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Abstract. When genetic programming (GP) is used to find programs
with Boolean inputs and outputs, ordered binary decision diagrams (OB-
DDs) are often used successfully. In all known OBDD-based GP-systems
the variable ordering, a crucial factor for the size of OBDDs, is preset to
an optimal ordering of the known test function. Certainly this cannot be
done in practical applications, where the function to learn and hence its
optimal variable ordering are unknown.

Here, the first GP-system is presented that evolves the variable order-
ing of the OBDDs and the OBDDs itself by using a distributed hybrid
approach. For the experiments presented the unavoidable size increase
compared to the optimal variable ordering is quite small. Hence, this ap-
proach is a big step towards learning well-generalizing Boolean functions.

1 Introduction

A major goal in genetic programming (GP) ([8]) is to find programs that re-
produce a set of given training examples and have good generalizing properties.
This means that the resulting program should closely resemble the output values
of the underlying function for the inputs not included in the training set, too.

One approach to achieve this is the principle of Occam’s Razor, i.e., one
tries to find the simplest function that outputs the correct values for the train-
ing set. Here one assumes, that functions with small representations yield a
better generalization. Using a result from learning theory it was shown in [6]
how the generalization quality of small programs found by GP can be lower
bounded. Because redundant code can make it very difficult to measure the size
of S-expressions, ordered binary decision diagrams (OBDDs) were used in this
approach having an easy to compute minimal representation, called reduced.

OBDDs, introduced in [3], have proved to be the state-of-the-art data struc-
ture for Boolean functions f:{0,1}" — {0,1}, i.e., f € B,: on the one hand,
they allow the representation of many important Boolean functions in size poly-
nomial in n, on the other hand, many algorithms with polynomial runtime in
the size of the OBDDs are known for manipulating OBDDs (see [14]).

* This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part
of the Collaborative Research Center “Computational Intelligence” (531).



Because of these advantages, OBDDs have been used successfully in GP-
systems in [15], [5], and [7]. But all these systems do not only base their runs
on the given training set, but also on a known optimal variable ordering for the
given benchmark function. The variable ordering has a crucial influence on the
size of an OBDD, i.e., depending on it a function can have a polynomially- or
exponentially-sized OBDD. Because in all former approaches only known test
functions were used, the optimal variable ordering was known in advance, which
is naturally not the case in practical applications. Because there are important
functions like the multiplexer-function, where only a very small fraction of all
variable orderings allows even a good approximation with polynomially sized
OBDDs, it is necessary to adapt the variable ordering.

Here, we present the first GP-system, where the variable ordering and the
OBDDs itself are evolved using a distributed hybrid approach. In the next two
sections we formally define OBDDs and discuss the variable ordering problem
and its implications for OBDD-based GP. Then we describe a new GP-system
that uses well-known heuristics for the variable ordering problem and methods
from distributed evolutionary algorithms. Finally, we present some empirical
results, showing that the unavoidable loss in quality with respect to a system
using the optimal variable ordering is quite small.

2 Ordered binary decision diagrams

Definition 1. Let 7 be a permutation on {1,...,n} (called variable ordering).
A 7-OBDD is a directed acyclic graph O = (V, E) with one source and two sinks,
labelled by the Boolean constants 0 and 1. Every inner node is labelled by one
of the Boolean variables 1, ..., T, and has two outgoing edges leading to the 0-
and 1-successor. If an edge leads from an x;-node to an xj-node, then 7 (i) has
to be smaller than w=1(j), i. e., the edges have to respect the variable ordering.

In order to evaluate the function f represented by a mw-OBDD for an input
(@1,...,an) € {0,1}"™, one starts at the source and recursively goes to the 0-
resp. 1-successor, if the actual node is labelled by x; and a; = 0 resp. a; = 1.
Then f(a) is equal to the label of the finally reached sink.

The size of O is the number of its inner nodes. An OBDD is a m-OBDD
for an arbitrary w. An OBDD is reduced, if it has no node with identical 0- and
1-successor and contains no isomorphic subgraphs.

