
UNIVERSITY OF DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes
and Systems by means of Computational Intelligence Methods

Real Royal Road Functions — Where Crossover
Provably is Essential

Ingo Wegener

No. CI-104/01

Technical Report ISSN 1433-3325 Junary 2001
Secretary of the SFB 531 · University of Dortmund · Dept. of Computer Science/XI
44221 Dortmund · Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence”, at the University of Dortmund and was printed with financial support of
the Deutsche Forschungsgemeinschaft.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Eldorado - Ressourcen aus und für Lehre, Studium und Forschung

https://core.ac.uk/display/46902658?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Real Royal Road Functions — Where
Crossover Provably is Essential∗

Ingo Wegener
FB Informatik, LS 2, Univ. Dortmund, 44221 Dortmund, Germany

wegener@ls2.cs.uni-dortmund.de

Abstract

Mutation and crossover are the main search operators of different
variants of evolutionary algorithms. Despite the many discussions on
the importance of crossover nobody has proved rigorously for some
explicitly defined fitness functions fn : {0, 1}n → R that a genetic
algorithm with crossover (but without idealization) can optimize fn

in expected polynomial time while all evolution strategies based only
on mutation (and selection) need expected exponential time. Here
such functions and proofs are presented. For some functions one-point
crossover is appropriate while for others uniform crossover is the right
choice.

1 Introduction and history

Ideas from biological evolution have influenced the design of systems for var-
ious aims, i.e., adaptation, simulation, control, and optimization. Here we
consider the optimization, in particular, the maximization of pseudo-boolean
functions fn : {0, 1}n → R

+
0 . Evolutionary algorithms use selection opera-

tors, search operators, and a stopping criterion. The class of search operators
contains mutation where one parent creates one child preferring individuals
closer to the parent and crossover where (in most cases) two parents cre-
ate one or more children which lie in the subcube of {0, 1}n spanned by the
parents.

There have been long debates which type of search operator is “more
important”. This paper is not a contribution to this debate. We are inter-
ested in specific fitness functions such that crossover is necessary to obtain
an evolutionary algorithm (then also called genetic algorithm) where the ex-
pected time until an optimal search point is evaluated (called the expected
optimization time) is polynomial (instead of exponential).

Holland (1975) has described the possible use of crossover leading to
the building-block hypothesis (see also Goldberg (1989)). The well-known

∗This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part of
the Collaborative Research Center “Computational Intelligence” (SFB 531).

1

schema theorem describes the development of schemata within one step.
Hence, in general, it does not lead to results on the expected optimization
time. Based on these considerations Mitchell, Forrest, and Holland (1992)
have introduced the so-called royal road functions RRn,k : {0, 1}n → R

+
0

(w.l.o.g. n = mk) where the set {1, . . . , n} of indices is partitioned to m
consecutive blocks of k elements each. Then RRn,k(x) is defined as the
number of blocks containing only xi-bits equal to 1. Mitchell, Holland, and
Forrest (1994) have investigated these functions (for an overview see Mitchell
(1996)).

It has turned out that mutation-based evolutionary algorithms are quite
successful for the royal road functions. The so-called (1+1)EA with popula-
tion size 1 and mutation probability 1/n has an expected optimization time
of O(2k · n

k
log n

k
). We only mention that we can prove that this bound is

asymptotically tight. It has been shown in the above mentioned papers that
the expected optimization time of an idealized genetic algorithm (IGA) is of
order 2k · log n

k
. IGA does not consider the negative implications of the hitch-

hiking effect. Experiments show that the (1 + 1)EA is faster than genetic
algorithms on royal road functions. It is also clear that even the idealized GA
saves only a polynomial factor of order n/k. Moreover, the analysis of the
royal road functions shows that crossover often has simultaneously positive
and negative effects and one has to argue carefully to prove that the positive
effects are more important.

