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Abstract. Noise often occurs in real-world optimization tasks. Although evolution
strategies and other evolutionary algorithms are thought to be robust against the ef-
fects of noise, even their performance is degraded. Generally, one observes a reduction
of the convergence velocity and a deterioration of the final solution quality.

There are two local progress measures describing the performance of evolution strate-
gies from one generation to the next. The first – the progress rate – is defined directly
on the object parameter space, whereas the second, called the quality gain, operates
in the space of the fitness values instead. Although both are local performance mea-
sures, they can be utilized to derive evolution criteria and steady state conditions.
The latter can be used to predict the final solution quality.

We will determine the quality gain for (1, λ)-ES in the presence of noise. After the
derivation of the steady state conditions, we will develop an equation describing the
final fitness error for some test functions. The results will be extended to (µ/µI , λ)-ES
and compared with ES runs using σ-self-adaptation as well as CSA.
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Chapter 1

Introduction

Noise is a common phenomenon in optimization tasks dealing with real-world applications.
Typically, one is confronted with measurement errors, actuator vibrations, production
tolerances or/and is searching for robust (i.e. insensitive) solutions.

Evolution strategies are nature-inspired search algorithms that move through the search
space by means of variation and selection. It is widely believed that they and other evo-
lutionary algorithms are especially good at coping with noisy information due to the use
of a population of candidate solutions (see for example [15], [11], [10], or [4]).

However, since noise does deceive the information obtained from the objective function
and thus influences the selection process, even population based algorithms are degraded
in their performance. Basically, there are two negative effects that can be observed. The
convergence velocity is reduced and a final steady state is reached which deviates from the
real optimum.

There are two local performance measures that can be used to describe the progress
of the ES from one generation to the next. The first – called the progress rate – is defined
on the object parameter space whereas the quality gain operates on the fitness values,
instead.

The local performance of the (1+, λ)-ES (compare [3]) and the (µ, λ)-ES (compare [4]

and [2]) has been studied in noisy spherically symmetric and linear fitness environments.
The case of an (µ/µI , λ)-ES was examined in [7] applying the progress rate. Using it to
derive a steady state condition, the authors were able to determine the solution quality of
the steady state, i.e. the final fitness error, in the case of quadratic objective functions.
The crucial point of the derivation was the so-called equipartition assumption, stating that
once the steady state is reached, the weighted distributions of the components to the final
fitness error can be supposed to be the same. We will use similar assumptions in order to
derive the final fitness error for some selected fitness functions in the case of an (1, λ)-ES.

In this paper, we will focus on the quality gain of (1, λ)-ES in the presence of noise.
After the development of the equation, we will derive evolution criteria allowing for the
prediction of the steady state behavior of an (1, λ)-ES. The predictions of the quality
gain and the final fitness error will then be compared with the results of real ES-runs.
Furthermore, we will extend the latter to (µ/µI , λ) strategies and compare their prediction
power with real ES runs.

In the concluding section, an outlook will be given presenting a road map for future
research.
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CHAPTER 1. INTRODUCTION 4

1.1 Evolution Strategies

Evolution strategies try to optimize a goal or fitness function F by applying variation and
selection to a population of candidate solutions mimicking the natural evolution process.
The variation operator comprises the processes recombination and mutation. In the case
of an (µ/µI , λ)-ES, the recombination is performed by computing the centroid of all µ
individuals of the parental population. A mutation vector is then added to the centroid
for all λ candidate solutions of the offspring population. Usually, these mutations are
assumed to obey a normal distribution with a constant standard deviation σ which is
called the mutation strength. After creating λ new individuals, the µ best of them are
selected to form the next parental population. In the case of an (1, λ)-ES only one offspring
is chosen to be the parent of the next generation.

1.2 Fitness Environments

In this paper, we consider several classes of fitness functions which will be described below.
The equation describing the quality gain will be tested on all function types, while cubic
functions are not considered for the final fitness error.

The first function class to be considered are quadratic functions given by the general
form

F1(y) := bTy − yTQy, (1.1)

where y and b are N -dimensional real-valued vectors and Q is a positive definite matrix.
They can represent real-world goal functions in the vicinity of an optimum.

In order to test the predictive validity of the quality gain on the class of polynomial
fitness functions, we consider two further functions of that type, cubic functions of the
form

F2(y) :=
N∑

i=1

aiyi − ciy
3
i (1.2)

and biquadratic functions, i.e.

F3(y) :=
N∑

i=1

aiyi − ciy
4
i . (1.3)

In contrast to the other test functions, F2 has two local optima, a minimum at −
√

ai/(3ci)
and a maximum at

√

ai/(3ci). For yi → −∞, it approaches infinity whereas it goes to
−∞ for yi → ∞.

To test the range of the applicability of the equation describing the quality gain, the
bit-counting function OneMax is also considered. It is given by

F4(y) :=
N∑

i=1

yi, (1.4)

where yi ∈ {0, 1}.
Finally we introduce the function

F5(y) = c −
N∑

i=1

|yi|, (1.5)

i.e. the negative sum of the absolute values or – in other words – the negative L1-norm of
y. Its isometric plot forms a rotated N -dimensional hypercube.



Chapter 2

The (1, λ)-Quality Gain and

Steady-State Behavior

2.1 The (1, λ)-Quality Gain

Let us consider an individual at the position y in an N -dimensional object parameter space.
The position of an offspring is obtained by adding a mutation vector x. The components
xi are assumed to be normally distributed with standard deviation or mutation strength
σ. The associated change of the fitness function F is

Q(x) := F (y + x) − F (y). (2.1)

We consider an (1, λ)-ES that has to cope with noisy function evaluations and apply the
standard fitness noise model assuming that the noise term is added to the fitness function.
Therefore, only the perceived local quality change

Q̃(x) = Q(x) + ε (2.2)

can be observed, where the noise ε is modeled by a normally distributed random variable
with an expected value of zero. The standard deviation σε is called the noise strength
and is assumed to be constant. Since the measurement of F is disturbed by noise, the
seemingly best offspring chosen to be the parent of the next generation is not necessarily
the actually optimal candidate. We are interested in the expected value of the local quality
gain of this individual which is called the quality gain ∆Q1,λ and is defined as

∆Q1,λ :=

∫ Q̂

−∞
Qp1,λ(Q) dQ, (2.3)

where Q̂ = max Q(x). In order to continue, we have to develop an expression for p1,λ(Q)
which denotes the density function of the seemingly best candidate of the offspring popu-
lation. Applying the concept of noisy order statistics [1], that density is given as

p1,λ(Q) = pQ(Q)λ

∫ ∞

−∞
pε(Q̃|Q)P (Q̃)

λ−1
dQ̃, (2.4)

where pQ(Q) is the density function of Q for a single individual and pε(Q̃|Q) is the con-

ditional density function of Q̃ given the undisturbed Q, i.e. pε(Q̃|Q) = 1√
2πσε

e
− (Q̃−Q)2

2σ2
ε .

Inserting Eq. (2.4) into Eq. (2.3), we get

∆Q1,λ = λ

∫ Q̂

−∞

∫ ∞

−∞
QpQ(Q)pε(Q̃|Q)P (Q̃)

λ−1
dQ̃ dQ. (2.5)

5



CHAPTER 2. THE (1, λ)-QUALITY GAIN AND STEADY-STATE BEHAVIOR 6

The upper integration limit of the outer integral can formally be extended to ∞. When
using an approximation for pQ(Q), this will cause an additional approximation error.
Therefore, one has to require that the approximate density function drops sufficiently fast
for Q > Q̂. Under this condition, the resulting error can be expected to be rather small.

In order to proceed, we center Q with its expected value MQ and its standard deviation
SQ, that is, we transform to the standardized variable z = (Q − MQ)/SQ and pz(z) dz :=
pQ(Q) dQ. The quality gain is now given as

∆Q1,λ = λ

∫ ∞

−∞

∫ ∞

−∞
(SQz + MQ)pz(z)pε(Q̃|SQz + MQ)P (Q̃)

λ−1
dQ̃ dz

= λSQ

∫ ∞

−∞

∫ ∞

−∞
zpz(z)pε(Q̃|SQz + MQ)P (Q̃)

λ−1
dQ̃ dz

︸ ︷︷ ︸

I1

+

λMQ

∫ ∞

−∞

∫ ∞

−∞
pz(z)pε(Q̃|SQz + MQ)P (Q̃)

λ−1
dQ̃ dz

︸ ︷︷ ︸

I2

. (2.6)

We will treat the two integrals separately. The solution of I2 is easily obtained. Changing
the order of integration and taking into account that p(Q̃) =

∫∞
−∞ pz(z)pε(Q̃|SQz+MQ) dz,

we get

I2 = λMQ

∫ ∞

−∞
p(Q̃)P (Q̃)

λ−1
dQ̃ = MQ. (2.7)

In order to calculate I1, we expand pz(z) into a Gram-Charlier series

pz(z) =
e−

z2

2√
2π

(1 +
κ3

3!
He3(z) +

κ4

4!
He4(z) +

κ5

5!
He5(z) +

κ6 + 10κ2
3

6!
He6(z) + . . .), (2.8)

where κi are the cumulants and Hek(z) is the Hermite polynomial of order k, i.e.

Hek(z) = (−1)kez2/2 dk

dzk e−z2/2.
We will first consider the limit case N → ∞. Let us assume that the cumulants κi

(i > 2) vanish in the case of an infinite-dimensional search space. The density function

of z simplifies to pz(z) ' e−
z2

2 /
√

2π enabling us to derive a closed expression for the
probability of Q̃

P (Q̃) ' 1√
2π

∫ Q̃

−∞

∫ ∞

−∞
pε(q̃|SQz + MQ)e−

z2

2 dz dq̃. (2.9)

Changing the order of integration and performing the integration over Q̃ (see [6, p.329f])
leads to

P (Q̃) ' 1√
2π

∫ ∞

−∞
Φ

(

Q̃ − SQz − MQ

σε

)

e−
z2

2 dz = Φ




Q̃ − MQ

σε

√

1 + (
SQ

σε
)2



 . (2.10)

Inserting P (Q̃) into I1, it can be expressed as

I1 '
λSQ

2πσε

∫ ∞

−∞

∫ ∞

−∞
ze−

z2

2 e−
1
2
(

Q̃−SQz−MQ

σε
)2Φ




Q̃ − MQ

σε

√

1 + (
SQ

σε
)2





λ−1

dQ̃ dz. (2.11)
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We now change the order of integration and transform Q̃ into u = (Q̃−MQ)/(σε

√

1+(
SQ

σε
)2).

It follows that dQ̃ = σε

√

1+(
SQ

σε
)2 du. Inserting u into (2.11), I1 is given as

I1 ' λSQ√
2π

√

1 + (
SQ

σε
)2 ∗

∫ ∞

−∞





∫ ∞

−∞

ze−
z2

2√
2π

e
− 1

2
(

√

1+(
SQ

σε
)2u−SQ

σε
z)2

dz



Φλ−1(u) du. (2.12)

The solution of the inner integral can be found in [6, p.330]. Recalling the definition of

the progress coefficient [6, p.72] c1,λ := λ√
2π

∫∞
−∞ ue−

u2

2 Φλ−1(u) du, we finally obtain

∆Q1,λ ' λSQ√
2π

∫ ∞

−∞

√

1 + (
SQ

σε
)2

(

1 + (
SQ

σε
)2
)

(
SQ

σε

)

ue−
u2

2 Φλ−1(u) du + MQ

=
S2

Q
√

S2
Q + σ2

ε

c1,λ + MQ. (2.13)

Equation (2.13) was developed for the case of an infinite-dimensional search space assuming
that the density function of the standardized variable z is given as the standard normal
density function. It will be used as an approximate formula in finite-dimensional spaces
presuming that the approximation for pz(z) is also valid there and the error that results
from extending the upper integration limit of (2.5) when using the approximation is small.
The predictive quality of (2.13) will be assessed by experiments in Section 3.1.