One can prove, that for a given f € B,, and a fixed 7 the reduced 7-OBDD

of f is unique up to isomorphism. Let {iy,...,ix} C {1,...,n} be a set of
indices and a € {0, 1}*. The function flaiy=air s, =art {0,1}"7% + {0,1} is the
restriction of f, where for every j € {1,...,k} the variable z;, is set to a;. A

function f:{0,1}" +— {0,1} depends essentially on x;, iff fj;,—0 # flz,=1. One
can show that a reduced m-OBDD representing f € B,, contains exactly as many
nodes with label z;, as there are different subfunctions fzm):al,m,x,,(j,mzaj,l
depending essentially on z;, for all (a1,...,a;—1) € {0,1}77! with j = 7=1(4),
i.e., the size of a reduced m-OBDD is directly related to the structure of the
function it represents.



Hence, the representation of Boolean functions by reduced OBDDs eliminates
redundant code and automatically discovers useful subfunctions in a similar
manner as automatically defined functions ([8]), as parts of the OBDD can be
evaluated for different inputs. One receives these benefits without further expense
by the application of reduced OBDDs for representation in a GP-system.

The problem we want to solve at least approximately is the following:

Definition 2. In the minimum consistent OBDD problem we have as input a
training set T C {(z, f(z)) |z € {0,1}"} and want to compute the minimal -
OBDD, that outputs f(x) for all x with (z, f(x)) € T, over all variable orderings
m, where f:{0,1}" — {0,1} is the underlying function.

Certainly our main goal is to find the function f, but all we know about it is
the training set T'. Assuming that the principle of Occam’s razor is valid for the
functions we want to find, a solution to the minimum consistent OBDD problem
would be a well generalizing function. In the next section we argue why the
variable ordering is essential for the minimum consistent OBDD problem.

3 The variable ordering problem and OBDD-based GP

It is well-known, that the size of a m-OBDD depends heavily on w. A good
example for this fact is the multiplexer-function, one of the major benchmark
functions for GP-systems that try to learn Boolean functions:

Definition 3. The multiplexer function onn = k+2* (k € N) Boolean variables
is the function MUX, (ao, ..., ax—1,do, .. .,dos_1) = djq|, where |a| is the number
whose binary representation is (ag, ..., ax—1).

If 7 orders the variables as aq, . .., ax—1,dg, - - ., dox_1, the OBDD for MUX,, has
size 2K —14-2% i.e., linear in n. But for the reverse order the OBDD for MUX,, has
size at least 22" —1 = £2(2™), i.e., exponential in n. For an example see Figure 1.
Furthermore, MUX,, is almost ugly, i. e., the fraction of variable orderings leading
to non-polynomially-sized OBDDs converges to 1 ([14]). So randomly choosing
7w will lead to non-polynomial 7-OBDD size with high probability for large n.

Trying to exactly compute an optimal variable ordering is not a choice, since
the computation of an optimal variable ordering is NP-complete ([2]) and even
finding a variable ordering m, such that the size of the resulting m-OBDD ap-
proximates the optimal size over all variable orderings up to a constant factor,
cannot be done in polynomial-time, if NP # P ([12]).

Considering a GP system that searches for small OBDDs fitting a random
set of training examples for MUX,,, [9] provide the following theorem:

Theorem 1. For every large enoughn = k+2F, if we choose m = k®W) training
examples of MUX,, under the uniform distribution and choose a random ordering
7 of the variables, then with probability at least 1 — k=/2, there is no 7-OBDD
of size %m/ logm matching the given training examples.



Fig. 1. Two OBDDs representing the function MUXg, where the edges to O-successors
are dotted and complemented edges are marked by a *. a) With an optimal variable
ordering. b) With a bad variable ordering.

This theorem implies, that if we start a OBDD-based GP run even with a
random variable ordering with high probability it is impossible to find a small
OBDD matching the training examples. In contradiction to the early OBDD-
based GP-systems we consider the knowledge of the optimal variable ordering
as unknown, since the cited results show that it is hard to obtain, even if the
complete function is known. Hence, we have to optimize the variable ordering
during the GP run. A possibility to do this is presented in the next section.

