
UNIVERSITY OF DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes
and Systems by means of Computational Intelligence Methods

KEA -
a software package for development, analysis

and application of multiple objective
evolutionary algorithms

T. Bartz-Beielstein, J. Mehnen, B. Naujoks,
K. Schmitt and D. Zibold

No. CI-185/04

Technical Report ISSN 1433-3325 November 2004

Secretary of the SFB 531 · University of Dortmund · Dept. of Computer Science/XI
44221 Dortmund · Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence,” at the University of Dortmund and was printed with financial support of
the Deutsche Forschungsgemeinschaft.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Eldorado - Ressourcen aus und für Lehre, Studium und Forschung

https://core.ac.uk/display/46906436?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

KEA -
a software package for development, analysis

and application of multiple objective
evolutionary algorithms

June 2, 2004

T. Bartz-Beielstein, J. Mehnen, B. Naujoks, K. Schmitt, D. Zibold

Abstract

A software package for development, analysis and application of multi-
objective evolutionary algorithms is described. The object-oriented design
of this kit for evolutionary algorithms (KEA) offers a good suitable envi-
ronment for various kinds of optimization tasks. It provides an interface
to evaluate multi-objective fitness functions written in Java or C/C++ using
a variety of multi-objective evolutionary algorithms (MOEA). In addition
KEAcontains several state-of-the-art comparison methods for performance
measure of algorithms. Furthermore KEAis able to display the progress of
optimization in a dynamic display or just to display the results of optimiza-
tion in a static visualization mode.
This paper introduces the main concepts of the KEA-tool. Examples illus-
trate how to work with it and how to extend its functionality.

1 Introduction

Today, the field of multi-objective optimization is very dynamic. Although a wide
varity of optimization methods already exist, many new algorithms appear every
year. Important questions concern the comparison with existing state-of-the-art

1

MOEAs, the general performance on special test problems and the tuning of the
heuristic relevant parameters to improve the performance.

KEA is a framework whose aim is to support researching in this area. Because
of its generic interface, MOEAs, multi-objective problems (MOP) (theoretical as
well as practical ones) and comparison methods can easily be integrated in the
software package. Therefore the effort and time to implement new comparison
methods or algorithms is minimized. Even real world problems, can be integrated
as black box problems and from now on, they can be combined in arbitrary ways
with existing MOEAs. In this way KEAis a programming environment for re-
searchers and engineering practioners.

2 Components and Structure ofKEA

Often the intension of an engineering practitioner is to apply a state-of-the-art
MOEA to some complex real-world multi-objective problem, without exactly
knowing how the MOEA really works. KEAincludes pre-defined state-of-the-
art e.g. NSGA-II [4] or SPEA2 [18] that can be easily applied to the problem.
On the other hand, the researchers, who have designed their own algorithms, are
interested in comparing and tuning their algorithms. Due to these two scenarios,
the following targets have been addressed in the design of KEA:

• Provide a library of:

– some state-of-the-art algorithms, which are able to solve MOP,

– test problems and

– visualization modes

• Support of useful analysis methods

• Extensibility

A library with some most popular algorithms (section 2.2), test problems and com-
parison methods is part of the standard KEA distribution. The problem-package
(section 2.2.2) consists of a number of combinatorial and real-valued test func-
tions, having in mind problem features that may pose difficulties on detecting the
Pareto optimal front and maintaining the population diversity in the current non-
dominated front. In addition, KEA provides several state-of-the-art methods for
comparison of the performance of algorithms, e.g. R-Metrics, attainment surfaces

2

and a modified hyper-volume metric (section 2.2.3). Typical output of a multiob-
jective optimization run tends to large data files that are difficult to handle. Eval-
uation methods (section 2.2.4), implemented in KEA, facilitate the evaluation of
the optimization runs by extracting the interesting information’s.

In the following the architecture of KEAwill be explained. The paper contin-
ues with an overview of existing components in the library. Later on we discuss
some technical details like the directory structure or the installation process. An
example will be given, that demonstrate how to configure an optimization run. We
conclude the paper with a brief summary of features of KEA.

Finally it is necessary to mention, that KEAwas developed by Project Group
419 1 at the University of Dortmund, Germany. The KEAframework is shipped
under a modified GNU General Public License.

2.1 The General Structure ofKEA

The structure diagram of KEA (Figure 1) illustrates in common the architecture of
KEA. The main part of the internal management is done by theKea - class. This
class has the main functionality to coordinate algorithms as well as problems and
to control the preparation and formatting of data. The user interface KEAGUItake
care of the presentation of the functionality that KEAprovides. ThePareser is
used to analyse the input string.

In general KEAis a command line based tool. Due to this classKea contains
themain() method that accepts inputs from the command line in form of a string
array. Parsing and analysing the input string was done by theParser package.

