
UNIVERSITY OF DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes
and Systems by means of Computational Intelligence Methods

The Analysis of a Recombinative Hill-Climber on
HIFF

Martin Dietzfelbinger, Bart Naudts,
Clarissa van Hoyweghen, and Ingo Wegener

No. CI-138/02

Technical Report ISSN 1433-3325 August 2002
Secretary of the SFB 531 · University of Dortmund · Dept. of Computer Science/XI
44221 Dortmund · Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence”, at the University of Dortmund and was printed with financial support of
the Deutsche Forschungsgemeinschaft.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Eldorado - Ressourcen aus und für Lehre, Studium und Forschung

https://core.ac.uk/display/46902703?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

The Analysis of a Recombinative Hill-Climber on
H-IFF

Martin Dietzfelbinger1, Bart Naudts2, Clarissa van Hoyweghen2, and Ingo Wegener3∗

Abstract— Many experiments have proved that crossover
is an essential search operator in evolutionary algorithms, at
least for certain functions. However, the rigorous analysis of
such algorithms on crossover-friendly functions is still in its
infancy. Here a recombinative hill-climber is analyzed on the
crossover-friendly function H-IFF introduced by [10]. The
dynamics of this algorithm are investigated and it is proved
that the expected optimization time equals Θ(n log n).

Keywords— Evolutionary algorithms, recombinative hill-
climbers, expected optimization time, one-point crossover.

I. INTRODUCTION

The class of evolutionary algorithms contains evolution
strategies (mainly based on the mutation operator) and ge-
netic algorithms (mainly based on the crossover operator).
The experimental knowledge about the behavior of evolu-
tionary algorithms is immense. For many problems these
experiments have shown that crossover is essential for an
efficient optimization. However, rigorous analytical results
not based on any assumptions are rare.

We analyze evolutionary algorithms without stopping
criterion as infinite stochastic processes. Then we are in-
terested in the following parameters:
– given a point of time t and a schema s, what is the
probability that an individual of the generation at time
t contains s,
– for X, the random variable describing the optimization
time or first hitting time defined by the minimal t such that
the generation at time t contains an optimal individual, we
are interested in estimates of E(X), the expected value of
X called expected optimization time.

The real royal road functions introduced and analyzed
by Jansen and Wegener [3] are up to now the only func-
tions where it has been proved that the expected opti-
mization time of mutation-based evolutionary algorithms is
exponential while a generic steady-state genetic algorithm
without special mechanisms to ensure diversity within the
population has a polynomially bounded expected optimiza-
tion time. These functions have not a clear building-block
structure and the success of the GA cannot be explained
by schema theory.

1Fakultät für Informatik und Automatisierung, TU Ilmenau, D-
98694 Ilmenau, Germany, dietzfelbinger@theoinf.tu-ilmenau.de

2Department of Mathematics and Computer Science, University
of Antwerpen (RUCA), B-2020 Antwerpen, Belgium, bart.naudts,
hoyweghe@ruca.ua.ac.be

3FB Informatik, LS 2, Univ. Dortmund, D-44221 Dortmund, Ger-
many, wegener@ls2.cs.uni-dortmund.de

∗The work of this author was supported by the Deutsche
Forschungsgesellschaft (DFG) as part of the Collaborative Research
Center “Computational Intelligence” (SFB 531).

Here we analyze a specific evolutionary algorithm on the
function H-IFF (hierarchical-if-and-only-if) introduced by
Watson et al. [10] as an example of a hierarchically decom-
posable problem with a clear block structure. In Section II
we define this function and discuss some of its properties
and in Section III we present the recombinative hill-climber
we analyze later. It turns out that the optimization of H-
IFF by the recombinative hill-climber can be modeled by
a simple combinatorial game on a completely balanced bi-
nary tree. This makes the analysis easy to describe. Sec-
tion IV contains some remarks on the dynamics of the op-
timization process. In Section V, we use a global approach
to obtain lower and upper estimates of the expected opti-
mization time which differ asymptotically only by a factor
of 2.246. This very precise result is obtained by applica-
tions of the coupon collector’s theorem (see Motwani and
Raghavan [4]) and a delay sequence argument (such argu-
ments were first used by Ranade [6]). We believe that these
methods will turn out to be useful also in further investi-
gations of evolutionary algorithms. Finally, we compare
in Section VI our asymptotic results with experimental re-
sults for problem dimensions between 64 and 4096. We
finish with concluding remarks.

