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Abstract— This paper reports about experi-
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I. Introduction

It is well-known that analysis of models might
be computationally intensive. Especially simula-
tion of models of todays systems is extremely time-
consuming. The use of (decomposition and) aggre-
gation techniques might reduce the analysis effort.
Aggregation is a well-known technique in the area of
Queueing Networks (QN), since classes of models are
known where this technique does not only reduce the
analysis effort, but also leads to exact results [8].

The basic idea of aggregation can be described by
the following procedure [7]:
1. Evaluate an isolated, detailed submodel separately.
2. Construct an equivalent, but less detailed substi-
tute representation.
3. Use this substitute in place of the original submodel
for purposes of evaluating the overall model.

The main problem in this process is to “construct an
equivalent . . . representation” of the submodel. In
the QN setting a well-known type for such equivalent
aggregates is the flow-equivalent server (FES), which
serves customers with population-dependent speeds.
The FES is determined by analysing the throughput
of the short-circuited submodel for different popula-
tions. These population-dependent throughputs give
the population-dependent service rates of the FES.
For further details see [8]. This type of aggregate is
very useful in the setting of product-form QNs, since
one obtains exact results. In other environments only
approximative performance results are computable.
In most cases one can get only indications on the accu-
racy of the results by a series of experiments. Other
types of aggregates, e.g. two-station mini-networks,
which also lead to approximative results have been
proposed in [7].

In this report we discuss a further idea how to build
aggregates. We propose a new aggregate type based
on Input-Output Hidden Markov Models [5].



The report is structured as follows. In Sect. II
we define Input-Output Hidden Markov Models
(IOHMMs). Sect. III explains how IOHMMs can be
used for the aggregation of (sub)models. In Sect. IV
we describe the optimisation procedure which has
been used to determine an IOHMM aggregate and
in Sect. V we demonstrate the capabilities of the ap-
proach by a variety of examples.

II. IOHMMs

An IOHMM[5] is a Markov Chain with state-
transition probabilities dependent on input symbols.
The behaviour of an IOHMM is as follows: The (hid-
den) Markov chain “reads” a symbol from a (given)
input stream, changes its internal state and afterwards
outputs a symbol both according to the read input
symbol and dependent on each current state. The
(hidden) Markov chain starts in initial state i accord-
ing to an initial state distribution πi at time t = 0.

The notion “hidden” is motivated from common ap-
plications of Hidden Markov Chains (IOHMMs with
no input), especially in speech recognition. It is as-
sumed that the observed output results are from a
Markov Chain whose states are hidden to the ob-
server. The main concern is to find a Markov Chain
which best fits to the observed data.

We use the following notation for describing
IOHMMs:

N number of hidden states
Q set of states Q = {1, . . . , N}
M number of symbols
V set of symbols V = {1, . . . ,M}
qt state at step/time t, t = 0, . . . , T
xt input symbol at step/time t, t = 1, . . . , T
yt observed output symbol at time t, t = 1, . . . , T
A state-transition probability matrix with

akij = P [qt = j|qt−1 = i, xt = k)
B observation probability distribution with

blj(k) = P [yt = k|qt = j, xt = l]
i.e. the conditional probability of observing
symbol k given the Markov process is in
state j and the input symbol l is read

π initial state distribution
πi = P [q0 = i]

A describes the state-transitions of a Markov chain
and thus the entries akij are independent of “time” t.
This independence is also assumed for B. We assume
that the set of states and symbols is finite, so that an
integer encoding is sufficient.

λ := (A,B, π) denotes the entire IOHMM.
Let T ∈ N denote the length of the observation se-
quence.
Matrices A and B have to satisfy the following condi-
tions (“stochastic sub-matrices”):

N∑
j=1

akij = 1, ∀k = 1, . . . ,M and i = 1, . . . , N (1)

M∑
k=1

blj(k) = 1, ∀l = 1, . . . ,M and j = 1, . . . , N (2)

III. Defining Aggregates with IOHMMs

In this section we show how a template for IOHMM
aggregates can be defined. For notation we use the
ProC/B notation described in [4].

We assume that the following data has been
collected from an appropriate observation of the
(sub)model/system:

• a time interval ∆t ∈ R+,
• an array X = (x1, . . . , xT ) where xi ∈ N0 denotes
the number of arrivals at the sub-model in the i-th ∆t
time interval,
• an array Y = (y1, . . . , yT ) where yi ∈ N0 denotes
the number of departures from the sub-model in the
i-th ∆t time interval,

Using some optimisation procedure, e.g. the Baum-
Welch Algorithm (cf. Sect. IV), we assume that the
following result has been determined:

• a state-transition probability matrix A,
• and an observation probability distribution de-
scribed by a matrix B,

which hopefully describe the observed input/output
of the (sub)model. The behaviour of an aggregate for
this (sub)model can then be defined as follows:

The aggregate counts the number of arrivals in a
time interval of length ∆t. All arriving jobs are
blocked in the aggregate, i.e. they are not allowed
to leave. At the end of the time interval one step of
the IOHMM is emulated giving an output value y for
that time interval. This output symbol y can be inter-
preted as the number of “observed” departures. Thus,
from the set of blocked jobs, y jobs are released and
depart from the aggregate. If y exceeds the number
of blocked jobs only the currently present number of
jobs is released.

A more precise description of the IOHMM template,
employing the ProC/B notation, is given in the next
subsection.
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A. Template IOHMM Aggregate

Fig. 1 shows the general form of an aggregate em-
ploying IOHMMs and the aggregation idea described
in Sect. III. For simplicity this template aggregate
only offers a single Service and serves a single class
of customers. But the idea can also be extended
to several services and multiple customer classes us-
ing an appropriate integer encoding for the IOHMM1.
The service Service counts the number of arrivals and
also keeps tracks of the currently number of blocked
customers. The max stopped procs integer variable
ensures that at most the number of blocked cus-
tomers is released after receiving the “answer” from
the functional unit (FU) modelling the behaviour of
the IOHMM.

The second process chain in Fig. 1 models the con-
trol process which is started every @@DeltaT time
units. This control process first calls the FU IOHMM
which emulates one step of the IOHMM. The resul-
tant output is interpreted as the number of customers
which have to leave and the corresponding number
of customers (at most the number of blocked cus-
tomers) is released. Finally the control process resets
the counter for arrivals.

Note that in our current implementation we used
an integer encoding from [1, . . . ,M ] for the input
and output symbols of our IOHMM. So, e.g., 1 en-
codes no arrival/departure, 2 encodes a single ar-
rival/departure and in general i encodes i − 1 ar-
rivals/departures (see also the comment in Fig. 1).

Fig. 2 shows the model for the (template) IOHMM.
Firstly, the input symbol is checked whether it is in
the allowed range of symbols from 1 to M. Let us
follow the ELSE-branch first, i.e. assume that the
input symbol a is in [1, . . . ,M ]. First a random num-
ber randvar between 0 and 1 is drawn from a uniform
distribution and the appropriate successor state is cal-
culated. This is done by repeatedly incrementing the
variable j and adding the corresponding state change
probability stored in matrix A. Once we exceed the
value of randvar we select the current value of j as
the new current state, which is stored in variable cur-
rent state. In a similar way we determine the output
symbol employing matrix B.