Watson, Hornby, and Pollack (1998) and Watson and Pollack (1999) have
presented another “GA-friendly” fitness function called H-IFF. For n = 2k

we have 2m natural blocks of length 2k−m each. The “value” of a block is
equal to its length and a block is “activated” if all bits in this block have the
same value (0 or 1). Finally, H-IFF(x) is the sum of the values of all activated
blocks. The interesting aspect of H-IFF is that the blocks “are strongly and
non-linearly dependent on one another” (Watson (2000)). Several aspects of
this function have been investigated (Watson, Hornby, and Pollack (1998),
Watson and Pollack (1999, 2000a, 2000b), Watson (2000)) where part of
the analysis is based on methods due to Wright and Zhao (1999). These
papers contain many arguments why mutation-based evolutionary algorithms
have exponential expected optimization time while genetic algorithms may
have polynomial expected optimization time. However, all analytical results
have been obtained under some simplifying assumptions. Nevertheless, the
discussion on H-IFF has revealed new aspects of crossover.

The focus of our paper is another one. We are interested in upper and
lower bounds on the expected optimization time which are proved without
any assumption. The aim is to show that genetic algorithms have on some
functions polynomial expected optimization time while mutation-based evo-

2

lutionary algorithms need exponential expected optimization time. The func-
tions are defined just to have the desired properties (as it was the case with
RR and H-IFF). Our functions will not have such a clear “schema structure”
as RR and H-IFF. However, our aim is to show that we can control for some
“GA-friendly” functions all negative aspects of crossover without using an
artificial algorithm. The first paper where the use of uniform crossover has
been proved rigorously is by Jansen and Wegener (1998). However, they
have used an artificial small crossover probability of 1/(n log3 n) in order to
control the hitchhiking effect and, for their example, the expected optimiza-
tion time for mutation-based algorithms is only super-polynomial, namely of
order nlog n, and not exponential.

Since one-point crossover is the historically first crossover operator and
since one-point crossover was assumed to be adequate for the royal road
functions, we first consider this type of crossover operator. In Section 2, we
introduce and analyze the so-called real royal road functions for one-point
crossover. In Section 3, we do the same for uniform crossover. We finish with
some conclusions.

2 Real royal functions for one-point crossover

Definition 1. For x ∈ {0, 1}n let |x| be the number of ones in x, i.e., x1 +
· · ·+xn, and let b(x) be the length of the longest block consisting of ones only,
i.e., the largest l such that xi = xi+1 = · · · = xi+l−1 = 1 for some i. The real
royal road functions for one-point crossover are defined by

Rn,m(x) =

2n2 if x = (1, 1, . . . , 1)

n|x|+ b(x) if |x| ≤ n − m

0 otherwise

We use the notation Rn for the special case m =
n/3�.
The function has the property that, as long as |x| ≤ n − m, the fitness

depends on the number of ones and ones which build a block are better than
ones that are spread over the vector. The all-ones string is optimal and is
surrounded by a large valley of bad points. Also H-IFF has the property
that the second-best points are far away from the optimal ones. However,
for people who like to see “more smooth” functions we can consider such a
variant of the real royal road functions Rn where we assume for the ease of
description that n is a multiple of 6:

3

– If (2/3)n < |x| ≤ (5/6)n, the fitness equals (10/3)n2−4|x|n+b(x)−|x|,
i.e., the fitness decreases linearly with |x|. If b(x) = |x|, the fitness
decreases from (2/3)n2 to 0.

– If (5/6)n ≤ |x| ≤ n, the fitness equals 12|x|n − 10n2 + b(x) − |x|, i.e.,
the fitness increases linearly with |x|. If b(x) = |x|, the fitness increases
from 0 to 2n2.

This variant is for genetic algorithms even easier than the original function
for Rn. The lower bounds for evolution strategies without crossover get a bit
worse as we show now.

An evolution strategy starts with an initial population of polynomial size.
The individuals are chosen randomly and independently. The probability
that such an individual has more than (2/3)n ones is bounded above by
e−n/18 = e−Ω(n) (application of Chernoff’s bound, see Motwani and Raghavan
(1995)). Hence, the probability of having an individual with more than
(2/3)n ones is exponentially small. If the evolutionary strategy uses a plus-
strategy, i.e., accepts only individuals which are not worse than the given
ones, the optimal string has to be produced by mutation from an individual
with at most (2/3)n ones.