II. THE FUNCTION H-IFF AND SOME OF ITS
PROPERTIES

The family of functions called H-IFF contains pseudo-
boolean functions H-IFFn : {0, 1}n → R+ for n = 2k, k
a positive integer. The most illustrative definition of H-
IFFn uses a completely balanced binary tree with n leaves
“colored” from left to right with the bits of the input vec-
tor a = (a1, . . . , an), see Figure 1. Then we consider the
following coloring rules on the tree.

An inner node gets colored if both children are colored by
the same color. Then it gets the same color as its children.
Hence, a node v gets colored if and only if all leaves of the
subtree rooted at v have the same color. Now we define
the value of H-IFFn(a). A colored node v has a value which
equals the number of leaves of the subtree rooted at v. We
number the levels of the tree from the leaves (level 0) to the
root (level k). Then the value of a colored node at level l
equals 2l. In our example, H-IFF16(a) = 16+14+8+0+0 =
38, since the leaves on level 0 contribute 16 to the H-IFF
value, 7 nodes on level 1 contribute 2 each, 2 nodes on level
2 contribute 4 each, and the nodes on level 3 and level 4
(the root) contribute nothing, since they are not colored.

Each inner node of the tree represents a building block
of H-IFF. Subtrees where all leaves are colored by the same
color or bit are building blocks and this is indicated by a

2

level 4

level 0

level 1

level 2

level 3

000 0 0 0 0 0 01 1 1 1

1

1 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

v12

1 1 1 0

0

0 0 0 v15

v14

v13v11

v10

v9v1 v3 v5 v7

v6

v4

v2

v8

Fig. 1. Illustration of the function H-IFF16.

coloring of the root of the subtree. Obviously, the function
H-IFFn has two optima, the all-ones string 1n and the all-
zeros string 0n. H-IFF functions have the property of spin-
flip or bit-flip symmetry (see [5] in the context of GAs)
defined by

H-IFFn(a) = H-IFFn(ā)

for the bitwise complement ā of a. This implies that also
the average fitness of a schema s ∈ {0, 1, ∗}n is equal to the
average fitness of the schema’s complement s̄ where s̄i = 0 ,
if si = 1 ,s̄i = 1 ,if si = 0 ,and s̄i = ∗, if si = ∗.

We discuss how typical randomized search heuristics
work on H-IFF functions and a random initial string. As
long as a node v is not colored, the fitness is decomposed be-
tween the two subtrees rooted at the children of v. Hence,
the children of v obtain their colors independently, each
color with probability 1/2. This implies that there will be
many nodes with large subtrees where the two children of
the root get different colors. Mutations can disturb the
colorability of subtrees and there is only a tiny chance that
all leaves of one subtree get the opposite color while all
leaves of the other subtree keep their color. Hence, it is
not too difficult to prove that mutation-based evolutionary
algorithms have an exponential expected optimization time
on H-IFF functions.

However, there seems to be a good chance for 1-point
crossover, e.g., from 0n/21n/2 and 1n/20n/2 we can obtain
0n and 1n. In order to gain from 1-point crossover we need
diversity in the population. Whenever all individuals in
the population have ones in one block and zeros in the
neighboring block, crossover cannot help to escape from
this trap. There are recombination-based GAs which apply
techniques to maintain diversity in their population, e.g.,
by using a niching technique (see [7], [8], [10]). This works
well for certain functions. Here we investigate a special
algorithm.

III. A RECOMBINATIVE HILL-CLIMBER

As we have seen it is essential to save the differ-
ent alleles at each position. This is guaranteed if
we include the bitwise complement ā of each individ-
ual a in the population. Usually one allows muta-
tion which flips each bit independently with probabil-
ity 1/n. Then no bit is flipped with a probability of
(1 − 1/n)n � e−1. Since, with large probability, muta-
tion is useless for H-IFF functions, we consider only one-
point crossover. One-point crossover with cut position
m ∈ { 1, . . . , n− 1} produces (a1, . . . , am, bm+1, . . . , bn)
and (b1, . . . , bm, am+1, . . . , an) from a = (a1, . . . , an) and
b = (b1, . . . , bn). The cut position is chosen randomly. Since
we believe that H-IFF functions are easy when using one-
point crossover and guaranteeing diversity, we choose the
smallest possible population size, namely 2, and use a ran-
domized hill-climber. This leads to the following algorithm.