It is a general design decision what we shall do if
the input symbol is not in the assumed range of sym-

1E.g., the input symbol 1070220800 might encode the “ar-
rival” of 7 class-1 customers and 2 class-2 customers having
called service1 in the observed time interval and 8 class-1 and 0
class-2 customers having called service2, assuming that at most
99 customers of each class will arrive.

bols. Note that we have determined this range by
an observation of the original (sub)model. Whenever
this aggregate is plugged into a different environment
(or even in the original environment, if the aggregate
does not behave identical to the original (sub)model),
it might happen that we “see” an unknown input sym-
bol, i.e. an unknown number of arrivals.
This design decision has to be based on the intended
use of the aggregate. The design decisions in this
paper are based on the assumptions that we are in-
terested in an analysis of the system’s steady state
behaviour and that the original (sub)model does not
create or destroy customers, i.e. follows a “one-in-
one-out behaviour”. Following these assumptions
the “flow in” of customers into the aggregate has to
equal the “flow out”. Assuming that the IOHMM ag-
gregate will indirectly follow this “flow-in = flow out”
condition concerning observed input and output sym-
bols, it seems natural to define an identity mapping
for unknown/unobserved input symbols. This simple
extension gives us the possibility to use the IOHMM
aggregate in different environments.

IV. Basic Algorithms for the determination
of IOHMMs

In the next subsections we discuss algorithms trying
to find an “optimum” IOHMM, which best reflects
the observed behaviour, i.e. we are going to solve the
following problem:
Given X = (x1, . . . , xT ) and Y = (y1, . . . , yT ),
estimate model parameters λ = (A,B, π) that max-
imise P [Y |X, λ].

Algorithms solving this optimisation problem for
Hidden Markov Models are well-known (cf. [5], [9]).

A. A straight-forward, but inefficient approach

P [Y |X, λ] can be determined directly from the def-
inition of an IOHMM using the Markov property.

Let q = (q0, . . . , qT ) be a state sequence. Since the
observations are assumed to be independent, we have

P [Y |q, X, λ] =
T∏

t=1

P [yt|qt, xt, λ] =
T∏

t=1

bxt,qt(yt)

The probability of a particular state sequence is
given by

P [q|X, λ] = πq0ax1,q0,q1ax2,q1,q2 . . . = πq0

T∏
t=1

axt,qt−1,qt

Note that we have

P [Y, q|X, λ] = P [Y |q, X, λ] ∗ P [q|X, λ]
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which finally gives

P [Y |X, λ] =
∑

over all sequences q

P [Y, q|X, λ]

Unfortunately the worst-case time complexity of
this approach is in O(TNT ). The Baum-Welch-
Algorithm, described later, is a more efficient alterna-
tive. Before describing this algorithm, we will present
two algorithms which are used in the Baum-Welch-
Algorithm.

B. Forward-Algorithm

The Forward-Algorithm calculates αt(i), the proba-
bility to observe the sequence y1, . . . , yt, such that the
state at time t (t = 1, . . . , T ) is i (i.e. qt = i) given the
input sequence x1, . . . , xt and the model parameters
λ. The worst-case time complexity of this algorithm
is in O(N2T ).

αt(i) := P [y1, . . . , yt, qt = i|x1, . . . , xt, λ],

t = 1, . . . , T .
Initialisation: Define the auxiliary function

α0(i) := πi

Induction for t = 0, . . . , T − 1:

αt+1(j) = [
N∑

i=1

αt(i)axt+1,i,j ]bxt+1,j(yt+1)

Termination:

P [Y |X, λ] =
N∑

i=1

αT (i)

With that the probability, which we want to max-
imise, can be calculated more efficiently than using
the first approach.

C. Backward-Algorithm

The Backward-Algorithm is also used as a subrou-
tine in the Baum-Welch-Algorithm.

The Backward-Algorithm calculates βt(i), t =
0, . . . , T − 1, the probability to observe the sequence
yt+1, . . . , yT , given the state at time t is i (i.e. qt = i),
the input sequence is xt+1, . . . , xT and the model pa-
rameters λ. The worst-case time complexity of this
algorithm is also in O(N2T ).

βt(i) := P [yt+1, . . . , yT |qt = i, xt+1, . . . , xT , λ],

t = 0, . . . , T − 1.

Initialisation: Define the auxiliary function

βT (i) := 1, i = 1, . . . , N

Induction for 1 ≤ i ≤ N, t = T − 1, . . . , 0:

βt(i) =
N∑

j=1

axt+1,i,jbxt+1,j(yt+1)βt+1(j)

D. Baum-Welch-Algorithm

The Baum-Welch-Algorithm iteratively determines
a sequence of model parameters λi, i = 1, . . .. It
can be shown that the sequence of probabilities
P [Y |X, λi], i = 1, . . . does not decrease and thus a
usual iteration scheme can be defined. In the follow-
ing we describe on iteration step of the Baum-Welch-
Algorithm, i.e. how to determine λi+1 given λi.

Define ξt(i, j, k) as the probability of being in state
i at time t and in state j at time t + 1, given X and
Y , where k denotes the input symbol at time t + 1,
i.e.

ξt(i, j, k) :=


αt(i)ak,i,jbk,j(yt+1)βt+1(j)

P [Y |X,λ] if xt+1 = k

0 otherwise

for t = 0, . . . , T − 1.
Define γt(i, k) as the probability of being in state i
at time t, given X and Y , where k denotes the input
symbol at time t + 1, i.e.

γt(i, k) =
N∑

j=1

ξt(i, j, k), t = 0, . . . , T − 1

With these definitions we have∑T−1
t=0 γt(i, xt+1) is the expected number of times

state i is visited, given X and Y ,∑T−1
t=0 ξt(i, j, xt+1) is the expected number of transi-

tions from state i to state j, given X and Y .

