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FB Informatik, LS 2

Univ. Dortmund

44221 Dortmund, Germany

jens.jaegerskuepper@udo.edu

Carsten Witt∗

FB Informatik, LS 2

Univ. Dortmund

44221 Dortmund, Germany

carsten.witt@cs.uni-dortmund.de

May 11, 2005

Abstract

Evolutionary algorithms (EAs) are general, randomized search heuris-
tics applied successfully to optimization problems both in discrete and in
continuous search spaces. In recent years, substantial progress has been
made in theoretical runtime analysis of EAs, in particular for pseudo-
Boolean fitness functions f : {0, 1}n → R. Compared to this, little is
known about the runtime of simple and, in particular, more complex EAs
for continuous functions f : Rn → R.

In this paper, a first rigorous runtime analysis of a population-based
EA in continuous search spaces is presented. A simple (µ+1) evolution
strategy ((µ+1) ES) that uses Gaussian mutations adapted by the 1/5-rule
as its search operator is studied on the well-known Sphere functionand
the influence of µ and n on its runtime is examined. By generalizing the
proof technique of randomized family trees, developed before w. r. t. dis-
crete search spaces, asymptotically upper and lower bounds on the time
for the population to make a predefined progress are derived. Further-
more, the utility of the 1/5-rule in population-based evolution strategies
is shown. Finally, the behavior of the (µ+1) ES on multimodal functions
is discussed.

1 Introduction

Since the very first successful applications of evolutionary algorithms (EAs),
one has desired to explain the principles of EAs from a theoretical point of view
(cf., e. g., the Schema Theorem by Holland [5] and Rechenberg’s [13] analysis of
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the (1+1)ES). In the last decade, there has been a growing interest in theoret-
ical runtime analysis of specific EAs on specific fitness functions and classes of
functions, which is also called computational-time complexity of EAs. In this
framework, it is examined by means of mathematical proofs how many evalua-
tions of the fitness function are performed until the EA finds a global optimum.
The hope is to identify practically relevant classes of functions where the EA
behaves efficiently, i. e., where on average it takes only a small (polynomial)
number of evaluations.

Runtime analysis started with very simple EAs such as the (1+1)EA on
example functions like OneMax (e. g., [2]). Nowadays, one is able to analyze the
runtime of the (1+1)EA on practically relevant problems such as the maximum
matching problem [4], the minimum spanning tree problem [12], and simple
scheduling problems [17]. It has turned out that from our complexity-theoretical
perspective, the (1+1)EA is surprisingly efficient on such problems.

Despite the successful analyses of the (1+1)EA, runtime analyses should
also explain the utility of the ingredients of more complex EAs, e. g., populations
and variation operators. Studies of the utility of populations were performed,
amongst others, for a (1+λ) EA [9] and a (µ+1)EA [15]. The impact of a
crossover operator was also investigated [14]. All these studies of more complex
EAs, however, have been confined to discrete search spaces, more precisely, to
pseudo-Boolean functions f : {0, 1}n → R. With respect to continuous search
spaces, i. e., the optimization of functions f : Rn → R, most of the studies are
experimental. Local performance measures, namely the so-called progress rate
and the so-called quality gain, have also been studied theoretically, in particular
by Beyer [1]. These two measures are usually used to obtain estimates of the
best possible gain of/in a single step assuming optimal adaptation. Predictions
of the runtime of an EA, however, then generally rely on experimental validation
since, obviously, optimal adaptation cannot be achieved/realized. Theoretical
analyses of the runtime taking the adaptation into account succeeded only re-
cently for the simple (1+1)ES [7, 8]. Just like in the first runtime analyses of
the (1+1)EA, very simple functions such as the well-known Sphere function
and straightforward generalizations thereof are considered in these works. A
study of more complex EAs in continuous search spaces should also start with
such simple functions.

In this paper, a first runtime analysis of a population-based EA in continuous
search spaces is presented. We define a (µ+1)ES with 1/5-rule that represents
a canonical generalization of the (1+1)ES with 1/5-rule. We present bounds on
its runtime for the Sphere function, depending on the population size µ and the
dimensionality of the search space n. To prove the lower bounds, the technique
of analyzing randomized family trees introduced by Witt [15] is generalized to
continuous search spaces.

In Section 2, we formally define the (µ+1)ES and the fitness landscape
induced by the Sphere function, and in Section 3, we recapitulate basic proof
techniques needed for our analyses. In Section 4, we present a general upper
bound on the progress of the (µ+1)ES in the search space, implying a lower
bound on the expected runtime for the Sphere function. In Section 5, we
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derive an asymptotically matching upper bound on the runtime for this function,
showing that the 1/5-rule also works in our population-based ES. Moreover, the
proof demonstrates that the (µ+1)ES on Sphere quickly loses diversity, i. e.,
that all individuals are at almost the same distance from the optimum after
a small number of steps. However, our results reveal that the population of
the (µ+1)ES nevertheless has a negative impact on the runtime for the simple
Sphere function. Hence, in Section 6, we discuss more difficult functions where
the (µ+1)ES could outperform the (1+1)ES. We finish with some conclusions.