Algorithm 1
1. Initialization. Choose x ∈ { 0,1}n randomly according
to the uniform distribution and let the initial generation
consist of x and its bitwise complement x̄.
2. Loop. Choose a random cut position m ∈ {1, . . . , n−1}
according to the uniform distribution and create y by 1-
point crossover from x and x̄ using cut position m. Replace
(x, x̄) with (y, ȳ) iff H-IFFn(y) > H-IFFn(x).

This recombinative hill-climber is a reduced version of the
Gene Invariant GA (GIGA) introduced by Culberson [1].
A crossover between x and x̄ is also known as complemen-
tary crossover [2]. We remark that it makes no difference
if we replace the condition H-IFFn(y) > H-IFFn(x) by the
more usual condition H-IFFn(y) ≈ H-IFFn(x). We can con-
sider this algorithm also as (1+1)GA, since the population
can be described by the single individual x and we always
choose the better one from the parent x (and x̄) and its
child y (and ȳ). The difference to the well-known (1+1)EA
is that mutation is replaced with one-point crossover. In

3

the following we use the notion of a (1+1)GA.
The tree illustration of the function H-IFFn (see Fig-

ure 1) is also well suited as illustration of the effect of one-
point crossover. The cut position m corresponds one-to-one
to the inner node vm of the tree which has the property that
all leaves of its left subtree belong to bit positions i → m
and all leaves of its right subtree belong to bit positions
i > m. The individual y is obtained from x by negating all
bits at positions i > m. How do we obtain the coloring of
the inner nodes of the y-tree (the coloring of leaf i by yi)
from the x-tree? We distinguish three types of nodes:
– the nodes on the path from the root to vm including vm,
– the nodes to the left of this path and in the left subtree
of vm, and
– the nodes to the right of this path and in the right subtree
of vm.

Nodes of the second group do not change their color sta-
tus or their color, since all leaves below these nodes have
the same color as before. Nodes of the third group do not
change their color status but their color (if they are col-
ored), since all leaves below these nodes have obtained the
opposite color than before. Hence, the nodes of the first
group decide whether the step is accepted and we replace
x with y. If vm is colored in the x-tree, it is not colored in
the y-tree, since the two subtrees get leaves with different
colors. Then the step is not accepted. If vm is not colored
in the x-tree and one of its children is also not colored in
the x-tree, vm remains uncolored, since one child remains
uncolored. Again the step is not accepted. If vm is not
colored in the x-tree and both children are colored in the
x-tree, then the children are colored in the x-tree by dif-
ferent colors. The right child gets the opposite color in the
y-tree implying that both children have the same color in
the y-tree and vm gets colored. Then the step is accepted
and x is replaced with y. Note that more nodes on the path
from the root to vm may get colored. Such nodes are called
free-riders, since such a node vj gets colored, although we
have not chosen the cut position j. In Figure 1, only the
uncolored nodes v5 and v14 have two colored children. If
we choose position 5, then v5 gets colored by 1 leading to
the free-rider v6 which gets the color 1, since also v7 has
been recolored by color 1. The node v4 is not a free-rider,
since v2 is still colored by 0 and v6 has been colored by 1.
If we choose position 14, we color v14 by color 1 and v12 is
a free-rider, since v10 is still colored by 1. We cannot color
v8, since the sibling v4 of v12 is not colored.

Hence, the (1+1)GA is equivalent to the following game
on the tree.

Game 1 (with free-riders)
1. Start with the x-tree for a randomly chosen x ∈ {0, 1}n.
2. Loop. Choose m ∈ {1, . . . , n−1} randomly. Do nothing
if vm is colored or one of the two children of vm is not
colored. Otherwise, flip the color of all nodes in the right
subtree of vm and all nodes to the right of the path from
the root to vm. Color vm with the color of its children and
for each node vj on the path from vm to the root (in this
order) test whether vj ’s two children are colored with the
same color and if so, color also vj with this color.

