
UNIVERSITY OF DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes
and Systems by means of Computational Intelligence Methods

Fitness Landscapes Based on Sorting and Shortest
Path Problems

Jens Scharnow, Karsten Tinnefeld,
and Ingo Wegener

No. CI-128/02

Technical Report ISSN 1433-3325 March 2002
Secretary of the SFB 531 · University of Dortmund · Dept. of Computer Science/XI
44221 Dortmund · Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence”, at the University of Dortmund and was printed with financial support of
the Deutsche Forschungsgemeinschaft.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Eldorado - Ressourcen aus und für Lehre, Studium und Forschung

https://core.ac.uk/display/46902676?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fitness Landscapes Based on Sorting and
Shortest Paths Problems

Jens Scharnow, Karsten Tinnefeld?, and Ingo Wegener?

FB Informatik, LS2, Univ. Dortmund, 44221 Dortmund, Germany
wegener@ls2.cs.uni-dortmund.de

Abstract. The analysis of evolutionary algorithms is up to now limited
to special classes of functions and fitness landscapes. It is not possible to
describe those subproblems of NP-hard optimization problems where cer-
tain evolutionary algorithms work in polynomial time. Therefore, fitness
landscapes based on important computer science problems as sorting and
shortest paths problems are investigated here. Although it cannot be ex-
pected that evolutionary algorithms outperform the well-known problem
specific algorithms on these simple problems, it is interesting to analyze
how evolutionary algorithms work on these fitness landscapes which are
based on practical problems. The following results are obtained:

– Sorting is the maximization of “sortedness” which is measured by
one of several well-known measures of presortedness. The different
measures of presortedness lead to fitness landscapes of quite different
difficulty for EAs.

– Shortest paths problems are hard for all types of EA, if they are
considered as single-objective optimization problems, while they are
easy as multi-objective optimization problems.

1 Introduction

Our aim is to contribute to a theory of evolutionary algorithms (EAs) which
analyzes the expected optimization time of EAs on important and interesting
problems and classes of fitness functions. Nowadays, it is a vision to explain
the success of EAs on hard problems by identifying those instances of the prob-
lem where the considered EA finds the optimum in expected polynomial time.
In order to develop tools for such results EAs have to be analyzed in various
situations.

Fitness landscapes considered as typical ones have been described and ana-
lyzed in many papers (for an overview see Bäck, Fogel, and Michalewicz (1997)).
Moreover, interesting classes of fitness functions have been investigated, e.g.,
separable functions (Droste, Jansen, and Wegener (1998a)), monotone polyno-
mials of small degree (Wegener (2001)), long-path functions (Horn, Deb, and
Goldberg (1994), Rudolph (1997), Droste, Jansen, and Wegener (1998b)), and

? This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part
of the Collaborative Research Center “Computational Intelligence” (SFB 531).

royal road functions (Mitchell, Holland, and Forrest (1994), Jansen and Wegener
(2001a)). However, these are artificial functions and problems.

Here we choose the approach to investigate EAs on the most basic and im-
portant computer science problems, namely sorting (the maximization of the
sortedness) and shortest path problems. We do not and cannot expect EAs
to outperform Quicksort or Dijkstra’s algorithm. However, universal problem
solvers like EAs should be efficient on these simple problems.

Sorting is the problem of maximizing the sortedness. Hence, the fitness of
a permutation can be measured by one of the well-known measures of presort-
edness. In Section 2, the corresponding fitness landscapes are introduced and
appropriate mutation operators are discussed. The analysis in Section 3 shows
that most measures of presortedness contain enough information to direct the
optimization by EAs. However, there is a well-known measure of presortedness
leading to a fitness landscape with large plateaus of search points having equal
fitness such that the optimization process gets stuck on such a plateau.

Shortest path problems are multimodal optimization problems and EAs get
stuck in local but not global optima (for certain instances). In Section 4, we
describe this fitness landscape and an alternative as multi-objective optimization
problem. Moreover, we prove that only the multi-objective optimization problem
description directs the search of EAs efficiently. This is the first result of this
type for EAs.