We allow all mutation probabilities where the bits are flipped indepen-
dently with the same probability p ≤ 1/2. Then the probability for producing
the all-ones string is maximized for strings with (2/3)n ones. The success
probability equals pn/3(1− p)2n/3 which is maximized for p = 1/3 and there-
fore exponentially small. This implies that the probability of obtaining the
optimum in polynomial time or even in time 2εn for some small ε > 0 is ex-
ponentially small. Evolution strategies may allow to accept individuals with
more than (2/3)n ones. Then it is the best to have a blind search without any
advice, since the optimal string is a single peak like a needle in the haystack.
The search region contains exponentially many points and, therefore, the
search takes exponential time. For the smooth variant of the real royal road
function it may be sufficient to obtain by mutation a point with more than
(5/6)n ones from a point with at most (2/3)n ones. The probability for such
an event is exponentially small for all mutation probabilities. If we search
within the region of more than (2/3)n and less than (5/6)n ones we even
get hints to decrease the number of ones. Moreover, the fraction of strings
with at least (5/6)n ones among the set of strings with at least (2/3)n ones
is exponentially small. This implies the following result.

Proposition 2. Evolution strategies (without crossover) need with a proba-
bility exponentially close to 1 exponentially many steps to optimize the real
royal road function Rn (or its smooth variant).

4

We now introduce the steady-state GA (genetic algorithm) which we want
to analyze. Steady-state GAs are easier to analyze, since we produce only
one new individual per step. We use the parameter s(n) for the population
size, the parameter pc(n) for the probability to apply the operator one-point
crossover (the two parents are cut after the ith position, 1 ≤ i ≤ n − 1 is
chosen randomly, and the child takes the first i positions from the first parent
and the last n− i positions from the second parent), and the standard choice
pm(n) = 1/n for the probability that bits are flipped during mutation.

Algorithm 3. Steady-state GA

1.) Choose independently and randomly the s(n) individuals of the initial
population.

2.) With probability pc(n) go to Step 3′ and with the remaining probability
of 1− pc(n) go to Step 3′′.

3′.) Choose two parents x and y from the current population. Let z∗ be the
result of one-point crossover applied to x and y and let z be the result
of mutation applied to z∗.

3′′.) Choose one parent x from the current population. Let z be the result of
mutation applied to x.

4.) If the fitness of z is smaller than the fitness of the worst individual of the
current population, go to Step 2. Otherwise, add z to the population.
Let W be the multi-set of individuals in the enlarged population which
all have the worst fitness and let W ′ be the set of those individuals in
W which have the largest number of copies in W. Eliminate randomly
one element in W ′ from the current population. Go to Step 2.

Remark. For the selection procedure in Step 3′ and 3′′ we only require that
f(x) ≥ f(x′) implies that the probability of choosing x is at least as large as
the probability of choosing x′ which implies the same selection probabilities
for x and x′ if f(x) = f(x′).

Algorithm 3 has no stopping criterion, since we want to estimate the
expected optimization time. In order to simplify the control of the well-
known hitchhiking effect we have introduced a simple and reasonable rule
to enlarge the diversity of the population. Among the worst individuals we
eliminate one with the largest number of copies.

Theorem 4. Let pc(n) ≤ 1 − ε for some ε > 0, m ≤
n/3�, and s(n) ≥
m + 1. Then the expected optimization time of the steady-state GA for the

5

real royal road functions Rn,m is bounded above by O(n · s(n)2 · log s(n)+
n2 · s(n) · m + s(n)2/pc(n)). For the typical case where pc(n) is a positive
constant and s(n) ≤ n the bound is O(n3(m + logn)).

Proof. We consider several phases of the run of the steady-state GA. Each
phase has a goal and we estimate the expected time until the goal is reached.

Phase 1. The goal is that at least one individual has at most n−m or exactly
n ones.

Claim 1. The expected time for Phase 1 is bounded by 1 + o(1).

Proof. The probability that the initial population has not the desired prop-
erty equals by Chernoff’s bounds 2−Ω(n2). The probability that mutation
produces an individual with the desired properties is much larger than n−n

and the expected waiting time for such an event is at most nn = 2O(n log n).
Including the initial step we have to wait on average 1 + o(1) steps.