2.2 Steady-State Behavior

The quality gain (2.13) can be used to derive conditions that ensure progress towards the
optimum or characterize the steady state. Evolution strategies with (µ, λ)-selection that
are disturbed by noise of constant variance cannot approach the optimum arbitrarily close.
Instead, they finally end in a steady state that deviates from the actual optimum. Once
the steady state is reached, the average quality gain becomes zero. As long as the ES
still progresses towards the optimum, the quality gain is strictly positive. Therefore, the
condition ∆Q1,λ ≥ 0 is also called the sufficient evolution criterion.

Let us assume in the following that MQ ≤ 0 which is a typical characteristic of many
test functions. Considering the sufficient evolution criterion, we see that ∆Q1,λ ≥ 0 is

satisfied for S2
Q/
√

S2
Q + σ2

ε ≥ |MQ|/c1,λ. Solving the inequality for S2
Q, one obtains

(S∞
Q )2 ≥

|M∞
Q |

c1,λ






|M∞
Q |

2c1,λ
+

√
√
√
√

(
M∞

Q

2c1,λ

)2

+ σ2
ε






=
(M∞

Q )2

2c2
1,λ




1 +

√
√
√
√1 +

(

2c1,λσε

M∞
Q

)2



 . (2.14)

Since the terms below the root-sign are all positive, we can write

(S∞
Q )2 ≥

(M∞
Q )2

2c2
1,λ




1 +

√
√
√
√1 +

(

2σεc1,λ

M∞
Q

)2



 >

(M∞
Q )2

2c2
1,λ

√
√
√
√1 +

(

2σεc1,λ

M∞
Q

)2
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>
(M∞

Q )2

2c2
1,λ

√
√
√
√

(

2σεc1,λ

M∞
Q

)2

=
|M∞

Q |
c1,λ

σε (2.15)

and thus arrive at a lower bound for the mutation strength (since MQ and SQ depend on
the mutation strength) constituting a necessary evolution criterion.

On the other hand, the case “=” in (2.15) leads to the steady state condition ∆Q1,λ = 0
provided that S2

Q � σ2
ε . Therefore, the noise strength has to be sufficiently large or

the variance S2
Q sufficiently small. Since S2

Q generally depends strongly on the mutation
strength σ, we require σ � σε – as it is often the case at the steady state. The steady
state condition can therefore be formulated as

(S∞
Q )2 '

|M∞
Q |

c1,λ
σε. (2.16)

This equation can be used to derive the final fitness error E[∆F ] which is defined as the
deviation of the expected value of the fitness function from the real optimal value. If yp

is a parental state chosen in the steady state regime, we set ∆F := F̂ − F (yp), where
F̂ = max F . Thus, the expected value of the deviation is given as E[∆F ] = F̂ −E[F (yp)].

In the following, we will derive the final fitness error for quadratic test functions
F1(y) = bTy − yTQy, a class of biquadratic fitness functions F3(y) = −∑N

i=1 ciy
4
i ,

F5(y) = c −∑N
i=1 |yi|, and the function OneMax F4(y) =

∑N
i=1 yi.

Quadratic fitness functions The local quality is given by Q(x) = F (y + x)− F (y) =
bTx − 2yTQx − xTQx and can be simplified to Q(x) = (b − 2Qy)Tx − xTQx. Since
b = 2Qŷ, with ŷ = arg max F (y), Q(x) can be written as

Q(x) = (2Q(ŷ − y))Tx − xTQx. (2.17)

The expected value and variance of Q have already been obtained in [6, p.122f] as MQ =
−σ2Tr[Q] and S2

Q = 4σ2||Q(ŷ−y)||2 +2σ4Tr[Q2]. Inserting these expressions into (2.16),
we obtain

||Q(ŷ − y)||2 ' Tr[Q]

4c1,λ
σε −

σ2Tr[Q2]

2
. (2.18)

Assuming smallness of the mutation strength σ at the steady state, i.e. σ2 → 0, Equation
(2.18) can be simplified to

||Q(ŷ − y)||2 ' Tr[Q]

4c1,λ
σε. (2.19)

This agrees with the result found in [7]. Following the same assumptions used there, we
can give an approximation for the expected final fitness error E[∆F ] without repeating
the deviations presented in [7]

E[∆F ] ≈ σεN

4c1,λ
. (2.20)

The validity of this equation was already tested in [7], yielding good results. One
of the most important assumptions made in that paper was the so-called equipartition
assumption stating that the weighted contribution of all components to the final fitness
error can be supposed to be the same.
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Biquadratic fitness functions We will make use of a similar assumption in order to
calculate the fitness error in the case of the test function (1.3). We obtain for Q(x)=F (y+
x) − F (y)

Q(x) =
N∑

i=1

(ai − 4ciy
3
i )xi − 6ciy

2
i x

2
i − 4ciyix

3
i − cix

4
i . (2.21)

Considering the special case ai = 0, we have

Q(x) =
N∑

i=1

(−4ci)y
3
i xi − 6ciy

2
i x

2
i − 4ciyix

3
i − cix

4
i . (2.22)

Since the optimal point ŷi = 3

√
ai

4ci
also becomes zero, ∆F = F̂ − F (y) can be written as

∆F =
∑N

i=1 ciy
4
i and the final fitness error E[∆F ] is given by

E[∆F ] =
N∑

i=1

ciE[y4
i ]. (2.23)

To continue, we need the expected value MQ and the variance S2
Q of (2.21). To simplify

the calculations, we set Qi(xi) := (ai − 4ciy
3
i )xi − 6ciy

2
i x

2
i − 4ciyix

3
i − cix

4
i . The expected

value and the variance can therefore be written as

MQ =
N∑

i=1

E[Qi(xi)] = −3σ2
N∑

i=1

ci(2y
2
i + σ2) (2.24)

and

S2
Q =

N∑

i=1

Var[Qi(xi)] =
N∑

i=1

E[Q2
i ] − E[Qi]

2

=
N∑

i=1

σ2(ai − 4ciy
3
i )

2 − 24aiciyiσ
4 + 168c2

i y
4
i σ

4 + 384c2
i y

2
i σ

6 + 96c2
i σ

8. (2.25)

As before, we will consider small mutation strengths. Therefore, the higher order terms
of σ can be neglected and (2.25) simplifies to S2

Q ' σ2∑N
i=1(ai − 4ciy

3
i )

2. Inserting the

expressions for MQ and S2
Q into (2.16), we obtain the following steady state condition

(note, ai = 0)

N∑

i=1

(4ciy
3
i )

2 =
N∑

i=1

16c2
i y

6
i ' 3σε

c1,λ

N∑

i=1

ci(2y
2
i + σ2). (2.26)

Considering the limit case σ2 → 0, the influence of σ2 can be neglected in comparison
to 2y2

i and the equation above can be simplified. In order to eliminate the factors ci in
∆F =

∑N
i=1 ciy

4
i , we introduce a new variable zi = 4

√
ciyi. Taking the expected value of zi

on both sides of (2.26), we get

N∑

i=1

16
√

ci z6
i ' 3σε

c1,λ

N∑

i=1

2
√

ci z2
i . (2.27)

Since the steady state is reached, it can be assumed that the single components show a
very similar behavior, so that the relation for the sum is also valid for a single term

z6
i ≈ 3σε

8c1,λ
z2
i . (2.28)
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Since our approach does not allow for a determination of the zi density from first principles,
we assume the zi to be N (0, σ2

z)-distributed exhibiting approximately the same variance
σ2

z . Using this rather crude approximation, the required sixth and the second central

moments are z6
i = 15σ6

z and z2
i = σ2

z , respectively, and we obtain

σ4
z ≈ σε

40c1,λ
. (2.29)

Now we can calculate E[∆F ], i.e. (2.23). Taking yi = zi
4
√

ci
and (2.29) into account, E[∆F ]

simplifies to E[∆F ] = 3Nσ4
z , so that the final fitness error can be estimated as

E[∆F ] ≈ 3Nσε

40c1,λ
. (2.30)

This equation was obtained by assuming that once the steady state is reached, the average
behavior of each of the weighted components is approximately the same. This assumption
agrees with the postulates in [7]. We derived (2.30) under the condition that σ is sufficiently
small so that the higher-order terms of the variance (2.25) can be neglected. Since the
mutation strength tends to be small in the steady state, this condition can be supposed
to be justified. Finally, we assumed that the normalized variables can be approximated
roughly with normally distributed variables. The validity of this approach will be examined
in Section 3.2.1.

It is a rather surprising result that the equation does not depend on any terms of func-
tion (2.21), that is, the fitness error should be roughly the same regardless of the ci-values
chosen. We will see in Section 3.2.1 that this simple equation predicts the final fitness
error surprisingly well – even when extended to the (µ/µI , λ)-variants by substituting c1,λ

with µcµ/µI ,λ.

Negative L1-Norm The function F5(y) = c−∑N
i=1 |yi| has its maximum at y = 0. The

fitness error of a vector y and the final fitness error are therefore given as ∆F :=
∑N

i=1 |yi|
and E[∆F ] =

∑N
i=1 E[|yi|]. In order to derive an equation describing the final deviation,

we use the simplified steady state condition (2.16), |M∞
Q | σε

c1,λ
' S∞

Q
2.

The parameter MQ and SQ can be given after a short calculation. The local quality is
defined as

Q(x) :=
N∑

i=1

|yi| − |yi + xi|. (2.31)

We assume again the xi to be normally distributed with variance σ2. Therefore, MQ is

MQ =
N∑

i=1

|yi| −
∫ ∞

−∞
|yi + xi|φ0,σ2(xi) dxi

=
N∑

i=1

|yi| +
∫ −yi

−∞
(yi + xi)φ0,σ2(xi) dxi

−
∫ ∞

−yi

(yi + xi)φ0,σ2(xi) dxi

=
N∑

i=1

|yi| − yi(2Φ0,σ2(yi) − 1) − 2σ2φ0,σ2(yi), (2.32)
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where φ0,σ2(xi) := 1√
2πσ

e−
x2

i
2σ2 and Φ0,σ2 is the corresponding distribution function.

