
New Utilization Criteria for Online Scheduling

Dissertation

zur Erlangung des Grades eines

D o k t o r s d e r N a t u r w i s s e n s c h a f t e n

der Universität Dortmund

am Fachbereich Informatik

von

Mohamed Hussein

Dortmund

2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Eldorado - Ressourcen aus und für Lehre, Studium und Forschung

https://core.ac.uk/display/46906032?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Tag der mündlichen Prüfung: 18.07.2005

Dekan: Prof. Dr. Bernhard Steffen

Gutachter: Prof. Dr.-Ing. Uwe Schwiegelshohn

Prof. Dr. Ingo Wegener

iii

Abstract

In the classical scheduling problems, it has been assumed that complete knowledge of

the problem was available when it was to be solved. However, scheduling problems

in the real world face the possibility of the lack of the knowledge. Uncertainties fre-

quently encountered in scheduling environments include the appearance of new jobs

and unknown processing times. In this work, we take into account these realistic is-

sues.

This thesis deals with the problem of non-preemptive scheduling independent jobs

on m identical parallel machines. In our online model, the jobs are submitted over time

non-clairvoyantly. Therefore, the processing times of the jobs are unknown until they

complete. Further, we assume that the ratio of weight to processing time is equal for

all jobs, that is, all jobs have the same priorities. The jobs are assigned to the machines

in a nondelay fashion. Our main scheduling objective is to maximize the utilization of

the system.

We show that the commonly used makespan criterion usually cannot reflect the

true utilization of this kind of online scheduling problems. For this reason, it is very

important to find another criterion capable of evaluating system utilization. Therefore,

we introduce two new alternative criteria that more accurately capture the utilization

of the machines. Moreover, we derive competitive factors for both criteria. Those

competitive factors are tight for one criterion and almost tight for the other. Finally,

we present an experimental investigation to evaluate the performance of the nonde-

lay online algorithm with respect to our criteria. The experimental results show the

confirmation of our theoretical results.

keywords: Nonclairvoyant, Online scheduling, Scheduling criteria.

v

Contents

1 Introduction 1

1.1 Motivation and Model . 5

1.2 How to read this thesis . 9

1.3 Classification of Scheduling Problems . 10

1.4 Online Paradigms . 17

1.4.1 Jobs arriving one by one . 18

1.4.2 Jobs arriving over time . 19

1.4.3 Scheduling with rejection (Interval Scheduling) 21

1.5 Competitive Analysis . 22

1.6 Alternative techniques for analyzing online algorithms 24

1.7 History and List Scheduling . 26

1.8 Practical Examples of online models . 29

2 Criteria for system utilization 33

2.1 Is makespan suitable for utilization? . 34

2.2 New criteria for machine utilization . 37

2.3 Basic Job Systems . 44

2.4 Transformation into Basic job system . 47

3 Online scheduling to maximize utilization 55

3.1 introduction . 55

3.2 Scheduling jobs online with unknown size 57

3.3 Productive interval of machines . 59

vi Contents

3.4 An upper bound for the utilization . 61

4 Online scheduling to minimize equal priority completion time 77

4.1 introduction . 77

4.2 Related Results . 79

4.3 Jobs with Arbitrary Priority . 83

4.4 The upper bound of the off-line problem 86

4.5 An upper bound of equal priority completion time 94

4.6 The applicability of equal priority flow time 100

5 Experimental Study 105

5.1 Experimental Design . 105

5.1.1 Computing Environment . 105

5.1.2 Benchmark Instances . 106

5.2 An approach for optimal solution . 108

5.3 Analysis of the Results . 110

6 Conclusion 123

A Near-Optimal Algorithm 127

B Additional Experimental Results 129

Bibliography 133

vii

List of Figures

1.1 Example Gantt-chart for three parallel machines 3

1.2 Possible transmission route for messages between computers A and B in a net-

work . 31

2.1 Comparison of Makespan and Utilization for 2 Schedules 35

2.2 Effect on Future Job Submissions on 2 Schedules 35

2.3 Nondelay schedule S1 (left) and the optimal schedule (right) for τ1 40

2.4 Nondelay schedule S2 (left) and the optimal schedule (right) for τ2 43

2.5 Basic job system and its basic nondelay schedule S 46

3.1 Optimal Schedule σ of τ (left) and new optimal schedule σ′ of τ ′ (right) when

pj′2
> r − rj2 . 69

3.2 Basic Schedule S of τ (left) and new basic S ′ of τ ′ (right) when pj′2
> r − rj2 . 69

3.3 Optimal Schedule σ of τ (left) and new optimal schedule σ′ of τ ′ (right) when

pj′1
= 0. 70

3.4 Basic Schedule S of τ (left) and new basic schedule S ′ of τ ′ (right) when pj′1
= 0. 70

3.5 The transformation process when mS ≤ mr. Left: Basic schedule S of job

system τ . Right: A resulting basic nondelay schedule S ′ of the new job system τ ′. 73

3.6 Transformation process from the optimal schedule σ (left) of job system τ into

the new optimal schedule σ′ (right) of job system τ ′ when mS ≤ mr. 73

3.7 An illustration of the transformation process when mS > mr. Left: Basic

schedule S of job system τ . Right: A new basic nondelay schedule S ′ of job

system τ ′. 75

viii List of Figures

3.8 Transformation process from the optimal schedule σ (left) of job system τ into

the new optimal schedule σ′ (right) of job system τ ′ in case mS > mr. 75

4.1 The transformation of τ to rectangular job system τ̄(mt). 89

4.2 The transformation of τ with a large number of short jobs. 92

4.3 Illustration of the primary transformation process from schedule S (left) of τ

into schedule S ′ (right)of τ ′ . 97

4.4 Illustration of the primary transformation process from the optimal schedule σ

of τ into the optimal schedule σ′ of τ ′. 97

4.5 Illustration of the generation process of schedule S ′′ (right) of the new job sys-

tem τ ′′ from schedule S ′ (left) of job system τ ′. 99

4.6 Illustration of the generation process of the optimal schedule σ′′ (right) of the

new job system τ ′′ from the optimal schedule σ′ (left) of job system τ ′. 99

5.1 The competitive ratio of the utilization and equal priority completion time with

different number of jobs when m = 3. 112

5.2 The competitive ratio of the utilization and equal priority completion time with

different number of jobs when m = 5. 113

5.3 The competitive ratio of the utilization and equal priority completion time with

different number of jobs when m = 10. 114

5.4 The competitive ratio of the utilization and equal priority completion time with

different number of jobs when m = 15. 115

5.5 The competitive ratio of the utilization and equal priority completion time with

different number of jobs when m = 20. 116

B.1 The ratios between the competitive ratio of the utilization and the competitive

ratio of the equal priority completion time when m = 3. 129

B.2 The ratios between the competitive ratio of the utilization and the competitive

ratio of the equal priority completion time when m = 5 (top) and m = 10

(bottom). 130

List of Figures ix

B.3 The ratios between the competitive ratio of the utilization and the competitive

ratio of the equal priority completion time when m = 15 (top) and m = 20

(bottom). 131

xi

List of Tables

2.1 Comparison between Utilization, Equal Priority Completion Time, and Makespan

for Job Systems τ1 and τ2. 44

4.1 Comparison between Utilization, Equal Priority Completion Time, and

Equal Priority Flow Time for Selected Schedules 102

5.1 The competitive ratios of the utilization criterion for exponentially distributed

job processing times. 118

5.2 The competitive ratios of the utilization criterion for job instances generated by

chi-square distribution. 119

5.3 The competitive ratios of the utilization criterion for job instances generated by

using log-normal distribution. 119

5.4 The competitive ratios of the equal priority completion time criterion under

exponentially distributed job processing times. 120

5.5 The competitive ratios of the equal priority completion time criterion for job

instances generated by chi-square distribution. 121

5.6 The competitive ratios of the equal priority completion time criterion for job

instances generated by using log-normal distribution. 121

xiii

Acknowledgments

I owe a huge debt of gratitude to my supervisor Prof. Dr. Uwe Schwiegelshohn for

teaching me a lot about scheduling. I wish to express my deepest appreciation to him

for his infinite guidance, insights throughout and continued dedication to this thesis. I

am extremely grateful to him for sharing his invaluable ideas and his limitless enthu-

siasm for research. I will be indebted to him for all the ways in which I have grown

as a researcher and especially for teaching me how to think. Clearly, this thesis would

not be possible without him.

I take this opportunity to thank all colleagues at the Computer Engineering Institute

in Dortmund university for creating a warm and friendly atmosphere in which I could

work at this thesis.

Last but not least I would like to thank my wife, Amal, for her unlimited patience,

endless love, and ongoing encouragement.

Author’s Contribution

The work of this dissertation has been completely done by myself. However, the math-

ematical proofs of Theorem 3.1 in Chapter 3 and Theorem 4.1 in Chapter 4 have been

performed in collaboration with my advisor Prof. Dr. Uwe Schwiegelshohn. The au-

thor equally contributed in both proofs. Information derived from the published and

unpublished work of others has been acknowledge in the text, and a list of references

is given.

Mohamed Hussein

Publications

• M. Hussein, U. Schwiegelshohn, ”Nonclairvoyant Online Scheduling of Jobs with

Equal Priority”, submitted to the Journal of Theoretical Computer Science, 20 Au-

gust 2004.

• M. Hussein, U. Schwiegelshohn, ”On an Online Scheduling Problems for Jobs with

Equal Priority”, Technical Report No. 0203, Dortmund university, Faculty of elec-

trical engineering and information technology, ISSN 0941-4169, Sep. 2003.

1

Chapter 1

Introduction

Scheduling is known as a decision-making process of allocating limited resources over

time in order to perform a collection of competing activities for the purpose of optimiz-

ing certain objective functions, BAKER [5]. More precisely, the home of the majority of

scheduling problems is the area of combinatorial optimization, and in fact, there are nu-

merous combinatorial optimization problems that can be equivalently re-formulated

as scheduling problems. Hence, there are at least two reasons to study scheduling

problems: the great diversity of existing applications on the one hand, and the mathe-

matical interest in the corresponding models on the other hand. Scheduling problems

have been studied by researchers in various communities such as operations research,

algorithms, and queueing theory. In fact, scheduling decisions occur only whenever

there are more outstanding requests (activities) than the number of available resources

or the activities have to be done on different types of resources. The output of this

decision process will be the set of task/resource/time assignments.

Scheduling plays a crucial role in a wide variety of environments such as in most

manufacturing and production systems as well as in most information-processing en-

vironments. In the current competitive environment, effective scheduling has become

a necessity for survival in the marketplace. System owners have to schedule activities

in such a way as to use the resources available in an efficient manner to get the highest

possible of the resources utilization. The previous definition of BAKER [5] for schedul-

ing is very general since the concept of resources and activities may take many different

2 CHAPTER 1 INTRODUCTION

forms because resources and activities may vary a lot. One can think of resources as

being machines in a production environment and the activities being the operations

that have to be performed on these machines; or the resources may be processors in

a computing environment and the activities will be executions of computer programs.

Also, the resources may be runways and activities may be take-offs and landings at an

airport. Another application area of scheduling can be found in telecommunications

systems. From a functional point of view, wireless links in the telecommunication

network can equally be regarded as resources. This is a good example of resources

which are not physical in the usual sense of the world. In these systems, activities are

information or messages that have to be transmitted through the communication chan-

nels. Other examples can be found in the areas of personnel scheduling, transportation,

maintenance scheduling, and other types of service industries.

Although the resources and activities have various shapes depending on the sce-

nario, the resources of any scheduling problem can be modelled as machines and activi-

ties as jobs that have to be executed by these machines. There are two issues commonly

associated with scheduling problems: how to allocate jobs to machines and how to se-

quence jobs on each machine. In other words, there are allocation decisions and sequenc-

ing decisions. Therefore, it is worth noting the distinction between a single machine

schedule and a schedule for multi-machines. A single-machine schedule corresponds

usually to a permutation of the job system or the order in which jobs are to be processed

on a given single machine. While, a multi-machine schedule refers to an allocation of

jobs within a more complicated setting of machines. This schedule is a description of

when and on which machine to process the job satisfying the constraints. It is often

visualized using a GANTT-CHART, an example of which can be found in Figure 1.1.

Each column in the GANTT-chart represents a machine and each box represents a job.

The jobs have been labelled with their processing requirements and the timetable in-

formation of each job can be read on the time-axis. Schedules are often categorized in

the following classes:

• A valid schedule, in which no job can be finished earlier without changing the

3

processing order on any one of the machines, is termed semi-active,

• a valid schedule, in which no job can be completed earlier without delaying at

least one other job, is termed active,

• a valid schedule, in which no machine is ever idle if a job, is ready to be processed

on it is, called non-delay.

For more details of the relations between those schedules, we refer the reader to PINEDO [66].

The research in this thesis will focus on the analysis of non-delay schedules.

���
���
���

���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

Machines
M1 M2 M3

5

15

10

3

8

9

2

6

1

2

3

3

1

0

Time

Jobs availabe at 0
�����
�����
���
���

Jobs availabe at 5

Jobs availabe at 10

Idle times

Figure 1.1: Example Gantt-chart for three parallel machines

The scheduling literature is full of very diverse scheduling problems [19, 66, 12].

The work in this thesis falls under the category of online scheduling problems. In on-

line scheduling, the scheduler receives jobs that arrive over time, and generally must

schedule the jobs without any knowledge about future submissions of the new jobs.

Figure 1.1 shows such online scenario in which jobs have different arrival (available)

4 CHAPTER 1 INTRODUCTION

times. The lack of knowledge of the future generally prevents the scheduler from guar-

anteeing optimal schedules. Thus much research has been focused on finding schedul-

ing algorithms that guarantee schedules that are in some way not too far from opti-

mal. The online scenario may occur in situations that arise within the omnipresent

customer-server setting. In a customer-server system, there are many customers and

a few servers. Customers submit requests for service to the servers over time. Fur-

ther, the servers are not aware of the arrival times of these requests in advance. In

the language of scheduling, a server is a machine (processor), and a request is a job.

In this thesis, we are interested to consider online models in which the scheduler is

not aware of the future submission times. Moreover, our model has an additive hard

restriction beside such online feature. In our scenario, we assume that the scheduler

does not have any information about the processing requirements of the existing job

(which is already accessed by the system) until the completion. As the main focus of

this thesis goes to online scheduling problems with the uncertainty of the processing

requirements, we will provide more details of such kind of problems in Section 1.4.

Why are most Scheduling Problems Difficult?
A scheduling problem may not be hard to formulate, but solving it is entirely another

matter. It is well known that the difficulty of most scheduling problems is due to their

computationally hard nature. In fact, the computational requirements for obtaining an

optimal solution grows rapidly beyond reasonable bounds as the size of the problem

increases. Formally speaking, most scheduling problems are notoriously NP-hard or

NP-complete [20]. An NP problem (non-deterministically polynomial) is one that,

in the worst case, requires time polynomial in the length of the input for solution by

a non-deterministic algorithm [20, 61]. Non-deterministic algorithms are theoretical,

idealized programs that somehow manage to guess the right answer and then show

that it is correct. An NP–complete problem is NP and at least as hard as every other

NP problem. An NP–hard problem is NP-complete or harder than NP . In the semi-

nal work of KARP [42], the pervasive nature ofNP–completeness has been established.

The author has shown that decision versions of several naturally occurring problems

1.1 MOTIVATION AND MODEL 5

in combinatorial optimization are NP–complete, and thus are unlikely to have effi-

cient (polynomial time) algorithms. The proofs of the NP–completeness are available

for a number of simple scheduling problems, and realistic problems tend to be even

more complex. From that time onwards, much research concentrated on the classifica-

tion of scheduling problems according to their computational complexity. The aim was

to ’delineate’ as closely as possible, the boundary between those machine scheduling

problems which are easy (solvable in polynomial time) and those which are NP–hard

(see LAWLER [49]).

The practical implication ofNP-hardness is that the time required for the computa-

tion to find the optimal solution grows at least exponentially with the size of the prob-

lem [51, 61], e.g. the time increases exponentially with the number of jobs and may with

the number of machines. Due to the NP-hard nature of most scheduling problems, it

is usually very difficult to find an optimal schedule. A very fruitful approach has been

to relax the notion of optimality and settle for near–optimal solutions. A near–optimal

solution is one whose objective function value is within some small multiplicative factor

of the optimal value. The near-optimal scheduling algorithms spend time on improv-

ing the schedule quality but do not continue until the optimum is found. This led

to the idea of the approximation algorithms that are heuristics and provide provably

good guarantees on the quality of the solutions they return. This approach was pio-

neered by the influential paper of JOHNSON [35]. In this paper, the author showed the

existence of good approximation algorithms for several NP–hard optimization prob-

lems. HOCHBAUM’s book [32] on approximation algorithms gives a good glimpse of

the knowledge on that subject.

1.1 Motivation and Model

Our central motivating question is:

What is a good scheduling criterion for system utilization?

Clearly, the answer would depend on the particular scenario which we have. In parallel-

machine models, makespan is usually used to evaluate system utilization. However,

6 CHAPTER 1 INTRODUCTION

we are interested to find alternative criteria that more accurately capture the utilization

of the system for online scheduling models.

In the traditional theory of scheduling, it is often assumed that the scheduler has

full information on the job as soon as the job accesses the system (clairvoyant schedul-

ing). Recently, a more realistic theoretical model has been emerged (nonclairvoyant

online scheduling) to consider the scheduling problems in which a job’s data are not

completely known until the job has completed. For example, no one knows the exact

number of phone calls that are going to reach a switch-board during a certain period,

nor do we know the exact length of each individual call. Similarly, we do not know the

exact number of tasks that are going to be executed on a time-shared multi-user com-

puter system. The notion of non-clairvoyant algorithm is intended to formalize the

realistic scenario where the algorithm does not have the access to the whole input in-

stance, unlike the clairvoyant algorithm. Instead, it learns the input piece by piece, and

has to react to the new requests with only a partial knowledge of the input. The work

in this thesis is devoted to consider such nonclairvoyant online scheduling problems

so as to attain the highest resource utilization.

In real world, a following online scenario may occur in electronic commerce if no

two jobs are allowed to share the same machine during execution due to security rea-

sons. A system owner provides m identical parallel machines to his customers. These

customers are independent from each other. They submit their jobs dynamically over

time. A customer’s job always uses its assigned machine exclusively for its whole ex-

ecution time, that is, preemption is not allowed. The owner receives a fixed fee from

a customer for each minute a job of this customer occupies a machine. The customers

do not provide in advance the machine usage necessary to execute their jobs. Forcing

the customers to provide the execution times of their jobs in advance may be a hassle

to those customers and is typically of little help as experiments with users of parallel

computers have shown that those estimates are very unreliable [50].

It is reasonable to assume that the system owner primarily tries to maximize system

utilization. Clearly, saving a free machine, when some job is available, for a potential

future request makes little sense as in our online model, the system owner has no in-

1.1 MOTIVATION AND MODEL 7

formation about any future machine request. Therefore, without additional knowledge

on the jobs, no job selection strategy can guarantee a better schedule than any other.

Consequently, the system owner immediately assigns a free machine to an open re-

quest, that is, he generates a nondelay schedule [66]. On the other hand, he postpones

the assignment of a job to a machine until a machine becomes available. If several

requests are open at the same time he may use any arbitrary policy to pick any one

of them, that is, he uses a list scheduling algorithm. In the single release date case, it

is shown that Graham’s non-idling list scheduling algorithms are appropriate for opti-

mizing objectives that are related to maximizing machines utilization as in MUNIER et

al. [60]. However, remember that no information about the machine occupation of any

waiting job is available.

Most customers only submit jobs during core business hours. The owner of the

machines usually wants to maximize utilization of his machines during core business

hours and is aware that a large percentage of the machines may be idle during the

rest of the day. He must decide on the best number of machines to install. If he pro-

vides only few machines he may achieve maximal utilization in the target time frame

but he may also loose some revenue as potential customers will switch to a competi-

tor rather than waiting for their jobs being completed much later during off business

hours. Therefore, the owner will typically add new machines as long as his machines

are not idle during those core hours. On the other hand, he may decide to cut his costs

by removing some machines if there is unused capacity during this time.

However when making this decision, the owner must consider that some idleness

may be produced by an unfortunate selection of jobs. Therefore, he may be interested

in the ratio between the utilizations of schedules with an optimal and a worst case job

selection.

In classical approach, a schedule is generated with the objective of optimizing one

or more of the performance measures. Recently, KEMPF et al. [45] describe a number of

different considerations that must be taken into account when assessing the quality of a

schedule. The authors propose a different approach: segmentation and then aggregation

of the metrics that are used to measure the performance of a schedule. Segmentation is

8 CHAPTER 1 INTRODUCTION

specifying classes of scheduling objects that form a meaningful unit (e.g. all drilling

machines in a plant can form a segment). Once the segmentation of the scheduling

objects has been specified (i.e. the scheduling system is divided into several segments),

the metrics for each segment (e.g. utilization of machines in that segment) can be aggre-

gated into one segment-wide metric. The authors propose to use different metrics for

each segment, rather than using a single metric for the whole schedule. This is equiva-

lent to apply a single metric for only a part of the schedule. For example, in production

and manufacturing scheduling, a schedule that maximize utilization of the machines

throughout the whole system may be of poor quality, because this schedule would in-

crease work-in-progress inventory levels. Instead, a good schedule should maximize

utilization of only the bottleneck machines (where high utilization is needed). For that

reason, we consider the system utilization in certain target time interval (core business

hours).

Formally, there is a job system τ consisting of a collection of independent jobs which

arrive dynamically over time. Those jobs must be scheduled on a system with m iden-

tical parallel machines without preemption. The time when a job j ∈ τ arrives is

its release date and is denoted by rj ≥ 0. Each job has a processing requirement, also

known as its size and denoted by pj > 0. Further, a job is not known before it is released

and its processing time is only determined once the job has completed (nonclairvoyant

scheduling). All jobs are weighted according to their importance, the weight of a job j is

denoted by wj . The scheduling objective is to attain the maximum utilization of those

machines during a specific time interval.

No assignment of a waiting job to a machine need be made before the machine is

actually available. We denote the completion time of job j in a schedule S by Cj(S).

Schedule S is legal if no machine is executing more than a single job at any time, no job

starts before its release date rj , and each job executes without interruption. Therefore,

job j starts at time Cj(S) − pj in schedule S. As already mentioned, we only consider

the analysis of the nondelay schedules, that is, no machine is ever idle if a job is ready

to be processed on it.

1.2 HOW TO READ THIS THESIS 9

1.2 How to read this thesis

The research is focused on the performance measures for the problem of non-clairvoyantly

scheduling jobs that arrive over time on identical parallel machines. Our main goal is

to maximize system utilization. The analysis of the nondelay, non-preemptive sched-

ules is addressed.

Care has been taken to make this thesis as self-contained as possible. Because of

this, the remainder of this chapter contains an amount of pages concerned with the

general introduction and the fundamental concepts of the scheduling problems as well

as with a detailed description of online scheduling models. The reader already familiar

with these concepts can skip such part and go directly to the more interesting part

starting with the next chapter. The remainder of the thesis is organized as follows.

In Chapter 2, we consider the problem to determine performance measures that are

well suited to evaluate the utilization of the machines in a specific time interval. In the

first section of this chapter, we show that the commonly used makespan criterion is not

well suited for such evaluation. Therefore, in Section 2.2 we introduce two new alter-

native performance measures that are well suited to quantitatively represent machines

utilization, particularly for online scheduling problems. These performance measures

are named utilization and equal priority completion time. To support an evaluation of

these two scheduling criteria, a basic job system and a basic nondelay schedule are de-

fined in Section 2.3. In Section 2.4, we show that those basic job systems and their basic

nondelay schedules suffice to determine the worst-case ratios for our criteria. Hence,

we restricted ourself to consider only this kind of job systems.

Chapter 3 is devoted to consider the maximization problem of our first criterion

(utilization). Then, the worst competitive factor of such criterion is derived. Further,

we provide the proof of the tightness of this factor.

Chapter 4 is devoted to consider the equal priority completion time minimization

problem. First, in Section 4.3, we show that the competitive ratio of the total weighted

completion time criterion is unbounded when the jobs have arbitrary weights (i.e. jobs

have different priorities). Our main result in this chapter depends on a result from

10 CHAPTER 1 INTRODUCTION

KAWAGUCHI and KYAN [44]. the authors investigated the total weighted completion

time minimization problem when all jobs are available at the same time (offline prob-

lem). Therefore, in Section 4.4, we briefly provide the proof of their result using the

notations and corollaries of this thesis. Section 4.5 gives the main result of this chap-

ter. We prove an almost tight competitive factor of our second criterion (equal priority

completion time) for our online model. At the end of this chapter, in Section 4.6, we

discuss the possibility whether it is appropriate to use an equal priority flow time cri-

terion, which can be modelled in the same fashion as the equal priority completion

time.

Next, we provide an experimental investigation in Chapter 5. In this chapter, we

analyze experimentally the performance of the nondelay online algorithm with respect

to our new criteria. A detailed description of the experimental design is given in the

first section of this chapter. Finally, in Section 5.3, we discuss the obtained results and

report the analysis of the experiments.

The thesis ends with Chapter 6 that gives the implications of the results in this

thesis.

1.3 Classification of Scheduling Problems

The theoretical side of scheduling deals with the detailed sequencing and scheduling

of jobs. In standard machine scheduling models, a characteristic of the machine envi-

ronment is that a machine can process no more than one job at a time and that each job

may be processed by only one machine at a time. The common goal is to sequence a

collection of given jobs which are going to be performed in a given machine environ-

ment and subject to given requirements (constraints), in such a way that one or more

performance criteria are optimized. An allocation that satisfies the requirements im-

posed by the machine environment and the job characteristics is called a feasible or valid

schedule, or schedule for short. If such schedule has the optimum value with respect to

the optimality criterion, then we call it optimal.

Within the area of machine scheduling, there are still many different research branches.

1.3 CLASSIFICATION OF SCHEDULING PROBLEMS 11

This is caused by the presence of a virtually unlimited number of problem types in

machine scheduling. Various machine environments subject to multiform constraints

with several objective functions make a multiplicity of scheduling problems. Hence,

there is an obvious need for modelling and classification of these problems. In fact,

scheduling problems can be classified in many ways. A scheduling problem is called

off-line if all jobs are ready concurrently at the same time or the arrival times of the jobs

are known in advance. By contrast, in an online scheduling problem, all jobs are not

available simultaneously but become available over time and their arrival times are

not known beforehand. As we mentioned before, we restrict our attention to consider

the online scheduling models.

The standard classification scheme which is very convenient to categorize schedul-

ing problems is introduced by GRAHAM [25]. According to this scheme, the enormous

different scheduling problems can be described by a triplet-field notation α|β|γ. The

first field α describes the machine environment and contains only a single entry. The

β field provides details of the processing characteristics and constraints and may con-

tain more than one entry or being empty . The third field γ usually contains only a

single entry and describes the objective to be optimized. Therefore, the specification

of a machine scheduling model requires the description of a machine environment, job

characteristics, and an optimality criterion. In the remainder of this section, we give an

overview of each one of these environments.

Machine environments
The simplest machine environment is the single machine model, which is denoted by

a 1 in the α field. Here, each job j has to spent pj units of time for the processing

on a single machine. Although this environment is simple and usually a special case

of all other complex environments, its study is important for various reasons. The re-

sults, that can be obtained for single machine models, do not only provide insights into

single machine models, but also provide a basis for heuristics for more complicated

machine environments. In practice, scheduling problems in more complicated envi-

ronments are often decomposed into subproblems that deal with single machines. The

12 CHAPTER 1 INTRODUCTION

single machine problem often provides a support to model the behavior of a complex

system and quite often appears as an elementary component in a larger scheduling

problem. Sometimes the basic single machine problem is solved independently, and

then incorporates the results into the main problem [65]. Initial attempts to solve sim-

ple problems have paved the way to complex problems involving multiple objectives

and constraints (GUPTA [27]).

A natural generalization of the single machine model is the parallel machine envi-

ronment. The similarity between single and parallel machine environments is that ev-

ery job requires only a single operation for processing. In the parallel machine model,

each job has to spend its processing requirement on any one of m machines. A parallel

machine environment can be identical, uniform, or unrelated machines. In the identical

machines case, denoted by P , the m machines operate at the same speed. Therefore,

the time pij that job j spends on machine i is independent of the machine and denoted

by pj . In the uniform machines case, denoted by Q, each machine i has its own speed

vi. Therefore, the processing time pij of job j on machine i is equal to pj

vi
(assuming

machine i execute job j completely). The unrelated machines case is a generalization

of the uniform machines environment. There are m parallel machines with different

speeds while the speed of any machine is job-dependent. The speed of machine i is

indicated by vij . Therefore, the time pij that the machine i requires to execute the job j

is equal to pj

vij
(again assuming job j processes completely on machine i).

In the machine environments that we have mentioned so far, every job consisted

of a single operation. In contrast to these single-operation environments, we have the

so called shop environment. In shop machines environment, there are m machines in

series while every job consists of several operations. Each operation of a job has to be

processed on a designated machine i for pij units of time. Further, no job can undergo

more than one operation at a time, that is, no two operations of the same job can be

processed simultaneously. There are three different types of the shop environment:

open, job, and flow shop. As this environment is out the scope of this work, we do

not explain it in details. For a deep description, we refer the reader to the book of

PINEDO [66]

1.3 CLASSIFICATION OF SCHEDULING PROBLEMS 13

In general, the number of machines m is assumed to be either a part of the input

data or a fixed constant. To distinguish the difference, in the last case, the letter m

has to appear after the machine environment. For example, Pm refers to an identical

parallel machines problem with fixed number of machines.