Phase 2. Phase 1 is finished and the goal is that all individuals have exactly
n − m ones or we have found the optimum.

Claim 2. The expected time for Phase 2 is bounded by O(n2 · s(n)/m).

Proof. We pessimistically assume that we do not find the optimum. Increas-
ing the number of ones is for Rn,m more important than to increase the length
of the largest 1-block. As long as the individuals do not have all n−m ones,
we will show that the probability of increasing the number of ones in the
population is at least ε ·m/(e ·n) leading to a waiting time of O(n/m). This
implies the claim, since it is sufficient to produce s(n)(n−m) ones. We still
have to prove the lower bound on the probability of increasing the number
of ones in the population. With probability at least ε we only perform mu-
tation. If we choose a parent with less than n−m ones, there are at least m
1-bit mutations increasing the number of ones and each has a probability of
1
n
(1− 1

n
)n−1 ≥ 1/(e ·n). If we choose a parent with exactly n−m ones, there

is a probability of (1 − 1
n
)n ≥ 1/e ≥ m/(e · n) to produce a replica which

replaces an individual with less than n − m ones.

Phase 3. Phase 2 is finished and the goal is that all individuals x have ex-
actly n − m ones where b(x) = n − m or we have found the optimum.

Claim 3. The expected time for Phase 3 is bounded by O(n ·s(n)2 · log s(n)).

Proof. We pessimistically assume that we do not find the optimum. Then
only strings with exactly n − m ones are accepted. Let b1 ≤ · · · ≤ bs(n) be
the lengths of the longest 1-blocks of the individuals. Individuals are only

6

replaced with individuals with the same or a larger b-value. Hence, b1 and
b1 + · · · + bs(n) are non-decreasing with respect to time. We only consider
steps without crossover, since crossover cannot make things worse.

If b1 = · · · = bs(n) = i, the expected time to obtain an individual with a b-
values larger than i is O(n2/(n−m−i)). We may choose any individual. The
1-block with i ones has at least one neighbored 0. There are n−m− i further
ones. The 2-bit mutations flipping the neighbored 0 and one of the further
n − m − i ones increase the fitness. Each 2-bit mutations has a probability
of (1

n
)2(1 − 1

n
)n−2 ≥ 1/(e · n2). The expected waiting time for a good 2-bit

mutation is O(n2/(n−m− i)). For each i-value we have to wait once for such
an event, 1 ≤ i ≤ n − m. Hence, the contribution of such events altogether
is O(n2 log n).

If b1 = i and j > 0 individuals have a larger b-value, one individual with
b-value i is replaced with a better individual if we choose one of the j better
individuals and mutation flips no bit. The expected waiting time equals
O(s(n)/j). For each of the at most n−m possible i-values we have to consider
all values j ∈ {1, . . . , s(n)− 1} leading to the bound O(n · s(n)2 · log s(n)).
Altogether, we have proved Claim 3.

Phase 4. Phase 3 is finished and the goal is to obtain a population of indi-
viduals containing all possible individuals x with n−m ones and b(x) = n−m
at least once or to find the optimum.

Claim 4. The expected time for Phase 4 is bounded by O(n2 · s(n) · m).

Proof. The number of different second-best optimal strings (i. e., strings
x with |x| = n − m and b(x) = n − m) equals m + 1, since the 1-block
may start at each of the positions 1, . . . , m + 1. Here it is essential to have
s(n) ≥ m + 1. A second-best individual is of type j if the 1-block starts
at position j. If Phase 4 has not been finished, there is some j such that
the population contains a type-j individual and no type-(j − 1) individual
or no type-(j + 1) individual. In both cases the probability to choose the
type-j individual equals 1/s(n), since all individuals have the same fitness.
Since crossover cannot have negative effects, we only consider steps without
crossover. There is always a 2-bit mutation changing a type-j individual into
a type-(j − 1) individual (flip the 0 at position j − 1 and the last one of the
block) and also a 2-bit mutation changing a type-j individual into a type-
(j + 1) individual (flip the first one of the block and the first 0 behind the
1-block). The probability of such a 2-bit mutation is at least 1/(e ·n2). In the
positive case we obtain a “new” individual with the same fitness as all other
individuals. We accept this individual and eliminate one individual which is
contained at least twice in the population. Remember that the assumption

7

s(n) ≥ m + 1 ensures such duplicates. Hence, the expected time to increase
the number of different individuals is O(n2 · s(n)). The total expected time
of this phase is bounded by O(n2 · s(n) · m), since the number of different
individuals has to be increased at most m times.