Defining Q(x) :=
∑N

i=1 qi =
∑N

i=1 |yi| − |yi + xi|, the variance S2
Q is given as S2

Q=
∑N

i=1 Var[qi]=
∑N

i=1 E[q2
i ] − E[qi]

2. The expected values are obtained as

E[q2
i ] = 2y2

i + σ2 − 2|yi|yi(2Φ0,σ2(yi) − 1) − 4σ2|yi|φ0,σ2(yi) (2.33)

and

E[qi]
2 = 2y2

i + 4y2
i Φ

2
0,σ2(yi) − 4y2

i Φ0,σ2(yi) − 4σ2φ0,σ2(yi)
[

yi(1 − 2Φ0,σ2(yi)) − σ2φ0,σ2(yi)
]

+2|yi|yi[1 − 2Φ0,σ2(yi)] − 4σ2|yi|φ0,σ2(yi). (2.34)

Therefore, the variance is given by

S2
Q = Nσ2 + 4

N∑

i=1

y2
i Φ0,σ2(yi)[1 − Φ0,σ2(yi)]

−4σ2
N∑

i=1

φ0,σ2(yi)yi[2Φ0,σ2(yi) − 1] − 4σ4
N∑

i=1

φ2
0,σ2(yi). (2.35)

First, we note that S2
Q ≤ Nσ2 − 4σ4∑N

i=1 φ2
0,σ2(yi) and that |MQ| =

∑N
i=1 yi(2Φ0,σ2(yi) −

1) + 2σ2φ0,σ2(yi)− |yi|. A proof of both equations can be found in Appendix 5.1. Consid-
ering (2.16), i.e. |M∞

Q |σε/c1,λ ' S∞
Q

2, we thus obtain

Nσ2 − 2σ2

π

N∑

i=1

e−
y2
i

σ2 ≥ (
N∑

i=1

yi(2Φ0,σ2(yi) − 1) + 2
σ√
2π

e−
y2
i

2σ2 − |yi|)
σε

c1,λ
. (2.36)

Setting yi = σzi, the inequalities become

Nσ2 − 2σ2

π

N∑

i=1

e−z2
i ≥ (σ

N∑

i=1

zi(2Φ(zi) − 1) + 2
σ√
2π

e−
z2
i
2 − σ|zi|)

σε

c1,λ

⇒ Nσ − 2σ

π

N∑

i=1

e−z2
i ≥ (

N∑

i=1

zi(2Φ(zi) − 1) +
2√
2π

e−
z2
i
2 − |zi|)

σε

c1,λ
. (2.37)

Applying the equipartition assumption to F5(y) = c −∑N
i=1 |yi| (1.5), it becomes clear

that each component yi in (1.5) should obey the same behavior (on average in the steady
state regime). Therefore, the same holds for zi = yi/σ and we can assume E[h(zi)] =
E[h(zk)], k 6= i, h(x) one of the functions in (2.37), thus introducing again an equipartition
assumption. Furthermore, we approximate zi by a N (0, σ2

z) distributed variable. Thus,
the expected values of the terms in (2.37) become

E[|zi|] =

√

2

π
σz,

E[zi(2Φ(zi) − 1)] =

√

2

π

σ2
z

√

σ2
z + 1

,

2√
2π

E[e−
z2
i
2 ] =

√

2

π

1
√

σ2
z + 1

, and

2σ

π
E[e−z2

i ] =
2

π
√

2σ2
z + 1

σ. (2.38)
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The expected value of (2.37) is therefore

Nσ(1 − 2

π
√

2σ2
z + 1

) ≥ σε

c1,λ
N

(√

2

π

√

σ2
z + 1 − σz

√

2

π

)

(2.39)

leading to a relationship between the mutation strength in the steady state and the variance
of zi

σ ≥ σε

c1,λ

√

2

π






√

σ2
z + 1 − σz

(1 − 2

π
√

2σ2
z+1

)




 . (2.40)

Note, that the left hand side of (2.40) is a monotonically decreasing function of σ. Once
the steady state is reached, the mutation strength is generally small. Therefore, (2.40) can
only be expected to be valid, if σz is relatively high, especially σz ≥ 1. Thus, we assume
that the standard deviation of the yi is higher than the mutation strength.

We can use (2.40) to derive a lower bound for the final fitness error of F5, i.e. E[∆F ] =
∑N

i=1 E[|yi|]. Applying the assumptions of the distribution of yi, the final fitness error is
given by E[∆F ] = σ

∑N
i=1 E[|zi|] = N

√

2/πσσz. Considering the inequality (2.40) for σ,
we get

E[∆F ] = N

√

2

π
σzσ ≥ N

√

2

π
σz

σε

c1,λ

√

2

π






√

σ2
z + 1 − σz

(1 − 2

π
√

2σ2
z+1

)




 . (2.41)

In order to continue, we need to find a lower bound for h(x) := (
√

x4 + x2 − x2)/(1 −
2

π
√

2x2+1
), x ≥ 1.

Since we do not know an upper bound for σz, we assume it to be unbounded above. As
the denominator 1 − 2/(π

√
2x2 + 1) approaches 1 for x → ∞ and the numerator is given

as

√

x4 + x2 − x2 =
(
√

x4 + x2 − x2)(
√

x4 + x2 + x2)√
x4 + x2 + x2

=
x2

√
x4 + x2 + x2

=
1

1 +
√

1 + 1
x2

, (2.42)

h(x) =
√

x4+x2−x2

1− 2

π
√

2x2+1

goes to 0.5. This is a lower bound for h(x), x ≥ 1, as we will show in

Appendix 5.1. Therefore, we can give a lower bound for the final fitness error as

E[∆F ] ≈ N

√

2

π
σσz ≥ N

√

2

π

(√

2

π

σε

c1,λ
h(σz)

)

≥ σε

πc1,λ
N. (2.43)

To derive (2.43), we used again a variant of the equipartition assumption, first intro-
duced in [7]. Furthermore, we had to assume that the standardized variables zi = yi/σ
obey a normal distribution. Under this assumption, we can derive (2.40) which gives a
function of the noise strength and the standard deviation of z as a lower bound for the
mutation strength. Equation (2.40) can further be used to derive an estimate for the final
inequality (2.43). Assuming that σz ≥ 1, h(x) is always higher than its limit value which
can then be used to derive the lower bound.
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Fig. 2.1. The function h(σz) obtained in the derivation of the lower bound for function F5 using
the normal distribution.
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OneMax The local quality of OneMax, i.e. F4(y) =
∑N

i=1 yi, is given by Q(y) = F (x)−
F (y). For strings of length N , the statistical parameters are MQ = −pm(2F0 − N) and
SQ =

√
N
√

pm(1 − pm) (see [6, p.128f]), where pm is the mutation rate and F0 =
∑N

i=1 yi

the parental fitness value. Inserting these values into (2.16), (S∞
Q )2 ' |M∞

Q |σε/c1,λ, gives

Npm(1 − pm) ' pm(2F0 − N)

c1,λ
σε (2.44)

leading to the final fitness error

E[∆F ] = N −
N∑

i=1

E[yi] '
N

2

(

1 − c1,λ(1 − pm)

σε

)

. (2.45)

Note that this equation is only valid for sufficiently high noise strengths. A more appro-
priate formula is obtained by inserting the expected value and standard deviation into

(2.13), ∆Q1,λ'S2
Q/
√

S2
Q + σ2

ε c1,λ+MQ, and setting the quality gain equal to zero. After

rearranging the terms and taking the expectation of F0 =
∑N

i=1 yi, one immediately gets

N∑

i=1

E[yi] =
N

2

(

1 +
1 − pm

√

Npm(1 − pm) + σ2
ε

c1,λ

)

. (2.46)

The final fitness error is then given as

E[∆F ] = N −
N∑

i=1

E[yi] '
N

2

(

1 − 1 − pm
√

Npm(1 − pm) + σ2
ε

c1,λ

)

. (2.47)

Considering the mutation rate pm = 1/N , usually recommended in literature, and assum-
ing N to be sufficiently large, the equations (2.45) and (2.47) simplify to

E[∆F ] ≈ N

2

(

1 − c1,λ

σε

)

(2.48)

and

E[∆F ] ≈ N

2

(

1 − c1,λ
√

1 + σ2
ε

)

. (2.49)

Since E[∆F ] ≥ 0, (2.49) is only valid if the inner fraction is smaller than 1, i.e. c1,λ ≤
√

1 + σ2
ε . The predictive quality of the final fitness error obtained will be assessed in

Section 3.2.1.



Chapter 3

Comparison with Experiments

In the following, Equation (2.13) describing the quality gain will be applied to several
classes of fitness functions which were introduced in Section 1.2. Afterwards, we will
examine the predictive quality of the final fitness error for some biquadratic functions,
the negative L1-norm, and OneMax extending it to (µ/µI , λ)-ES for the first two function
classes. Since the equation for quadratic functions equals the one developed in [7], where
its validity was already shown, it will not be considered further.

3.1 The Quality Gain

3.1.1 Quadratic Test Functions

The local quality for quadratic functions is given as Q(x)=2[Q(ŷ − y)]Tx − xTQx (cp.
Sec. 2.2). As expected value and variance of Q, MQ = −σ2Tr[Q] and S2

Q = 4σ2||Q(ŷ −
y)||2 + 2σ4Tr[Q2] were obtained. Inserting these expressions into (2.13), the quality gain
for quadratic functions is given as

∆Q1,λ '
S2

Q
√

S2
Q + σ2

ε

c1,λ + MQ

=
4σ2||Q(ŷ − y)||2 + 2σ4Tr[Q2]

√

4σ2||Q(ŷ − y)||2 + 2σ4Tr[Q2] + σ2
ε

c1,λ − σ2Tr[Q] (3.1)

or assuming that 2σ4Tr[Q2] is small compared with 4σ2||Q(ŷ − y)||2

∆Q1,λ ' 4σ2||Q(ŷ − y)||2
√

4σ2||Q(ŷ − y)||2 + σ2
ε

c1,λ − σ2Tr[Q]. (3.2)

To compare (3.2) with the result obtained in [6] for the noise-free case, we introduce the

following normalizations [6, p.132] σ∗ = Tr[Q]
||Q(ŷ−y)||σ, σ∗

ε = Tr[Q]
2||Q(ŷ−y)||2 σε, and ∆Q

∗
1,λ =

Tr[Q]
2||Q(ŷ−y)||2 ∆Q1,λ and get

∆Q
∗
1,λ ' c1,λσ∗ 1

√

1 + (σ∗

ε

σ∗
)2

− σ∗2

2
. (3.3)

As in the noise-free case with ∆Q
∗
1,λ ' c1,λσ∗ − σ∗2

2 , the equation can be decomposed
into a gain and a loss term. The noise only influences the gain part of the equation, an
observation already made in [6] for the progress rate on the noisy sphere.

14
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The noisy quality gain ∆Q
∗
1,λ has a maximum whose value depends on the noise

strength σ∗
ε . If the noise is too large, it will reduce the linear gain part such that the

loss term will be the dominating factor leading to a monotonically decreasing function.
As representatives for the quadratic test functions,

F1.1(x) = −
N∑

i=1

ix2
i and (3.4)

F1.2(x) = −
N∑

i=1

i2x2
i (3.5)

were chosen. Figure 3.1 shows the dependence of the normalized quality gain on the noise

Fig. 3.1. Dependence of ∆Q
∗

1,20 on the noise strength σ∗

ε for quadratic test functions (Equations
(3.5) and (3.5)) for several choices of σ∗. Depicted are from top to bottom the curves for σ∗ = 2,
1, 3, and 0.5.
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strength σ∗
ε in the 10- and 100-dimensional object parameter space. The experimental

values were obtained by performing 1,000,000 one-generation experiments per data point
using y = 2 as starting vector.