The random optimization time of the (1+1)GA on H-
IFFn is equal to the random time when the root of the
tree gets colored in Game 1. The (1+1)GA finds a build-
ing block at the same time when the corresponding node
of the tree gets colored. It is easier to discuss the game
than the (1+1)GA. Later, for an upper bound on the ex-
pected optimization time we will ignore free-riders. Then
we can consider the following game which is equivalent to
this situation.

Game 2 (without free-riders)
1. Start with a tree where only the leaves are colored (there
is only one color).
2. Loop. Choose m ∈ {1, . . . , n−1} randomly. Do nothing
if vm is colored or one of the two children of vm is not
colored. Otherwise, color vm.

Again we are interested in the time until some node and,
in particular, the root gets colored.

IV. THE DYNAMICS OF THE (1+1)GA ON
H-IFF

We are interested in the probability of having a building
block at a certain position, i.e., a block of bit positions
(j − 1)2l + 1 , . . . , j· 2l, 1 → j → 2k−l, of the same value,
at time step t. Considering the building block of length
n this is the probability of having optimized H-IFF with
the (1+1)GA within t time steps. We have seen that our
question is equivalent to the question whether a node on
level l is colored at time step t by Game 1. It follows
directly that this probability is the same for all nodes on
level l.

We denote by Pn(l, t) the probability that a node on level
m in a tree with k = log n levels is colored after time step
t. It is obvious that Pn(0, t) = 1 for all n and t, since the
leaves are colored immediately. Also

Pn(l, 1) = 2 · 2−2l

for all l, since the considered subtree has 2l leaves which
are colored randomly and two of these colorings lead to a
coloring of the root of this subtree.

We discuss how to compute Pn(l, t) and fix a node v at
level l and investigate the subtree rooted at v.

Node v is colored at time step t + 1 iff it was colored at
time step t (probability Pn(l, t)) or it is colored for the first
time at time step t + 1. The latter occurs iff the following
holds for some node w on some level l − i + 1 ,1 → i → l,
situated in the subtree rooted at v (see Figure 2):
– the cut position at time step t + 1 corresponds to w,
– let v0 = v, v1, . . . , vi−2, vi−1 = w be the nodes of the
path between v and w, then it holds that the children of
v0, . . . , vi−1 not on this path are colored such that all nodes
to the left of the path have the same color and the nodes
to the right of the path have the opposite color.

If the path from v0 and w has these properties, then
this path is called a colorable path of length i − 1 and
w is called the source of the path. For each i ∈ { 1, . . . , l}
there are 2i−1 nodes which are possible sources of colorable
paths and 2 possibilities how to choose the color to the left

4

or

cut

0

1

1

1 1

1

1

1

0

0

0 0

0

0

01

cut

v = v0

v5

v4

v3

v2

v1

v6 = w

v = v0

v5

v4

v3

v2

v1

v6 = w

Fig. 2. A situation where v gets colored for the first time.

of the path. Let Qn(l, t, i) be the probability that a specific
path of length i − 1 starting at a node on level l is at the
end of step t a colorable path with a given coloring of the
nodes left to the path. Since the probability of choosing
the appropriate cut position equals 1/(n − 1), we obtain

Pn(l, t + 1) = Pn(l, t) +
1

n − 1
·

∑

1�i�l

2i · Qn(l, t, i).

The event whose probability is defined as Qn(l, t, i) is the
intersection of the following events:

– the left children of the path nodes which are not on the
path are colored with the same color c and
– the right children of the path nodes which are not on the
path are colored by the opposite color c̄.

However, the events that certain nodes are colored are not
independent even for the nodes not lying on the same path.
Knowing that one node is colored leads to a tendency of
many chosen nodes in the corresponding subtree and this
implies that is more likely that other nodes have not been
colored.

We conclude that it seems to be too difficult to derive a
closed formula for Pn(l, t) and we have to be satisfied with
an asymptotic analysis.