2 Fitness Landscape and Algorithm

As mentioned before, we will consider the well-known Sphere function defined
by Sphere(x) :=

∑n
i=1 x2

i = |x|2 = x⊤Ix, where I denotes the identity matrix
and |x| the L2-norm of the vector x, i. e. its length in Euclidean space. It can
easily be seen that the results are valid also for translations of this function,
i. e., f(x) = (x − x∗)⊤I(x − x∗) for some fixed minimizer x∗ ∈ R

n. Since we
concentrate on the approximation error in the search space (defined as the dis-
tance from the optimizer), the results are in fact valid for any unimodal function
satisfying ∀x, y ∈ R

n : |x − x∗| < |y − x∗| =⇒ f(x) < f(y), where x∗ ∈ R
n

is the unique minimizer. Note that for Sphere, a reduction of the approxima-
tion error in the search space by an α-fraction corresponds to a reduction of the
Sphere-value by a (2α−α2)-fraction and that α < 2α−α2 < min{2α, α+1/4}
for 0 < α < 1; e. g., if the distance from the optimum is halved, the Sphere-
value is reduced to 25%.

As mentioned in the introduction, we will consider the 1/5-rule for the adap-
tation of the mutation strength, which was introduced by Rechenberg in the
mid-1960s for the (1+1)ES. The idea behind the 1/5-rule is that an isotropic
mutation should result in an improvement with a probability of roughly 1/5.
Therefore, the optimization is observed for Θ(n) steps. After each observation
phase, the scaling factor σ for the adaptation of the length of the mutation
vector (hereinafter called mutation strength) is decreased if less than 1/5 of the
mutations in the respective observation phase have been successful, and other-
wise, it is increased. Namely, σ is multiplied by a positive constant smaller resp.
greater than 1. To keep the proofs as simple as possible, here the observation
phase will last n steps and σ will be halved resp. doubled.

Commonly, in the (µ+, λ) ES framework each individual consists of a search
point and an associated mutation strength. As we are going to investigate the
1/5-rule, we additionally associate two counters, g and b, with each individual.
“g” stands for the number of good/improving mutations and “b” for the number
of bad mutations, where a mutation is called bad if the corresponding mutant
is worse than its parent. In other words, an individual X = (x, σ, g, b) is in
R

n ×R>0 ×N0 ×N0.
The (µ+1)ES for minimization of f : Rn → R we consider works as follows:

For a given initialization of the population of µ individuals (where all g- and
b-counters are zero) an evolution loop is performed:
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1. Choose one of the individuals in the (current) population uniformly at
random. Let this be X = (x, σ, g, b).

2. Create a new search point y := x + m with a mutation (vector) m :=
σ · m̃, where each component of the Gaussian mutation vector m̃ ∈ R

n is
independently standard-normal distributed.

3. IF f(y) ≤ f(x) THEN g := g + 1 ELSE b := b + 1.

4. IF b + g = n THEN BEGIN

IF g < n · 1/5 THEN σ := σ/2 ELSE σ := σ · 2.

g := 0; b := 0; END.

5. Create the mutant Y := (y, σ, g, b).

6. Discard one of the µ+1 individuals by uniformly choosing one of the worst
individuals (maximal f -value).

7. GOTO 1.

It is well known that a Gaussian mutation vector m̃ is isotropically distributed,
and scaling by σ does not affect this property.

In practice, obviously, the GOTO is conditioned on a stopping criterion.
Fortunately, for the results we are aiming at, we need not define a reasonable
stopping criterion. Rather we will consider a run of the (µ+1)ES as an infinite
stochastic process. We are interested in how fast (one of) the best individual(s)
in the population evolves.

For the Sphere scenario which is considered here this means that we are
interested in how fast (number of function evaluations w. r. t. n, the dimen-
sionality of the search space) the distance of the population from the opti-
mum/origin o is reduced, where the distance of the population P from o is
given as d := min{|x| ||| (x, ·, ·, ·) ∈ P}. Note that for Sphere (and all other
functions for which every plateau of constant fitness has zero n-volume), the
function value of the mutant generated in line 2 differs from every function
value in the population with probability 1. Consequently, after (at most) µ
improving mutations, there will never be two individuals of equal fitness with
probability 1. As another consequence, we obtain that on the Sphere function,
the (µ+1)ES with µ = 1 equals the (1+1)ES as considered by Jägersküpper
[7]. Hence, in this paper, the (1+1)ES is defined as the (µ+1)ES with µ = 1.

3 Preliminaries

In this section, some of the results for the (1+1)ES on Sphere obtained in [7]
and the lower bound technique developed for the analysis of the (µ+1)EA in
[15] will shortly be resumed. First, we concentrate on the effect of an isotropic
mutation in the Sphere scenario.
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Let x ∈ R
n −{o} denote a search point and m an isotropic mutation. Note

that Sphere(x) = |x|2 (recall that |x| is the L2-norm (Euclidean length) of x).
The analysis of the (1+1)ES for Sphere has shown that

P{|x + m| ≤ |x| ||| |m| = ℓ} ≥ ε
for a constant ε ∈ (0, 1

2 )
and n large enough

⇐⇒ ℓ = O(|x| /√n),

i. e., under the condition that the mutation vector’s length is ℓ, the mutant
obtained by an isotropic mutation of x is closer to a predefined point, here the
origin, with probability Ω(1) iff the length of the mutation vector is at most an
O(1/

√
n)-fraction of the distance between x and this point. On the other hand,

P{|x + m| ≤ |x| ||| |m| = ℓ} ≤ ε
for a constant ε ∈ (0, 1

2 )
and n large enough

⇐⇒ ℓ = Ω(|x| /√n),

in other words, the mutant obtained by an isotropic mutation of x is closer to
a predefined point, here again the origin, with a constant probability strictly
smaller than 1/2 iff the length of the mutation vector is at least an Ω(1/

√
n)-

fraction of the distance between x and this point. (In the two equivalences
above, the ε on the left side respectively correlates with the (multiplicative)
constant concealed by the asymptotic notation on the right side.)