Job data and job characteristics
In scheduling problems, there are some pieces of data that may be associated with any

job j. These data are the processing time, release date, due date, and the weight. The

pij represents the processing time of job j on machine i. The subscript i is omitted if

the processing time of job j does not depend on the machine or if job j is only to be

processed on one given machine. Job availability may be restricted by imposing release

date rj , it may also be referred to as ready date. In this case the job is only available

for processing from time rj onwards, that is, before this time no processing of the job

can take place (i.e. the earliest time at which job j can start its processing). The due

date of job j, indicated by dj , is the date at which job j should be completed (the date

the job is promised to the customer). Although it is allowed that a job completes after

its due date, a penalty should be incurred in this case. When the completion time of a

job must met the due date, then this due date is referred to as a deadline and indicated

by d̄j . The weight of job j, denoted by wj , is essentially a priority factor, indicating the

importance of this job relative to the other jobs in the system. Fore example, the weight

may represent the actual cost of keeping the job in the system.

The second field β in the notation consists of the details of the job characteristics.

In contrast to the first field α, this field may contain multiple entries or no entry at all.

The job characteristics include the possibility of allowing preemption and of specifying

precedence constraints or other restrictions. Traditional scheduling problems can be also

categorized into two models with respect to preemptions. If preemption is allowed, de-

noted by prmp, then an operation may be interrupted arbitrarily at any moment in time

and execute an other operation on the machine instead. The amount of processing a

preempted operation already has received is not lost. When a preempted operation is

resumed afterwards, at the interrupted time on another machine or at a later time on

14 CHAPTER 1 INTRODUCTION

any machine, it needs only a machine for its remaining processing time without any

penalty. Therefore, processing an operation on different machines is possible, provided

that this is done in non-overlapping time periods. This model is called preempt-resume

model. An example for this model, is the scheduling of processes in a time-sharing op-

erating system. There is another possibility for the preemption, preempt-repeat model,

a running job may be stopped and later restarted from the beginning on the same or a

different machine. That is, the work done on that job is completely lost. Thus in order

to complete, a job has to be assigned to the same machine for its whole processing time

without an interruption. This possibility can be denoted by prmp-restart in the middle

field of the three-field notation. Scheduling a sound recording studio is an example for

the preempt-restart model. A recording of a song could be interrupted. However, the

entire song must be recorded again. On the other hand, if preemption is not allowed,

an operation, once started, must be processed until completion without interruption.

An example of a scheduling problem in this case is the car rental problem. After a

customer takes off with a car, the car cannot be recalled and rented to another cus-

tomer. The car can be rented to another customer only when the first customer returns

it. Any no-preemption schedule is itself a preempt-restart schedule. Any preempt-

restart schedule can be converted into a no-preemption schedule by eliminating all

preempted executions in the preempt-restart schedule. Clearly, the elimination does

not affect the completion of any job. For off-line problems, the no-preemption and the

preempt-restart models are equivalent as off-line schedulers have all the information

about the input instance up front and can perform any conversion before producing

the output. However, in the on-line setting, the no-preemption and the preempt-restart

models are different. Generally, considering the non-preemptive version of a problem

is more difficult than the preemption version. In this research, we will consider the

analysis of non-preemptive online schedules.

There might be an order imposed on the jobs, in this case we say that the jobs are

subject to some precedence constraints. Precedence constraint, denoted by prec, may

appear in a single machine or in a parallel machine environment, it stipulates that a

certain job cannot start before another one or some jobs have completed. There are

1.3 CLASSIFICATION OF SCHEDULING PROBLEMS 15

several special forms of the precedence constraints. It can be chains, in which each job

has at most one successor and at most one predecessor. An intree constraint occurs

when each job has at most one successor. If each job has at most one predecessor, then

it is referred to as an outtree constraint.

Optimality criteria
In classical scheduling theory, the objective is generally optimizing system perfor-

mance. The performance of a given schedule is generally assessed by some measures.

The performance measure to be optimized is usually a function of the completion times

of the jobs, which clearly depend on the schedule. Also, the optimality criterion may

depend on the due dates of the jobs. There are various performance measures consid-

ered in scheduling research. All measures can be classified primarily into two groups:

those that are regular performance measures and those that are non-regular performance

measures. The basic concept of regular performance measures is that the change of the

optimal value depends on the change of at least one of the completion times of the jobs.

More precisely, it is a non-decreasing function in the completion times of the jobs. That

is, if any single job is made to complete later, the performance measure value stays the

same or increases but never decreases. Otherwise, it is called a non-regular measure.

The scheduling objectives can be further grouped into three broad categories: (i)

efficient utilization of resources; (ii) good response to demands; and (iii) close confor-

mance to prescribed deadlines.

Many different performance measures exist for scheduling problems in general, but

before these can be defined, some notation needs to be introduced. Given a feasible

schedule S which must be an allocation of the jobs to time intervals on the machines

such that all restrictions are met, we can compute for each job j:

• Cj(S): The time at which the processing of job j is completed.

• Fj(S) = Cj(S)− rj : The flow-time of job j (also called response time), defined as

the amount of time, job j spends in the system.

16 CHAPTER 1 INTRODUCTION

• Lj(S) = Cj(S)− dj : The lateness measures how much later than the due date the

job finishes. If the job finished earlier than dj , it is assigned a negative lateness.

• Tj(S) = max{Lj(S), 0}: The tardiness of job j is its lateness if it fails to meet its

due date, or zero otherwise.

• Uj = 1 if Cj(S) > dj , Uj = 0 otherwise: The unit penalty for job j if it fails to meet

its due date.

For every job j, the cost fj usually takes one of the parameters described above or

the product of the weight of the job wj with one of these parameters. The optimality

criterion can be any function of the costs fj . For a given job system τ , the frequently

used optimality criteria are in the form fmax = maxj∈τ fj and
∑

j∈τ fj . An example of

the most common optimality criterion is the makespan Cmax(S) = maxj∈τ Cj(S), which

is the length of the schedule, or equivalently the completion time of the last job to leave

the system. We will denote the optimal makespan, over all possible valid schedules S

as follows:

C∗
max = min

S
{Cmax(S)}

Further, we mainly focus on the total weighted completion time criterion C(S) =∑
j∈τ wj Cj(S). Let Cj(σ) denotes to the completion time of the job j in an optimal

schedule σ. Therefore, the optimal value of the total weighted completion time of all

valid schedules for the job system τ will be as follows:

C∗(τ) =
∑
j∈τ

wj Cj(σ)

For parallel-machine scheduling problems, the usual used objective function is the

makespan. From the viewpoint of a user, the time it takes to finish individual indepen-

dent jobs may be more important; this is especially true in interactive environments.

Thus, if many jobs that are released early, are postponed to the end of the schedule, it

is unacceptable for the user of the system even if the makespan is optimal. For that

reason, other regular objective functions are studied such as the total weighted com-

pletion time C(S); and the total weighted flow time
∑

j∈τ wj Fj(S).

1.4 ONLINE PARADIGMS 17

On the other side, this objective function (makespan) is commonly used to formal-

ize the viewpoint of the owner of the machines. That is, if the makespan is small, the

utilization of his machines is high [66, 53]; this captures the situation when the benefits

of the owner are proportional to the work done. In the next chapter, we will show that

this relation does not always hold especially for online scheduling. Therefore, we in-

troduced two new optimality criteria which are well suited to represent the utilization

of the machines.

1.4 Online Paradigms

In this section, the deterministic on-line scheduling models will be described and some

of their fundamental properties discussed. In many real-life situations, it is likely that

some of the input instances are not available to the algorithm in advance. This likeli-

ness has led to the rapidly emerging field of on-line scheduling. Therefore, the main

idea behind an online algorithm is that this algorithm, when it makes its decisions, is

not aware of the entire information which are necessary to define a problem instance.

In this case, the online algorithm must at any time construct a solution to the cur-

rently known partial input without knowledge of the future. This lack of knowledge

has prompted to introduce the so called online models and provide online algorithms.

There are a range of various online models which differ from each other according to

the way in which the information becomes available to the algorithm. It is no surprise

that the online paradigm may be the most natural and appealing one in the context of

scheduling as far as real world applications are concerned.

Too frequently, when attempting to get a solution for an online problem, one is con-

fronted with the fact that nothing is known about the future. Therefore, the online al-

gorithms, which are provided for such kind of problems, cannot generally produce an

optimal solution. In such case when the optimal solution is unattainable, it is reason-

able to sacrifice optimality and settle for a good feasible solution that can be computed

efficiently. Of course, we would like to sacrifice as little optimality as possible, while

gaining as much as possible in efficiency. This derived to the idea of considering com-

18 CHAPTER 1 INTRODUCTION

petitive analysis that allows us to prove bounds using the so-called adversary. This

means that an all-powerful malevolent adversary uses the partial schedule generated

by the online algorithm to decide what further jobs should be generated. Therefore,

this malicious omnipotent adversary specifies the input instance and schedules such

instance optimally. BORODIN et al. [11] addressed the approach of modelling the uncer-

tainty in the input data by considering various adversarial online scenarios. For further

details on online scheduling algorithms, we refer the reader to the book by BORODIN

and EL YANIV [11] and the paper of surveys [18]. For the most important results ob-

tained for the various online models, please refer to the survey by SGALL [72]. For

online scheduling, the commonly used classification of the on-line problems depends

on which part of the problem is given online. The possibility of different situations for

these online paradigms can be distinguished as follows:

1.4.1 Jobs arriving one by one

In this paradigm, denoted by online-list, the jobs are ordered in some list and presented

one by one to the algorithm according to this list. The algorithm learns all of the job

characteristics, including its processing time, as soon as it appears. In this online-list

model, release dates and precedence constrains are not allowed as with scheduling

jobs one by one these restrictions appear to be unnatural. The scheduling algorithm

must assign each job to some machine for some length of time, but it is not necessary

to specify the actual interval of time, before the next job is revealed. This assignment

must be consistent with the restrictions of the given problem. Moreover, the job must

be irrevocably assigned to machine. Namely, once the assignment has been made, the

scheduling algorithm cannot change it after the next job in the list is revealed. In this

paradigm, the time between when jobs are assigned is meaningless, in other words

it is not necessary or useful to introduce idle time on any machine. This paradigm

corresponds most closely to the standard online model of request sequences. It might

be an appropriate model for online problems such as loading balancing, graph coloring

and paging. Clearly, none of these problems includes the notion of time and the only

1.4 ONLINE PARADIGMS 19

online feature is the lack of the information of future requests. The number of future

requests the algorithm learns when it makes its decision is often referred to as the look-

ahead of the algorithm. Therefore, the online-list paradigm refers to algorithms with

look-ahead one. This paradigm was widely studied in many papers, for example, in

KARGER et al. [40], ALBERS [2] and SEIDEN [71]

1.4.2 Jobs arriving over time

In this paradigm, denoted by online-time, the jobs become available over time according

to their arrival dates. Further, at each instant of time t, the algorithm must decide

which job to execute at this time t. In this online-time model, the scheduling problem

typically has release dates, and the algorithm is not aware of the existence of a job

until its release date. Further, as soon as the job becomes available at its arrival time

its characteristics become known. However, in some situations the processing time of

the job is only determined one this job has completed. This online-time paradigm is

further classified into two paradigms based on what information is revealed about a

job once it has arrived.

• Online Clairvoyant Scheduling: In this model, once a job is released, the algorithm

learns the processing requirement of this job. Therefore, the only online feature

in this case is the lack of knowledge of jobs arriving in the future. This model has

a number of motivating applications where clairvoyance arises in practice. The

most classical one is the web server. A web server serving static documents might

reasonably be modelled by the clairvoyant model as the size of the requested file

is known to the web server.

• Online Non-clairvoyant Scheduling: In this model, only the existence of a job is re-

vealed to the algorithm at its release date. Therefore, the processing requirement

of a job is still unknown when this job is available. As long as the job is not com-

pleted, a non-clairvoyant online algorithm only knows that this job is still being

processed. The scheduler learns the processing requirement of a job only when

20 CHAPTER 1 INTRODUCTION

this job has finished. Therefore, the main online feature here is that the sched-

uler has no a-priori knowledge of how long time requires a job for processing and

when future jobs will enter the system. Further, the situation when all the jobs

are available at the beginning plays an important role in this paradigm too. If

there are other characteristics of a job than its processing time, they are known

when the task becomes available. This paradigm is motivated by the situation

of a scheduling algorithm which receives the jobs from multiple users and has

no way to know how long each job will take to complete. It was first introduced

formally and considered by MOTWANI et al. [58]. This paradigm closely mod-

els the scenarios that describe for example the processor scheduling in a time-

sharing multi-tasking operating system, in which scheduling decisions must be

taken without knowledge of the time a job needs to complete. For instance, it

is better to model the process scheduling component of an operating system by

the non-clairvoyant model as the execution times of the various client processes

typically will not be known to the operating system.

• Online Semi-clairvoyant Scheduling: Often in a real system, while job size may not

be known exactly in advance, it is usually possible to get a rough idea of the

job size by learning from past data. This naturally leads to a setting that lies

between the clairvoyant and the non-clairvoyant model. An attempt at this has

been recently made via the study of semi-clairvoyant scheduling by BENDER et

al. [10] and BECCHETTI et al. [8]. Therefore, a semi-clairvoyant online scheduling

algorithm only requires approximate knowledge of the initial processing time of

each job. There are two different kinds of this model. A strong semi-clairvoyant

algorithm learns a constant approximation of the remaining processing time of a

job, and a weak semi-clairvoyant algorithm learns only a constant approximation

of the original processing time of a job. One of the most practical applications for

these models is the dynamic serving in a web server. whereas the document size

is only an approximation of the time required by the server to handle a request. In

this case, a web server serving dynamic documents may only be able to estimate

1.4 ONLINE PARADIGMS 21

the size of resulting document as it dynamically constructs the document.

In this online paradigm, the algorithm has more freedom as in the previous one.

Here, at any point of time, all currently available jobs are at the disposal of the al-

gorithm. Therefore, each job that is already released and not hindered by any other

constraints can be started on any machine or be delayed further. Moreover, if preemp-

tions are allowed the algorithm can decide to preempt or stop any job that is currently

being processed.

The situation when the clairvoyant online algorithm learns the arrival date of the

next job is known as nearly online scheduling [46]. Moreover, if the clairvoyant online

algorithm is given all arrival dates of the jobs in advance, then we go back to off-line

scheduling. Namely, the jobs have to be scheduled with entire knowledge of the prob-

lem instance beforehand.

1.4.3 Scheduling with rejection (Interval Scheduling)

In all previous paradigms, each job can start at any point of time provided that it does

not violate the problem restrictions, that is, a job may be delayed. Contrary to that,

in a paradigm of scheduling with rejection each job has to be processed in a precisely

given time interval with fixed start and end points, so it cannot be executed either

early or late. If there is no way to process a job in its predetermined interval, then it

may be rejected. It is clear that this scenario is complectly different from the previous

paradigms. For instance, measuring the length of the schedule is meaningless and

not useful in this paradigm as this length is essentially fixed. So in this case, it might

be appropriate to measure the weight, or the number, of accepted jobs instead. This

paradigm has been studied for example by BARTAL et al. [6] and DAS GUPTA et al. [26].

Further, GELEMBE et al. [21] considered this paradigm for some applications.

22 CHAPTER 1 INTRODUCTION

1.5 Competitive Analysis

Decision making can be considered in two different phases: making decision with com-

plete information and making decision with partial information. The study of com-

putational complexity of algorithms is useful to distinguish the quality of algorithms

based on the computational resources used and the quality of the solution they com-

pute. However, the computational complexity of algorithms may be irrelevant or a

secondary issue when dealing with algorithms that operate in a state of uncertainty.

Given that an online algorithm has only partial knowledge of the input instance, for

most scheduling problems, no online algorithm can produce an optimal solution for

all input instances. The common approach for evaluating the worst-case performance

of an online algorithm has been first introduced in the seminal paper of SLEATOR and

TARAJAN [75]. In this paper, the authors analyzed various paging and list update

strategies in an online setting. This approach laid the foundations of the competitive

analysis technique. However, the actual term ” competitive analysis” was coined by

KARLIN et al. [41]. The competitive analysis technique compares the results produced

by an online algorithm to the optimal result, which could have been produced if the

complete knowledge about the whole input instance had been available beforehand.

The quality of an online algorithm is expressed in its competitive ratio, that quantifies

by how much, in the worst case, the online solution deviates from the optimal off-

line solution. In the literature, the competitive ratio is sometimes also called the worst

case ratio or the worst case performance guarantee. Mathematically speaking, an online

algorithm A is said to be c-competitive if the objective function value of the schedule

produced by this online algorithm on any input instance I is at most c times objec-

tive function of the schedule of the optimal off-line algorithm A∗ on the same input.

Here, the optimal off-line algorithm has complete knowledge about the whole input

sequence in advance. Let f(A, I) denote the objective value of the schedule produced

by algorithm A on input instance I where A could be an online or off-line algorithm

and f be an objective value that we are trying to minimize.

1.5 COMPETITIVE ANALYSIS 23

Formally, a deterministic online algorithm has a competitive ratio c if

f(A, I) ≤ c f(A∗, I)

holds for every possible instance I. The aim in any online scheduling problem is to find

an algorithm with a competitive ratio as small as possible. Moreover, a competitive

ratio c is said to be tight if there exists an specific instance that obtains the stated value.

Ideally, this competitive ratio should be a constant independent of any parameter of

the input instance such as the number of jobs faced but this is not always possible.

In general, the above definition of the competitive ratio can be extended to allow a

fixed constant b which should be independent of the input instance. Often an online

algorithm is called c−competitive if there exists a fixed constant b such that,

f(A, I) ≤ c f(A∗, I) + b

holds for any input instance I. Some authors even allow b to depend on some problem

or instance specific parameters. However, in most scheduling problems, this additive

constant b can be ignored. This follows from the fact that scheduling problems are

typically scalable; by scaling all the jobs so that the objective value is arbitrarily large,

the possible benefit of the additive constant disappears. In this thesis, we will stick to

the first definition which is the commonly used.

It is obvious from the above definition of the competitive ratio that there is no

restriction on the computational resources of the online algorithm. The only scarce

resource in competitive analysis is information. Competitive analysis of online algo-

rithms can be imagined as a game between an online player (an online algorithm) and a

malicious omnipotent adversary. The online player uses an online algorithm to process

an input which is generated by the adversary. If the adversary knows the strategy of

the online player, he can construct a request sequence that maximizes the ratio between

the player’s cost and the optimum off-line cost. For a great and in-depth treatment on

online algorithms and competitive analysis, we refer the reader to [11].

In the non-clairvoyant setting in which schedulers lack knowledge of the character-

istics of existing jobs, the performance is measured in a similar way. In particular, an

24 CHAPTER 1 INTRODUCTION

algorithm is c−competitive if the objective function value of the solution produced by

A on any input instance is at most c times that of the optimum off-line algorithm (and

hence clairvoyant) on the same input. We are interested to apply such competitiveness

technique for our scenario and it is worth to mention some alternative techniques that

also use to analyze the online scheduling problems in general. In this research, those

alternative techniques are not the focus of attention; however, we should make some

remarks on the situation here.

1.6 Alternative techniques for analyzing online algorithms

Randomized algorithms
The first and standard alternative approach to analyze online scheduling problems is

the consideration of randomized algorithms. These randomized algorithms make ran-

dom choices as they produce a schedule. In other words, probabilistic assumptions

have to be made on the input distribution. For any sequence I of jobs, let E[f(A, I)]
denote the expected corresponding objective value of a schedule constructed by a ran-

domized algorithm A, and let f(Opt, I) denote the optimal objective value. Then the

competitive ratio of A is defined as the smallest number c such that E[f(A, I)] ≤
c · f(Opt, I) for all sequences. A randomized algorithm with a competitive ratio c is

called a c-competitive algorithm. In the context of the online algorithms terminology,

this corresponds to the so-called oblivious adversary, see BORODIN and EL-YANIV [11].

An oblivious adversary has to commit to an input instance without any knowledge of

the random events internal to the algorithm. It is clear that the oblivious adversary

concept is appropriate for scheduling problems where the scheduling decisions do not

affect future input. For some online scheduling problems, applying the randomized

algorithms dramatically decreases the value of the competitive factor. For instance,

when the randomized algorithms are allowed against an oblivious adversary for the

non-clairvoyant scheduling problem 1|rj, prmp|∑Fj , then the competitive factor drops

from Ω(n
1
3) to Θ(log n) as was shown in BECCHETTI and LEONARDI [7].

1.6 ALTERNATIVE TECHNIQUES FOR ANALYZING ONLINE ALGORITHMS 25

Resource augmentation
Another alternative means to measure the quality of online solutions has been em-

anated recently from a paper by KALYANASUNDARAM and PRUHS [37]. This analysis

is useful especially in the context of online scheduling problems. Under their paradigm

the online algorithm is equipped with extra resources in the form of faster machines or

extra machines. So far, most results that obtained by using this approach utilize faster

machines. PHILLIS et al. [63] generalized this approach calling it resource augmentation.

Let Av denote an online algorithm that is ”enhanced” by being run on a machine that

is faster by a factor of v than the adversaries machine, where v ≥ 1. We say that an

online algorithm Av is an v-speed c-competitive algorithm if f(Av, I) ≤ c · f(Opt1, I)
for all input instances I.

Research with resource augmentation has focused on two primary goals. The first

objective is to minimize the speed subject to the constraint that the competitive ratio

is O(1). Thus an ideal resource augmentation result would be to prove an algorithm

is (1 + ε)-speed O(1)-competitive. The second objective focuses on finding an v-speed

1-competitive algorithms for these problems for as small a value of v as possible. The

intuition behind these results is that v represents the tradeoff between extra resources

and the partial knowledge that the online algorithm faces. Therefore, with v times

faster machines, the online algorithm can be able to overcome its lack of knowledge

of the input instance and construct a schedule that is at least as good as the one con-

structed by the optimal off-line algorithm.

Semi-online algorithms
The relative dismal performance of online algorithms is due to a possibly arbitrarily

large variance of job parameters. For instance, most greedy algorithms produce bad

schedules if they are applied to handle many jobs of same processing time and a few

very long jobs. Such inputs may be rare in applications, and we want to avoid them

in the analysis by equipping the algorithm with some partial additional information

about the jobs in advance. Semi-online is neither off-line nor online, but somehow in

between. A semi-online algorithm may be aware in advance of the optimum value,

26 CHAPTER 1 INTRODUCTION

the length of the longest job, or the jobs may be required to arrive sorted. In recent

years, semi-online scheduling problems have received increasing attention from the

scheduling community due to their application in practice.

Average-case analysis
It is desirable to analyze the average case behavior of algorithms if the algorithm ex-

hibits its worse case behavior only in some extreme cases but overall performs quite

well. There are several examples like quicksort, where the worst case time is consid-

erably worse than the average running time. In an average case analysis, we are not

only interested in a good average performance, but we would like that this good per-

formance is attained with high probability. The first difficulty with the consideration

of the average-case analysis is to determine what the average is, i.e. which probabil-

ity distribution of the input data is meaningful and still analyzable. Therefore, the

average-case analysis is appropriate only if we have a reasonable approximation of

what the input distribution should be. This is known for some client server systems.

For example, Poisson distribution for job arrivals and independent identical Zipf dis-

tributions for job sizes are often used to model the traffic for a web server.

Although all those several alternative techniques mentioned above, the worst-case

analysis of online algorithms is of fundamental importance. For many scheduling on-

line problems, worst case competitive analysis gives quite strong bounds.

1.7 History and List Scheduling

Scheduling and sequencing problems have been studied for many decades. Schedul-

ing began to be taken seriously at the beginning of the 20th century when motivated by

production planning and manufacturing. Henry Gantt (1861-1919) was one of the first

pioneers of this area. However, the first scheduling publications have appeared after

many years in the operational research and industrial engineering literature. Some of

those publications were in the early 1950’s and contained results by JOHNSON [36],

SMITH [76], and JACKSON [34]. In the late 1960’s and 1970’s the area had a sharp

1.7 HISTORY AND LIST SCHEDULING 27

growth, and has retained its momentum ever since. A significant amount of research

has been made during 60’s on dynamic programming [9, 31, 47, 78] and integer pro-

gramming formulations [22] of scheduling problems. After the famous complexity

theory presented by RICHARD KARP [42, 43], an increasing amount of attention paid

during 1970’s to consider the complexity hierarchy of scheduling problems. In the 80’s,

stochastic scheduling problems (vs. deterministic scheduling problems) absorbed an

increasing amount of attention in both academia and industry [16, 56, 67]. Further,

during this time, the area had another stimulus because of the use of personal com-

puters permeating manufacturing facilities. This advent of the computers and their

widespread use had considerable impact both on scheduling problems and solution

strategies. From that time on, many scheduling systems were developed for the gener-

ation of usable schedules in practice. Moreover, a number of new problems and vari-

ations has been motivated by applications areas in computer science such as parallel

computing, databases, compilers, and time sharing.

Over these years of fertile research in the scheduling field, some problems in this

area were formally classified and defined. As we are interested in the on-line schedul-

ing problems, we provide a brief overview on the scheduling models with the online

setting. Starting from the middle of the 1960’s, the researchers appreciated the fact that

parts or all of the relevant information might not be available to the algorithm. From

this time onwards, much attention in scheduling theory has been devoted to study

online (dynamic) problems. In 1966 GRAHAM [23] provided the first proof of compet-

itiveness of an online algorithm for a scheduling problem. His algorithm is a simple

deterministic greedy algorithm, now commonly called List Scheduling Algorithm, and

is used extensively both in theory and practice. The investigated model was the basic

one in which m identical machines and a set of sequential jobs characterized by their

processing times are considered while the objective was to minimize the makespan,

i.e. P ||Cmax. Preemption was not allowed. In the literature, the name list scheduling

is used to refer to different algorithms that have similarities. The list algorithm first

orders the jobs in an arbitrary sequence, jobs that come earlier in the list have higher

priority. Then it assigns immediately the earliest available job in this sequence to the

vacant machine. Next, we give the precise description of such algorithms:

28 CHAPTER 1 INTRODUCTION

Algorithm: GRAHAM’s list scheduling algorithm.
Input: Instance for Pm|rj|γ , a job system τ .
Output: A feasible schedule.

while there is still an unscheduled job in τ do
pick any unscheduled and released job j (if any);

if such a job exists and a machine is idle then
start j immediately on an idle machine

else
wait until any machine becomes idle or
the new job is released;

By their non-idling property, GRAHAM’s list scheduling algorithms are well ap-

propriate when machine utilization is an important consideration as was shown by

MUNIER et al. [60]. The list algorithm was already designed both for the model with

and without precedence constraints on the jobs. In addition, the multi-release date

case can be handled also by a simple modification as has been done later by HALL and

SHMOYS [30]. For the model of scheduling jobs one by one, once a job is presented, the

list algorithm assigns it to a machine that has currently the smallest load. GRAHAM

showed that the job arrival order (online scenario) can change the resulting makespan

by a factor of at most 2 − 1
m

and that this bound is tight. In the same seminal paper,

the case when the number of machines is not fixed has been covered and the best pos-

sible bound was giving for this algorithm. The bound 2 − 1
m

decreases to the bound
4
3
− 1

3m
if the algorithm requires the jobs to arrive in a list sorted according to decreasing

processing times, as was shown in a follow-up paper of GRAHAM [24].

Two other early famous papers that analyze online scheduling algorithms can be

found in [68] by SAHNI and CHO and in [15] by DAVIS and JAFFE . The first one

presents an optimal algorithm for minimizing the makespan of a preemptive schedule

on identical machines where jobs is releasing over time and their processing times are

known at the arrival. In fact, this algorithm requires to know the release date of a job

in advance. This additional restriction on the online problems was later removed by

HONG and LEUNG [33]. The second paper is, to the best of our knowledge, the first

1.8 PRACTICAL EXAMPLES OF ONLINE MODELS 29

one that mentions explicitly a lower bound on the performance ratio of any online algo-

rithm for some scheduling problem. It provided an efficient algorithm with a behavior

which is Θ(
√

m) times worse than optimal in the worst case. This bound obtained for

the non-preemptive assignment of independent jobs that arriving over time with un-

known processing times on uniformly related machines. Also, the authors conjectured

that it may be useful to allow restarts in this case, indeed a validity of this suggestion

has been proven later by SHMOYS et al. [73].

During 1990’s several online algorithms were designed and new results obtained

to handle many variants of online scheduling. The makespan was commonly used as

the objective function. However, the appearing of several new practical applications

is drawing to more attention for considering other objective functions, which are more

suitable in this case than the makespan.

1.8 Practical Examples of online models

It is important to have in mind a set of practical problems that occur in the real-life

world. There is a tremendous variety of problems that pose online modelling and al-

gorithmic issues. Below there are some online resource allocation problems that help to

highlight some of various online models. The problems arise in planning, production

systems, and computer control, respectively.

Example 1.8.1

Consider a factory that produces cardboard boxes for various types of productions

such as dog food, charcoal, · · · , and so on. A factory receives over time a continu-

ous demand from the customers. The cardboard boxes are produced by a group of

machines that have been bought over the years, that is, each machine has its own pro-

cessing speed. Every machine can process all stages to make a complete box from a

single cardboard sheet. This includes printing it in multi-colors, cutting, folding, and

gluing. Each production order (request) indicates a given quantity of a specific box.