ClassAlgoState is used to save data of an optimization run, in order to
allow users to interrupt the process at any time and to continue optimization later.
It contains functions for exporting data into text format as well as for writing and
updating files. ClassDatacontainer should ensure all inheriting classes to
be able to save themselves. After that it provides methods to handle file head-
ers. ClassesEvalResult andCompResult are used as containers for data
resulting from an evaluation or comparison of algorithm runs. Their functionality
is partly based upon methods inherited from theDatacontainer -class. Class
Parameters as the name suggests is responsible for handling parameters of an
optimization run, an evaluation or comparison. Parameters are stored as an array

1Project Group 419 consists of Miroslaw Dragan, Tim Hohm, Torsten Kohlen, Daniel Krämer,
Stefan Kusper, Philipp Limbourg, Holger Prothmann, Marion Scheel, Peter Senft, Stephan Sigg,
Norman Welp, Dimitri Zibold

3

Figure 1: Most important classes of KEA

4

of objects of typeParameter , each consisting of parameter of typevalue ,
name and tooltip. ClassParameters provides some functions for comfortable
management of parameters. Described classes define the ”core” structure of KEA.
Extensibility was one of the main goals while developing KEA. To reflect these
requirements it contains 6 abstract classes that provide interfaces for new libraries.

• AbstractProblem

• AbstractAlgorithm

• AbstractEvaluation

• AbstractComparison

• AbstractStaticDisplay

• AbstractDynamicDisplay

Below a brief description of these classes is given.

2.1.1 AbstractProblem

Abstract classAbstractProblem provides an interface for new problems and
test functions. The main role plays thescore() -function, that implements the
objective function. This function must be always implemented. It expects a vector
of parameters(x1, . . . , xn) as an input and returns a vector of objective values
(y1, . . . , ym) as an output.m = 1 would mean in this context a single criteria
optimization problem. The description of further function can be found in the
KEA-API.

2.1.2 AbstractAlgorithm

Abstract classAbstractAlgorithm is necessary for implementing of opti-
mization methods. It is made very generic and simple to enable teeing up of both
stochastic individual- or population-based algorithms as well as classical deter-
ministic optimization algorithms. Basic function ofAbstractAlgorithm is
the iterate() -method, that carry out one iteration or one optimization step of
the algorithm. Another important method issetup() that is used for initializa-
tion of algorithms. For other functions see KEA-API

5

Figure 2: Libraries in KEA

2.1.3 AbstractEvaluation

ClassAbstractEvaluation is an interface that should be inherited by all
evaluation methods. Evaluations are applied to the results of some run in order to
extract required information like e.g. all non-dominated points. Most important
function ofAbstractEvaluation is evaluate() that directly contains the
evaluation method. Other functions are needed to initialize an evaluation run.
Their description can be found in the API.

2.1.4 AbstractComparison

Abstract classAbstractComparison provides an interface for comparison
methods. Contrary to evaluation methods comparison methods work upon re-
sults of two runs. Examples of comparison methods are attainment surfaces and
different metrics like hypervolume. Methodcompare() should implement the
particular comparison method, other methods are used for initialization.

6

2.1.5 AbstractDynamicDisplay

Abstract classAbstractDynamicDisplay is an interface for visualization
tools that communicate with KEAvia a pipe. ClassOnTheFlyDisplay uses
this interface for creating a GNUPlot - window that will be updated after each
computed generation. Except for GNUPlot other visualization tools can be used.
In that case methodsexecProgram andprepareAndShow are to be adjusted
to the used visualization software.

2.1.6 AbstractStaticDisplay

Abstract classAbstractStaticDisplay provides likeAbstractDyna-
micDisplay an interface for visualization. The data in the static display mode
is visualized only once, so that no communication between KEAand visualization
application is required. Consequently only functionprepareAndExec() must
be implemented and adjusted to the visualization software.

2.2 Components

This section informs the reader about the capabilities of the KEA library. Opti-
mization is a rush changing field of research, so that new methods and heuristics
are being developed nearly every day. To stay up-to-date any optimization soft-
ware should be easily expandable with new methods. To correspond to this re-
quirements a module structure was chosen for KEA(see Figure 2). To add a new
problem or method the users just have to implement the interfaces of particular
modules. There are following modules available:

• Problems

• Algorithms,

• Evaluations,

• Comparisons,

• Displays.

7

Algorithms

Algorithm Description
SPEA2 improved version ofStrengthParetoEvolutionaryAlgorithm

[18], that was specially developed for multi-objective opti-
mization.

NSGA-II improved version ofNondominatedSorting Genetic Algo-
rithm [4]

MOPSO is aMultiObjective extension of a popularParticleSwarmOp-
timization algorithm [14],[3].

DOPS modified and improved version of MOPSO [1].
Simplex downhill simplex method [13] is popular ”classical” determi-

nistic algorithm for optimization of single objective functions.

2.2.1 Algorithms

Algorithms are optimization methods that can be applied on any optimization task.
Up to now five algorithms were implemented for KEA:

All the algorithms implemented in KEA can be found in thekea.algo-
rithms package. Every algorithm is placed in it’s own sub-folder. The only
exception is packagekea.algorithms.common . It contains classes that can
be useful for implementation of further algorithms. Next section contains some
more information on these classes. Packagekea.algorithms contains also
classAbstractAlgorithm that provides all necessary functions and for this
reason is to be inherited by any new algorithm class.

Additional Classes
Package kea.algorithms.common contains some classes that have no direct impact
on algorithm, but can be very useful for developer. Up to now there are following
classes available:

• AlgoException is a super class for exceptions handling in all algo-
rithms.