In the following, we concentrate on properties of m that hold with high
probability. For an event E, we say that E happens even with overwhelm-

ing probability (w. o. p.) iff P{E} = 1 − 2−Ω(nδ) for some constant δ > 0.
The expected length of a Gaussian mutation m equals σ · E[|m̃|] = σ · √n ·
(1 − (4n)−1 + O(n−2)) since |m̃| is χ-distributed with n degrees of freedom.
Let ℓ̄ := E[|m|]. Moreover, P

{∣∣|m| − ℓ̄
∣∣ ≥ β · ℓ̄

}
≤ β−2/(2n − 1) for β > 0, in

other words, there is only small deviation in the length of a mutation; e. g., with
probability 1 − O(1/n) the mutation vector’s actual length differs from its ex-
pected length by no more than ±1%. As a consequence, in an observation phase
of the (µ+1)ES we expect n − O(1) of the n mutations to differ only by ±1%
from ℓ̄, respectively. By Chernoff bounds [11], we obtain that w. o. p. only an
ε-fraction of the mutations in a phase deviate by more than ±1%, respectively,
where the positive constant ε can be chosen arbitrarily small.

Concerning the mutation adaptation by the 1/5-rule for Sphere, we know
that there exists a constant ph ∈ (0, 1/5) such that if the success probability of
the mutation in the first step of an observation phase is smaller than ph, then
w. o. p. less than 1/5 of the steps in this phase are successful so that the scaling
factor is halved. Analogously, a constant pd ∈ (1/5, 1/2) exists such that if the
first step of a phase is successful with probability at least pd, then w. o. p. more
than 1/5 of the steps in this phase are successful so that s is doubled. This
can be used to show that the 1/5-rule in fact “works”, i. e., that each step of
the phase is successful with a probability in [a, b] ⊂ (0, 1/2) for two constants
a, b. In other words, while the (1+1)ES approaches the optimum, w. o. p. for
any current search point x, the mutation strength fulfills σ = Θ(|x| /n), and,
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therefore, the expected length of the mutation vector is ℓ̄ = Θ(|x| /√n). In
this case, we call σ resp. ℓ̄ optimal up to a constant factor (optimal u. t. c. f.)
w. r. t. x.

Let ∆ = |x| − |x + m| denote the spatial gain towards the origin, the op-
timum of Sphere. When the (1+1)ES minimizes Sphere (using elitist se-
lection), a mutation is accepted iff ∆ ≥ 0. Consequently, negative gains are
zeroed out, and thus, the expected spatial gain of a step of the (1+1)ES equals
E
[
∆ · 1{∆≥0}

]
. Jägersküpper [7] shows that E

[
∆ · 1{∆≥0} | σ = Θ(|x| /n)

]
=

Θ(|x| /n), i. e., if the scaling factor results in ℓ̄ = Θ(|x| /√n) and, thus, in a
mutation to be successful with a constant probability in (0, 1/2)—for instance
1/5—then the distance from the optimum is expected to decrease by a Θ(1/n)-
fraction in this step. Furthermore, it is shown that for any constant α

P{∆ ≥ α · |x| /n ||| σ = Θ(|x| /n)} = Ω(1), (1)

i. e., a step of the (1+1)ES decreases the distance from the optimum by an α/n-
fraction with probability Ω(1) in such situations (the greater we choose α, the
smaller the probability is, of course). Jägersküpper [7] proves that this result,
together with the above analysis of the 1/5-rule, implies the following theorem.
Recall that |x| for search points x ∈ R

n equals the distance from the optimizer.

Theorem 1 Consider the (1+1)ES on Sphere. For the initial individual X =
(x, σ, 0, 0), let σ = Θ(|x| /n) hold. Then for k = poly(n), the time until the
distance of the current search point from the optimum has been reduced to a
2−k-fraction is O(kn) w. o. p.

The analyses leading to Theorem 1 exploit that the distance from the optimum
is non-increasing in the run of the (1+1)ES. In the population of the (µ+1)ES,
however, it can happen that a mutation is accepted even if the mutant is farther
away from the optimum than its parent. Hence, the analysis of the (1+1)ES
on Sphere cannot be simply transferred to the (µ+1)ES, yet a new, more
sophisticated argumentation is required.

In the following, the lower-bound technique obtained for the (µ+1)EA will
be presented. The technique is based on so-called family trees, which are undi-
rected trees labeled with individuals. Let X be some individual from the initial
population, i. e., at time 0, of the (µ+1)ES. The family tree T0(X ) of X at
time 0 contains only the root node labeled with X . The family tree Tt(X ) at
time t > 0 contains the tree Tt−1(X ) as a subtree and at most one additional
node. If one of the individuals corresponding to nodes from Tt−1(X ) is cho-
sen for mutation at time t − 1, the corresponding node is connected to a new
node, which is labeled with the new individual created by the mutation; other-
wise, Tt(X ) := Tt−1(X ). Hence, Tt(X ) contains all descendants of X at time t.
Moreover, if Y is contained in Tt(X ), the path leading from the root node to Y
models the history of mutations that lead from X to Y via a set of intermediate
individuals.

Intuitively, short paths in family trees do not contain much evolutionary
progress. If all family trees at some given time t have a low depth, i. e., contain
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only short paths, and the initial population is far away from the optimum, so
will be the population at time t. This suggests a way of lower bounding the
runtime of the (µ+1)ES. The main observation by Witt [15] states that it is
possible to bound the depth of any family tree Tt(X ) irrespective of the fitness
function and of the search space. This is made precise in the following lemma.