Moreover, this order has to be produced and delivered by a promised date. Now, one

30 CHAPTER 1 INTRODUCTION

has to make his decision how the orders can be assigned to the machines so as to min-

imize the number of late delivery orders. A similar example can be found in [66].

In this example, the orders that have to be produced are the jobs. The machines in

the factory clearly represent the machine environment. As each job can be processed

on any one of the machines that have different speeds, the machine environment corre-

sponds to a group of uniform parallel machines. Here, the minimization of the number

of tardy jobs is the scheduling objective. Obviously, this scenario belongs to the online

paradigm in which jobs arrive over time and all characteristics of each job are available

at it’s arrival time.

Example 1.8.2

Another application area of scheduling is network systems. A number of computers

are connected to compose a computer network that is used for transmitting messages

between the users of the computers. Every computer has several users that want to

transmit messages through this network. A message route is determined along which

the transmission should occur before actually transmitting this message. In this com-

puter network, there are many different routes to sent a message - routing is one im-

portant research topic in this area. Information (messages) may be sent on cables or

wireless. From a functional point of view, cables or wireless links can equally well be

regarded as resources. This is a good example of a resource which is not a physical

machine in the usual sense of the word. The communication links are machines which

provide alternative ways of executing an information transmission task. An example

of such computer network can be seen in Figure. 1.2. The computers and the connec-

tions are represented by the vertices and the edges, respectively. A possible transmis-

sion route between computers A and B is indicated by a dashed line. The bandwidth

of each connection in the route has to be fixed, that is, the number of bits per second

that the connections can transmit is limited. The requests for sending a message arrive

dynamically over time at the computers. In addition, each message has a size in bits,

which is not available at the request time. No computer in the route can forward a

message until this message has been received completely. Now, we want to look for

a protocol that, given the transmission route, minimizes the average waiting time by

1.8 PRACTICAL EXAMPLES OF ONLINE MODELS 31

A
B

1

Figure 1.2: Possible transmission route for mes-
sages between computers A and B in a network

regulating the communication traffic.

The messages in this example can be viewed as jobs. The connection between any

two computers can be regarded as a machine. All messages are moving through a

route which is known in advance. Therefore, we learn in advance the order in which

the machines are visited. Here, the objective is to find a schedule that minimizes the

average waiting time. It is obvious that this is equivalent to minimize the total waiting

time to serve all messages. Furthermore, the difference between the total waiting time

and the total completion time is just a constant. Hence, this problem can be modelled

as a open shop, where the minimization of the total completion time is the scheduling

objective. clearly, the online feature in this example is that the messages arrive over

time. Further, the time a message requires for transmission is unknown even during

the transmission process. Consequently,a non-clairvoyant algorithm is requiring to

handle this problem.

Example 1.8.3

A ferry-ship transports vehicles from one shore to the other. A queue of the vehicles is

32 CHAPTER 1 INTRODUCTION

waiting in front of this ferry for transportation. It is the task of the ferry man, who is

standing in front of this queue, to assign a location on the ferry-ship for each one of the

vehicles. His final goal is minimizing the free area of the boat. The view of the ferry

man is partially blocked such that he can only see the first four vehicles in the queue

at a time. Once a position on the boat has been assigned for the first one of those four

vehicles, the vehicles move up and the next vehicle in the queue can be seen. Due to

his years of experience, the ferry man knows exactly the space required by a vehicle

once he sees it. For obvious reasons he can not change the assignment of a vehicle once

the decision has been made. The assignment of the vehicles to the deck of the ferry-

ship has been highly structured to avoid chaos. Parallel lanes with the same width

and length have been constructed on the deck of the ferry-ship. Each lane has enough

width that can contain any of the vehicles. Also, vehicles can only be assigned to the

prescribed lanes and must be located one after another in each of the lanes.

To formulate the problem in context of scheduling we need to look for the machine

environment, job characteristics, and an optimality criterion. The jobs in this example

are the vehicles, where the length of the vehicle represents the processing requirement

of a job. The machines here are the lanes into which the deck is partitioned. Each

job can be assigned to any one of the machines (lanes). Clearly, the amount of area

that is used by the vehicle is independent of the lane. This indicates that the machine

environment corresponds to a group of identical parallel machines. The objective is the

minimization of the free area. This is clearly the same as minimizing the total length of

the vehicles left ashore. Further, the objective will be the minimization of the weighted

number of tardy jobs if a weight and a due date are defined to be equal to the length

of the vehicle it represents and the length of the lanes, respectively. The online feature

that is used is obviously the paradigm where jobs arrive sequentially in a list (one by

one). Further, the first job in the list has to be assigned immediately and uniquely to a

machine. Therefore, we need only algorithms with a look-ahead of four to handle this

problem.

33

Chapter 2

Criteria for system utilization

A central question that must be considered when analyzing an algorithm for parallel-

machine systems is: what is the objective function being used to determine how well

such algorithm is performing. Clearly, the answer depends on your goal. From a sys-

tem viewpoint, it is needed to streamline the use of the resources and increase overall

system utilization. That is, system managers would look for higher system utilization.

In this research, we are interested to maximize system efficiency during a specific time

interval (from system start until a target time). As we mentioned, the first step in solv-

ing a scheduling problem is thus to define an optimality criterion that is appropriate

to achieve the scheduling aim. However, choosing a scheduling objective function is,

itself, a challenging problem. This chapter is devoted to consider the problem of deter-

mining the performance measures that are well suited to evaluate the utilization of the

machines within a target time interval.

It is well known that the makespan criterion is the common way to evaluate the uti-

lization of the machines. However, in the next section we will show that the makespan

criterion is not always closely related to machine utilization. Consequently, in Sec-

tion 2.2, we will introduce new alternative optimality criteria for the purpose of max-

imizing the machine utilization. Further, we will show that our new criteria are well

suited to represent quantitatively the machine utilization. To simplify our analysis, in

Section 2.3, we will introduce the definition of certain job systems which passes some

special properties. These specific job systems are named basic job systems. In sec-

34 CHAPTER 2 CRITERIA FOR SYSTEM UTILIZATION

tion 2.4, we will show that it is sufficient to consider only those basic job systems and

their basic nondelay schedules for the purpose of a worst case analysis.

2.1 Is makespan suitable for utilization?

The issue of what performance measure to use in assessing the quality of a schedule

is far from trivial. For parallel machines, the makespan criterion is usually considered

to represent machines utilization, see, for instance, PINEDO’s book [66] and [53]. Fur-

ther, RINNOOY KAN [38] developed some equivalence relationships that exist among

scheduling objectives. One of the results in this paper shows that minimizing makespan

is equivalent to maximizing utilization of resources. Therefore, it is taken commonly

for granted that a schedule with a smaller makespan has a higher machine utilization.

However, this relation does not always hold for online scheduling models with inde-

pendent jobs. For instance, if a system is running empty, that is, all job submissions

have been completed and there is no further open request, then the utilization of the

current schedule is optimal although this may not be true for the makespan. On the

other hand, if there are still running jobs or open requests, a schedule with a higher

makespan may have a utilization in the time interval up to the current time better than

that of a schedule with the optimal makespan.

To explain that, consider the following instance. A job system contains three ma-

chines and five jobs with the following processing times:

job 1 2 3 4 5

pj 2 1 10 6 1

All jobs are released at time zero and the target (specific) time interval is (0, 5]. At

any time instant in this interval, we assume that the processing times of all jobs are

known although some of them are not yet completed. Figure 2.1 compares between

two different nondelay schedules of this simple instance. This figure shows that a

nondelay schedule with a higher makespan may have a better machine utilization in

the target time interval a nondelay schedule with the optimal makespan. For example,

2.1 IS MAKESPAN SUITABLE FOR UTILIZATION? 35

1
1

10
6

2

Makespan 11
Utilization 87%

target time
 interval

Time

Utilization 80%
Makespan 10

1

1

10

2

6

Machines Machines

Figure 2.1: Comparison of Makespan and Utilization for 2 Schedules

jobs released at 0

jobs released at 5

idle machines

Time

target time
 interval

6

1
1

10
3

2 1

1

10
32

2

6

2

Machines Machines

Figure 2.2: Effect on Future Job Submissions on 2 Schedules

36 CHAPTER 2 CRITERIA FOR SYSTEM UTILIZATION

at the end of the current target time interval (after five units of time) the schedule with

makespan equal to 10 has 12
15

= 80% utilization of the machines but the schedule with

makespan equal to 11 has 13
15
≈ 87% utilization of the machines.

To show that machine utilization might be influenced by future job submissions

(even if an oracle provides us with the processing times of all currently running jobs),

we consider the following instance: here, we add two new jobs to the same previous job

system. Those new jobs are released at time 5 with processing times p6 = 2 and p7 = 3.

In this case, we assume that the interval from system start to 8 units of time is the target

time interval. Figure 2.2 presents two different nondelay schedules for this job system.

The first one has minimal makespan 10 and 21
24
≈ 88% machine utilization at the end of

the target time interval. The second schedule has a makespan of 11 while the machine

utilization at the end of the target time interval is 22
24
≈ 92%. This figure illustrates that,

although all new (future) jobs are scheduled in an optimal fashion in both schedules

the schedule with the optimal makespan may result in a smaller machine utilization.

SHMOYS et al. [73] have investigated the makespan minimization for the problem

of non-clairvoyantly scheduling jobs that arrive over time on identical parallel ma-

chines. The authors have already shown that GRAHAM’s list scheduling algorithm has

a competitive factor of 2− 1
m

. That is, Cmax(S)
C∗

max
≤ 2− 1

m
holds with S being an arbitrary

nondelay schedule and C∗
max denoting the optimal makespan. This is the best possi-

ble factor in the deterministic case, i.e. this bound is tight. According to this result,

the owner must assume that the selection process may be responsible for up to almost

50% idleness. However, in this thesis, we show that the selection process may account

for 33% idleness at most. In addition to the previous simple example, this also shows

that the makespan criterion may not always be an appropriate criterion to represent

utilization in all scheduling problems.

From the above, one concludes that the makespan criterion is not always appropri-

ate to measure the machines utilization for this kind of online problems. This leads

us, in the next section, to introduce another new criteria that enables us to represent

well the utilization of the machines. Hence, we can directly consider system utiliza-

tion from system start to a given end time, i.e., during the target time interval. In this

2.2 NEW CRITERIA FOR MACHINE UTILIZATION 37

thesis, we are interested to determine the ratio between the utilization of an optimal

and a worst case nondelay schedule in such a specific time interval. To determine the

best schedule for this time frame, we assume that the processing times of all jobs sub-

mitted in this time frame are available. As jobs that are submitted after the end time

cannot influence the value of our criterion in any schedule we can ignore them in our

analysis. To the best of our knowledge, no theoretical analysis has been provided for

this utilization criterion yet.

2.2 New criteria for machine utilization

The ultimate goal of any scheduling problem is to obtain the best system performance

possible. As already mentioned before, we are interested in the machine utilization

of a schedule. It is an established fact in the parallel computing literature that the

makespan influences the machine utilization and it is commonly considered to be the

best criterion to represent machine utilization. In the previous section, we however

have shown that this fact is not always true by showing that the makespan criterion is

not well suited to describe machines utilization for online scheduling problems (even

maybe for multi-machines scheduling problems in general). Therefore, makespan is

not always closely related to the utilization of the machines. This stimulate us to intro-

duce formally two new alternative performance measures for the purpose of evaluat-

ing the utilization of the machines. Further, in this section, we will show that our new

criteria are better than well-known and usually used makespan to evaluate machine

utilization for the online scheduling models. To this end, we first denote the amount

of machine resources used by a given job system τ within a certain time interval [t1, t2)

of any schedule S by

U[t1,t2)(S, τ) =
∑
j∈τ

max
{
0, min

{
t2, Cj(S)

}
−max

{
t1, Cj(S)− pj

}}
.

Note that this definition can also be applied in a case where the job system τ is only a

subset of all jobs in schedule S. In this case, utilization is restricted to the jobs from this

subset within the given interval [t1, t2).

38 CHAPTER 2 CRITERIA FOR SYSTEM UTILIZATION

As already mentioned in section (1.1), we concern with system utilization only on

the interval of time in which the machines are bottleneck. Paying much attention to

consider the utilization during an active (bottleneck) interval makes a lot more sense

since we are maximizing utilization where it matters, instead of indiscriminately across

the whole schedule, see for instance KEMPF et al. [45]. This encouraged us to consider

the system utilization from system start to a certain target time t. Consequently, we

can formally introduce our first new scheduling objective for a job system τ and its

schedule S as follows:

Maximization of Utilization for Target Time t: U[0,t)(S, τ)

We denote the optimal value of the utilization criterion for a job system τ by U∗
[0,t)(τ).

Clearly, the limited applicability of the makespan criterion for system utilization is

partly due to the fact that usually only a single machine determines the makespan of a

schedule. In order to overcome this problem, it may be appropriate to consider a crite-

rion that combines the makespan of all machines. Intuitively, the combination should

give priority to schedules where the makespan of all machines is similar. In a schedule

without intermediate idle times on any machine, this is achieved by minimizing the l2-

norm of the makespans, that is,
(∑m

i=1(C
i
max)

2
)1/2

, where Ci
max is the completion time

of the last job on machine i.

To this end, we can simply use the well known total weighted completion time crite-

rion C(S) =
∑

j∈τ wjCj(S) which takes into account the completion times of all jobs. In

fact, this criterion prioritizes jobs with a large ratio of weight wj to processing time pj

as has been shown in [76]. In order to overcome this problem, we define the weight of

each job to be its processing time. A similar approach of this weight selection has been

suggested by SCHWIEGELSHOHN and YAHYAPOUR [70] for the preemptive scheduling

of parallel jobs. Further, KAWAGUCHI and KYAN [44] applied this approach for their

proofs. This weight selection guarantees that all jobs have the same Smith ratio [76]

and therefore the same priority. Moreover, it favors schedules with a balanced load

while, contrary to the makespan criterion, a single machine occupied by a long run-

ning job has limited influence on the schedule quality if many machines are available.

2.2 NEW CRITERIA FOR MACHINE UTILIZATION 39

As there are already many results for total weighted completion time scheduling, we

also consider this criterion as an alternative for the utilization and the makespan cri-

teria and name it equal priority completion time criterion. However, as there may be

intermediate idle times in the schedule due to the release dates of the jobs, the equal

priority completion time criterion is not the same as the l2-norm of the makespans in

the online scenarios. Next, we can formally again introduce our second scheduling

objective function for a job system τ and its schedule S as:

Minimization of Equal Priority Completion Time: Cequ(S) =
∑
j∈τ

pj Cj(S)

Note that the equal priority completion time Cequ(S) of a schedule S is derived from

the sum of the weighted completion time by demanding that wj = pj holds for all jobs.

We denote the minimal value of the equal priority completion time over all feasible

nondelay schedules for a job system τ by C∗
equ(τ).

In this research, we analyze the worst case of the ratios
U∗

[0,t)
(τ)

U[0,t)(S,τ)
and Cequ(S)

C∗
equ(τ)

where

S is a nondelay, nonpreemptive schedule. In Chapter 3, we will consider the deter-

mination of competitive factor of the utilization criterion and derive the upper bound

of such factor, while Chapter 4 is devoted to investigate the competitive factor of the

equal priority completion time criterion. Then, we will show a close relationship be-

tween the utilization and the equal priority completion time criteria.

Although using the equal priority completion time criterion to evaluate machine

utilization has not been addressed so far, it can be directly concluded from the results

of KAWAGUCHI and KYAN [44] that

Cequ(S)

C∗
equ(τ)

≤
√

2 + 1

2

holds for all nondelay schedules if all jobs are released at time 0 (offline problem).

Further, Kawaguchi and Kyan have shown that this factor is tight.

After the formal definitions of the new optimality criteria, we can quantitatively

compare them with the makespan criterion by executing two different job systems τ1

and τ2 on an m identical parallel machines.

40 CHAPTER 2 CRITERIA FOR SYSTEM UTILIZATION

• Job system τ1

The first job system τ1 consisting of 2m independent jobs with the following processing

times:

pj =

 m− 1, for each j = 1, · · · , m ;

1, for each j = m + 1, · · · , 2m .

In the nondelay schedule S1, we start m − 1 long jobs at time 0 and execute all short

jobs on a single machine in the interval [0, m). This requires a single long job to start

at time m− 1 and to run until time 2m− 2. Note that schedule S1 represents the worst

case of makespan for job system τ1. In the optimal schedule, all long jobs start at time

0 and all short jobs are executed in parallel in the interval [m − 1, m), see Figure 2.3.

Observe that in both schedules S1 and the optimal schedule σ, all jobs are started in the

target time interval [0,m). Now, we compute the competitive ratio of each criterion as

follows:

Time

target time

0 0
Machines Machines

m

2m− 2

m− 1

m m

m− 1

Figure 2.3: Nondelay schedule S1 (left) and the optimal schedule (right) for τ1

2.2 NEW CRITERIA FOR MACHINE UTILIZATION 41

For the makespan criterion, we have

Cmax(S1) = 2m− 2, C∗
max(τ1) = m ⇒ Cmax(S1)

C∗
max(τ1)

= 2− 2

m
(2.1)

For the utilization criterion, we get

U[0,m)(S1, τ1) =
∑
j∈τ1

max
{
0, min

{
m,Cj(S1)

}
− Cj(S1) + pj

}
= (m− 1) · (m− 1) + m + 1 = m2 −m + 2,

U∗
[0,m)(τ1) = m2.

Terefore, we have

U∗
[0,m)(τ1)

U[0,m)(S1, τ1)
=

m2

m2 −m + 2
= 1 +

m− 2

m2 −m + 2
(2.2)

The value of the equal priority completion time criterion of schedule S1 can be obtained

as follows:

Cequ(S1) =
∑
j∈τ1

pj Cj(S1)

= (m− 1)
∑

j∈{τ1|pj=m−1}
Cj(S1) +

∑
j∈{τ1|pj=1}

Cj(S1)

= (m− 1)
[
(m− 1)2 + (2m− 2)

]
+

m(m + 1)

2

= (m3 − 3m2 + 3m− 1) + 2(m2 − 2m + 1) +
m(m + 1)

2

= m3 −m2 −m + 1 +
m(m + 1)

2

= m3 −m2 + m +
m2 − 3m + 2

2

Note that the completion times of the short jobs in schedule S1 are 1, 2, · · · , m. The

optimum value of such criterion for job system τ1 is

C∗
equ(τ1) =

∑
j∈τ1

pj C∗
j

= (m− 1)
∑

j∈{τ1|pj=m−1}
C∗

j +
∑

j∈{τ1|pj=1}
C∗

j

= (m− 1) ·m · (m− 1) + m ·m = m3 −m2 + m.

42 CHAPTER 2 CRITERIA FOR SYSTEM UTILIZATION

Therefore the worst case ratio of the equal priority completion time is

Cequ(S1)

C∗
equ(τ1)

= 1 +
m2 − 3m + 2

2(m3 −m2 + m)
(2.3)

• Job system τ2

The second job system τ2 consists of m
2

long jobs and m2

2
short jobs with the following

processing times:

pj =

 m, for each j = 1, · · · , m
2

;

1, for each j = m
2

+ 1, · · · , m
2
(m + 1) .

In the nondelay schedule S2 we execute all short jobs in the interval [0, m
2
) using all

machines and start all long jobs at time m
2

while in the optimal schedule, all long jobs

start at time 0 and all short jobs are processed in the interval [0, m) using only m
2

ma-

chines. Note that in all schedules, all jobs are started in the target time interval [0, m),

see Figure 2.4. In this case, we have

Cmax(S2) =
3m

2
, C∗

max(τ2) = m ⇒ Cmax(S2)

C∗
max(τ2)

= 1.5 (2.1′)

For the utilization criterion we have,

U[0,m)(S2, τ2) = m · m
2

+
m

2
·
(
m− m

2

)
=

3m2

4
,

U∗
[0,m)(τ2) = m2.

Therefore, we get
U∗

[0,m)(τ2)

U[0,m)(S2, τ2)
=

4

3
= 1 +

1

3
(2.2′)

Next, we can obtain the worst case and the optimum value of equal priority completion

time criterion for job system τ2 as follows:

Cequ(S2) =
∑
j∈τ2

pj Cj(S2)

=
∑

j∈{τ2|pj=1}
Cj(S2) + m

∑
j∈{τ2|pj=m}

Cj(S2)

= m ·
m
2
(m

2
+ 1)

2
+ m · m

2
· 3m

2

=
m2

8
· (7m + 2)

2.2 NEW CRITERIA FOR MACHINE UTILIZATION 43

Time
0 0

MachinesMachines

target time

m

2

3m

2

m

2

m

m m

Short jobs ∈ τ1

Short jobs

Figure 2.4: Nondelay schedule S2 (left) and the optimal schedule (right) for τ2

C∗
equ(τ2) =

∑
j∈τ2

pj C∗
j

=
∑

j∈{τ2|pj=1}
C∗

j + m
∑

j∈{τ2|pj=m}
C∗

j

=
m

2
· m(m + 1)

2
+ m · m

2
·m =

m2

4
· (3m + 1)

Finally, we get the worst case ratio of the equal priority completion time criterion for

job system τ2

Cequ(S2)

C∗
equ(τ2)

=
7m + 2

6m + 2
= 1 +

m

6m + 2
(2.3′)

Table 2.1 summarizes the results from Equations (2.1-2.3) and Equations (2.1′-2.3′)

and provides a comparison between the worst case ratios of the makespan, the utiliza-

tion, and the equal priority completion time criteria for both job systems τ1, τ2. The

previous two examples also demonstrate that better machine utilization does not nec-

essarily correspond to a smaller makespan while utilization and equal priority com-

44 CHAPTER 2 CRITERIA FOR SYSTEM UTILIZATION

U∗
[0,m)

(τi)

U[0,m)(Si,τi)
Cequ(Si)
C∗

equ(τi)
Cmax(Si)
C∗

max(τi)

i = 1 m2

m2−m+2
< 1 + 1

m
1 + m2−3m+2

2(m3−m2+m)
< 1 + 1

2m
2− 2

m

i = 2 1 + 1
3

1 + m
6m+2

< 1 + 1
6

1.5

Table 2.1: Comparison between Utilization, Equal Priority Completion Time, and Makespan
for Job Systems τ1 and τ2.

pletion time criteria exhibit the same trend.

2.3 Basic Job Systems

In this section, we define some notations and terminologies which will be used in the

rest of this thesis. Further, we will introduce the definition of a specific job system that

simplifies our analysis. Let us start with the following definitions.

Definition 2.1 An interval [ta, tb) of any schedule S is called fully utilized or simply full

interval if all machines are busy executing jobs at any time instant during this interval.

Definition 2.2 A full interval [ta, tb) of the schedule S is max-full interval if it is not a true

subset of another full interval in this schedule.

Therefore, each max-full interval has maximum size. That is, there is at least one idle

machine at the beginning and at the end of each max-full interval. Further, it is obvious

from Definition 2.2 that there is a unique partitioning of every schedule into those max-

full intervals. Note that at least one job starts at the beginning of any max-full interval.

Moreover, in any max-full interval [ta, tb) of any nondelay schedule we have rj ≥ ta for

every job j ∈ τ that starts in such interval [ta, tb). Otherwise, this violates the nondelay

2.3 BASIC JOB SYSTEMS 45

property as job j could start before this interval. Further, we will need the next two

notations in our consideration.

• For a given schedule S, we define [ta(S), tb(S)) to be the last max-full interval of

such schedule S. If the schedule S has no full interval then we set ta(S) = tb(S) =

0.

• Let τ([ta, tb]) ⊆ τ such that ta ≤ Cj(S) − pj ≤ tb holds for each job j ∈ τ([ta, tb]).

That is, it is the set of jobs that start in the interval [ta, tb] of schedule S. Note that

both ta and tb are included.

Next, we provide the definition and the concept of a basic job system. In the next

section, we will show that the worst-case ratios of utilization and equal priority com-

pletion time can be produced by such kind of job systems. For a basic job system, there

must be a nondelay schedule S such that the processing time of each job starting in a

max-full interval of S is very small and those jobs are released at the beginning of this

interval. Further, if a job is released before the beginning of the max-full interval of

S and always completes after this time in any schedule then the start time of this job

in schedule S is greater than its release date plus the length of the max-full interval.

On other words, all jobs that are released before the beginning of max-full interval, but

cannot finish before this interval in any case, must wait at least the length of the max-

full interval before starting. We will explain the intuitive reason of these properties in

the next section. Mathematically, the properties of basic job systems can be described

by the following definition.

Definition 2.3 A job system τ is called a basic job system if there is a nondelay schedule S for

τ such that the following conditions are valid for any max-full interval [ta, tb) of S and a fixed

ε > 0:

1. pj ≤ ε holds for all j ∈ τ([ta, tb)).

2. rj = ta holds for all jobs j ∈ τ([ta, tb]).

3. Cj(S)− pj > rj + (tb − ta) holds for all jobs j ∈ τ with rj < ta < rj + pj .

46 CHAPTER 2 CRITERIA FOR SYSTEM UTILIZATION

Schedule S is called a basic nondelay schedule.

Observe that in the first property time tb is excluded from the interval.

Time

Machines

max-full interval

pk > ε, rk = ta

ta
Cj(S)− pj

tb

j

k

Cj′(S)− pj′

rj = rj′

j′

waiting time > (tb − ta)

pi ≤ ε, ri = tai

Figure 2.5: Basic job system and its basic nondelay schedule S

Figure 2.5 shows the concept of a basic job system. According to the first property

of Definition 2.3, all jobs that start in the max-full interval [ta, tb) are very short, such

as job i. Further, all those short jobs have the same release date ta as well as each job

that start at time tb (such as job k) and this represents the second property. If a job j is

released before ta and cannot complete at ta or earlier even it starts at its release date

rj , then it has to start after time rj +(tb− ta) in the basic schedule S. On the other hand,

job j′ with ta < rj′ + pj′ that is also released before time ta may start at any time before

2.4 TRANSFORMATION INTO BASIC JOB SYSTEM 47

ta in the basic schedule S. From the third property of Definition 2.3, we have

Cj(S) > rj + pj + tb − ta

> ta + tb − ta = tb

Therefore, in any basic nondelay schedule S, no job j ∈ τ with rj < ta < rj + pj can

complete at or before the end of the max-full interval tb.

2.4 Transformation into Basic job system

In this section, we will show that it is sufficient to consider only basic job systems and

basic nondelay schedules for the purpose of a worst case analysis. Therefore, we need

to show that any job system τ ′ with a nondelay schedule S ′ can be transformed into a

basic job system τ with a basic nondelay schedule S such that we have Cequ(S′)
C∗

equ(τ ′)
≤ Cequ(S)

C∗
equ(τ)

and
U∗

[0,t)
(τ ′)

U[0,t)(S
′,τ ′)
≤

U∗
[0,t)

(τ)

U[0,t)(S,τ)
for all t. To this end, we start with the discussion of a simple

modification of a given job system.

Corollary 2.1 Let τ ′ be a job system and S ′ be a schedule for τ ′ on m identical machines. Job

system τ is generated from τ ′ by dividing an arbitrary job j ∈ τ ′ into two jobs j1 and j2 such

that 0 < pj1 < pj , rj1 = rj , pj2 = pj − pj1 , and rj2 = rj + pj1 hold. Schedule S is derived from

schedule S ′ by simply starting job j1 instead of job j and starting job j2 immediately after the

completion of job j1. Then the inequalities

Cequ(S
′)

C∗
equ(τ

′)
≤ Cequ(S)

C∗
equ(τ)

and
U∗

[0,t)(τ
′)

U[0,t)(S ′, τ ′)
≤

U∗
[0,t)(τ)

U[0,t)(S, τ)

hold for all t.

Proof: Note that the completion time of each job j′ 6= {j, j1, j2} is identical in both

schedules S and S ′. Further, the release date of job j2 does not interfere with scheduling

j2 immediately after the completion of j1 if schedule S ′ is legal.

It is obvious that the schedule S is a legal schedule as no job is started before its

release date and no machine is used to execute two jobs at the same time. Therefore,

48 CHAPTER 2 CRITERIA FOR SYSTEM UTILIZATION

we have

Cj1(S) = Cj(S
′)− pj2 and Cj2(S) = Cj(S

′)

Clearly, for the utilization criterion, we have U[0,t)(S, τ) = U[0,t)(S
′, τ ′) for all t. Further,

U∗
[0,t)(τ) ≥ U∗

[0,t)(τ
′) holds for all t as the splitting of job j cannot decrease U∗

[0,t)(τ
′) for

any t. This leads to the first result

U∗
[0,t)(τ

′)

U[0,t)(S ′, τ ′)
≤

U∗
[0,t)(τ)

U[0,t)(S, τ)
for all t.

With respect to the equal priority completion time, we observe

Cequ(S
′)− Cequ(S) = pj Cj(S

′)− pj1 Cj1(S)− pj2 Cj2(S)

=
(
pj1 + pj2

)
Cj(S

′)− pj1

(
Cj(S

′)− pj2

)
− pj2 Cj(S

′)

= pj1 pj2 .

