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Abstract. We introduce the idea of Characteristic Regions to solve a classi-
fication problem. By identifying regions in which classes are dense (i.e. many ob-
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interpretation.
1 Introduction

Supervised Classification or Discrimination often involves two goals: the first
is allocation or prediction, i.e. assigning class labels to new observations. The
second goal, which can be even more important, is descriptive and involves
the disclosure of the underlying differences between the classes. The new
Different Subspace Classification (DiSCo) method is a method to simultane-
ously visualize and classify multi-class-problems in high dimensional spaces
and therefore is designed to attain both predictive and descriptive goals.

The problem of classification or pattern recognition is given in the follow-
ing way: N objects x,,n =1,..., N, are observed, each object belonging to
one and only one class ky, k, € {1,..., K},n=1,..., N. The class member-
ship is known to the user. Nj objects are observed from class k. This set of
objects is called training data. For each object D variables z¢,d =1,..., D,
are observed. Every object x, can be considered as a D-dimensional realiza-
tion of a random vector X,, following an unknown distribution that depends
on its class k,,.

The first goal is to be able to determine the correct (unknown) class for
objects Tpey that will be observed in future. The second goal is to find out
the characteristics of the different classes by analyzing the training data. The
higher the dimension of the data the more challenging is the understanding
of the data. So if there are many observed variables, methods of variable
selection are often used to reduce the dimension of the data. These methods
identify and retain those of the variables that separate the classes best. Then
following this procedure a classification method is (re-)applied to the resulting
subspace of variables. A problem may be that in general the variables do not
contain equal separating-information for all classes. So a variable can contain
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information for separating class ¢ from the rest but no information for the
separation of class j # i.

In DiSCo variable selection is intrinsic to the classification method. The

resulting subsets of variables which are used for discrimination of the classes
can differ between the classes.
A focus is also laid on the visualization of the class-characteristics. The pro-
posed method does not make any assumptions about the underlying distri-
bution of the data. The only weak assumption is that objects of the same
class are similar in some of their predictor values.

In the following chapter the principle of Characteristic Regions is defined
and a classification rule developed. Chapter 3 explains the visualization of
the results. Chapter 4 briefly summarizes the choice of parameters for the
implementation of the method while chapter 5 contains a simulation study
with comparison to Classification trees and Discriminant analysis.

2 Notation and Method

The idea of the new method is to search for Characteristic Regions, i.e. sets
of values in some variables that indicate the class-membership. To build up
these Characteristic Regions two steps are needed. The first step is to search
for intervals of the realizations of the random variables that contain a large
probability mass of the classes. The resulting "regions” are called Dense Re-
gions. The second step, which is independent of the first, identifies regions
that discriminate at least one class from the others because of a relatively
high density. These regions are called Relevant Regions. Regions that are
both dense and relevant are then called Characteristic Regions.

2.1 Characteristic Regions

Definition 1. S being the set of all possible predictor values of an object
Ty, for all d let {R?, : 0 < m < M?+1} be a contiguous segmentation of an
interval covering S N X? following
1. UM R 5 50 x4
(All possible values of X% are covered by the union of all its regions.)
2. Vo, 22 € R, and a € [0,1] : axy + (1 — a)zz € R,
(The regions of every variable are contiguous.)
3.V € R;inl,l‘g € R;inz, mp <mg @ T < Ty
(In every variable the regions are disjoint and also ordered.)

R% are called regions of variable X¢.

By restriction 2 all the objects that fall into one region can be considered to
be similar.
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Definition 2. Let z¢ be the value taken by object n in variable X¢ and let
k. be the corresponding, known index of its class. Then

N
nip (k) ==Y Ipa(wh) Igg (ki) (1)

with I[ as the indicator function is called the corresponding frequency of
class k in Region m of variable d.

As the n? (k) should represent the density of the data it is assumed
for simplicity of comparisons that for any fixed d and all 1 < m < M? :
SUpyepe —infycpa = const., so the regions of a variable have equal width.
By this the corresponding frequencies are proportional to heights of histogram
bars of the classes if the bandwidths are given by the regions.

Let Dense Regions be those regions which contain most of the classes’
probability masses. Let Spr > 0 be a threshold to construct classwise Dense
Regions. Then Dense Regions are regions RZ, (k) with

M4+l g4
- k

This proceeding corresponds to comparing the observed corresponding fre-
quency to the mean over all regions.