Lemma 1 Let X be some individual from the initial population of the (µ+1)ES
and let D(t) denote the depth of the family tree Tt(X ). Then P{D(t) ≥ 3t/µ} ≤
(e/3)t/µ = 2−Ω(t/µ).

The proof of Lemma 1 can be found in a technical report by Witt [16], which
is a complete presentation of the results in [15]. The reader can easily verify
that all arguments referring to family trees of the (µ+1)EA remain valid for
the (µ+1)ES considered here.

According to Lemma 1, it is very unlikely that a family tree at time t is
deeper than 3t/µ. The general lower bound technique proceeds in the following
way. Suppose that E is some event epitomizing a success of the EA, e. g., the
event of the (µ+1)ES halving the distance to the optimum. To estimate the
probability of E not occurring within t steps, we first bound the probability
of a family tree becoming deeper than 3t/µ. Afterwards, we consider arbitrary
paths of length at most 3t/µ in family trees. We call such paths short. If t is
chosen appropriately, we would like to show that with a high probability, E does
not occur on any short path in a family tree by time t. The main advantage is
that paths may be studied in isolation to show the claim. However, it is still a
challenge to show that E does not occur on a given short path. Obviously, we
must study the total progress made by the mutation operator of the (µ+1)ES
within 3t/µ steps. This is a new contribution, described in the lower bound of
Theorem 2 in Section 4.

4 Lower Bound on the Runtime

In this section, we will show a general lower bound on the time for the (µ+1)ES
to attain a predefined spatial gain. With respect to the Sphere function, the
following theorem immediately implies the same bound on the time to decrease
the function value by a constant fraction.

Theorem 2 Let the (µ+1) ES, where 2 ≤ µ = poly(n), optimize an arbitrary
function f with a unique optimizer x∗ ∈ R

n. Then the number of steps until
the distance to x∗ has been halved is Ω(µn) with probability 1− 2−Ω(n) and also
in expectation.

Proof: We use the lower bound technique described in Section 3. In the fol-
lowing, we speak of a success when an individual is created that has halved the
distance to x∗ with respect to the initial distance. Let s := ⌊cµn⌋ for some pos-
itive constant c to be chosen appropriately later. Our aim is to show that the
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success probability in the phase consisting of the first s steps of the (µ+1)ES
is 2−Ω(n) if c is chosen small enough.

According to Lemma 1, in the phase, any fixed family tree reaches depth at
most 3cn with a probability of 1 − 2−Ω(n). Since µ is a polynomial, this also
holds for all µ family trees together. We study the probability of observing in
a fixed tree a success at a node of depth at most 3cn. If we can show that this
probability is bounded above by 2−Ω(n) for small enough c, the theorem will
follow since the number of trees is a polynomial.

Let X be some arbitrary initial individual and let p be an arbitrary path
of length ℓ ≤ 3cn and starting at the root node in the family tree Ts(X ).
Now, given some mutation strength σ, consider a sequence of search points
x0, . . . , xℓ such that xi, 1 ≤ i ≤ ℓ, is the result of a mutation of xi−1, performed
independently of other steps and at mutation strength σ. Let such a sequence of
search points be called an independent-mutation sequence. The idea is to relate
an independent-mutation sequence to the sequence of individuals labeling the
nodes along p. However, the sequence of mutations performed along p is not
independent since we impose conditions on the path, namely by considering
the event that the path emerges in Ts(X ). The event that a path emerges is
influenced by the f -values of the individuals on the path since the (µ+1)ES
deletes individuals with worst f -value. Moreover, only for short paths of length
less than n we can guarantee that no adaptation of the mutation strength takes
place along the path.

By treating the (search points of the) individuals along p as an independent-
mutation sequence, we introduce an error. This error can be handled in the
following way. We modify the (µ+1)ES such that

• Step 6 is omitted; hence, the population grows in each step;

• if the size of the current population before Step 1 equals k, Steps 1–5 are
executed ⌈2k/µ⌉ times in parallel in one iteration of the evolution loop.

Let this new, artificial algorithm be called (µ+1)ES*. Since it creates ⌈2k/µ⌉
new individuals in one iteration of the evolution loop, the size r(t) of its popu-
lation at time t is exponentially growing with respect to t. It is easy to see that
µ(1 + 2/µ)t ≤ r(t) ≤ µ(1 + 3/µ)t. In the following, we assume the (µ+1)ES*

to start with the same population as the (µ+1)ES.
This (µ+1)ES* has two crucial properties. Firstly, consider paths in family

trees of individuals of the (µ+1)ES* starting at the root and having length
less than n. Such paths have the property of containing independent-mutation
sequences of individuals. This holds since the fitness function influences neither
the selection for reproduction nor the selection for replacement and no adapta-
tion of the mutation strength takes place along the path. Secondly, if q denotes
the probability that a path labeled with some fixed sequence of search points ex-
ists in Tt(X ), then such a path exists in the family tree T ∗

t (X ) of the (µ+1)ES*

at time t with probability at least q. The reason is that in each iteration of the
evolution loop of the (µ+1)ES*, each individual from the current population is
chosen with probability at least 1/µ. This holds since one iteration consists of
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at least 2k/µ uniform choices from the population of size k and the probability
of choosing an individual is bounded below by

1 −
(

1 − 1

k

)2k/µ

≥ 1 − e−2/µ ≥ 1

µ

since 1 − e−x ≥ x/2 holds for x ≤ 1 and by assumption µ ≥ 2. Therefore, the
probability q∗(s) of a success at depth at most 3cn in T ∗

s (X ) upper bounds the
probability of such a success in Ts(X ).

