DIMVA 2004

A Honeynet within the German Research Network — Experiences and Results

Helmut Reiser Ludwig-Maximilian University Munich Gereon Volker Technical University Munich

helmut.reiser@nm.ifi.lmu.de , gereon.volker@stud.tu-muenchen.de

Introduction

- Honeypot: single system to be
 - □ Probed, attacked and compromised (hacked)
 - □ By (unfriendly) attackers
- Honeynet:

A Honeynet within the German Research Network — Experiences and Results

- □ A network of honeypots
- □ Copy of the "real world" network
- □ Not used in regular business
- ⇒all (network) traffic caused by attackers
- Why honeynets and honeypots?
 - □ Learn tactics, motives, tools and techniques of attackers
 - □ Learn about (new) vulnerabilities
 - □ Slow down an attack
- Honeynet within the German Research Network (DFN)
 - □ Set up at the Leibniz Supercomputing Center (LRZ)
 - □ Operated between July 15th and September 12th 2003

MNM

Helmut Reiser

2

Honeynet - Design

Honeynet must fulfill three requirements / tasks

- 1. Data capture
 - Recording of all traffic
 - Recording of all actions
 - Inbound and outbound
- 2. Data control

A Honeynet within the German Research Network — Experiences and Results

- Prevention of attacks sourced in the honeynet
- ⇒No harm to other (foreign) systems
- 3. Data analysis
 - Efficient analysis of captured data
 - Extract relevant data out of "noise"
 - Identifying techniques used in attacks
 - Find source of attack

MNM Helmut Reiser 3

Data Capture Architecture: Honeywall

- Invisible for the attacker
- Acts like a bridge (from attackers point of view)
 - No TTL decrement
 - No routing
 - □ No spanning tree protocol
- Efficient capturing, analyzing, filtering and controlling tool (for the operator)
 - □ All data passing can be captured (tcpdump)
 - □ Extended firewall with IDS to detect known attacks
 - Alarming
 - Reduction of data
 - "Noise" filtering

MNM

A Honeynet within the German Research Network — Experiences and Results

Helmut Reiser

4

2

Data Control: Honeywall Extended firewall with Intrusion Detection System (IDS) A Honeynet within the German Research Network — Experiences and Results ☐ Firewall forwards outbound traffic to IDS (snort inline) □ IDS drops known attacks (signature based) □ Even "automatic" attacks like worms could not attack foreign hosts ■ What about "unknown" attacks? Firewall restricts number of outgoing connections □ 15 connections per day □ Asymmetry (could be suspicious for attacker) Alarming of the operator ☐ Monitoring firewall logs with swatch □ New entry, swatch sends an email □ SMS messages for outgoing connections Grouping mechanisms and message rate limited мМм Helmut Reiser 6

Data analysis

- Logfile analysis: finding the "valuable" packets
 - □ Coping with a huge amount of data (up to 200 MB per day)
 - ☐ snort logs with ACID
 - □ Firewall logs with iptables_log
 - □ Charting, summarizing, efficient query mechanisms
- Binary packet analysis: investigate the interesting packets
 - □ Inbound and outbound traffic dumped with tcpdump
 - ☐ Ethereal (Unix) and Packetyzer (Windows)
 - Decoding of several protocols; searching within the data
- Investigating source of attack: finding hostname, subnet or domain
 - □ Reverse lookup for the hostname
 - ☐ traceroute and visualroute finding "geographical" location
 - □ P0f for the identification of attackers operating system (passive fingerprinting)

MNM

A Honeynet within the German Research Network — Experiences and Results

Helmut Reiser

-

Results: General Observations and Traffic General Observations A Honeynet within the German Research Network — Experiences and Results □ At no time existence of the new subnet was propagated □ Honeynet got online 8:55 am (GMT+1) on July 15th □ First successful attack two minutes later (CodeRed2 on MS IIS) ■ Honeynet Traffic [MByte/day] 1000 100 MByte 15.07.03 21.07.03 27.07.03 30.07.03 02.08.03 14.08.03 26.08.03 01.09.03 04.09.03 10.09.03 05.08.03 08.08.03 11.08.03 17.08.03 20.08.03 23.08.03 29.08.03 07.09.03 24.07. MNMHelmut Reiser

Results: Kind of Attacks

- Web Attacks
 - Mostly against Microsoft IIS
 - □ Plenty of well known vulnerabilities
- Worms

A Honeynet within the German Research Network — Experiences and Results

- □ Blaster appeared on August 11th 10:56 pm; variants on 20th
- □ Source: client within the Munich Research Network
- □ Snort_inline prevented further dissemination
- (Distributed) Denial of Service (DoS and DDos)
 - □ DNS Servers of different US providers probably became victims
 - □ Addresses of honeypots have been used spoofing the source
 - □ Victims replied to honeypots with SYN/ACK Packets

MNM Helmut Reiser 11

Results: Kind of Attacks (cont.)

- "Mysterium 55808"
 - □ Packets with large window size 55808
 - □ Destination port 57669
 - No payload data
 - □ Intrusec and ISS called causing trojan "Stumbler"
 - Maybe for scanning purposes
- Noise

A Honeynet within the German Research Network — Experiences and Results

- □ Well known backdoor or trojan ports, e.g.:
 - Skydance (Port 4000)
 - RAdmin (Port 4899)
 -
- □ Proxy Ports (e.g. 8080) or SOCKS (1080)
- □

MNM Helmut Reiser 12

Lessons Learned ■ "Unknown" systems are extremely fast under attack A Honeynet within the German Research Network — Experiences and Results ■ "Unfortunately" no "real" or "clever" hostile take over ■ Windows was the favorite target (69% of all attacks; 95% of web server attacks) ■ Most of the attackers are script-kiddies ■ Data Control works: no harm to foreign systems, no distribution of worms ■ 90 / 10 Rule: 90% of the attacks can be prevented with 10% effort Implement a firewall □ Block services which are a chinch to exploit □ Efficient patch management □ Use saved time to spend more time for the lacking 10% мМм Helmut Reiser 16