This result is independent of schedule S ′. Therefore, it also holds for the optimal

schedule. However, the schedule derived from the optimal schedule for job system τ ′

need not be an optimal schedule for job system τ . Hence, we have

C∗
equ(τ

′)− pj1pj2 ≥ C∗
equ(τ)

This leads to the second desired result

Cequ(S)

C∗
equ(τ)

≥ Cequ(S
′)− pj1pj2

C∗
equ(τ

′)− pj1pj2

≥ Cequ(S
′)

C∗
equ(τ

′)
≥ 1.

Clearly, splitting a job within or at the end of a full interval produces again a non-

delay schedule if the original schedule was already a nondelay schedule.

Next, we transform an arbitrary job system and its nondelay schedule into a basic

job system and its basic nondelay schedule.

Corollary 2.2 For any job system τ ′, a nondelay schedule S ′, and an arbitrary but fixed ε > 0

there is a basic job system τ and a basic nondelay schedule S such that

Cequ(S
′)

C∗
equ(τ

′)
≤ Cequ(S)

C∗
equ(τ)

and
U∗

[0,t)(τ
′)

U[0,t)(S ′, τ ′)
≤

U∗
[0,t)(τ)

U[0,t)(S, τ)

2.4 TRANSFORMATION INTO BASIC JOB SYSTEM 49

hold for all t.

Proof: Consider a max-full interval [ta, tb) in schedule S ′.

We assume a job j ∈ τ ′ with rj < ta < rj + pj and Cj(S
′)− pj ≤ rj + (tb− ta), that is,

job j violates the third property of Definition 2.3 in schedule S ′. Therefore, we have

Cj(S
′)− pj − rj + ta ≤ tb (2.4)

As it is not allowed for any job to start before its release date, the inequality rj ≤
Cj(S

′)− pj holds and leads to

Cj(S
′)− pj − rj + ta ≥ ta (2.5)

From Equations (2.4, 2.5), we obtain that Cj(S
′)− rj − pj + ta ∈ [ta, tb].

Similarly, we obtain immediately Cj(S
′) > Cj(S

′) − pj − rj + ta > Cj(S
′) − pj as

rj < ta < rj +pj holds for job j. That is, job j is executed in schedule S ′ at time instance

Cj(S
′)− rj − pj + ta. Hence, we split job j in schedule S ′ at time Cj(S

′)− rj − pj + ta by

using Corollary 2.1. Note that this splitting time is within the full-interval.

Then, we repeatedly apply Corollary 2.1 to all jobs starting in [ta, tb) until the first

property of Definition 2.3 is valid for all those jobs.

The smallest release date of all jobs starting in τ([ta, tb]) is ta as schedule S ′ is a

nondelay schedule. Therefore, we finally reduce the release date of all jobs starting in

τ([ta, tb]) to ta. Clearly, the resulting schedule will again be nondelay.

The same transformations are applied to all other max-full intervals of S ′. As each

transformation cannot decrease the ratios Cequ(S′)
C∗

equ(τ ′)
and

U∗
[0,t)

(τ ′)

U[0,t)(S
′,τ ′)

for any t, we finally

have
Cequ(S

′)

C∗
equ(τ

′)
≤ Cequ(S)

C∗
equ(τ)

and
U∗

[0,t)(τ
′)

U[0,t)(S ′, τ ′)
≤

U∗
[0,t)(τ)

U[0,t)(S, τ)

for all t for the resulting basic job system τ and its basic nondelay schedule S.

In the remaining part of the thesis, every job of basic job system τ with processing

time pi ≤ ε will be called a short job while all other jobs are long jobs. In a basic

nondelay schedule, long jobs are either started at their release dates or immediately

50 CHAPTER 2 CRITERIA FOR SYSTEM UTILIZATION

after a max-full interval while short jobs are also started within a max-full interval.

Note that the starting time of any long job is always different from the starting time of

a short job in the basic nondelay schedule if ε is sufficiently small. Without restriction

of generality we can assume that all jobs start in order of their release dates in a basic

nondelay schedule, that is, job j1 does not start after job j2 if rj1 < rj2 holds.

Observe that due to Definition 2.3, at most m−1 long jobs can have the same release

date in a basic job system. Remember that in a basic schedule, all long jobs with the

same release date start either at their release date or at the end of a max-full interval.

Therefore, in any basic schedule no more than m − 1 long jobs with the same release

date are executing concurrently at any instant of time. We will use this observation in

the proof of the next corollary.

Next, we consider a nondelay schedule for a basic job system where all long jobs

start at their release dates. In the following two corollaries, we show that this schedule

has an optimal equal priority completion time and optimal utilization for all t, if ε→ 0

holds.

Corollary 2.3 For each basic job system τ with ε → 0 and a nondelay schedule S where all

long jobs start at their release dates, U[0,t)(S, τ) = U∗
[0,t)(τ) holds for all t.

Proof: We prove this corollary by contradiction. Assume that time t′ is the last time

instant such that U[0,t)(S, τ) = U∗
[0,t)(τ) holds for all t ≤ t′. Hence, there is at least one

machine idle in schedule S at time t′. As S is a nondelay schedule, no job j with rj ≤ t′

starts in schedule S after time t′. Due to ε → 0, no short job with rj ≤ t′ completes

after t′. Further, any long job cannot start earlier in any schedule than in schedule S.

Therefore, any job that executes at time t′ in schedule S does not start earlier in any

schedule than in S. This is a contradiction to the assumption.

Corollary 2.4 Cequ(S) = C∗
equ(τ) holds for each basic job system τ with ε→ 0 and a nondelay

schedule S where all long jobs start at their release dates.

Proof: We start this proof with two simple observations:

2.4 TRANSFORMATION INTO BASIC JOB SYSTEM 51

Observation1: Assume a basic job system τ ′, a schedule S ′, and a time instant t′ such

that on machines i1 and i2, either a job starts at t′ or no job executes at

t′. Then Cequ(S
′) does not change if we move all jobs that execute on

machine i1 and start at time t′ or later to machine i2 and vice versa.

Observation2: Let I = [ta, tb] be an interval of schedule S ′ such that only short jobs

execute on machine i during I and machine i is busy at any moment of

I . Due to ε→ 0, we can assume that a short job completes at any given

time t′ ∈]ta, tb].

Now, let σ 6= S be a schedule for job system τ with Cequ(σ) = C∗
equ(τ), that is,

schedule σ is optimal for such job system. Further, let job j be the first long job that

does not start at its release date in the optimal schedule σ. Assume that job j is executed

on machineMl in σ. We show that there is another optimal schedule in which j starts

earlier by considering 4 cases:

1. Some machine is idle in a whole interval
[
t, Cj(σ) − pj

)
for some t < Cj(σ) − pj .

Then schedule σ clearly is not optimal.

2. A short job js directly precedes job j on machineMl. Then we reduce the start

time of job j by simply exchanging the execution order of j and js on machine

Ml. This does not change Cequ(σ) as pjs ≤ ε < Cj(σ) − pj − rj holds, if ε is small

enough. Note that in this case, schedule σ is not optimal if
[
Cj(σ) − pj, Cj(σ)

)
is

not a full interval.

3. A long job directly precedes job j on machine Ml and a short job completes

at time Cj(σ) − pj in schedule σ on machine Ms 6= Ml. Based on our second

observation2, we simply switch the allocation between machinesMl andMs for

all jobs starting in schedule σ on any one of those both machines at time Cj(σ)−pj

or later and apply again Case 2.

4. m long jobs execute concurrently in a full interval
[
t, Cj(σ)−pj

)
of schedule σ for

some t < Cj(σ) − pj . Let τs ⊂ τ such that for each job i ∈ τs we have Ci(σ) ≥

52 CHAPTER 2 CRITERIA FOR SYSTEM UTILIZATION

Cj(σ)−pj and Ci(σ)−pi ≤ t. That is, τs denotes this set of m long jobs. Remember

that job j is the first long job that starts after its release date in schedule σ. Hence,

all jobs in τs start at their release dates in the same schedule σ. Further, let r ≤ t

be the highest release date of any job in τs and S ′ be a basic nondelay schedule

for τ . Now, we consider the following two possibilities:

(a) r is not the beginning of a max-full interval in S ′. Then at least one machine

must be idle at time r in schedule S ′. This is a contradiction to the nondelay

property of S ′ as no job from τs can complete at time r or earlier in any legal

schedule for τ .

(b) [r, t′b) is a max-full interval in schedule S ′ for some time t′b > r. Then all

jobs from τs with release date r start at time t′b in schedule S ′ while all other

jobs from τs start before r and complete after t′b due to the third property of

Definition 2.3. Therefore, t′b cannot be the end of a max-full interval as m

jobs execute at time t′b in schedule S ′.

Now, we are able to provide an intuitive reason for the properties of Definition 2.3.

The first property guarantees that at the end of a full interval, machines become idle

at the same time. Therefore, all long jobs, with the same release date, start as late

as possible leading to a worst case behavior. The second property does not change the

basic schedule but increases the flexibility of the optimal schedule. This may result in a

higher worst case ratio. Finally, the third property guarantees that we cannot split any

remaining long job of a basic job system without violating the nondelay property or

potentially decreasing the worst case ratio of both criteria utilization and equal priority

completion time.

In the remaining parts of the thesis we will use the expression optimal schedule when

talking of a nondelay schedule for a basic job system with ε→ 0, if all long jobs in this

schedule are started at their release dates. As we need only one optimal schedule for

2.4 TRANSFORMATION INTO BASIC JOB SYSTEM 53

our worst case analysis we can ignore all other optimal schedules for these job sys-

tems if they exist. Without restriction of generality we assume that in such an optimal

schedule, all short jobs also start in order of their release dates. However in an optimal

schedule, a long job with a higher release date can start before a short job with a lower

release date.

55

Chapter 3

Online scheduling to maximize
utilization

3.1 introduction

The efficient operation of multi-machine systems requires the best possible use of the

resources that a system owner provides. The allocation and management of resources

in parallel systems is fundamental to sustaining and improving the benefits of mul-

tiprocessing, see DOWDY et al. [17], and KARATZA [39]. Thus, task scheduling is a

key element in achieving high performance from parallel machine systems. The main

goal of this chapter is to achieve the highest possible utilization of the machines. To

do so effectively, one must answer the question ”which criterion is adequate to use?”.

While this seems like an easy question to be answered, it is often far more difficult to

quantify than one might think. An appropriate criterion to reflect the true utilization

performance of parallel machine systems has not been established yet. However, one

common criterion for assessing a schedule, and thus for measuring system utilization

is makespan. The usual goal of scheduling has been to achieve a small makespan. In

the previous chapter, we have already provided two new alternative optimality cri-

teria, termed utilization and equal priority completion time, to evaluate how much the

machines are utilized. Further, we have shown that those criteria are better than the

well-known and commonly used makespan. Whereas we demonstrated that they more

accurately capture the machine utilization if all machines are identical, and thus more

56 CHAPTER 3 ONLINE SCHEDULING TO MAXIMIZE UTILIZATION

accurately represent the quality of the schedule and the system utilization performance

being achieved. Consequently, our optimality criteria are well adequate to describe

quantitatively the utilization of the machines. The research in this chapter is focused

on studying the online competitiveness for scheduling an identical-machines system

non-preemptively in order to maximize the gain of such system when the performance

measure is our first utilization criterion.

As we mentioned above, the formal form of the utilization criterion U[t1,t2)(S, τ) is

introduced in Section 2.2. It represents the resource (machines) consumption of the

job system τ within the interval [t1, t2) of schedule S. Intuitively, to obtain the high-

est possible gain of the machines one has to pay much attention to concentrate on a

bottleneck time interval of the machines, i.e. the interval of time in which most of the

machine consumers submit their jobs. Therefore, we devote this chapter to apply the

first optimality criterion utilization for our nonclairvoyant online scenario to maximize

machine utilization particularly during such specific (target) time interval. More pre-

cisely, our scheduling objective considers the analysis of a nondelay, non-preemptive,

non-clairvoyant online schedule that maximize such utilization criterion from system

start until a given end time (i.e. during the productive time of the machines). In this

work, we determine the ratio between the worst nondelay schedule and the one that

has the highest attainable utilization. That is, we are interested to consider the perfor-

mance guarantees.

Depending on the results of the previous chapter, we need only to analyze basic

job systems with ε→ 0, their basic nondelay schedules, and their optimal schedules in

order to determine a worst case deviation. Remember that in any optimal schedule of

a basic job system, all long jobs start at their release dates. As will be shown later, the

main result of this chapter will be summarized in Theorem 3.1. This theorem gives the

worst case of the ratio
U∗

[0,t)
(τ)

U[0,t)(S,τ)
for any time instant t ≥ 0.

3.2 SCHEDULING JOBS ONLINE WITH UNKNOWN SIZE 57

3.2 Scheduling jobs online with unknown size

While scheduling problems in general have received a lot of interest in the past, most

considered models assume that the input data is completely or partially known. How-

ever, in the design of real-time systems, it is often the case that certain job parameters,

such as the execution time, are not known in advance. Thus, the challenge in real-life

system design is to consider more realistic models that efficiently confront the require-

ments of such uncertainty. This lack of knowledge (incompleteness) is a significant im-

pediment in the scheduler’s task, as one might expect. In this situation, the scheduler

has to coordinate the jobs over time non-clairvoyantly. The study of non-clairvoyant

scheduling algorithms was initiated by MOTWANI et al. [58].

A non-clairvoyant online scheduler makes scheduling decisions at run time hav-

ing no complete knowledge of jobs, that is, it construct a schedule partially over time.

Typically, it does not possess a prior knowledge about the occurrence of future submis-

sions and even it has no idea about the required execution times of the existence jobs

(scheduling jobs non-clairvoyantly). The scheduler recognizes only that the jobs arrive

or that the jobs are completed. Such kind of schedulers are used in many practical

systems. A typical online problem for non-clairvoyant scheduling might be found in

electronic commerce applications.

This uncertainty of knowledge in problem data is of both theoretical and practical

significance. From an empirical perspective, system designers have used worst case

values in order to overcome the non-determinism of execution time values PINEDO [65].

However, the assumption that every job will have an execution time equal to the max-

imum value in its allowable range is unrealistic and at the same time, may cause con-

straint violation at run-time. On the other side, the estimates of how long each job

will run are used to figure out for the system owner when additional machines will

become available. Of course, the source of these estimates is typically the customer

who runs the job. However, it may be a cumbersome for the customers to provide

in advance reliable estimates. Further, comparisons of customer estimates with real

run times show that these estimates tend to be inaccurate, even when customers are

58 CHAPTER 3 ONLINE SCHEDULING TO MAXIMIZE UTILIZATION

requested to provide their best possible estimates for batch jobs, as has been shown

in [50, 59]. Moreover, several attempts to derive better estimates automatically based

on historical information from previous runs have not been successful, as too many

under-estimations have been faced.

Having no knowledge of the jobs being scheduled (non-clairvoyance) one would

not expect to obtain an optimal solution. In our performance evaluation, we wish

to compare the worst case utilization performance of non-clairvoyant online scheduler

with respect to the optimal off-line scheduler, which has complete knowledge about

the whole input instance. That is, we are interested in performance guarantees.

Obviously, the problem of scheduling a collection of dynamically arriving jobs with

unknown execution times is that scheduling decisions have a potentially large, persis-

tent, and unpredictable impact on the future. Specifically, when some new jobs arrive

at the same time with unknown processing times, the system owner face the following

dilemma after random selecting of a job for processing:

- Scheduling such job immediately on an ideal machine will utilize unused ma-

chines, so it is good.

- however, if this job is followed by a longer job. and this long job will block other

jobs in the future, it may lead to more future loss than current gain. So it is a

benefit if the vacant machine is occupied first by the longer job.

As the future is usually unknown and the non-clairvoyance is dark, there is no job

selection strategy guarantee finding a solution for this dilemma. Therefore, it is rea-

sonable to schedule the available jobs immediately on the idle machines to keep all

machines as busy as possible, risking that some long jobs will block other future jobs.

Clearly, the assignment of a job to a machine is postponed until a machine becomes

available. As there is no information about the machine occupation of any waiting job

is available, any arbitrary policy can be used to pick any one from jobs that are avail-

able at the same time. In general, this technique which allocate all vacant machines to

the jobs waiting for processing is known as nondelay policy. Although a system owner

3.3 PRODUCTIVE INTERVAL OF MACHINES 59

uses nondelay schedules, he may suffer from some idleness that may be produced by

an unfortunate selection of jobs. Therefore, he may be interested in the ratio between

the utilizations of schedules with an optimal and a worst case job selection. In partic-

ular, his goal is to compare the utilization performance of online nondelay schedules

against that of an optimal off-line (or clairvoyant) schedule.

3.3 Productive interval of machines

As commercial multi-machine systems become more popular, there is a growing need

for accurate (efficient) evaluation of the utilization of these expensive resources. In-

deed, many researchers investigate scheduling models from a system point of view,

asking what the system can do to improve system utilization, but disregarding the ef-

fect on some important issues that relate to the customers. Sometimes, ignorance of

such significant issues may lead to unreasonable investments. Consequently, we con-

sider an additional and effective issue by taking into account a viewpoint of customer’s

requirements, and ask how much the utilization can be improved with the observation

that most machine consumers submit their jobs within a specific time interval and they

do not have the patience to receive their completed jobs after such specific interval with

much delay, that is, in other words, they () the system provider to execute their jobs

within such a specific time interval otherwise they resubmit the jobs to another system.

Clearly, the utilization criterion measures the fraction of time that the machines

spend on executing jobs during the elapsed time. Which performance measure is ad-

equate in a given situation depends, of course, upon the application. For example,

utilization may be a reasonable measure in situations where customer pay at a uni-

form rate for the use of the machine, however the owner only is paid if customer’s job

is completed within this time frame.

In real world, the following scenario may occur in electronic commerce: Let us

presume that many customers submit their jobs dynamically over time to a system

consisting of some number of identical parallel machines. There is no relation between

those customers, that is, they are independent from each other. A customer leaves his

60 CHAPTER 3 ONLINE SCHEDULING TO MAXIMIZE UTILIZATION

job with the system provider essentially committing to future payment for a completed

job. More precisely, he will pay a fixed amount to the system provider for each minute

his job occupies a machine. However, The customer does not get paid for machine uti-

lization after a specific target time. The system owner has flexibility in deciding when

to run jobs, however he must use the machines non-preemptively. That means the cus-

tomer’s job always occupies its assigned machine exclusively for its whole execution

time without any interruption or termination. This is a reasonable assumption because

of the large overhead for the jobs on the parallel machines. Further, in many applica-

tions, any interruption in processing once a job begins might cause permanent ruin to

it. Due to security reasons no two jobs are allowed to share the same machine during

execution. The machines consumers are likely unaware of the real execution times of

their jobs.

In this scenario, most customers only submit jobs during core business hours. Intu-

itively, the machine consumers have an option of choosing the machine provider that

best meet their requirements within such a desired time frame (core business hours).

Otherwise, potential customers will switch to a competitor rather than waiting for their

jobs being completed much later during off business hours. On the other side, the ma-

chine provider has the flexibility in deciding which jobs to run, as well as when to

run them. However, he is aware that the demand for his resources is likely to be very

limited during the rest of the day (off business hours). In other words, a large per-

centage of the machines will be vacant during this interval of time. Of course, the

system owner wants to obtain the best possible return on his investment. Therefore,

it is reasonable to assume that he is interested to maximize the utilization of his ma-

chines during those hours of core business. To achieve that effectively, he has to try to

perform the customer’s requests within the required time frame aiming at attracting

customers.

Recently, KEMPF et al. [45] describe a number of different considerations that must

be taken into account when assessing the quality of a schedule. The authors have

shown that Looking at utilization only on bottleneck machines makes a lot more sense

since one is maximizing utilization where it matters, instead of indiscriminately across

3.4 AN UPPER BOUND FOR THE UTILIZATION 61

the whole schedule. Further, they corroborate this added issue, and show conclusively

that concentrating on bottleneck interval can be very effective to improve system uti-

lization. Consequently, this motivated us to consider the system utilization from sys-

tem start to target time, i.e. during the productive time interval.

3.4 An upper bound for the utilization

This section provides the main result of this chapter. Clearly, the execution of some

jobs can be delayed by other jobs that are not completed before the release date of the

new jobs. Hence, for any time instant t, we are interested in the difference between

the resource consumption after t by the basic schedule S and the optimal schedule σ in

relation to t. In the remainder of this chapter, we will use a notation T to be a large time

instant that greater than the makespan of any schedule under consideration. For the

basic job system τ with ε → 0, its basic nondelay schedule S and its optimal schedule

σ, we want to determine the difference

Dt(S, τ) = U∗
[0,t)(τ)− U[0,t)(S, τ)

= U[0,t)(σ, τ)− U[0,t)(S, τ) = U[t,T)(S, τ)− U[t,T)(σ, τ)

for some time instant t > 0. Intuitively, this value describes the sum of the machine

resources that are not busy executing jobs from τ in schedule S before time t while

they are used to process jobs from τ before time t in the optimal schedule σ. From this

definition, we obtain the following relation for any time instant t′ < t:

Dt(S, τ)−Dt′(S, τ) =
(
U[t,T)(S, τ)− U[t,T)(σ, τ)

)
−
(
U[t′,T)(S, τ)− U[t′,T)(σ, τ)

)
=

(
U[t′,T)(σ, τ)− U[t,T)(σ, τ)

)
−
(
U[t′,T)(S, τ)− U[t,T)(S, τ)

)
Therefore, we have

Dt(S, τ) = Dt′(S, τ) + U[t′,t)(σ, τ)− U[t′,t)(S, τ) (3.1)

An upper bound of Dt(S, τ) for a basic job system τ with ε → 0 is given by the

following lemma.

62 CHAPTER 3 ONLINE SCHEDULING TO MAXIMIZE UTILIZATION

Lemma 3.1 Dt(S, τ) ≤ 1
4
U∗

[0,t)(τ) holds for each basic job system τ , its basic nondelay schedule

S and every time instant t ≥ 0.

Proof: We prove this lemma by induction on the number k of different release dates.

The lemma trivially holds for k = 0, that is, if τ is empty. Therefore, we assume that it

is true for all basic job systems with at most k different release dates. Then we consider

a basic job system τ with k + 1 different release dates.

For this proof, we need to introduce some additional notations such as:

• r = max{rj|j ∈ τ} the last release date in the job system τ ,

• τr = {j ∈ τ |rj = r} the set of all jobs with the last release date,

• τk = {j ∈ τ |rj < r} = τ\τr the set of all other jobs,

• tS = max{r, tb(S)}. Where tb(S) is the end of the last max-full interval in S,

• tσ = max{r, tb(σ)}. Similarly, tb(σ) is the end of the last max-full interval in σ.

Note that τk is a basic job system with k different release dates and that every job

j ∈ τk starts before time r in the basic nondelay schedule S. Schedules σ and σk are the

optimal schedules for job systems τ and τk, respectively, while Sk is the basic nondelay

schedule for the job system τk. Clearly, schedules σ and σk are identical in the time

interval [0, r) as no job j ∈ τr can start before time r in any schedule and all long jobs

start at their release dates in both schedules. Similarly, schedules S and Sk are identical

for all jobs that belong to job system τk.

In the first step, we prove that it is sufficient to determine Dtσ(S, τ). Due to our

induction assumption, and as schedules S and Sk are identical for all jobs in the job

system τk, there is

Dt(S, τ) = Dt(S, τk) = Dt(Sk, τk) ≤
1

4
U∗

[0,t)(τk) =
1

4
U∗

[0,t)(τ) for all t ≤ r. (3.2)

As no additional jobs are released after time r and S is a nondelay schedule, there

are at least as many machines idle at time t2 as at time t1 in schedule S with r ≤ t1 < t2.

3.4 AN UPPER BOUND FOR THE UTILIZATION 63

Let [t1, t2) be a subinterval of [r, tσ) such that no machine becomes idle in (t1, t2) of

schedule S and let the number of busy machines in [t1, t2) be mt1 . Note that t2 ≤ tσ.

Then we have

U[0,t2)(σ, τ) = U[0,t1)(σ, τ) + U[t1,t2)(σ, τ)

= U[0,t1)(σ, τ) + m(t2 − t1),

Similarly, and from Equation 3.1 we get

Dt2(S, τ) = Dt1(S, τ) + U[t1,t2)(σ, τ)− U[t1,t2)(S, τ)

= Dt1(S, τ) + m(t2 − t1)−mt1(t2 − t1).

This leads to
Dt2(S, τ)

U[0,t2)(σ, τ)
=

Dt1(S, τ) + (m−mt1)(t2 − t1)

U[0,t1)(σ, τ) + m(t2 − t1)
.

Therefore, exactly one of the two following sequences of inequalities is valid:

Dt1(S, τ)

U[0,t1)(σ, τ)
<

Dt2(S, τ)

U[0,t2)(σ, τ)
< 1− mt1

m

or

Dt1(S, τ)

U[0,t1)(σ, τ)
≥ Dt2(S, τ)

U[0,t2)(σ, τ)
≥ 1− mt1

m

As the value mt1 is decreasing monotonically with growing time t1 in the interval

[r, tσ), this results in

max
t∈[r,tσ)

{
Dt(S, τ)

U[0,t)(σ, τ)

}
= max

{
Dr(S, τ)

U[0,r)(σ, τ)
,

Dtσ(S, τ)

U[0,tσ)(σ, τ)

}
.

Further, we have U[tσ ,t)(S, τ) ≥ U[tσ ,t)(σ, τ) with t > tσ as no long job can complete

earlier in schedule S than in the optimal schedule σ and no job starts at time tσ or later

in schedule σ. This with the Equation 3.1 leads to

Dt(S, τ) = Dtσ(S, τ) + U[tσ ,t)(σ, τ)− U[tσ ,t)(S, τ) ≤ Dtσ(S, τ) for all t > tσ.

Therefore, it is sufficient to determine Dtσ (S,τ)
U[0,tσ)(σ,τ)

.

Next, we address two cases:

64 CHAPTER 3 ONLINE SCHEDULING TO MAXIMIZE UTILIZATION

1. tb(σk) ≤ r.

Due to tσ ≤ tS , the interval [r, tσ) is full interval in both schedules S and σ. Hence,

we have U[r,tσ)(σ, τ) = U[r,tσ)(S, τ). This with Equation 3.1 results in

Dtσ(S, τ) = Dr(S, τ) + U[r,tσ)(σ, τ)− U[r,tσ)(S, τ) = Dr(S, τ).

Clearly, U[0,tσ)(σ, τ) ≥ U[0,r)(σ, τ). Therefore, we have

Dtσ(S, τ)

U[0,tσ)(σ, τ)
≤ Dr(S, τ)

U[0,r)(σ, τ)
=

Dr(Sk, τk)

U[0,r)(σk, τ)

Next, we assume that tσ > tS holds and have

U[t1,t2)(S, τk) = U[t1,t2)(Sk, τk) ≥ U[t1,t2)(σk, τk) = U[t1,t2)(σ, τk)

for all r ≤ t1 < t2 as no short job from τk completes after time r in schedules σ

and σk.

We define

mσ =
U[tσ ,T)(S, τr)− U[tσ ,T)(σ, τr)

tS − r
.

For each long job j ∈ τr, its contribution to the term U[tσ ,T)(S, τr) − U[tσ ,T)(σ, τr)

is upper bounded by tS − r as all those jobs start at time tS in the basic schedule

S and at their release date r in the optimal schedule σ, respectively. Therefore,

the value mσ is at most the number of long jobs from job system τr that complete

after time tσ in schedule S. Hence, at most the machine product (tσ− tS)(m−mσ)

can be idle in time interval [r, tσ) in schedule S. This results in

m(tσ − r) = U[r,tσ)(σ, τ)

= U[r,tσ)(σ, τk) + U[r,tσ)(σ, τr)

= U[r,tσ)(σ, τk) +
∑
j∈τr

pj − U[tσ ,T)(σ, τr) and

m(tσ − r) ≤ U[r,tσ)(S, τk) +
∑
j∈τr

pj − U[tσ ,T)(S, τr) + (tσ − tS)(m−mσ).

3.4 AN UPPER BOUND FOR THE UTILIZATION 65

Therefore, we have

U[r,tσ)(σ, τk) + U[tσ ,T)(S, τr)− U[tσ ,T)(σ, τr) ≤ U[r,tσ)(S, τk) + (tσ − tS)(m−mσ).

With the definition of mσ, this leads to the inequality

U[r,tσ)(σ, τk) + (tS − r)mσ = U[r,tσ)(σ, τk) + U[tσ ,T)(S, τr)− U[tσ ,T)(σ, τr)

≤ U[r,tσ)(S, τk) + (tσ − tS)(m−mσ)

Then, we get

mσ(tσ − r) ≤ U[r,tσ)(S, τk)− U[r,tσ)(σ, τk) + (tσ − tS)m

and this yields

mσ ≤
(tσ − tS) m + ∆

tσ − r
with (3.3)

∆ = U[r,tσ)(S, τk)− U[r,tσ)(σ, τk) = Dr(S, τk)−Dtσ(S, τk), (3.4)

see Equation 3.1. Remember that all jobs from τk must start before r in schedules

σ and S. Therefore, we have

∆ = U[r,tσ)(S, τk)− U[r,tσ)(σ, τk) ≥ 0.