Define new model parameters λi+1 := λ̄ := (Ā, B̄, π̄)
by

π̄:

π̄i := γ0(i, x1)

Ā:

ākij =
exp. #transitions from i to j for inp. symbol k

exp. #transitions out of i for inp. symbol k

=
∑T−1

t=0 ξt(i, j, k)∑T−1
t=0 γt(i, k)
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B̄:

b̄lj(k) =
exp. #outputs k in j for inp. symbol l

exp. number to be in j for inp. symbol l

=

∑T−1
t=0

yt+1=k

γt(j, l)∑T−1
t=0 γt(j, l)

Very often the Baum-Welch-Algorithm only finds
a local optimum (cf. [9]). It is also well known that
the algorithm tends to change significantly more en-
tries of matrix B than elements of matrix A. In order
to get a better optimisation procedure we combined
the Baum-Welch-Algorithm with a simple (1, 1) evo-
lutionary strategy (cf. [11]):

After a fixed number of iterations of the Baum-
Welch-Algorithm (10 in our examples2) we randomly
changed entries of matrix A using the following algo-
rithms:

EA_LEVEL = 0.9; /* fixed for our experiments */
randvar = drand48(); /* random number in [0,1] */

while (randvar <= EA_LEVEL)
{
changeentries(A);
randvar = drand48();

}

The number of calls to changeentries is thus
governed by a Bernoulli experiment. Procedure
changeentries is depicted in Fig. 3 and does the fol-
lowing, explained in plain words: for each input sym-
bol and state we select two successor states randomly
(i.e. we select two matrix entries for fixed k,i) and
change the corresponding matrix entries. The entries
are changed according to a random value randvar such
that (1) remains valid. Furthermore randvar is chosen
such that the initial structure of the hidden Markov
chain is not changed, i.e. we do not allow creation or
deletion of state transitions.

In the following subsection we report on results
from a series of experiments.

Some remarks on the implementation:
We first implemented the described algorithm in C.
During our experiments we also used long observation
sequences (about 1000) which resulted in very small

2In most cases, Baum-Welch gets stuck in a local optimum
after a few number of iteration steps.

for (k = 1; k <= M; k++)
for (i = 1; i <= N; i++)
{ /* Select two entries randomly and

change entries according
to a random value,
such that the sum of A[k,i,j]
over all j is still 1.0 */
j1 = 1; j2 = 1;

while (j1 == j2)
{
randvar = drand48();
j1 = (int)(randvar * N) + 1;
randvar = drand48();
j2 = (int)(randvar * N) + 1;
}
/* Do not change entries

which are approx. 0 or 1 */
if ((A[(k,i,j1)] > EPSILON) &&

((1 - A[(k,i,j2)]) > EPSILON))
{
/* Determine random value

for entry changes of
A[k,i,j1] and A[k,i,j2]
and change values */
randvar = drand48();

while ((randvar >= (A[(k,i,j1)])) ||
(randvar >= ((1-A[(k,i,j2)]))))

{ randvar = drand48();
randvar *=

min(A[(k,i,j1)],1-A[(k,i,j2)]);
}
/* Adding and substracting randvar

leaves A sub-stochastic */
A[(k,i,j1)] -= randvar;
A[(k,i,j2)] += randvar;

}

Fig. 3. Procedure changeentries

numbers for the probabilities P [Y |X, λ]. The number
representation of the used hard- and software (2 GB
RAM SunBlade 100 running SunOS 5.8) gives a range
from 1.797693e+308 (“max normal”) to 2.225074e-
308 (“min normal”). As several results for long ob-
servations (T ≈ 1000) indicate (e.g. see Table III)
this default number representation is insufficient and
even for those cases where we can represent the path
probabilities, we had to struggle with numerical insta-
bility due to the small numbers. Thus we decided to
enhance the implementation by the arbitrary precision
library MAPM [12] using a minimum of 50 digits for
all computations. As one might imagine this increased
the computation time significantly.
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V. First Experiments

We first started with a simple experiment “aggre-
gating” a M/M/1 queue.

µ1 µ2

Closed QN (2 M/M/1 queues)

AGG

Fig. 4. Closed Tandem Queueing Network

Fig. 4 depicts the original model. The model is
a closed queueing network comprising two M/M/1
queues. The network is a product-form queueing net-
work and performance figures can be calculated effi-
ciently, e.g. employing Mean Value Analysis (MVA).

For a first experiment we selected the following set
of parameters: #Jobs = 5, µ1 = 1.2, µ2 = 1.3 giving
the results shown in Table II.

queue population throughput sojourn time
1 2.732541 1.037791 2.633055
2 2.267460 1.037791 2.184891

TABLE II
Results of the QN of Fig. 4 for

#Jobs = 5, µ1 = 1.2, µ2 = 1.3

We selected queue AGG for “aggregation” and
queue 2 for validation. In particular we did the fol-
lowing:

1. We simulated the QN of Fig. 4 for the given pa-
rameter set. The simulator code was augmented by
additional on-the-fly outputs of the form
...
ARRIVAL 5.016166761024598130802587E+003 1
DEPARTURE 5.018955154526076434251535E+003 1
ARRIVAL 5.019071368393921872552709E+003 1
DEPARTURE 5.019827164277301356776206E+003 1
DEPARTURE 5.020005177702461907074393E+003 1
ARRIVAL 5.020196253371342898219609E+003 1
...

recording the arrival and departure events at queue
AGG. The first column specifies whether an arrival or
a departure happened, the second column denotes the
model time at which the corresponding event had hap-
pened. The third column entry gives the number of
arrivals/departures at the specified model time. Note
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seed : INTEGER = 13; 
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Fig. 5. Population at queue AGG

that in the queueing network of Fig. 4 only single ar-
rivals/departures take place.
This output was collected after a long warm-up phase
of 5000 model time units thus trying to make sure that
the output information belongs to the steady-state
phase of the model. E.g., Fig. 5 (#Jobs = 5, µ1 =
1.2, µ2 = 1.3) shows the mean number of customers
at queue AGG illustrating the short initial transient
phase of the model. A point at time t of the shown
curve denotes the mean number of customers at queue
AGG for the time interval [0, t].
2. The simulation output was afterwards transformed
(for a given time interval ∆t and observation length
T ) to input values (X = (x1, . . . , xT ) and Y =
(y1, . . . , yT )) for the optimisation procedure described
in Sect. IV giving an IOHMM specification. The
number of symbols, M , was always determined by
M = maxT

i=1(max(xi, yi)). The initial setting for ma-
trices A,B and the initial probability distribution π
was 1 for each entry followed by a normalisation step
in order to ensure proper probability distribution def-
initions (cf. Eq. (1) and (2)).
3. Finally, we substituted queue AGG by the tem-
plate IOHMM aggregate (cf. Sect. III-A) plugging in
the calculated IOHMM specification. The resultant
model was simulated, giving results for queue 2, see,
e.g., Table III.