As σ∗
ε increases, the quality gain decreases approaching −σ∗2

2 . For N = 100, the
agreement between equation and experiment is very good, while greater deviations can be
observed for the lower dimensional case. Here, good results for all choices of σ∗

ε can only
be obtained for small normalized mutation strengths, e.g. σ∗ = 0.5 – the lowest mutation
strength examined – where experimental results and predicted values show an excellent
agreement.

Figure 3.2 shows the dependency of ∆Q
∗
1,20 on σ∗, depicting the quality gain (3.3) and

the experimentally obtained values for several choices of σ∗
ε . For σ∗ sufficiently small, i.e.
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σ∗ < 1, the agreement between (3.3) and measurement is quite good even in the lower
dimensional search space. That range increases decidedly for N = 100. The only exception
is the curve for σ∗

ε = 5 where (3.3) leads to an overestimation of the experimental values.

Fig. 3.2. Dependence of ∆Q
∗

1,20 on the mutation strength σ∗ for quadratic test functions (Equa-
tions (3.5) and (3.5)). Depicted are from top to bottom the curves for the noise strengths 0.5, 1,
2, 3, and 5.
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3.1.2 Cubic Functions

In this subsection, we will consider the quality gain in the case of cubic functions, i.e.
functions of the form F2(y) =

∑N
i=1 aiyi − ciy

3
i , for which the local quality is given as

Q(x) =
N∑

i=1

aiyi + aixi − ci(yi + xi)
3 − aiyi + ciy

3
i

=
N∑

i=1

(ai − 3ciy
2
i )xi − 3ciyix

2
i − cix

3
i . (3.6)

To obtain the specific quality gain, we need the expected value and variance of (3.6). The
expected value is given by

MQ =
N∑

i=1

E[qi(xi)] =
N∑

i=1

E[(ai − 3ciy
2
i )xi − 3ciyix

2
i − cix

3
i ] = −3σ2

N∑

i=1

ciyi. (3.7)
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In order to obtain the variance, we consider

S2
Q =

N∑

i=1

Var[qi] =
N∑

i=1

E[q2
i ] − E[qi]

2. (3.8)

Since E[qi]
2 equals E[qi]

2 = 9σ4c2
i y

2
i and the expected value of q2

i is given by E[q2
i ] =

E[(ai − 3ciy
2
i )

2x2
i −6ciyi(ai − 3ciy

2
i )x

3
i − 2ci(ai − 3ciy

2
i )x

4
i + 9c2

i y
2
i x

4
i + 6c2

i yix
5
i + c2

i x
6
i ] =

15c2
i σ

6 + 45c2
i y

2
i σ

4 − 6ciaiσ
4 + (ai − 3ciy

2
i )

2σ2, the variance is obtained as

S2
Q =

N∑

i=1

15c2
i σ

6 + 6ci(6ciy
2
i − ai)σ

4 + (ai − 3ciy
2
i )

2σ2. (3.9)

By inserting these values into (2.13) we get

∆Q1,λ ' 15σ6∑N
i=1 c2

i + 6σ4∑N
i=1 6c2

i y
2
i − ciai + σ2∑N

i=1(ai − 3ciy
2
i )

2

√

15σ6
∑N

i=1 c2
i + 6σ4

∑N
i=1 6c2

i y
2
i − ciai + σ2

∑N
i=1(ai − 3ciy2

i )
2 + σ2

ε

c1,λ

−3σ2
N∑

i=1

ciyi. (3.10)

The quality gain consists of a gain term and a quadratic loss term. The gain part of (3.10)
is approximately a polynomial of degree three that is influenced by the noise although that
influence is rather weak. Eventually, if σ is increased far enough, the quality gain will be
a monotonically increasing function of the mutation strength.

For σ � 1, the variance simplifies to S2
Q ' 9σ2∑N

i=1(ai − 3ciy
2
i )

2, leading to the
following normalized quality gain

∆Q∗
1,λ ' σ∗ 1

√

1 + (σ∗

ε

σ∗
)2

c1,λ − (σ∗)2

2
, (3.11)

where σ∗ =
6
∑N

i=1
ciyi

√
∑N

i=1
(ai−3ciy2

i
)2

σ, σ∗
ε =

6
∑N

i=1
ciyi

∑N

i=1
(ai−3ciy2

i
)2

σε, and ∆Q∗
1,λ =

6
∑N

i=1
ciyi

∑N

i=1
(ai−3ciy2

i
)2

∆Q1,λ.

Equation (3.10) equals the normalized quality gain of quadratic fitness functions (3.3).
The quality gain (3.10) and the normalized quality gain (3.11) on cubic functions were

tested using the fitness functions

F2.1(y) = −
N∑

i=1

iy3
i and (3.12)

F2.2(y) = −
N∑

i=1

i2y3
i . (3.13)

Figures 3.3 to 3.5 show the dependency of the respective quality gain on the noise strength
and mutation strength. The values were obtained by performing 1, 000, 000 one-generations
experiments per data point. The vector y = 2 was chosen as starting vector.

Figure 3.3 depicts the quality gain (3.10) as a function of the mutation strength. For
N = 10, the quality gain is a monotonically increasing function, for which experimental
values and (3.10) start to deviate rather soon, i.e. for mutation strengths close to one. For
N = 100, the predictive quality is acceptable for a wider range of σ.

Considering the normalized noise strength and Fig. 3.5, (3.11) agrees well with the
experimental results as long as σ∗ is sufficiently small, i.e. σ∗ ≤ 1.5 for N = 10. That
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range can be increased to σ∗ ≤ 3 in the case of the 100-dimensional space. As one can see
in Fig. 3.3, for N = 10 (3.10) is a monotonically increasing function for the fitness functions
considered. Therefore, (3.11) can only be expected to agree well with the experiments as
long as the gain part outweighs the loss term.

Fig. 3.3. Dependence of ∆Q1,20 on the mutation strength σ for cubic functions (Equations (3.12)
and (3.13)). Depicted is the curve for the noise strength σε = 1.
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3.1.3 Biquadratic Functions

We will now consider functions of the form F3(y) =
∑N

i=1(aiyi − ciy
4
i ) (1.3) with the local

quality function

Q(x) =
N∑

i=1

(ai − 4ciy
3
i )xi − 6ciy

2
i x

2
i − 4ciyix

3
i − cix

4
i . (3.14)

In order to determine the quality gain (2.13), ∆Q1,λ ' S2
Q√

S2
Q

+σ2
ε

c1,λ + MQ, we need the

expressions for MQ and SQ which were already developed in Sec. 2.2 as

MQ = −3σ2
N∑

i=1

ci(2y
2
i + σ2) and

S2
Q =

N∑

i=1

σ2(ai − 4ciy
3
i )

2 − 24aiciyiσ
4 + 168c2

i y
4
i σ

4 + 384c2
i y

2
i σ

6 + 96c2
i σ

8.
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Fig. 3.4. Dependence of ∆Q
∗

1,20 on the noise strength σ∗

ε for cubic functions (Equations (3.12) and
(3.13)) for several choices of σ∗. Depicted are from top to bottom the curves for σ∗ = 2, σ∗ = 1,
σ∗ = 3, and σ∗ = 0.5.
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Assuming σ to be sufficiently small, S2
Q can be simplified to S2

Q ' σ2∑N
i=1(ai − 4ciy

3
i )

2.
The expressions for SQ and MQ are then inserted into (2.13) leading to

∆Q1,λ ' c1,λσ2

∑N
i=1(ai − 4ciy

3
i )

2

√

σ2
∑N

i=1(ai − 4ciy3
i )

2 + σ2
ε

− 3σ2
N∑

i=1

ci(2y
2
i + σ2). (3.15)

Unfortunately, function (1.3) generally does not allow for a normalization of (3.15). An
exception to this is the case y = 0. The expressions above for the variance and the
expected value simplify then to S2

Q ' σ2∑N
i=1 a2

i = σ2||a||2 and MQ = −3σ4∑N
i=1 ci.

Setting c = 3
∑N

i=1 ci and using the normalizations σ∗ = 3
√

c/||a||σ, σ∗
ε = 3

√

c/||a||4σε, and
∆Q

∗
1,λ = 3

√

c/||a||4 ∆Q1,λ (see [6, p.134]), we obtain

∆Q
∗
1,λ ' c1,λσ∗ 1

√

1 + (σ∗

ε

σ∗
)2

− σ∗4. (3.16)

Again the equation can be decomposed into a linear gain part being influenced by the noise
and a loss term which is biquadratic in this case. If σ∗ is kept constant, ∆Q

∗
1,λ approaches

−σ∗4 if the noise strength σ∗
ε is increased.

The predictive quality of (3.16) was examined using the fitness functions

F3.1(y) =
N∑

i=1

yi − y4
i , (3.17)
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Fig. 3.5. Dependence of ∆Q
∗

1,20 on the mutation strength σ∗ for cubic functions (Equations (3.12)
and (3.13)). Depicted are from top to bottom the curves for the noise strengths σ∗

ε = 0.5, σ∗

ε = 1,
σ∗

ε = 2, σ∗

ε = 3, and σ∗

ε = 5.
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F3.2(y) =
N∑

i=1

yi − iy4
i , and (3.18)

F3.3(y) =
N∑

i=1

yi − i2y4
i . (3.19)

Figure 3.6 shows the dependency of ∆Q∗
1,λ on σ∗

ε for several choices of σ∗. As in the cubic
case, the experimental values were obtained by averaging over 1,000,000 one-generation
trials using y = 0 as parental state. The behavior we observe is similar to that of the
quadratic functions. An increase of the noise strength decreases the linear gain part of
(3.10) so that the maximum becomes less pronounced and approaches zero for σ∗

ε → ∞.
Even for N = 10, a good agreement exists between the values obtained by (3.10) and
those of the experiments as long as σ∗ is small. As it approaches one, the predictive
quality deteriorates.

This can also be seen in Fig. 3.7 showing the dependency of ∆Q
∗
1,20 on the mutation

strength σ∗ for the noise strengths 0.5, 1, 2, 3, and 5. For N = 10, (3.16) predicts
the experimental values up to a mutation strength of one reasonably well. This can be
extended to 1.25 in the higher-dimensional parameter space.
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Fig. 3.6. Dependence of ∆Q
∗

1,20 on the noise strength σ∗

ε for biquadratic functions. Depicted are
from top to bottom the results for σ∗ = 1, σ∗ = 0.5, and σ∗ = 0.1.
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3.1.4 Negative L1-Norm

We will now consider functions of the general form F5(y) = c −∑N
i=1 |yi|, for which the

statistical parameters are given as (see (2.32) and (2.35))

MQ =
N∑

i=1

|yi| − yi(2Φ0,σ2(yi) − 1) − 2σ2φ0,σ2(yi) and

S2
Q = Nσ2 + 4

N∑

i=1

y2
i Φ0,σ2(yi)[1 − Φ0,σ2(yi)]

−4σ2
N∑

i=1

φ0,σ2(yi)yi[2Φ0,σ2(yi) − 1] − 4σ4
N∑

i=1

φ2
0,σ2(yi),
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Fig. 3.7. Dependence of ∆Q∗

1,20 on the mutation strength σ∗ for biquadratic functions. Depicted
are from bottom to top the results for σ∗

ε = 5,σ∗

ε = 3,σ∗

ε = 2, σ∗

ε = 1, and σ∗

ε = 0.5.
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where φ0,σ2(yi) := 1√
2πσ

e−
y2
i

2σ2 and Φ0,σ2 is the normal distribution function. By inserting

MQ and S2
Q into (2.13), ∆Q1,λ ' S2

Q/
√

S2
Q + σ2

ε c1,λ + MQ, we get the quality gain of F5.