Now, we obtain a simple optimization of Inequality 3.3. From this inequality, we

have

(tS − r)mσ ≤ (tS − r)

(
(tσ − tS) m + ∆

tσ − r

)
(3.5)

By Partially differentiating the R.H.S with respect to tS we obtain

1

tσ − r
·
(
(tσ − tS)m + ∆− (tS − r) m

)
= 0

Therefore, the R.H.S of Inequality 3.5 is maximized for tS = tσ+r
2

+ ∆
2m

. This leads

to

tS − r =
tσ − r

2
+

∆

2m
and tσ − tS =

tσ − r

2
− ∆

2m

66 CHAPTER 3 ONLINE SCHEDULING TO MAXIMIZE UTILIZATION

By substituting these values into the Inequality 3.5, we obtain

(tS − r)mσ ≤
(

tσ − r

2
+

∆

2m

)
(

tσ−r
2
− ∆

2m

)
m + ∆

tσ − r

=
(

tσ − r

2
+

∆

2m

)(
m

2
+

∆

2(tσ − r)

)

=
m (tσ − r)

4
+

∆

4
+

∆

4
+

∆2

4m(tσ − r)

=
m (tσ − r)

4
+

∆

2

(
1 +

∆

2m (tσ − r)

)

=
1

4
U[r,tσ)(σ, τ) +

∆

2

(
1 +

∆

2m (tσ − r)

)
.

With this result and the definition of mσ (3.3) and Equation (3.4), we can obtain

Dtσ(S, τ) = U[tσ ,T)(S, τ)− U[tσ ,T)(σ, τ)

= U[tσ ,T)(S, τk) + U[tσ ,T)(S, τr)− U[tσ ,T)(σ, τk)− U[tσ ,T)(σ, τr)

= Dtσ(S, τk) + U[tσ ,T)(S, τr)− U[tσ ,T)(σ, τr)

= Dtσ(S, τk) + (tS − r)mσ

= Dr(S, τk)−∆ + (tS − r)mσ

≤ 1

4
U∗

[0,r)(τ)−∆ +
1

4
U[r,tσ)(σ, τ) +

∆

2

(
1 +

∆

2m (tσ − r)

)

=
1

4
U∗

[0,tσ)(τ)− ∆

2

(
1− ∆

2m (tσ − r)

)
.

As at most (m− 1) long jobs from τk execute concurrently in schedule S, we have

U[r,tσ)(S, τk) < m(tσ − r). This yields

∆ = U[r,tσ)(S, τk)− U[r,tσ)(σ, τk) ≤ U[r,tσ)(S, τk) < 2m(tσ − r).

Finally, with this result and the last result, we get

Dtσ(S, τ) ≤ 1

4
U∗

[0,tσ)(τ).

3.4 AN UPPER BOUND FOR THE UTILIZATION 67

This completes the proof of the first case tb(σk) ≤ r. Next we start to consider the

second case:

2. tb(σk) > r.

In this case, we transform the basic job system τ into another basic job system τ ′

with the basic nondelay schedule S ′ such that we have

• Dtσ(S, τ) ≤ Dtσ(S ′, τ ′) and U∗
[0,tσ)(τ) ≥ U∗

[0,tσ)(τ
′)

• τ ′ either has only k different release dates or Case 1 applies to τ ′.

To this end, we again distinguish four cases:

(a) There is no long job in τr or tS = r holds, that is, all long jobs with release

date r start at time r in schedule S. Then we have Dtσ(S, τ) = Dtσ(S, τk) and

U∗
[0,tσ)(τ) ≥ U∗

[0,tσ)(τk) as no short job completes after tσ in both schedules S

and σ and Cj(S) = Cj(σ) holds for all long jobs j ∈ τr. This leads to

Dtσ(S, τ)

U∗
[0,tσ)(τ)

≤ Dtσ(S, τk)

U∗
[0,tσ)(τk)

.

(b) Cj(S) ≤ tσ holds for a long job j ∈ τr. Then job j is split into short jobs with

the same release date r. This transformation results in the new job system τ ′

and schedules S ′ and σ′ with tS′ ≥ tS and tσ′ = tσ as the number of short jobs

that are released at time r increased and the interval [r, tσ) is a full interval in

schedule σ. This results in Cj′(S
′) ≥ Cj(S) and Cj′(σ

′) = Cj(σ) for each long

job j ∈ τr and its corresponding long job j′ ∈ τ ′r. Note that this splitting

operation does not change the completion time of any long job from τk. This

leads to

U[tσ ,T)(S
′, τ ′) ≥ U[tσ ,T)(S, τ) and

U[tσ ,T)(σ
′, τ ′) = U[tσ ,T)(σ, τ).

Hence, we have
Dtσ(S ′, τ ′)

U∗
[0,tσ)(τ

′)
≥ Dtσ(S, τ)

U∗
[0,tσ)(τ)

.

68 CHAPTER 3 ONLINE SCHEDULING TO MAXIMIZE UTILIZATION

(c) tS > r holds and there are long jobs j1 ∈ τr with Cj1(S) > tσ and j2 ∈ τk

with tS ≤ Cj2(S) ≤ tσ. Then we create job system τ ′ from the job system τ

by replacing j1 and j2 with jobs j′1 and j′2 such that

rj′1
= rj1 = r , pj′1

= max{pj2 + rj2 − r, 0} and

rj′2
= rj2 , pj′2

= pj1 + pj2 − pj′1
= min{r − rj2 , pj2}+ pj1 .

Figures (3.1) and (3.2) illustrate the transformation of the schedules S and

σ of τ into the new schedules S ′ and σ′ of τ ′ when pj2 > r − rj2 . While

Figures (3.3) and (3.4) show the same transformation with pj2 < r − rj2 i.e.

when pj′1
= 0. Observe that each long job that belongs to a basic job system

starts at its release date in the optimal schedule. Hence, in the new optimal

schedule σ′, we can obtain

Cj′1
(σ′) = rj′1

+ pj′1
= r + max

{
pj2 + rj2 − r, 0

}
= max

{
pj2 + rj2 , r

}
= max

{
Cj2(σ), r

}
and

Cj′2
(σ′) = rj′2

+ pj′2
= rj2 + min

{
r − rj2 , pj2

}
+ pj1

= min
{
r, rj2 + pj2

}
+ pj1

= min
{
Cj1(σ), Cj2(σ) + pj1

}
≤ Cj1(σ).

which lead to

U[tσ ,T)(σ
′, τ ′) ≤ U[tσ ,T)(σ, τ) (3.6)

due to Cj2(σ) ≤ Cj2(S) ≤ tσ. Note that this transformation can not increase

tσ as the completion times of jobs j′1 and j′2 in the new schedule σ′ are at most

the completion times of j2 and j1 in schedule σ respectively, see Figures (3.1)

and (3.3). For the basic schedules S and S ′, we need to compare the

completion times Cj′2
(S ′) and Cj′1

(S ′) with Cj1(S) and Cj2(S), respectively.

3.4 AN UPPER BOUND FOR THE UTILIZATION 69

Machines Machines

Timer − rj2

tσ′

r

rj2

j1

j′

1

j2

pj′

1

r

Cj′

2
(σ′)Cj1(σ)

pj1

r − rj2

rj2

tσ

j′2

Figure 3.1: Optimal Schedule σ of τ (left) and new optimal schedule σ′ of τ ′ (right) when
pj′2

> r − rj2 .

Machines Machines

Time

tS

tσ′

tS′

r

rj2

j1

Cj1(S)

Cj′

2
(S′)

j′

1

j2

pj′

1

j′2

r

tσ

rj2

pj1

r − rj2r − rj2

Figure 3.2: Basic Schedule S of τ (left) and new basic S ′ of τ ′ (right) when pj′2
> r − rj2

70 CHAPTER 3 ONLINE SCHEDULING TO MAXIMIZE UTILIZATION

Machines Machines

Timer − rj2

Cj′

2
(σ′)

r

rj2

j1

r

Cj1(σ)

r − rj2

rj2

tσ

j2

pj1

tσ′

j′
2

Figure 3.3: Optimal Schedule σ of τ (left) and new optimal schedule σ′ of τ ′ (right) when
pj′1

= 0.

Machines Machines

Time

tS tS′

r

rj2

j1

r

tσ

rj2

pj1

r − rj2r − rj2 j2

j′2

tσ′

Cj1(S) Cj′

2
(S′)

Figure 3.4: Basic Schedule S of τ (left) and new basic schedule S ′ of τ ′ (right) when pj′1
= 0.

3.4 AN UPPER BOUND FOR THE UTILIZATION 71

Remember that all long jobs with the same release date start at the end of a

max-full interval in any basic schedule. Therefore, the starting times of job j2

in schedule S and job j′2 in the new basic nondelay schedule S ′ are identical,

that is, we have

Cj2(S)− pj2 = Cj′2
(S ′)− pj′2

,

similarly, for jobs j1 and j′1 there is

Cj1(S)− pj1 = Cj′1
(S ′)− pj′1

= tS.

Further remember that tS − r < Cj2(S) − pj2 − rj2 follows directly from the

third property of Definition 2.3. This results in

Cj′2
(S ′) = Cj2(S)− pj2 + pj′2

= Cj2(S) + pj1 + min
{
r − rj2 − pj2 , 0

}
≥ Cj2(S) + r − rj2 − pj2 + pj1

> tS + pj1 = Cj1(S).

Similarly, we have

Cj′1
(S ′) = Cj1(S)− pj1 + pj′1

= Cj1(S) + pj2 − pj′2

= Cj1(S) + Cj2(S)− Cj′2
(S ′)

≤ Cj2(S).

Therefore, we obtain

U[tσ ,T)(S
′, τ ′) ≥ U[tσ ,T)(S, τ) (3.7)

From Equations (3.6) and (3.7), we obtain

Dtσ(S ′, τ ′) = U[tσ ,T)(S
′, τ ′)− U[tσ ,T)(σ

′, τ ′)

≥ U[tσ ,T)(S, τ)− U[tσ ,T)(σ, τ)

= Dtσ(S, τ)

72 CHAPTER 3 ONLINE SCHEDULING TO MAXIMIZE UTILIZATION

This results in
Dtσ(S ′, τ ′)

U∗
[0,tσ)(τ

′)
≥ Dtσ(S, τ)

U∗
[0,tσ)(τ)

.

(d) tS > r holds and there is no long job j ∈ τ with tS ≤ Cj(S) ≤ tσ. In this

case, let mS be the number of machines that are idle in the interval [tS, tσ) of

schedule S, and let mr be the number of short jobs from job system τr that

start at time r in the same schedule S. Hence, we cover the following two

possibilities:

i. mS ≤ mr: We split any long job j ∈ τr into a long job j′ with processing

time pj′ = pj − ε and an additional short job. Both jobs have the same

new release date r′ = r + ε. Then we increase the release date of all

short jobs from job system τr to the new release date r′ as well. This

process results in the new job system τ ′, the basic nondelay schedule

S ′ with tS′ = tb(S
′) and the optimal schedule σ′ with tσ′ = tb(σ

′). This

transformation process is illustrated in Figures (3.5) and (3.6) of the basic

schedule S and the optimal schedule σ, respectively. Assume that all

new short jobs that are produced from the splitting process start at the

same time tS in the new schedule S ′. Due to mS ≤ mr, some of the short

jobs from τr that execute in the interval [r, r′) of schedule S will execute

on mS machines during the interval [tS, tS + ε) in schedule S ′. While the

remaining jobs will move to the interval [tS + ε, tS′). That is, we have

tS′ ≥ tS + ε. This results in Cj(S) ≤ Cj′(S
′), see Figure 3.5. Hence, we

have

U[tσ ,T)(S, τ) ≤ U[tσ ,T)(S
′, τ ′).

Note that the long job j ∈ τ starts at time r in the optimal schedule σ

while the resulting new long job j′ ∈ τ ′ starts at time r′ in the new op-

timal schedule σ′. This results in Cj(σ) = Cj′(σ
′) as r′ = r + ε. Further,

tσ = tσ′ as the interval [r, tσ) in schedule σ is a full interval. However,

this transformation process may decrease tb(σk), see Figure 3.6. There-

3.4 AN UPPER BOUND FOR THE UTILIZATION 73

Machines Machines

Short jobs Short jobs

Short jobs

Short jobs

tσ

mS

mr
r

tS tS

r

r′
= r + ε

tσ

j

j′

Cj′(S′)
Cj(S)

Time

tS′ > tS + ε

jobs from τr

jobs from τk

tS′

tS + ε

r + ε

Figure 3.5: The transformation process when mS ≤ mr. Left: Basic schedule S of job system
τ . Right: A resulting basic nondelay schedule S ′ of the new job system τ ′.

Machines Machines

r′
= r + ε

j

tσ

j′

Short jobs

Short jobs

Short jobs

Cj(σ) = Cj′(σ′)

Short jobs

jobs from τr

jobs from τk

Time

r

r′
= r + ε

r

tσ′

Figure 3.6: Transformation process from the optimal schedule σ (left) of job system τ into the
new optimal schedule σ′ (right) of job system τ ′ when mS ≤ mr.

74 CHAPTER 3 ONLINE SCHEDULING TO MAXIMIZE UTILIZATION

fore, we have

U[tσ ,T)(σ, τ) = U[tσ ,T)(σ
′, τ ′).

This results yield
Dtσ(S ′, τ ′)

U∗
[0,tσ)(τ

′)
≥ Dtσ(S, τ)

U∗
[0,tσ)(τ)

.

This process is repeated until r′ = tb(σk) holds (Case 1).

ii. mS > mr: We combine every long job j from job system τr with a short

job from τr with processing time ε. That is, this combination process pro-

duces a new long job j′ with processing time pj′ = pj + ε. The resulting

long jobs all have a new release date r′. Further, we decrease the release

date of all other short jobs from job system τr to the release date r′ as

well. We choose this new release date r′ such that tS′ = tS − ε holds for

the new basic job system τ ′ and its basic nondelay schedule S ′.

Figures (3.7) and (3.8) illustrate this transformation process of schedules

S and σ, respectively. Clearly, in the new basic schedule S ′, we have

Cj(S) = Cj′(S
′) as tS′ = tS − ε. This results in

U[tσ ,T)(S
′, τ ′) = U[tσ ,T)(S, τ).

Due to mS > mr, we have r′ < r − ε, see Figure 3.7. Again remember

that in the optimal schedules σ and σ′, each long job starts at its release

date. Therefore, we have Cj′(σ
′) < Cj(σ) as r′ < r − ε. Further, tσ′ > tσ

holds for the new optimal schedule σ′. Consequently, we obtain

U[tσ ,T)(σ
′, τ ′) ≤ U[tσ ,T)(σ, τ)

for the new optimal schedule σ′. Note that tσ corresponds to the original

optimal schedule σ. These results yield

Dtσ(S ′, τ ′)

U∗
[0,tσ)(τ

′)
≥ Dtσ(S, τ)

U∗
[0,tσ)(τ)

.

Note that, in schedule S ′, this process may result in a long job i ∈ τ

with tS′ ≤ Ci(S
′) ≤ tσ, see such job i in Figure 3.7. Together with the

3.4 AN UPPER BOUND FOR THE UTILIZATION 75

MachinesMachines

jobs from τr

jobs from τk

j

tσ

rr

tS

Time

tS

j′

Short jobs Short jobs

mS

r′ < r − ε

Short jobs

tσ

tS′ = tS − ε

Cj(S) = Cj′(S′)

tS′

i′

Short jobs

mri

Figure 3.7: An illustration of the transformation process when mS > mr. Left: Basic schedule
S of job system τ . Right: A new basic nondelay schedule S ′ of job system τ ′.

Machines Machines

jobs from τr

jobs from τk

Time

rr

j

r′

r − εShort jobs

Short jobs

j′

Cj(σ) > Cj′(σ′)

r − ε

Short jobs Short jobs
tσ

tσ′

Figure 3.8: Transformation process from the optimal schedule σ (left) of job system τ into the
new optimal schedule σ′ (right) of job system τ ′ in case mS > mr.

76 CHAPTER 3 ONLINE SCHEDULING TO MAXIMIZE UTILIZATION

transformation of Case 2c, this process is repeated until we do not have

long job belongs to τ ′r′ any more due to Case 2c or the basic job system

τ ′ has only k different release dates.

With this result, we can finally determine an upper bound for
U∗

[0,t)
(τ)

U[0,t)(S,τ)
if schedule

S is a nondelay schedule.

Theorem 3.1 For any job system τ and a nondelay schedule S for τ on m identical machines,

the inequality
U∗

[0,t)
(τ)

U[0,t)(S,τ)
≤ 4

3
holds for all t ≥ 0. This bound is tight.

Proof: Due to Corollary 2.2, it is sufficient to consider only basic job systems with

ε→ 0 and their basic nondelay schedules. Let τ be such a basic job system and S be its

basic nondelay schedule.

Lemma 3.1 yields Dt(S, τ) = U∗
[0,t)(τ) − U[0,t)(S, τ) ≤ 1

4
U∗

[0,t)(τ) for all t ≥ 0. This

immediately results in
U∗

[0,t)(τ)

U[0,t)(S, τ)
≤ 4

3
.

Finally assume m > 1 machines with m being even. Our job system τ contains m
2

jobs of processing time 2 and m jobs of processing time 1 all with release date 0. In

schedule S, all m jobs with processing time 1 start concurrently at time 0 while the

longer jobs all start at time 1. Clearly, S is a nondelay schedule and U[0,2)(S, τ) = 1.5m

holds.

In the optimal schedule σ, all m
2

jobs of processing time 2 and m
2

of the other jobs

start concurrently at time 0 while the remaining jobs of processing time 1 start at time

1. This results in U[0,2)(σ, τ) = U∗
[0,2)(τ) = 2m and

U∗
[0,2)

(τ)

U[0,2)(S,τ)
= 4

3
.

77

Chapter 4

Online scheduling to minimize equal
priority completion time

4.1 introduction

Often in practical scheduling systems, not all jobs are treated equally. Some jobs might

be more important than others. Some operations inherently receive a higher priority

as compared with other operations. Perhaps the simplest and most natural way to

formalize setting with different priority levels is to assign weights to jobs and then

consider some weighted function of the completion time or a related measure that one

is interested in. For example, when the scheduling objective is to find schedules that

minimize
∑

j∈τ wj Cj (total weighted completion time) where Cj is the completion time

of job j in the schedule and wj is the weight of such job. We are primarily interested

in non-preemptive schedules. The simplest variant of total weighted completion time

minimization problems is when all jobs have the same release date and the goal is to

schedule them on a single machine. For this case, the total weighted completion time

problem can be solved optimally in polynomial time [76] using the Weighted Shortest

Processing Time first (WSPT) rule (called also SMITH’s rule). SMITH’s rule schedules the

jobs in non-increasing order of the ratio wj

pj
. This rule minimizes the total weighted

completion time only in the single machine case and unfortunately, it cannot be gen-

eralized to the parallel machines case even in the single release date case. Further,

SMITH’s rule cannot be extended to the multi-release date case even if we schedule

78 CHAPTER 4 ONLINE SCHEDULING TO MINIMIZE EQUAL PRIORITY COMPLETION TIME

jobs on only a single machine. The offline version of the identical parallel machines

problem is already NP-hard [48]. In fact, our scenario has a more general and realis-

tic setting of which the jobs have different release dates (online version). Clearly, this

realistic restriction make the problem more harder.

As we have shown in Chapter 2, our second new criterion equal priority completion

time
∑

j∈τ pj Cj is adequate to quantitatively represent system utilization. Therefore, we

devote this chapter to address the analysis of the nondelay schedules for our nonclair-

voyant online scheduling model, with the goal of minimizing such criterion. As we

pointed out previously, this criterion can be obtained from the total weighted comple-

tion time criterion by demanding that wj = pj holds for all jobs in job system τ . Further,

we will use the abbreviation Cequ to identify such criterion. Clearly, this weight selec-

tion guarantees that all jobs have the same SMITH’s ratio. Consequently, it enable us

to overcome the problem of a job’s priority according to SMITH’s rule. In this chapter,

we will derive an upper bound for the competitive ratio of the equal priority completion

time. Again, we need only to analyze basic job systems with ε → 0 that are described

in Chapter2, their basic nondelay schedules, and their optimal schedules in order to

determine a worst case deviation of equal priority completion time. Note that in any

basic nondelay schedule, jobs can be arranged such that they are scheduled in non de-

creasing order of their release dates. However, this assumption is not obligatory for

the optimal schedule because all long jobs start at their release dates as we have shown

previously in Corollary 2.4.

The remainder of the chapter is organized as follows. Section 4.2 discusses some

previous work related to the identical parallel-machine problems in which the objec-

tive is to minimize the weighted sum of the jobs completion times. In this section, we

present results corresponding to both off-line and on-line versions of such problem.

Moreover, we review some developments of the stochastic variant of such problem

beside the deterministic models. In Section 4.3, we address the general problem in

which the jobs have arbitrary weights, thus have different priorities. In this case, we

will show that analyzing nondelay schedules yields an unbounded competitive ratio

of the total weighted completion time criterion. As we will see later, the main result

4.2 RELATED RESULTS 79

of this chapter depends on the off-line result that has been presented by KAWAGUCHI

and KYAN [44]. Therefore, we shall make use of such off-line result in our analysis

of the online model. For the sake of completeness, we devote Section 4.4 to repeat

KAWAGUCHI and KYAN’s significant and tight bound to use it in the next section. In

Section 4.5, we derive an upper bound of the competitive ratio Cequ(S)
C∗

equ(τ)
for our online

scenario where C∗
equ(τ) is the smallest attainable value of the equal priority completion

time for job system τ . Finally, in Section 4.6, we give some remarks and observations

about the possibility to apply another criterion related to flow time for the purpose of

evaluating system utilization.

4.2 Related Results

Scheduling to minimize total weighted completion time is one of the best studied class

of problems in scheduling theory. Most variants of scheduling to minimize such crite-

rion are strongly NP-hard including preemptive problems [51]. In the last few years,

considerable progress has been made in understanding the approximability of many of

these NP-hard problems. Constant and logarithmic ratio approximations were found

for several variants. See [1, 29] for more details on the history of these developments.

In this section, we present only some of those previous results that are related to the

total weighted completion time criterion where we restrict our review on the models

with identical parallel machine environment.

Starting with the off-line variant, the total weighted completion time minimiza-

tion problem with identical parallel machines and single release date, P ||∑j wjCj , has

been determined to be NP-hard in the strong sense [20]. However, KAWAGUCHI and

KYAN [44] establish that the Weighted Shortest Processing Time approach achieves an
1
2
(1 +

√
2) ≈ 1.21 approximation ratio for such problem. The authors analyzed a list

scheduling algorithm in which jobs are ordered according to non-increasing ratios of

weight to processing time wj

pj
. Further, they proved the tightness of their bound. This

result was the best for a long time. ALON et al. [4] gave a polynomial-time approxi-

mation scheme (PTAS) for the problem of minimizing
∑m

i=1 M2
i where Mi denotes the

80 CHAPTER 4 ONLINE SCHEDULING TO MINIMIZE EQUAL PRIORITY COMPLETION TIME

completion time of machine i. Recently, SKUTELLA and WOEGINGER [74] realized that

ALON’s result implies also a PTAS for the problem of minimizing the total weighted

completion time criterion if all job ratios wj

pj
are equal. In a first step, the authors gen-

eralized this to a PTAS for wj

pj
ratios within a constant range. In a second step, they

constructed their PTAS for the general weight problem P ||∑j wjCj . Their result im-

proves upon the previous best known bound by KAWAGUCHI and KYAN [44]. In fact,

this result constitutes the first known polynomial-time approximation scheme for a

strongly NP-hard problem with the Min-Sum objective. Their algorithm is based on

ratio-partitioning. The basic idea was to partition the jobs into groups according to

their wj

pj
ratios such that the ratios of all jobs in one group are within a constant range.

Then, using the first step, compute near optimum schedules for each group separately.

Finally, the schedules for different groups could be concatenated together on the same

machine according to SMITH’s rule because there are no different release dates. How-

ever, this technique cannot be easily generalized to the scheduling problems involving

multiple release dates, i.e. P |rj|
∑

j wjCj . For this multi-release date case, that is, the

problem is still off-line as release dates are known in advance, the time partitioning

technique was recalled by several researchers [1] and it was proven powerful enough

to yield PTASs in the presence of these release dates both with and without preemp-

tions allowed. Several other algorithms use a linear programming relaxation to ob-

tain constant approximation factors for the off-line problem P |rj|
∑

j wjCj . PHILLIPS et

al. [62] gave the first such algorithms, a (24 + ε)-approximation algorithm. This result

has been greatly improved to 4 + ε and 4 − 1
m

by HALL et al. in [28] and its journal

version by HALL et al. in [29]. Subsequently, there has been an explosion of research

for such problem with successively smaller constant ratios algorithms. Most of theses

algorithms follow the general and successful relaxation approach: first an optimal solu-

tion to a relaxation of the original problem is polynomially obtained, then this solution

is rounded, either to order the jobs in time or to assign the jobs to machines, to ob-

tain a near-optimum optimum solution of the original problem. The large body of the

algorithms within this approach can be classified according to the type of relaxation.

Types of relaxations include preemptive schedule relaxation and linear programming

4.2 RELATED RESULTS 81

relaxation. CHAKRABARTI et al. [13] obtained a 3.5-approximation algorithm by us-

ing a conversion technique from preemptive to non-preemptive schedules. By using

a general on-line framework [13], one can derive an algorithm with an approximation

ratio of 2.89 + ε. More recently, the best current approximation factor for this problem

has been derived by SCHULZ and SKUTELLA [69]. The authors provided a randomized

algorithm that has running time O(n log n) while the running time of the best previous

algorithm was Θ((m+1)poly(1/ε)n+n log n) by AFRATI et al. [1]. Their randomized algo-

rithm has a performance guarantee of 2. Interestingly, They stated that their algorithm

can be applied to the on-line setting in which jobs arrive over time as well, with no dif-

ference in such performance guarantee. Their main idea was to assign jobs randomly

to machines with probabilities derived from an optimal solution to a linear program-

ming relaxation in time-indexed variables. In addition, it is worth to mention that their

work includes new results for models with more general machine environment both

with and without release dates, i.e. R||∑j wjCj and R|rj|
∑

j wjCj .

So far, all results presented above are treating the off-line version for the identical

parallel machines scheduling problem with the total weighted completion time ob-

jective. Now, we turn our attention to the on-line version of such problem which is

more closely to our scenario, that is, the situations in which the existence of a job is

unknown until the arrival time. For the deterministic work, there are only two recent

papers that addressed this kind of online problem. However, the authors in both pa-

pers restrict their considerations with the assumption that all job characteristics are

known as soon as a job arrives. This assumption is slightly different from our scenario

which impose that the algorithm learns the processing time of a job only once it is

completed. The first paper by HALL et al. [29] presented a deterministic online algo-

rithm which has the competitive ratio 4+ ε. This algorithm was given as part of a more

general on-line framework. The authors introduced a general technique producing on-

line algorithms that yield constant performance guarantees for a variety of scheduling

models in which the objective is to minimize the weighted sum of the job completion

times. Further, their paper gives comprehensive reviews of the development of both

off-line and on-line algorithms for the total weighted completion time minimization

82 CHAPTER 4 ONLINE SCHEDULING TO MINIMIZE EQUAL PRIORITY COMPLETION TIME

problem with various scheduling environments. In the second paper, the currently

best competitive ratio of 3.28 is achieved by the Shifted WSPT algorithm of MEGOW

and SCHULZ [54]. The authors used the straightforward extension of SMITH’s rule to

the parallel machines with the idea of delaying the release dates. They modify the re-

lease date of each job such that it is equal to a certain fraction of its processing time. The

tightness of their bound has not been proven, but they conjecture that the remaining

gap is at most 0.5.

In a special case wj = 1 for all jobs that arrive over time, PHILLIPS et al. [64] pre-

sented online algorithm for P |rj|
∑

j Cj , which converts a preemptive schedule into a

non-preemptive one. This algorithm achieves a conversion factor of 3 − 1
m

. Subse-

quently, CHEKURI et al. [14] showed that by sequencing jobs nonpreemptively in the

order of their completion times in the optimal preemptive schedule on a single ma-

chine of speed m times as fast as that of any one of the m identical machines, one can

obtain a (3− 1
m

)-competitive algorithm for the online variant of the problem P |rj|
∑

j Cj .

More recently, the same online problem is addressed and this result is improved con-

siderably by LU et al. [52]. The authors gave a 2α-competitive online algorithm, where

α denotes the performance ratio of the Shortest Remaining Processing Time first rule for

the preemptive relaxation of the problem. Moreover, this rule is known to achieve a

worst-case performance ratio of 2, as was shown by PHILLIPS et al. [64].

Let us eventually present some stochastic work for the online problem P |rj|
∑

j wjCj .

