continues to follow

an ARMA-process, albeit with different parameters and different orders, when
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Markov-switching in the GARCH - parameters is introduced. The autocorre-

lation function γ(l) of this process satisfies a linear difference equation of the

form

n−n0∑

i=0

an−iγ(l − i) = 0 , (l > n− n0), (9)

where n0, 0 ≤ n0 ≤ n, is the index of the first nonzero coefficient of the

polynomial

f(x) =
K∏

k=1

(λk − x)g(x), (10)

where the λ′ks (k = 1, ..., K < M) are the eigenvalues - in increasing order -

of the transition matrix of the Markov process which are different from 0 and

1, and where g(x) is the characteristic polynomial of the matrix

P̃ :=




p11[α(1) + β(1)] . . . pM1[α(1) + β(1)]
...

...

p1M [α(M) + β(M)] . . . pMM [α(M) + β(M)]




(11)

(see Francq and Zakoian (2005), formula 3.10). This implies that one can ex-

press the autocorrelations γ(l) of the ε2
t - process as

γ(l) =
K∑

k=1

ckλ
l
k +

M∑

k=1

c̃kλ̃
l
k (12)

for suitable coefficients ck and c̃k, where the λ̃k are the eigenvalues of the matrix

(11). From α(i)+β(i) < 1 (i = 1, ..., M), these eigenvalues are all smaller than

the largest eigenvalue (different from unity) λK of the transition matrix of the

underlying Markov process, which implies that

γ(l) = cKλl
K + o([γ(l)]). (13)
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Therefore, the limiting behavior of var(
∑T

t=1 ε2
t ) depends only on λK and is,

for a fixed λK , given by

var(
T∑

t=1

ε2
t ) = O(

T∑

i,j=1

λ
|i−j|
K ) = O(T [1 + 2

T−i∑

i=1

T − i

T
λi

K ])

= O(T
1

1− λK

). (14)

However, from elementary calculus, it is easily seen that (14) continues to

apply if λK depends on T , as long as (1− λK)/T = O(1). In particular,

var(
T∑

t=1

ε2
t ) = O(T 2d+1) (15)

whenever

1− λK = O(T−2d). (16)

In the conventional notation of the long-memory literature (see e.g. Diebold

and Inoue 2001, p.133), this then implies that ε2
t behaves as if it were I(d).

The largest eigenvalue different from unity of the transition matrix connects

to the staying probabilities pii via

λK ≥ (
M∑

i=1

pii − 1)/(M − 1), (17)

so λK −→ 1 whenever pii −→ 1.

4 Discussion

The argument above has taken the existence of var(ε2
t ) for granted. Francq

and Zakoian (2005, section 2) give necessary and sufficient conditions for the
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existence of higher moments of Markov-switching GARCH models which de-

pend on the moments of the innovations ηt, on the GARCH-parameters and

on the transition matrix of the Markov process. As the present paper is only

concerned with conditions that lead to the appearance of long memory in

otherwise standard situations, such subtleties are here ignored.

Another issue concerns the estimated persistence parameter α̂+β̂ when Markov

switching is ignored when estimating the model (1). It has long been known

that α̂+β̂ is then biased upwards towards unity, and from Krämer and Tameze

(2006) we see that

α̂ + β̂
p−→ 1 as T →∞

whenever d ≥ 1
2

and estimation is done with the Baillie-Chung (2001) mini-

mum distance estimator. This is so because empirical autocorrelations of I(d)

- processes for d ≥ 1
2

tend to 1 in probability as T → ∞ and the distance

between theoretical and empirical autocorrelation of the ε2
t - process is then

minimized whenever α̂ + β̂ = 1.
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