The columns of Table III denote the following:
∆t is the ∆t time interval (cf. with “@@DeltaT” in
Fig. 1),
N denotes the number of states,
T denotes the length of the observation sequence
population is the mean of the population at queue
2 after simulating 10000 time units,
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∆t N T population throughput sojourn time Prob. start Prob. end #iter
EXACT 2.267 1.038 2.185

0.8 6 1002 1.82 0.93 1.96 7.8E-499 6.2E-483 241
0.8 15 202 1.76 0.93 1.90 3.6E-98 3.7E-98 71
0.8 15 1002 1.72 0.91 1.90 7.8E-499 7.8E-497 141
0.3 6 102 1.31 0.80 1.64 1.6E-26 1.8E-26 80
0.3 6 1003 1.72 0.93 1.85 2.1E-296 4.6E-296 74
0.3 10 90 1.98 0.94 2.10 3.7E-24 7.7E-19 330

* 0.3 10 1003 2.21 1.04 2.13 4.7E-327 4.9E-327 118
0.3 15 102 1.73 0.90 1.93 5.6E-29 3.6E-25 119

* 0.3 15 1003 2.20 1.03 2.12 4.7E-327 6.1E-327 65
* 0.3 25 1003 2.20 1.04 2.13 4.720E-327 4.728E-327 14

0.1 6 1004 1.87 0.94 1.99 1.5E-140 2.1E-140 100
0.1 15 1004 1.85 0.94 1.97 1.50E-140 1.51E-140 60
0.1 15 3003 1.79 0.93 1.91 2.3E-437 2.4E-437 62
0.1 30 277 1.51 0.86 1.76 5.98E-35 5.98E-35 9
0.1 45 3003 takes too long, no optimisation result 2.26E-437 2.26E-437 24

TABLE III
Results (mean values) for queue 2 in the model with substituted queue AGG (#Jobs = 5, µ2 = 1.3)

throughput is the mean of the throughput at queue
2 after simulating 10000 time units,
sojourn time is the mean of the sojourn time at
queue 2 after simulating 10000 time units,
Prob. start denotes P [Y |X, λ] after the first 10 it-
erations of the optimisation procedure described in
Sect. IV. Note that E/A-steps only occur after 10 it-
eration steps of the Baum-Welch algorithm, i.e. no
E/A-step has been performed in the first 10 steps.
Numbers are represented by an exponential notation,
e.g. 7.8E-499 denotes the number 7.8 ∗ 10−499.
Prob. end denotes P [Y |X, λ] when we terminated
the optimisation procedure.
#iter denotes the overall number of Baum-Welch it-
eration steps. #iter does not count/include any E/A-
step.

The theoretically exact values are shown in the first
line. They have been determined using the MVA
algorithm for product-form QNs [8]. All result val-
ues (population, throughput, sojourn time) have been
rounded to 2 digits after the decimal point. In further
tables we will switch to rounding to 3 digits.

Most results depicted in Table III show a signifi-
cant difference to the exact values. Only those lines
marked by an asterisk give satisfactory results, keep-
ing in mind the very low complexity of our example.
Surprisingly, columns Prob. start and Prob. end indi-
cate that we did not improve much during the itera-
tions of the optimisation procedure. Furthermore, due

to long running times, only a very few number of iter-
ations could be performed for larger state values, N .
Two reasons might explain the shown results: First,
the choice of values for ∆t, N and T has a significant
impact on the overall quality of the aggregate or, sec-
ond, by chance all optimisation results are bad except
the ones marked with an asterisk. We decided that
the first reason seems more plausible and did further
experiments with other parameter values.

Before starting with a new round of experiments, let
us first have a closer look to the example tandem QN.
Table IV shows more theoretical results. Leaving a
state (n1, n2) implies a departure in our special exam-
ple. Thus the mean time being in a state (except state
n1 = 0) conforms to the mean departure time of our
model. Comparing Tables III and IV we conjecture
that we get better results if ∆t is close to the average
time leaving a state (see “time in state (n1, n2)” in Ta-
ble IV). The average time in all states, s ∈ S, is given
here by

∑
s∈S(time in state(n1, n2)π(n1, n2)) = 0.537.

With that conjecture we started various experi-
ments also with different service rates for queue AGG
(results are shown in Table V), having in mind theo-
retical results shown in Table VI. Unfortunately, the
results are still far from giving good aggregates based
on IOHMMs.

As we see from the results, the optimisation might
take too long. Since the running time for the optimisa-
tion procedure depends quadratically on the number
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n1 0 1 2 3 4 5
π(n1, n2) 0.135 0.146 0.159 0.172 0.186 0.202
time in state (n1, n2) 0.77 0.4 0.4 0.4 0.4 0.83
mean time between
to consecutive visits
to state (n1, n2) =
Time in (n1, n2)

π(n1,n2)

5.69 2.73 2.52 2.33 2.15 4.13

TABLE IV
Results of the QN of Fig. 4 for #Jobs = 5, µ1 = 1.2, µ2 = 1.3, n2 = 5− n1

µ1 µ2 ∆t N T population throughput sojourn time Prob. start Prob. end #iter
1.2 1.3 0.537 10 502 1.968 0.974 2.020 1.8E-209 4.1E-186 960
1.2 1.3 0.537 10 1003 1.764 0.933 1.891 2.5E-410 2.5E-410 501
1.2 1.3 0.4 10 502 1.696 0.920 1.844 2.3E-173 2.3E-173 132
1.2 1.3 0.4 10 1002 1.749 0.942 1.856 3.2E-355 4.6E-355 838

EXACT 2.267 1.038 2.185
0.9 1.3 0.7 10 502 1.448 0.817 1.773 4.4E-222 3.5E-201 589
0.9 1.3 0.7 15 502 inappropriate optimisation result 4.4E-222 4.4E-222 24

EXACT 1.508 0.851 1.773
1.8 1.3 0.48 10 503 2.189 0.996 2.198 2.2E-215 5.1E-203 1089

EXACT 3.392 1.217 2.787

TABLE V
Results (mean values) for queue 2 in the model with substituted queue AGG (#Jobs = 5)

n1 0 1 2 3 4 5
µ1 = 0.9, µ2 = 1.3,average time in states = 0.699
π(n1, n2) 0.055 0.079 0.115 0.166 0.239 0.346
time in state (n1, n2) 0.769 0.455 0.455 0.455 0.455 1.111
mean time between
to consecutive visits
to state (n1, n2) =
Time in (n1, n2)

π(n1,n2)

13.989 5.723 3.962 2.743 1.899 3.214

µ1 = 1.8, µ2 = 1.3,average time in states = 0.482
π(n1, n2) 0.324 0.234 0.169 0.122 0.088 0.064
time in state (n1, n2) 0.769 0.323 0.323 0.323 0.323 0.556
mean time between
to consecutive visits
to state (n1, n2) =
Time in (n1, n2)

π(n1,n2)

2.376 1.380 1.910 2.645 3.663 8.734

TABLE VI
Further results of the QN of Fig. 4 for #Jobs = 5, n2 = 5− n1

of state, we decide to reduce the complexity of the
overall optimisation and start experiments with a re-
duced number of jobs, setting #Jobs = 3. We hope
that this “size of the problem” is not too trivial, still
giving us the chance to get some insight into the ef-

fects of parameter settings giving “good” aggregates,
but that the problem size is small enough to be han-
dled by our prototype implementation of the optimi-
sation algorithm. Table VII presents the results from
a series of experiments. The choice of ∆t is guided
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by the theoretical results shown in Table VIII. Again
the results are far from being convincing. Especially
the result values for the case µ1 = 0.1 are suspicious,
since the quality gets worse with increasing T .