V. ASYMPTOTICALLY TIGHT BOUNDS ON
THE EXPECTED OPTIMIZATION TIME OF

THE (1+1)GA ON H-IFF

Stochastic processes such as evolutionary algorithms are
in almost all cases too complicated to be analyzed exactly.
The theory on deterministic and randomized specialized
algorithms has shown that one can get meaningful results
only if one looks for estimates of the interesting values.
This also holds for the analysis of the (1+1)GA on H-IFF
functions. We first prove a lower bound on the expected
waiting time until Game 2 is finished. Then it is quite easy
to consider the effect of the free-riders to obtain a lower
bound on the expected optimization time of the (1+1)GA
on H-IFF. We apply the coupon collector’s theorem (see
[4]) which considers the following scenario. There are N
different types of coupons. At each point of time we get
a coupon whose type is chosen randomly from {1, . . . , N}
and independent from all the coupons chosen before. Let
TN be the time until we have at least one coupon of each
type. Then

E(TN) = N

(
1 +

1
2

+ · · · + 1
N

)

= N ln N + O(N)

and it is quite unlikely that TN deviates from E(TN) by
more than cN , for c sufficiently large.

5

Theorem 1: The expected time of Game 2 is bounded
below by n ln n + n log n − O(n) � 1.693 n log n.

Proof: We consider two phases where the first phase
ends when each node on level 1 is colored. We claim
that the expected length of the first phase is bounded be-
low by n lnn − O(n). If we consider only nodes on level
1 and the steps where such a node is chosen, we are in
the scenario of the coupon collector’s theorem with n/2
coupons and the expected waiting time is bounded be-
low by (n/2) ln(n/2) − O(n) = (1 /2)nlnn − O(n). How-
ever, the probability of choosing such a node equals only
(n/2)/(n − 1). The expected time until we have chosen in
(1/2)n lnn − O(n) steps such a node is bounded below by
n ln n − O(n).

At the end of the first phase there is a path from the
root to a node v on level 1 where only v is colored. The
log n−1 uncolored nodes on this path have to be colored in
a fixed order. The expected time until the root is colored
is bounded below by (n − 1)(log n − 1) = n log n − O(n).
This finishes the proof.

The lower bound on the expected time until the root is
colored also holds with large probability. This is true for
the coupon collector’s theorem and for the second phase we
can apply a Chernoff bound for n log n−O(n) trials with a
success probability of 1/(n− 1). (For Chernoff bounds see,
e.g., [4]).

If we look for a lower bound for the (1+1)GA on H-IFF
we have to take free-riders into account. When coloring
the leaves we have by a Chernoff bound with overwhelm-
ing probability less than n/4 + O(n3/4) free-riders on level
1 and, therefore, we have to color at least n/4 − O(n3/4)
selected nodes on level 1. Again, we can apply a Chernoff
bound to obtain a lower bound of (n/4) ln(n/4) − O(n) =
(1/4)n lnn−O(n) on the number of steps where we choose a
selected node. This again leads to a bound of n lnn−O(n),
since the probability of choosing a selected node equals
1/4 − O(n−1/4). In the second phase the probability that
a node on the chosen path is a free-rider equals 1/2 (inde-
pendently for all the nodes). Hence, the expected time to
color the path uncolored after phase 1 is bounded below by
(1/2)n log n − O(n).

Theorem 2: The expected optimization time of the
(1+1)GA on H-IFF is bounded below by n ln n +
(1/2)n log n − O(n) � 1.193 n log n.

An upper bound of O(n log2 n) is easy to obtain ([9]) if
one applies the coupon collector’s theorem bottom-up level
by level. We can prove the asymptotically precise bound of
O(n log n). For the upper bound we can ignore free-riders.

Theorem 3: The expected time of Game 1 and the ex-
pected optimization time of the (1+1)GA on H-IFF are
bounded above by 2.679 n log n + o(n).

Proof: The proof is an application of the delay se-
quence argument introduced by Ranade (1991) for analyz-
ing randomized routing protocols in networks.

We investigate Game 2 which is slower than Game 1 and
the (1+1)GA on H-IFF.

We consider a phase of length c(n−1) log n and estimate
the probability of not coloring the root within such a phase.

Our aim is to choose the constant c = c(ε) in such a way
that the above probability is bounded by n−ε. The next
phase starts with more colored nodes and has an even bet-
ter chance to color the root. Altogether, the expected num-
ber of phases is bounded above by (1−n−ε)−1 = 1+O(n−ε)
implying an upper bound of cn log n+o(n) on the expected
waiting time of Game 1.