Considering the mean value MQ =
∑N

i=1 |yi| − yi(2Φ0,σ2(yi) − 1) − 2σ2φ0,σ2(yi), we
note that |yi| − yi(2Φ0,σ2(yi) − 1) is given as 2yi(1 − Φ0,σ2(yi)) if yi ≥ 0, whereas it
simplifies to −2yiΦ0,σ2(yi) if yi < 0. For small σ-values and yi 6= 0 therefore, MQ =
∑N

i=1 |yi| − yi(2Φ0,σ2(yi) − 1)−2σ2φ0,σ2(yi) tends to zero.
Similarily, the variance can be approximated with Nσ2 if the mutation strength is

sufficiently small. As a consequence, the quality gain can be assumed to be positive and
approximately a linear function of σ as long as the mutation strength is sufficiently small.
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Fig. 3.8. Dependence of ∆Q1,20 on the noise strength σε for function F5.1 (Equation (3.20)).
Depicted are the results for σ = 1, σ = 0.5, and σ = 0.1 from top to bottom.
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The validity of the quality gain (2.13) was assessed by experiments using

F5.1(y) = −
N∑

i=1

|yi| (3.20)

as test function. The values were obtained by averaging over 500, 000 one-generation
experiments with y = 5 as starting vector. As can be seen in Figs. 3.8 and 3.9, the
predictive quality is generally acceptable, which is even the case in the 10-dimensional
space.

It is also of interest to look at the quality gain, if the parent vector is of the form cek,
where ek is the kth unit vector – that is, we consider the quality gain starting in one of
the edges of the rotated hypercube. There, the success probability is quite small which is
reflected in the quality gain. The mean value of Q is given in this case by

MQ = |c| − c(2Φ0,σ2(c) − 1) − 2σ2φ0,σ2(c) − 2√
2π

(N − 1)σ, (3.21)

whereas the variance reduces to

S2
Q = σ2[N − 2

π
(N − 1)] + 4c2Φ0,σ2(c)[1 − Φ0,σ2(c)]

−4σ2cφ0,σ2(c)[Φ0,σ2(c) − 1] − 4σ4φ2
0,σ2(c). (3.22)

For N � 1 and/or σ sufficiently small in relation to c, the statistical parameters can be
approximated with MQ ≈ − 2√

2π
(N − 1)σ and S2

Q ≈ [N − 2
π (N − 1)]σ2 leading to the

quality gain

∆Q1,λ ≈ σ
[N − 2

π (N − 1)]
√

[N − 2
π (N − 1)] + (σε

σ )2
c1,λ − 2√

2π
(N − 1)σ. (3.23)

The quality gain now degrades into a approximately linear function of σ only assuming
positive values if the offspring population size λ is rather high and the dimension N and
the noise strength sufficiently small. Figure 3.10 shows the quality gain as a function of
the mutation strength for N = 10 and N = 100. As starting vector y = 5e1 was chosen.
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Fig. 3.9. Dependence of ∆Q1,20 on the mutation strength σ for function F5.1 (3.20). Depicted are
from top to bottom the results for σε = 1, σε = 10, σε = 15, and σε = 20.
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Fig. 3.10. Dependence of ∆Q1,20 on the mutation strength σ for function F5.1, (3.20), starting in
y = 5e1. Depicted are from top to bottom the results for σε = 1, σε = 10, and σε = 20.
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3.1.5 OneMax

Equation (2.13), ∆Q1,λ ' S2
Q/
√

S2
Q + σ2

ε c1,λ +MQ, was developed for continuous distribu-

tions. As already mentioned, the discrete bit-counting function OneMax F5(y) =
∑N

i=1 yi,
therefore represents an extreme test case for the applicability. For OneMax, the local
quality is defined as Q(x) = F (x)−F (y). Considering strings of length N , the statistical
parameters are given as (see [6, p. 128f])

MQ = −pm(2F0 − N) (3.24)

and

SQ =
√

N
√

pm(1 − pm), (3.25)

where F0 :=
∑N

i=1 yi is the fitness value of the parental vector and pm is the mutation
probability. If we insert these values into (2.13), we obtain

∆Q1,λ ' Npm(1 − pm)
√

Npm(1 − pm) + σ2
ε

c1,λ − pm(2F0 − N). (3.26)
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Fig. 3.11. Dependence of ∆Q∗

1,20 on the noise strength σ∗

ε for OneMax. Depicted are from
bottom to top the results for σ∗ = 0.1,σ∗ = 0.5, and σ∗ = 1.
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If F0 < N/2, the resulting quality gain will be positive since less than half of the bit
positions are occupied with ones.

Equation (3.26) can be further simplified and normalized. Provided that pm � 1,
the influence of (1 − pm) can be neglected and Npm can be formally identified with the
variance σ2. If the parental value F0 is greater than N/2, we can introduce the following
normalizations σ∗ = 2(2F0/N − 1)σ,
σ∗

ε = 2(2F0/N − 1)σε, and ∆Q∗
1,λ = 2(2F0/N − 1)∆Q1,λ (see [6, p.130]), leading finally

to

∆Q∗
1,λ ' σ∗ 1

√

1 + (σ∗

ε

σ )2
c1,λ − (σ∗)2

2
. (3.27)

The predictive quality of (3.27) was examined for a 30- and 100-dimensional search space
where F0 = 20 and F0 = 60, respectively have been chosen. The values were obtained by
averaging over 500, 000 one-generation experiments. As can be seen in Fig. 3.12, (3.27)
predicts the behavior up to a mutation strength of σ∗ = 1.5 reasonably well, which holds
even for the case N = 30. The mutation strength 1.5 corresponds to a mutation probability
of pm = 0.141 for N = 100 and pm = 0.169 for N = 30. In both cases, the mutation
probabilities are considerably higher than the mutation rate pm = 1/N , which is often
recommended.

3.2 Steady State Behavior

This section is concerned with the predictive quality of the equations or inequality that
describe the final fitness error in the case of the L1-norm. The equations are derived
for (1, λ)-ES but will be extended using a simple substitution to (µ/µI , λ)-ES. The only
exception is the function OneMax which was only examined for (1, λ) strategies.

3.2.1 Biquadratic Functions

This subsection is concerned with the predictive quality of E[∆F ] ≈ 3Nσε/(40c1,λ), (2.30),
describing the final fitness error of biquadratic functions of type F (y) = −∑N

i=1 ciy
4
i .

Its applicability was tested not only for the (1, λ)-ES but also for the (µ/µI , λ) variant,
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Fig. 3.12. Dependence of ∆Q∗

1,20 on the mutation strength σ∗ for OneMax. Depicted are from
top to bottom the results for σ∗

ε = 0.5, σ∗

ε = 1, σ∗

ε = 2, σ∗

ε = 3, and σ∗

ε = 5.
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substituting c1,λ with µcµ/µ,λ. As test functions, variants of the functions (3.17) - (3.19)

F3.4(y) = −
N∑

i=1

y4
i , (3.28)

F3.5(y) = −
N∑

i=1

iy4
i , and (3.29)

F3.6(y) = −
N∑

i=1

i2y4
i . (3.30)

were chosen.

Validity of the Normal Distribution Approximation Figure 3.13 shows relative
frequencies for some (µ/µI , 60)-ES runs on the biquadratic test functions, i.e. (3.28)-
(3.30). The values were obtained by several trials – sampling the normalized zi values
for a total of 7, 200, 000 generations in the steady state region and aggregating them in
109 intervals ranging from −1.5 to 1.5. Also included in the figure are relative frequencies
drawn from corresponding normal distributions with the experimentally obtained standard
deviations.

As can be seen in the plots, especially the lower-order components show deviations from
the normal distribution. This seems to be a result of the weak selective pressure that acts
on these coordinate values in the case of (3.29) and (3.30). In order to enable a comparison
with the normal distribution, the skewness and the kurtosis were also calculated. The
skewness generally assumes the smallest values in the case of (3.28) ranging from 0.00014
to 0.01. In the case of (3.29) and (3.30), several lower-order components tend to show
higher deviations from zero, although sometimes the skewness of (3.29) is even lower than
that of (3.28). The kurtosis assumes values between −0.5 and −0.8 for all functions which
does not support the assumption of normally distributed variables. For higher µ-values,
the components generally agree better with the assumption of a normal distribution than
for smaller.

Predictive Quality of Equation (2.30) The plots in Figure 3.14 show the depen-
dency of the final fitness error E[∆F ] on the number of parents µ for some (µ/µI , 60)-ES
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Fig. 3.13. Relative frequencies for several (µ/µI , 60)-ES using σSA (N = 30). Shown are the
values for the first, 15th, and 30th normalized coordinate. Also included are the corresponding
relatives frequencies si drawn from normal distributions using the experimentally found standard
deviations.
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a) (10/10I , 60)-σSA-ES, function F3.4 (3.28) b) (30/30I , 60)-σSA-ES, function F3.4 (3.28)
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c) (10/10I , 60)-σSA-ES, function F3.5 (3.29) d) (30/30I , 60)-σSA-ES, function F3.5 (3.29)

 0

 0.5

 1

 1.5

 2

-1 -0.5  0  0.5  1

PSfrag replacements

re
la

ti
v
e

fr
eq

u
en

cy

z1

z5

z15

z25

z30

s1

s5

s15

s25

s30

 0

 0.5

 1

 1.5

 2

 2.5

-1 -0.5  0  0.5  1

PSfrag replacements

re
la

ti
v
e

fr
eq

u
en

cy

z1

z5

z15

z25

z30

s1

s5

s15

s25

s30

e) (10/10I , 60)-σSA-ES, function F3.6 (3.30) f) (30/30I , 60)-σSA-ES, function F3.6 (3.30)

runs. Depicted are the values as predicted by (2.30) and the actually measured ones. The
experimental values were obtained by averaging over 900,000 generations in the steady
state region. The values for µ = 58 and µ = 59 are not shown because of convergence
problems for these ES. The standard mutative σ self-adaptation (σSA, cp. [5]) was used as
σ-control rule in all experiments. The overall agreement between equation and experiment
is rather good although some deviations can be observed. The experimentally found final
fitness error of the (1, 60) strategy is significantly higher than the theoretically obtained
lower bound. A similar case was already observed in [7] in the case of quadratic test func-
tions. (1, λ) strategies using σSA tend to premature stagnation which is the consequence
of a very fast reduction of the mutation strength. This can also be observed in Fig. 3.15
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Fig. 3.14. Final fitness error for biquadratic functions. Shown are the calculated and experimental
values for E[∆F ] of (µ/µI , 60)-ES with µ =1, 2, 4, 6, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50, 52, 54,
56. The vertical bars indicate the ± standard deviations. The noise strength is σε = 1.
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showing exemplary runs of an (1, 60)-ES and of a (30/30I , 60)-ES optimizing test function
F3.5, (3.29). In the case of the second ES, σ is reduced to a value around 0.03, where it
starts to fluctuate. As a consequence, ∆F also approaches its steady state a short time
later. In contrast to this, the mutation strength is reduced faster and further in the case
of the (1, 60)-ES reaching values that are much closer to zero. Therefore, ∆F stagnates
very soon. For shorter periods, σ can attain higher values though being unable to stabilize
at this level. The reasons for this behavior are not fully understood. Some deviations
between the predicted curve and the experimental data can be found. The equation leads
to a symmetric curve for the fitness error that is centered around µ = 30. The experiments
do not always show exactly the same behavior sometimes exhibiting a minimal value for
µ = 35.