• DataSet implements basic functions for processing data, like sorting,
pasting, attaching etc.

• OptSet adds to the functionality of DataSet a special function for extract-
ing the non-dominated set.

8

• DataSetSorter contains two functions for comparison of objects.

• OptDataDomination checks domination relation between two Data -
objects.

For more information see KEA developer manual [1].

2.2.2 Problems

Module Problems includes real world application and test problems. Application
problems are multi-objective problems of real world which has to be optimized as
a part of the project group task. There are three such problems: development of an
optimal drilling holes for cooling system of the cast of an injection moulding ma-
chine (further referred as ”Drilling”)[6], optimization of circuit design represented
by a simulator (CDSim) ([2],[15]), and optimization of airfoil design [12],[11].

After that some well known test problems are implemented. All test functions
of this paragraph can be found in [16]. You can find there also some more detailed
information on these functions.

BINH is a simple problem with two objectives and convex Pareto front ([16])

Minimize F = (f1(x1, x2), f2(x1, x2)),
with f1(x1, x2) = x2

1 + x2
2

and f2(x1, x2) = (x1 − 5)2 + (x2 − 5)2.

KURSAWE is a problem with non-convex and discontinuous Pareto front and dis-
continuous Pareto set.
Minimize F = (f1(x1, . . . , xn), f2(x1, . . . , xn)),
with f1(x1, . . . , xn) =

∑n−1
i=1 (−10 exp((−0.2)

√
x2

i + x2
i+1))

and f2(x1, . . . , xn) =
∑n

i=1(|xi|0.8 + 5 sin3(xi)).

MURATA is a function with contiguous Pareto set. Pareto front is also contiguous
but not convex.
Minimize F = (f1(x1, x2), f2(x1, x2)),
with f1(x1, x2) = 2

√
x1

and f2(x1, x2) = x1(1− x2) + 5.

under conditions1 ≤ x1 ≤ 4 and1 ≤ x2 ≤ 2.

9

QUAGLIARELLA Both Pareto set and Pareto front are discontinuous.

Minimize F = (f1(x1, . . . , xn), f2(x1, . . . , xn)),

with f1(x1, . . . , xn) =
√

A1

n

and f2(x1, . . . , xn) =
√

A2

n
.

under conditions

A1 =
∑n

i=1[(xi)
2 − 10 cos[2π(xi)] + 10] andA2 =

∑n
i=1[(xi − 1.5)2 −

10 cos[2π(xi − 1.5)] + 10], as well as−5.12 ≤ xi ≤ 5.12 andn = 16.

SCHAFFER (1) is a function with contiguous Pareto set and contiguous and con-
vex Pareto front.
Minimize F = (f1(), f2(x)),
with f1(x) = x2

and f2(x) = (x− 2)2.

GENERALIZED SPHEREMODEL The generalized sphere problem
([18]) is a scalable generalization of the Schaffer-function.
Minimize fj(~x) =

∑
1≤i≤n,i6=j (xi)

2 + (xj − 1)2,
with 1 ≤ j ≤ m with m = 2, 3
and ~x ∈ [−103, 103]n with n = 100.

ZDT 6 is considered to be a very difficult problem. It possesses not uniform dis-
tributed solutions both along the non convex Pareto front and in the objec-
tive space. The density of solutions is far from the Pareto front is very high.
Most of the solutions that are distributed along the Pareto front lay in the
vicinity of f1(x1) = 1.

Minimize f1(x1) = 1− exp(−4x1) sin6(6πx1),
minimize f2(x1, . . . , xm) = g(x2, . . . , xm) · h(f1(x1), g(x2, . . . , xm)),
with g(x2, . . . , xm) = 1 + 9 · ((

∑m
i=2 xi) /(m− 1))

0.25,
and h(f1, g) = 1− (f1/g)2.

m = 10, andxi ∈ [0, 1]. The non convex Pareto front can be reached for
g(x2, . . . , xm) = 1.

DTLZ 3 is function scalable with respect to the number of variables and objec-
tives. It possesses a number of local fronts. The global front is reached for
~xM = (0.5, . . . , 0.5)

10

Minimize f1(~x) = (1 + g(~xM))
cos(x1π/2) cos(x2π/2) . . . cos(xM−2π/2) cos(xM−1π/2);

minimize f2(~x) = (1 + g(~xM))
cos(x1π/2) cos(x2π/2) . . . cos(xM−2π/2) sin(xM−1π/2);

minimize f3(~x) = (1 + g(~xM))
cos(x1π/2) cos(x2π/2) . . . sin(xM−2π/2);

...
...

minimize fM−1(~x) = (1 + g(~xM))
cos(x1π/2) sin(x2π/2);

minimize fM(~x) = (1 + g(~xM)) sin(x1π/2);
0 ≤ xi ≤ 1 for i = 1, 2, . . . , n;
g(~xM) = 100

[
|~xM |+

∑
xi∈~xM

(xi − 0.5)2 − cos(20π(xi − 0.5))
]
.

Valuek = |~xM | = 10 is recommended. There aren = M + k − 1 decision
variables.

DTLZ 9 - is a function with constrains that is scalable regarding to decision and
objective variables [5]. Pareto front is a curvef1 = f2 = . . . = fM−1 with
frequency of solutions decreasing in the vicinity of the front.