In Lemma 2, we will show that any independent-mutation sequence of in-
dividuals that starts with X (and may have even arbitrary length) leads to a
success with a probability of at most 2−c′n for some constant c′ > 0. Since
T ∗

s (X ) contains at most µ(1 + 3/µ)s paths starting at the root, we obtain

q∗(s) ≤ µ ·
(

1 +
3

µ

)cµn

· 2−c′n ≤ poly(n) · e3cn · 2−c′n,

which is 2−Ω(n) if c is chosen small enough. This proves the theorem. �

We are left with the claim on the success probability for the so-called in-
dependent-mutation sequences as mentioned in the proof of Theorem 2. This
claim is stated as the forthcoming Lemma 2, where without loss of generality
the unique optimizer x∗ is assumed to equal the origin. The proof of the lemma
relies on the following observation.

Fact 1 Let m1, . . . , mk be independently (not necessarily identically) isotrop-
ically distributed vectors. Then the vector m := m1 + · · ·+ mk is isotropically
distributed.

Lemma 2 Let m ∈ R
n be isotropically distributed and s ∈ R

n be fixed. Then
P{|s + m| ≤ 0.841 |s|} = 2−Ω(n).

Proof: Let d := |s| and z := 0.841d. Furthermore, let r := |m| be the
length of m. Henceforth, we assume r to take some fixed value maximizing
P{|s + m| ≤ z ||| |m| = r}. According to the law of total probability, this leads
to an upper bound on P{|s + m| ≤ z}.

Let Sr ⊆ R
n be the hypersphere with radius r centered at s and let Sz ⊆

R
n be the hypersphere with radius z centered at the origin o. Moreover, let

S≤z denote the ball with hypersurface Sz. Let C := Sr ∩ S≤z denote the
hyperspherical cap cut off from Sr by Sz. Obviously, |s + m| ≤ z iff s+m ∈ C.
Let A(C) and A(Sr) denote the hypersurface areas ofC resp. Sr. Since m is
isotropically distributed, P{|s + m| ≤ z} = A(C)/A(Sr), and hence, we need to
estimate A(C). Therefore, let R := Sr ∩ Sz denote the boundary of the cap C.

Let L denote the line segment connecting o to s and let c := L ∩ C (see
Fig. 1). Then c ∈ C is the center of the cap C. Note that all points in R, the
boundary of the cap, have equal distance from L. Let h denote this distance
and let α := arcsin(h/r). Then rα is the distance of c from R, the boundary of
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Figure 1: Illustration of spherical cap

the cap, within the (n − 1)-space C, namely the spherical distance w. r. t. the
hypersphere Sr ⊃ C.

If we can show that A(C) is bounded above by the volume of an (n −
1)-dimensional ball of radius αr, we can apply standard formulas for hyper-
surface areas and volumes [3] and obtain (where “Γ” denotes the well-known
Gamma function):

A(C)

A(Sr)
≤ π

n−1

2 · (α · r)n−1

Γ
(

n−1
2 + 1

)
/n · π n

2 · rn−1

Γ
(

n
2 + 1

)

=
π

n−1

2 · (α · r)n−1 · Γ
(

n
2 + 1

)

n · √π · π n−1

2 · rn−1 · Γ
(

n−1
2 + 1

)

=
αn−1 · Γ(n/2 + 1)

n · √π · Γ(n/2 + 1/2)

=
αn−1

n
√

π
Θ(

√
n)

=
αn−1

Θ(
√

n)
.

Hence, α ≤ 1− ε for some constant ε > 0 will imply that P{|s + m| ≤ z} =
2−Ω(n). To show that α is indeed bounded away from 1, we have to estimate h/r.
A geometric argument (in the next paragraph) yields h/r ≤ z/d. Since z/d =
0.841 and h, r > 0, arcsin(h/r) ≤ arcsin(0.841) < 0.9992. This will imply the
lemma.

To show h/r ≤ z/d, let r ∈ R be some point in the boundary of the cap
and observe that the area of the triangle defined by o, s, r is bounded above by
half the area of a rectangle with edges of length z and r. Since the area of the
triangle equals hd/2, we obtain hd/2 ≤ zr/2, implying the claimed inequality
since d, r > 0.

We still have to show that the hypersurface area A(C) can be bounded by
the volume of an (n − 1)-dimensional ball of radius αr. Intuitively, we are
confronted with the error that is introduced by mapping the area of a part of a
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sphere (e. g., the area of a continent) onto a plane (e. g., a map of the continent).
Of course, the larger the area compared to the sphere, the greater the error is.
Formally, for α ≤ π/2, the hypersurface area of C can be expressed as

A(C) = rn−1 · 2π ·
∫ α

0

(sin β)n−2dβ ·
n−3∏

i=1

∫ π

0

(sin β)idβ

(see [6] for a derivation). Since sinβ ≤ β holds for β ≥ 0, we obtain, by
estimating the first integral, that

A(C) ≤ 2π

n − 1
· (αr)n−1

n−3∏

i=1

∫ π

0

(sin β)idβ.

The last expression is the anti-derivative of the hypersurface area of an (n −
1)-dimensional ball of radius αr, i. e., the volume of this ball. �

Theorem 2 shows in conjunction with Theorem 1 that w. o. p., the (µ+1)ES
on Sphere is asymptotically no more efficient than the (1+1)ES. Although this
result might have been suspected, Theorem 2 has been the first formal proof
analyzing the runtime of the (µ+1)ES. Moreover, there seem to exist more
complex, multimodal functions where the population of the (µ+1)ES leads to
an advantage in runtime compared to the (1+1)ES. This will be discussed in
Section 6.