Phase 5. Phase 4 is finished and the goal is to obtain an optimal individual.

Claim 5. The expected time for Phase 5 is bounded by O(s(n)2/pc(n)).

Proof. Because of the selection scheme we always have at least one type-1 in-
dividual 1n−m0m and one type-(m+1) individual 0m1n−m. The probability of
choosing a crossover step with this pair of individuals is at least pc(n)/s(n)

2.
Each crossover position p where m ≤ p ≤ n − m leads to the child 1n. The
probability of such a position is n−2m+1

n−1
≥ 1

3
. Moreover, the probability that

mutation does not destroy 1n is at least 1/e. Altogether, the waiting time
for such a good step is O(s(n)2/pc(n)).

The theorem follows by summing up the expected times for all phases.

We see that 1-blocks are building blocks. However, only 1-blocks at the
beginning or at the end of the string are useful to obtain the optimum by
1-point crossover.

We have introduced Rn,m as real royal road functions for one-point crossover,
since we obtain for m =
n/3� a trade-off of exponential time for evolution
strategies without crossover and polynomial time for our steady-state GA.

We also investigate the steady-state GA where one-point crossover is re-
placed with uniform crossover (for all positions i independently choose xi

or yi with probability 1/2). The analysis of the first four phases can be
used without changes. The probability that uniform crossover creates 1n

from 1n−m0m and 0m1n−m equals 2−2m. This is polynomially bounded only if
m = O(logn). If m = log n�, we still get the bound O(n4) for the expected
optimization time (if pc(n) is a constant and s(n) ≤ n). However, evolution
strategies (with a single individual) need time Θ(n�log n�) in this situation.
Hence, we obtain the same trade-off as Jansen and Wegener (1999), but for
non-artificial values of pc(n).

3 Real royal road functions for uniform crossover

Real royal road functions for uniform crossover are harder to design. The
reason is that 1-point crossover can only create n − 1 different children. For
uniform crossover of x and y we have two possibilities. If the Hamming
distance between x and y is small, also the number of different possible

8

children is small. However, in this situation also mutation can create these
children with not too small probability. If the Hamming distance between x
and y is large, each possible child has a vanishing probability to be created.

In order to simplify the description we assume that n = 2m and m = 3k.
The input x ∈ {0, 1}n is described as pair x = (x′, x′′) where x′ and x′′ both
have length m. Furthermore, x′′ = (x′′

1, x
′′
2, x

′′
3) where x′′

1, x
′′
2, and x′′

3 all have
length k. We say that x′′ ∈ C (C is a circle) if x′′ ∈ {0i1m−i, 1i0m−i|0 ≤ i ≤
m−1}. The circle is a closed path (Hamming distance 1 between neighbored
points) of length 2m = n. We say that x′′ ∈ T (T is the target) if each of the
substrings x′′

1, x
′′
2, and x′′

3 contains k/2� ones and
k/2� zeros. For strings
a and b let H(a, b) be the Hamming distance between a and b. For a set of
strings B let H(a, B) be the smallest Hamming distance between a and some
b ∈ B.