Minimize fj(~x) =
∑bjn/Mc

i=b(j−1)n/Mc x0.1
i , j = 1, 2, . . . ,M ;

under constrains gj(~x) = f 2
M(~x) + f 2

j (~x)− 1 ≥ 0, for j = 1, 2, . . . , (M − 1);
0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.

A number of variables should be higher than a number of objectives. Rec-
ommended value isn = 10M .

Combinatorial problems

LOTZ As a simple combinatorial problem was chosen LOTZ (leading ones - trail-
ing zeroes) presented in [10] . In this generalization of LEADINGONES-
function both the number of leading ones in the beginning of the bit string
as well as the number of zeros in the end of the bit string should be maxi-
mized.

LOTZ: {0, 1}n → N2 is thereby defined as follows:

LOTZ(x1, . . . , xn) =

(
n∑

i=1

i∏
j=1

xj,

n∑
i=1

n∏
j=i

1− xj

)
.

11

MULTI -OBJECTIVEKNAPSACK PROBLEM This problem represents a multidi-
mensional extension of the NP-hard knapsack problem. This variant de-
scribed e.g. in [17] allows rucksacks and items with following parameters:

pi,j = Utility value of the itemj respectively to rucksacki
wi,j = Weight of the itemj respectively to rucksacki
ci = Capacity of the rucksacki

A solution ~x = (x1, . . . , xn) ∈ {0, 1}n, is required that would keep the
capacity limits

ei(~x) =
n∑

j=1

wi,j · xj ≤ ci (1 ≤ i ≤ k)

and maximizesf(~x) = (f1(~x), . . . , fk(~x)) under conditions

fi(~x) =
n∑

j=1

pi,j · xj

xj = 1 means that the itemj was chosen.

Every user of KEA is provided with the possibility to add one’s own optimiza-
tion problems to the package. The problem in this case can be a ”wrapper” class
for some external problem as well. After having integrated a problem into the
KEA, user can apply any appropriate algorithm from KEA- algorithms package
to optimize it.

Interface
To integrate one’s own problems into KEA the user should implement interface
AbstractProblem , that can be found in the packagekea.problems . For
detailed description of methods and attributes of the interface see KEA developer
manual.

2.2.3 Comparisons

One of the main problems while developing multi-objective optimization meth-
ods is the difficulty to compare the results of optimization runs. An outcome
of an optimization run for multi-objective problem is not a unique solution but
a set of non-dominated points, each representing a solution. So there exists a

12

great number of different methods to compare such solutions, each method hav-
ing its advantages and disadvantages. J.Knowles [9] compared in his Ph.D.thesis
14 comparison methods and recommended R-Metrics by Hansen and Jaszkiewicz
[7] and S-Metric by Zitzler. These results were used while choosing comparison
methods for KEA. After that the attainment surfaces by Fonseca and Fleming
were used to compare different algorithms.

Attainment surfaces
The set of non-dominated objective vectors divides the objective space into dom-
inated and non dominated subspaces. The board between these areas is a sur-
face usually denoted as ”attainment surface”. Trough measuring the position and
spread of solutions the goodness of approximation of real Pareto front by the com-
puted non dominated set can be obtained. Results achieved in this way have the
form of probabilities for one non dominated set to be better then one another.
The following picture demonstrates descriptively the application of attainment
surfaces in a two dimensional case.

Figure 3: Two attainment surfaces with contour lines

13

Hypervolume
Known also as S-Metric, hypervolume is used to estimate the quality of a non-
dominated set. The idea is to use a fixed reference point~z ref to compute the
volume of hyper space covered by the non-dominated setA [17].

R(A, ~z ref)
4
=

⋃
i∈{1,...,|A|}

R(~z i, ~z ref), whereas

R(~z i, ~z ref)
4
= {~y | ~y < ~z refand~z i < ~y, ~y ∈ Rk}.

Finally a hyper surface or a Lebesgue-integral of the point setR(A, ~z ref) is
computed.

This metric has a number of advantages. It is compatible to the out per-
formance relation and it can differentiate between various grades of full out-
performance of two sets. The knowledge about the Pareto set or other reference
points are not necessary.

To disadvantages of this method are the following: the board of the area where
the solution may lay should be predetermined. The choice of such board is dif-
ficult and may be very critical in some cases. One another problem is that the
Hypervolume multiplies different objectives that can be of various natures and
could have different measures.

After that the runtime ofO(nk+1) makes this metric inapplicable for problems
with large number of non-dominated points.

R-1 metric
Basing on utility function this metric computes a probability for an approximation
setA to be better then an approximation setB.

R1(A, B, U, p) =

∫
u∈U

C(A, B, u) · p(u)du,

whereas

C(A, B, u) =

1 if u∗(A) > u∗(B)

1/2 if u∗(A) = u∗(B)

0 if u∗(A) < u∗(B)

A is said to be better thenB if R1(A, B, U, p) > 1
2
. In particular

R1(B, A, U, p) = 1− R1(A, B, U, p) is always fulfilled.