5 Upper Bound on the Runtime and the Diver-

sity

In this section, we are going to prove an upper bound on the time for the
(µ+1)ES on Sphere to halve the distance from the optimum. This bound
matches the lower bound from the previous section. By this upper bound,
we rigorously show that the 1/5-rule works in a population-based EA, too.
Furthermore, we will show that the bandwidth of the population, which we
define as the ratio of the largest to the smallest distance from the optimum
represented in the population, drops w. o. p. below 1.2 after a short period and
remains smaller than 2 afterwards, which can be interpreted as a loss of diversity.

Obviously, efficient runtimes cannot be obtained if many individuals from
the initial population have wrong mutation strength. In the following theorem,
we therefore assume all initial mutation strengths to be optimal u. t. c. f., yet we
do not put an assumption on the bandwidth of the initial population.

Theorem 3 Consider the (µ+1)ES on Sphere, where 2 ≤ µ = poly(n). For
all initial individuals X = (x, σ, 0, 0), let σ = Θ(|x| /n) hold. Then after some
number of steps that is O(µn) w. o. p.

1. the population’s bandwidth drops below 1.1891,
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2. the mutation strength of each individual in this population is optimal
u. t. c. f.,

3. the population’s bandwidth remains smaller than 2 for any number of sub-
sequent steps that is O(µn).

Furthermore,

4. the runtime to halve the distance from the optimum is O(µn) w. o. p.

Proof: Let dt be the distance from the optimum for the best individual of the
population at time t, i. e., d0 denotes the distance from the optimum of the
initial population. We partition the search space into four regions. Region 0
contains all search points at distance at most 0.841d0 from the origin, Region 1
all search points having a distance in (0.841d0; d0], Region 2 all search points
with a distance in (d0; d0/0.841], and Region 3 contains all remaining search
points. Our goal is to show that after some phase of O(µn) steps, w. o. p. all
individuals are in Region 1 and none of them has an ancestor from Region 3.
At this point, w. o. p. every individual of the current population is in Region 1
(and has only Region-1 and/or Region-2 ancestors) so that the bandwidth has
become smaller than 1/0.841 < 1.1891.

Consider the phase consisting of the first s := cµn steps as in the proof of
Theorem 2. Let St denote the subpopulation containing exactly those individ-
uals of the population at time t ≥ 0 that are in Region 3 or have an ancestor
in Region 3. (Note that the subpopulation’s size is non-increasing and that
there is nothing to show if #S0 = 0.) We want to estimate the progress of this
subpopulation by means of the general lower bound technique from Theorem 2.
Consider the family tree rooted at some X = (x, ·, ·, ·) ∈ S0. Then the proof of
the lower bound tells us that w. o. p. no individual in this tree after s steps is
in Region 0 or Region 1 since such an individual would have to have a distance
from the optimum smaller than 0.841 |x|. Now let X denote an individual in
St −St−1, i. e. a mutant of a non-Region-3 individual that hit Region 3 and was
accepted, then the same argumentation as above applies to the individuals of
the family tree rooted at X since the number of steps is less than s. All in all, we
obtain that w. o. p. no individual in S∪ := S0∪· · ·∪Ss is in Region 0 ∪ Region 1.
By the very same arguments, we can show that w. o. p. no initial individual (all
of which are at distance at least d0) produces a descendant from Region 0 within
this phase of s steps. Next we will show that, on the other hand, after at most
s steps w. o. p. the complete population has entered Region 1 (implying that
w. o. p. #Ss = 0). This will imply the first claim.

To show this, first recall that w. o. p. there will be no Region-0 individual
after the s steps. Consider the subpopulation Bt exactly consisting of those
individuals in the population at time t that have distance at most d0 from the
optimum, i. e., Bt is the part of the population that is located in Region 1 or
even in Region 0. Consequently, B0 contains all initially optimal individuals,
and obviously, the subpopulation’s size is non-decreasing so that #Bt = µ
implies that the complete population has made it into Region 1 ∪ Region 0 by
time t.
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Let t∗ be the smallest t such that #Bt = µ. Then the bandwidth of B∪ :=
B0∪· · ·∪Bt∗ is less than 1.1891 if there is no Region-0 individual in B∪—which
is the case w. o. p. if t∗ ≤ s. Assume t∗ ≤ s. We are going to show that this
assumption holds w. o. p. Note that, by definition of Bt and the preceding
argumentation on St, w. o. p. Bt ∩ S∪ = ∅ for t ≤ t∗ (as t∗ ≤ s). This means
that no X = (x, σ, ·, ·) ∈ Bt has a Region-3 ancestor, and since no adaptation
takes place in the first s steps (cf. proof of Theorem 2), σ is optimal u. t. c. f.
because 0.841d0 < |x| ≤ d0 and σ = Θ(d0/n) (since X does not stem from a
Region-3 individual). Moreover, this proves the theorem’s second claim.