4 A distributed hybrid GP-system

Because one has to optimize the variable ordering during the GP run to approx-
imately solve the minimum consistent OBDD problem, we have to decide how
to do this in our GP-system. The usual GP approach would be to add indepen-
dent variable orderings to each individual and to tailor the genetic operators to
this new representation. But since this approach would imply the reordering of
OBDDs in almost every single genetic operation, this would lead to inefficient
genetic operators with exponential worst-case run-time. For OBDDs of the same
variable ordering we know efficient genetic operators ([5]). Hence, we should try
to do as few reorderings as possible without losing too much genetic diversity.
Therefore, we use a distributed approach similar to the distributed GA from
[13]. In our approach all OBDDs in a subpopulation have the same variable
ordering, but the subpopulations can have different ones. This fact allows us to
use efficient genetic operators in the subpopulations. When migration between



the subpopulations occurs every M-th generation, the migration strategy decides
how to choose the new variable ordering of each subpopulation. In order to
exchange good individuals as fast as possible we use a completely connected
topology, i. e., every subpopulation sends migrants to every other subpopulation.

Because this alone would limit the number of variable orderings to the number
of subpopulations, every N-th generation we use a heuristic to optimize the
variable ordering in each subpopulation separately. The following heuristics are
suitable for our setting: sifting ([11]), group sifting ([10]), simulated annealing
([1]), and genetic algorithms ([4]).

In order to exactly describe our algorithm, we make the following definitions:

Definition 4. a) Let p € N be the population size and A € N the number of
offspring. 4 ‘
b) Let I = {iy,...,ix} be a multi-set of k subpopulations, where i = {01 ...,0}}
is a multi-set with w;-OBDDs Olj forallje{1,....k} andl € {1,...,k}.
c) Let B € N be the migration rate, M € N the length of the migration interval,
and N € N the length of the reordering interval.
d) Let In; (1 <j<k) be the lists of incoming OBDDs.
Then the rough outline of our GP-system is as follows, where all sets of
individuals are multi-sets, i.e., we allow duplicates:

Algorithm 1 Distributed Hybrid GP-system
Input: the training set T.

1. Instializiation: Choose a uniformly distributed variable ordering m; and a
random initial population i; = {O7,. .., OfL} forallje{1,...,k}. Setg=0.
2. Reordering: If g mod N = 0: Ezecute the chosen variable ordering opti-

mization heuristic on i; for every j € {1,...,k}.
3. Generation of offspring: For every j € {1,...,k} generate X offspring
Ole, ceey Oi&+>\ from i; by doing mutation resp. recombination with proba-

bility p resp. 1 — p.

4. Selection: For every j € {1,...,k} let i; be the p individuals with the
highest fitness values from O, ..., OfL“r)\'

5. Selection of migrants: If g mod M = 0: For every j € {1,...,k} set In;
0. For every j € {1,...,k} and j' # j choose a set of B individuals a =
{a1,...,ap} fitness proportionally from i; = {O7,..., OfL} and set In(ij) =
In(iy)Ua.

6. Calculate new wvariable ordering: If g mod M = 0: For every j €
{1,...,k} let m; = migration_strategy(j).

7. Migration: If g mod M = 0: For every j € {1,...,k} let In; = {a1,...,a,}
forv=B-(k—1), delete v randomly under the uniform distribution chosen
individuals in i; and insert the m;-OBDD Oiz+>\+l with fo, ., = fa, for
every l € {1,...,v} into i;.

8. Main loop: Set g =g+ 1 and go to step 2, until g > G.

9. Output: Output the smallest consistent OBDD of the last generation.

Now we describe the different steps of our GP-system in more detail. Because
initialization and recombination are based on [5], more details can be found there.



4.1 Representation

In the j-th subpopulation all individuals are represented by reduced m;-OBDDs.
Because they all share the same variable ordering, we use a reduced shared bi-
nary decision diagram (SBDD) for every subpopulation. An SBDD representing
¢:{0,1}" +— {0,1}™ is an OBDD with m sources representing the coordinate
functions of g = (g1, ..., gm). In OBDD-based GP the population of m reduced
m-OBDDs representing functions g1, . . ., g, from B, is identified with the multi-
output function g = (¢1, . .., gm) and stored in the reduced 7-SBDD representing
g. By doing this, the individuals share isomorphic sub-graphs. Experiments have
shown, that in an OBDD-based GP-system the SBDD size will go down fast in
comparison to the sum of the sizes of the OBDDs, because the individuals become
more and more similar. This observation still holds, if one avoids duplicates.