14

Advantages: The R1 metric scales independently, so that the order of the ap-
proximation sets is not changed when scaling one objective in relation to oth-
ers. It is easier in computing than a hypervolume metric. Under some conditions
R1 metric can be compatible to the outperformance relation. Disadvantages:R1
cannot distinguish between different grades of full outperformance so that cycle-
including is possible. This is unfortunately dependent on the particular utility
function. In most cases such utility function can be defined without knowing the
Pareto front or search space.

R-2 metric
Basing on utility function R-2 metric computes the expected difference between
two approximation sets.

R2(A, B, U, p) = E(u∗(A))− E(u∗(B)).

If R2(A, B, U, p) > 0 is fulfilled, the approximationA is evaluated to be better
thenB. It is obviously true that R2(A, B, U, p) = −R2(B, A, U, p).

Similar toR1 metric theR2 metric under some conditions can be compatible
to the out-performance relations. AdditionallyR2 metric can distinguish between
different grades of the out-performance.

An application ofR2-metric is based on the assumption that addition of values
of different utility functions makes sense. That means that every utility function
must be scaled in an appropriate way regarding to its relative importance.

R-3 metric
Basing on utility function this metric computes the relation of best utility function
values of two approximation sets.

2.2.4 Evaluations

Optimization runs of KEA produce as a rule great amount of data. Evaluation
methods are used to reduce the volume of these data through extraction of nec-
essary and elimination of useless data. Following evaluation is already imple-
mented:

• Filter: filter generations, objectives or decision variables;

• Filter Evaluationcount: filter by evaluation number;

• Filter Iterationcount: filter by iteration number;

15

• Pareto Sets: compute Pareto set for chosen generations;

All evaluations work on AlgoState or EvalResult files and produce EvalResult
files as output.

2.2.5 Visualizations

Visualization in KEA is implemented with help of external graphical soft-
ware GNUPlot that can be downloaded from the following destination:
http://www.gnuplot.info

GNUPlot is free software covered under GNU General Public License. Com-
munication between KEA and GNUPlot is implemented very simply: KEA cre-
ates text files in format that is compliant to GNUPlot and makes a call to GNU-
Plot. GNUPlot starts its own process, reads text file and produces graphical out-
put. Visualization interface allows also using other tools than GNUPlot to create
graphical output. For more details see KEA developer manual.

Figure 4: Two attainment surfaces with contour lines

16

There are two types of visualizations implemented: a dynamical display and a
static one. Dynamic display is used for on-line monitoring of the running process.
It enables the user to interrupt a running optimization but in first line it gives the
possibility to learn more about the process. In this mode current state of solutions
in the objective space are displayed. Frequency of update is depending on the
setting of the--savestep option. To visualize the results of some evaluation
like e.g. Pareto set a static display can be used. It is possible to plot more than
one set in one graphic.

3 Installation and support

3.1 Installation

KEA was developed using Java programming language and it needs Java Runtime
Environment to be installed. Java Runtime Environment for all operation systems
can be freely downloaded from the following site:

http://java.sun.com
KEA must be executable under every operating system, for which Java Virtual

Machine version 1.3 exists. To run KEA JVM v. 1.3 must be installed. KEA was
tested for SuSE Linux 8.0, Solaris, Windows 2000 and Windows XP.

The actual version of KEA can be found underhttp://ls11-www.cs.uni-
dortmund.de/people/schmitt/kea.jsp. To install KEA file keaSuite.zip must be
downloaded, copied to the KEA folder and unzipped. After this following sub-
folders will appear in the main folder:

• kea folder contains all classes and packages of KEA.

• keagui folder contains all classes and packages of KEA graphical user
interface.

• doc folder contains complete documentation for KEA.

• source contains Java sources of KEA and KEAGUI.

Before using KEA it should be started once without any options. This is
needed to configure the KEA. To do so go to the KEA folder and start the tool
with commando’>kea’ . During this run KEA will create configuration file
kea.ini and three folders needed for data that may be produced in the future:

17

• parameter folder is needed for files with parameter of algorithms, prob-
lems, evaluations or comparisons.

• results folder contains results of some run, evaluation or comparison.

• bak folder contains back up data that is needed to continue an interrupted
run.

After that KEA is ready for using. To control KEA either a command line
or KEAGUI can be used. To use KEAGUI just double click on the keagui.bat or
start it from the text console. KEAGUI has very intuitive interface, so there is no
necessity to explain it here. For details see KEA user manual.

Using command line is also rather simple. All commands look like
>kea -Option
To see what options are available user can start KEA without any options or print
>kea --options .

Documentation to KEA can be found in thekea/doc folder. It consists of
KEA user manual, containing information about the structure and commands of
KEA needed to apply the software. Developer manual covers information about
internal structure, modules, interfaces and connections between classes that are
needed to be able to write KEA extensions. JavaDoc files in HTML format give
the user information concerning single classes and functions as well as references
to literature and implementation notes. Main folder of KEA contains also the
KEA license agreement and the GNU General Public License.

3.2 File format

KEA input and output files are mostly ASCII-text files that can be edited with
every text-editor. Lines with comments begin with]-symbol. The following de-
scription explains KEA data files in the same order as they are used:

3.2.1 Kea.ini

Kea.ini contains 4 entries of the form: path name = absolute path. Path names are
KEA, PARAMETER, RESULTS, BACKUP, and their order is not essential. The
meaning is as following:
KEA is the folder of KEA-package
PARAMETERS is folder with parameter files
RESULTS is folder with results of runs

18

BACKUP is folder with binary files of uncompleted runs.
If some of last three folders is not available, it will be created by KEA automati-
cally.