Therefore, w. o. p. for all X = (x, σ, ·, ·) ∈ B∪ we have σ = Θ(|x| /n) re-
spectively, i. e., σ (and with it the expected length of a mutation) is optimal
u. t. c. f. Hence, we assume in the following that σ is in fact optimal u. t. c. f.
whenever a B∪-individual is mutated. Then by the results from [7] restated in
the Preliminaries, each mutation of a B∪-individual leads to a better individ-
ual with probability at least c′ for some constant c′. Pessimistically assuming
that we start with #B0 = 1, after at most µ/c′ expected steps, the number of
B-individuals increases from one to two. Afterwards, the probability of increas-
ing the number of B-individuals is at least 2c′/µ. The length of the phase is
bounded by the time that all individuals are B-individuals. The expectation of
this time is bounded above by

µ∑

i=1

µ

ic′
≤ c′′µ log µ

for some constant c′′. By Markov’s inequality, the time is bounded above by
2c′′µ log µ with probability at least 1/2. In case of a failure, we can repeat
the argumentation with another phase of at most 2c′′µ logµ steps. Therefore,
t∗ ≤ 2kc′′µ log µ with probability at least 1 − 2−k. Since µ = poly(n), choosing
k := c′′′n/logn with some appropriate constant c′′′ yields that t∗ ≤ cµn = s
w. o. p., namely with probability 1 − 2−Ω(n/log n).

For the proof of the theorem’s third claim, naturally, we would like to iterate
the argumentation from above. Unfortunately, there are two problems. The first
one is that in the beginning of a phase of (w. o. p. at most) s steps we need all
σs in the current population to be optimal u. t. c. f. Since this holds after the
first such phase, this will also be the case w. o. p. after a constant number of
phases, i. e. after a number of steps that is O(µn). The second problem is that
in the next (w. o. p. at most) s steps (following after the first t∗ steps), we may
observe (w. o. p. at most) one adaptation within each path growing in these s
steps in the family trees. Hence, the argumentation in the proof of Theorem 2
must be split into two phases of independent-mutation sequences so that we
obtain a factor of 0.8412 instead. Let t∗∗ be the first point of time when every
individual in the population has distance at most dt∗ from the optimum. Then
w. o. p. t∗∗ ≤ t∗ + s, and if so, w. o. p. dt∗∗ > 0.8412dt∗ so that the bandwidth of
the population at time t∗∗ is smaller than 0.841−2 < 1.414. Since w. o. p. after
time t∗ all individuals have distance at most 0.841−2dt∗ from the optimum, the
total bandwidth of all populations between t∗ and t∗∗ is w. o. p. smaller than
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0.841−4 < 2. Since w. o. p. there is always at most one adaptation within such
paths growing in at most s steps, we can now iterate this argumentation a
constant number of times.

Finally, we are going to prove the theorem’s fourth claim, the upper bound
on the runtime. Therefore, we pessimistically assume that dt∗ > d0/2, i. e., that
the distance has not been halved already in the phase when the population’s
bandwidth collapses. Now, by the results on the bandwidth, we are able to show
that the 1/5-rule also works for the (µ+1)ES. We know that by time t∗ w. o. p.
there is no individual X = (x, ·, ·, ·) with |x| > d0 and that there will never be
such an individual in the future.

We call the set of individuals Hk(X ) consisting of the k (most recent) an-
cestors of an individual X the history line of order k of individual X . If the
order is omitted, we refer to the complete history line. Note that a history line
corresponds to a path in the family tree containing X .

Consider a step t = poly(n) in which the mutation strength of the individual
X = (x, σ′, 0, 0) has just been adapted. Then any individual in Hn(X ) has been
using the mutation strength σ := 2σ′ if the mutation strength has just been
halved, or the mutation strength σ := σ′/2, otherwise. Note that the bandwith
of Hn(X ) is smaller than 2 (unless the distance has just been halved and we are
done). Consequently, since all n individuals in this history line use mutation
strength σ, the success probabilities that correspond to these n individuals differ
(at most) by a constant factor (cf. the results recapitulated in the Preliminaries);
namely, if the greatest success probability were, say, 0.1 then the smallest one
is lower bounded by 0.1/κ1, and if the smallest success probability were, say,
1/2− 0.2 = 0.3 then the greatest one is upper bounded by 1/2− 0.2/κ2 for two
constants κ1, κ2 ≥ 1. Note that the expected number of successful mutations
is upper bounded by 0.1n in the first case and lower bounded by 0.3n in the
second case. By Chernoff bounds, the number of successful mutations is smaller
resp. larger than 0.2n w. o. p. so that the mutation strength is halved resp.
doubled. Thus, to prove that the 1/5-rule works, it suffices to show that halving
the mutation strength in fact results in a greater success probability for X
compared to any individual in Hn(X ) resp. that doubling results in a smaller
success probability (the 1/5-rule does not necessarily fail if this is not the case;
we consider this condition to keep things simple.) This happens in the first
case if the largest distance from the optimum of an individual in Hn(X ) is less
than 2 |x|, and in the second case if the smallest distance of an individual in
Hn(X ) is larger than |x| /2. Since we know that |x| ∈ (d0/2; d0] (unless the
population has just halved the distance from the optimum and we are done),
this is indeed the case. Consequently, w. o. p. the 1/5-rule is able to keep the
success probabilities in [0.1/κ1; 1/2−0.2/κ2] (and with them mutation strengths
that are optimal u. t. c. f., respecticely). All in all, we have shown that, if the
success probabilities of all individuals at time t∗ are in the interval [0.1; 0.3], then
they will be in [0.1/κ1; 1/2−0.2/κ2] w. o. p. for all populations until the distance
is halved. If the smallest success probability represented in the population at
time t∗ is smaller than 0.1, however, we would use this probability in the above
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argumentation instead; correspondingly, if the largest one (which is strictly
smaller than 1/2) is larger than 0.3, we would use this one instead.