Definition 5. The real royal road functions for uniform crossover are de-
fined by

R∗
n(x

′, x′′) =

n − H(x′′, C) if x′ �= 0m and x′′ �∈ C

2n − H(x′, 0m) if x′′ ∈ C

0 if x′ = 0m and x′′ �∈ C ∪ T

3n if x′ = 0m and x′′ ∈ T

This definition needs some explanation. With overwhelming probability,
the initial population contains only individuals where x′ is far from 0m. Then
the fitness function gives advice that x′′ should be changed into a “circle
string”. This can be done efficiently with mutations only. It is unlikely to
create in this phase a string where x′ = 0m. If x′′ ∈ C, the fitness increases
with decreasing distance of x′ to 0m. Then we will have individuals where
x′ = 0m and x′′ ∈ C. The steady-state GA will ensure that the population
will contain all possible x′′ ∈ C (if the population is large enough). However,
we are far from the optimal strings where x′ = 0m and x′′ ∈ T . Uniform
crossover of 0m0i1m−i and 0m1i0m−i has a good chance to create an optimal
string and mutation only cannot do this job efficiently.

We admit that this function is an artificial one, but it is the first one where
one can prove that uniform crossover decreases the expected optimization
time from exponential to polynomial. As for the real royal road functions for
1-point crossover it is possible to define a “smooth” variant of R∗

n. We omit
this technical definition.

The analysis of evolution strategies follows the lines of the corresponding
analysis in Section 2. The probability that the initial population of poly-
nomial size contains an individual x where x′ has less than m/3 ones is

9

exponentially small. As long as x′ �= 0m and x′′ �∈ C the search on the first
half, namely x′, is a search for the needle 0m in a haystack. Hence, the prob-
ability of finding in polynomial time a string where x′ = 0m and x′′ �∈ C is
exponentially small. Afterwards, x′′ ∈ C is better than x′′ �∈ C with the only
exception of x′ = 0m and x′′ ∈ T . With small mutation probabilities like 1/n
it is easy to find strings x where x′ = 0m and x′′ ∈ C. With large mutation
probabilities we miss the strings where x′ = 0m. Hence, we need a mutation
from x where x′ = 0m and x′′ ∈ C to some y where y′ = 0m and y′′ ∈ T .
The minimal Hamming distance between some x′′ ∈ C and some y′′ ∈ T is
Ω(n). This follows easily, since two of the three strings x′′

1, x
′′
2, and x′′

3 are of
type 0k or 1k. Hence, we need a mutation step where none of the first m bits
flips and a constant fraction of the last m bits flips. The last event has an
exponentially small probability if the mutation probability decreases with n.
For larger mutation probabilities the first event has an exponentially small
probability. This implies the following result.

Proposition 6. Evolution strategies (without crossover) need with a proba-
bility exponentially close to 1 exponentially many steps to optimize the real
royal road function R∗

n (or its smooth variant).

Theorem 7. Let pc(n) be some positive constant smaller than 1 and s(n) ≥
n. Then the expected optimization time of the steady-state GA for the real
royal road function R∗

n for uniform crossover is bounded above by O(n2 ·s(n))
which is O(n3) if s(n) = O(n).

Proof. We follow the same proof strategy as in the proof of Theorem 4.

Phase 1. The goal is that x′′ ∈ C for all individuals x = (x′, x′′) of the
population or we have found the optimum.

Claim 1. The expected time for Phase 1 is bounded by O(n2 · s(n)).
Proof. We pessimistically assume that we do not find the optimum. As long
as there is an individual x = (x′, x′′) where x′ = 0m and x′′ /∈ C ∪ T (these
are the only strings with fitness 0), one of them is eliminated with a positive
constant probability. We only consider steps without crossover. Either we
choose one of the described individuals. Then it is sufficient that at least
one of the first m = n/2 bits flips. Otherwise, it is sufficient to construct
a replica. Hence, on the average, after O(s(n)) steps we have no individual
with fitness 0.

Afterwards, we like to eliminate the individuals where x′ �= 0m and x′′ /∈
C. The “distance” of the population to our goal is measured as the sum of all
H(x′′, C) where x = (x′, x′′) belongs to the population, x′ �= 0m, and x′′ /∈ C.