Furthermore, we use OBDDs with complementary edges for representation,
which allow memory savings of a factor up to two by using a complementary
flag bit for every edge labelled by 0 and pointers referencing the sources. During
evaluation a complementary flag displays if the referenced subOBDD is negated.
Hence, to represent a subfunction and its complement only one subOBDD is
necessary, whereby we only consider OBDDs with a 1-sink. By using the OBDD-
package CUDD all our 7-SBDDs are reduced and use complementary edges.

These are syntactic aspects of our representation, but we also make a seman-
tic restriction: we only use OBDDs that are consistent with the given training
set, i.e., have the correct output values for the training set T'. This is done by
explicitly creating consistent OBDDs during initialization and testing new off-
spring to be consistent, otherwise replacing them by one of the parents. This
method reduces the size of the search space by a factor of 2|71, allowing us to
measure the fitness of an individual by its size only. This was shown empirically
in [5] to be advantageous for test problems of our kind.

4.2 Initialization

While the variable orderings m; are chosen independently using the uniform
distribution from all possible permutations of {1,...,n}, the 7;-OBDDs itself
are created as follows (for easier notation we assume that m; = id): starting from
the source with label x1, for every actual node labelled x; the number of different
outputs of the training examples consistent with the path to the actual node is
computed, where a path is identified with its corresponding partial assignment
of the variables. If the number of these outputs is two, the procedure is called
recursively to create the 0- and 1-successor with label z;; if it is one or zero,
a random subOBDD is returned by creating the 0- and 1-successor with labels
Zit+s, and x;45,, where dp and §; are geometrically distributed with parameter
a. If i + &g resp. i + 61 is at least n + 1 the corresponding sink is returned, or a
random one, if the actual path is not consistent with any training example.
Thus, the way consistent OBDDs are randomly generated is influenced by
the parameter a: for e = 1 the resulting function is uniformly distributed from
all functions being consistent with the training set, for « = 0 every path being



not consistent with the training set leads to a randomly chosen sink via at most
one additional inner node.

4.3 Reordering

All our heuristics for optimizing the variable ordering work on the whole 7;-
SBDD representing the j-th subpopulation. If we would apply the heuristic on
every m;-OBDD we would eventually get smaller OBDDs, but then the subpop-
ulation would consist of OBDDs of different variable orderings. Hence, we apply
the chosen heuristic on the whole SBDD. Hereby we hope to achieve an approx-
imation of the optimal variable orderings of the individual OBDDs. To see how
a heuristic can look like, we give a short description of sifting ([11]):

First all variables are sorted according to the number of nodes in the SBDD
labelled by it. Then, starting with the variable with the lowest number, the
variable is stepwise swapped with its neighbours: first to the near end of the
variable ordering and then to the far end. Because the SBDD-size after such a
swap can be computed quite efficiently, the variable is put to the position where
the SBDD size was minimal. This procedure is repeated for the variable with
the second-lowest number and so on. To avoid blow-up, this process is stopped
if the SBDD-size grows beyond a factor of ¢ (we choose ¢ = 2).

4.4 Recombination

In recombination and mutation the parents are chosen proportionally to the
normalized fitness 1/(1 + s), where s is the size of the OBDD. Recombination
of two m;-OBDDs chooses uniformly a node v, in the first parent and then a
node v, in the second parent from all nodes having a label at least that of
v, according to m;. Then the subOBDD starting with v, is replaced by the
subOBDD starting with vy: As there can be many paths to v,, we choose one of
the paths randomly and replace the edge to v, by an edge to v,. For all other
paths to v, we replace the edge to v, with probability 1/2, hence considering
the role of shared subOBDDs as ADFs. If this new OBDD is not consistent with
the training set, it is replaced by one of its parents. If the offspring is already in
the population, this procedure is repeated up to ten times, to avoid duplicates.