Apart from this, the measured values tend to be similar. Their standard deviations
decrease when µ approaches 30 and increase when µ is close to one or 60.
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Fig. 3.15. ∆F and σ-dynamics of an (1, 60) and a (30/30I , 60) ES using σSA. The noise strength
is σε = 1.
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a) (1, 60)-ES on function F3.5, Eq. (3.29) b) (30/30I , 60)-ES on function F3.5, Eq. (3.29)

3.2.2 Negative L1-Norm

In the case of the negative L1-norm, i.e. function F5, we were only able to derive a lower
bound for the final fitness error given by E[∆F ] ≥ Nσε/(πc1,λ) (2.43), resp. E[∆F ] ≥
Nσε/(πµcµ/µI ,λ), making several assumptions the validity of which will be checked in the
next subparagraph. The experiments were conducted using (µ/µI , 60)-ES with σSA and
CSA(cumulative step length adaptation) [12, 14, 1] as σ control rules. In the case of the
latter, a σmin-value was introduced in order to prevent premature convergence. The noise
strength used was σε = 1.

Validity of the Assumptions The first assumption we introduced was the equiparti-
tion assumption postulating that the differences between the distributions of the variables
zi can be neglected once the ES has reached the steady state. In the following, we also
assumed that the distribution of the zi can be approximated by a normal distribution. Us-
ing these assumptions, we could derive the lower bound (2.40) for the mutation strength
σ, i.e. σ ≥ σε/c1,λ

√

2/π(
√

σ2
z + 1 − σz)/(1 − 2

π
√

2σ2
z+1

) which depends on the standard

deviation σz of the zi, on the noise strength σε, and on the progress coefficient. Finally,
we assumed σz ≥ 1 to derive the lower bound for E[∆F ].

We will first examine the validity of the equipartition assumption and the approxi-
mation with the normal distribution. Figure 3.16 shows some relative frequency plots for
(10/10I , 60)-, (30/30I , 60)-, and (40/40I , 60)-ES runs using σSA as the control rule for
the mutation. The values were obtained by sampling over a total of 800, 000 generations
in the steady state with eight restarts grouping the values in 509 (N = 100) and 209
(N = 200) intervals ranging from −15.5 to 15.5. As test function function F5.1, Eq. (3.20),
was used. Also shown are the frequency plots of normal distribution functions with the
experimentally obtained σz-values. As one can see in the figure, the standard deviations
of the selected zi are different. For N = 100 for example, the standard deviations range
from 1.672 to 1.951 (average value 1.823) in the case of the (40/40I , 60)-ES, from 1.998
to 2.424 (2.172) for the (30/30I , 60)-ES, and from 4.215 to 5.058 with an mean value of
4.581 for the (10/10I , 60)-ES.

Also the assumption of a normal distribution seems to be only a rough approximation
since the actual distribution function is generally steeper and narrower. This is also the
case for the higher dimensional search space.
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Fig. 3.16. Relative frequency plots for function F5.1 (3.20) for some (µ/µI , 60)-ES using σSA.
Also included are the corresponding relatives frequencies si drawn from normal distributions using
the experimentally found standard deviations.
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a) F5.1, N = 100, σε = 1, µ = 10 b) F5.1, N = 200, σε = 1, µ = 10
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c) F5.1, N = 100, σε = 1, µ = 30 d) F5.1, N = 200, σε = 1, µ = 30
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e) F5.1, N = 100, σε = 1, µ = 40 f) F5.1, N = 200, σε = 1, µ = 40

Concerning the validity of the lower bound (2.40), Figure 3.17 shows the lower bound
for σ which was obtained by inserting the experimentally found and averaged σz-values
(depicted in Fig. 3.18) into (2.40). There is a great difference between ES using σSA and
CSA. In the former case, the increase of the dimension leads to higher σz values, although
the relative deviation of the predicted lower bound does not change and generally stays
at values around 0.4 to 0.5. Higher deviations are only found for small or high µ-values.
Generally, σz decreases if more parents are used. In the case of ES using CSA, there is a
minimal σz value which seems to be roughly at µ = λ/2.

The assumption σz ≥ 1 seems to be justified at least in the higher-dimensional search
spaces. For N = 30, there exist some µ-values for which it is violated if σSA is used.
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Fig. 3.17. Lower bound for the mutation strength σ obtained by Eq. (2.40) using the average σz

in the steady state. The points indicate the average measured σ-values.
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Fig. 3.18. Average measured values for σz for several (µ/µI , 60)-ES runs.
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Since the experiments show that the plots of the actual relative frequencies of the zi

tend to be steeper and narrower than those obtained by using the normal distribution,
we introduce an alternative distribution. Considering Fig. 3.16, the double exponential
distribution with the density function p(zi) = 1/(2α)e−|zi|/α could be an appropriate
choice. To obtain an estimate of the final fitness error, we start again with (2.37), i.e.

Nσ − 2σ

π

N∑

i=1

e−z2
i ≥

(
N∑

i=1

zi(2Φ(zi) − 1) +
2√
2π

e−
z2
i
2 − |zi|

)

σε

c1,λ
.

In order to continue, we need to calculate the expected values of the terms in (2.37) which
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are given after some straightforward calculations as

E[|zi|] = α,

E[zi(2Φ(zi) − 1)] = 2(α − 1

α
)Φ(− 1

α
)e

1
2α2 +

√

2

π
,

2√
2π

E[e−
z2
i
2 ] =

2

α
Φ(− 1

α
)e

1
2α2 , and

2σ

π
E[e−z2

i ] =
2√
πα

σΦ(− 1√
2α

)e
1

4α2 . (3.31)

Taking the expectation of both sides of (2.37) therefore leads to

σ

(

1 − 2√
πα

Φ(− 1√
2α

)e
1

4α2

)

≥ σε

c1,λ

(

2(α − 1

α
)Φ(− 1

α
)e

1
2α2 +

√

2

π
+

2

α
Φ(− 1

α
)e

1
2α2 − α

)

⇒ σ ≥ σε

c1,λ






2αΦ(− 1
α)e

1
2α2 +

√
2
π − α

1 − 2√
πα

Φ(− 1√
2α

)e
1

4α2




 . (3.32)

The final fitness error E[∆F ] =
∑N

i=1 E[|yi|] is given as E[∆F ] = Nσα. With (3.32), we
obtain the inequality

E[∆F ] ≥ N
σε

c1,λ






α2(2Φ(− 1
α)e

1
2α2 − 1) +

√
2
πα

1 − 2√
πα

Φ(− 1√
2α

)e
1

4α2




 . (3.33)

This lower bound for the final fitness error depends on the parameter α which is unknown.
Therefore, we consider the function

h(x) =
x2(2Φ(− 1

x)e
1

2x2 − 1) +
√

2
πx

1 − 2√
πx

Φ(− 1√
2x

)e
1

4x2

. (3.34)

The denominator in (3.34) goes to 1 for x → ∞, whereas x2(2Φ(− 1
x)e

1
2x2 − 1) +

√
2
πx

approaches 1/2 which can be easily demonstrated by applying l’Hospital’s Rule (see Ap-
pendix 5.1).

The plot of (3.34) is shown in Figure 3.19. When using the normal distribution, we
assumed σ ≥ 1. Since the variance of a double exponentially distributed variable z is given
by Var[z] = 2α2, we assume here α ≥ 1/

√
2. Since h(x) ≥ 0.47715 for all x ≥ 1/

√
2 (see

Fig 3.19 or Appendix 5.1), we obtain the lower bound

E[∆F ] ≥ 0.47715N
σε

c1,λ
. (3.35)

The derivation of (3.35) was analog to that of (2.43). We first introduced an equipartition
assumption before deriving an inequality for the mutation strength. In both cases, this is
given as a function of an unknown parameter for which a lower bound has to be derived.
The only difference stems from using a different distribution. The predictive quality of
(3.35) and (2.43) will be assessed in the next paragraph.
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Fig. 3.19. The function h(α) obtained in the second derivation of the lower bound for function F5

using the double exponential distribution.
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Predictive Quality of the Lower Bounds Eq. (2.43) and Eq. (3.35) The va-
lidity of the lower bound (2.43), E[∆F ] ≥ Nσε/(πµcµ/µI ,λ), was tested by conducting
experiments with (µ/µI , 60)-ES for a noise strength of 1 using a 30-, 100-, 200, and a 300-
dimensional search space. Function 5.1 (3.20) was again used as the test function. The
experimental values were obtained by sampling over 900, 000 generations in the steady
state. As σ control rules, σSA and CSA were used. As one can see in Fig. 3.21, the lower
bound is not violated and seems to be a reasonable approximation of the real final fitness
error. Figure 3.20 depicts the relative deviation of the lower bound from the actual mea-
sured values showing the decrease of the deviation when the dimension of the search space
is increased. It is interesting that the increase from N = 200 to N = 300 leads towards
relatively higher values of the final fitness error. Therefore, the relative deviation between
prediction and experiments becomes greater although rather marginally. Generally, the
CSA seems to lead towards smaller values especially for higher parental numbers where
the deviation of the ES using σSA increases.

Figures 3.23 and 3.22 show the results obtained by (3.35), i.e. E[∆F ] ≥ 0.47715N
σε/(µcµ/µ,λ), using the double exponential distribution instead of the normal distribution
in the derivation. Generally, the approximation quality seems to be better compared to
using (2.43), although the lower bound is violated for N = 200 and N = 300. This
might be a hint that the double exponential distribution is not a appropriate choice for
higher-dimensional search spaces although the deviations for N = 300 are smaller than for
N = 200.

OneMax The predictive quality of (2.49), E[∆F ] ≈ N
2 (1 − c1,λ/(

√

1 + σ2
ε )), shall be

assessed in this paragraph. Equation (2.49) describes the final fitness error of the function
OneMax F4(y) =

∑N
i=1 yi under the conditions that N is sufficiently large and that the

mutation rate pm = 1
N is used.

The experimental data were obtained by sampling over 500, 000 generations in the
steady state region. Figure 3.24 shows the final fitness error as a function of the offspring
population size λ for several noise strengths. As already mentioned, (2.49) can only be
applied if c1,λ ≤

√

1 + σ2
ε . This property can also be seen in the figure. The approximation

quality is quite good as long as σε is sufficiently high. For smaller noise strengths, i.e.
σε = 1, the experimental data depart very soon from the curve obtained by (2.49).
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Fig. 3.20. The relative deviation of E[∆F ] as predicted by (2.43) from the experimental values
for several (µ/µI , 60)-ES.
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Fig. 3.21. E[∆F ] for some (µ/µI , 60)-ES optimizing function F5. The results were obtained using
σSA and CSA as the control rule for the mutation strength adaptation. Also shown are the
predictions of (2.43).The vertical bars indicate the ± standard deviations.
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Fig. 3.22. The relative deviation of E[∆F ] as predicted by (3.35) from the experimental values
for several (µ/µI , 60)-ES.
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Fig. 3.23. E[∆F ] for some (µ/µI , 60)-ES optimizing function F5. The results obtained by (3.35)
are shown as curves. As control rule for the mutation strength adaptation, σSA and CSA were
used. The vertical bars indicate the ± standard deviations.
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Fig. 3.24. Final fitness error for OneMax, depicting E[∆F ] as a function of the offspring population
size λ. Shown are the values obtained by (2.49) and the experimental data (points). The vertical
bars indicate the ± standard deviations.
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Chapter 4

Conclusions and Outlook

We have derived an approximate equation for the quality gain for arbitrary fitness functions
and tested it on several fitness functions. Good results could be obtained for sufficiently
small σ-values.