The only online characteristic of the model of stochastic scheduling is the fact that the

actual job processing times become known only upon completion. However, their re-

spective probability distributions are assumed to be given beforehand. Further, the

aim is to find a scheduling policy that minimizes the expected total weighted com-

pletion time. By using an approach based upon the solution of linear programming

relaxations, MÖHRING et al. [57] have derived an LP-based priority policy with a per-

formance guarantee of 3− 1
m

+ max
{
1, m−1

m
∆
}

for such problem, where ∆ is an upper

bound on the squared coefficients of variation of the occurring probability distribu-

tions. Afterwards, CHAKRABARTI et al. [13] presented a randomized online algorithm

with a performance guarantee of 2.89 + ε. Recently, this result has been improved to

4.3 JOBS WITH ARBITRARY PRIORITY 83

2 by a Θ(n log n) randomized algorithm that is capable of working in an on-line con-

text in which jobs are randomly assigned to machines (i.e. jobs arrive over time), as was

shown by SCHULZ and SKUTELLA [69]. Concurrently with writing this thesis, the same

online model P |rj|E
[∑

j wjCj

]
has been addressed by MEGOW et al. [55] who obtained

a performance bound strictly less than
(

5+
√

5
2
− 1

2m

)
for a specific distribution called

NBUE. This result improved upon the previously best known performance guarantee

of 4 − 1
m

for the same NBUE distributions, which was derived for an LP-based list

scheduling policy [57]. Further, the authors showed that their improved bound holds

even though we apply a restricted policy that first has to assign jobs to machines on-

line, without knowledge of the jobs to come. However, they assumed that jobs appear

one by one. Finally, the best known result of the off-line version of the stochastic prob-

lem P ||E
[∑

j wjCj

]
has been obtained very recently by SOUZA and STEGER [77]. The

authors provided a general bound on the expected competitive ratio for list schedul-

ing algorithms. Their bound depends on the probability of any pair of jobs being in the

wrong order in the list of an arbitrary list scheduling algorithm, compared to an opti-

mum list OPT . For a special case, they show that WSEPT (Weighted Shortest Expected

Processing Time) algorithm achieves E
[

WSEPT
OPT

]
≤ 3 − 1

m
for exponential distributed

processing times. Moreover, they provided empirical simulations which demonstrate

the tightness of this bound.

4.3 Jobs with Arbitrary Priority

In this section, we address the general case of the total weighted completion time min-

imization problem, that is, when the jobs have arbitrary weights. We will show that

there is no upper bound for the competitive factor C(S)
C∗(τ)

of any nondelay schedule for

such online problem in its full generality of the job weights.

Lemma 4.1 The competitive factor for the general online total weighted completion time schedul-

ing problem for m identical machines is unbounded.

84 CHAPTER 4 ONLINE SCHEDULING TO MINIMIZE EQUAL PRIORITY COMPLETION TIME

Proof: There are job systems τ with |τ | = n ≤ m such that C(S)
C∗(τ)

= Θ(k) for any k > 0

unless all jobs of job system τ are executed concurrently at a time instant in schedule

S. This statement is proved by induction on the number n of jobs in any job system τ .

For n = 1, the starting of the single job clearly cannot be postponed forever to prevent.

Therefore, we assume that the statement is true for some number of jobs n − 1 < m.

Hence, there are a job system τ ′ with |τ ′| = n − 1 and q = maxj∈τ ′

(
wj

pj

)
, a schedule

S ′, and a time instant t such that all n − 1 jobs of job system τ ′ execute concurrently

at such time t in schedule S ′. Note that, wj ≤ (q pj) holds for each job j ∈ τ ′. In our

online model we are free to increase the processing times of the jobs that are executing

at time t. Therefore, we require the processing time pj to be sufficiently large such that

Cj(S
′) = t (k + 1) for all jobs j ∈ τ ′. Hence, we have

C∗(τ ′) =
∑
j∈τ ′

wj C∗
j

≤
∑
j∈τ ′

wj Cj(S
′) ≤

∑
j∈τ ′

q pj Cj(S
′)

≤ q
∑
j∈τ ′

(
Cj(S

′)
)2

= (n− 1) q
(
t (k + 1)

)2

Next, let us presume that an additional job jn is released with rjn = pjn = t and wjn =

(n q t k2). This additive process generates a new job system τ with τ = τ ′ ∪ {jn} and a

new schedule S based on schedule S ′. Assume that the new job jn is not started before

time t (k+1) in schedule S to prevent n jobs being executed concurrently in schedule S

at any time instant. Consequently, we have Cjn(S) ≥ t(k +2) and C∗
jn

= 2t. This results

4.3 JOBS WITH ARBITRARY PRIORITY 85

in

C(S)

C∗(τ)
=

C(S ′) +
(
wjn Cjn(S)

)
C∗(τ ′) +

(
wjn C∗

jn

)

≥
C(S ′) + n q k2

(
t2(k + 2)

)
C∗(τ ′) + n q k2 (2t2)

≥
C∗(τ ′) + n q k2

(
t2(k + 2)

)
C∗(τ ′) + n q k2 (2t2)

≥
n q

(
t (k + 1)

)2
+ n q k2

(
t2 (k + 2)

)
n q

(
t (k + 1)

)2
+ n q k2 (2t2)

=
k3 + 3k2 + 2k + 1

3k2 + 2k + 1
= Θ(k).

Next, we assume a job system τ ′ with |τ ′| = m and q = maxj∈τ ′

(
wj

pj

)
, a schedule

S ′, and a time instant t such that all m jobs of job system τ ′ execute concurrently at

time t in schedule S ′. Again we require the processing time pj to be sufficiently large

such that Cj(S
′) = t (k + 1) for all jobs j ∈ τ ′ and release an additional job jn with

rjn = pjn = t and wjn = (m q t k2) to generate a new job system τ = τ ′ ∪ {jn} and a new

schedule S. Note that, schedules S ′ and S are identical for all jobs of the job system τ ′.

As in the previous case we have

C∗(τ ′) ≤ C(S ′) =
∑
j∈τ ′

wj Cj(S
′) ≤ m q

(
t(k + 1)

)2

In schedule S, the new job jn cannot be started before time t (k + 1). However, in the

optimal schedule, job jn is started at its release time t while the start of one job from

job system τ ′, say job i, is delayed until time t + pjn = 2t. That is, the delaying time of

such job is at most 2t. Therefore, we obtain

C∗(τ) ≤ wjn C∗
jn

+ C∗(τ ′) + wi · 2t

≤ (m q t k2) · 2t + C∗(τ ′) + (q pi) · 2t

≤ m q k2 (2t2) + C∗(τ ′) + 2q t2(k + 1).

86 CHAPTER 4 ONLINE SCHEDULING TO MINIMIZE EQUAL PRIORITY COMPLETION TIME

Clearly, all jobs from τ ′ are scheduled in schedules S ′ and S in the same fashion. This

results in

C(S)

C∗(τ)
≥

m q k2
(
t2(k + 2)

)
+ C(S ′)

m q k2 (2t2) + C∗(τ ′) + 2q t2(k + 1)

≥
m q k2

(
t2(k + 2)

)
+ C(S ′)

m q k2 (2t2) + C(S ′) + 2q t2(k + 1)

=
m q k2

(
t2(k + 2)

)
+ m q

(
t (k + 1)

)2

m q k2 (2t2) + m q
(
t (k + 1)

)2
+ 2q t2 (k + 1)

=
m
(
k3 + 3k2 + 2k + 1

)
m
(
3k2 + 2k + 1

)
+ 2k + 2

≥ k3 + 3k2 + 2k + 1

3k2 + 4k + 3
= Θ(k).

This concludes the proof.

After we have shown that there is no constant competitive factor for the general

online problem we will address in the remainder of this chapter a special variant of

such online problem where all jobs have equal priority, that is, when wj = pj holds for

all jobs j ∈ τ . In other words, we are going to apply our second new criterion equal

priority completion time Cequ which has been already introduced formally in Section 2.2.

In the next section, we reobtain the competitive factor of the off-line version of our

problem which was provided already by KAWAGUCHI and KYAN [44].

4.4 The upper bound of the off-line problem

To our knowledge our online scenario of minimizing equal priority completion time

has not been addressed earlier. However, from the results of KAWAGUCHI and KYAN

[44] it follows immediately that all list schedules with equal priority jobs are
(√

2+1
2

)
-

competitive if all jobs are released at time 0. Further, it can easily be seen that this

4.4 THE UPPER BOUND OF THE OFF-LINE PROBLEM 87

factor is tight. In Section 4.5, we will use this competitive factor of the off-line problem

to obtain our bound of the online version of such problem. For the sake for complete-

ness, we give the result from KAWAGUCHI and KYAN [44] and briefly repeat the proof

using the notations and corollaries of this thesis. To do so, we start with the following

corollary which holds for any job system where all jobs have equal priorities.

Corollary 4.1 Let τ be a job system with equal priority jobs. Then any legal schedule S with

Cmax(S) =
∑

j∈τ pj is optimal for any order of the jobs in S and there is

C(S) = C∗(τ) =
1

2

(∑
j∈τ

pj

)2

+
1

2

∑
j∈τ

p2
j .

Proof: Note that Smith’s rule [76] guarantees that the job order of schedule S does

not affect the total weighted completion time cost. Hence, any schedule S with no

intermediate idle periods is optimal.

Now, we use induction to proof such bound. As the last job in schedule S always

completes at time
∑

j∈τ pj the bound is clearly true for any job system with |τ | = 1.

Next assume that the bound holds for all job systems τ ′ with |τ ′| = n − 1 and any

schedule S ′ for such job system τ ′ with Cmax(S) =
∑

j∈τ pj . Adding a new job jn to the

job system τ ′ and starting this job time immediately after the completion of the last job

in schedule S ′ produces a new job system τ with |τ | = n and a new schedule S with

C(S) = C(S ′) + wjnpjn + wjn

∑
j∈τ

pj

= C(S ′) + p2
jn

+ pjn

∑
j∈τ

pj

=
1

2

(∑
j∈τ ′

pj

)2

+
1

2

∑
j∈τ ′

p2
j + p2

jn
+ pjn

∑
j∈τ

pj

=
1

2

(∑
j∈τ

pj

)2

+
1

2

∑
j∈τ

p2
j .

Note that all long jobs in a basic job system can have different processing times. In

order to simplify our further analysis we define a rectangular job system τ̄ :

88 CHAPTER 4 ONLINE SCHEDULING TO MINIMIZE EQUAL PRIORITY COMPLETION TIME

Definition 4.1 A job system τ̄ with equal priority jobs is called rectangular if it consists of

m −mt jobs with processing time pb ≥ 0 and mt jobs with processing time pt > pb. All jobs

have the same release date r.

Clearly,
∑

j∈τ̄ pj = mtpt + (m−mt)pb holds for any rectangular job system τ̄ . There-

fore, the following equation holds for a rectangular job system τ̄ as well:

C∗(τ̄) = r
∑
j∈τ̄

pj +
∑
j∈τ̄

p2
j

= r
∑
j∈τ̄

pj + mt p2
t + (m−mt) p2

b

Further, we want to mention a simple convexity relation:

∑
j∈τ

p2
j =

∑
j∈τ

(
pj −

1

|τ |
∑
j∈τ

pj +
1

|τ |
∑
j∈τ

pj

)2

=
∑
j∈τ

(
1

|τ |
∑
j∈τ

pj

)2

+
∑
j∈τ

[
2

(
pj −

1

|τ |
∑
j∈τ

pj

)
1

|τ |
∑
j∈τ

pj

]
+
∑
j∈τ

(
pj −

1

|τ |
∑
j∈τ

pj

)2

≥ 1

|τ |

(∑
j∈τ

pj

)2

+
∑
j∈τ

(
pj −

1

|τ |
∑
j∈τ

pj

)2

≥ 1

|τ |

(∑
j∈τ

pj

)2

(4.1)

It is easy to see that any upper bound of C(S)
C∗(τ)

that is valid for 2m machines also

holds for m machines. Therefore, we base our worst case analysis on systems with a

very large number of machines and assume that all relevant values for mt with 0 <

mt ≤ m are integer.

Next, we consider a simple job system τ with n ≤ m jobs such that all jobs have

the same release date. For such a job system, we can find a rectangular job system that

has the same optimal total weighted completion time and the same sum of processing

times, see Figure 4.1.

Corollary 4.2 Assume a job system τ consisting of n ≤ m long jobs with equal priorities and

the same release date r. For each value mt with 0 < mt ≤
((∑

j∈τ pj

)2
/
∑

j∈τ p2
j

)
there is a

4.4 THE UPPER BOUND OF THE OFF-LINE PROBLEM 89

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

���������������
���������������
���������������

���������������
���������������
���������������

n
00 m m

T
im

e

Machines Machines

pb

pt

mt

Figure 4.1: The transformation of τ to rectangular job system τ̄(mt).

rectangular job system τ̄(mt) such that

∑
j∈{τ̄(mt)}

pj =
∑
j∈τ

pj and C∗(τ) = C∗
(
τ̄(mt)

)
hold.

Proof: Due to Inequality 4.1 and the inequality |τ | = n ≤ m, we have
∑

j∈τ p2
j ≥

1
m

(∑
j∈τ pj

)2
.

Then we use the following values of pt and pb which always exist:

pt =

∑
j∈τ pj

m
+

√√√√√m−mt

m mt

(∑
j∈τ

p2
j −

(∑
j∈τ pj

)2

m

)

pb =

∑
j∈τ pj

m
−

√√√√√ mt

m (m−mt)

(∑
j∈τ

p2
j −

(∑
j∈τ pj

)2

m

)

These values satisfy the following equation:

∑
j∈{τ̄(mt)}

pj = mt pt + (m−mt) pb =
∑
j∈τ

pj

90 CHAPTER 4 ONLINE SCHEDULING TO MINIMIZE EQUAL PRIORITY COMPLETION TIME

By using this result and the values of pt and pb we can obtain

C∗
(
τ̄(mt)

)
= mt p2

t + (m−mt) p2
b + r

∑
j∈{τ̄(mt)}

pj

=
∑
j∈τ

p2
j + r

∑
j∈τ

pj

= C∗(τ)

Finally, we show that pb ≥ 0 holds for 0 < mt ≤

(∑
j∈τ

pj

)2∑
j∈τ

p2
j

as we have:

pb ≥ 0 ⇐⇒

(∑
j∈τ pj

)2

m2
≥ mt

m (m−mt)

(∑
j∈τ

p2
j −

(∑
j∈τ pj

)2

m

)

⇐⇒ m
(∑

j∈τ

pj

)2

≥ m mt

∑
j∈τ

p2
j

⇐⇒

(∑
j∈τ pj

)2

∑
j∈τ p2

j

≥ mt.

Note that there is a specific solution with pt =

∑
j∈τ

p2
j∑

j∈τ
pj

, pb = 0 and mt =

(∑
j∈τ

pj

)2∑
j∈τ

p2
j

.

Also assume that the processing time of the shortest job of the rectangular job sys-

tem τ̄ with processing time pmin ≥ 0 is increased by a very small amount x. In order to

determine the influence of this modification on the ratio

(∑
j∈τ

pj

)2∑
j∈τ

p2
j

and consequently

on the value mt, we determine

lim
x−→0

∂

∂x

(
x +

∑
j∈τ pj

)2

∑
j∈τ\jmin

p2
j + (pmin + x)2

 = lim
x−→0

∂

∂x

(
x +

∑
j∈τ pj

)2

x2 + 2xpmin +
∑

j∈τ p2
j

=
2
(∑

j∈τ pj

)(∑
j∈τ p2

j − pmin
∑

j∈τ pj

)
(∑

j∈τ p2
j

)2

≥ 0 . (4.2)

Therefore, such a modification cannot decrease the ratio

(∑
j∈τ

pj

)2∑
j∈τ

p2
j

.

4.4 THE UPPER BOUND OF THE OFF-LINE PROBLEM 91

Next, we compare two rectangular job systems τ̄ and τ̄ ′ with the same value mt, the

same release date, pt > p′t, and
∑

j∈τ̄ pj =
∑

j∈τ̄ ′ pj , that is p′b = pb + (pt − p′t)
mt

m−mt
. Then

we have

C∗(τ̄)− C∗(τ̄ ′) = mt p2
t + (m−mt) p2

b −mt p′
2
t − (m−mt) p′

2
b

= mt

(
p2

t − p′
2
t

)
+ (m−mt)

[
p2

b −
(
pb + (pt − p′t)

mt

m−mt

)2
]

= mt

(
p2

t − p′
2
t

)
− 2mt pb(pt − p′t)−

(
pt − p′t

)2 mt
2

m−mt

= mt

(
pt − p′t

) (
pt + p′t − 2pb − (pt − p′t)

mt

m−mt

)
= mt (pt − p′t)

(
pt + p′t − pb − p′b

)
> 0 (4.3)

For a given (integer) value mt, let us denote the set of the jobs with the mt largest

processing times by τt. Due to the convexity relation (4.1) and the relation between two

rectangular systems we obtain

mt pt ≥
∑
j∈τt

pj and (m−mt)pb ≤
∑

j∈τ\τt

pj. (4.4)

We consider the optimal schedule of a job system τ = τlong ∪ τshort which contains

n ≤ m long jobs and additional short jobs. The next corollary shows that for the pur-

pose of worst case analysis we do not need to use all possible job systems τlong but that

we can restrict ourselves to rectangular job systems instead, see Figure 4.2.

Corollary 4.3 Job system τ = τlong ∪ τshort consists of n ≤ m long jobs (τlong) and additional

short jobs (τshort) with all jobs j ∈ τ having the same release date r. There is another job

system τ̃ = τ̄(mt) ∪ τshort consisting of the same set τshort and a rectangular job system τ̄(mt)

corresponding to job system τlong with the processing times pt and pb being chosen according to

Corollary 4.2. Then C∗(τ̃) ≤ C∗(τ) holds.

Proof: Without restriction of generality we set r = 0. Let tσ be the end of the full

interval [0, tσ) in the optimal schedule σ of job system τ . We define τl = {j ∈ τlong|pj ≥
tσ} and ml = |τl|. Clearly, all jobs from τshort are scheduled on m − ml machines in

schedule σ and we have (m−ml) tσ =
∑

j∈τshort
pj +

∑
j∈τlong\τl

pj .

92 CHAPTER 4 ONLINE SCHEDULING TO MINIMIZE EQUAL PRIORITY COMPLETION TIME

���������������
���������������
���������������
���������������
���������������

�������������
�������������
�������������
�������������
�������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

Machines Machines

00 mm
T

im
e

τ̄(mt)

pb

pt

tσ

|τlong| mt

τShort
τShort

Figure 4.2: The transformation of τ with a large number of short jobs.

Assume that all jobs from τlong are assigned to machines in decreasing order of their

processing times, that is, all jobs from set τl are executed on machines 1 to ml. Further,

we set mt =

(∑
j∈τlong

pj

)2∑
j∈τlong

p2
j

. Remember that in this case pb = 0 and pt =

∑
j∈τ

p2
j∑

j∈τ
pj

. Next,

we consider the following two cases:

1. (m−mt) tσ ≥
∑

j∈τshort
pj . In the optimal schedule σ̃ of job system τ̃ , all jobs from

τ̄(mt) are started at time 0 on the first mt machines while all jobs from the set τshort

are executed on the other m − mt machines. Further, in the optimal schedule σ

of τ , less resources are used for executing jobs from the set τshort on machines

ml + 1 to mt than resources are needed for processing jobs from the set τlong on

machines mt + 1 to m. Hence, there is a bijective mapping
{
G : τshort → τshort

}
such that Cj(σ) ≥ CG(j)(σ̃) holds for all jobs j ∈ {τshort}. That is, the completion

time of each short job in the schedule σ̃ cannot be larger than the completion time

of its corresponding job in the schedule σ. Therefore, the total weighted sum of

completion times of all jobs from τshort is not more in schedule σ̃ than in schedule

σ. This results in C∗(τ̃) = C(σ̃) ≤ C(σ) = C∗(τ).

4.4 THE UPPER BOUND OF THE OFF-LINE PROBLEM 93

2. (m−mt)tσ <
∑

j∈τshort
pj . Due to ε→ 0 we obtain with Corollary 4.1:

C∗(τ) =
∑
j∈τl

p2
j +

1

2

(∑
j∈τlong\τl

p2
j + (m−ml) t2σ

)

Now, let us define another job system τ ′ consisting of job system τl and m − ml

jobs with release date 0 and processing time tσ. Note that we have

(∑
j∈τlong

pj

)2∑
j∈{τlong}

p2
j
≤(∑

j∈τ ′ pj

)2∑
j∈τ ′ p2

j
due to Inequality 4.2. Then job system τ̄ ′(mt) is a rectangular job sys-

tem corresponding to τ ′ with p′t and p′b being chosen according to Corollary 4.2.

This leads to

C∗(τ) =
1

2

∑
j∈τlong

p2
j +

1

2

∑
j∈τl

p2
j + (m−ml)t

2
σ

=

1

2

∑
j∈τlong

p2
j +

1

2

∑
j∈τ ′

p2
j

=
mt

2
p2

t +
1

2

(
mt p′t

2
+ (m−mt)p

′
b
2
)

=
mt

2

(
p2

t + p′t
2
)

+
m−mt

2
p′b

2
.

If the interval [0, pt] is a full interval in the optimal schedule of job system τ̃ then

C∗(τ̃) ≤ C∗(τ) clearly holds. Otherwise, we have

C∗(τ̃) = mt p2
t +

(∑
j∈{τshort} pj

)2

2(m−mt)
.

Therefore, we obtain

C∗(τ)− C∗(τ̃) =
mt

2

(
p′t

2 − p2
t

)
+

m−mt

2

(
p′b

2 −
(∑

j∈{τshort} pj

m−mt

)2
)
.

From Inequality (4.4), we obtain

(m−mt) p′b ≤
∑

j∈{τ ′\τ ′t}
pj = (m−mt) tσ

However, in this case, we have (m−mt) tσ <
∑

j∈{τshort} pj . This leads to

p′b ≤ tσ <

∑
j∈{τshort} pj

m−mt

⇐⇒ p′t > pt.

From Inequality (4.3), we know that there is C∗(τ)− C∗(τ̃) > 0 if p′t > pt hold.

94 CHAPTER 4 ONLINE SCHEDULING TO MINIMIZE EQUAL PRIORITY COMPLETION TIME

Therefore, we are ready to give the result of KAWAGUCHI and KYAN [44] in the

following lemma.

Lemma 4.2 For any job system τ with equal priority jobs and a list schedule S we have C(S)
C∗(τ)

≤
√

2+1
2

if all jobs are released at time 0. This bound is tight.

Proof: Due to Corollaries 2.2 and 4.3 we can assume that τ = τshort∪ τ̄(mt) where τshort

is a set of jobs that contains only short jobs and τ̄(mt) is a rectangular job system with

mt long jobs. Without restriction of generality, let further be
∑

j∈{τshort} pj = m. Then

we have

C(S) =
m

2
+ mt pt (pt + 1) and

C∗(τ) = mt p2
t + (m−mt) ·

1

2

(
m

m−mt

)2

if pt ≥ m
m−mt

holds. It is easy to see that the case pt < m
m−mt

can be ignored. A simple

optimization leads to

max
mt≥0, pt>0

{
C(S)

C∗(τ)

}
=

√
2 + 1

2
.

The maximum value is obtained for mt = m (1−
√

2
2

) and pt = 1 +
√

2.

4.5 An upper bound of equal priority completion time

Finally, we are ready to prove our main theorem. We use Lemma 3.1 to address the

equal priority completion time criterion.

Theorem 4.1 Cequ(S)
C∗

equ(τ)
≤ 1.25 holds for any job system τ and any nondelay schedule S for τ on

m identical machines.

Proof: Due to Corollary 2.2, it is sufficient to consider only basic job systems with

ε → 0 and their basic nondelay schedules. We assume that the first release date is

always 0 even if there are no jobs that are released at this time.

4.5 AN UPPER BOUND OF EQUAL PRIORITY COMPLETION TIME 95

At first we define r, τr, tS , tσ, and σ as in Lemma 3.1. Time instant r̃ is the highest

release date of any job in job system τ such that no short job j ∈ τ with rj < r̃ completes

after time r̃ in the optimal schedule σ of job system τ . Further, we introduce τ̃ = {j ∈
τ |rj ≥ r̃}.

As in Lemma 3.1, we prove this theorem by induction on the number k of different

release dates. We assume that Cequ(S)
C∗

equ(τ)
≤ 1.25 holds for all considered basic job systems

with at most k different release dates. From KAWAGUCHI’s and KYAN’s result [44], we

know that the assumption is valid for k = 1 as we have 1+
√

2
2

< 1.25.

Again, we need to address two cases:

1. r̃ > 0. Assume a full interval [ta, tb) in S with ta ≥ r̃. From the third property of

Definition 2.3, we know that Cj(S)− (pj + rj) > (tb− ta) holds for all jobs j ∈ τ\τ̃
with Cj(σ) = rj + pj > ta. Together with Lemma 3.1, this results in

U[ta,tb)(S, τ\τ̃) ≤
∑

j∈τ\τ̃∧Cj(S)>ta

(
Cj(S)−max{ta, pj + rj}

)

≤
∑

j∈τ\τ̃∧Cj(S)>r̃

(
Cj(S)−max{r̃, pj + rj}

)

= Dr̃(S, τ\τ̃) ≤ 1

4
U∗

[0,r̃)(τ\τ̃) ≤ 1

4
r̃m .

Let S̃ and σ̃ be the basic schedule and the optimal schedule for job system τ̃ ,

respectively. If the same scheduling order is used for all short jobs of job system

τ̃ in schedules S, S̃, σ, and σ̃ then we have

Cj(S) ≤ Cj(S̃) +
1

4
r̃ and

Cj(σ) ≥ Cj(σ̃)

for all jobs j ∈ τ̃ . Remember that τ̃ has at most k different release dates that are

greater than 0.

96 CHAPTER 4 ONLINE SCHEDULING TO MINIMIZE EQUAL PRIORITY COMPLETION TIME

By using the induction assumption twice, we obtain

Cequ(S)

C∗
equ(τ)

=

∑
j∈{τ\τ̃} pj Cj(S) +

∑
j∈τ̃ pj Cj(S)∑

j∈{τ\τ̃} pj Cj(σ) +
∑

j∈τ̃ pj Cj(σ)

≤
1.25 C∗

equ(τ\τ̃) + Cequ(S̃) + 0.25 r̃
∑

j∈τ̃ pj

C∗
equ(τ\τ̃) + C∗

equ(τ̃)

≤
1.25 C∗

equ(τ\τ̃) +
(
Cequ(S̃)− r̃

∑
j∈τ̃ pj

)
+ 1.25 r̃

∑
j∈τ̃ pj

C∗
equ(τ\τ̃) + C∗

equ(τ̃)

<
1.25 C∗

equ(τ\τ̃) + 1.25
(
C∗

equ(τ̃)− r̃
∑

j∈τr
pj

)
+ 1.25 r̃

∑
j∈τ̃ pj

C∗
equ(τ\τ̃) + C∗

equ(τ̃)

= 1.25.

2. r̃ = 0. First, we introduce our so called primary transformation. To this end,

we consider a long job j0 ∈ τ with tS ≥ Cj0(S) > r. We generate job system

τ ′ by splitting this long job into another long job j1 with pj1 = pj0 − ε, rj1 = rj0

and a short job j2 with pj2 = ε, rj2 = r. The resulting schedule S ′ is a basic

nondelay schedule for the new job system τ ′ with tS′ = tS . Figure 4.3 illustrates

this primary transformation process of the basic nondelay schedule S of τ into

the new schedule S ′ of the generated job system τ ′. Corollary 2.1 yields∑
j∈τ ′ pj Cj(S

′)∑
j∈τ ′ pj Cj(σ′)

≥
∑

j∈τ pj Cj(S)∑
j∈τ pj Cj(σ)

.

Although tσ = tσ′ is still valid, we may have r̃′ > 0 as pj0 + rj0 < r leads to

Cj0(σ) < Cj2(σ
′). Then, we are back to Case 1. The primary transformation pro-

cess of the optimal schedule σ into its corresponding optimal schedule σ′ of job

system τ ′ is illustrated in Figure 4.4. Let τ ′r ⊂ τ ′ is the set of jobs that are released

at time r.

If we still have r̃′ = 0 and there is no long job j ∈ τ ′ with tS′ ≥ Cj(S
′) > r, we split

each long job j′ ∈ τ ′r into a long job j′′ with pj′′ = pj′ − ε and a short job. Both jobs

have release date r′′ = r + ε. Further, we increase the release date of all short jobs

4.5 AN UPPER BOUND OF EQUAL PRIORITY COMPLETION TIME 97

Short jobs Short jobs
Time

Machines Machines

tS

rr

tS′

∈ τr ∈ τ ′

r

Cj(S) Cj′(S′) = Cj(S)

j′

j0

j

j1

Figure 4.3: Illustration of the primary transformation process from schedule S (left) of τ into
schedule S ′ (right)of τ ′

Machines

Short jobs Short jobs

Time

Short jobs

Machines

Short jobs

∈ τr

r r

∈ τ ′

r

∈ τ\τr

tσ′ = tσ

∈ τ ′\τ ′

r

j j′

tσ

Cj(σ)
C ′

j(σ
′)

Figure 4.4: Illustration of the primary transformation process from the optimal schedule σ of
τ into the optimal schedule σ′ of τ ′.

98 CHAPTER 4 ONLINE SCHEDULING TO MINIMIZE EQUAL PRIORITY COMPLETION TIME

from τ ′r to r′′. This transformation yields job system τ ′′, basic nondelay schedule

S ′′, and optimal schedule σ′′. The transformation process from schedules S or σ

of job system τ ′ into schedules S ′ or σ′ of the produced job system τ ′′ is illustrated

in Figures 4.5 and 4.6. It is very similar to the transformation in Case 2(d)i of the

proof for Lemma 3.1. In the produced basic schedule S ′′, each long job j′′ ∈ τ ′′r

will complete later than the corresponding long job j′ ∈ τ ′r in the basic schedule

S ′ as we have tS′′ > tS′ + ε. This is due to that no long job from τ ′ completes

within the interval (r, tS′] in schedule S ′, that is, the number of idle machines at

tS′ in schedule S ′ is less than the number of short jobs that start at r in the same

schedule S ′. On the other hand, the completion times of job j′′ in the optimal

schedule σ′′ and of job j′ in the optimal schedule σ′ are identical. Further, there is

tσ′ = tσ′′ as the interval (r̃′′, t′′σ] is a full interval in optimal schedule σ′′. Together

with Corollary 2.1, this results in∑
j∈τ ′′ pj Cj(S

′′)∑
j∈τ ′′ pj Cj(σ′′)

≥
∑

j∈τ ′ pj Cj(S
′)∑

j∈τ ′ pj Cj(σ′)
.