10

This distance is smaller than s(n) · m and the goal is to decrease it to 0.
Because of our selection procedure the distance cannot increase. Therefore,
it is sufficient to consider steps without crossover. If we select an individual
x, where x′ �= 0m and x′′ /∈ C, for mutation, there is at least one 1-bit
mutation which creates an individual z where H(z′′, C) < H(x′′, C). If we
select an individual where x′′ ∈ C, the distance of the population decreases
if mutation creates a replica. Hence, the expected waiting time to decrease
the distance is O(n) (this is the waiting time for a special 1-bit mutation).
We have to wait for such an event for at most s(n) · m times which proves
Claim 1. (The bound of Claim 1 can be improved, since often there are
many good 1-bit mutations. However, this will not improve the bound of the
theorem.)

Phase 2. Phase 1 is finished and the goal is that x′ = 0m and x′′ ∈ C for
all individuals x = (x′, x′′) of the population or we have found the optimum.

Claim 2. The expected time for Phase 2 is bounded by O(n2 · s(n)).
Proof. We pessimistically assume that we do not find the optimum. Hence,
we only have to consider individuals x = (x′, x′′) where x′′ ∈ C. Now the “dis-
tance” of the population to the goal is measured as the sum of all H(x′, 0m)
where x = (x′, x′′) belongs to the population. The distance is at most s(n)·m
and the goal is to decrease it to 0. The situation is similar to the proof of
Claim 1. The distance does not increase and we consider only steps without
crossover. If we select an individual x where x′ �= 0m for mutation, there
is at least one 1-bit mutation which creates z where H(z′, 0m) < H(x′, 0m).
Otherwise, x′ = 0m. If mutation creates a replica and the distance of the
population is positive, we decrease the distance. Altogether, we have proved
Claim 2 (and also the bound in Claim 2 can be improved).

Phase 3. Phase 2 is finished and the goal is to obtain a population contain-
ing all possible individuals x where x′ = 0m and x′′ ∈ C at least once or to
find the optimum.

Claim 3. The expected time for Phase 3 is bounded by O(n2 · s(n)).
Proof. We pessimistically assume that we do not find the optimum. Then
the population only contains individuals x where x′ = 0m and x′′ ∈ C. The
circle C is a closed path where each point has two neighbors with Hamming
distance 1. As long as the goal is not reached, the population contains
at least two individuals, say x = (x′, x′′) and y = (y′, y′′), such that x′ =
y′ = 0m, x′′, y′′ ∈ C, and both individuals have a Hamming neighbor, say

11

x̃ = (x̃′, x̃′′) and ỹ = (ỹ′, ỹ′′) resp., such that x̃′ = ỹ′ = 0m, x̃′′, ỹ′′ ∈ C, and x̃
and ỹ do not belong to the current population.

We define the “distance” of the current population to the goal as the
number of individuals z = (z′, z′′), z′ = 0m, and z′′ ∈ C, which are not
contained in the population. The distance is at most n − 1 and the goal is
to decrease it to 0. Our selection procedure implies that the distance cannot
increase. Hence, we look for the expected time to decrease the distance. This
happens if we choose a step without crossover, select one of the individuals
described above, and perform the “good” 1-bit mutation. Here we need
the assumption that s(n) ≥ n = |C|. Hence, the expected waiting time to
decrease the distance is bounded by O(n · s(n)) which proves Claim 3.

Phase 4. Phase 3 is finished and the goal is to obtain an optimal individual.

Claim 4. The expected time for Phase 4 is bounded by O(n3/2 · s(n)).
Proof. Because of our selection procedure we always have all individuals
x = (x′, x′′), x′ = 0m, x′′ ∈ C, in our population if we have not found the
optimum. Here we only consider steps with crossover. Let x = (x′, x′′) be
the first chosen parent. Then the probability of choosing y = (y′, y′′) where
y′ = 0m and y′′

i = 1 − x′′
i for all i is at least 1/s(n). The reason is that y is

contained in the population and that all individuals of the population have
the same fitness and, therefore, the same chance of being chosen. Let z̃ be
the result of uniform crossover applied to x and y. Then z̃′ = 0m and z̃′′

is a random string, since x′′ and y′′ have different bits at all positions. We
have z̃′′ = (z̃′′1 , z̃

′′
2 , z̃

′′
3). The probability that z̃′′j , 1 ≤ j ≤ 3, contains exactly

k/2� ones and
k/2� zeros is Θ(k−1/2) (the usual estimate of
(

k
�k/2�

)
2−k by

Stirling’s formula). Hence, the probability that z̃′′ ∈ T is Θ(k−3/2). Finally,
there is a probability of at least 1/e that mutation does not destroy z̃. Hence,
the success probability is at least Ω(s(n)−1 · k−3/2) = Ω(s(n)−1 · n−3/2) and
the expected waiting time for a success is bounded by O(n3/2 · s(n)).