For many test functions, the quality gain consists of a gain and a loss part which in
some cases can be interpreted as polynomials of σ. The gain part is generally of a lower
degree than the loss term. Therefore, the quality gain increases first with the mutation
strength – if the noise strength is sufficiently small – until the loss part gains more and
more influence. The cubic functions are naturally an exception to this since they approach
infinity and an increase of σ finally results in an increase of the quality gain.

While the quality gain is a local performance measure, it can be used to derive certain
steady state conditions since the ES shows on average no progress if the steady state has
been reached. Therefore, the quality gain becomes zero which was used to derive the final
fitness error for several test function classes, i.e. quadratic, certain biquadratic functions,
and OneMax. For the L1-norm only a lower bound could be given. Other test functions
still remain to be considered.

Except for the function OneMax the equipartition assumption was applied to arrive at
the final formulae, which are formally very similar and simple expressions, generally given
as E[∆F ] = σεcN/c1,λ where c is a constant that depends on the function class.

Only one greater deviation remained: The (1, λ)-σSA-ES tends to premature stagna-
tion. Therefore, the final fitness error is considerably higher than it is predicted by the
various equations. This behavior is caused by a fast reduction of the mutation strength.
However, the reason why this occurs is not fully understood and will have to be investigated
in the future.

One can use the equations describing the final fitness error for population sizing as it
has been done in [4]. The equations predict the smallest final fitness error for a ratio of
µ/λ around 0.5. This value, however, is not optimal as to the convergence velocity, for
which µ/λ ≈ 0.27 is usually considered the optimal choice [7]. But since the curve of the
final fitness error is generally quite flat in the interval µ/λ = 1/3 to µ/λ = 2/3 for the ES
used, these values are also possible choices without leading a serious increase of the final
fitness error.

The equations for the final fitness error were derived for (1, λ) strategies. We considered
the (µ/µI , λ) variants by a simple modification of the respective equations. Although the
prediction quality is quite good as we have seen, a formal derivation of the final fitness for
(µ/µI , λ) ES still needs to be developed.

In the case of the function OneMax, only (1, λ)-ES were considered. Equation (2.49)
predicts the experimental data generally well but can only be used if the progress coefficient
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c1,λ is sufficiently small in relation to the noise strength. For larger offspring population
sizes, it tends to an underestimation of the final fitness error.

We applied the standard noise model assuming that the noise can be modeled simply
by adding a normally distributed random variable to the fitness function. While this model
is used in most publications there are several cases where it might not be applicable and
other forms of modeling will have to be used. As an example, we refer to the optimization
of aerodynamic structures (see [16]), where the noise has to be modeled inside the fitness
function. The investigations will have to be extended to develop equations for these cases,
which will require the application of novel techniques like the ones which were developed
in [8].
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Chapter 5

Appendix

5.1 Final Fitness Error of Function F5

Inequality 1: S2
Q ≤ Nσ2 − 4σ4∑N

i=1 φ2
0,σ2(yi)

In order to prove the first inequality, we look at a single addend of S2
Q, i.e.

σ2+4y2Φ0,σ2(y)[1 − Φ0,σ2(y)]−4σ2φ0,σ2(y)y[2Φ0,σ2(y) − 1]−4σ4φ2
0,σ2(y), and show that

y2Φ0,σ2(y)[1 − Φ0,σ2(y)] ≤ σ2φ0,σ2(y)y[2Φ0,σ2(y) − 1]. (5.1)

Since the terms on both sides of the inequality are symmetric, it suffices to show the
validity of (5.1) for y ≥ 0. Using the transformation z = σy, (5.1) simplifies to

zΦ(z)(1 − Φ(z)) = zΦ(z)Φ(−z) ≤ φ(z)(2Φ(z) − 1), (5.2)

where Φ(z) = Φ0,1(z) and φ(z) = φ0,1(z). Considering f(z) := zΦ(z)Φ(−z)−φ(z)(2Φ(z)−
1), we see that f(0) = 0 and that f(z) → 0 for z → ∞.

We need to show that f(z) ≤ 0 for all z ≥ 0. If f has only a minimum on (0,∞), the
inequality is proven. The first derivative of f is given as f ′(z) = Φ(z)Φ(−z) − 2φ2(z) :=
h(z) − g(z) with f ′(0) < 0 and limz→∞ f ′(z) = 0. The second derivative is given by
f ′′(z) = h′′(z)−g′′(z) = −φ(z)(2Φ(z)−1)+4zφ2(z). We will first consider the zero points
of f ′′(z), i.e. the solutions of

h′′(z) = g′′(z) ⇐⇒ φ(z)(2Φ(z) − 1) = 4zφ2(z)

⇐⇒ 2Φ(z) − 1 = 4zφ(z). (5.3)

Naturally, we have f ′′(0) = 0. Setting k(z) = 2Φ(z) − 1 and l(z) = 4zφ(z), we note
that k with k′(z) = 2φ(z) is monotonically increasing and approaches one. In contrast
to this, l with l′(z) = 4φ(z)(1 − z2) grows until z = 1 and then decreases monotonically
approaching zero. We also note that l′(z) ≥ k′(z) for z ≤ 1/

√
2 whereas l′(z) ≤ k′(z) for

z ≥ 1/
√

2. Therefore, there is exactly one z0 > 1/
√

2, with l(z0) = k(z0) or f ′′(z0) = 0.
Since f ′′(z) ≥ 0 for z ≤ z0 and f ′′(z) ≤ 0 for z0 ≤ z, f ′(z) has its only maximum in z0.
We know that f ′(z0) > 0, because f ′ decreases monotonically towards zero for z ≥ z0.
Since f ′(0) < 0, there is exactly one zl ∈ (0, z0) with f ′(zl) = 0. Therefore, f has only one
extremum (minimum) in (0,∞) which is necessarily smaller than zero.

Equation 2: |MQ| =
∑N

i=1 yi(2Φ0,σ2(yi) − 1) + 2σ2φ0,σ2(yi) − |yi|
To show the validity of the second equation, it suffices to prove y(2Φ0,σ2(y)−1)+2σ2φ0,σ2(y)
≥ |y|. Since all terms are symmetric, we will only consider y ≥ 0. Using the transformation
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z = σy again, the inequality is given as 2zΦ(z) + 2φ(z) ≥ 2z. Considering the function
f(z) := zΦ(z) + φ(z) − z = z(Φ(z) − 1) + φ(z), we see that f(0) > 0 and f(z) → 0 for
z → ∞. The derivative is given by f ′(z) = Φ(z) − 1 ≤ 0. The function f is therefore
monotonically decreasing approaching zero in the limit case which shows f(z) ≥ 0 for all
z ≥ 0.

Inequality 3: h(x) =
√

x4+x2−x2

1− 2

π
√

2x2+1

≥ 0.5 for x ≥ 1 which can be shown as follows.

h(x) =

√
x4 + x2 − x2

1 − 2
π
√

2x2+1

≥ 0.5

⇒
√

x4 + x2 − x2 ≥ 1

2
(1 − 2

π
√

2x2 + 1
)

⇐⇒
√

2x2 + 1(
√

x4 + x2 − x2) ≥ 1

2
(
√

2x2 + 1 − 2

π
)

⇐⇒ 2
√

2x6 + 3x4 + x2 − 2x2
√

2x2 + 1 −
√

2x2 + 1 ≥ − 2

π

⇐⇒
√

8x6 + 12x4 + 4x2 −
√

(2x2 + 1)3 ≥ − 2

π

⇐⇒
√

(2x2 + 1)3 − (2x2 + 1) −
√

(2x2 + 1)3 ≥ − 2

π
(5.4)

Setting t = 2x2 + 1, we consider g(t) =
√

t3 − t −
√

t3, t ≥ 3. We will show that g is a
monotonically increasing function. Since g(3) > −2/π this will prove h(x) ≥ 0.5 for all

x ≥ 1. The derivative is given as g′(t) = 3t2−1
2
√

t3−t
− 3t2

2
√

t3
. Setting g′(t) = 0 leads to

3t2 − 1√
t3 − t

=
3t2√

t3

⇒ (3t2 − 1)
√

t3 = 3t2
√

t3 − t

⇐⇒ (9t4 − 6t2 + 1)t3 = 9t4(t3 − t)

⇐⇒ 9t4 − 6t2 + 1 = 9t4 − 9t2 since t ≥ 3

⇒ 3t2 + 1 = 0 (5.5)

Therefore, g′(t) 6= 0 for all t ≥ 3. Since g′(3) ≥ 0, the function g is monotonically increasing
which proves h(x) ≥ 0.5 for all x ≥ 1.

Alternative distribution for F5: The behavior of function h(x)=(x2(2Φ(− 1
x)e

1
2x2 −1)

+
√

2
πx)/(1 − 2√

πx
Φ(− 1√

2x
)e

1
4x2 ) (3.34) will be considered in the following.

We will start with determining the limit value of h(x) showing that h(x) → 1/2 for
x → ∞. Since the denominator approaches 1 as it can easily be seen, it suffices to show

that x2(2Φ(−1/x)e
1

2x2 − 1) + x
√

2/π → 1/2.

As a first step, we calculate the limit value of x(2Φ(−1/x)e
1

2x2 − 1) +
√

2/π.

We know that 2Φ(− 1
x)e

1
2x2 − 1) → 0 for x → ∞. Writing x(2Φ(− 1

x)e
1

2x2 − 1) as

(2Φ(− 1
x)e

1
2x2 − 1)/ 1

x , we can apply l’Hospital’s rule leading to

√
2
π

1
x2 − 2

x3 Φ(− 1
x)e

1
2x2

− 1
x2

= −
√

2

π
+

2

x
Φ(−1

x
)e

1
2x2 (5.6)
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which approaches −
√

2/π. Therefore, x(2Φ(−1/x)e
1

2x2 − 1) +
√

2/π → 0 for x → ∞.

We will now determine the limit value of the nominator. Setting f(x) = x(2Φ(− 1
x)e

1
2x2

−1) +
√

2/π and g(x) = 1/x, we have f(x) → 0 and g(x) → 0.
Applying l’Hospital’s rule again, we get

lim
x→∞

f(x)

g(x)
= lim

x→∞
f ′(x)

g′(x)
= lim

x→∞

2Φ(− 1
x)e

1
2x2 − 1 +

√
2
π

1
x − 2

x2 Φ(− 1
x)e

1
2x2

− 1
x2

. (5.7)

Since we have again f ′(x) → 0 and g′(x) → 0, we continue with the second derivative and
arrive at

lim
x→∞

f ′(x)

g′(x)
= lim

x→∞
f ′′(x)

g′′(x)
= lim

x→∞

2
x3 Φ(− 1

x)e
1

2x2 −
√

2
π

1
x4 + 2

x5 Φ(− 1
x)e

1
2x2

2
x3

(5.8)

= lim
x→∞Φ(−1

x
)e

1
2x2 − 1

x
√

2π
+

1

x2
Φ(−1

x
)e

1
2x2 =

1

2
. (5.9)

Therefore, h(x) → 1/2 for x → ∞.
It remains to be shown that h(x) ≥ 0.47715 for all x ≥ 1/

√
2. Setting f(x) =

x2(2Φ(− 1
x)e

1
2x2 − 1) +

√
2
πx and g(x) = 1 − 2√

πx
Φ(− 1√

2x
)e

1
4x2 , we know that h(x) ≥ f(x).