Relevant Regions should be the regions where the density of one class
k is high compared to those of the other classes and so a new observed object
lying in this region strongly indicates its membership to class k. Let Sgrr >
0 be a threshold to construct classwise Relevant Regions. Then Relevant
Regions are regions RY, (kq) with:

d
n (ko) o Tio R -
Ny, ~OMTTK

To be able to compare the regions’ densities of different classes by correspond-
ing frequencies they have to be weighted by their observed absolute frequen-
cies. Finally, Characteristic Regions are regions that are both dense and
relevant.

2.2 Classification Rule

Let wd, (k) > 0 be the class wise weight of a region of class k connected
to region RY,.

The Characteristic Regions are used to build up the classification rule by
summing the weights over all variables. Then the assignment of the class is
obtained by

D M4%+1

; _ d
k(Tpew) = arg m’?x; ZO Iiga | (Tnew )wh, (k) (4)
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where the weights of the Characteristic Regions are defined by

0 if (2) or (3) do not hold
d d p(ko)N
ko) :== g, (ko) “R— 5
wm (ko) ° i ~ if RY, is characteristic for class kg )

k
5, nd, (k) PN

% is a correction term for the absolute frequency of the classes in the
data with the prior probabilities of the classes — if it differs from the observed
frequency. The weights are motivated by the marginal probability of ke, = k
given x¢_ € R% | if R is ”characteristic” for class k.

As only Characteristic Regions are used for the classification rule the
cutpoints of the regions may disregard information. So to keep more of the
classes’ probability masses we propose another smoothed classification rule
where the weights w? (k) are as before but additionally the adjoining regions
are included in the model. Then:

D M4%+1 1 1
7 d d d
(new) = argm}gxz > Iiga (@new) (5w -1 (k) + w5, (k) + Sw, 4 (k)

d=1 m=0 ( )
6
with wd, (k) = 0 for m = —1, M + 2.

3 Visualization

The weights wd (k) described above mimic marginal conditional probability
of the different classes. As only Characteristic Regions will be shown in our
visualization only robust information relevant for classification is given. So
plotting these class wise weights of the regions (see equation 5) provides a
visualization of the class characteristics and an interpretation may be sim-
plified.

As example we illustrate the method in Figure 1 on the well known Iris
data set introduced by Fisher. The values of the variables are shown on the x-
axes while the different colours of the bars symbolize the different true classes
(black = ”Setosa”, light grey = ”Virginica” and dark grey = ” Versicolor”).
The heights are the weights of the Characteristic Regions. It can be seen
that the variable ”Sepal length” only serves to indicate membership of one
of the classes ”Virginica” or ”Setosa” but not for ”Versicolor”, while the
variable ” Sepal width” just serves to characterize a plant of class ”Setosa” or
”Versicolor”.

The ”Petal” variables seem to separate all three classes with the lowest
values for class ”Setosa”.The upper extreme values indicate the class ” Vir-
ginica”. As the plots of these two variables are of the same structure one can
suppose a correlation between these variables.
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Fig. 1. Example: Visualization of a result for Iris data

4 Parameter choice for DiSCo

For the implementation one has to find the Characteristic Regions. So the
problem is how to form the regions and how to choose the thresholds.

4.1 Building the regions

As mentioned earlier the corresponding frequencies should be proportional
to heights of histogram bars for convenience so we can refer to the theory of
nonparametric density estimation to build the regions. In histogram density
estimation the problem consists in smoothing but not over-smoothing the
empirical distribution of the data. Thus the bandwidth of a histogram should
be chosen neither too small nor too large. Freedman and Diaconis (1981)

suggest a choice of
2
bw=—=1IQR 7
TN Q (7)
as bandwidth where IQR is the interquartile range. Under weak assumptions
this histogram is L?-convergent for density estimation (Freedman and Dia-
conis, 1981). As the distribution may be different in the classes this must
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be done for every class — and every variable. The number of classwise bins

d . d
is then M4(k) = L%J with zfy ) and o, | being the classwise
maximum rebpective minimum and H being the rounding operator. With

V= [afy), xly)] and TV = [af, ), aly, ] let:

M= {% {Zk (Mdk/ {Z Lpvay(s)}™ ds)}J (8)

This means that the classwise number of bins is interpolated resp. averaged
for intervals covered by none, one or more than one class. So the regions of
variable d are IV? divided into M? equal parts. Rd and R? cover the
upper and lower rest.