All the shown results indicate that the proposed ag-
gregate (cf. Fig. 1) nearly always gives results smaller
than the theoretical values. Having a closer look at
our template aggregate we realise that if only a few
jobs/customers are blocked we will discard informa-
tion from the IOHMM by releasing only the number of
blocked processes. Since we assume that the IOHMM
respects the “flow in = flow out” condition, this con-
struct will violate the “flow in = flow out” for the over-
all aggregate. The current aggregate will then prob-
ably “block” more customers than the corresponding
original (sub)model, which also explains the low pop-
ulation and other values for the non-aggregated queue
2. In the next section we will revise our template ag-
gregate and redo some of the above described experi-
ments in the now changed setting.

VI. Revised Definition of Aggregates
employing IOHMMs

As mentioned in the last section we changed the
Aggregate definition of the aggregate of Fig. 1. The
new aggregate is shown in Fig. 6

The new aggregate differs from the former one in
the definition of the control process. Irrespective of
the number of currently blocked processes, the counter
BlockProcs is always set to departures - 1. A call to
service Service might thus result in no blocking of the
calling customer, so that the customer leaves the ag-
gregate in zero time.

VII. Further Experiments

We used the IOHMM definitions obtained from the
experiments described in Sect. V for new simulation
experiments. The results are shown in Table X. The
last two columns denote the following:
sum of all differences :
(departures - 1) - max stopped procs
Whenever the IOHMM “answer” exceeds the the
number of blocked processes, we stored this value.
The result shown, is the sum of all these positive val-
ues for the total simulation run of 10000 model time
units.
sum of usage of identity mapping :
(= sum of (inp. symbol - M))
Whenever the IOHMM is “asked” using an unknown
input symbol, i.e. an input symbol which has not been
encountered as an input symbol during the optimisa-

tion procedure, we stored this value minus the M ,
since M is maximum input value encountered during
the optimisation procedure. The result shown, is the
sum of all these positive values for the total simulation
run of 10000 model time units.

The results show that also this form of aggregate
has its deficits and the performance figures do only
conform to the original ones in very few cases. Now
we overestimate the theoretical values, which might be
caused by “service” of customers in zero time. Having
a closer look at the second last column (“sum of all dif-
ferences (departures - 1) - max stopped procs ”) we re-
alise that this difference might be caused by the differ-
ent views both functional units have on the “state” of
the overall aggregate. The FU modelling the IOHMM
has some internal state (“current state”) and calcu-
lates a corresponding response. Since this response
might not conform to the number of blocked processes
we adjust the answer of the IOHMM somehow. But
this adjustment does not influence the internal state
of the FU IOHMM. So it might happen that the in-
ternal state of the IOHMM and the “real” state the
aggregate differ more and more as time goes by.

VIII. Revised Definition of FU IOHMM and
Experiments

For a next series of experiments we decide to re-
design the FU IOHMM in such a way that this di-
vergence in the “real state” of the aggregate and the
“IOHMM internal knowledge” on the state do not di-
verge. The simplest such way is to accept only that
output of the IOHMM which conforms to the number
of blocked processes. I.e. we do only accept those
“answers” of the IOHMM which do not exceed the
number of currently blocked processes. The modified
definition of the FU IOHMM is shown in Fig. 7. With
this definition of the FU IOHMM both definitions of
the aggregate (i.e. FU IOHMM Aggregate; cf. Figs. 1
and 6) result in the “same behaviour”.

The results of some experiments with this revised
definition of FU IOHMM are shown in Table XI. Still
the results are non-satisfactory.

IX. Further Redefinition of FU Aggregate
and Experiments

For a next series of experiments we follow [3] and
decide to redesign the FU Aggregate again and keep-
ing the old (i.e. the first) version of the definition of
FU IOHMM. As mentioned this might give us some
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µ1 µ2 ∆t N T population throughput sojourn time Prob. start Prob. end #iter
0.1 1.3 9.0 5 252 0.088 0.109 0.811 2.8E-55 9.1E-48 221
0.1 1.3 9.0 5 502 0.502 0.334 1.504 2.6E-98 1.4E-82 175

EXACT 0.083 0.099 0.832
0.9 1.3 0.75 5 502 0.961 0.740 1.298 6.0E-210 3.9E-197 213
0.9 1.3 0.75 5 1005 0.939 0.712 1.319 2.6E-422 2.6E-422 34

EXACT 1.057 0.781 1.354
1.2 1.3 0.6 5 500 0.921 0.710 1.300 2.3E-201 2.2E-189 238
1.2 1.3 0.6 5 1000 1.055 0.790 1.334 3.6E-407 1.1E-405 152

EXACT 1.400 0.935 1.497
1.8 1.3 0.527 5 500 0.186 0.144 1.295 6.4E-195 6.4E-186 366

EXACT 1.895 1.113 1.702
10.0 1.3 0.68 5 500 0.079 undef3 1.272 1.1E-146 1.6E-127 88

EXACT 2.852 1.298 2.198

TABLE VII
Results (mean values) for queue 2 in the model with substituted queue AGG (#Jobs = 3)

answers which will not conform to the current num-
ber of blocked processes. But now, we will not forget
these “additional departures”, which can not be re-
alised due to a low population of blocked customers.
We also do not store these additonal departures in the
counter BlockProcs possibly resulting in zero time de-
lays. Instead, we now count those additonal departure
as “virtual arrivals” for the next ∆t time interval by
setting the variable arrivals appropriately. The modi-
fied definition of the FU Aggregate is shown in Fig. 8.

The results of some experiments with this redefined
FU Aggregate are shown in Table XII.

The shown results show a similar quality as the re-
sults from our first experiments.

We assume that one reason for the bad quality of
the aggregation results is given by the different views
FU IOHMM and FU Aggregate do have on the current
state of the overall aggregate, concerning the number
of blocked processes. In the next section we are going
to define a different use of IOHMMs eliminating these
different views.

X. Following a new approach

In order to eliminate the different (implicitely) en-
coded information on the current number of blocked
processes, we decide to give the IOHMM more infor-
mation. The IOHMM now does not only get the in-
formation on the number of arrivals during a time
interval ∆t (and the corresponding number of depar-
tures), but also gets the information on the current
state of the agggregate, which is (in our case) the
number of blocked processes. This results in “valid

answers” for the IOHMM, since invalid answers will
never be encountered during the training phase. E.g.,
the IOHMM is trained with the input symbol (a, s)
(encoded somehow) where a denotes the number of
arrivals in the last observed ∆t time units and s the
number of currently blocked processes. The corre-
sponding output symbol (d, s′) gives the number of
departures d during the last ∆t time units and s′ is
the successor state after all currently d blocked pro-
cesses have left the FU Aggregate. A valid “answer”
of the IOHMM must obviously satisfy

s′ = s− d (3)

Note that a ≤ s and s′ ≤ s.
Since the IOHMM is trained with valid sequences

(i.e. s′ ≥ 0), there is a better chance that we will
“receive” only valid answers when using the IOHMM.