In the following, we show that f is a monotonic function on [1/
√

2,∞). The derivative

is given by f ′(x) = 2x(2Φ(−1/x)e
1

2x2 − 1)− 2/xΦ(−1/x)e
1

2x2 + 2
√

2/π. Setting f ′(x) = 0,
we get

2x(2Φ(− 1

x
)e

1
2x2 − 1) − 2

x
Φ(−1

x
)e

1
2x2 = −2

√

2

π
⇐⇒

1 − 2Φ(− 1

x
)e

1
2x2 +

1

x2
Φ(−1

x
)e

1
2x2 =

1

x

√

2

π
. (5.10)

Setting s = 1/x, we now consider the function k(s)=1− 2Φ(−s)e
s2

2 +s2Φ(−s)e
s2

2 − s
√

2/π
on (0,

√
2]. Since k(0) = 0 and k(

√
2) < 0, we show that k(s) < 0 for all s ∈ (0,

√
2].

Let us consider the derivative of k, i.e. k′(s) = s2(sΦ(−s)e
s2

2 − 1/
√

2π). Setting

k′(s) = 0, leads towards s = 0 or sΦ(−s)e
s2

2 = 1/
√

2π. Let us assume in the following

that there exists a c ∈ (0,
√

2) with cΦ(−c)e
c2

2 = 1/
√

2π. We have to show that k(c) ≤ 0.
Substituting c into k, we get m(c) = 1 − 2/(c

√
2π) − c/

√
2π for all c ∈ (0,

√
2). Since

limc→0 m(c) < 0 and limc→
√

2 m(c) < 0, the proposition is proven if m′ has no zero points

on (0,
√

2). Since m′(c) = 2/(
√

2πc2)−1/
√

2π, we have m′(c) = 0 for c = ±
√

2. Therefore,
k(s) < 0 for all s ∈ (0,

√
2] and f ′(x) 6= 0 for all x ∈ [1/

√
2,∞). Since f ′(1/

√
2) > 0, the

derivative is positive.
Since f(x) ≥ 0.47715 for x ≥ 12 and h(1/

√
2) > 0.47715, it only remains to verify

h(x) > 0.47715 for x ∈ (1/
√

2, 12). Setting c = 0.47715, let us consider l(x) = f(x)−cg(x)
for x ∈ (1/

√
2, 12).

l(x) = x2(2Φ(−1

x
)e

1
2x2 − 1) +

√

2

π
x − c + c

2√
πx

Φ(− 1√
2x

)e
1

4x2 ≥ 0

⇐⇒ (2Φ(− 1

x
)e

1
2x2 − 1) +

√
2√

πx
− c

x2
+ c

2√
πx3

Φ(− 1√
2x

)e
1

4x2 ≥ 0 (5.11)
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Setting s = 1/x, we now consider

h(s) = 2Φ(−s)e
s2

2 − 1 +
s
√

2√
π

− s2c + c
2s3

√
π

Φ(− s√
2
)e

s2

4 ≥ 0 (5.12)

on I = (1/12,
√

2). We decompose I into smaller intervals, i.e. I =
⋃

k Ik and show that
h(s) ≥ 0 for all s ∈ Ik = [bk, bk+1]. Since h(s) is given by

h(s) = h(bk) +

∫ s

bk

h′(t) dt, (5.13)

we will derive a lower bound for h′(t) which can be determined as

h′(t) = t(2Φ(−t)e
t2

2 +
c√
π

Φ(− t√
2
)e

t2

4 (6t + t3) − 2c − c

π
t2) = tu(t). (5.14)

Since Φ(−t)e
t2

2 is a decreasing function, we have Φ(−t)e
t2

2 ≥ Φ(−bk+1)e
b2
k+1
2 = wk+1 and

Φ(− t√
2
)e

t2

4 ≥ Φ(− bk+1√
2

)e
b2
k+1
4 = vk+1. Thus, we obtain

u(t) ≥ 2wk+1 +
c√
π

vk+1(6t + t3) − 2c − c

π
t2 (5.15)

as a lower bound for u on Ik. In order to find a minimal value for that lower bound ũ in
Ik, we consider the possible zero points of ũ′(t).

ũ′(t) =
c√
π

vk+1(6 + 3t2) − 2c

π
t = 0

⇐⇒ t2 + 2 − 2

3
√

πvk+1
t = 0

⇒ t1,2 =
1

3
√

πvk+1
±
√

1

9πv2
k+1

− 2 (5.16)

The root is only a real number if 1/(9πv2
k+1) ≥ 2 or 1/(18π) ≥ v2

k+1. The smallest possible

value for vk+1 is Φ(−1)
√

e which is greater than 1/
√

18π. Therefore, ũ′ does not have any
zero points on Ik and ũ is a monotone function. Depending on the sign of ũ′, ũ assumes
its minimum either at bk or at bk+1. Setting ck = mint∈Ik

ũ(t), a lower bound for h(s) is
thus given by

h(s) ≥ h(bk) +

∫ s

bk

tck dt = h(bk) +
ck

2
(s2 − b2

k). (5.17)

Depending on the sign of ck, we finally obtain the lower bound

h(s) ≥ hk =

{

h(bk) if ck > 0
h(bk) + ck

2 (b2
k+1 − b2

k) if ck < 0
. (5.18)

The intervals chosen and the values of hk are given in Table 5.1. All values were obtained
by using Mathematica. As one can see, hk ≥ 0 for all k which proves h(s) ≥ 0 on I.

5.2 The cµ/µ,λ Progress Coefficient

The cµ/µ,λ–coefficients used in the paper were obtained by using the generalized progress

coefficients eα,β
µ,λ (see [6], p. 172). The coefficient e1,0

µ,λ can be identified with cµ/µ,λ and
determined numerically. Table 5.2 shows some selected cµ/µ,λ–values used in this paper.
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Table 5.1. The lower bounds hk for the interval decomposition considered. Also shown are the
values for the derivative of ũ and the ck-values.

bk bk+1 ũ′(bk + (bk+1 − bk)/2) ck hk

0.05 0.1 0.743357 0.0084933 0.0000573665
0.1 0.15 0.7114 0.00939039 0.00022919

0.15 0.2 0.681914 0.00976756 0.000512478
0.2 0.25 0.654726 0.00967363 0.00090116

0.25 0.3 0.629675 0.00915364 0.0013865
0.3 0.35 0.606612 0.00824899 0.00195748

0.35 0.4 0.585401 0.00699779 0.00260111
0.4 0.45 0.565914 0.00543505 0.00330276

0.45 0.5 0.548037 0.00359291 0.00404641
0.5 0.55 0.531658 0.00150086 0.00481491

0.55 0.6 0.51668 -0.000814083 0.00556674
0.6 0.65 0.503009 -0.00332715 0.00624933

0.65 0.7 0.490558 -0.00601568 0.00688195
0.7 0.75 0.479249 -0.00885894 0.00744421

0.75 0.8 0.469008 -0.011838 0.00791558
0.8 0.85 0.459764 -0.0149355 0.00827546

0.85 0.9 0.451456 -0.0181358 0.00850329
0.9 0.95 0.444023 -0.0214243 0.00857861

0.95 1 0.437411 -0.0247881 0.00848115
1 1.05 0.431568 -0.0282151 0.00819085

1.05 1.1 0.426447 -0.0316945 0.00768791
1.1 1.05 0.422003 -0.0352165 0.00695286

1.15 1.2 0.418195 -0.038772 0.00596657
1.2 1.25 0.414985 -0.0423531 0.00471029

1.25 1.3 0.412336 -0.0459523 0.00316564
1.3 1.35 0.410214 -0.049563 0.00131466

1.35 1.37 0.413664 -0.038805 0.0017404
1.37 1.39 0.413097 -0.0402718 0.00087403

1.39 1.4 0.41428 -0.0368903 0.000607786
1.4 1.41 0.414053 -0.0376248 0.000142087

1.41 1.414 0.414844 -0.03543814214607244 5.27635490428548 ∗ 10−6

1.414
√

2 0.415395 -0.0338832 5.246888030107535 ∗ 10−6

Table 5.2. Some cµ/µ,λ–coefficients

µ 1 2 4 6 10 15 20 25 30
cµ/µ,60 2.319 2.127 1.882 1.713 1.472 1.252 1.076 0.924 0.788

µ 35 40 45 50 54 56 58 59
cµ/µ,60 0.660 0.538 0.417 0.294 0.190 0.134 0.073 0.039

5.3 Description of the ES Used

For the simulation of the dynamic behavior of (µ/µI , λ)–ES under systematic noise, the
ES has to control the endogenous strategy parameter σ. We used a standard approach
in this paper: the σ self–adaptation (see [17], [18], or [9]). Due to the findings in [7]
we we widely refrained from using the cumulative step size adaptation (see [13] and [14])
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only considering it as an alternative in the case of the L1-norm. To prevent premature
convergence, we introduced a minimal mutation strength.

The σ self-adaptation makes use of a coupled inheritance of object and strategy pa-
rameters. For a parameter a, we denote with 〈a〉(g) the centroid of the µ best offspring,
i.e.

〈a〉(g) :=
1

µ

µ
∑

m=1

a
(g)
m;λ (5.19)

The algorithm can be expressed as

∀l = 1, . . . , λ :

{

σ
(g+1)
l := 〈σ〉(g)eτN (0,1)

y
(g+1)
l := 〈y〉(g) + σ

(g+1)
l N (0,1),

(5.20)

where τ is the so–called learning parameter. For the simulations τ = 1√
N

was chosen.

As can be seen in (5.19) the mutation strengths σl are calculated for each offspring l
independently. This σl is then used as the mutation parameter to obtain the corresponding
object parameter.

In contrast to the σSA-algorithm, the cumulative step-size adaptation [12, 14, 1] uses a
single mutation strength parameter σ per generation to generate the offspring population.
The parameter is changed by a deterministic rule which is controlled by certain statistics
gathered over the course of generations. The update rule reads

∀l = 1, . . . , λ : y
(g+1)
l := 〈y〉(g) + σ(g)zl, where zl ∼ N (0, 1)

s(g+1) := (1 − c)s(g) +
√

(2 − c)c
√

µ
(

〈z〉(g+1)
)

σ(g+1) := σ(g)exp
( ||s(g+1)||2−N

2DN

)







. (5.21)

The initial value s(0) was chosen as s(0) = 0. The recommended and used standard settings
for the cumulation parameter c and the damping constant D are c = 1√

N
resp. D =

√
N .

The term N in the numerator equals the mean squared length of the progress vector if
consecutive steps are independend. As in [1], the algorithm was slightly changed by taking
the the squared length of the accumulation vector instead of the length as in [12].
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