3.2.2 Parameter files

Parameter files are used inside of KEA to save parameters of problems, algo-
rithms, evaluations or comparisons. Default parameter files can be created by
KEA automatically, since according to KEA - developer convention default set-
tings are contained in the corresponding class-files. First line of parameter files
should contain relative path from KEA-package to the according class-file. En-
tries have the form of
Parameter name = parameter value [] comments]
File name extension for parameter files is ”.param”. User can edit parameter files
with any text editor.

3.2.3 AlgoState files

AlgoState files are text files that contain outcomes of optimization runs. In the
beginning of such file parameter settings for problem and algorithm are placed.
They are followed by a block with individuals. Genotype and phenotype of each
individual are separated by ”/” (slash) . In the end of each generation iteration
counter, evaluation counter and runtime are placed. File name extension for Al-
goState files is ”.ast”.

3.2.4 EvalResult and CompResult files

EvalResult files contain all the same information as AlgoState do, with evaluation
parameter additionally attached to the parameter-block. EvalResult files have file
name extension ”.ers”. CompResults-files also contain problems, algorithms and
comparisons parameter in the first part. In the second part the results of compar-
ison are placed. Their structure can be very different depending on the particular
comparison method.

3.2.5 Binary files

Binary files are used to save interrupted runs of KEA. They contain zipped KEA-
objects. On a later date such uncompleted runs can be loaded again and continued.

19

3.3 Example Run

On this point a short example application of KEA is presented. It is assumed that
KEA is already installed.

As example a NSGA-II- algorithm will be started over Kursawe problem with
standard parameter settings

To create default parameter file Kursawe.param for Kursawe function user
types:
>kea --createDefaults kea.problems.testproblems.Kursawe
--filename Kursawe
or just
>kea -CD kea.problems.testproblems.Kursawe -FN Kursawe
To create parameter file for algorithm NSGA-II in order to optimize Kursawe
problem user should type:
>kea -CD kea.algorithms.populationBased.nsga2.NSGA2
kea.problems.testproblems.Kursawe -FN nsga2

Both parameter files Kursawe.param and nsga2.param lay now in the
parameter folder. They can be viewed or edited with any text editor.

After appropriate parameter files are created an optimization run can be
started. To do so users have to type:
>kea --algorithm nsga2.param --problem Kursawe.param
--filename ExampleRun --savestep 10 --exportstep 1
or just
>kea -A nsga2.param -P Kursawe.param -FN ExampleRun
-SS 10 -ES 1
Option --savestep (or -SS) sets time period in seconds for update of back
up file. Option--exportstep (or -ES) determines after how many steps an
intermediate optimization result must be saved to text file. Value 1 means that
every produced result will be saved to file. This setting can cause very large
output files.

While running, KEA prints some information to display, enabling user to ob-
serve the progress of optimization. When the run is completed user can view the
output file ExampleRun.ast in theresults folder.

3.4 Support

KEA is a living project and a developer group works continuously on its develop-
ment and improvement. New features and libraries will be added to the existing in

20

Figure 5: Setting problem and algorithm parameters in KEAGUI

the nearest time. If you have questions on KEA or problems with installation or
running the software, please contact the KEAdeveloper group under e-mail that
is given on its home page.

4 Test suite

4.1 Planning

In the following some results obtained from a test run made with KEA are pre-
sented.

The idea of the test run was to test different parameter settings for different
algorithms on various test problems and to get some reliable results.

21

4.1.1 Algorithms & Parameters

Standard KEA distribution contains now five algorithms. They all were used
for the test suit. SPEA2 and NSGA-II are two modern Pareto-based algorithms
for multi-objective optimization that were chosen for the test suit due to their
good result achieved in other studies. MOPSO [8] is rather new method so there
is not much results in the literature considering this algorithm. DOPS [1] is an
improved version of MOPSO that was designed during the project group. To
compare population based methods with classical algorithms a Simplex algorithm
was used.

4.1.2 Problems

To restrict the complexity to a manageable level four test function were chosen
for the test suit: Binh, Kursawe, ZDT6 and CDSim.

All problems were used with their standard settings:

BINH

minRange =-5.0
maxRange = 10.0

KURSAWE

n = 2
minRange =-100.0
maxRange = 100.0

ZDT6
n = 10

To make Simplex comparable with population based algorithms, a special test
program was used that made with simplex multiple starts of simplex algorithm
with different parameter values, resulting in nearly the same number of function
evaluations as by other methods. Following parameters were used:

• Population size = 100

• Generation size = 1000

• Every run was repeated 20 times with the same parameter settings.

22

In order to get statistically representative results runs of each algorithm on each
problem were repeated few times. A whole number of runs isk∗m∗n , wherek is
the number of algorithms (every new parameter setting count as new algorithm),
m the number of problems andn a loop counter. To automatically start all these
run a special script was written. Test run consists of 3 Phases: in first phase the
runs of all algorithms over all problems are done. In the second phase the result
of the previous phase are evaluated and filtered. In the last phase three metrics are
used to compare the results. Because of great computational work needed for the
run of test script a batch system with about 30 computers was used to compute the
results.