2 Fitness Landscapes Based on Sorting Problems

Given a sequence of n distinct elements from a totally ordered set, sorting is
the problem of maximizing the sortedness. Hence, the search space is the set
of all permutations π on {1, . . . , n}. For our investigations we can identify π
with the sequence (π(1), . . . , π(n)) and the identity permutation is the optimal
one. If we try to solve sorting as such an optimization problem, we need a fitness
function f such that f(π) describes the sortedness of π. Such measures have been
introduced in the discussion of so-called adaptive sorting algorithms (see, e.g.,
Moffat and Petersson (1995)). We will investigate the five best-known measures
of presortedness and the corresponding fitness landscapes.

– INV(π) measures the number of pairs (i, j), 1 ≤ i < j ≤ n, such that
π(i) < π(j) (pairs in correct order),

– HAM(π) measures the number of indices i such that π(i) = i (elements at
the correct position),

– RUN(π) measures the number of indices i such that π(i) > π(i+1) (number
of maximal sorted blocks minus 1) leading to a minimization problem,

– REM(π) equals the largest k such that π(i1) < · · · < π(ik) for some i1 <
· · · < ik (length of the longest sorted subsequence),

– EXC(π) equals the minimal number of exchanges (of pairs π(i) and π(j)) to
sort the sequences again leading to a minimization problem.

Since we cannot see any advantage of crossover for sorting problems, we have
investigated only mutation-based EAs. Our mutation operator is based on the
following two simple operations:

– exchange(i, j) which exchanges the elements at the positions i and j,
– jump(i, j) where the element at position i jumps to position j while the other

elements between position i and position j are shifted in the appropriate
direction, e.g., jump(5,2) applied to (6,4,3,1,7,2,5) produces (6,7,4,3,1,2,5).

Mutation should allow any π′ to be produced from π with positive probabil-
ity. The usual mutation operator on the search space {0, 1}n flips each bit with
probability 1/n. This implies that the number of flipping bits is asymptotically
Poisson distributed with parameter λ = 1. Therefore, we have chosen the fol-
lowing mutation operator where we exclude steps where nothing happens:

– Choose s according to a Poisson distribution with parameter λ = 1 and
perform sequentially s + 1 exchange or jump steps where for each step (i, j)
is chosen randomly among all pairs (k, l), 1 ≤ k, l ≤ n, k 6= l, and it is
decided randomly whether exchange(k, l) or jump(k, l) is performed.

We also may consider only exchange or only jump steps. Finally, we have decided
to analyze the following evolutionary algorithm shortly called (1 + 1)EA which
resembles the well-known (1+1) evolution strategy:

– Choose the first search point π randomly.
– Repeat: Produce π′ by mutation from π and replace π by π′ if π′ is not

worse than π (f(π′) ≥ f(π) in the case of a maximization problem and
f(π′) ≤ f(π) otherwise).

In applications, one needs a stopping criterion. Here we consider the infinite
stochastic process described above and investigate the random variable called
optimization time which equals the first point of time when π is optimal.

3 The Analysis of the (1+1)EA on the Fitness
Landscapes Based on Sorting Problems

Here we analyze the performance of the (1+1)EA on the different landscapes
described by the fitness functions introduced in Section 2.

Theorem 1. The expected optimization time of the (1+1)EA on the fitness
landscape described by INV is bounded above by O(n2 log n) and bounded below
by Ω(n2).

Proof. Let π be the current search point, 1 ≤ i < j ≤ n, and π(i) > π(j), i.e.,
(i, j) is an incorrect pair. Then exchange(i, j) improves the fitness. The reason
is the following. The pair (i, j) is afterwards a correct one. Let i < k < j. If
π(k) > π(i) or π(k) < π(j), the correctness status of the pairs (i, k) and (k, j)
is not changed. If π(j) < π(k) < π(i), also the incorrect pairs (i, k) and (k, j)