Finally, we show that in the situation just described, the (expected) progress
of the population is as desired. Due to the properties of the success probabilities
in our situation, within a polynomial number of steps w. o. p. all mutations will
use a σ that is optimal u. t. c. f. until the distance is halved. We assume this
to happen. Then, by the results from [7] mentioned in the Preliminaries, with
probability Ω(1), a mutation choosing some individual X = (x, ·, ·, ·) will result
in a mutant Y = (y, ·, ·, ·) such that we have |y| ≤ |x| (1 − Ω(1/n)). If the
distance of X from the optimum is currently best, the best distance is improved
by a factor 1 − Ω(1/n) with probability Ω(1). Since a best individual is chosen
with probability at least 1/µ, each step decreases the best distance by an Ω(1/n)-
fraction with probability Ω(1/µ). By Chernoff bounds, in a phase of κµn steps,
the best distance is decreased at least by a factor (1−Ω(1/n))Ω(κn) w. o. p. This
factor is at most 1/2 if the constant κ is chosen appropriately large. This proves
the theorem’s fourth claim. �

6 Discussion

Theorem 2 and Theorem 3 together mean that µ = 1 is (in an asymptotic
sense) an optimal choice for the (µ+1)ES on the Sphere function. It seems,
however, that the utility of its population should become apparent on specific
multimodal fitness functions. With respect to the (µ+1)EA in discrete search
spaces, Witt [15] presented a well-chosen example where an increase of µ by a
small, polynomial factor decreased the expected runtime drastically, namely by
an exponential factor. In order to show a corresponding result for the (µ+1)ES,
we should also consider a well-chosen fitness function. Jansen and Wegener [10]
have shown that a population can help to cross a small valley of bad fitness. We
expect a similar benefit for the following function. For x ∈ R

n and 0 ≤ s < 1,
let

fs(x) :=

{
|x| + s if |x| < 1,

|x| otherwise.

If s > 0, fs(x) is a multimodal function. Search points x such that |x| = 1 are
locally optimal and the set of search points {x | 1 − s < |x| < 1} forms “the
gap” where the fitness is worse.

Let the (1+1)ES start with some search point whose distance from the
optimum is at least 1 + s. If s is not too small, the (1+1)ES is likely to create
some search point whose distance from the optimum is in the interval [1, 1 + s].
In this situation, any better search point is at distance at least s from the current
one. The probability of a mutation overcoming this distance can be arbitrarily
small, depending on s. Moreover, in the local optimum, the adaptation of the
(1+1)ES would lead to smaller and smaller steps lengths, making an escape
even more unlikely (finally resulting in premature convergence).
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Suppose the (µ+1)ES with large µ is in the situation of its closest-to-the-
optimum individual being at some distance dc ∈ [1, 1 + s]. Moreover, suppose
that the farthest one is at distance df > 1+ s. If the closest individual is chosen
and its mutant is at distance less than 1, the mutant will be inserted into the
next population. Hence, there is a chance of accepting individuals from the gap,
which might lead to descendants at distance less than 1 − s, i. e., outside the
gap.

A formal proof of the utility of the (µ+1)ES in this setting, however, would
require several arguments. Here, one would have to show that the population
maintains enough diversity for the above-mentioned step to happen. Moreover,
it seems that s has to be chosen carefully since large gaps could only be overcome
if the diversity of the population was very high. Before starting a theoretical
analysis, careful experiments could give hints on suitable choices for s. Such
experiments and, possibly, a formal proof are subjects for further research.

Conclusion

In this paper, we have presented a first rigorous runtime analysis of a population-
based EA, namely the (µ+1)ES with 1/5-rule, in continuous search spaces.
With respect to the well-known Sphere function, we have obtained asymptot-
ically tight upper and lower bounds on the time for the (µ+1)ES to halve the
distance to the optimum. We have proven that the choice µ = 1 leads to the
(in the asymptotic framework) lowest runtime.

For the proof of the lower bound, we have generalized the technique of ran-
domized family trees, developed before only w. r. t. to discrete search spaces. In-
terestingly, some of the related arguments on family trees could even be reused
in the proof of the upper bound on the runtime. By this upper bound, we have
shown that the 1/5-rule makes sense in our (µ+1)ES. In the proof that the
1/5-rule works, we have exploited that the (µ+1)ES on Sphere quickly loses
diversity, i. e., that all individuals are at almost the same distance from the
optimum after a small number of steps.

Due to the simplicity of the Sphere function, we could not prove any advan-
tage of the population of the (µ+1)ES. However, the Sphere function serves
as a starting point for the runtime analysis of general (µ+, λ) ES in continuous
search spaces and for developing appropriate proof techniques. We have dis-
cussed multimodal example functions where the search might benefit from the
population and regard rigorous runtime analyses of such functions and more
general ES as subjects for further research.

References

[1] H.-G. Beyer. The Theory of Evolution Strategies. Springer, 2001.

[2] S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1) evolu-
tionary algorithm. Theoretical Computer Science, 276:51–81, 2002.

16



[3] T. Ericson and V. Zinoviev. Codes on Euclidean spheres. Elsevier, 2001.

[4] O. Giel and I. Wegener. Evolutionary algorithms and the maximum match-
ing problem. In Proceedings of the 20th International Symposium on The-
oretical Computer Science (STACS ’03), volume 2607 of Lecture Notes in
Computer Science, pages 415–426. Springer, 2003.

[5] J. H. Holland. Adaptation in Natural and Artificial Systems. The University
of Michigan Press, Ann Arbor, MI, USA, 1975.
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