For each path p = (v1, . . . , vk) from a level-1 node v1 = l
to the root vk = r we consider also another game. In the
beginning, all nodes are uncolored. Node v1 is colored when
it is chosen, each node vi is colored when vi−1 is colored
and vi is chosen. Using the same random experiments as
in Game 2, we choose nodes from the tree one by one. The
path p is called t-slow when it is not totally colored in t
steps of the new game.

The crucial observation is the following one. If in Game 2
the root is not colored in t steps, then there is a path which
has all properties of a t-slow path. We construct this path
starting at the root which is not colored by assumption.
As long as the considered node has an uncolored child we
choose such a child. Afterwards, we choose the child which
has been colored later than its sibling. On this path, we
can at first color only the level-1 node. Whenever a node
gets colored, its sibling has been colored before and we can
color the parent in the next step. This path is called t-
slow in the following. Now we consider a phase of length
t(n) = c(n − 1) log n starting with a tree where all inner
nodes are uncolored. Then

Prob(root r is not colored at the end of the phase)
= Prob(∃ level-1 node v | path v → r is t(n)-slow)
→ (n/2)Prob(a path with log n nodes is t(n)-slow).

The last inequality follows from the fact that we have n/2
level-1 nodes and the fact that all paths have the same
length log n.

A path is t(n)-slow if we do not color all its k = log n
nodes. Since in each step we have a probability of exactly
1/(n−1) to color one node on the path, this is the scenario
of a Chernoff bound with t(n) trials and success probability
1/(n − 1). Let X be binomially distributed with these pa-
rameters. Then, since E(X) = c · log n = ck, by Chernoff’s
inequality, for c > 1

Prob(a path with k nodes is t(n)-slow)
= Prob(X < k)

= Prob
(

X <

(
1 −

(
1 − 1

c

))
· E(X)

)

→
(

e−(1−1/c)

(1 − (1 − 1/c))(1−(1−1/c))

)E(X)

=
(
c1/c · e(1−1/c)

)c·log n

=
(
c · ec−1

)log n
.

If this probability is bounded above by n−(1+ε) we ob-
tain the result that the probability of not coloring the root

6

within one phase is bounded above by (n/2)n−(1+ε) → n−ε

and, as described above, this proves the theorem. Hence,
it is sufficient to choose c such that

c · ec−1 =
(

1
2

)1+ε

.

Choosing c = 2 .679 this condition is fulfilled for someε > 0.

Our bounds are sufficiently tight to explain the efficiency
of the (1+1)GA on H-IFF functions. Moreover, we have
seen that the optimization process essentially consists of
two phases. The first phase has the task to color all level-1
nodes or equivalently to create all building blocks of length
2. This seems to be an easy task. However, it takes already
Θ(n log n) steps. In this phase, we also create many other
much longer building blocks. The second phase is essen-
tially equivalent to the coloring of one path from a level-1
node to the root. Altogether, our analysis also provides
much insight how the (1+1)GA works.

The results are also sufficient to estimate the expected
time until a node v on level l is colored in Game 1 or
until a building block of length 2l at a special position is
created. The expected number of steps with cut positions
in the subtree rooted at v equals Θ(2l · l) (Theorem 2 and
Theorem 3 for n = 2l). The probability that a cut position
is within this tree equals (2l − 1)/(n − 1). Thus we obtain
an expected time of Θ(2l · l · (n − 1)/(2l − 1)) = Θ(n · l)
until a node on level l is colored.

Our bounds are tight up to small multiplicative constants
and small additive terms of smaller order. Nevertheless,
these error terms may be essential for small values of n.
Therefore, it makes sense to consider experimental results.

VI. EXPERIMENTAL RESULTS

The (1+1)GA is run on H-IFFn, n = 2k, k ∈ {6, . . . , 12}.
For each n, we have performed 100 runs and the optimiza-
tion time of the (1+1)GA is divided by n log n. The results
(best run, worst run, average) are contained in Table I.