are corrected by the exchange operation. Each specific exchange operation has
a probability of 1/(2en(n − 1)) to be the only operation (1/e is the probability
of performing a single operation, 1/2 the probability of choosing an exchange
operation and 1/(n(n − 1)) the probability of choosing the pair (i, j)). Hence,
the probability of increasing the fitness in the presence of m incorrect pairs is at
least m/(2en(n− 1)) leading to an expected waiting time (for an improvement)
of O(n2/m). Since 1 ≤ m ≤ n(n − 1)/2 and since the fitness is never decreased,
the expected optimization time can be estimated by

c
∑

1≤m≤n(n−1)/2

n2/m = cn2H(n(n − 1)/2)

for the harmonic series H where H(N) ≤ ln N +1 leading to the proposed bound
O(n2 log n).

For the lower bound we only consider the final step leading to the optimum.
Independent of the number of exchange or jump operations chosen in this step,
it is necessary that the last operation changes a not sorted sequence into a
sorted one. This is possible by at most one exchange and at most two jump
operations (jump(i, i + 1) and jump(i + 1, i) have the same effect). Hence, the
success probability of the final step is bounded above by 3/(n(n − 1)) and,
therefore, the expected waiting time is bounded below by Ω(n2). 2

In the beginning the fitness typically is increased in successful steps by more than
one. This may change in the final stage of the optimization process. The sequence
(2, 3, . . . , n, 1) has n − 1 incorrect pairs and, in successful steps, the number of
incorrect pairs is halved on the average. This leads to an expected optimization
time of O(n2). The sequence (2, 1, 4, 3, . . . , n, n− 1) has n/2 incorrect pairs and,
in successful steps, the number of incorrect pairs is decreased only by one with
large probability. It can be shown that the expected optimization time on this
string equals Θ(n2 log n). It is more typical to have in the final stage more small
disordered subblocks than to have only few elements which belong to many
incorrect pairs. Hence, we believe that the expected optimization time equals
Θ(n2 log n).

Corollary 1. The expected optimization time of the (1 + 1)EA is Ω(n2) for
each fitness landscape based on the sorting problem, i.e., with a unique global
optimum.

Proof. The proof is contained in the proof of Theorem 1, since there we only
used the fact that there is a unique global optimum. 2

Theorem 2. The expected optimization time of the (1 + 1)EA on the fitness
landscape described by REM equals Θ(n2 log n).

Proof. If REM(π) = k and j is a position not belonging to the longest sorted
subsequence, then there is a jump operator where j jumps to a position where
it increases the length of the sorted subsequence from k to k +1. The number of

these positions j equals n− k and, therefore, the success probability (increasing
the fitness), if REM(π) = k, is at least (n−k)/2en(n−1) leading to an expected
waiting time of O(n2/(n − k)). Summing up these values for k ∈ {1, . . . , n − 1}
we obtain the proposed bound.

For the lower bound it is essential that a single jump can change the REM
value by at most 1. The jumping element is first taken from the sequence (which
can decrease the length of any sorted subsequence by 1) and then inserted some-
where (which can increase the length of sorted subsequences by 1). Since an
exchange can be simulated by two jumps, exchange steps can increase the REM
value by at most 2. Let us consider the situation where REM(π) ≥ n − n1/2 for
the first time. Then REM(π) ≤ n−n1/2/2 with overwhelming probability, since
at least n1/2/4 jumps and exchanges in one step are very unlikely. If an element
of the longest sorted subsequence which has two neighbors from this sorted sub-
sequence jumps, this decreases the REM value by 1 while the probability that
an element outside the sorted subsequence jumps to a position increasing the
REM value equals 1/(n − 1) for each of these values. We can conclude that the
probability of increasing the REM value by a step with at least 10 exchanges
and/or jumps is so small that this does not happen within O(n2 log n) steps with
overwhelmig probability. This implies that we may consider only steps with a
single jump operation (increasing the expected optimization time at most by a
constant factor). If REM(π) = k, the success probability is bounded above by
(n− k)/(n(n− 1)) leading to a waiting time of Ω(n2/(n− k)). Summing up for
k = n − n1/2/2 to k = n − 1, we obtain the proposed lower bound. 2