This design of using IOHMMs for building aggre-
gates also reduces our problems on interpreting the
IOHMM’s answers. The only decision left is what to
“answer” when the IOHMM is asked with a symbol
((a, s)) not having occurred during the training phase.
As before, we decided to use an identity mapping for
those cases, since the envisaged application for our
aggregates is for analysis of models in steady-state.
I.e., whenever the IOHMM is asked with a formerly
unobserved symbol (a, s) the answer will be (a, s−a).
Note that this is a valid answer.

The precise definition of both FUs in ProC/B no-
tation is depicted in Figs. 9 and 10. First results for
the (closed) tandem QN with 5 jobs are shown in
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n1 0 1 2 3
µ1 = 0.1, µ2 = 1.3,average time in states = 9.286
π(n1, n2) 0.00042 0.0.05462 0.07100 0.92310
time in state (n1, n2) 0.769 0.7143 0.7143 10.0
mean time between
to consecutive visits
to state (n1, n2) =
Time in (n1, n2)

π(n1,n2)

1830.77 130.77 10.06 10.83

µ1 = 0.9, µ2 = 1.3,average time in states = 0.759
π(n1, n2) 0.133 0.191 0.277 0.399
time in state (n1, n2) 0.769 0.455 0.455 1.111
mean time between
to consecutive visits
to state (n1, n2) =
Time in (n1, n2)

π(n1,n2)

5.803 2.374 1.644 2.782

µ1 = 1.2, µ2 = 1.3,average time in states = 0.603
π(n1, n2) 0.221 0.239 0.259 0.281
time in state (n1, n2) 0.769 0.4 0.4 0.833
mean time between
to consecutive visits
to state (n1, n2) =
Time in (n1, n2)

π(n1,n2)

3.483 1.672 1.543 2.968

µ1 = 1.8, µ2 = 1.3,average time in states = 0.527
π(n1, n2) 0.382 0.276 0.199 0.144
time in state (n1, n2) 0.769 0.323 0.323 0.556
mean time between
to consecutive visits
to state (n1, n2) =
Time in (n1, n2)

π(n1,n2)

2.016 1.170 1.621 3.865

µ1 = 10.0, µ2 = 1.3,average time in states = 0.681
π(n1, n2) 0.870 0.113 0.0147 0.00191
time in state (n1, n2) 0.769 0.0885 0.0885 0.1
mean time between
to consecutive visits
to state (n1, n2) =
Time in (n1, n2)

π(n1,n2)

0.884 0.782 6.017 52.303

TABLE VIII
Further results of the QN of Fig. 4 for #Jobs = 3, n2 = 3− n1

Table XIII4. The training data was taken from ob-
servations of a simulation of a single M/M/1 queue
with service rate µ = 2.0 now embedded in an open(!)
environment with a Poisson arrival stream with rate
λ = 1.0. Again, the training data comprises only
situations observed after 5000 time units with the ad-
ditional restriction that observations are only allowed

4“#applications of identity mapping” is the number of out-
puts(!) “WARNING: data.a exceeds number of symbols. . .” for
applications of “Identity Mapping” in FU IOHMM

to start after the queue has been emptied.5

The next table shows some information on the
training data compared to theoretical values. We
compared the number of departures for a given ∆t
value with the Poisson probability distribution for rate
λ = 1.0. Note that the departure process of a M/M/1
queue (where jobs arrive according to a Poisson dis-
tribution) is again Poisson with the same rate. Ta-

5So we run the simulation for 5000 time units and afterwards
checked (at departures) whether the queue has been emptied.
If so, we started tracing arrivals/departures.

14



∆t N T population throughput sojourn time sum of all
differences
(departures - 1) -
max stopped procs

EXACT 2.267 1.038 2.185
0.8 6 1002 1.82 0.93 1.96 685
0.8 15 202 1.76 0.93 1.90 626
0.8 15 1002 1.72 0.91 1.90 642
0.3 6 102 1.31 0.80 1.64 250
0.3 6 1003 1.72 0.93 1.85 619
0.3 10 90 1.98 0.94 2.10 2697

* 0.3 10 1003 2.21 1.04 2.13 1388
0.3 15 102 1.73 0.90 1.93 1483

* 0.3 15 1003 2.20 1.03 2.12 1361
* 0.3 25 1003 2.20 1.04 2.13 1387

0.1 6 1004 1.87 0.94 1.99 930
0.1 15 1004 1.85 0.94 1.97 913
0.1 15 3003 1.79 0.93 1.91 838
0.1 30 277 1.51 0.86 1.76 455

TABLE IX
Additional Results (last column) for queue 2 in the model with substituted queue AGG

(#Jobs = 5, µ1 = 1.2, µ2 = 1.3)

ble XIV compares the training data with theoretical
values indicating the quality of the training data used
for the experiments.

Table XIII shows that the new approach (taking the
state information into account for training) leads to
satisfactory results for some parameters. Especially
the results for ∆t ∈ [0.2, 0.3] for large observation
sequences (T > 700) give a good approximation for
the performance measures of queue 2.

XI. Conclusions

This report describes first results of various experi-
ments where input-output hidden Markov chains have
been used to build aggregates for performance models.
It provides a snapshot of activities for building aggre-
gates in logistics networks. The positive results shown
table XIII give some hope to determine accurate ag-
gregates also in non-product form environments and
for more complex sub-models. Next experiments will
have to consider possible dependencies of model pa-
rameters and corresponding training data as well as
parameters for the IOHMM, like ∆t and T .
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2000.

15



S
er

vi
ce

()

IO
H

M
M

In
pu

t
(a

:IN
T

)−
−

>
(b

:IN
T

)

E
V

E
R

Y
 @

@
D

el
ta

T

1

IO
H

M
M

.
In

pu
t

A
sk

_I
O

H
M

M
(a

rr
iv

al
s 

+
 1

)−
−

>
(d

ep
ar

tu
re

s)

de
pa

rt
ur

es
:IN

T
=

0
ar

riv
al

s:
IN

T
=

0
m

ax
_s

to
pp

ed
_p

ro
cs

:IN
T

=
0

de
pa

rt
ur

es
:IN

T
=

0
ar

riv
al

s:
IN

T
=

0
m

ax
_s

to
pp

ed
_p

ro
cs

:IN
T

=
0

C
O

D
E

co
un

t_
ar

riv
al

s
ar

riv
al

s 
:=

 a
rr

iv
al

s 
+

 1

B
lo

ck
P

ro
cs

.
ch

an
ge

se
t_

co
un

te
r

([
−

1]
)

B
lo

ck
P

ro
cs

M
A

X
=

[1
00

00
]

ch
an

ge

(a
m

ou
nt

:IN
T

[])

C
on

tr
ol

P
ro

c

()

C
O

D
E

re
se

t_
co

un
te

r_
ar

riv
al

s
ar

riv
al

s 
:=

 0

C
O

D
E

N
O

O
P

de
pa

rt
ur

es
 :=

 0
;

{D
ue

 to
 h

is
to

ric
al

 r
ea

so
ns

 th
e 

pr
og

ra
m

 c
al

cu
la

tin
g 

th
e 

IO
H

M
M

 p
ar

am
et

er
s

on
ly

 c
on

si
de

rs
 s

ym
bo

ls
 fr

om
 1

 to
 M

.
he

re
: 1

 d
en

ot
es

 n
o 

de
pa

rt
ur

e 
an

d 
2 

st
an

ds
 fo

r 
on

e 
de

pa
rt

ur
e 

et
c.