4.2 Evaluation

4.2.1 Attainment surfaces

Application of attainment surfaces-metric on the result of runs produced tables
containing results for algorithms in lines and problems in columns. Each en-
try contains two percentage values, one of which show to how many percent the
algorithm is not beaten by the other algorithms, the second demonstrates the prob-
ability for it to outperform all the other algorithms in the table. These tables were
analyzed to get the best parameter settings for every algorithm. For SPEA2 there
were significant differences depending on the settings of the parameter. SPEA2.1
is clearly leading over almost all problems.

For NSGA-II four possible parameter settings were tested. In contrast to
SPEA2 it seems to be less sensitive to parameters, since all runs demonstrated
nearly equally good results. Therefore we could observe, that for Binh and ZDT6
leader was NSGA-II.4 and for Kursawe it was NSGA-II.3.

Results delivered by MOPSO were not easy to interpret, because there was no
clear trend to see. For ZDT6 show MOPSO.2 better results, for other function
winner alternates depending on the number of fitness evaluations. For DOPS we
tested also four parameter settings. DOPS.1 was clearly leading for functions
Binh and Kursawe. DOPS.2 beats other settings for ZDT6 and CDSim.

After having estimated best parameter settings for each algorithm we com-
pare the winners with each other.NSGA-II.4 leads for test problem Binh, followed
by DOPS.1 that shows nearly the same quality of solution. For Kursawe shows
DOPS.1 better results than NSGA-II.3. For ZDT6 and CDSim is NSGA-II.4 the
definitive leader. MOPSO show for all these problems permanently worst results.

23

4.2.2 Hypervolume

Hypervolume is one another way to evaluate the results. To learn more about hy-
pervolume metric see [9]. Very important feature of hypervolume metric is that
it delivers only one value for each run, so that these values can be simply com-
pared with the results of other runs. The goal of the test is to retrieve statistically
approved results. Because of a high variance it cannot be said that one algorithm
is better than one another basing on only one run. As it already mentioned, every
run of every algorithm was repeated with different parameter settings 20 times and
the results were evaluated with hypervolume metric in order to get a representa-
tive sample. After having computed these samples they were compared with help
of statistical tests. In first step each sample is being tested whether it is normally
distributed with Kolmogorov - Smirnov test. After that we use two-sided pair wise
t-test to find out whether samples are different with respect to significance level
α = 0.05.

Results of this evaluation are presented in tables, separated according to the
number of fitness evaluations. Altogether there are 4 such tables displaying results
after 5000 evaluations, after 10000, after 20 000 and the ”last”. ”Last” means in
this context that either a limit of 100000 evaluations was reached or some internal
stop condition of particular algorithm interrupted the run.

Comparing the results after 5000 fitness evaluations one can clearly see, that
for DOPS and Kursawe DOPS.1 and DOPS.2 have best performance. Both
MOPSO variants perform on these functions significantly worse, than all other
algorithms. For more complex function ZDT6 outperform NSGA-II independent
from its settings all other algorithms. For CDSim deliver NSGA-II and SPEA2
nearly equally good results, DOPS and MOPSO show in contrast poor perfor-
mance. After 10000 and 20000 of evaluations up to the ”last” limit we can see
that situation doesn’t differ much. Over all functions SPEA2 improves its perfor-
mance up to the level of NSGA-II, that is leading the overall standings and even
reaches the optimum for CDSim problem. MOPSO shows for all functions worst
results and DOPS is very slowly getting better, but still doesn’t reach the results
of NSGA-II.

4.2.3 R-Metrics

Result of comparison demonstrates that none of the chosen methods and parame-
ter settings is optimal for all problems. That means that algorithm and parameters
should be always chosen with respect to the current problem. Nevertheless SPEA2

24

and NSGA-II seem to be rather robust algorithms, producing good results for any
parameter setting, whereas MOPSO continuously produces ’bad’ results for any
settings.

5 Summary and Outlook

An introduction to KEA- unique free software specially developed for design,
test, evaluation and comparison of multi-objective optimization methods was
made. First chapter gives a brief introduction into the philosophy and goals of
KEA. Second chapter is divided into two parts. In the first part structure dia-
gram with the description of most important classes and interfaces are presented.
Second part contains information about the KEA-packages with the characterisa-
tion of implemented algorithms, test-problems, evaluations and comparison meth-
ods as well as visualization options. Next chapter describes system requirements,
structure of parameter files, installation process, most important commandos and
an example run KEA. Last chapter is devoted to the results of KEA-runs per-
formed in order to compare the efficiency of 5 implemented multi-objective algo-
rithm on different test problems by means of evaluation and comparison methods.
Numerous experiments made with KEA prove it to be good suitable tool for mul-
tiobjective optimization of real tasks as well as for research purposes. Simple and
clearly defined interfaces make easy adding new algorithms,problems and meth-
ods to the existing library. To solve problems any of existing algorithm can be
applied on it and after that the produced results can be analyzed with some of
the evaluation or comparison techniques. To the valuable features of KEA count
its visualization capabilities. Dynamic and static display modes can be used for
graphical presentation of the produced results. User KEA can run KEA in a com-
fortable way using KEAGUI, a user-friendly interface, that provides an access to
all options of the program just per mouse-click.