The theorem follows by summing up the expected times for all phases.

4 Conclusions

We have presented for the first time functions where it can be proved without
any assumption that evolution strategies without crossover need with over-
whelming probability exponential time to find the optimum while a realistic
steady-state GA has a polynomial expected optimization time. One-point
crossover is successful for a function with building blocks. However, the ex-
ample function has the property that only two of the building blocks are

12

useful to create the optimum by crossover. The real royal road function
where uniform crossover works has no building blocks. Here it is essential
that the population contains quite different individuals and that it is possible
to create individuals “in the middle of the population”.

References

[1] Forrest, S., and Mitchell, M. (1993). Relative building-block fitness
and the building-block hypothesis. 2. Workshop Foundations of Ge-
netic Algorithms (FOGA), Morgan Kaufmann, San Mateo, Calif.

[2] Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization
and Machine Learning. Addison-Wesley, Reading, Mass.

[3] Holland, J. H. (1975). Adaptation in Natural and Artificial Systems.
The Univ. of Michigan Press, Ann Arbor, Mich.

[4] Jansen, T., and Wegener, I. (1999). On the analysis of evolutionary
algorithms – a proof that crossover really can help. 7. Europ. Symp.
on Algorithms (ESA), LNCS 1642, 184-193, Springer, Berlin.

[5] Mitchell, M. (1996). An Introduction to Genetic Algorithms. Chapter
4.2. MIT Press, Cambridge, Mass.

[6] Mitchell, M., Forrest, S., and Holland, J. H. (1992). The royal road
for genetic algorithms: Fitness landscapes and GA performance.
In F. J. Varela and P. Bourgine (Eds.): Toward a Practice of Au-
tonomous Systems. Proc. of the First European Conf. on Artificial
Life, MIT Press, Cambridge, Mass.

[7] Mitchell, M., Holland J. H., and Forrest, S. (1994). When will a
genetic algorithm outperform hill-climbing? Advances in NIPS 6,
Morgan Kaufmann, San Mateo. Calif.

[8] Motwani, R., and Raghavan, P. (1995). Randomized Algorithms.
Cambridge Univ. Press, Cambridge.

[9] Watson, R. A. (2000). Analysis of recombinative algorithms on a
non-separable building-block problem. 5. Workshop Foundations of
Genetic Algorithms (FOGA), to appear.

[10] Watson, R. A., Hornby, G. S., and Pollack, J. B. (1998). Modeling
building-block interdependency. 5. Symp. Parallel Problem Solving
from Nature (PPSN), LNCS 1998, 97-106, Springer, Berlin.

13

[11] Watson, R. A., and Pollack, J. B. (1999). Hierarchically-consistent
test problems for genetic algorithms. Congress on Evolutionary
Computation (CEC), 1406-1413, IEEE Press.

[12] Watson, R. A., and Pollack, J. B. (2000a). Symbiotic combination
as an alternative to sexual recombination in genetic algorithms. 6.
Symp. Parallel Problem Solving from Nature (PPSN). LNCS 1917,
425-434, Springer, Berlin.

[13] Watson, R. A., and Pollack, J. B. (2000b). Recombination without
respect: schema disruption in genetic algroithm crossover. Proc. of
the Genetic and Evolutionary Computation Conference (GECCO),
112-119, Morgan Kaufmann, San Mateo, Calif.

[14] Wright, A. H., and Zhao, Y. (1999). Markov chain models of ge-
netic algorithms. Proc. of the Genetic and Evolutionary Computa-
tion Conference (GECCO), 734-741, Morgan Kaufmann, SanMateo,
Calif.

14