T
hu

s 
w

e 
do

 a
 tr

an
sf

or
m

at
io

n 
fr

om
 [1

..M
] t

o 
[0

..M
−

1]
.

T
he

 s
am

e 
ho

ld
 fo

r 
ar

riv
al

s,
 th

is
 is

 th
e 

re
as

on
 fo

r 
th

e 
ca

ll:
 A

sk
_I

O
H

M
M

(a
rr

iv
al

s 
+

 1
...

.}

{D
ue

 to
 h

is
to

ric
al

 r
ea

so
ns

 th
e 

pr
og

ra
m

 c
al

cu
la

tin
g 

th
e 

IO
H

M
M

 p
ar

am
et

er
s

on
ly

 c
on

si
de

rs
 s

ym
bo

ls
 fr

om
 1

 to
 M

.
he

re
: 1

 d
en

ot
es

 n
o 

de
pa

rt
ur

e 
an

d 
2 

st
an

ds
 fo

r 
on

e 
de

pa
rt

ur
e 

et
c.

T
hu

s 
w

e 
do

 a
 tr

an
sf

or
m

at
io

n 
fr

om
 [1

..M
] t

o 
[0

..M
−

1]
.

T
he

 s
am

e 
ho

ld
 fo

r 
ar

riv
al

s,
 th

is
 is

 th
e 

re
as

on
 fo

r 
th

e 
ca

ll:
 A

sk
_I

O
H

M
M

(a
rr

iv
al

s 
+

 1
...

.}C
O

D
E

co
un

t_
no

_o
f_

bl
oc

ke
d_

pr
oc

s
m

ax
_s

to
pp

ed
_p

ro
cs

 :=
 m

ax
_s

to
pp

ed
_p

ro
cs

 +
 1

C
O

D
E

co
un

t_
do

w
n_

no
_o

f_
bl

oc
ke

d_
pr

oc
s

m
ax

_s
to

pp
ed

_p
ro

cs
 :=

 m
ax

_s
to

pp
ed

_p
ro

cs
 −

 1

de
pa

rt
ur

es
 <

 2

B
lo

ck
P

ro
cs

.
ch

an
ge

se
t_

co
un

te
r

([
de

pa
rt

ur
es

 −
 1

])

A
gg

re
ga

te

E
LS

E

Fig. 6. Modified Version of Template IOHMM Aggregate

16



µ1 µ2 ∆t N T population throughput sojourn time sum of all
differences
(departures - 1) -
max stopped procs

sum of usage of
identity map-
ping (= sum of
(inp. symbol - M))

1.2 1.3 0.8 6 1002 2.417 1.014 2.384 2476 4
1.2 1.3 0.8 15 202 2.264 0.994 2.278 2099 20
1.2 1.3 0.8 15 1002 2.269 0.994 2.282 2138 3
1.2 1.3 0.3 6 102 1.524 0.848 1.797 779 82
1.2 1.3 0.3 6 1003 2.224 0.994 2.238 2173 3
1.2 1.3 0.3 10 90 3.782 1.150 3.290 7868 202
1.2 1.3 ** 0.3 10 1003 3.783 1.183 3.195 7477 21
1.2 1.3 0.3 15 102 2.778 1.033 2.689 4172 144
1.2 1.3 ** 0.3 15 1003 3.715 1.179 3.149 7254 2
1.2 1.3 ** 0.3 25 1003 3.727 1.175 3.169 7231 14
1.2 1.3 0.1 6 1004 2.840 1.052 2.700 3837 19
1.2 1.3 0.1 15 1004 2.786 1.057 2.636 3836 19
1.2 1.3 0.1 15 3003 2.552 1.020 2.503 2984 21
1.2 1.3 0.1 30 277 1.878 0.911 2.060 1513 411
1.2 1.3 0.537 10 502 2.852 1.088 2.620 4148 13
1.2 1.3 0.537 10 1003 2.384 1.002 2.378 2543 5
1.2 1.3 0.4 10 502 2.404 1.004 2.394 2711 23
1.2 1.3 0.4 10 1002 2.517 1.021 2.465 3016 1

5 JOBS; EXACT 2.267 1.038 2.185
0.9 1.3 0.7 10 502 1.979 0.893 2.217 1951 11

5 JOBS; EXACT 1.508 0.851 1.773
1.8 1.3 0.48 10 503 3.293 1.130 2.912 5477 7

5 JOBS; EXACT 3.392 1.217 2.787

0.1 1.3 9.0 5 252 0.088 0.109 0.811 0 0
0.1 1.3 9.0 5 502 0.502 0.334 1.504 0 0

3 JOBS; EXACT 0.083 0.099 0.832
0.9 1.3 0.75 5 502 1.227 0.803 1.527 1860 40
0.9 1.3 0.75 5 1005 1.213 0.797 1.523 1717 38

3 JOBS; EXACT 1.057 0.781 1.354
1.2 1.3 0.6 5 502 1.141 0.775 1.473 1499 24
1.2 1.3 0.6 5 1002 1.478 0.906 1.632 2933 43

3 JOBS; EXACT 1.400 0.935 1.497
1.8 1.3 0.527 5 502 0.414 0.244 1.697 791 13

3 JOBS; EXACT 1.895 1.113 1.702

TABLE X
Results (mean values) for queue 2 using modified aggregate for queue AGG
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µ1 µ2 ∆t N T population throughput sojourn time sum of all
differences
(departures - 1) -
max stopped procs

sum of usage of
identity map-
ping (= sum of
(inp. symbol - M))

1.2 1.3 0.8 6 1002 1.721 0.918 1.875 0 0
1.2 1.3 0.8 15 202 1.697 0.923 1.839 0 12
1.2 1.3 0.8 15 1002 1.649 0.905 1.822 0 0
1.2 1.3 0.3 6 102 1.302 0.816 1.595 0 62
1.2 1.3 0.3 6 1003 1.676 0.924 1.814 0 1
1.2 1.3 0.3 10 90 1.957 0.946 2.070 0 124
1.2 1.3 ** 0.3 10 1003 2.156 1.029 2.096 0 7
1.2 1.3 0.3 15 102 1.663 0.899 1.849 0 69
1.2 1.3 ** 0.3 15 1003 2.147 1.027 2.091 0 1
1.2 1.3 ** 0.3 25 1003 2.130 1.028 2.072 0 9
1.2 1.3 0.1 15 3003 1.774 0.930 1.906 0 18
1.2 1.3 0.1 30 277 1.488 0.862 1.728 0 352
1.2 1.3 0.537 10 502 1.833 0.944 1.942 0 1
1.2 1.3 0.537 10 1003 1.667 0.925 1.802 0 1
1.2 1.3 0.4 10 502 1.659 0.910 1.824 0 11
1.2 1.3 0.4 10 1002 1.714 0.938 1.827 0 2