References

[1] KEA Projektgruppe 419.Mehrzieloptimierung mittels evolutionärer Algo-
rithmen - Zwischenbericht der Projektgruppe KEA, PG 419. Universiẗat
Dortmund, Dortmund, Juli 2003.

[2] Thomas Beielstein, Jan Dienstuhl, Christian Feist, and Marc Pompl. Cir-
cuit Design Using Evolutionary Algorithms. Technical Report CI 122/01,
Dortmund: SFB 531, University of Dortmund, Germany, 2001.

25

[3] Carlos A. Coello Coello and Maximino Salazar Lechuga. MOPSO: A Pro-
posal for Multiple Objective Particle Swarm Optimization. InCongress on
Evolutionary Computation (CEC’2002), volume 2, pages 1051–1056, Pis-
cataway, New Jersey, May 2002. IEEE Service Center.

[4] Kalyanmoy Deb, Samir Agrawal, Amrit Pratab, and T. Meyarivan. A Fast
Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Opti-
mization: NSGA-II. KanGAL report 200001, Indian Institute of Technology,
Kanpur, India, 2000.

[5] Kalyanmoy Deb, Lothar Thiele, Marco Laumanns, and Eckart Zitzler. Scal-
able Test Problems for Evolutionary Multi-Objective Optimization. Tech-
nical Report 112, Computer Engineering and Networks Laboratory (TIK),
Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, 2001.

[6] Peter Drerup. Fertigungsorientierte Optimierung von Temperier-
bohrungsstrategien fu”r Spritzgusswerkzeuge mit Hilfe Evolutiona”rer Al-
gorithmen. Diplomarbeit, Institut fu”r Spanende Fertigung (ISF), University
of Dortmund, Germany, 2001.

[7] Michael Pilegaard Hansen and Andrzej Jaszkiewicz. Evaluating the quality
of approximations to the non-dominated set. Technical Report IMM-REP-
1998-7, Technical University of Denmark, March 1998.

[8] J. Kennedy and R. Eberhart. Particle Swarm Optimization. InProceedings
of the Fourth IEEE International Conference on Neural Networks, pages
1942–1948. IEEE Service Center, 1995.

[9] Joshua D. Knowles.Local-Search and Hybrid Evolutionary Algorithms for
Pareto Optimization. PhD thesis, The University of Reading, Department of
Computer Science, Reading, UK, January 2002.

[10] Marco Laumanns, Lothar Thiele, Eckart Zitzler, Emo Welzl, and Kalyanmoy
Deb. Running time analysis of a multi-objective evolutionary algorithm on a
simple discrete optimization problem. Technical Report 123, Computer En-
gineering and Networks Laboratory (TIK), Swiss Federal Institute of Tech-
nology (ETH), Zurich, Switzerland, 2002.

[11] Boris Naujoks, Werner Haase, Lars Willmes, Jörg Ziegenhirt, and Thomas
Bäck. Advanced multi-objective evolutionary algorithms for airfoil design.

26

In Proc. CEAS Aerospace Aerodynamics Research Conference. Royal Aero-
nautical Society, June 10–13 2002. (accepted for publication).

[12] Boris Naujoks, Lars Willmes, Werner Haase, Thomas Bäck, and Martin
Scḧutz. Multi-point airfoil optimization using evolution strategies. In
Proc. European Congress on Computational Methods in Applied Sciences
and Engineering (ECCOMAS’00) (CD-Rom and Book of Abstracts), page
948 (Book of Abstracts), Barcelona, Spanien, September 11–14, 2000 2000.
Center for Numerical Methods in Engineering (CIMNE).

[13] J.A. Nelder and R. Mead. A simplex method for function minimization.
Computer Journal, 7:308–313, 1965.

[14] K. E. Parsopoulos and M. N. Vrahatis. Particle swarm optimization method
in multiobjective problems. Technical report, Department of mathematics,
University of Patras Artificial Intellligence Research Center (UPAIRC), Uni-
versity of Patras, GR-26110, Greece, 2002.

[15] Marc Thomas, Christian Burwick, and Karl Goser. Circuit Analysis and De-
sign using Evolutionary Algorithms. Technical Report CI 85/00, Dortmund:
SFB 531, University of Dortmund, Germany, 2000.

[16] David A. Van Veldhuizen.Multiobjective Evolutionary Algorithms: Classifi-
cations, Analyses, and New Innovations. PhD thesis, Department of Electri-
cal and Computer Engineering. Graduate School of Engineering. Air Force
Institute of Technology, Wright-Patterson AFB, Ohio, May 1999.

[17] Eckart Zitzler. Evolutionary Algorithms for Multiobjective Optimization:
Methods and Applications. PhD thesis, Swiss Federal Institute of Technol-
ogy (ETH), Zurich, Switzerland, November 1999.

[18] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2: Improving
the Strength Pareto Evolutionary Algorithm. Technical Report 103, Com-
puter Engineering and Networks Laboratory (TIK), Swiss Federal Institute
of Technology (ETH) Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzer-
land, May 2001.

27