The upper bound of Theorem 2 holds for an arbitrary initial search point π.
However, jump operations are essential while the bounds of Theorem 1 for INV
even hold if we perform only jumps or only exchanges. Consider the situation of
π∗ = (2, . . . , n, 1) with REM(π∗) = n − 1. The plateau of search points π with
REM(π) = n−1 can be characterized by the “wrong element” i which can be at
one of the n − 1 “wrong positions” p 6= i while all other elements are in sorted
order. Which exchange operations are accepted? Only those which exchange i
with one of the two neighbored elements and those which exchange i with one
of the elements i − 1 or i + 1. Hence, the probability of an accepted exchange
step is bounded above by 4/(n(n− 1)). The probability of accepting a step with
more than one exchange step is negligible. However, the sum of all |j − π(j)| is
decreased at most by 2 by a successful exchange step and we need (n − 1)/2 of
these steps for π∗ leading already to a waiting time of Ω(n3). However, using
the methods introduced by Jansen and Wegener (2001b) we can prove that the
expected optimization time equals Θ(n4) showing that the choice of the mutation
operator is essential.

Theorem 3. The expected optimization time of the (1 + 1)EA on the fitness
landscape described by HAM is bounded above by O(n2 log n).

Proof. The upper bound follows in the same way as in the proof of Theorem 2 by
proving that for HAM(π) = k there are at least n−k single exchange operations
increasing the HAM value. If element i is at position p 6= i, then exchange(i, p)

increases the HAM value. Element i reaches its correct position and the element
leaving position i was not at its correct position. 2

Considering only exchanges we can also prove a lower bound of Ω(n2 log n)
similarly to the lower bound proof of Theorem 2. Here the HAM value can be
increased by a single exchange step at most by 2. If HAM(π) is large, it is unlikely
that a step with more than 10 exchanges increases the HAM value. Moreover,
only exchanges of pairs (i, j) where position j contains i and/or position i con-
tains j can increase the HAM value.

Considering only jumps we can prove an upper bound of O(n4 log n), since
two special jumps can simulate an exchange step. However, the probability of
choosing these two jumps is bounded by O(1/n4). A lower bound for jump oper-
ations has to take into account that a single jump ((2, 3, . . . , n, 1) → (1, 2, 3, . . . ,
n)) can increase the HAM value from 0 to n. However, we do not believe that
jumps help for this fitness landscape. Hence, for HAM exchanges play the role
which is played by jumps for REM.

Theorem 4. The expected optimization time of the (1 + 1)EA on the fitness
landscape described by EXC is bounded above by O(n3).

Proof. First, EXC(π) ≤ n−1 for all π. It is always possible to choose an accepted
exchange operation increasing the HAM value by 1. Since HAM(π) 6= n − 1 for
all π, the statement follows. Hence, the expected optimization time to decrease
the EXC value is O(n2) leading to the proposed bound. 2

Since two special jumps can simulate a given exchange step, we obtain for jumps
an O(n5) bound. It is not surprising that exchanges seem to be better than jumps
for this fitness function which is defined via the minimal number of exchange
operations.

All the fitness functions based on INV, REM, HAM, or EXC lead to fitness
landscapes which are easy for simple EAs. The expected optimization time can
depend essentially on the chosen mutation operator. Hence, it seems to be useful
to allow jumps and exchanges. However, we still have to investigate the fitness
landscape based on the number of runs (RUN). This is the perhaps best-known
measure of presortedness, since Mergesort is based on the idea of reducing the
number of runs efficiently.

Our aim is to prove that our EAs have an exponential expected optimization
time on this landscape. We start with a well-structured subcase. The current
search point π consists of two runs of length k ≤ n/2 and n− k. The k elements
of the first run are chosen randomly from {1, . . . , n}. In the case that these are the
elements 1, . . . , k (probability 1/

(
n
k

)
) or k = 0 the search is finished successfully.