5 JOBS; EXACT 2.267 1.038 2.185
1.8 1.3 0.48 10 503 2.063 0.980 2.106 0 3

5 JOBS; EXACT 3.392 1.217 2.787

0.1 1.3 9.0 5 252 0.088 0.109 0.811 0 0
0.1 1.3 9.0 5 502 0.502 0.334 1.504 0 0

3 JOBS; EXACT 0.083 0.099 0.832
0.9 1.3 0.75 5 502 0.916 0.721 1.271 0 0
0.9 1.3 0.75 5 1005 0.880 0.697 1.263 0 0

3 JOBS; EXACT 1.057 0.781 1.354
1.2 1.3 0.6 5 502 0.873 0.694 1.260 0 0
1.2 1.3 0.6 5 1002 1.009 0.769 1.312 0 0

3 JOBS; EXACT 1.400 0.935 1.497
1.8 1.3 0.527 5 502 0.219 0.173 1.263 0 0

3 JOBS; EXACT 1.895 1.113 1.702

TABLE XI
Results (mean values) for queue 2 using modified definition of FU IOHMM for queue AGG
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µ1 µ2 ∆t N T population throughput sojourn time sum of all
differences
(departures - 1) -
max stopped procs

sum of usage of
identity map-
ping (= sum of
(inp. symbol - M))

1.2 1.3 0.8 6 1002 1.838 0.934 1.968 883 16
1.2 1.3 0.8 15 202 1.848 0.938 1.970 791 54
1.2 1.3 0.8 15 1002 1.782 0.922 1.933 750 6
1.2 1.3 0.3 6 102 1.309 0.820 1.597 293 92
1.2 1.3 0.3 6 1003 1.721 0.930 1.849 651 1
1.2 1.3 0.3 10 90 2.010 0.956 2.103 1946 295
1.2 1.3 ** 0.3 10 1003 2.214 1.042 2.125 1548 52
1.2 1.3 0.3 15 102 1.727 0.898 1.921 1060 184
1.2 1.3 ** 0.3 15 1003 2.196 1.035 2.121 1361 1
1.2 1.3 ** 0.3 25 1003 2.204 1.035 2.129 1387 8
1.2 1.3 0.1 15 3003 1.791 0.934 1.917 870 21
1.2 1.3 0.1 30 277 1.542 0.868 1.777 512 435
1.2 1.3 0.537 10 502 1.847 0.958 1.928 1090 23
1.2 1.3 0.537 10 1003 1.781 0.936 1.902 844 21
1.2 1.3 0.4 10 502 1.734 0.924 1.876 784 36
1.2 1.3 0.4 10 1002 1.748 0.941 1.858 756 4

5 JOBS; EXACT 2.267 1.038 2.185
1.8 1.3 0.48 10 503 2.155 0.992 2.174 1545 45

5 JOBS; EXACT 3.392 1.217 2.787

0.1 1.3 9.0 5 252 0.088 0.109 0.811 0 0
0.1 1.3 9.0 5 502 0.502 0.334 1.504 0 0

3 JOBS; EXACT 0.083 0.099 0.832
0.9 1.3 0.75 5 502 1.006 0.757 1.329 1214 166
0.9 1.3 0.75 5 1005 0.971 0.734 1.324 1037 161

3 JOBS; EXACT 1.057 0.781 1.354
1.2 1.3 0.6 5 502 0.924 0.722 1.281 820 60
1.2 1.3 0.6 5 1002 1.074 0.801 1.340 1283 122

3 JOBS; EXACT 1.400 0.935 1.497
1.8 1.3 0.527 5 502 0.209 0.161 1.302 259 20 (bad confidence inter-

val of ≈ 20%)

3 JOBS; EXACT 1.895 1.113 1.702

TABLE XII
Results (mean values) for queue 2 using redefined FU Aggregate and first version of FU IOHMM for

queue AGG
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Fig. 10. Corresponding Definition of Template IOHMM Aggregate encoding arrivals and the current number of blocked
processes into one input symbol for the IOHMM
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µ1 µ2 ∆t N T population throughput sojourn time #applications of
identity mapping

2.0 1.3 0.1 10 1504 3.388 1.247 2.717 28
2.0 1.3 0.2 10 752 3.473 1.281 2.709 95
2.0 1.3 0.3 10 502 3.311 1.266 2.616 88
2.0 1.3 0.3 15 502 3.317 1.247 2.661 80
2.0 1.3 0.3 20 502 3.247 1.231 2.638 86
2.0 1.3 0.8 10 181 2.954 1.228 2.405 14
2.0 1.3 0.8 15 181 2.935 1.210 2.426 15
2.0 1.3 0.8 20 181 2.940 1.201 2.448 19
2.0 1.3 2.0 10 76 2.534 1.117 2.268 0
2.0 1.3 3.0 10 51 2.029 0.983 2.064 0
2.0 1.3 3.0 15 51 2.372 1.043 2.275 0
2.0 1.3 3.0 20 51 2.132 1.011 2.107 0

2.0 1.3 0.2 10 1514 3.694 1.273 2.902 100
2.0 1.3 0.3 3 1503 3.442 1.237 2.783 52 (bad optimisation)

2.0 1.3 0.3 6 1503 3.533 1.256 2.813 73
2.0 1.3 0.3 6 755 3.520 1.268 2.776 59
2.0 1.3 0.3 10 755 3.543 1.283 2.762 74

5 JOBS; EXACT 3.6322 1.2429 2.9224

TABLE XIII
Results (mean values) for queue 2 using IOHMMs trained with input symbols (a, s) taking the

current state into account

µ1 µ2 ∆t T P [0] P [1] P [2] P [3] P [4] P [5] P [6] P [7] P [8] P [9] P [10]
2.0 1.3 0.1 1504 1366 129 9

0.1 theo 1361 136 7
2.0 1.3 0.2 752 615 127 10

0.2 theo 616 123 12 1
2.0 1.3 0.3 502 370 119 11 2

0.3 theo 372 112 17 2
2.0 1.3 0.3 755 566 166 20 3

0.3 theo 559 168 25 3
2.0 1.3 0.8 181 80 71 23 7

0.8 theo 81 65 26 7 1
2.0 1.3 2.0 76 9 19 23 17 6 2

2.0 theo 10 21 21 14 7 3 1
2.0 1.3 3.0 51 2 8 13 8 9 10 1

3.0 theo 3 8 11 11 9 5 3 1

TABLE XIV
Distribution of departures: used training data vs. theoretical values.

P [i] := P [i departures in interval ∆t]; empty entries in columns P [i] denote 0
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