The repeated application of this transformation will result either in r̃′′ = r′′

(Case 1) or lead back to the beginning of this case if there is a long job j ∈ τ ′′\τ ′′r
with Cj(S

′′) = tS′′ .

Note that the result of Theorem 4.1 is not tight. However, the gap is very small as

Kawaguchi and Kyan have shown that there are job systems with a single release date

that come arbitrary close to the bound 1+
√

2
2
≈ 1.207 < 1.25. Therefore, we conjecture

that Kawaguchi’s and Kyan’s bound is also a tight upper bound for the ratio Cequ(S)
C∗

equ(τ)
in

the multi-release date case.

Moreover, this worst case bound for the equal priority completion time is slightly

smaller than the worst case bound for the utilization that has been derived in the pre-

vious chapter. This confirms the observations from Table 2.1.

4.5 AN UPPER BOUND OF EQUAL PRIORITY COMPLETION TIME 99

Short jobs Short jobs

Machines Machines

Time

tS′

r

∈ τ ′

r

r

∈ τ ′′

r′′

tS′′ > tS′ + ε

r′′
= r + ε

j′′

Cj′(S′)

j′

Cj′′(S′′) > Cj′(S′)

Figure 4.5: Illustration of the generation process of schedule S ′′ (right) of the new job system
τ ′′ from schedule S ′ (left) of job system τ ′.

Short jobs

Machines Machines

Short jobsShort jobs

Short jobs
Time

∈ τ ′\τ ′

r

rr

∈ τ ′

r

∈ τ ′\τ ′

r

∈ τ ′′

r
′′

tσ′′ = tσ′tσ′

r′′
= r + ε

j′′

j′

Cj′′(σ′′) = Cj′(σ′)Cj′(σ′)

Figure 4.6: Illustration of the generation process of the optimal schedule σ′′ (right) of the new
job system τ ′′ from the optimal schedule σ′ (left) of job system τ ′.

100 CHAPTER 4 ONLINE SCHEDULING TO MINIMIZE EQUAL PRIORITY COMPLETION TIME

4.6 The applicability of equal priority flow time

For the online (nonclairvoyant) scheduling problems, a widely used criterion to mea-

sure the quality of service (QoS) provided to users (i.g. the responsiveness of the sys-

tem) is the average (weighted) flow time of the jobs, that is the average (weighted)

time spent by jobs in the system between release and completion. Therefore, in this

section, we are interested to discuss whether it is appropriate to use an equal priority

flow time criterion Fequ(S) =
∑

j∈τ pj

(
Cj(S) − rj

)
to quantitatively represent the uti-

lization for our kind of online scheduling problems. Note that the equal priority flow

time criterion Fequ(S) is modelled in the same fashion as the equal priority completion

time.

To do so, we consider a specific basic job system τ . In τ , there are m − 1 long jobs

with processing time m and short jobs with a total resource consumption (machine

time product) of m. All those jobs are released at time 0. In addition, m − 1 long

jobs with processing time 1 and short jobs with a total resource consumption of 1 are

released at time m + h for all integer h from 0 to k− 1. Let schedule S be the basic non-

delay schedule and schedule σ be the optimal schedule for τ , respectively. In schedule

S all short jobs with release time 0 are executed in interval [0, 1) on m machines while

all long jobs with release time 0 are started at time 1. Further, the short jobs that are

released at time m + h are executed in the interval [m + h, m + h + 1) while all long

jobs that are released at m + h are started at time m + h + 1. Note that, during the

interval [0, m + k + 1) in such schedule S one of the m machines must be idle in the

interval [1, m) and one machine must be idle in the interval m+k, m+k+1. However,

in the optimal schedule σ, there are no any intermediate idle times during the whole

interval [0, m+k) and all long jobs are started at their release dates. Now, we are going

to calculate the utilization, the equal priority completion time, and the equal priority

flow time. For the utilization, we have

U[0,m+k)(S, τ) = m(m− 1) + mk + 1 and U∗
[0,m+k)(τ) = m(m + k)

4.6 THE APPLICABILITY OF EQUAL PRIORITY FLOW TIME 101

Then we have

U∗
[0,m+k)(τ)

U[0,m+k)(S, τ)
=

m(m− 1) + m k + 1 + (m− 1)

m(m− 1) + m k + 1

= 1 +
m− 1

m(m− 1) + m k + 1
.

For the equal priority completion time criterion, we have

∑
j∈{longjobs}

pj Cj(S) = m(m− 1)(m + 1) + (m− 1)
(
(m + 2) + (m + 3) + · · ·+ (m + k + 1)

)

= m(m2 − 1) + (m− 1)
(
m k +

k + 3

2
· k
)

and

∑
j∈{shortjobs}

pj Cj(S) =
m

2
+ m k +

k2

2

Note that the second sum can be obtain by using Corollary 4.1. This results in

Cequ(S) =
∑

j∈{longjobs}
pj Cj(S) +

∑
j∈{shortjobs}

pj Cj(S)

= m3 + k m2 − m

2
+

mk2

2
+

3m k

2
− 3k

2

= k
(

m(k − 1)− 1

2
+ m2 + m

)
+ m3 − m2

2
+ (m− 1)(k +

m

2
).

Similarly,

C∗
equ(τ) =

∑
j∈{longjobs}

pj C∗
j +

∑
j∈{shortjobs}

pj C∗
j

= (m− 1)m2 + (m− 1)
(
(m + 1) + (m + 2) + · · ·+ (m + k)

)
+

(m + k)2

2

= (m− 1)m2 + (m− 1)
(
m k +

k(k + 1)

2

)
+

(m + k)2

2

= k
(

m(k − 1)− 1

2
+ m2 + m

)
+ m3 − m2

2
.

Therefore, we have

Cequ(S)

C∗
equ(τ)

= 1 +
(k + m

2
)(m− 1)

k
(

m(k−1)−1
2

+ m2 + m
)

+ m3 − m2

2

102 CHAPTER 4 ONLINE SCHEDULING TO MINIMIZE EQUAL PRIORITY COMPLETION TIME

U∗
[0,m+k)

(τ)

U[0,m+k)(S,τ)
Cequ(S)
C∗

equ(τ)
Fequ(S)
F ∗

equ(τ)

k = 0 1 + m−1
m2−m+1

1 + m−1
2m2−m

1 + m−1
2m2−m

k >> m2 >> 1 1 + 1
k

1 + 2
k

2

Table 4.1: Comparison between Utilization, Equal Priority Completion Time, and
Equal Priority Flow Time for Selected Schedules

Finally, the ratio of the equal priority flow time can be derived as follows with the help

of the above results of the equal priority completion time and the processing time of

any job is at most m

Fequ(S)

F ∗
equ(τ)

=

∑
j∈τ pj Cj(S)−∑j∈τ pj rj∑

j∈τ pj C∗
j −

∑
j∈τ pj rj

=

Cequ(S)−
k−1∑
h=0

(
(m + h) · ∑

i∈τ |ri=m+h
pi

)

C∗
equ(τ)−

k−1∑
h=0

(
(m + h) · ∑

i∈τ |ri=m+h
pi

)

=
Cequ(S)−m

k−1∑
h=0

(m + h)

C∗
equ(τ)−m

k−1∑
h=0

(m + h)

=
Cequ(S)−m

(
m k + (k−1)k

2

)
C∗

equ(τ)−m
(
m k + (k−1)k

2

)

= 1 +
(k + m

2
)(m− 1)

(k + m2)(m− 1
2
)
.

Observe that the term
∑

j∈τ pj rj is independent of any schedule.

The comparison results between the criteria utilization, equal priority completion

time, and equal priority flow time are displayed in Table 4.1 for two different cases

4.6 THE APPLICABILITY OF EQUAL PRIORITY FLOW TIME 103

k = 0 and k >> m2 >> 1. While utilization and equal priority completion time

criteria show a very similar behavior the criterion equal priority flow time deviates

significantly. Although the interval [m, m + k) is a full interval in schedule S, the ratio
Fequ(S)
F ∗

equ(τ)
increases with growing k. Therefore, equal priority flow time is not suited to

describe utilization in our online model.

105

Chapter 5

Experimental Study

In this chapter, we experimentally analyze the performance of the nondelay online al-

gorithm with respect to our new criteria utilization and equal priority completion time.

That is, the study is devoted to confirm experimentally our upper bounds which have

been derived theoretically in Chapters 3 and 4 for our new criteria. Therefore, we have

conducted extensive computational experiments to acquaint the agreement between

the theoretical and the experimental results. Moreover, we want to consider the ef-

fect of the size of the problem on the competitive ratios as well as the effect of larger

machine numbers. To achieve these goals, a broad range of sets of problem instances

are designed to provide a rich test set for investigating. The experimental results have

been obtained according to job instances generated by using fundamental probability

distributions. A detailed description of the experimental design is given in the fol-

lowing section. Then, in section 5.2, we provide an approach that is used to obtain

near-optimal solutions of both criteria. Finally, in Section 5.3 we discuss the obtained

results and report the analysis of the experiments.

5.1 Experimental Design

5.1.1 Computing Environment

The experiments were conducted on a Pentium(R) 4 PC with 2.6 GHz clock rate and

0.99 GB of memory, operating under Linux (Debian 3.3). The scheduling program is

106 CHAPTER 5 EXPERIMENTAL STUDY

coded in the C++ computer language, which reads the problem parameters from an

input file and generates the desired schedules. The program has been compiled with

the GNU g++ compiler Version 3.3.5 using the -O2 optimization option.

5.1.2 Benchmark Instances

In this section, we present the data generation scheme to create test problems. The

benchmark instances were randomly generated and primarily consist of 9 sets with 3,

5, 10, 15, 20, 50, 100, 200, and 500 machines. For each selected value of m, various distri-

bution functions have been considered to produce several different problem instances

in a subset.

Number of jobs: The number of jobs at each release date is created by using a ran-

dom generation for a Poisson distribution P (λ). This distribution is commonly used to

model the number of events occurring within a given time interval. The parameter λ is

the shape parameter which indicates the average number of events (the positive mean).

Clearly, the number of jobs designates the size of the problem instance. As the number

of jobs increases, computational burden and hence the time needed to find the solution

increases. For a small number of machines (up to 20 machines), we considered 25 dif-

ferent values of λ between 1.5m and 40m, results in 125 problem instances. For larger

machine numbers (50-500 machines), four different values of λ = 1.5m, 2m, 2.5m, and

3m have been considered resulting in another 16 problem instances. In addition, for

each selected number of jobs and fixed number of machines, several individual prob-

lem instances have been generated from different distribution functions.

Processing time: We tested many different probability distribution functions to

model the processing times of the jobs. We found that most of these distributions, like

Gamma, Poisson, Weibull and a lot of others, give small competitive ratios. That is,

the nondelay online algorithm performs well with these distributions as the competi-

tive ratios were close to 1. Since we want to evaluate the performance of the nondelay

online algorithm with respect to our new criteria from the worst case point of view,

we need come as close as possible to the worst (largest) ratios. We found three differ-

5.1 EXPERIMENTAL DESIGN 107

ent distribution functions which can capture a bad behavior of the algorithm. There-

fore, the processing times of the jobs have been generated randomly according to those

following probability distributions: exponential, chi-square, and log-normal distribution.

Each distribution is characterized by corresponding parameters that have been prop-

erly set in order to get realistic job instances. Therefore, when choosing the parameters

of the distributions from which the processing times were generated we tried on the

one hand to cover a wide range of values and on the other hand to create different

degrees of variability in the job processing times.

For the exponential distribution exp(β), whose location parameter is equal to zero,

β is often referred as scale parameter which equals 1
mean

. We considered a total of 5 β

values 1, 1
2
, 1

3
, 1

4
, and 1

5
. This yields 705 problem instances generated from such dis-

tribution. For the log-normal distribution L(µ, σ), where µ and σ are the mean (scale

parameter) and the standard deviation (shape parameter) of the distribution on the log

scale, we fixed σ = 1. Then, we considered four values of µ = 0, 0.5, 0.8, and 1. Conse-

quently, the number of problem instances which were generated from this distribution

is 564. Finally, the processing times are created by using a random generation for the

Chi-Square distribution which has a shape parameter ν1 and a scale parameter ν2. We

considered ν1 values of 2 and 3. For each value of ν1, the corresponding four values of

ν2 = 0, 0.5, 0.8, and 1 have been considered to create 8 problem instances from such

distribution for each fixed number of machines and given number of jobs (size of the

instance). This results in 1128 problem instances that have been generated from such

distribution. Therefore, we considered total 2397 problem instances.

Release dates (rj): Job arrival times are determined during the computational pro-

cess. After all jobs with the current release date are scheduled, the next release date

is selected to be one of all possible integer values between the smallest and the largest

completion time of all machines. By this way we make sure that: (i) There is idle time

between any two release dates. (ii) There is at least one scheduled job that prevents

a new job to be scheduled at its release date. In each test problem, we considered 6

different release dates.

After generating the job instances, we ran the nondelay online algorithm on each

108 CHAPTER 5 EXPERIMENTAL STUDY

job instance and computed the competitive ratio of the utilization and equal priority

completion time at each release date. Hence, the largest ratios are picked to represent

the worst competitive ratios for such instance.

5.2 An approach for optimal solution

As we know, the competitive analysis is typically used to capture the worst case be-

havior of the algorithm. Therefore, the competitive ratio quantifies by how much, in

the worst case, the online schedule deviates from the optimal schedule. Clearly, such

competitive ratio requires an optimal solution. Consequently, in an experimental study

it is necessary to find a solution which is as close as possible to the optimal solution to

determine correctly such competitive ratio, thus to capture precisely the worst case. To

achieve such goal, we proposed an approach to compute near optimal solution. In this

approach, we are interested only to find the slots of time in which the machine is busy

regardless of which or how many jobs are executed in this busy interval. Before we

explain the algorithm we describe how one can calculate the equal priority completion

time from the produced schedule. Let [Ai(k), Bi(k)] denotes to the ith busy interval of

machine Mk. Assume that l jobs with equal processing times, pj = p and p→ 0, are ex-

ecuted during this busy interval [Ai(k), Bi(k)]. Therefore, we have l · p =
(
Bi(k) − Ai(k)

)
.

The equal priority completion time can be obtained as follows:

∑
j

pj Cj = p
∑
j

Cj

= p
(
l · Ai(k) + p (1 + 2 + · · ·+ l)

)
= p

(
l · Ai(k) + p

l(l + 1)

2

)

= p · l
(
Ai(k) +

1

2
l · p

)
+

1

2
l · p2

= (Bi(k) − Ai(k))
(
Ai(k) +

1

2

(
Bi(k) − Ai(k)

))
+

1

2

∑
j

p2
j

=
1

2

(
B2

i(k) − A2
i(k)

)
+

1

2

∑
j

p2
j

5.2 AN APPROACH FOR OPTIMAL SOLUTION 109

Next, we describe our approach. Firstly, we sort the jobs in a list L according to the

non-decreasing order of their release dates such that jobs with the same release date are

sorted according to the non-increasing order of their processing times. The algorithm

is as the following:

Step 1 Set r = 0 and h(k) = 1, Ah(k) = Bh(k) = 0 for each machine Mk.

Step 2 For every machine Mk, if Bh(k) < r then increase h(k) by one and let Ah(k) = r.

That is, we start a new busy interval for this machine.

Step 3 For every idle machine Mk at the release date r, schedule the next job in the list

L on such machine. Devote the completion time of this job to the value Bh(k).

Then re-index the machines such that Bh(1) ≥ Bh(2) ≥ · · · ≥ Bh(m).

Step 4 let k = λp = λm = 0.

Step 5 Compute a time instant

TargetLine =

(∑
rj<r<Cj

(Cj − r) +
∑

rj=r
pj

)
− λp

m− λm

increase k by 1;

Step 6 For the machine Mk, if Bh(k) > TargetLine then put λp = λp + (Bh(k) − r) and

decrease λm by 1 and go to Step 5.

Otherwise, put Bh(k) = TargetLine for all remaining machines.

Step 7 Remove all remaining jobs with release date r from the list L.

If L 6= φ, let r be the next release date and go to Step 2.

Comment So far, we have determined all busy intervals of each machine. Now, we are

ready to compute the utilization (U) and the equal priority completion time

(EPCT) at each release date r.

110 CHAPTER 5 EXPERIMENTAL STUDY

Step 8 At each release date r, calculate the following for every machine Mk:

U =
h∑

i=1

min{Bi(k), r} − Ai(k) and

EPCT =
1

2

∑
rj≤r

p2
j +

1

2

h∑
i=1

(
B2

i(k) − A2
i(k)

)

A detailed description of such algorithm is presented in AppendixA .

5.3 Analysis of the Results

In this section we present the experimental results of our tests and give a detailed

analysis of the performance of the nondelay online algorithm with respect to our new

criteria which have been introduced formally in the theoretical part. This performance

is analyzed for instances in which the processing times of the jobs were generated

according to the Exponential, Chi-Square, and Lognormal distribution.

Let us first discuss the computational results obtained for a small number of ma-

chines. In the following figures, we give the experiments for m = 3, 5, 10, 15, and 20 a

number of machines. For every number of machines, we present two figures. One de-

scribes the results for the utilization criterion and the other for the results of the equal

priority completion time criterion. In each figure, the behavior of the (maximum) com-

petitive ratios for various instances with different sizes is depicted. The size of any

instance is described by the total number of jobs in such instance. Moreover, there

are three different curves in every figure. Each one is corresponding to the probability

distribution which is used to model the job processing times.

Figures 5.1-5.5(top) illustrate the results for the utilization criterion when the num-

ber of machines m is 3, 5, 10, 15, and 20, respectively. Figures 5.1-5.5(bottom) illus-

trate the results for equal priority completion time criterion with the same numbers

of machines. As we observed from our theoretical investigation, we found from these

experimental results that the ratios of the utilization criterion follow the same trend of

the equal priority completion time ratios even with different machine numbers. One

5.3 ANALYSIS OF THE RESULTS 111

can easily note this observation by comparing the curves of the utilization with the cor-

responding curves of the equal priority completion time for each number of machines.

The experimental results which show this similarity of the trends of both criteria are

reported in Appendix B. Moreover, in all cases of machine numbers, we find another

observation that the competitive ratios decrease generally with increasing size of the

instance. Therefore, one can achieve the worst ratio only when the considered instance

has a small number of jobs.

For the utilization, the largest obtained ratio is 1.31 which has been achieved from

the Chi-Square distribution when m = 15, see Figure 5.4(top). Clearly, this value is very

close to our tight bound 4
3
≈ 1.33 which we have derived theoretically in Chapter 3.

Consequently, these experimental results are coincident with our theoretical results for

the utilization criterion.

In fact, in practice the behavior of the algorithm is frequently much better than

the theoretical estimation. For the equal priority completion time criterion, no ra-

tio could reach our upper bound 1.25 which we have obtained theoretically for such

criterion in Chapter 4. Moreover, the experimental results could not reach even the

value 1+
√

2
2
≈ 1.207 in any case. The largest ratio 1.65 is obtained from the Chi-Square

distribution when the number of machines m = 3 and from the exponentially dis-

tributed job sizes when the number of machines m = 20, see Figures 5.1(bottom)

and 5.5(bottom) respectively. These experimental results confirm our conjecture in the

sense that KAWAGUCHI’s and KYAN’s result for the single release date case 1+
√

2
2

is a

tight bound for the online case as well.

As we mentioned above, the competitive ratio, for both criteria, decreases in general

with the instances that contain larger number of jobs. This general observation holds

for all distribution. However, we observed that the behavior of the competitiveness

depends on the type of the distribution used to generate the processing times of the

jobs. Let us discuss that in more details.

The following description of the developments of the competitive ratios holds for

both criteria (utilization and equal priority completion time) in all cases, where it

turned out that their trends are almost similar. The developments of the ratios un-

112 CHAPTER 5 EXPERIMENTAL STUDY

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0 100 200 300 400 500 600 700 800 900

R
at

io
 o

f U
til

iz
at

io
n

Size of problem

Exponential Distribution
Chi-Square Distribution
Lognormal Distribution

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 0 100 200 300 400 500 600 700 800 900

R
at

io
 o

f E
qu

al
 P

ri
or

ity
 C

om
pl

et
io

n
T

im
e

Size of problem

Exponential Distribution
Chi-Square Distribution
Lognormal Distribution

Figure 5.1: The competitive ratio of the utilization and equal priority completion time with
different number of jobs when m = 3.

5.3 ANALYSIS OF THE RESULTS 113

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0 200 400 600 800 1000 1200 1400 1600

R
at

io
 o

f U
til

iz
at

io
n

Size of problem

Exponential Distribution
Chi-Square Distribution
Lognormal Distribution

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 0 200 400 600 800 1000 1200 1400 1600

R
at

io
 o

f E
qu

al
 P

ri
or

ity
 C

om
pl

et
io

n
T

im
e

Size of problem

Exponential Distribution
Chi-Square Distribution
Lognormal Distribution

Figure 5.2: The competitive ratio of the utilization and equal priority completion time with
different number of jobs when m = 5.

114 CHAPTER 5 EXPERIMENTAL STUDY

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0 200 400 600 800 1000 1200 1400 1600 1800

R
at

io
 o

f U
til

iz
at

io
n

Size of problem

Exponential Distribution
Chi-Square Distribution
Lognormal Distribution

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 0 200 400 600 800 1000 1200 1400 1600 1800

R
at

io
 o

f E
qu

al
 P

ri
or

ity
 C

om
pl

et
io

n
T

im
e

Size of problem

Exponential Distribution
Chi-Square Distribution
Lognormal Distribution

Figure 5.3: The competitive ratio of the utilization and equal priority completion time with
different number of jobs when m = 10.

5.3 ANALYSIS OF THE RESULTS 115

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 0 500 1000 1500 2000 2500 3000 3500 4000

R
at

io
 o

f U
til

iz
at

io
n

Size of problem

Exponential Distribution
Chi-Square Distribution
Lognormal Distribution

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 0 500 1000 1500 2000 2500 3000 3500 4000

R
at

io
 o

f E
qu

al
 P

ri
or

ity
 C

om
pl

et
io

n
T

im
e

Size of problem

Exponential Distribution
Chi-Square Distribution
Lognormal Distribution

Figure 5.4: The competitive ratio of the utilization and equal priority completion time with
different number of jobs when m = 15.

116 CHAPTER 5 EXPERIMENTAL STUDY

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
at

io
 o

f U
til

iz
at

io
n

Size of problem

Exponential Distribution
Chi-Square Distribution
Lognormal Distribution

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
at

io
 o

f E
qu

al
 P

ri
or

ity
 C

om
pl

et
io

n
T

im
e

Size of problem

Exponential Distribution
Chi-Square Distribution
Lognormal Distribution

Figure 5.5: The competitive ratio of the utilization and equal priority completion time with
different number of jobs when m = 20.

5.3 ANALYSIS OF THE RESULTS 117

der the job instances generated by using exponential and chi-square distributions are

very close to each other. That is, the trends of the ratios are almost coincident for these

distributions. For the instances with a small size of up to about 120m jobs, the compet-

itive ratio rapidly drops to reach a value around 1.05. After that the competitiveness

tends to become more stable with very small oscillations until it converges toward 1.02

for the instances with a size of around 180m jobs.

For the Lognormally distributed job sizes, it is obvious that the competitive ratios

oscillate greatly in the beginning. The magnitude of these oscillations tends to become

smaller in the cases of larger machine numbers, compare Figure 5.1 with 5.5. This

fluctuations of the competitive ratios converge gradually and slowly until the trend

becomes stable around 1.05. It is possible to note a higher stability and faster con-

vergence of the behavior of the competitive ratios under exponential and Chi-Square

distribution in comparison to the corresponding behavior under the log-normal one.

Finally, it is also possible to note that the ratios with the log-normal distribution

tend to be significantly higher than the ratios obtained by using the exponential and

the chi-square distribution in all the different cases. This concludes that the nondelay

online algorithm performs worse when the job instances are generated by using log-

normal distribution.

The key point for the interpretation of these experimental results is the coefficient

of variation of the job instances. It is well known that the variability in the job sizes

is very low for the instances which were generated from either the exponential or the

chi-square distribution. For example, the exponential distribution has a mean squared

coefficient of variation of 1 independently of its mean. For such reason, these distribu-

tions generate job instances for which the competitive ratios of the algorithm are quite

stable. On the other hand, by using log-normal distribution, it is possible to gener-

ate instances of jobs with extremely variable job sizes. That is, the variability in the job

sizes is much higher for such distribution, thus obtaining bigger fluctuations and much

slower convergence. This turned out that the variability in the job sizes is the crucial

factor for the performance of the online algorithm. A similar experimental result has

been obtained in [3] but for the makespan criterion.

118 CHAPTER 5 EXPERIMENTAL STUDY

Size of Instance
m

9m 12m 15m 18m

3 1.25 1.22222 1.2 1.2

5 1.25 1.19048 1.18644 1.2

10 1.25 1.16667 1.20301 1.175

15 1.2381 1.2 1.19008 1.15789

20 1.25926 1.18378 1.16418 1.173

50 1.24359 1.1631 1.20242 1.17021

100 1.23239 1.15916 1.18919 1.13314

200 1.21951 1.14314 1.16959 1.14041

500 1.20546 1.14779 1.19495 1.15543

Table 5.1: The competitive ratios of the utilization criterion for exponentially distributed job
processing times.

All experimental results presented so far are for simulation with up to 20 machines.

We obtained more experiments for job instances with 50, 100, 200, and 500 machines to

consider the effect of larger machine numbers on the worst competitive ratios. As we

mentioned above the the worst performance of the online algorithm can be obtained

only with a small number of the jobs. Therefore, we considered job instances with four

different number of jobs. For each number of machines (50, 100, 200, and 500), we gen-

erate job instances with 9m, 12m, 15m, and 18m number of jobs by applying the same

probability distributions used before. The results are reported in the Tables 5.1-5.6.

The results for the small number of machines are presented in these tables as well to

compare them with the results obtained for larger number of of machines. Tables 5.1-

5.3 present the competitive ratios of the utilization criterion under different machine

numbers for job instances generated by using exponential, chi-square, and log-normal

distribution respectively. From these results, we found that the competitive ratios for

larger machine numbers are close to the competitive ratios under small number of ma-

chines. For the exponentially distributed job sizes, the largest competitive ratio is 1.259

which has been attained when the number of machines m = 20 and the average num-

5.3 ANALYSIS OF THE RESULTS 119

Size of Instance
m

9m 12m 15m 18m

3 1.25 1.25 1.2 1.22727

5 1.25 1.17241 1.17857 1.19048

10 1.26667 1.2 1.19048 1.15517

15 1.30435 1.18421 1.19048 1.16949

20 1.23913 1.23457 1.16471 1.13208

50 1.21488 1.18836 1.17057 1.1254

100 1.21951 1.16032 1.17647 1.15268

200 1.21702 1.15226 1.17857 1.14971

500 1.20482 1.15364 1.19066 1.13723

Table 5.2: The competitive ratios of the utilization criterion for job instances generated by
chi-square distribution.

Size of Instance
m

9m 12m 15m 18m

3 1.25 1.25 1.2 1.21053

5 1.28571 1.19048 1.16667 1.17647

10 1.26667 1.15385 1.22807 1.16505

15 1.25 1.21429 1.2561 1.13846

20 1.21212 1.18462 1.18812 1.18421

50 1.19048 1.17021 1.20365 1.20148

100 1.25949 1.15234 1.21359 1.1592

200 1.28205 1.15976 1.20395 1.16306

500 1.31926 1.16974 1.20643 1.15292

Table 5.3: The competitive ratios of the utilization criterion for job instances generated by
using log-normal distribution.

120 CHAPTER 5 EXPERIMENTAL STUDY

Size of Instance
m

9m 12m 15m 18m

3 1.14783 1.14695 1.10714 1.12827

5 1.13514 1.12727 1.1102 1.12271

10 1.11064 1.104 1.09993 1.08279

15 1.14114 1.12038 1.10197 1.11712

20 1.16503 1.1103 1.09734 1.10398

50 1.1382 1.09542 1.1092 1.09379

100 1.15646 1.11631 1.11296 1.08232

200 1.13889 1.08392 1.1121 1.08266

500 1.1348 1.08488 1.1174 1.09121

Table 5.4: The competitive ratios of the equal priority completion time criterion under expo-
nentially distributed job processing times.

ber of jobs equal to 9m, see Table 5.1. Further, the largest competitive ratio for the job

instances generated from chi-square distribution is 1.304 which has been gained when

the number of machines m = 15 with 9m average number of jobs. An interesting result

is achieved from the job instances generated by using log-normal distribution with 9m

as average number of jobs and when the number of machines m = 500. Whereas the

worst achievable competitive ratio among all considered cases has been gotten from

this large number of machines. This worst competitive ratio is 1.319 ≈ 1.32 which is

almost our theoretical bound 1.33, see Table 5.3. This turns out that the worst ratio

can be obtained from larger machine numbers as well. As expected, the experimental

results could not achieve ratio larger than our theoretical bound for the utilization cri-

terion although we considered several cases of machine numbers. This again confirms

the validation of our theoretical result for such criterion.