Ma+41

4.2 Optimizing the thresholds

There remains the question how to choose the thresholds in equation 2 and
equation 3. So far no theoretical background is known for an optimal choice
of both Spr (Dense Regions) and Sgr (Relevant Regions).

The optimal parameters are found by a contracting 2-dimensional grid-
search algorithm. As the criterion for optimization the cross validated error
rate is used. It should be noticed that since the number of observations is finite
small changes of the two thresholds will not change the resulting model. In
order to check the parameters one can consider that a rather small threshold
Spr eliminates outliers but keeps a large probability mass in the remaining
regions. A Sgrp rather large keeps only regions in the model that strongly
indicate one class.

5 Simulation study

5.1 Data generation

In order to obtain more general results an experimental design is used in data
generation to be able to compare the effects of possibly influencing factors
in the data on the classification result of DiSCo and of two well-established
other methods: Classification Trees (CART) and Linear Discriminant Anal-
ysis (LDA).

With the factor levels described below, data of 8 or 12 variables are first
drawn from independent normal distributions with variance 1 but different
expectations in 3 classes. These data are transformed to possess different
kurtosis and skewness and to be deflected.

Below we give a brief description of the seven investigated factors:

e The class priors may be equal or not.
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e We investigated two different class mean settings in the first 6 variables:
either only one class mean separated from the others or all three class
means are different (one in the middle between the others). For 3 variables
the doubled 0.95 quantile is chosen, for the 3 other variables the doubled
0.9 quantile of the standard normal distribution is chosen for the tallest
differences in the location of the class means.

e 2 or 6 irrelevant independent variables are attached to the data that
are N(0, 1) distributed for all classes, i.e. either a quarter or half of the
variables do not contain any separating information.

e All variables are transformed to have high or low kurtosis and skewness
following the Johnson-System (see Johnson, 1949) to generate a wide
range of values in the kurtosis-skewness-plane.

e The probability of an object to be deflected is fixed to be 0.1 or 0.4, where
deflection means that an object is moved into one of two directions: half
the distance towards its class mean or half the way away from it into the
direction of its nearest wrong class.

The factors and levels included in the experimental design of the simulation
study are summarized in Table 1. A Plackett-Burman design (Plackett and
Burman, 1946) for these factors was repeated 20 times.

Effect Low level High level
Class priors (%,%,%) (%,%,%)
Number of different class means 3 2

Added irrelevant variables 2 6

Kurtosis 2.7 5

Skewness 0.17 1.15%
Probability to be deflected 0.1 0.4
Direction of deflection towards class mean|away from class mean

Table 1. Effects and levels on the simulated data sets

5.2 Results

Compared are both proposed classification rules for the DiSCo method in-
cluding (labelled (1)) and not including (2) the adjoining regions, CART
(Breiman et al., 1984) and LDA. Table 2 shows the mean error rates on the
test data and the estimated effects of the main factors (coded to —1/ + 1)
used in the design (cp. table 1) on log(odds(hitrate)). These effects can be
estimated independently by a regression on the coded influencing factors:

DiSCo seems to outperform the Classification trees and is almost as good
as LDA. One can also see that there are only small differences between both
proposed classification rules for the DiSCo method so there is no general rule
which one to use.
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DiSCo (1)|DiSCo (2)|CART|LDA
Overall mean error 0.085 0.079| 0.127(0.075
Class Priors 0.41 0.48| 0.19| 0.24
Number of different class means 0.17 0.24| 0.34| 0.37
Irrelevant variables 0.19 0.26| 0.21]-0.11
Kurtosis -0.12 -0.07( -0.27| 0.09
Skewness 1.16 1.06| 0.89| 0.70
Probability to be deflected -0.10 -0.16 -0.24|-0.61
Deflected direction -2.17 -2.23| -1.00|-2.73

Table 2. Results: Overall mean error and estimated effects on log(odds(hitrate))

It can be concluded that LDA has best overall mean error. Classification
trees perform well with deflection away from the class mean but having a
large general deficit. The DiSCo method, having a good average result, is
preferable with skewed data or differing class priors and a high percentage of
deflected objects.

Mean values for the optimal thresholds are Spr = 0.67 and 0.54 including
and not including the neighbour regions while the averaged optimal Srg are
1.88 and 1.75.

6 Summary

The introduced concept of Characteristic Regions allows the visualization
of the class characteristics and so satisfies the aim of an easy comprehension
and interpretation of the data. It also yields intuitive classification rules.
On simulated test data it outperformed classification trees and was almost
as good as the linear discriminant analysis.
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