We first consider the mutation operator which performs exactly one jump per
step. One element i from one run is chosen randomly for the jump. Most jump
destinations increase the number of runs. In general, there is exactly one position
j in the other run such that jump(i, j) reduces the length of the chosen run by
1 and increases the length of the other run by 1. The set of elements in each run
is still a random subset of {1, . . . , n} of the correct size. If we consider t steps

where the runs always have a length of at least k∗, the probability of finishing
the search is bounded above by t/

(
n
k∗

)
. If k∗ ≥ n1/2, the probability to finish

the search within 2cn1/2
steps, c > 0 small enough, is bounded by 2−Ω(n1/2).

There is one special situation, namely 1, . . . , k − 1, j, k, . . . , j − 1, j + 1, . . . , n. If
we choose the element j for a jump, it may jump to position k + 1 and we get
the runs 1, . . . , k, j and k + 1, . . . , j − 1, j + 1, . . . , n. This is identical to a jump
of element k to its correct position k in the other run. Also this special situation
has a vanishing probability if k∗ ≥ n1/2. The probability of a successful step
equals 1/(n− 1). Hence, we decrease the expected optimization time by a factor
of 1/(n − 1) by considering only successful steps. The probability of increasing
k, the length of the shorter run, during a successful step equals k/n (we have
to choose the jumping element from the shorter run) while the probability of
increasing k equals (n − k)/n. In order to finish the search we have to decrease
k to 0, but k has a strong tendency to be increased if k gets small.

Let k be the current length of the shorter run. We try to estimate the prob-
ability of reaching the value 0 before the value 2k. Therefore, it is necessary to
have at least k decreasing steps among the next 3k steps. The value p = 2k/n
is the largest “decrease probability” as long as the length of the shorter run is
at most 2k. Then the considered probability can be estimated by

∑
k≤m≤3k

(
3k

m

)
pm(1 − p)3k−m ≤

(
3k

k

)
pk(1 + 3p + 9p2 + · · ·),

since the binomial coefficients
(
3k
m

)
are at most increasing by a factor of 3, if

m ≥ k. Moreover,
(
3k
k

) ≤ c(3/2)k. If k ≤ n/8, 3p = 6k/n ≤ 3/4 and we can
estimate the considered probability by 4c(3k/n)k which decreases exponentially
with k. If k is the length of the shorter run in the beginning, we need once a
phase starting with the value k and at least k decreasing steps among 3k steps.
The expected waiting time is Ω((n/(3k))k) and the success probability within t
steps can be bounded above by O(t(3k/n)k). If k is not too small, e.g., k = n1/2,
we only have an exponentially small probability to finish the search within a
period of time which grows exponentially but not too fast.

Single exchange steps are almost useless. The exchange of the last element
of the first run and the first element of the second run is also a jump and may
change the lengths of the runs. All other accepted exchange steps exchange two
elements from both runs which does not change the lengths of the runs.

What is the effect of many jumps within an operation? With overwhelming
probability we do not perform more than nε/4 jumps in one step. This holds
for the Poisson distribution for each ε > 0. Therefore, an element jumping to a
position with a distance of more than nε/4 from each of the two correct positions
in the runs has to jump again such that we do not obtain more than two runs.
If we choose r different elements which have to jump, the probability that the
resulting sequence has at most two runs is bounded above (nε/n)r = n−(1−ε)r

while this probability is at least 1/(n− 1) for r = 1. Since the number of jumps
equals X + 1 where X has a Poisson distribution with λ = 1, the probability

of letting at least r elements jump is bounded by (2/(r − 1)!). Hence, we may
assume that all successful steps where r ≥ 2 elements jump shorten the shorter
run by r. Since the expected decrease of the shorter run during 3k steps caused
by this assumption is only O(kn−(1−ε)·2), we can generalize our estimates above
(with minor changes) to obtain the same results for the (1+1)EA.

The last question is whether it is likely that we reach a situation with two
runs where the shorter one has a length of at least n1/2 and where the probability
that this run contains almost only very small or almost only very large elements
is tiny. In each situation it is more likely to increase the length of a long run
than to increase the length of a short run. However, for short runs there is a
non-vanishing probability of merging runs. Altogether, it seems to be very likely
that we reach a situation as described above. However, this has not been proved
rigorously here. The result proven rigorously is stated as a theorem.