TABLE I

Normalized optimization time of the (1+1)GA on H-IFFn

(number of steps divided by n log n).

n best worst average
64 0.55 2.04 1.15

128 0.66 2.35 1.20
256 0.79 2.34 1.33
512 0.79 2.10 1.37

1024 0.97 1.97 1.41
2048 0.99 2.01 1.45
4096 1.10 2.15 1.47

These results can be explained as follows. The best case
is for small n better than the leading term of the lower
bound for the average time. This happens because of the
variance of the stochastic process and because the lower
bound also contains negative linear terms. The coupon

collector’s theorem for the first phase gives a result which
is close to

n ln(n/4) = n ln n − (2 ln 2)n = n lnn − 1.386 n.

Also the lower bound (n−1)(log n−1) contains a negative
linear term. These linear terms are important for small n.
This also explains why the values in the column “average”
are increasing. Nevertheless, they are much closer to the
leading constant of the lower bound than to the leading
constant of the upper bound. We believe that this is also
true for very large n. In the proof of the upper bound we
estimate the probability of a union of events by the sum
of the probabilities. This seems to be a rough estimate
implying that the exact bound even for Game 2 is smaller
than the upper bound. Moreover, the (1+1)GA is faster
than Game 2, since Game 2 ignores free-riders.

All in all, our asymptotic results fit the experimental
results already for small n.

VII. CONCLUSION

H-IFFn is a hierarchically decomposed function which
looks “crossover-friendly”. A recombinative hill-climber
called (1+1)GA which ensures diversity by adding x̄ to a
population containing x is investigated. The dynamics can-
not be analyzed exactly enough to give much insight. An
asymptotically tight estimation of the expected optimiza-
tion time illustrates how the optimization process works.
Moreover, the analysis introduces the important method
of delay sequences into the analysis of evolutionary algo-
rithms.

References

[1] J. Culberson, “Genetic invariance: A new paradigm for genetic al-
gorithm design,” Tech. Rep. TR92-02, University of Alberta, 1992.

[2] C. Höhn and C. Reeves, “Are long path problems hard for genetic
algorithms?,” in Proceedings of the 4th Conference on Parallel
Problem Solving from Nature, H.-M. Voigt, W. Ebeling, I. Rechen-
berg, and H.-P. Schwefel, Eds., Berlin: Springer-Verlag 1996, vol.
1141 of LNCS, pp. 134-143.

[3] T. Jansen and I. Wegener,“Real royal road functions – where
crossover is provably essential” in Proceedings of Genetic and Evo-
lutionary Computation Conference 2001, Lee Spector et al., Ed.,
San Mateo, CA: Morgan Kaufmann, 2001, pp. 375–382.

[4] R. Motwani and P. Raghavan, Randomized Algorithms. Cam-
bridge, U.K.: Cambridge Univ. Press, 1995.

[5] B. Naudts and J. Naudts, “The effect of spin-flip symmetry on the
performance of the simple GA,” in Proceedings of the 5th Confer-
ence on Parallel Problem Solving from Nature, A. E. Eiben et al.,
Ed., Berlin: Springer-Verlag, 1998, vol. 1498 of LNCS, pp. 67-76.

[6] A. G. Ranade, “How to emulate shared memory,” Journal of
Computer and System Sciences, vol. 42, pp. 307–326, 1991.

[7] C. Van Hoyweghen, D. E. Goldberg, and B. Naudts, “Building
block superiority, multimodality and synchronization problems,”
in Proceedings of the Genetic and Evolutionary Computation Con-
ference 2001, Lee Spector et al., Ed., San Mateo, CA: Morgan
Kaufmann, 2001, pp. 694–701.

[8] C. Van Hoyweghen, B. Naudts, and D. Goldberg, “Spin-flip sym-
metry and synchronization,” Submitted to the journal of Evolu-
tionary Computation, 2001.

[9] R. Watson, “Analysis of recombinative algorithms on a non-
separable building block problem,” in Foundations of Genetic Al-
gorithms 6, W. Martin and W. Spears, Eds., San Mateo, CA: Mor-
gan Kaufmann, 2001, pp. 69-89.

[10] R. Watson, G. S. Hornby, and J. B. Pollack, “Modeling building-
block interdependency,” in Proceedings of the 5th Conference on
Parallel Problem Solving from Nature, A. E. Eiben et al., Ed.,
Berlin: Springer-Verlag, 1998, pp. 97–106.