For equal priority completion time, the competitive ratios under different number

of machines are presented in Tables 5.4-5.6 for job instances again generated by using

exponential, chi-square, and log-normal distribution respectively. We can conclude

that the number of machines has no effect on the worst competitive ratio. For most

5.3 ANALYSIS OF THE RESULTS 121

Size of Instance
m

9m 12m 15m 18m

3 1.14286 1.16522 1.09901 1.14286

5 1.14152 1.13479 1.10992 1.11353

10 1.14362 1.10431 1.11821 1.10345

15 1.15152 1.09861 1.08986 1.11793

20 1.11416 1.13799 1.10156 1.07992

50 1.10295 1.10464 1.10145 1.08211

100 1.11015 1.09485 1.11356 1.09811

200 1.11109 1.085 1.10177 1.0848

500 1.1037 1.09533 1.11704 1.07541

Table 5.5: The competitive ratios of the equal priority completion time criterion for job in-
stances generated by chi-square distribution.

Size of Instance
m

9m 12m 15m 18m

3 1.14783 1.16129 1.1 1.10497

5 1.15909 1.12579 1.125 1.09804

10 1.14581 1.09072 1.13256 1.10004

15 1.12822 1.12036 1.14239 1.08632

20 1.1089 1.11142 1.10646 1.1057

50 1.11467 1.10945 1.12246 1.11961

100 1.1028 1.09466 1.11762 1.10889

200 1.13093 1.08797 1.11459 1.09478

500 1.11562 1.08517 1.10869 1.09836

Table 5.6: The competitive ratios of the equal priority completion time criterion for job in-
stances generated by using log-normal distribution.

122 CHAPTER 5 EXPERIMENTAL STUDY

cases, it is noticeable that the competitive ratios for small and large number of ma-

chines are not far from each other. Although the worst ratios for job instances gener-

ated from the chi-square and log-normal distributions are achieved under small num-

ber of machines, the corresponding ratios for exponentially distributed job sizes are

obtained with larger machine numbers. The largest competitive ratios for chi-square

and log-normal distribution are 1.165 and 1.161 respectively. Both results are attained

from job instance with 12m average number of jobs and when the number of machines

m = 3, see Tables 5.5 and 5.6. However, the worst two competitive ratios for expo-

nentially distributed job processing times are 1.165 and 1.157 which are obtained with

9m average number of jobs. These values are reached when the number of machines

m = 20 and 100 respectively, see Table 5.4. These experimental results for larger ma-

chine numbers again confirm our theoretical bound 1.25 for equal priority completion

time and even confirm our conjecture that the bound 1+
√

2
2

is a tight bound for the

online problem as well.

123

Chapter 6

Conclusion

In this chapter, we summarize the main contributions and results presented in the

thesis. This thesis has provided work and progress relevant to online scheduling

and scheduling criteria. The work is motivated by some practical applications which

may occur in the electronic commerce. We have investigated the non-clairvoyant on-

line scheduling problem on identical parallel machines from the owner point of view.

Therefore, the objective was to maximize system utilization. The main contribution of

this work was a formal introduction of two new online scheduling criteria that more

accurately capture system utilization. Further, the analysis of the worst case difference

between any nondelay schedules with those criteria is presented. In fact, our study can

help researchers and system owners to use our new criteria as a well alternative to the

usually used makespan criterion for machine utilization.

Firstly, we have considered the problem to determine performance measures that

are well suited to evaluate the utilization of identical machines in a specific time in-

terval. For the parallel machine problems, there is a published fact which states that

the makespan is closely related to the utilization. However, in this work we have

shown that this relation does not always hold. As a consequence, the commonly used

makespan criterion may not reflect the true utilization of the system. To vanquish this

shortcoming of the makespan, we have introduced formally two new alternative cri-

teria utilization and equal priority completion time. Further, a comparison of our criteria

with the classic makespan criterion has been provided. As a result, we found that our

124 CHAPTER 6 CONCLUSION

new criteria are well suited to quantitatively describe machine utilization particulary

for online scheduling problems. Furthermore, we observed that while the utilization

and equal priority completion time criteria seem to behave in a similar fashion they do

not yield the same quantitative results.

After the formal introduction of our criteria, we considered the maximization prob-

lem of our first criterion (utilization). Further, the worst competitive factor of such

criterion is derived. We obtained an upper bound of 4
3

for such criterion. Moreover, we

provided the proof of the tightness of such bound.

Next, the equal priority completion time minimization problem is addressed. We

showed that the competitive ratio of the total weighted completion time criterion is

unbounded when the jobs have arbitrary weights (i.e. jobs have different priorities).

For equal priority jobs, that is, wj = pj holds for all jobs, we have proven an almost

tight competitive factor of our second criterion (equal priority completion time) for

our online model. We derived an upper bound of 1.25 for such criterion. Moreover, we

conjecture that the bound 1+
√

2
2
≈ 1.207, which has been derived by KAWAGUCHI and

KYAN for single release date case, is the best possible factor for the multi-release date

as well. At the end of the theoretical part, we have shown that it is not appropriate to

use the equal priority flow time criterion which is modelled in the same fashion as the

equal priority completion time to describe machine utilization.

Finally, we provided an experimental part of this research. In this part, we exper-

imentally evaluate the performance of the nondelay online algorithm with respect to

our new criteria which are provided formally before. The performance of such algo-

rithm has been evaluated according to job instances in which the job processing times

were generated by using various fundamental probability distributions. As a result of

our experimental investigation, it is possible to conclude the following.

The performance of the nondelay online algorithm for our criteria depends heavily

on the characteristics of the generated job instances. Thus, the results differ substan-

tially depending on the type of the respective distribution which is used to model and

generate the job instances. Whereas, we found that the ratios for the job instances

generated by log-normal distribution are worse than the ratios for the job instances

125

generated by either exponential or chi-square distribution and this result holds for

all considered cases. The reason is that the job instances which are modelled by log-

normal distribution exhibit a higher variability in the job processing times and that the

results mainly depend on how strong the effects of very long jobs are. Consequently,

our computational results show the importance of selecting the right probability dis-

tribution when assessing online nondelay schedules experimentally.

The worst case ratio can be obtained only from job instances with a small number of

jobs. Whenever the size of the instance increases the worst competitive ratio decreases

in general gradually. In addition, we observed that the behavior of the competitive

ratio differ according to the used distribution. It is noticeable for the job instances,

which are generated by the exponential and chi-square distribution, that the compet-

itive ratios become stable when the ratio number of jobs
m

becomes greater than 50. On the

other hand, the experiments for the job instances, which are generated from log-normal

distribution, showed that the competitive ratios are scientifically higher and fluctuate

greatly. In this case, the ratios converge much slower whereas the competitive ratios

stabilize only when the job instance contains a large number of jobs. We noticed that

the competitive ratios become stable only when the ratio number of jobs
m

becomes greater

that 200.

An important result of the experiments is that although the competitive ratios of

the utilization and equal priority completion time are not quantitatively the same, their

trends are almost similar for all considered cases. This experimental observation con-

firms our expectation in the sense that there may exist a close relationship between

those criteria.

For larger machine numbers, we turned out from most considered cases that the

performance of the online nondelay schedule can be predicted somewhat well from

their performance under smaller machine numbers.

As a confirmation of our theoretical results, the worst attainable competitive ratio

for utilization was 1.32. This experimental result is almost our bound 4
3

which we

have derived theoretically for such criterion. For equal priority completion time, the

worst achievable competitive ratio was 1.165. This result insures and validates again

126 CHAPTER 6 CONCLUSION

our theoretical bound 1.25 for such criterion. Moreover, this result even confirms our

expectation that the bound 1+
√

2
2

is the tight bound of the equal priority completion

time for multi-release date case.

127

Appendix A

Near-Optimal Algorithm

The following is a detailed description of the algorithm which produces schedules with

near-optimal solution. The approach of this algorithm is given in Section 5.2.

128 CHAPTER A NEAR-OPTIMAL ALGORITHM

Algorithm: Near Optimal approach.
Input: Instance for Pm|rj|∗ , the list L
Output: Optimum utilization U r and equal priority completion time Cr

equ

forall machines do
initialize h(k)← 1, Ah(k) ← 0, Bh(k) ← 0 , lk ← 0,

∑
2 ← 0;

while L 6= ∅ do
let r be the smallest release date in list L;
compute

∑
1 ←

∑
pj ,

∑
2 ←

∑
2 +

∑
p2

j for all jobs released at r;
foreach machine k do

if Bh(k) > r then
∑

1 =
∑

1 +(Bh(k) − r);
else if Bh(k) < r then

h(k) + +;
Ah(k) = r;

initialize M ← m, k ← 1, M∗ ← {Mk|k = 1, · · · , m}, ∑equ ← 0;
TargetLine← r + (

∑
1 /M);

while k ≤ m do1

while Mk ∈M∗ do
if lk > r then

if lk >TargetLine then
remove Mk from M∗;2

Bh(k) ← lk;∑
1 ←

∑
1−(Bh(k) − r);

reduce M by one;
calculate new: TargetLine← r + (

∑
1 /M);

k ← 1;
Go To Step 1;

Bh(k) ← TargetLine;3

increase k by one;
Go To Step 1;

else
pick a first job next from the list L;
if (r + pnext) >TargetLine then

lk ← r + pnext;
Go To Step 2;

Go To Step 3;

k++;
foreach machine k do

for i← 1 to h(k) do∑
equ ←

∑
equ +1

2
(Bi − Ai)

2 + Ai(Bi − Ai);
if Ai < r then

∑
U ←

∑
U +min{r, Bi} − Ai;

Cr
equ ←

∑
equ +1

2

∑
2;

U r ← ∑
U ;

if Bh(k) =TargetLine then lk = 0;
remove the remanning jobs with r from L;

129

Appendix B

Additional Experimental Results

The following figures represent the experimental results which are obtained to explain

the close relation between the behavior of the competitive ratios of the utilization and

the corresponding behavior of the competitive ratios of the equal priority completion

time.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 0 100 200 300 400 500 600 700 800 900

U
til

iz
at

io
n

/ E
qu

al
 P

ri
or

ity
 C

om
pl

et
io

n
T

im
e

Size of problem

Exponential Distribution
Chi-Square Distribution
Lognormal Distribution

Figure B.1: The ratios between the competitive ratio of the utilization and the competitive ratio
of the equal priority completion time when m = 3.

130 CHAPTER B ADDITIONAL EXPERIMENTAL RESULTS

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 0 200 400 600 800 1000 1200 1400 1600

U
til

iz
at

io
n

/ E
qu

al
 P

ri
or

ity
 C

om
pl

et
io

n
T

im
e

Size of problem

Exponential Distribution
Chi-Square Distribution
Lognormal Distribution

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 0 200 400 600 800 1000 1200 1400 1600 1800

U
til

iz
at

io
n

/ E
qu

al
 P

ri
or

ity
 C

om
pl

et
io

n
T

im
e

Size of problem

Exponential Distribution
Chi-Square Distribution
Lognormal Distribution

Figure B.2: The ratios between the competitive ratio of the utilization and the competitive ratio
of the equal priority completion time when m = 5 (top) and m = 10 (bottom).

131

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 0 500 1000 1500 2000 2500 3000 3500 4000

U
til

iz
at

io
n

/ E
qu

al
 P

ri
or

ity
 C

om
pl

et
io

n
T

im
e

Size of problem

Exponential Distribution
Chi-Square Distribution
Lognormal Distribution

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

U
til

iz
at

io
n

/ E
qu

al
 P

ri
or

ity
 C

om
pl

et
io

n
T

im
e

Size of problem

Exponential Distribution
Chi-Square Distribution
Lognormal Distribution

Figure B.3: The ratios between the competitive ratio of the utilization and the competitive ratio
of the equal priority completion time when m = 15 (top) and m = 20 (bottom).

133

Bibliography

[1] F. Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon, S. Khanna, I. Milis,

M. Queyranne, M. Skutella, C. Stein, and M. Sviridenko, Approximation schemes

for minimizing average weighted completion time with release dates, Proceedings of the

40th Annual IEEE Symposium on Foundations of Computer Science, 1999, pp. 32–

43. (Cited on pages 79, 80 and 81.)

[2] S. Albers, Better bounds for online scheduling, SIAM Journal on Computing 29

(1999), no. 2, 459–473. (Cited on page 19.)

[3] S. Albers and B. Schröder, An experimental study of online scheduling algorithms,

ACM Journal of Experimental Algorithms 7 (2002), 3. (Cited on page 117.)

[4] N. Alon, Y. Azar, G. J. Woeginger, and T. Yadid, Approximation schemes for schedul-

ing on parallel machines, Journal of Scheduling 1 (1998), 55–66. (Cited on page 79.)

[5] K. R. Baker, Introduction to Sequencing and Scheduling, John Wiley & Sons Ltd. New

York, 1974. (Cited on page 1.)

[6] Y. Bartal, S. Leonardi, A. Marchetti-Spaccamela, J. Sgall, and L. Stougie, Multipro-

cessor scheduling with rejection, SIAM Journal on Discrete Mathematics 13 (2000),

no. 1, 64–78. (Cited on page 21.)

[7] L. Becchetti and S. Leonardi, Nonclairvoyant scheduling to minimize the total flow time

on single and parallel machines, Journal of the ACM 51 (2004), no. 4, 517–539. (Cited

on page 24.)

134 Bibliography

[8] L. Becchetti, S. Leonardi, A. Marchetti-Spaccamela, and K. Pruhs, Semi-clairvoyant

scheduling, ESA 2003, LNCS 2832, 2003, pp. 67–77. (Cited on page 20.)

[9] R. Bellman, Dynamic Programming, Princeton University Press., 1957. (Cited on

page 27.)

[10] M. Bender, S. Muthukrishnan, and R. Rajaraman, Improved algorithms for stretch

scheduling, ACM/SIMA Symposium on Discrete Algorithms, 2002, pp. 762–771.

(Cited on page 20.)

[11] A. Borodin and R. El-Yaniv, Online Computation and Competitive Analysis, Cam-

bridge University Press, 1998. (Cited on pages 18, 23 and 24.)

[12] P. Brucker, Scheduling Algorithms, Springer Verlag, 2001. (Cited on page 3.)

[13] S. Chakrabarti, C. Phillips, A.S. Schulz, D.B. Shmoys, C. Stein, and J. Wein, Im-

proved scheduling algorithms for minsum criteria, Proceedings of the 1996 Interna-

tional Colloquium on Automata, Languages and Programming (F. Meyer auf der

Heide and B. Monien, eds.), Springer–Verlag, Lecture Notes in Computer Science

LNCS 1099, 1996, pp. 646–657. (Cited on pages 81 and 82.)

[14] C. Chekuri, R. Motwani, B. Natarajan, and C. Stein, Approximation techniques for

average completion time scheduling, SIAM Journal on Computing 31 (2001), no. 1,

146–166. (Cited on page 82.)

[15] E. Davis and J.M. Jaffe, Algorithms for scheduling tasks on unrelatead processor, Jour-

nal of the ACM 28 (1981), 721–736. (Cited on page 28.)

[16] M. A. Dempster, J. K. Lenstra, and A. Rinnooy Kan, Deterministic and stochastic

scheduling, Kluwer Academic Publishers, 1982. (Cited on page 27.)

[17] L. W. Dowdy, E. Rosti, G. Serazzi, and E. Smirni, Scheduling issues in high-

performance computing, ACM SIGMETRICS Performance Evaluation Review, New

York, USA, March 1999, pp. 60–69. (Cited on page 55.)

Bibliography 135

[18] A. Fiat and editors G. J. Woeginger, Online algorithms: The State of the Art, Springer,

1998. (Cited on page 18.)

[19] S. French, Sequencing and scheduling, Ellis Horwood Limited, 1982. (Cited on

page 3.)

[20] M. Garey and D. Johnson, Computers and intractability: A guide to the theory of np-

completeness, W. H. Freeman, San Francisco, 1979. (Cited on pages 4 and 79.)

[21] E. Gelembe, V. Srinivasan, S. Seshadri, and N. Gautam, Optimal policies for ATM-

cell scheduling and rejection, Telecommunication System 18 (2001), no. 4, 331–358.

(Cited on page 21.)

[22] P. C. Gilmore and R. E. Gomory, A linear programming approach to cutting stock

problem, Operations Research 9 (1961), 848–859. (Cited on page 27.)

[23] R. L. Graham, Bounds for certain multiprocessor anomalies, Bell System Technical

Journal 45 (1966), 1563–1581. (Cited on page 27.)

[24] R.L. Graham, Bounds on multiprocessor timing anomalies, SIAM Journal of Applied

Mathematics 17 (1969), 416–429. (Cited on page 28.)

[25] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan, Optimization

and approximation in deterministic sequencing and scheduling: A survey, Annals of

Discrete Mathematics 5 (1979), 287–326. (Cited on page 11.)

[26] B. Das Gupta and M. A. Palis, Online real-time preemptive scheduling of jobs with

deadlines on multiple machines, Journal of Scheduling 4 (2001), 297–312. (Cited on

page 21.)

[27] S. K. Gupta and J. Kyparisis, Single machine scheduling research, OMEGA Interna-

tional Journal of Managemant Science 15 (1987), 207–227. (Cited on page 12.)

[28] L. Hall, D. Shmoys, and J. Wein, Scheduling to minimize average completion time: Off-

line and on-line algorithms, Proceedings of the 7th SIAM Symposium on Discrete

Algorithms, January 1996, pp. 142–151. (Cited on page 80.)

136 Bibliography

[29] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein, Scheduling to minimize aver-

age completion time: Off-line and on-line approximation algorithms, Mathematics of

Operations Research 22 (1997), 513–544. (Cited on pages 79, 80 and 81.)

[30] L.A. Hall and D.B. Shmoys, Approximation schemes for constrained scheduling prob-

lems, Processing of the 30th Ann. IEEE Symp. on Foundations of Computer Sci.,

1989, pp. 134–139. (Cited on page 28.)

[31] M. Held and R. M. Karp, A dynamic programming approach to sequencing problems, J.

SIAM 10 (1962), 196–210. (Cited on page 27.)

[32] D. S. Hochbaum, Approximation algorithms for np–hard problems, PWS Publishing

Company, 1995. (Cited on page 5.)

[33] K.S. Hong and J.Y.-T. Leung, On-line scheduling of real-time tasks, IEEE Transations

on Computing 41 (1992), 1326–1331. (Cited on page 28.)

[34] J. R. Jackson, Scheduling a production line to minimize maximum tardiness, Mgmt Sci.

Res. Project, UCLA (1955). (Cited on page 26.)

[35] D. S. Johnson, Approximation algorithms for combinatorial problems, Journal of Com-

puter and System Sciences 9 (1974), 256–278. (Cited on page 5.)

[36] S. M. Johnson, Optimal two- and three-stage production schedules with setup times in-

cluded, Naval Research Logistics Quarterly 1 (1954), 61–67. (Cited on page 26.)

[37] B. Kalyanasundaram and K. Pruhs, Speed is as powerful as clairvoyance, Journal of

the ACM 47 (2000), no. 4, 217–243. (Cited on page 25.)

[38] A. H. G. Rinnooy Kan, Machine scheduling problems, Martinus Nijhoff, The Hague,

1976. (Cited on page 34.)

[39] H. D. Karatza, A simulation based performance analysis of scheduling in a parallel sys-

tems, Proceedings of the 12th European Simulation Symposium and Exhibition,

2000, pp. 582–586. (Cited on page 55.)

Bibliography 137

[40] D. Karger, S. J. Phillips, and E. Torng, A better algorithm for an ancient scheduling

problem, J. Algorithms 20 (1996), no. 2, 400–430. (Cited on page 19.)

[41] A. Karlin, M. Manasse, L. Rudolph, , and D.D. Sleator, Competitive snoopy caching,

Algorithmica 3 (1988), 79–119. (Cited on page 22.)

[42] R. M. Karp, Reducibility among combinatorial problem, in: Complexity of computer

computations, R. E. Miller and J. W. Thatcher (eds.), Plenum Press, New York, 1972.

(Cited on pages 4 and 27.)

[43] , On the computational complexity of combinatorial problems, Networks 5

(1975), 45–68. (Cited on page 27.)

[44] T. Kawaguchi and S. Kyan, Worst case bound of an LRF schedule for the mean weighted

flow-time problem, SIAM Journal on Computing 15 (1986), no. 4, 1119–1129. (Cited

on pages 10, 38, 39, 79, 80, 86, 87, 94 and 95.)

[45] K. Kempf, R. Uzsoy, and S. Smith ans K. Gary, Evalution and comparison of produc-

tion schedules, Computer in Industry 42 (2000), 203–220. (Cited on pages 7, 38

and 60.)

[46] J. Labetoulle, E.L. Lawler, J.K. Lenstra, and A.H.G Rinnooy Kan, Preemptive

scheduling of uniform machines subject to release dates, in: W.R. Pullybank (ed.),

Progress in Combinatorial Optimization, Academic Press, Toronto, 1984, pp. 245–

261. (Cited on page 21.)

[47] E. L. Lawer and J. M. Moore, On functional equation and its application to resource

allocation and sequencing problem, Mgmt. Sci. 16 (1969), 77–84. (Cited on page 27.)

[48] E. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D. Shmoys, Sequencing and

scheduling: Algorithms and complexity, Handbook of Operations Research and Man-

agement Science, vol. 4, Elsevier Science Publishers, 1993, pp. 445–522. (Cited on

page 78.)

138 Bibliography

[49] E.L. Lawler, Recent results in the theory of machine scheduling, A. Bachem, M.

Grötschel, and B. Korte (eds.), Mathematical Programming: Bonn 1982. The State

of the Art, Berlin: Springer, 1982, pp. 202–234. (Cited on page 5.)

[50] C. B. Lee, Y. Schwartzman, J. Hardy, and A. Snavely, Are user runtime estimates

inherently inaccurate?, Proceedings of the 10th Workshop on Job Scheduling Strate-

gies for Parallel Processing, June 2004, pp. 153–161. (Cited on pages 6 and 58.)

[51] J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker, Complexity of machine schedul-

ing problems, Annals of Discrete Mathematics 1 (1977), 343–362. (Cited on pages 5

and 79.)

[52] X. Lu, R. A. Sitters, and L. Stougie, A class of on-line scheduling algorithms to mini-

mize total completion time, Operations Research Letters 31 (2003), 232–236. (Cited

on page 82.)

[53] M. Mastrolilli, Scheduling to minimize max flow time: Offline and online algorithms,

International Journal of Foundations and Computer Science 15 (2004), no. 2, 385–

401. (Cited on pages 17 and 34.)

[54] N. Megow and A. S. Schulz, Scheduling to minimize average completion time revisited,

Operations Research Letters 32 (2004), 485–490. (Cited on page 82.)

[55] N. Megow, M. Uetz, and T. Vredeveld, Stochastic Online Scheduling on Parallel Ma-

chines, To appear in Proceedings of 2nd Workshop on Approximation and Online

Algorithms (WAOA), September 2004. (Cited on page 83.)

[56] R. H. Möhring and F. J. Radermacher, An introducation to stochastic scheduling prob-

lems, In Contributions to Operations Research (Berlin) (K. Neumann and D. Pal-

lachke (eds.), eds.), Springer–Verlag, Lecture Notes in Economics and Mathemat-

ical Systems 240, 1985, pp. 72–130. (Cited on page 27.)

Bibliography 139

[57] R. H. Möhring, A. S. Schulz, and M. Uetz, Approximation in stochastic scheduling:

The power of LP-based priority policies, Journal of the ACM 46 (1999), no. 6, 924–942.

(Cited on pages 82 and 83.)

[58] R. Motwani, S. Phillips, and E. Torng, Non-clairvoyant scheduling, Theoretical Com-

puter Science 130 (1994), no. 1, 17–47. (Cited on pages 20 and 57.)

[59] A. W. Mu’alesm and D. G. Feitelson, Utilization, predictability, workloads, and user

runtime estimates in scheduling ibm sp2 with backfilling, IEEE Trans. Parallel & Dis-

tributed Syst. 12 (2001), no. 6, 529–543. (Cited on page 58.)

[60] A. Munier, M. Queyranne, and A. Schulz, Approximation bounds for a general class of

precedence constrained parallel machines scheduling problems, In Proceedings of IPCO

VI, Springer–Verlag Lecture Notes in Computer Science LNCS 1412, 1998, pp. 367–

382. (Cited on pages 7 and 28.)

[61] H. V. D. Parunak, Characterizing the manufacturing scheduling problem, Journal of

manufacturing systems 10 (1991), no. 3, 241–258. (Cited on pages 4 and 5.)

[62] C. Philips, C. Stein, and J. Wein, Scheduling jobs that arrive over time, Proceedings of

the 4th International Workshop on Algorithms and Data Structures, Lecture Notes

in Computer Science, LNCS 955, 1995, pp. 290–301. (Cited on page 80.)

[63] C. Phillips, C. Stein, E. Torng, and J. Wein, Optimal time-critical scheduling via re-

source augmentation, Algorithmica (2002), 163–200. (Cited on page 25.)

[64] C. Phillips, C. Stein, and J. Wein, Minimizing average completion time in the presence

of release dates, Mathematical Programming 82 (1998), 199–223. (Cited on page 82.)

[65] M. Pinedo, Scheduling: Theory, algorithms, and systems, first ed., Prentice-Hall, En-

glewood Cliffs, NJ, 1995. (Cited on pages 12 and 57.)

[66] , Scheduling: Theory, algorithms, and systems, second ed., Prentice-Hall, New

Jersey, 2002. (Cited on pages 3, 7, 12, 17, 30 and 34.)

140 Bibliography

[67] R. Righter, Stochastic scheduling, In Stochastic Orders (M. Shahed and G. Shan-

thikumar (eds.), eds.), Academic Press, San Diego, 1994. (Cited on page 27.)

[68] S. Sahni and Y. Cho, Nearly on line scheduling of a uniform processor system with

release times, SIAM Journal on Computing 8 (1979), 275–285. (Cited on page 28.)

[69] A. S. Schulz and M. Skutella, Scheduling unrelated machines by randomized round-

ing, SIAM Journal on Discrete Mathematics 15 (2002), no. 4, 450–469. (Cited on

pages 81 and 83.)

[70] U. Schwiegelshohn and R. Yahyapour, Fairness in parallel job scheduling, Journal of

Scheduling 3 (2000), no. 5, 297–320. (Cited on page 38.)

[71] S. Seiden, Barely random algorithms for multiprocessor scheduling, Journal of Schedul-

ing 6 (2003), 309–334. (Cited on page 19.)

[72] J. Sgall, On-Line Scheduling–A Survey, In Online Algorithms: The State the Art

(A. Fiat and G.J. Woeginger(eds), eds.), Springer–Verlag, Lecture Notes in Com-

puter Science vol. 1442, 1998, pp. 196–231. (Cited on page 18.)

[73] D. Shmoys, J. Wein, and D. Williamson, Scheduling parallel machines on-line, SIAM

Journal on Computing 24 (1995), no. 6, 1313–1331. (Cited on pages 29 and 36.)

[74] M. Skutella and G. J. Woeginger, A ptas for minimizing the total weighted completion

time on identical parallel machines, Mathematics of Operations Research 25 (2000),

no. 1, 63–75. (Cited on page 80.)

[75] D.D. Sleator and R.E. Tarjan, Amortized efficiency of list update and paging rules,

Communications of the ACM 28 (1985), no. 2, 202–308. (Cited on page 22.)

[76] W. Smith, Various optimizers for single-stage production, Naval Research Logistics

Quarterly 3 (1956), 59–66. (Cited on pages 26, 38, 77 and 87.)

[77] A. Souza and A. Steger, The expected competitive ratio for weighted completion time

scheduling, 21st Annual Symposium on Theoretical Aspects of Computer Science

Bibliography 141

(V. Diekert and M. Habib, eds.), Springer–Verlag, Lecture Notes in Computer Sci-

ence LNCS 2996, 2004, pp. 620–631. (Cited on page 83.)

[78] D. J. White, Dynamic programming, Oliver and Boyd, Edinburgh, 1969. (Cited on

page 27.)

	Introduction
	Motivation and Model
	How to read this thesis
	Classification of Scheduling Problems
	Online Paradigms
	 Jobs arriving one by one
	Jobs arriving over time
	Scheduling with rejection (Interval Scheduling)

	Competitive Analysis
	Alternative techniques for analyzing online algorithms
	History and List Scheduling
	Practical Examples of online models

	Criteria for system utilization
	Is makespan suitable for utilization?
	New criteria for machine utilization
	Basic Job Systems
	Transformation into Basic job system

	Online scheduling to maximize utilization
	introduction
	Scheduling jobs online with unknown size
	Productive interval of machines
	An upper bound for the utilization

	Online scheduling to minimize equal priority completion time
	introduction
	Related Results
	Jobs with Arbitrary Priority
	The upper bound of the off-line problem
	An upper bound of equal priority completion time
	The applicability of equal priority flow time

	Experimental Study
	Experimental Design
	Computing Environment
	Benchmark Instances

	An approach for optimal solution
	Analysis of the Results

	Conclusion
	Near-Optimal Algorithm
	Additional Experimental Results
	Bibliography