Theorem 5. Let n1/2 ≤ k ≤ n/2 and let π be chosen randomly among all
sequences with two runs of length k and n − k resp. The expected optimization
time of the (1+1)EA on the fitness landscape described by RUN and the random
initial string π is bounded below by 2Ω(n1/2) and the success probability within
2cn1/2

steps, c > 0 a small constant, is exponentially small.

Our experiments have confirmed our statements discussed above. For 20 ≤
n ≤ 40, in almost all cases the length of the shorter run was at least 0.4n for
the first string with two runs. For n = 40, we have obtained the first string with
two runs on the average only after approximately 9 · 107 steps. For n = 60 this
happens only after 18 · 107 steps and the optimum is not reached after 5.7 · 109

steps. The fitness landscape based on RUN is difficult already for quite small n.

4 Fitness Landscapes Based on Shortest Paths Problems

Given n nodes and a distance matrix with positive entries dij the single-source-
shortest-paths problem (SSSP) is the problem to compute for each node v 6= s
a shortest path from node s to node v. Using Dijkstra’s algorithm SSSP can be
solved in time O(n2). It seems to be a good idea to consider the search space of
all v = (v1, . . . , vn−1) ∈ {1, . . . , n}n−1 where vi 6= i with the following interpre-
tation. We set s = n and obtain a graph where i has the single predecessor vi.
If this graph has a cycle, the individual is invalid with fitness ∞. Otherwise, we
get a tree rooted at s describing for each i 6= s an s-i-path. As single-objective
problem the fitness equals the sum of the lengths of all s-i-paths. This may lead
to a needle-in-the-haystack landscape. If di,i−1 = 1 and dij = ∞, if j 6= i − 1,
only the optimal tree where vi = i + 1 has a fitness smaller than ∞.

Now we consider SSSP as a multi-objective optimization problem where we
have n−1 objectives namely the lengths of the s-i-paths. We use the same search
space with the fitness function f(v) = (f1(v), . . . , fn−1(v)) where fi(v) is the
length of the s-i-path in the graph described by v, if this graph contains such a
path, and fi(v) = ∞, otherwise. The aim is minimization. The theory on shortest

paths problems implies that this multi-objective minimization problem has a
unique Pareto optimal fitness vector f∗ = (l∗1, . . . , l∗n−1) containing the lengths
of shortest s-i-paths and all Pareto optimal vectors describe graphs representing
a system of shortest paths. (A vector is called Pareto optimal if it is minimal
w.r.t. the partial order ≤ on (R∪{∞})n−1 where (a1, . . . , an−1) ≤ (b1, . . . , bn−1)
iff ai ≤ bi for all i.)

We may design variants of evolutionary algorithms for multi-objective min-
imization. However, a very simple variant again called (1+1)EA is an efficient
SSSP solver. We use the following mutation operator:

– Choose s according to a Poisson distribution with parameter λ = 1 and
perform sequentially s + 1 flips. A flip chooses randomly a position p ∈
{1, . . . , n − 1} and replaces vp by a random node w 6= p.

The (1+1)EA chooses the first search point v randomly, creates v′ by the muta-
tion operator and replaces v by v′ iff f(v′) ≤ f(v).

Theorem 6. The expected optimization time of the multi-objective (1+1)EA on
SSSP is bounded above by O(n3).

We prove a more sophisticated bound. Let ti be the smallest number of edges
on a shortest s-i-path, mj := #{i | ti = j}, and T = max{j | mj > 0}. Then we
prove the upper bound

en2
∑

1≤j≤T

(lnmj + 1).

This bound has its maximal value Θ(n3) for m1 = · · · = mn−1 = 1. We also
obtain the bound O(n2T log n) which in the typical case where T is small is
much better than O(n3).