4.5 Mutation

For mutating a 7;-OBDD a node v, of the OBDD to be mutated is chosen
randomly under uniform distribution. For a path leading to v, it is checked, if
its 0- or 1-successor is relevant for consistency with the training set. If not, it is
replaced by the other successor. Otherwise, a 7;-OBDD with source vy is created
randomly using the same algorithm as was applied during initialization for an
empty training set, where all nodes have a label at least v, with respect to ;.
On one randomly chosen path to v, the edge to v, is replaced by an edge to
vp. On all other paths this is done with probability 1/2. Again, a not-consistent
offspring is replaced by its parent and this procedure is repeated up to ten times,
if the offspring is already in the population.



4.6 Migration strategy

The migration strategy decides how to choose the new variable ordering of the
j-th population after migration has taken place. Because changing the variable
ordering can cause an exponential blow-up, we choose an introverted strategy by
changing the variable orderings of all incoming OBDDs to the variable ordering
of the jth subpopulation, i. e., migration_strategy(j) = ;.

5 Experimental results

For our experiments we use only the multiplexer-function, because we know by
Theorem 1 that it is one of the hardest functions, when it comes to finding small
OBDDs that approximate it or even a random sampling of it. So we want to see
if our GP-system is capable of finding small OBDDs, where the inputs of the
training set are randomly and independently chosen for every run. Furthermore,
we are interested in the generalization capabilities of the OBDDs found. Hence,
we also investigate the fraction of all inputs, where the smallest OBDD found has
the same output as the multiplexer function. We emphasize that no knowledge
whatsoever of the multiplexer function influences our GP-system.

Number of subpopulations k=4 Size of subpopulations| p = 40
Number of generations| G = 3000 Migration rate| B =
Length of migration interval| M =10 ||Length of reordering interval| N = 20
Reordering heuristic|group sifting Initial size parameter|a = 0.2
Mutation probability| p =0.1 Size of training set|T = 512

Fig. 2. Parameter settings for our experiments

The parameters of our GP-system in the experiments are set as shown in
Figure 2, where the size of the training set is chosen to match the examples
of older OBDD-based GP-systems. The results are shown in Figures 3 and 4,
where we choose n = 20 and average over 10 runs. We compare our GP-system
with three GP-systems, where the variable ordering is fixed to an optimal and a
random variable ordering. These systems use only one population of size 160 and
no variable ordering heuristic, but the same genetic operators as in our system.

We see in Figure 3, that our GP-system, although being worse than the
system using an optimal variable ordering, produces smaller OBDDs than using a
random variable ordering: after 3000 generations the average size of the smallest
OBDD found is 126.97 in comparison to 185.10 (where a minimal OBDD for
MUXy has size 32, as we also count the sink here). Taking the results from
Figure 3 and Figure 4 we see that Occam’s razor seems to be valid for MUX,,,
because the generalization capabilities of the found OBDDs behave according
to their sizes: while using the best variable ordering by far results in the best
generalization capabilities, our GP-system with sifting outperforms a fixed GP-
system with fixed random variable ordering (56.73% in comparison to 54, 72%
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Fig. 3. Sizes of the smallest OBDDs per generation (over 10 runs).

hits after 3000 generations). But one can also notice, that our system is more
capable to reduce the size of the OBDDs than to increase the hit rate. One could
conclude that the excellent hit rates of the previous OBDD-based GP-systems
are based on the information about the variable ordering.
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Fig. 4. Hits of the smallest OBDDs per generation compared to the underlying function
of the training set (over 10 runs).

Hence, our distributed hybrid GP-system empirically improves static ap-
proaches using a random variable ordering. The static approach with the opti-
mal variable ordering allows no fair comparison, as in practical applications the
variable ordering is unknown and even approximations are hard to compute.



6 Conclusion

OBDDs are a very efficient data structure for Boolean functions and are therefore
a succesfully used representation in GP. But every OBDD-based GP-system
so far uses the additional information of an optimal variable ordering of the
function to learn, which is only known if the test function is known and has strong
influence on the size of the OBDDs. Hence, we presented a distributed hybrid
GP-system, that for the first time evolves the variable ordering and the OBDDs
itself. Empirical results show that this approach is advantageous to a GP-system,
where the variable ordering is randomly fixed, and also more successful than a
simple hybrid approach, in which the number of subpopulations is set to one and
the population size is set to 160. Hence, this is a great step towards the practical
applicability of GP-systems with OBDDs, since there is no additional neccesary
input needed beside the training set.
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