Proof. The proof is based on the following simple observation. Whenever fi(v) =
l∗i , we only accept search points v′ where fi(v′) = l∗i . Hence, we do not forget
the length of shortest paths which we have found (although we may switch to
another shortest path). Now we assume that we have a search point v where
fi(v) = l∗i for all i where ti < t. Then we wait until this property holds for all i
where ti ≤ t. For each node i where ti = t and fi(v) > l∗i there exists a node j
such that tj = t − 1, j is the predecessor of i on a shortest s-i-path of length t,
and fj(v) = l∗j . Then a mutation where only vi is flipped and obtains the value
j is accepted and leads to a search point v′ where fi(v′) = l∗i . The probability of
such a mutation equals 1/(e(n−1)2) (1/e the probability of flipping exactly one
position, 1/(n− 1) the probability of flipping the correct position, and 1/(n− 1)
the probability of flipping it to the right value). If we have r such nodes, the
success probability is at least r/(e(n − 1)2) and the expected waiting time is
bounded above by en2/r. The largest value for r is mt and we have to consider
each of the values mt, . . . , 1 at most once. Hence, the total expected time of this
phase is bounded above by en2(1 + 1

2 + · · · + 1
mt

) ≤ en2(lnmt + 1). Since t can
take the values 1, . . . , T we have proved the proposed bound. 2

It is easy to show that the expected optimization time equals Θ(n3) in the
extreme case which is a needle-in-the-haystack landscape for single-objective
optimization.

5 Conclusion

Robust problem solvers should also solve the well-known simple optimization
problems efficiently. This has been investigated for the sorting problem (max-
imizing the sortedness based on some measure of presortedness) and shortest-
paths problems. For four out of five fitness landscapes described by the best-
known measures of presortedness simple EAs work very efficiently, although dif-
ferent types of local changes are essential. However, the last measure of presort-
edness leads to a fitness landscape which is difficult for EAs. There are instances
of shortest-paths problems which are difficult for black-box single-objective op-
timization. The modeling of the SSSP as multi-objective optimization problem
reflects the structure of the problem and the fitness vector reveals enough infor-
mation to direct the search of a simple EA. Usually, multi-objective optimiza-
tion is only used if no single-objective optimization problem contains the whole
structure of the problem. Here it has been shown that a multi-objective problem
model may lead to a simpler problem.

References

1. Bäck, T., Fogel, D.B., and Michalewicz, Z. (Eds.) (1997). Handbook of Evolutionary
Computation. Oxford University Press.

2. Droste, S., Jansen, T., and Wegener, I. (1998a). A rigorous complexity analysis
of the (1+1) evolutionary algorithm for separable functions with Boolean inputs.
Evolutionary Computation 6, 185–196.

3. Droste, S., Jansen, T., and Wegener, I. (1998b). On the optimization of unimodal
functions with the (1+1) evolutionary algorithm. Parallel Problem Solving from Na-
ture – PPSN V, LNCS 1498, 13–22.

4. Horn, J., Goldberg, D.E., and Deb, K. (1994). Long path problems. Parallel Problem
Solving from Nature – PPSN III, LNCS 866, 149–158.

5. Jansen, T., and Wegener, I. (2001a). Real royal road functions - where crossover
provably is essential. Genetic and Evolutionary Computation Conf. – GECCO, 375–
382.

6. Jansen, T., and Wegener, I. (2001b). Evolutionary algorithms - how to cope with
plateaus of constant fitness and when to reject strings of the same fitness. IEEE
Trans. on Evolutionary Computation. To appear Dec. 2001.

7. Mitchell, M., Holland, J.H., and Forrest, S. (1994). When will a genetic algorithm
outperform hill climbing. In J. Cowan, G. Tesauro, and J. Alspector (Eds.): Advances
in Neural Information Processing Systems. Morgan Kaufman.

8. Petersson, O., and Moffat, A. (1995). A framework for adaptive sorting. Discrete
Applied Mathematics 59, 153–179.

9. Rudolph, G. (1997). How mutations and selection solve long path problems in poly-
nomial expected time. Evolutionary Computation 4, 195–205.

10. Wegener, I. (2001). Theoretical aspects of evolutionary algorithms. Int. Colloq. on
Automata, Languages, and Programming – ICALP, LNCS 2076, 64–78.

